View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Sydney eScholarship

BUILDING RELIABLE AND ROBUST
SERVICE-BASED SYSTEMS FOR
AUTOMATED BUSINESS PROCESSES

Julian Jang-Jaccard

A thesis submitted in fulfilment of
the requirement for the degree of

Doctor of Philosophy

School of Information Technologies
University of Sydney

March 2007

https://core.ac.uk/display/41230778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

An exciting trend in enterprise computing lies ihet integration of
applications across an organisation and even betveeganisations. This
allows the provision of services by automated bessn processes that
coordinate business activity among several colkooy organisations. The
best successes in this type of integrated disgtbgystem come through use
of Web Services and Service-based Architecturechvhilow interoperation
between applications through open standards basetMi and SOAP. But
still, there are unresolved issues when develogpeek to build a reliable and
robust system.

An important goal for the designers of a looselypled distributed system is
to maintain consistency for each long running bessnprocess in the presence
of failures and concurrent activities. Our approselassist the developers in
this domain is to guide the developers with the kewciples they must
consider, and to provide programming models andopats, which make it
easier to detect and avoid consistency faultsivicebased system.

We start by defining a realistic e-procurement acento illustrate the
common problems faced by the developers which piteteem from building
a reliable and robust system. These problems makard to maintain the
consistency of the data and state during the execof a business process in
the occurrence of failures and interference fromccorent activities. Through
the analysis of the common problems, we identifyy k&inciples the
developers must consider to avoid producing thencomproblems.

Then based on the key principles, we provide a éwark called GAT in the
orchestration infrastructure. GAT allows developdcs express all the
necessary processing to handle deviations inclutfinge due to failures and
concurrent activities. We discuss the GAT framewankdetail with its
structure and key features. Using an example tdkem part of the e-
procurement case study, we illustrate how devetopan use the framework
to design their business requirements. We alsasiéshow key features of the
new framework help the developers to avoid prodycionsistency faults. We
illustrate how systems based on our framework carblilt using today’s
proven technology.

Finally, we provide a unified isolation mechanisalled Promises that is not
only applicable to our GAT framework, but also tyyapplications that run in
the service-based world. We discuss the concept, ihavorks, and how it
defines a protocol. We also provide a list of ptasnimplementation
techniques. Using some of the implementation teples we mention, we
provide a proof-of-concept prototype system.

Acknowledgements

My deepest thank goes to my supervisor Alan Fekatehis guidance and
patience during the course of my doctoral studidheaUniversity of Sydney.
His broad knowledge and his clear thinking haveagvinspired me. Not only
for the research aspect, his warm personality aieddly smile have always
assured me how lucky | have been to work with sameeas capable as he is.
Equally, | owe the deepest gratitude to Paul Giekhflt was Paul who hired
me in CSIRO and trained me as a researcher even ted no idea what it
meant. During the last 5 years, with much happenmdSIRO, he has
continuously embraced my interests and showed medht direction: how to
be a good researcher and what it means to do yuesearch. Alan and Paul,
| am sure I'll miss very much our regular Fridayetiegs at 8am.

| would like to thank my colleague Surya Nepal.rmany difficult moments
during my research career, he has been there folistening to my problems
and complaints. | have been able to overcome mdsyaoles through the
constructive discussions and friendly advice fromm.hl also would like to
thank Dean Kuo, as without him, this research ptojeuld have not started.

| would like thank to my project manager at my wddhn Zic for providing
me an opportunity to undertake my study in conjamctwith my work
responsibility. | also would like thank to the soypsors and fellow PhD
students of the middleware group for their congivec feedback on
presentations on my thesis topic. Special thanksog®avid Levy, Uwe
Roehm, Shiping Chen, and Anna Liu.

This thesis is dedicated to my mom Ok-am Han, ny ¢iead Bong-ok Jang,
and my husband Frederic Jaccard. Without the freigq@ssurance and
encouragement from my mom, | would have not made fdw with my
studies. My husband has been simply superb in sttgpwie continuous love
and support. My long journey would have not beendame without you my
love. And | am sure that my dad watching over fanf there must be feeling
proud and happy for his youngest daughter to beevham today.

Table of Contents

ACKNOWLEDGEMENTS......cc e [l
INTRODUCTION ..o e 1
1.1 Problem Statement..........cooiuiuiiiii e 2
1.2 OUr APPIOACK c.ccvi e e e e e e e 3.
1.3 Contributions: Understanding the Nature of Berbased System 4
1.4 Contributions: GAT — New Event-Driven ProgrammModel for
Defining BUSINESS PrOCESSES........uuiiiiiemmeme et 5
1.5 Contributions: Design Principles in Buildin@asiness Process System
based 0N GAT MOEL..........o i e 5
1.6 Contributions: Promises — New Unified Isolatdechanisms for
Service-based SYSIEMoi i 6
1.7 Contributions: Design Principles in Supportfromises...................... 8
1.8 TNESIS SIIUCTUIEeeeeiiieeee e eee e e e e e e e e e eeean 9.
RELATED WORK ... e e 10
2.1 Traditional TransSaction SUPPOIt.........ccoveevieremiiiiireeee et 10
2.1.1 ACID PrOPEITIES...cevuiuuueeeeeieeeitimmmme ettt eeeee et eeeeeeeaene 10
2.1.2 Locking MeChaniSMcuuiiiiimmmmm e e e e 11
2.1.3 Two-Phase Commit (2PC)..........coeiiii e eeeee e eeeeie e 13
2.1.4 Advanced Mechanisms for Standard ACIDccuuvvnnnnn.. 15
2.1.5 Extended Transaction Modelsccoovveiiiiiiiiiiiiiiiiiiiin, 17
2.2 Distributed Computing Platforms..........coeeeiiieeiiiiiiieieie e, 19
2.2.1 Conventional MiddIEWArecommmeeeeeeeeeeeiiiiineeeeeeeeennnns 20
2.2.2 Workflow Management Systems (WfMS).....ccccccoeeiiiiiiiineennns 22
2.2.3 Business to Business Integration (B2Bi) aexiSe-oriented
ArChiteCture (SOA) ... it 26
2.3 SUMIMATY L1ttt e e e em e e et et e e e e e et e en e e e e e eeens 34
UNDERSTANDING THE NATURE OF SERVICE-BASED
SYSTEMS .. 35
3.1 Motivating SCENAIIO.......ccccuuiiieiiit e e e e e eaes 35
3.1.1 E-procurement When Ordering Goodscceueemeeeieeeeeieeiinnnnn. 35
3.1.2 Merchant SYSTEIM..........cciiiiiiiiiiimmmmmne et 36
3.2 Issues for Service-based Systems.......cccooiiiiiiiiiiii 38
3.2.1 Time Related ISSUESc.couuiiiiiiiieeeeee e 39
3.2.2 NO TermMiNatiONccceveieeeeeii e esememmme e e e e e e e e e eee e e e e aenneeeene 40
3.2.3 UNpProcesSed MESSAQGES........ceeeieiiimmmmmmmmeeitiiia e e e eeeeeiiiaa e 40

3.2.4 Out of Order Processing of MeSSages.....c.ccuuevveeevieriiinnnnnenn. 41

3.2.5 Lack Of ISOIAtiONuuiiiiiiieee e 42
3.2.6 CancCellatioNnS..........oeeiiiiii e e 43
3.3 Introduction t0 DeVIatioNS.............uueeeeereieiiee e e aeen 44
3.3.1 Recoverable DeviatiONS............. ..o eeeeeennneeeesnnneeseennaeeenns 44
3.3.2 Unrecoverable DeVviatioNnsScceceemmmeeeiiiieeeeiineeeeeineeeeeennnns 45
3.3.3 State-related DeviatiONscomeeeeeernneereeiineereainaeeeenn 46
3.4 States and State MiSmMatCh...............commmeeeneereiiie e 47
R S = (= a7
3.4.2 Classification Of DeVIiations...........cccceecurrninieeeiieiiiiiinee e eeeeeianns 49
3.5 Desired Features in Handling Deviationscccooeeevviieeeeenn, 54
3.5.1 CancCellationS........c.cuuuiiiiieii e 54
3.5.2 Continuing to Make Forward Progressccceeeevvviiieeeiiineeeens 57
3.6 Critiques of Standard Mechanisms and Suppais Current
JLIC=Te3 4 0o (o T =SSP 59
B TR A S TU [11 4= TP 60
GAT — NEW EVENT-DRIVEN PROGRAMMING MODEL
FOR DEFINING BUSINESS PROCESSESco i 62
4.1 PayMENT PrOCESS ...iiiiiiiii ittt temmeeme et e et e e e e e 63
4.1.1 SeNd INVOICEceeeieiiiiiiie ettt e e et e e e e e eeeeees 63
4.1.2 ReCeiVe Payment..........ccuuiiiiiiiiiceeccee e 64
4.1.3 SENA RECEIPLuiiieiiiiiiiiie et e e ee et eeeeeeenees 66
4.1.4 CancellatioNsS........cooviiieiiei e 66
4.2 GAT Programming MOElcooouiuiimim e 68
Y 1 U o U] = P 8.6
4.2.2 KEY FEAIUIESoeviieiiii et imceem e e e e eees 71
4.3 Payment Process in GAT Modeloocooceeeiiiiiieeiei e 72
4.3.1 Activity Group: SENdINVOICE..........cuuuiieeeeiiiiiiiiiee e 72
4.3.2 Activity Group: receivePayment....... .o eeveeeiiieeeeieeeiiiiinennn. 74
4.3.3 Activity Group: overduePaymentcccceeeeiiiiiiiiiiiieeeeeeeenes 76
4.3.4 Activity Group: SENURECEIPT ..o et 78
4.3.5 Activity Group: cancellations...........coceeeviiiiiieiiiiii e 78
4.4 Experiment With GAT ... e e 80
4.5 Evaluation Compared to Other Modelscccceerviiiiiiiiiiiiiiiiiineeeens 81
4.6 SUMMAIY ..ottt ieii et rrmm e e e e an e e e e e s aetaean e annas 82
DESIGN PRINCIPLES IN BUILDING A BUSINESS
PROCESS SYSTEM BASED ON GAT MODEL................. 84
5.1 CaASE SUAY.....cciiiiieeeiiie e et e s et e e e e e e e e e e e e aaaas 84
5.2 GAT Design Consideration..........ccoeeeveeeeeeriieeeieiie e e e e 86
5.2.1 Control Flow of BUSINESS ACHIVItIEScuuuiiieiiiiiiiiiiieeeeeeeeeiis 86
5.2.2 Atomicity/I1Solation ISSUESiieeeeeiiiiieeeee e 87
5.2.3 Management and Distribution of EventS.....c.......ccoocovvvieeen. 87

5.3 Architecture of GAT Prototype System...........ccoovviiiiiiiiinieieiiennnnnns 88

5.3, 1 USEr INtEIaCE. ..ccvn e 89
B.3.2Event Handler ... 89
5.3.3 GAT PrOCESSON ...ttt 90
5.3.4 Remote Communication Handlerccoeiiiiiiiiiiiiiiiiineeeens 90
5.3.5 DaAta StOrAQE.cieveiieeeeiie e et e e e e 91
5.3.6 Running BUSINESS SYSEMS........... .o s e eeeeeeeeeiiiiinneeeeeeeenns 92
B.3.7 PerfOrmManCecu. it 93
5.4 Implementation of GAT modelooomeeiiiiii e 96
5.4.1 Defining Activity Group and Execution of Adgties 97

5.4.2 Supporting the GAT Event Concept.......commmeeeeereeeeeernnnnnn... 100
5.4.3 Inter-process Communication...........coweeeeevvieeeeesnneeennnn... 103

5.5 Design of a General GAT ENQINE..........ccummmmeeeeuiiieeeiiiiieeeiiiiiaeeens 104
5.5.1 GAT SpecifiCationS...........ceeeeiuiiiicmeer e eeei e 106
5.5, 2 ANAIYSEI ... e 107
LTRSS 31 1Y/ =T o] o1 PP 107
5.5.4 COUEDOMuiiiiiiiiiiiiiiiie et et e e et e e e e eeees 107
5.5.5GeNerating Ccevieiiii et 107
5.5.6 COMPIlING ccooviniiei e e 107

5.6 Evaluation Compared to Other Implementatiore/iatives............. 108

5.7 SUMMATY ..ottt s e e e e e e e s 100

PROMISES — NEW UNIFIED ISOLATION MECHANISMS
FOR SERVICE-BASED SYSTEMS.........ccooiiiiieeeen 112

0 o (0] 0 0T LS = 113

6.2 Resources and PrediCatesuu i vcceermmmeeni et ee e eeeinne e 116
6.2.1 ANONYMOUS VIBWuuiiieiiiiiiiiii it eeee e 117
6.2.2 NAMEA VIBWiiiiiiiiieiei e s s e e e e et e e e e annneeees 118
6.2.3 VIEW VIia PrOPErtiesSuuuiiieiis ettt e e 119

6.3 Atomicity and PromiSESccoouiiiiimmmmmm e 121

6.4 Implementation TECNNIQUESo o ceeeeiiiae e 122

6.5 Promise ProtOCOL...........cuuiiiiiiiiieee e 124

6.6 Promises and ISOIAtioN e e eeeeeee e 126

6.7 Other Similar Isolation MechanisSmscccccevvviiiiiieeeeieiiiiiinnn. 127

(SRS @] Tox (1] o] o HO SRS 129

DESIGN PRINCIPLES IN SUPPORTING PROMISES...... 130

7.1 Design Issues and Constraints of PromiseS...u....ccccoeevvvvnnee...... 130
7.1.1 Compatibilityccoovuieiiiii e 131
7.1.2 Representing PromiSEScccovvvimmmmcmmie e e eeeeiee e 131
7.1.3 Promises and SChemasccovivveemmeeiiiiiinieeeeeeeeii e 131
7.1.4 I1solation and CONCUITENCYciieemmmmeeiieeee e e e e e e 132
7.1.5 Dynamic Promise LiSt............uiiiiiimmmmmmcieeeeeiiee e eeiee 132

7.2 SEIUCKUIE ...t ettt e e et e e e e e eeans 133
A R\ 12151 7= T [P 134

vi

7.2.2 COMPONENTSeiieiiie ettt e e e e e e e e e eeenns 135

7.2.3 Promise Consistency Checkingccceeeereiiiiiiiiiiiiineeeeeeens 137
7.2.4 Promise OPErationsSocceiieeecemmmmmeeeeeeeeeiiii e e e eeeeeeiiennnns 138
7.3 Reflecting 0N our desSignc.uuuiiiiiiiiiiiii e 139
7.3.1 ComPAatiDIlity ... e 139
7.3.2 Representing PromiSesSii i icmmeeiii e 139
7.3.3 Promises and SChemascccouuueemmmemiiiie e eeeei e eeeaenn 140
7.3.4 Isolation and CONCUIMTENCYuuucecceeeeii e 140
7.3.5 Dynamic Promise LiSt.........cccuuuuummmmmmeeiiiinee e 141
7.4 IMPlemMENtAtiONcvuiiiiiiiie e e e 142
7.4.1 Overview of Promise Consistency Checkingrfate................ 142
7.4.2 Implementation of Promise Operations...............ccceeevvvveeens 146
7.5 Other AREINALIVES.........uuiiiiiiiiiiie e e 155
7.6 SUMIMATY Lottt e e emr e e e et e e e e et e e e e aa e e aneeens 561
CONCLUSIONS ... et 158

Vii

List of Figures

Figure 1 Conventional Locking Example (source fi@31)..............cccceeveee 12

Figure 2 Two-Phase Commit (2PC) Protocol......cccccuvuiiiiieiiiiiiiiiiineeee 14
Figure 3 Escrow Locking Example (source from [25])........cccooevvviiiinnnnnn. 16

Figure 4 Long TransSaction iN SAQacmceceeeeiiiiiiiaiee e 18
Figure 5 Conventional Workflow Example.......coceeiiiiiiiiiiiiiiiieee 22
Figure 6 ECA EXaMPIE.......uuuiiiiiiiiiiiii et 3.2

Figure 7 E-procurement SCENAIIO.uuaereeeiiiiiieee e 36
Figure 8 Merchant Workflow..............o.uuuiieammiiii e 37
Figure 9 Payment Process within the Merchant Peaces...............c...u..... 63
Figure 10 Receive Paymentccooiiiiiieiie e 65
Figure 11 GAT Process StrUCLUIEuieceeeiiii e e 69
Figure 12 GAT ACLIVIty StrUCTUIE........ccovviimme e 70
Figure 13 Activity Group: receivePayment in GAT.cc..vvieeiiiiiieeiiieeeees 86

Figure 14 Architecture of GAT Prototype System.........cccoeeevvviiiiiiinnnnnnn. 88
Figure 15 Snapshot of the Running Prototype System..............cccccc.... 93
Figure 16 Performance at Each Business Activityliliseconds (ms)........ 94

Figure 17 Snapshot of the Performance Monitor...............cccooeveivivieenen, 96
Figure 18 GAT ENgINe CONCEPLSuuueiivticmmmmmr e e ee et e e eetiieeeeeeineaeeeans 105
Figure 19 GAT Engine Major StagesS..........iccceemieeeviiiieeeeiiieeeeeeiieeeeennnn 106
Figure 20 Example of GAT SYNtaX.......coieeiiceemmmeiiiiiie e 106
Figure 21 Outline of Ordering Process Code......ccccccoeevvvvieiiiiiieeeeennnnnn. 127
Figure 22 Structure of Promise System........cccocoeiiiiiiiiiiiiiiciiee e, 134
Figure 23 Promise Manager Flow Chartccccceeiiiiiiiiiiiiiiiieceen, 136
Figure 24 Message Sequence on Making New Promises.................... 147

Figure 25 Message Sequences on Executing ACtionsS............ccccevvvven... 151

Figure 26 Message Sequence on Updating PromiseS......................... 154

viii

Publications on which this Thesis is

Based

« Jang, J, Fekete, A., Greenfield, P. Delivering Promises ¥eb
Services Applications. Technical Report of Universof Sydney
School of Information Technologies, TR-605 Decen2@)6.

» Greenfield, P., Fekete, AJang, J, Kuo, D., Nepal, S. Isolation
Support for Service-based Applicatioris. Proceedings of the '3
biennial Conference on Innovative Data Systemsd&els§CIDR) pp
314-323, Asilomar, USA, January 2007.

 Jang, J, Fekete, A., Nepal, S., Greenfield, P. An Evenw&n
Workflow Engine for Service-based Business SystenProceedings
of the 18' IEEE International Conference on Enterprise Conmmt
(EDOC) pp 233-242, Hong Kong, China, October 2006.

* Nepal, S., Fekete, A., Greenfield, Bang, J, Kuo, D., Shi, T. A
Service oriented Workflow Language for Robust latding
Applications. In Proceedings of the {3 Cooperative Information
Systems (Coopl)p 40-58, Cyprus, November 2005.

* Kuo, D., Fekete, A., Greenfield, Bang, J.Just What Could Possibly
Go Wrong In B2B Integration™ Proceedings of the #7Annual
International Computer Software and Applications n@wence
(COMSAC) pp 544-549, Dallas, USA, November 2003.

* Greenfield, P., Fekete, Alang, J, Kuo, D. What are the consistency
requirements for B2B systemsHigh Performance Transactions
Systems (HPTS) Workshdxsilomar, California, USA, October 2003.

« Greenfield, P., Fekete, AJang, J, Kuo, D. Compensation is Not
Enough. In Proceedings of the "7 IEEE International Enterprise
Distributed Object Computing Conference (EDOQp 232-239,
Brisbane, Australia, September 2003.

 Jang, J, Fekete, A., Greenfield, P., Kuo, D. Expressivenes
Workflow Description Languages.In Proceedings of the *1
International Conference on Web Services (ICW#) 104-110, Las
Vegas, USA, June 2003.

Fekete, A., Greenfield, P., Kuo, Dlang, J. Transactions in Loosely
Coupled Distributed Systemi Proceedings of the f4Australasian
Database Conference (ADCPp 7-12, Adelaide, Australia, February
2003.

Kuo, D., Fekete, A., Greenfield, Bang, J Towards a Framework for
Capturing Transactional Requirements of Real Woruk§. The 2¢
International Workshop on Cooperative Internet Caiingg (CIC)
Hong Kong, August 2002.

Chapter 1

Introduction

Businesses continuously seek methods to autonmsks ta reduce costs. With
the advent of distributed computing, it is possitdeimplement Enterprise
Application Integration (EAI) and Business-to-Busss integration (B2Bi)
solutions to automate business processes. The keysuccess is
interoperability between loosely coupled componémggemented and hosted
on independent platforms. These may be within thees organisation or
indeed they can be owned by different organisatiQmmponents are written
independently, and they can be combined in multidgs. In many cases the
component encapsulates a legacy IT system, suiciverstory management or
a financial package. The essence of such systetis ability of collaborating
organisations to allow controlled external accesgheir internal IT systems
which raises questions familiar to database rebessc such as semantic data
conversion, data integrity, and many more.

There are a number of distributed computing platiravailable for
implementing interoperation between application ponents. Some, like
J2EE or .NET, are proving popular and powerful with tightly controlled
organisation. However, they lack the cross-platfomeroperability needed
for industry-wide collaboration. Other technologissch as CORBA have
proved too heavy-weight and complex for many users.

Web Services is a maturing distributed computiraffptm that is currently
attracting a lot of attention [25]. This approachimteroperability relies on
both XML messaging and the internet. It is basedaoset of standards
managed by the vendor-neutral W3C with support fedbhmajor IT vendors.
These standards include SOAP (Simple Object Adeest®col), WSDL (Web
Services Description Language) and UDDI (Univeiascription, Discovery
Integration).

The Web Services standards mentioned above alldgideus to invoke a
remote application, and provide arguments and veagisults in a format that
can be understood on both sides. However, for &fie€€Al and B2Bi, we

need a sequence of operations flowing in both tdoes providing interaction
among long running business process across mubiganisations. In such

situations, interacting components typically maimtper-collaboration state
throughout a long collaboration. Designing a geihdomsely coupled
distributed system thus requires description oflamning business processes
which exchange messages each of which is done 8€Md.

It's important to distinguish between external antérnal descriptions of a
service. A description of an interface or abstiagsiness process is the way
external collaborators interact with a serviceelnally, the orchestration or
executable business process describes when eagltyast invoked, how
control flows, and how to deal with exceptions aotther situations in
sufficient detail. Our thesis deals with the lattdre issues involved in the
orchestration level.

There are now a number of proposed standards foaké B2Bi solutions for
long running business transactions. For exampl&;LBF] is a specification
for implementing a business process from collalgaactivities. Through
such tool support and standards, it is fairly easgesign and construct this
kind of integrated system. Current technology duss however, make it easy
to design reliable and robust applications: ones tan deal with events that
cause deviations from normal processing paths, sashfailures and
concurrent activities, while still maintaining oadly cross-organisational
consistency.

1.1 Problem Statement

An important goal for the designers of a looselypled distributed system is
to maintain consistency for each long running bessnprocess in the presence
of failures and concurrent activities. The objeesivare thus similar to
transaction processing for database managemeptsyst

The environment of a loosely coupled distributedtssn however is very
different from traditional database managementesygstwhere mechanisms
used for ACID properties worked well. The looselgupled system is
constructed from pieces that need to remain autonsimbecause they were
written, and are run, independently. In many catesy belong to different
organisations which are competitors as well as abolators; the
organisations’ goals are not the same, and eacheodand trust to the other.
The pieces use many resources and may include hinteamention, so each
lasts a long time. For these reasons, it is unaabgpfor one business process
to hold locks in another business process thatoesitéd beyond a trust
boundary. The lack of locks means that process&s loa completely isolated
from one another; also this means that one calitviotraditional rollback,
based on the restoration of before images keptag.a

To overcome the limitations of adapting the staddaechanism from ACID,

current technology tools and business process mod@ave borrowed the
exception-handler concept from programming langsaged an advanced
distributed transaction model based on compensg86h Though there is

high acceptance of the compensator model as aovanpvide required failure

atomicity, it has limitations as a primary excepttieandling mechanism. This
is discussed in detail in Chapter 2 Related Work.

Rather than attempting to provide the equivalentradlitional or advanced
distributed transactions for the loosely-coupled bW®ervices world, our
approach has been focused on the more modest doalipporting the
development of tools, programming models and pasycwhich make it
easier to detect and avoid consistency faultsivicebased system.

Key gquestions we will address concern the natursitofations that lead to
inconsistency in such systems, how designers qgaesent a business process
including all processing needed to avoid inconaisge how designers can
express conditions that must be guaranteed to aiutielference from
concurrent activities, and how these designs camipéemented effectively
using today’s proven technologies.

1.2 Our Approach

We will provide the answers to the questions raisethe previous section
through the analysis of the nature of the servieeed world and the
understanding of the issues involved in the domain.

We first present a realistic e-procurement scentrrialiscuss the common
problems faced by the developers of the servicedbagstem which prevent
them from building a reliable and robust systemesghproblems make it hard
to maintain the consistency of the data and stateng the execution of a
business process in the presence of failures aedérence from concurrent
activities. Through the analysis of the common [gols, we identify key

principles that will drive our proposals.

In the second part of the thesis, we provide a éwmork called GAT in the

orchestration infrastructure. GAT allows developdcs express all the

necessary processing so that they can producebleelend robust systems
despite the presence of failures and concurrentitzes. We will discuss the

GAT framework in detail with its structure and kégatures. Using the
example taken from part of the e-procurement casdyswe illustrate how

developers can use the framework to design thaimbas requirements. We
also discuss how key features of the new framevingdp the developers to
avoid producing consistency faults. We will aldastrate how our framework
can be built using today’s proven technology.

In the third part of the thesis, we provide a wdfisolation mechanism called
Promises that is not only applicable to our GATnfeavork, but also to any
applications that run in the service-based worle@ #iscuss the concept, how
it works, and how it defines a protocol. We alsovle a list of potential
implementation techniques. Using some of thesee@mphtation techniques,
we describe a proof-of-concept prototype system.

1.3 Contributions: Understanding the Nature of

Service-based System

We identify some important issues which can preuéet developers of a
service-based system from building reliable andisdlsystems for automated
business processes. The issues of concern inchirde:related issues derived
from the asynchronous nature of a service-baseaeéraydailure to terminate

resulting from lack of coordination and global kdedge among autonomous
systems, unprocessed messages caused by complexsapidsticated

interactions among loosely-coupled components, agesswhich arrive and
are processed out of order, lack of isolation dueadtivities which run for

long duration across trust boundaries, and the easmd chance of
cancellation.

These issues are often causes of state mismatchels then produce various
deviations from the expected execution path. Ifs¢h@eviations are not
appropriately handled, the system will produce isistent outcomes. We
give our insights into the states, starting fronfirdeg the types of state
involved in a service-based system, such as redtistate, abstract state and
the business process state. We present differpes tgf state mismatches in
terms of these three types of state. This can geobietter insights into the
relationship between the key issues of any sefvased system and the types
of deviations.

We present what we consider to be required behewitmube able to handle
various common deviations resulting from state naitm. In light of our list
of required deviation handling behaviours, we eatduthe existing standard
deviation handling mechanisms to see how well ey be used as support.
We present the results of the evaluation and suiem#ne key requirements
for describing business processes if we seek taceedonsistency problems.

1.4 Contributions: GAT — New Event-Driven
Programming Model for Defining Business

Processes

We propose a new programming model and notatioreXpressing business
processes which can help designers of businesensysb avoid many
common sources of errors. This new model is cal@AT” standing for
Guard-Acton-Trigger following the name from the oraglements of the
model.

One of the most innovative features of GAT is titaprocesses normal
business activities and various unusual situat{omduding deviations) in a
uniform manner. This allows the developers to hsivepler expressive ways
to manage even the most complex and sophisticatedhtibns. Our GAT
model treats deviations (such as failures and diatices) as events, just like
message arrival in normal business cases, rather uhder a separate and
inflexible fault-handling regime such as rollback compensators. Once
deviations are dealt with, forward progress canumes through normal
business activities which allows the system to ggvgo forward rather than
having to be aborted.

The degree of knowledge of the overall system aamdtically change the
behaviour of the system in dealing with deviaticarsd other situations.
Typically, existing standards and products onlywlithe access to Abstract
States, a computer-based representation of the idotygically stored in
databases (i.e. purchase order or payment), infahem of messages or
variables inside business action. Business Prds&de, which has variables
reflecting what business actions have occurred ffuechase order received,
payment sent), are hidden away and only implicithed by the system to
handle the failures automatically. Different to #wasting approach, the GAT
model makes available both Abstract States andnBasiProcess States to the
developers. The developers can explore and aco#isstates to gain as much
knowledge as possible regarding the state of thewusystem. This exposure
of a wide range of states allows the developersotdrol business activities
and to devise better mechanisms to handle devgtion

We have represented the whole e-procurement piiagess the GAT
notation, thus showing its usefulness for a busireslyst.

1.5 Contributions: Design Principles in Building

a Business Process System based on GAT Model

We define and solve the critical challenges thateh be addressed when
designing a business process system from a dasaript GAT model. These

include implementing control flow based on the aw#ibn of guards, the
management and distribution of events, and enfgreitomicity constraints
across the evaluation of guards and the executioth® corresponding
activity. We have built a prototype system follogithis approach which uses
available technologies such as C# and the .NETdveork to produce a set of
business process executables from the e-procurestamario defined in
GAT.

A key issue for a system following GAT approachasiecide how to manage
the control flow, in other word, how to pick thepappriate action to perform
in response to an event. We propose exploiting amntedriven
publish/subscribe model to pick appropriate actiang to raise further events
to make the business process go forward untilmpetes. We illustrate how
this is done using .NET events and C# language.

In the GAT model, it is essential that the choi€evbich action to perform
from an activity group (by evaluation of guardsle texecution of the chosen
action, and the evaluation of its trigger condisiomnd raising any further
events, must all form an isolated unit. Our GAT tptgpe implementation
uses the transaction mechanisms provided in .NBETt®solve this problem.
Each activity group, including the evaluation sfguards, the execution of the
chosen action, and the evaluation of its triggerdton and raising further
events, is constructed as a single transaction. iSaktion provided by
transactions guarantees that the state used bynanguactivity group cannot
be altered by any concurrently executing businessgsses.

In our GAT model, events are used as communicatemier that delivers
messages within a business process or across lauiginess processes. In
our prototype, we map these to .NET events, buethee some complexities.
GAT has three different types of events: Interne¢isare used to control
flow among Activities within the same business @sx; External Events
control the communication between interacting pmésiness processes, and
Deferred Eventare used when a process needs to trigger correatii@ns if
anticipated events have not happened by some deatllle provide examples
with coding details of how the different types gkats can be implemented in
our prototype system.

We also discuss how to extend these implementasionniques to a general
workflow engine which can run GAT-described proesss

1.6 Contributions: Promises — New Unified

Isolation Mechanisms for Service-based System

The GAT model requires the programmer to providdecto handle each
possible action under every possible state. What mheans is that the

programmer will have to write code to handle théeaf of all possible
interleaving among concurrent processes. To rethiseburden, we propose
an approach to providing the benefits of isolation service-oriented
applications where it is not feasible to use thditronal locking mechanism.

Our technique, called ‘Promises’, is a unified @awh to describing the
interactions between a client and a service whereclient can make sure that
some condition over resources will hold at a ldtere, despite concurrent
activities that occur between the check and the afsthe condition. We
present a promise protocol: here the client aptiina determines the
conditions they need to have hold over a set afuees and express these as
predicates, and the resource manager will deterihihean grant the promise
and reply. Then, once a promise has been grarited;lient application can
continue and make changes to the resources prategtés promises, with the
guarantee that they will be allowed if they arehvitthe conditions implied,
and then client applications then release theimises.

Predicates are simply Boolean expressions oveuress. Our model imposes
no restrictions on the form these expressions alas and their ideal form will
normally depend on the nature of the resourcedvedoand the way we want
to view them at the time. We discuss the natureesburces and the way that
this defines the types of predicates that can bd irspromises over them. We
describe in detail three ways of viewing resour@snymous view, named
view, and view via properties. We explore the relahip between these
views and predicates. We also give examples traw $fow applications can
use these different ways of viewing resources ttaiobjust the degree of
isolation they need.

The Promise Pattern we propose is a style of iatiera in which a client can
request another service to guarantee that a ptediidl remain true for a
limited time into the future. The value of our pospl depends on the
existence of mechanisms by which the provider aapkits promises. We list
some well-known implementation techniques whichldowork well with
promises.

1.7 Contributions: Design Principles in

Supporting Promises

We define some of the implementation issues thadne be resolved in

promise-based systems and discuss how we buitt@-pf-concept prototype

of a Promise Manager that supported promise-baseldtion. The major

challenge in the implementation is to ensure thatRromise Manager takes
overall responsibility and coordinates the aceatio maintain the validity of

non-expired promises; that is, resources must lagladle to satisfy every

predicate that the Promise Manager is committeddmtain.

One of critical decision we made in implementingrRise Manager was to
avoid changes to existing applications or resoune@agers that the Promise
Manager interacts with. This allows us to reusesteg applications and

resource managers thus increasing our productigitthe development of a

proof of concept system. Our solution to this caist is to implement our

Promises prototype as a layer that wrapped existpygication systems and
resource manager and ensured that promises couldothe granted and

honoured.

The Promise Manager needs to keep a persistentretall promises that are
currently in effect. Our solution is to create &anjeat for each promise and
store it as a row in an SQL database table. Sonehanésm also has to be
provided so that resources defined in the predicate available. We assume
that the Promise Manager is able to query the resamanager to find out the
availability of resources specified in the predicalVe provide code examples
how this is can be done using SQL queries for bwmed resources and
anonymous resources. Information about promisesrasdurce availability
are stored in different places and controlled Hfedént managers, but they
are both accessed as part of promise operatiores sdlution we adopted to
prevent problems arising from concurrent accesghéopromises table and
shared resources is to wrap each promise oper@imh as creating a new
promise, when action performed or updating existipgpmises) in a
transaction.

Promise checking is at the heart of the Promiseiipkystem. The promise
checking guarantees that resources must be awailalishtisfy every predicate
that the Promise Manager is committed to maintam.ensure that granted
promises are not violated, the Promise Manager emphts a Promise
Consistency Checking mechanism where it evaluatet af promises against
the current state of resources. We illustrate twonfse Consistency
Checking mechanisms to cover named resources amuy@ousS resources.
We also demonstrate the ways Promise Consistenegk@tg are used in

various operations, such as making new promisescutg actions, and
updating existing promises, which could violate vh&dity of promises.

1.8 Thesis Structure

This thesis provides programming models and prdsoadiich can make it
easier to build a reliable and robust system witigh deal with events that
cause deviations from normal processing paths, sashfailures and
concurrent activities.

In Chapter 2, we introduce the background and smsearch works which
have been proposed to solve similar consistendyl@nos on various different
computing platforms. The aim of this chapter is sorvey the existing
approaches and show why they cannot be used te saolv problem in the
service-oriented world.

In Chapter 3, we present our understanding of #ieira of service-based
systems using a realistic e-procurement scenahie.aim of this chapter is to
define the common problems faced by the developérhe service-based
system, and to identify key principles requireduny solution.

In Chapter 4, based on the key principles we ifiedti we propose a new
process description model called GAT. This can hieépdevelopers to build
more reliable and robust system despite the oacceref the failures and
interference from the concurrent activities. Wecdss the innovative ideas of
GAT and its key features which can help the dewai®po avoid consistency
faults.

Chapter 5 discusses the design principles that bavee addressed when
implementing a business process which is definethén GAT model. We

illustrate, with code examples, a proof-of-conc&AT prototype system

following the key design issues we identified.

Chapter 6 presents a unified isolation mechanisiteccaPromises that is
applicable to provide an appropriate degree ofatsmh to many applications
in the service-based world. We discuss the condep#; it works, how it
defines a protocol, and a list of potential implena¢ion techniques.

In Chapter 7, we define some of the implementatgsues that need to be
resolved in promise-based systems. We also illigstea proof-of-concept
system built using today’s proven technology.

Finally in Chapter 8, we present the conclusiontted thesis. The major
contributions of each chapter are summarised andidestify the future
implementation and research work we plan.

Chapter 2

Related Work

In this section we review the previous and ongaegparch efforts related to
our research topic. We first look at the traditiomansaction concept and its
implementation in the database community whichinst festablished the
concept of consistency between data items. Therowk at the distributed

computing and the role of transaction support Wwiecome one of the major
key components to build robust systems across peiltirganisations.

2.1 Traditional Transaction Support

The concurrency control and recovery mechanismisetsure preservation of
consistency between data items within a single bdata were important
discoveries of early database research. The vexy ad an ACID transaction
is an important recognition since it involves matkms in the infrastructure
to relieve the application programmer from worryiadpout failure and

interleaving. We look into the concept of ACID peofles, and also at
advanced models which have been proposed by eathbase research to
improve the shortcomings of ACID.

2.1.1 ACID properties

ACID (atomicity, consistency, isolation, and dutay) [32] are considered to
be the key transaction processing properties torenthe integrity of data.
Any database transactions that meet the charaatsrif these four properties
are considered reliable. We examine each of these groperties in detall
illustrating them with a transaction that withdrawsney from one bank
account and deposits it to another account.
« Atomicity refers to the ability to execute complgter not at all. There
must not be any possibility that only part of angaction is executed.
We say that the transaction commits if all operati@xecute, and it
aborts if no changes are made. In our example, waee htwo
operations: (1) withdraw money from one accounj; d@posit it to
another account. To satisfy the atomicity propeeigher these two
operations must both execute successfully or tfeeteis as if nothing
executes. This guarantees that one account wodglhiéed if the other

1C

is not credited, as might happen due to failureinduthe second
operation.

» Consistency refers to the database being in a Isgaé when the
transaction begins and when it ends. This meansttransaction can't
break any integrity constrains. For example, ifictegrity constraint
states that all accounts must have a positive bajathen any
transaction violating this rule will be aborted.

* Isolation refers to the ability of the applicatitmmake operations in a
transaction appear as if no other transactions wemeing at the same
time. This also means that no operation outsidéréimesaction can ever
see the data and state in an intermediate stateurdrexample, the
balance of money in the two accounts cannot be saedeor be
modified by other concurrently running operationsiles they are
being used by the current transaction.

» Durability refers to the guarantee that once ther is been notified
of success, the transaction will persist, and moubdone. Typically,
all transactions are written into a log when tlamsaction is committed
and the log can be played back to recreate theacsion in case of
system failures.

For decades, these ACID properties played an irapbrble as the means to
provide consistency required for database apptinati Now we look at
techniques used to guarantee the ACID properties. fiét examine the
locking mechanism which is provided within a loesvironment. Then we
discuss Two-Phase Commit Protocol (2PC) as a meshawhich can
guarantee ACID properties in a distributed envirentinwhere a transaction
involves multiple databases which reside in muatiplaces.

2.1.2 Locking Mechanism

One of the key properties of transactions is “igotd [32]. The meaning of
isolation is that the executions of multiple tract8&ans have the same effect as
running the transaction serially, one after theenth sequence without having
any overlap in executing among transactions. Sudatwdions are called
‘serialisable’. Any system must guarantee seribllgg to ensure there is no
conflict among the data items used by concurremthyning transactions. The
most popular mechanism to ensure serialisabilitgdking.

Locking uses two types of locks, read locks andendocks. Before reading a
piece of data, a transaction sets a read lock.rBefoiting the data, it sets a
write lock. Read locks conflict with write locksna write locks conflict with

write locks. A transaction can obtain a lock orflyd other transaction has a
conflicting lock on the same data item. Thus, i cdtain a read lock on x
only if no transaction has a write lock on x. Ihaz@btain a write lock on x only

11

if no transaction has a read lock or write lock)orFor ACID transactions,
obtained locks must be kept until the transactamgletes.

The following example in Figure 1 illustrates howot interleaving
transactions can be isolated from each other. @ we denote setting a
read lock by SLock, XLock means a write lock is, detks are released by
Unlock operations at the end of each transaction.

Casel Case2 Case3
Tl SlLock x T2 Slock x Tl Slock x
Tl XLock vy Tl SLock x T1 XLock vy
Tl Read X T2 Read X T2 Slock x
Tl Write vy T2 XLock vy T2 Read x
T1 Unlock x T2 Write vy T2 XLock vy
T1 Unlock y T2 Write y |Conflictf T2 Write vy
T2 Slock x T2 Unlock x T2 Write vy
T2 Read X T2 Unlock vy T2 Unlock x
T2 XLock vy Tl XLock vy T2 Unlock vy
T2 Write vy Tl Read X Tl Read X
T2 Write vy Tl Write vy Tl Write vy
T2 Unlock x T1 Unlock x T1 Unlock x
T2 Unlock vy Tl Unlock y Tl Unlock y

Figure 1 Conventional Locking Example (source fronj32])

In Casel, two transactions T1 and T2 are isolatethay run in sequence
without intervening with each other at all. In Cas&1 and T2 interleave but
their lock modes don’t conflict with each other réfere they can be called
isolated. However, in Case3, T1 first places aenon the item y. Before this
lock is released, T2 try to place a write lock ba same item y. Since write
locks conflict with other write locks, T2's attemigat place a write lock on the
item y won't be allowed.

Though the locking mechanism ensures the requéeldtion property, it has

many disadvantages. One of the biggest problendeasllocks. Deadlock

refers to the situation where two or more transactre competing for the

same lock in conflicting modes, some of them wdtbme blocked and have
to wait for others to unlock their locks. For exdeysuppose T1 gets a read
lock on x, and then T2 gets a read lock on y. Natven T2 requests a write

lock on x, it's blocked, waiting for T1 to release read lock on x. When T1

requests a write lock on vy, it is blocked too, wajtfor T2 to release its read
lock on y. Since each transaction is waiting foe tbther one, neither

transaction can make progress, so the transacrendeadlocked.

12

Apart from deadlocks, other problems are preserhenlocking mechanism.
Locking mechanism is blocking which means the othemsasctions have to
wait until a lock held by the transaction is reksdsLocks are vulnerable to
failures and faults. If one transaction holdingeki dies, other threads waiting
for the lock may wait forever. Locks cannot scakellwas locks can only be
only held within a trust boundary.

2.1.3 Two-Phase Commit (2PC)

One of the difficult problems solved by the databasmmunity was how to
maintain the atomicity property across multiplesias each machine can fail
and recover independently. For example, now wenassinat the update of
withdrawing money takes place in the database whesides at a Sydney
branch while the update of depositing money takiesepin a Melbourne
branch. To commit these two updates, both the btfeeaSydney branch must
succeed and the update in Melbourne must be sudatess

However, it is possible that the update at the Sydmranch succeeds while
the update at the Melbourne branch fails beforerdm@saction commits there
too. If no appropriate mechanism is in place, thitefl transaction can never
be recovered therefore atomicity is broken. Twoseh@ommit (2PC) solves
the problem by enforcing that each task particigatin the distributed
environment writes its history of updates to staklerage before the
transaction commits. 2PC protocol was developestiueral products and later
standardised by the Open Group within the X/Opeecifipation [72]. A
detailed description of 2PC is described in theufFedg2 shown in the context
of our banking example.

13

Phase One

| Transaction Manag#r

1. Prepare
1. Prepar
2. Prepared/Aborted
2. Prepared/Aborted

Resource Manager Resource Manager
(Sydney branch) (Melb branch)
Phase Two |Transaction Manag*ar
4. Done 4. Done
3. Commit/Rollba 3. Commit/Rollbhck
Resource Manager Resource Manager
(Sydney branch) (Melb branch)

Figure 2 Two-Phase Commit (2PC) Protocol

Suppose the transaction manager has already stdmgedransaction, and
performed the two updates and that the transadiorow ready to commit.
During the phase one, transaction manager sendssaage ‘prepare’ to each
resource manager. Each resource manager wrotesitsyhof updates in the
log as the transaction was executing. For exantipderesource manager in the
Sydney branch produces a log record showing the areold values of the
balance. When ‘prepare’ arrives, the resource mamagkes sure these log
resources are flushed to disk, so they will notdst even if a crash occurs.
The resource manager sends ‘prepared’ message tbatie transaction
manager once the log is successfully written tdk distherwise it sends
‘aborted’ message). Similarly, the resource managéne Melbourne branch
sends ‘prepared’ message back to the transactioagea after saving on disk
a log record showing the increased balance. Timsaaion manager waits till
it receives ‘prepared’ from each resource manawetil(it receives ‘aborted’
from one, or till a timeout happens).

There are two different paths that can be execoyeithe transaction manager
in phase two. One path executes if the transaati@mager receives ‘prepared’
message from all resource managers during the piraseThe transaction
manager sends a ‘commit’ message to all the resouranagers. Each
resource manager completes the task, by releaBitigedocks and resources
held during the transaction. Each resource maregyeds a ‘done’ message to
the transaction manager. This completes the trénsasuccessfully. The

14

other path executes if any resource manager seab@m message during the
phase one. The transaction manager sends a ‘rkllibaessage to all the
resource managers. Each resource manager undoepdhtes which have
been completed using information in the log, arehtheleases the resources
and locks held during the transaction. Finally esetource manager sends a
‘done’ to the transaction manager.

The great disadvantage of the 2PC protocol is #oe that it is a blocking
protocol. It has sometimes been called an ‘unabiiila protocol’. A process
will block while it is waiting for a message. Thiseans that other processes
competing for resource locks held by the blockemtesses will have to wait
for the locks to be released. The blocking becomesse if the transaction
manager fails permanently as some resource mamaljerever resolve their
transactions. For example, suppose a resource miahag sent a ‘prepared’
message to the transaction manager but the tramsantnager failed. The
resource manager will block until a ‘commit’ or litwack’ is received. If the
transaction manager is permanently down the resomanager will block
indefinitely. This type of blocking algorithm camlg work well in a tightly
coupled environment where conflicts between praesan be more easily
monitored therefore resolved.

2.1.4 Advanced Mechanisms for Standard ACID

The original locking mechanism that locks the whibéen was proven to be
too expensive for some transactions. For examplppase there are two
transactions updating the stock on hand (soh).efluaes the stock by 150
(soh := soh — 150) while T2 takes 800 (soh := s@08). If there is stock on
hand more than 950, these two transactions sheuddldwed to interleave but
locking will prevent concurrency as each needs &ocK on the stock on
hand.

Many refinements to locking mechanism to improve lgwvel of concurrency

have been proposed. The most relevant to our weorscrow locking [73].

The basic idea of the escrow locking is to pres#émeeruth of predicates, each
of which is a condition evaluated as a Boolean ealue/false, during the
execution of a transaction. The escrow locking dbesby recording high and
low limits for the possible values of the item. df concurrently running

transaction violates the either high or low limike transaction is rejected.
Figure 3 illustrate how escrow locking operates.

15

Escrow

—{

< 1000,850
soh>150 —‘T_Zh_ []
soh:=soh-150

soh>800 [1000,50]

soh:=soh-800

Commit [200,50]
- [2 0]
soh>100 ;
soh:=soh-100 Reject/delay
Commit >
Commit [50,50]

Figure 3 Escrow Locking Example (source from [32])

The operation of T1 gets executed after its prediéa satisfied (there are
stock on hand of 1000 which is more than 150 thealipate tested for). The
escrow records the predicate in a range betweevalhe before the operation
and the after the operation, such as [1000, 850].

Before T1 commits, T2 comes along. As this happeefre T1 commits, the
stock on hand is still 1000 and the predicate ofisT2atisfied. The predicate
range changes from 850 to 50 incorporating theiblesshanges for both T1
and T2. T2 issues commit which is granted because tare enough stock to
commit for both T1 and T2. After T2 commits, the@dkt on hand values
changes to 200.

Still before T1 commits, T3 comes along and cheblespredicate which is
satisfactory as there is more than 100 stocks. Mewevhen T3 issues the
commit, it cannot be granted as there is possibdlict between T1 and T3.
The commit of T3 is delayed until T1 either comnatsollbacks. T3 can only
commit if T1 rollbacks as this means there ard 200 stocks available.
However, if T1 commits leaving only 50 stocks tothken, T3 naturally gets
rejected to maintain the integrity of the stockhamd.

This example shows how isolation can be achievethont unnecessarily
locking the values that are being modified. Howetee escrow locking only
works for ordered numeric sets. In our work in ierpenting our promises
isolation mechanism in Chapter 7, we use a sintgghnique to escrow
locking.

16

2.1.5 Extended Transaction Models

It became clear very early on that the ACID apphoaas not appropriate for
many activities that manipulate data in environraembere assumptions such
as short-living activities and trust no longer appherefore using mechanisms
such as rollback or locking were not feasible. Aga of extended transaction
models were proposed aimed especially at cooperagikocesses like
collaborative design, or long running business psses. We summarise and
critique two early works that we think very sigondint to our research. These
are Sagas [36] and ConTract [84].

2.1.5.1 Saga

The purpose of the Saga [36] is to give the atdgnmioperty for long running
transactions without having to hold locks for thénole duration. Saga
structures a long running process as a sequergtaalfer tasks, each of which
would be done as an ACID transaction. Thus the nyidg mechanism would
ensure that each task ran without interference,tlieittasks of one process
could interleave with the tasks of another process.

The key insight of this work is in the way to resddo failure during a Saga.
If a particular task fails, it can be aborted antled back, and then retried.
However, if the Saga as a whole gets into an ienable difficulty, and needs
to abort, what should happen? The answer propose[B4] is that the

application developer should design, for each taak,corresponding
compensator. The compensator executes an opewalich does the inverse
of the original task. For example, the compensftiomserting a record might
delete the record; the compensator for depositing tbank account might
withdraw from the same account, and a read-onlk thss empty

compensator. To abort a Saga, the system will adnoytactive task of the
Saga, and then invoke the compensators for eakwittsin the Saga that had
previously committed. The compensators are ruhénréverse order from the
order in which the tasks ran originally.

For example as seen in Figure 4, suppose a longingriransaction T1 is
composed of three tasks S1, S2, and S3. Progranuheéire compensators
CS2 to undo the task done by S2, and similarly G&loes the task done by

S1.

Figure 4 Long Transaction in Saga

The final outcome of this saga will be either tlke@ution sequence:
 S1->8S2->S3 and commit the saga successfully, or
« |If the saga has to abort during the execution of &3is aborted and
CS2 -> CS1 are executed to semantically undo thgpteied tasks S1
and S2,
* Similarly, an abort in S2 (after S1 has completed) result in the
execution of CS1 and thus no effect combined exat @1, CS1.

The Saga model has become a standard in transalctvonkflow model (see
Section 2.2.2.3) and in service orchestration &saion 2.2.3.2).

It is easy to prove that a concurrent executiorbafas will be serialisable
provided that each compensator commutes with etaslk and with every

compensator that executed between the task awodnipensator. However, it
is almost impossible for many tasks to write congagors with such a strong
property. In general, the drawback of the compemsaipproach lies in the
difficulty of writing a compensator that winds batke original task from

states that have changed significantly.

A compensator should remove not only the directafbf the original task,
but also any indirect effect through other actéstiwhich read the data now
discovered to be inappropriate. For example, if iierchant has recorded a
large order, and this has been used to calculataas for the relevant region
manager, then the compensator for the order tagktoio recalculate the
manager’s bonus (or rather, to maintain modulathyg, compensator should
somehow trigger a recalculation in the bonus prces

It may also be the case that the execution of acmapensator ought to
influence the activity of another compensator. TimBuence may not be
possible when the compensators are run in the gewdrronological order of
the original tasks. For example, in the originalrkflow the merchant might
arrange shipment then receive payment from the omest During
compensation, any charges incurred by the merchantt cancels the
shipment, need to be deducted from the payment airbmiore the customer
gets sent the refund.

Another difficulty with compensation-based systelias in their assumption
that the compensator always runs successfullyedhsystems we have to deal
with the case where we want to compensate for ampayment, but it is
possible that the recipient has already spent theemm A business process
should not lead to inconsistent data when a congtenstself can’t be
executed.

18

2.1.5.2 ConTract

In a traditional ACID transaction, each individugderation operates on data
which is unchanged from that seen by earlier sitepise transaction. Thus, if

one step checks the validity of a customer, theravebe sure the customer is
still valid when all later steps use the custonméorimation. In a long running

business process, locks can't be held for more thd@w seconds, so it is
harder to ensure that the customer’s validity issprved once it has been
checked. In [84], a general workflow descriptiopagach was introduced. As
well as providing a language to express the seguehsteps, including the

input and output parameters, a ConTract made eixpiie conditions each

task needed to complete successfully. These aledaanhtry invariants of the

task. The ConTract also expresses the conditicatsatte true at the end of a
task, as exit invariants. For example, if a shipm&sk should only be

attempted when the customer is valid; the appbcatieveloper needed to
state that customer validity is an entry invariéott the shipment task. The

developer could also write that customer validgyan exit invariant for the

validity checking task.

The syntax of ConTracts also allowed each exitriavd to indicate how it
was to be preserved, and several possibilities defiaed.
» Locks can be held, preventing any change to the ttiat was checked
* The exit condition can be preserved throughouptméod, by having a
check run on each interleaved activity; this othetivity would be
rejected if it could violate the truth of the egdndition
* The exit condition could be allowed to become fatsed the system
would re-run the check at the time when anothek taseds this
condition for entry. In this situation, the devedopwould need to
describe how to proceed if the revalidation chezlefl, by a ‘conflict
resolution’ step on the task with the entry invatidFor example, the
developer could indicate a procedure to call thauld restore the
invariant.

These techniques have not been fully implemented theey require

sophisticated manipulation of logic by the workflengine. However, we see
these as offering a powerful framework to expréss isolation conditions
needed in application consistency. Our promisesrogmh in Chapter 6
extends the ConTract ideas.

2.2 Distributed Computing Platforms

In this section, we examine the evolution of disited computing platforms.
We especially focus on the role played by transac8upport to provide
required reliability and consistency for the datainly exchanged among
distributed applications.

19

We start examining distributed computing models tire early era of
procedural programming and later object technokgighnen we move to the
era of workflow technology that is used as an irdgégn tool within a single
enterprise. This allows combining business logic rfany steps running on
multiple platforms. We discuss the research efftotsncorporate extended
transaction model which tried to relax the atorgyicind isolation part of
ACID standards. Finally we review Web services texdbgy and its role in
integrating autonomous services that reside withiiferent trust boundaries.
We evaluate several standardization proposals gpasti transactions in this
paradigm.

2.2.1 Conventional Middleware

Conventional middleware technology was an importait¢stone to facilitate

and manage the interaction between application®sacteterogeneous
computing platforms that run on a set of serverse @f the important

concepts developed in the middleware technology teaprovide simple

abstractions, and implementation to support sudirattions, for designing
and building distributed applications. Especially,this section we examine
important concepts and abstractions developed rimmsaction support by
middleware technology.

2.2.1.1 Communication Channel

The term distributed computing was establishedeterrto the model where
several heterogeneous servers located in geogediyhitifferent places work
together to produce a common business goal.

One of the primary goals of middleware technologythe early era of
distributed computing was to establish a commuitnathannel among
remote servers. In the beginning, this was donesdayding messages to
procedures located in other machines by using aratipg system level
interface called ‘socket’. The socket was an abstma of underlying

communication protocol such TCP/UDP. However, thisthod proved to be
too problematic as different servers have diffesmket interfaces depending
on the different operating system platform; alsogpammers found it tedious
to deal with bit-layout and similar format issues.

Messaged based RPC was an important concept ribdied computing. This
was the technology which made it possible to caltpdures located on other
machines in a uniform and transparent manner toaked just like
conventional procedural code. RPC was introducethatbeginning of the
1980s by Birell and Nelson as part of their worktba Cedar programming
environment [6]. Many important notions of distried computing were
mentioned in the paper, including client (the pemgrthat calls a remote
procedure) and server (the program that implem#émsremote procedure

2C

being invoked). Other significant notions which at#l widely used today in
distributed computing system are interface debnitianguages (IDL), name
and directory services, dynamic binding, servigerfiace and so on.

RPC were developed in the era of procedural lanemiags object-oriented
languages took over, the industry required a difietechnology which could
support remote calls among objects which residesinote machines. Object
Brokers were developed to do this job. One of thestmotable object
brokering technologies developed in this era is@oenmon Object Request
Broker Architecture (CORBA) [71], which was definedd standardized by
the Object Management Group (OMG). CORBA developeite advanced
specifications for many aspects of object-orietdaduages.

2.2.1.2 Transaction Support

Regardless of the different communication chanr@dlgistributed computing
required transactions if there is more than onktlcat had to work together as
an atomic unit.

In the early era of TP monitors, they provided anfiive way of providing

transactions using vendor specific technology whocly works for certain

mainframe or UNIX systems. With the advance of RPE,monitors such as
IBM CICS [42] implemented transactional RPC whiciincdeal with data
distributed across multiple systems more uniforrahd transparently. The
semantics of transactional RPC is that multipl&dasan form a single unit of
work as a transaction, and the transaction conpl@ge commits) only if all

tasks within the transaction successfully execifteany tasks within the
transaction fail to execute, the transaction fallsis idea gained popularity
and was subsequently adapted by other TP monitcts & BEA Tuxedo [5],
Encina from Transarc [19] or IBM LU 6.2 using diéat underlying

mechanisms such as plain messages rather than RPC.

The semantics of transactional RPC was further Idped into Two-Phase

Commit (2PC) and subsequently became standardigethéo Open Group

within the X/Open specification [72]. Today, 2PCtiee standard mechanism
for guaranteeing atomicity for a distributed tractsan.

Still, transactional RPC used synchronous intepastiin which a call blocks
the sender until it gets a response. Asynchrond®€ Ras devised by TP
monitors where calls are placed in a queue andbeaprocessed separately
without having to wait for other calls to complefehe usefulness of such
gueuing was realized and they became middlewar#opiags on their own
under the name of message-oriented middleware (MOM)

MOM presented a very important concept which cogrsidly simplifies the
way one supports managing errors and system faillWeOM ensures that

21

once a message has been sent, it will be eventdeliyered once and only
once to recipients, even if the MOM system itseleg down. Messages are
saved in a persistent storage and are made awatack the MOM system is
restarted. Recipients can also bundle a set ofagessas an atomic unit then
MOM guarantees that either the set of messagepracessed altogether or
none of them are processed. Some of the best-kiv@M platforms include
IBM MQ Series [43], MSMQ by Microsoft [60], or Web&thods [85].

2.2.2 Workflow Management Systems (WfMS)

An important class of middleware platform is usedontrol the execution of
business processes built from many smaller aa#ifi he term WfMS is used
for this purpose.

2.2.2.1 Conventional Workflow Technologies

At the core of most workflow system is the notidnaobusiness process. A
business process is a set of business activitiéls &icommon business
objective. This business process is built by ligkingether diverse business
activities and specifying the flow of data and ecohtamong them. The
following example illustrates an example of workfldor a simple ordering
process.

|Receive Purchase Or1jer

!

| Check Stock |
Backorder |
No stock
Not fulfilled
v
Stock available | Send CancelOrder
- - Fulfilled
Send Confirmation I:

Figure 5 Conventional Workflow Example

WIMS typically provides a high level graphical oedtration tool where users
can easily define flow of business activities istgle like Figure 5. The key
concepts in these graph-based workflow notatiodud® sequence (one
activity starts when another finishes), decisiarkf(starting several parallel
threads), and join. These notations are very caemerior business analysts
when describing the normal case of operation. Hewnethey become very

22

complicated when exceptional conditions must bedleeh This is discussed
in Section 2.2.2.3.

2.2.2.2 Event-Condition-Action (ECA)

As business processes become complex and soptadtica number of

alternative orchestration models were proposedh @mephasizing different

aspects of managing and controlling business &etviOne notable technique
most relevant to our research is ECA [15]. In E@Asystem monitors the
occurrence of events rather than sequentially @wxeractivities defined by a

graph. When an event is detected, a specific acsi@xecuted to handle the
situation. An action can be guarded by a conditiwhjch is a Boolean

predicate over event parameters. The conditiovatuated when an event is
detected. The action gets executed if the paramsé#isfy the condition.

Figure 6 illustrates an example of an ECA model iehen invoice is sent to
the customer when goods are reserved. After reggithe invoice, the

customer sends in a payment. If full payment iingad, the merchant makes
a receipt and subsequently send it to the customer.

ON complete (goodsReserved)
IF true
THEN send Invoice

ON receive Payment
If (fullPaymentAmount == true)
THEN invoke makeReceipt

ON complete (makeReceipt)
IF true
THEN send receipt

Figure 6 ECA Example

One of the big advantages of the ECA model is lmnathe description to be

more modular and independent from other businebgtas. This makes it a

lot easier to integrate different business actsitin a loosely coupled
environment which allows for dynamic joining andawveng of the business
activities on demand. In addition, since any bussrectivities can be triggered
at any time during the execution, this approachroadel activities that need
to be started at the occurrence of any unexpectedt® such as deviations.
ECA has been used especially to model exceptiodlimgneven when groups
are used for the normal case [11].

Our GAT model in Chapter 4 was inspired by this E@Adel in controlling
the flow of the data and business activities.

23

2.2.2.3 Transactional Workflows

A Workflow process is typically of long duration ropared to the short
running activities found in standard database &etiens. Such long running
processes are composed of many types of actiofustadatabase transactions
or message queuing. However, the whole set ofiaetwoften forms a single
unit of work which ought to have much the same =tescy provided by
ACID, such as failure atomicity and isolation.

Due to the complexity involved in a workflow exeiom, it is often too
expensive to rollback everything that had been dand to restart from
scratch. Also, actions in the workflow not only atwe database updates, but
also they can involve actions in the other systsonolling back some action
could be very difficult because the appropriatelbaitk depends on the
interaction of many actions. Furthermore, it is fessible to place locks for
the long lasting processes as they might causessixee delay for other
applications that need to access the same data.ovarcome the
inappropriateness of using mechanisms from standatabase transactions,
mechanisms from advanced transactional models adgapted.

WIMS maintain the state of workflow execution faach instance, such as
which activities have been executed, in a perdisstarage. Using this

information, if the WfMS crashes and recovers, iil e able to restore the

workflow up to the point of failure. The only woksist is what was performed
by nodes that were active at the time of failudeisTnechanism prevents the
workflow system having to restart from scratch.

WIMS also provides a mechanism for use where mads possible for the

workflow to complete, and so the partial executimeds to be undone. This
adopts the notion of compensation, first mentiome8agas [36]. The idea is
to treat business activity as an atomic transacibich can commit. Each

atomic transaction is attached with a compens&tothe case of workflow

failure, compensators for the committed atomic deaions are executed in
the reverse order.

Some WIMS prototypes developed in academic reseatfelied additional
primitives for handling exceptions. [91] shows htwprovide Java-style try-
catch-throw as an exception handling mechanism.iddee here is to associate
a try block to an activity (or a set of activitiedj the enclosing activity
invokes any exception, it's captured by the cattdtib Depending on the
hierarchy of activities, an exception can be thrdarnts parent activities. In
[11], exceptional handling logic is specified byings ECA rules where the
event defines the exceptional event to be captbyed certain action. The
condition is a Boolean expression over the actluat werifies whether the

24

action actually corresponds to an exceptional 8doathat needs to be
handled.

The Exotica project [2] explores the role of adwehtransaction management
concepts in the context of workflows. The basicideas to provide the user
with an extended workflow model that integrates ésago the commercial
workflow product Flowmark. The user could define@mpensating task for
each task of the workflow using a GUI tool. An Exratengine would then
translate these specifications into plain FDL (Rioavk Definition Language)
by properly inserting additional compensating pathier each task or group of
tasks, which are conditionally executed upon a tailre.

In [51], a transactional model for HP Changengmeliesented. The model
allows the definition of Virtual TransactidiT) regions on top of a workflow

graph. If a failure occurs during the executionaofask enclosed in a VT
region, then all tasks in the region are compedsat¢he reverse order. Then,
the system can retry the execution up to a maximumber of times. Then it
executes an alternate path if one is present; wiberthe workflow engine

terminates the entire process execution.

However, [88] showed that the concept of using censators was not directly
applicable to most real-world workflow applicatiorfsis is due to the lack of
guidance in writing compensators. This left theedepers to devise their own
compensation logic which required intimate knowkedgf how business
activities interact in order to properly compendateone activity’s execution.
The use of semantic transaction models have begpoped to address this
issue. [88] defined a semantically inverse taskmioonly referred to as
compensating tasks), or a chain of tasks that cefi&ttively undo or repair
the damage incurred by a failed task within a wlowkfcalled Information
Carrier (INCA). INCA workflow model was proposed as basis for
developing dynamic workflows in distributed envimants where the
processing entities are relatively autonomous itunea In this model, the
INCA is an object that is associated with each \itovk and encapsulates
workflow data, history and processing rules. Thansactional semantics of
INCA procedures (or steps) are limited by the tazmtisn support guaranteed
by the underlying processing entity. The INCA itsisl neither atomic nor
isolated in the traditional sense of the terms. Elmv, transactional and
extended transactional concepts such as redoistep$, compensating steps,
and contingency steps, have been included in ti@AlKules to account for
failures and forward recovery.

Despite these proposals, many researchers havéfiettra great lack of
adequate support for handling errors and failures large-scale,
heterogeneous, distributed computing environmenth wransactional
workflow models [2],[28],[55],[76].

25

2.2.3 Business to Business Integration (B2Bi) and
Service-oriented Architecture (SOA)

The need to integrate existing code or componentsoi limited to the
systems within a single organization. The same rtdgges can be obtained by
integrating multiple systems across multiple orgations. Web Services and
Service-oriented Architectures (SOA) are being ptad as the best way to
build such next generation Internet-scale distedutand integrated
applications across multiple organizations. Thesereeeded in business-to-
business integration (B2Bi) and enterprise appboaintegration (EAI).

These applications are made by gluing together wpaand autonomous
services, possibly supplied by business partnexs third party service
providers, into loosely-coupled virtual applicatonthat can span
organisational boundaries and connect large-sasméss processes. Services
are just applications that expose some of theirctfanality to other
applications in a particularly simple and restrictevay. Services are
autonomous, opaque (and probably stateful) apmitatthat communicate
with each other solely by exchanging asynchronoessages.

The key to success in this is interoperability kesw loosely coupled
components which understand and process the masgaget of technologies
such as XML, Internet communication (such as HT&R{Y standards from
Web Services world makes this possible. In thisticec we examine the
standards from Web Services.

2.2.3.1 Basic Standards for Interoperability

This section we review three standards SOAP, WSibid, UDDI defined by
vendor-neutral W3C. An autonomous Web service c@nWSDL to define its
services, find other services on the Internet uklBdpl, and send messages to
other services using the standard message prdsaaP.

SOAP

SOAP [82] is an XML-based messaging protocol. firds a set of rules for

structuring messages that can be used for simgemay messaging though it
is particularly useful for performing request-respe style dialogue. The
biggest advantage of SOAP is that it is not tiecaty particular transport

protocol nor is it tied to any particular operatisgstem or programming

language. This means that the clients and senamsbe running on any
platform and written in any language as long ag tben understand and
process SOAP messages. This fundamental assungtte®AP makes it an

ideal choice of messaging protocol in building asiely-coupled service-based
system.

26

The heart of SOAP is an envelope which contains@ional SOAP header,
and a mandatory SOAP body. SOAP header is a gensichanism for
adding features to a SOAP message in a decenttalissner without prior
agreement between the communicating parties. Tlypeeamples of
extensions that can be implemented as header ®mdre authentication,
transaction management, or security. The SOAP Bsaldynent provides a
simple mechanism for exchanging mandatory inforomaintended for the
ultimate recipient of the message. Typical usethefBody element include
marshalling RPC calls and error reporting.

The following example extracted from [82] illustat how a client might
format a SOAP message requesting product informdtipa produce with id
= 827635.

<soap:Envelope
xmins:soap=http://schemas.xmlsoap.org/soap/enve lope/>
<soap:Body>
<getProductDetails
xmins="http://warehouse.example.com/ws" >
<productID>827635</productID>
</getProductDetails>
</SOAP:Body>

Here is an example of SOAP message that providesponse for the client
request above.

<soap:Envelope
xmins:soap=http://schemas.xmlsoap.org/soap/enve lope/>
<soap:Body>
<getProductDetailsResponse
xmins="http://warehouse.example.com/ws" >
<getProductDetailsResult>
<productID>827635</productID>
<productName>a dog mug</productName>
<description> mug with two dogs</descri ption>
<price>6.50</price>
</getProductDetailsResult>
</getProductDetailsResponse>
</soap:Body>

WSDL

Web Services Description Language (WSDL) [83] is #iandard format for
describing a web service. It defines the functityalffered by a web service
and the format of messages sent and received byvéfieservice. A web
service's WSDL document defines what services agelable in the web
service. The WSDL document also defines the methpdsameter names,
parameter data types, and return data types fowgfeservice. An application

27

that uses a web service relies on the web serW¢8BL document to access
the web service's features. Each WSDL documentagenfour elements to
describe a service: <portType> defines the operatiperformed by the
service. <message> defines the messages used bgrthee. <types> defines
the data types, and <binding> which defines thernamication protocols.

The following example illustrates an example of W.SBocuments for a
stocking quoting service. The service defines twessages using <message>
elements: one to receive a stock request and tthesspond to the request.
The operation “GetStockPrice” is defined by <pop&y and a soap binding
is specified by <binding> element.

<definitions name="StockQuote"

<message name="GetStockPriceRequest">
<part name="msg" element="xs:string"/>

</message>

<message name="GetStockPriceResponse">
<part name="msg" element="xs:string"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetStockPrice">

<input message="tns:GetStockPriceRequest ">
<output message="tns:GetStockPriceRespon se"/>
</operation>
</portType>

<binding name="StockQuoteSoapBinding"
type="tns:StockQuotePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/
soap/http"/>
<operation name="GetStockPrice">
<soap:operation
soapAction="http://example.com/
GetStockPrice"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

</definitions>

28

UDDI

UDDI [67] is a XML-based protocol that provides stdbuted directory that
enables businesses to list themselves on the &iteand discover other
services. Similar to a telephone number, businesaaslist themselves by
name, product, location, or the Web services tHésr.olt is designed to be
searched by SOAP messages and to provide accedsSEBL documents
describing the protocol bindings and message farmeauired to interact with
the web services listed in its directory.

2.2.3.2 Service Orchestration

The basic web services infrastructure presente8@%P, WSDL, and UDDI
only suffices to implement simple interactions. particular, it supports
interactions where the client invokes a single apen on a Web service.
When the interaction involved sequences of operatiadditional support and
tools are needed to ensure the correctness anstemty of the interactions.

The consistency of the interactions involved in Heguences of operations
across multiple organizations has important impileces from both an external
(interaction) and an internal (implementation) pexgive.

From the external perspective, the most importargiication is how a Web
service describes the set of correct and accepessage exchanges that are
compatible and comparable to interacting Web sesvicThis interaction
problem among Web services has been researchedeirmrea of service
coordination. As this thesis doesn’t deal with tbasistency from the external
perspective, we direct interested readers to wawkhsas [33], WS-
Coordination [94], WS-AtomicTransaction [92], WS-EnessActivties [93],
or WSCI [87].

Closer to the problem we are trying to solve inttiesis is how to provide the
required consistency from the internal perspectitgom an internal
perspective, each service in the interaction masalile to execute relatively
complex business activities that are compatibleheomessages it exchanges
with other interacting services. The important iiwgion for the internal side
is how to make it easy for developers to specifg anplement complex
business activities which are always compatiblenéssages being exchanged
in the interaction. This is an implementation peshl Possible solutions will
involve developing models, protocols, and toolspaupwhich can facilitate
the effort of reacting correctly to a given messagehange. The term ‘service
orchestration’ has been used to describe the sffortievise solutions for this
implementation problem.

In this section, we especially examine featuresmfr8usiness Process
Execution Language for Web Services (BPEL). This iprimary source to

29

discuss service orchestration and mechanisms usgdpporting transactions
in the Web Services area. We look at this propweai three different angles:
techniques used to control the flow of data andn@ss activities, transactions
which define transactional semantics among busiaesgities which form a
unit of work, and exception handling mechanisms civhidefine how
exceptional situations occurring during the exexutof the set of business
activities can be handled.

Business Process Execution Language for Web Services
(BPEL)

BPEL [7] uses an orchestration model that combities UML activity
diagram [70] and the activity hierarchy (similar towchart) approaches
which allow structured activities. These structuaetivities can group a set of
other structured or simple activities to define esidg constraints among
them. The structured activities can be sequentatlycuted, tested against a
condition, picked in the occurrence of some evenotly as the receipt of a
message or the expiration of a time alarm), execurtdoop, and run parallel
with other structured activities.

The next example illustrates a simple purchasimigoiscenario in BPEL

notation. The merchant receives a purchase order & client. When PO is
received, merchant runs two concurrent activiteee to calculate price, and
the other to organize shipping. When these two @weatly running activities

are done, the merchant sends an invoice to theroest

<sequence>

/I Receives a Purchase Order from a client
<receive
partnerLink="customer"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="PO"/>

/I <flow> executes two business activities in paral lel
<flow>
/I Calculates price for PO
<sequence>
<invoke
partnerLink="pricing"
portType="Ins:computePricePT"
operation="initiatePriceCalculation”
inputVariable="PQO"/>
<receive
partnerLink="pricing"
portType="Ins:computePricePT"
operation="sendPrice"

3C

variable="Invoice"/>
</sequence>

/I Organizes shipping to deliver goods for the PO
<sequence>
<assign>
<C0py>
<from variable="PQO" part="customerinfo"/>
<to variable="shippingRequest"
part="customerinfo"/>
</copy>
</assign>
<invoke
partnerLink="shipping"
portType="Ins:shippingPT"
operation="requestShipping"
inputVariable="shippingRequest"
outputVariable="shippinglnfo"/>
<receive
partnerLink="shipping"
portType="Ins:shippingCallbackPT"
operation="sendSchedule"
variable="shippingSchedule"/>
</sequence>
</flow>

/I sends an invoice back to the customer
<reply
partnerLink="purchasing"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="Invoice"/>

</sequence>

BPEL follows a try-catch-throw approach borrowednfr object oriented
languages such as Java and C# to handle excepHaok. activity implicitly
defines a scope and includes one or more faultlees)ddescribing how a
certain exception should be managed. When a faudtire within a given
scope, a BPEL engine will terminate all runningiatiés in that scope and
execute the activity specified in the fault hand@arthat scope. If no handler
exists for a given fault, then a default handlexxscuted.

The next example illustrates a fault handler in BPEhe operation which

checks the purchase order details throw an exeeptibich subsequently
received by a fault handler which sends a messatfeetcustomer that the PO
details is incorrect.

31

<faultHandlers>
<catch
faultName="Ins:cannotCompleteOrder"
faultvariable="POFault">
<reply
partnerLink="purchasing"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="POFault"
faultName="cannotCompleteOrder"/>
</catch>
</faultHandlers>

<invoke name="checkOrderDetails" ..>
<throw
faultName="Ins:cannotCompleteOrder"
faultvariable="POFault".../>
</invoke>

BPEL combines exception handling approaches withrtigues used in the
advanced transactional models, notably from Sa@&$. In BPEL, it is
possible to define certain business activity respliito semantically undo the
execution of some activities in that scope. The pansation is specified by a
compensation handl¢hat will take care of performing whatever actiare
needed to compensate for the execution. Every sduge a default
compensation handler, whose behaviour consists mfoking the
compensation handler for each enclosed scope inrdkierse order of
execution. Similarly, every scope also has a deftault handler, whose
behaviour also consists in compensating enclosinges. The compensation
handler for a given scope can only be invoked dheescope execution has
completed normally. Its invocation can either bepliexly initiated by a
compensate activity or it can occur automaticalyy @mart of the default
handler. The compensate activity can only be ddfimghin a fault handler or
within a compensation handler of the scope thatoses the one to be
compensated. BPEL also allows a compensation haodbe defined at the
top process level. This enables the compensati@naaimposite service even
after its completion.

The following example illustrates a compensator. eWwhthe ordering
processing is cancelled after an invoice is séetcbompensator sends another
invoice for a zero amount this supersedes the @usly sent invoice is
executed to semantically undo the effect of thegeted task.

<scope name="sendInvoice">

<compensationHandler>
<reply

32

partnerLink="purchasing"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="Anotherlnvoice"/>
</compensationHandler>

<reply
partnerLink="purchasing"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="Invoice"/>
</scope>

In Chapter 3.6, we evaluate the effectiveness oEIBRnd other similar
approaches, for expressing complicated deviatiowllivag.

Other Service Composition Proposals

Before BPEL merged their ideas, IBM and Microsadidhssued alternative
proposals. WSFL [95] was IBM’s proposal for busm@socess standards for
web services. It uses WSDL to describe the senvieefaces. A flow model
describes the workflow for a process. Both conflad and data flow can be
defined using a state-transition model. One inriggatea of WSFL was its
handling of exceptions. WSFL supports handlingedéht exceptions that are
indicated in the content of messages by specifjfiagsition conditions that
examine the message for these exceptions. Deperminghe transition
conditions, different exceptions are directed ffedent activities.

XLANG [96] was Microsoft's proposal for businessopess standards for web
services. Like WSFL, XLANG uses WSDL to describe #ervice interfaces
of each participant. The behaviour is specifiedhwit control flow that
choreographs the WSDL operations. Transactions samped by context
blocks, within which any number of business adtgitcan be defined.
Compensating blocks can be associated with eaghedcoontext block. If a
fault occurs in a scoped context block then the prmmsating blocks defined
for the scope can be executed in the order spdchie the designers of
XLANG, but the default is reverse order. Exceptimndlers can be specified
for any scoped context block and explicit recovacyions can be specified
within the exception handler.

BPML [68] was a specification from the Business d@ss Management
Initiative organization (BPMl.org). BPML supportoth coordinated ACID
support for short running transactions and longnig transactions. A
transaction can be associated with any complexigctind it can be nested.
Compensation activities can be associated with botirdinated ACID and
long running transactions. If a transaction is &hr any compensating
activities within the same context will be executedeverse order.

33

2.3 Summary

Distributed computing support has evolved from diymipvoking a single
service within a single application, to arrangimyeral invocations of many
services which can be implemented by different l@ggs and platforms
located remotely outside trust boundaries.

Along with the evolution of the distributed commgi platform, the
requirement of transaction support has changedn fomly handling short
running transactions within a single trust boundaémylong running extended
model transactions among autonomous applicatioas thn across trust
boundaries.

ACID was an important discovery providing mechargsmthe infrastructure
to offer valuable reliability and robustness forsimess processes running
short transactions. The mechanisms provided bA@¥® model relieved the
application programmer from worrying about failaned interleaving, to focus
on how to automate business processes. Unfortynateé to the nature of
today’s business processes which are typically rumtmusly written and
contain long running processes connecting senacesss trusted boundaries,
ACID cannot be adopted directly. The different asption applied in these
two environments requires different support foratality and robustness.

The most popular transaction model adapted by ourstandardization
proposals and commercial products is from Saga [B6jvever, research has
pointed out that the strong assumptions made fmpemsator models (such as
that developers will successfully write compensatohich can semantically
undone the effect of completed business tasksfoarein-realistic. This thesis
proposes new ways to approach this question.

34

Chapter 3

Understanding the Nature of
Service-based Systems

In this chapter we identify some important issudsiclv can prevent the

developers of service-based system from builditighie and robust systems
for automated business processes. The issues oérromclude: time related
issues raised from the asynchronous nature ofvéceednased system; various
failures to terminate resulted from lack of cooedion and global knowledge
among autonomous systems, unprocessed messages! ¢tausomplex and

sophisticated interactions among loosely-couplednpmnents, messages
which arrive out of order, lack of isolation duedactivities run long duration

across trust boundaries, and the increased chdwemcellations.

These issues are often causes of state mismatchels then produce various
deviations from the expected execution path. Ifs¢h@eviations are not
appropriately handled, the system will produce isistent outcomes. We
present what we consider to be required behavidardrandle various
deviations which commonly occur in the service-blasgstem resulting from
state mismatch. Based on our list of required dmnahandling behaviours,
we evaluate the existing standard deviation hagdirechanisms to see how
well they can be used as support.

3.1 Motivating Scenario

In this section, we illustrate an e-procuremennhade of ordering goods. This
has been derived from a consultancy project of C5IRillustrates a service-
based system with the independent and statefulrenaifi services and the
potential for concurrency. We use the e-procurerseahario as a case study
through the thesis to understand the distinctiaratteristics of service-based
systems and the potential issues faced by the aemed who are designing
and writing reliable applications which run on gevice-based system.

3.1.1 E-procurement When Ordering Goods

Figure 7 shows an overview of the e-procurement scenatierd are three
major types of business parties involved in thenade: a customer, a

35

merchant, and suppliers. Each business party eggbseservices it provides
as Web Services. The communication between buspesies are done via
sending and receiving messages. The overall oglgrincess among three
parties is as follows: the customer initiates theibess process by sending a
quote request. When the merchant receives a geqtest, it responds with a
guote or a rejection message. If the customer s@kecides to go ahead with
the purchase, it will send a purchase order messade¢he merchant system
will then confirm the order after reserving the geowhich can honour the
purchase order. After the order is confirmed, therahant coordinates
payment with customer and delivery with shippermsutianeously. The order
process is completed when the customer pays fogtloes and receives the
goods; similarly, the merchant delivers the goodsl a@eceives the full
payment. The merchant service might also excharegsages with suppliers
to order goods if there were not sufficient goodshand.

Customer Web Service

Y
Msgs
— Msgs
’_@_‘:— —— 2 Msgs /EH =
] - e B | -
71 e — < —
= L[Msgs L—" == Msgs =
== 1 — A4 ~ =
f Merchant
Supplier) Shipper
Web Service Web Service Web Spcrrvice

Figure 7 E-procurement Scenario

3.1.2 Merchant System

Particularly, we pay attention to the details ofrom@nt business process
within the e-procurement scenario because it requihe integration of
numerous components. Internally, the merchant lsgsirprocess interacts
with its internal catalogue and inventory system st of enterprise
application integration (EAI) strategy. As welliitteracts externally with a
customer process, a supplier's ordering system, tearsportation booking,
forming an example of business-to-business inteqrdB2Bi). Each external
component is implemented, maintained, and manage@pendently by
different organisations. There is only a partialst between components
running at different organisations. Also, the basm activities within the

36

merchant process typically may take days to momth€omplete. These
characteristics of the merchant business processrttake it a good example
of an application in a loosely coupled distribussdgtem. Figure 8 shows the
merchant workflow and we describe details of bussne2quirements which
have been defined as a set of tasks in the workflow

< RecQuoteReq __ —

(:Chec%';%_ﬁﬂ—)(endinvalidCustomerMs >

< =
< CalculatePrice =

< RecPurchaseOrder >
< ReserveGoods >
< ConfirmOrder >
< ShipGoods > I
RecPayment >
< SendGoodsNotify =
= RecGoodsDeliveredAck > < SendReceipt =
< nd >

Figure 8 Merchant Workflow

Quoting

The first task in the workflow is to receive a gqaotquest from customer
(RecQuoteReq).The merchant checks that the cust@mervalid customer
(CheckCustomer). In our system, valid customersoaes who are registered
customers with no overdue payment. If the custamarvalid customer, then
the ordering process proceeds. If customers asdidh\either not registered or
have overdue payment or both, the workflow sendsotification to the
customer (SendinvalidCustomerMsg) and then the fimwkis aborted (End).
The merchant calculates the total cost of itemgh& quote request and
generates a quote (CalculatePrice). The totalwiisvary as it depends on a
number of factors such as discounts available & cdinstomer and current
specials, amongst others. The quote is then sehetoustomer, within 7 days
since receiving a quote request (SendQuote).

Purchase Order

If the customer proceeds with the order, the custosends a purchase order
which the merchant receives (RecPurchaseOrder).nfdrehant reserves the
goods from the warehouse’s inventory system (Re€xpeds). The inventory
system will return a date when the ordered prodwdtse available from the
warehouse. There may be insufficient stock in thealvouse to fulfil the order

37

or it may require stocks to be replenished in whielse an order to the
supplier may be triggered. Exactly when and whaeoproducts are ordered
from the supplier will depend on how the mercharnages its logistics.
Once goods are reserved, the merchant sends an confrmation to the

customer (ConfrimOrder). After order confirmatios made, the merchant
starts delivery and payment concurrently.

Delivery

The merchant arranges shipping with multiple shipg®yy sending a shipping
request to each shipper. Depends on business eaggnits multiple shipping
requests can be sent concurrently, or sequentiaftgr receiving shipping
responses from shippers, the merchant picks the db@gper that can ship
goods, for the best price with the most effectiated (ArrangeTransporffhe
shipper loads the goods onto the transporters atifiess this to the merchant
(ShipGoods). The merchant sends a notificatioim¢ocustomer that the goods
now are in transit (SendGoodsNotify). Customer caend an
acknowledgement to the merchant that goods hauve delevered when goods
arrive at the customer's door and then the merchaateives this
acknowledgement (RecGoodsDeliveredAck).

Payment Processing

At the same time as goods are being shipped te@ubtmer, the merchant
sends an invoice to the customer with a due date tfie payment
(Sendinvoice). Payment is then received (RecPaynaewt a receipt is sent to
the customer (SendReceipt).

3.2 Issues for Service-based Systems

Any service-based system is constructed from pig¢bas need to remain

autonomous, because they were written, and areirdapendently. In many

cases, they belong to different organisations whighcompetitors as well as
collaborators; the organisations’ goals are not shene, and each cannot
extend trust to the other. The pieces use manyuress and may include

human intervention, so each lasts a long time.igh the environment of a
service-based system is much more sophisticated amdplex than a

traditional OLTP system, still the goal of the &dpations built in such a

system remains the same: building a reliable afdisbsystem which can

ensure that the system always finishes in condigtates. Building these

applications is not trivial due to potential praikewhich could arise from the
complex nature of service-based system, such lasdsj races and other such
exceptional events. Without understanding the s®iieconcern and devising
mechanisms to deal with each issue, building alvkdi and robust service-
based system would not be possible. In this secti@ndiscuss a list of key

issues that the developers in this environmenteaqeired to understand.

38

3.2.1 Time Related Issues

In a business process, the time when somethingeimapip often crucial to the

success of the business process. In our e-procatecase study, there are
many examples where timeliness is important tostiecess of the business
process. For example, the total cost calculatedafpurchase order must be
based on valid unexpired quotes so the merchanttt@dustomer have a
shared understanding of the amount of payment whitlhbe needed. The

customer must have sufficient fund to pay for tbeds before payment due
date. The merchant must have a proper shipping@eraent in place where
the shipper can deliver goods to the customerrma.tiThe merchant needs to
ensure that sufficient stocks are available wheshipper arrives to load

goods, otherwise the customer might not receivegtiaals after payment has
been made.

The time issue has become much more difficult tplement correctly in the
service-based system due to the nature of serwibesh run for long duration,
and due to interaction between components whitypisally asynchronous.

Concretely, we now examine how lack of timelinesn ccause an e-

procurement case study to produce undesirabletgffeither the system ends
up where customer paid for the goods but the cbitems of goods were

never delivered on time to the customer, or thechwant delivered the correct
goods but the correct amount of payment was naived by the merchant

before payment due date.

As we mentioned, e-procurement involves a quoté¢ ithanly valid for a
specified amount of time. Suppose the customerssarmlirchase order before
the expiry of the quote. But, due to network deldyis possible that the
merchant receives the purchase order only aftequloge on which was based
has expired. Subsequently the merchant might apphew quote that is in
effect by the time purchase order arrives. Thigagibn can potentially cause
different understanding for the payment the custopag's and the merchant
receives. Another example appears when a custcenels payment before its
due date but the merchant receives the paymentiafidue date and therefore
charges the customer for a late fee.

Effect of delays in the real world can also oftemplicate business process
implementation. For example, suppose that the naatcbonfirms the order

because it anticipates more stock will be replexdshefore the shipment of
the goods was provide. But, the extra stock goaydsl, so the supplier was
unable to stock up the necessary goods to the metrebarehouse. This could
potentially leave the merchant unable to deliver glbods to the customer on
time.

3¢

3.2.2 No Termination

In a distributed service-based system, the seryicegided by participating

components are autonomous: that is, the implementaf each component is
completely hidden and other components are forbiddeaccess any of its
internal states. Multiple interactions happen standously among

participating components each having no knowledgethat is happening at
other components. That is, there is no master casmgowhich oversees the
overall interactions among multiple participatirmpgoonents. This introduces
greater exposure to the problems due to lack ofdioation and global

knowledge of the system, such as deadlocks, stanvand other similar

problems.

For example, the application will deadlock if itnceeach the state where the
merchant is waiting for payment before deliverihg brdered goods while the
customer is waiting for the goods to arrive befpaging for them. Similarly,
deadlock occurs when the merchant is waiting faghgper's response as
whether the shipper can deliver the goods and higper is also waiting for
the merchant for further information (such shippidgte and customer
address) before it can decide whether it can a¢hemluty of shipping.

Starvation will also occur in situations such as thllowing: the merchant

confirms more purchase orders than can be filldd thie amount of stock on
hand. If this happens, some customers will waiever for the delivery of

goods which the merchant is unable to deliver. fiegchant can also face a
similar starvation problem if the customer sendpase orders which require
total payment more than the funds available to ¢betomer. If so, the

merchant delivers all the goods for the confirmedcpase orders to the
customer and waits forever for the payment to arfwut the customer is
unable to pay.

3.2.3 Unprocessed Messages

Messages play a vital role in service-based systemmessages are only way
to communicate between interacting components afystem [40]. Each
component of a distributed service-based systerenpiatly interacts with
different sets of loosely coupled components. Esathof interaction aims to
produce a different outcome depending on the basinebjective. For
example, a merchant interacts with supplier A arahB shipper SP1 and SP2
for the e-procurement systems while the merchaetrants with supplier C
and D and bank Bl for a supply-chain system. Inhsuouulti-layered
interactions based on loosely coupled componemshamging messages
could become very complex and sophisticated. Dusutth complexity and
sophistication, the challenging issue is whetheémagsion critical messages
will be handled appropriately. Not being able tandi@a a mission critical

40

message could potentially become a lethal thrediuifding a reliable and
robust system.

For example in our case study, the messages to gdopls and receive
payment are two mission critical ones which mustpbecessed together
appropriately. In traditional OLTP systems, theragiens dealing with these
two messages would have been wrapped as a tramsaatid the atomicity
property of ACID will guarantee that the operatianthin the transaction are
all processed completely, or none is. That meawdlihever create a situation
where only one of the messages is processed. Bautsarvice-based system,
the operation to ship goods with the shipper arel dperation to receive
payment would be more likely dealt with as two cdetgly different
interactions. This is because each component késpsautonomy and
maintains a partial trust only during the interatiwith its partner. In this
case, the shipper wants to deal with the mercheagardless of how the
merchant interacts with the customer. In suchuasin, each node would not
know what is happening at the other side. This migbtentially create a
situation where the merchant processes either dymn@gnt message or the
shipping message but not both.

Even when messages do not get lost in the trangmjsa message may
remain unprocessed if the destination componenbisexpecting it. For the
ordering process in our case study, the customgrsmad its payment before
the due date and then terminate. This payment messauld be delayed in
transit and not arrive at the merchant until after due date has expired. As
the merchant has not received the payment by tbeldte, it would then send
a late fee message to the customer, but this messagnever be processed as
the customer has already terminated.

3.2.4 Out of Order Processing of Messages

It is not enough to have all messages arrive andpfoeessed by the

destination. If messages do not arrive in the etgoeorder, consistency can be
at risk. Our e-procurement scenario illustrates ynaxamples where

undesirable effects might be produced due to messafpich arrive and are
processed in an unexpected order.

Suppose the merchant expect that payment is alreacived from the
customer when it organizes shipping with a shippée merchant might use
the payment from the customer to pay for the shigppHowever, the payment
has been delayed which leaves the merchant unalgay for the shipping.
The shipper now cancels the shipping. After thenparyt has finally arrived,
the merchant is unable to ship goods to the custome

41

3.2.5 Lack of Isolation

Concurrent use of shared resources is the soumoaiy difficulties and many
researchers have been working on mechanisms tatesshared resources
from other concurrently running activities [32]. n® popular mechanism
which has been used to solve isolation problemsdking. Here a lock is
placed on a resource during the entire duratiom ¢fansaction so that the
shared resources can only be accessed by thetiastiwithin the transaction,
no but where else. Regrettably, this locking medmnonly works in an
environment where activities run very fast and remthin a trust boundary.
This assumption, however, doesn’'t apply in a serbased system where
activities run for long durations often crossingistr boundaries. In such
environments, it is unreasonable to place a lockroimteracting component’s
resources when there is no trust between componams when
implementation details of each component are cotelyldidden from each
other. Furthermore locking for the entire duratishich could possibly last
days to months is simply too expensive.

Despite the difficulties of isolating shared resms in the service-based
system, a certain degree of isolation is requiteg@revent the system from
producing undesirable effects. We list a few cotecexamples from our e-
procurement cast study to illustrate how the systam produce undesirable
effects if there is insufficient isolation.

Before confirming an order, merchant may check dhgount of available
funds for a customer to ensure the customer hdisisat funds to pay for the
goods. Though the customer might have enough fanhdke time when the
check occurs, this may not hold true by the timeedbhstomer has to pay. For
example, after checking of the available fundspssp the merchant delivers
the goods. While merchant is delivering the godls, customer might have
used the funds for other orders leaving the custameable to pay for the
goods that are being delivered by the merchant. flihds of the customer,
which is a shared resource, have been modified!ir @oncurrently running
orders other than one the merchant is involvedis lack of isolation creates
a situation where merchant delivers the goods leitcustomer is unable to

pay.

Another example where lack of isolation could ptitdly create a problem is

found with handling of stock level by the mercharte merchant checks the
availability of goods before confirming the ordeéWhile the merchant

organizes shipping, other concurrently running mdeould take goods the
merchant was going to ship. This again will leawve merchant unable to ship
goods even though the merchant checked the avdilaifithe goods earlier.

42

3.2.6 Cancellations

Business activities in a service-based systemféga of long duration and use
asynchronous messages for communication, with cexnplusiness logic
coordinating the collaboration between multiple poments. This leaves
many possibilities for failure, from faults in th&stem infrastructure to
application errors, or simply changed situation®me or more components.
Any of these causes can lead to the need to camrek process that is
underway or even completed. In traditional OLTPteys, cancellation is
easy since all changes made within an atomic tcaiesacan be rolled back
by the system, restoring all data to its previciages Unfortunately, it is not
feasible to run an entire service-based applicataen a single atomic
transaction because of the performance and otheadts of the locks used to
ensure isolation [52], and so the applicationdh@gervice-based system need
to contain application-specific mechanisms for ohepvith the cancellation of
an interaction.

The simplest cancellation is where the applicastops the processing that
was underway, and then terminates with no othéoracteeds to be taken. For
example, in the e-procurement example, taking niomds a reasonable
response when the order is cancelled at any tiferdgoods are reserved.

A slightly more complex class of cancellation isemhnormal processing is
stopped, and some simple actions need to be pextbiim re-establish an
appropriate state. For example, if an order is ebed before transportation is
arranged and before the invoice is sent, but #itegoods have been reserved,
then to cancel the order only requires that we uhdaeservation. This class
of cancellation is based on the Sagas model [3@&r&vla business process is
cancelled (aborted) by executing compensatorsvierse chronological order
for each task that has completed.

Some cases may require more complex cancellatioaling. Suppose the

order has to be cancelled for some reason aftesgmtation arrangements
have been made. One can try to cancel the arramgeret, if a cancellation

fee is charged by the transport company, how dodefne the business

process used to pass on the costs onto the cu&dfughermore, how do we
define a process to handle the situation wheré¢rémsport company refuses to
cancel its process, because the truck is alreadg avay to the warehouse?

Customer cancellation requests that arrive atioepi@ints in the order process
may require approval from a manager. The merchaytaiso need to interact
with several of its partners as part of the caatielh process possibly
applying different cancellation policies. For exdeypf an order had resulted
in a back order being placed with a supplier, tliéa may also need to be
cancelled. The manager’s decision may depend ornintkeenal state of the

43

business (e.g. will there be too much stock invilaeehouse) and whether its
interacting components are also willing to accdpt tancellation. If the
cancellation is accepted, a fee may be charge&rwibe (when the cancel
request is rejected) the normal order processirg} beiresumed regardless.

Cancellation after goods have been delivered inired further complexity
since we need to define processes for returningdgoohecking that the
correct goods are returned and ensuring that theeynaacceptable condition.
We also need processes to define how to handleake when the wrong
goods were returned or the returned goods are aptaiue.

3.3 Introduction to Deviations

Business processes run at each component of sérasesl system. Business
activities that carry out instructions for businesguirements are implemented
within business processes. Defining a businessepsand modelling it would
be a straightforward exercise if every activityhint a business process always
completed successfully and could never be cancdlaias we examined in
the section above, there are many issues to be fagavorkflow modellers
and software developers when activities deviatearnous ways from their
normal path. This is quantified in [74] where thethers report that nearly
80% of the time implementing a business processpsnt on handling
deviations.

The main focus of our work has been the consistg@mnolglem: ensuring that
the set of autonomous components making up onécedrased application
always finish in consistent states. Building sugbpleations which can
maintain consistency is not easy due to variousatiems which can occur
from the simpler processing when everything goels we

In this section, we look into the details of di#fat types of deviations which a
service-based system might produce. We arguelibeg tire different types of
deviations: recoverable deviations refer to devoraiwhich have responses to
correct them and return to the normal path. Theaeses are corrective
actions which can fix the deviations as they o¢ban continue the process as
if nothing has ever happened. Unrecoverable deviathave no responses to
correct the problems. These can bring disastronserpuences such as system
being terminated inappropriately. Both types ofidgons can be caused by a
mismatch between different states representingreifit aspects of system.

3.3.1 Recoverable Deviations

A business process is built from many smaller essnactivities. For some
business activities, there is only one way to etethe business activity. If
that only way of executing the activity fails, thas no way to correct things.
On the other hand, for some business activitieethee several different ways

44

to execute the business activities. In such céfsase way of execution fails it
is still possible that there are other ways to ai@c¢hat produce the correct
result. In this scenario, when an original executitails to execute
successfully, it typically takes a business pro@egay from its normal path.
Corrective actions can be applied which take th&rnass process back to its
normal path. We call this type of deviation, whitms responses which we can
run to correct the situation, as recoverable dmriat Throughout the example
of e-procurement, examples of recoverable deviatiappear many times,
some of which are listed below.

* Sudden popularity of certain goods may leave ingefit stock which
results in the failure of the step for reservatafrgoods. Rather than
rejecting the purchase order and aborting the ordeprocess, the
merchant business process can instead trigger twakowhich can
replenish goods in the warehouse. Once goods arstock, the
reservations can be made successfully as if thate deen enough
goods in stock all along.

« Similarly, there are multiple transportation comigan that can
transport ordered goods to the customer. If onespartation company
can not deliver, the merchant business procesdimadran alternative
transportation company to deliver goods to the aust. From the
customer point of view, the difference in transptidn companies
does not matter in receiving the goods so longoaslg are delivered
on time.

* When the merchant receives payment from a custdmsrpossible
that the payment is less than the amount owings €an result in an
inconsistent result where the merchant shipped g@oth value more
than what the customer paid. To correct the simatthe merchant
sends an additional invoice for a remaining amalu$ some penalty,
with an extended payment due date. The customey thayremaining
amount and penalty, and the ordering process tbatintie as if the
customer paid in full in the first place.

In a traditional view, such recoverable deviatiomguld be considered as
failures. Thus they would not be recovered, butead, subject to run one of
standard deviation handling mechanisms [32] to takesystem to its original
state. However, taking the system to its origitaiesin a service-based system
is often either too expensive or it might not besgible due to the
characteristics of the system we discussed in gotich 3.2.

3.3.2 Unrecoverable Deviations

There are some deviations where the system cammbtafway to continue
forward to a reasonable. We call these unrecoverdbliations. Examples
arise because of hardware or system failures, om flhuman error in
application design.

45

There are system deviations where the network oresdfails. In our e-
procurement case study, system failures can cadseing process to remains
incomplete. For example, calculating a price caihdiae to the failure of the
price server. Reserving goods can fail if the nes@on system is down.
Arranging transport or shipping can also fail dwecrashes in particular
components. Sending messages (such as quote, gerohder, invoice) and
receiving messages can all fail due to networkufad. If one component of a
service-based system fails, it is more likely titet overall interaction will fail
as a consequence. Interacting components will lablanto progress, when
they do not receive messages that are criticalhiem. For example, without
receiving a payment from the customer, the mercheddring process cannot
complete.

Another common deviation in this category is dueptogramming bugs, a
term which refers to an error, flaw, mistake, fegluor fault in a computer
program. These prevent the system from behavingtasded, so producing
an incorrect result. Programming bugs can come froistakes made by
people in either design or in connecting a cordestign to code. For example,
suppose an overdue customer has been evaluatedrasl a&sustomer even
though the customer is recorded as having overduea quote has been
calculated based on the old price list even thaugh price list is available at
the time of calculation, or the incorrect numbegobds were reserved despite
purchase order correctly stating the number. Tisgsations can all happen
due to mistakes made by developers. No matter hash ecomponent
successfully processes all the messages as expéutetug introduced by
programmers will prevent the system from produ@raprrect result.

3.3.3 State-related Deviations

One notable type of deviations, which may be eittlee recoverable
deviations or unrecoverable deviations, needs ape&tiention. This is the
state-related deviations. State-related deviatioosur due to mismatch
between states which represent different aspectéssylstem. For example, a
state stock_on_handrepresents the amount of stock being held in the
warehouse in the real world. A stateoice_sentepresents that a business
activity has occurred (namely that an invoice we $o the customer).

The accuracy of states is dependent on stad@yy updated correctly every
time realitychanges. For example, the stateck_on_handhould be updated
accurately every time the stock amount in the waush is changed. The state
invoice_sentshould only be produced after an invoice is reakynt to the
customer. As well, the accuracy of states may diso affected as a
consequence of another state. For example, dependithe amount of funds
available as represented by the stéateds available the outcome of

46

payment_senwill be decided. If the statieinds_availablecontains sufficient
money to pay for goods, theayment_senwill succeed. Iffunds_available
contains less than what the customer owes for doelg thepayment_sent
will fail.

But in reality, this synchronised updating betwestates doesn’'t happen
perfectly all the time. Data entry errors can octieere may be an anticipated
changes in the world that are not captured in tloenputer system,

network/server failures may present communicatibrthe exact moment a
synchronised update was supposed to happen, orcdbEs to maintain

accuracy could be too great. However, the majoseauhat produce state
mismatches remain the issues we discussed in 8&:80

Building a reliable and robust system cannot beedaithout handling the
various deviations appropriately. In the next settiwe closely examine
different deviational situations which are creatgdhe different types of state
mismatches. Then we discuss the way different tiewal situations can be
handled, as a first step to guide the developehanuling deviations.

3.4 States and State Mismatch

The section is divided into two subsections. In firet subsection, we
examine different types of states in the systermrifaresents different aspects
of the system. In the second subsection, we clashifferent deviational
situations which can arise due to state mismatch.

We provide descriptions of how to handle variousiatéonal situations as
they occur in the example of e-procurement castystlihe description will
provide a way to evaluate current and proposed B2diEAI technologies on
their support for deviation handling. In Sectioré 3ve show that current
technologies have limited support for handling @asi deviations.

3.4.1 States

We first define three different types of stated tlepresent different aspect of
business process — Abstract State, Business Pr&tass and Real World
State We describe each of these types of state in detad, we discuss the
relationships between states.

3.4.1.1 Real World State

The Real World Statis simply the state of the physical world, suclgasds
on hand and financial agreements. In our e-procen¢rscenario, the quantity
of each product stored in the warehouse, the palydmcation in the
warehouse where the goods are stored, the corglitibthe goods (damaged
or in good condition) and the locations of the vinaxgses are all part of the
Real World State.

47

3.4.1.2 Abstract State
The Abstract Statiss a computer-based representation of the Reald\RBidte.

Each component in a loosely coupled distributed pting system has state.
This state is an Abstract State as it is basedhendata held within these
computer-based models of the real world. This madeludes information

such as the expected availability of each prodtieg location in the

warehouse where the goods are supposed to be statedhe customer’s
delivery address.

The Abstract State of a component is not necegsexpposed externally. This
means that a component in the distributed envirottmeay have no direct
knowledge of the internal Abstract State of oth@nponents. For example, a
customer would not normally know the level of stoakailable for any
particular product; in airline reservations, a pagger would not know the
exact number of seats available for a particuightl However, it is possible
for an external component to derive partial infotiora about the Abstract
Stateof a component by considering the component’s bebav e.g. if a
merchant accepts a purchase order then the cuskoroess that the merchant
believes it will have at least the ordered quanstsilable at the time of
shipment. The merchant may provide the customen ditect interfaces to
guery the value of the internal state, but thismewer be more than a snapshot
and so is potentially inaccurate.

3.4.1.3 Business Process State

A business process is defined by a set of actsviied a specification of the
order in which the activities are required to execun the e-procurement
example, the business process for the merchanideslreceiving a quote,
verifying that the customer is a registered customith no overdue payments,
calculating a quote and sending the quote to theoower. The Business
Process Statis the point that the process is up to in its ekieau A business

process may contain forksets of activities that execute in parallel), tlaus
Business Process Stai@n point to multiple positions in a process.

Examples of process state in e-procurement incltdées such aguote
request received, quote sent, invoice sent, payreeeivedandreceipt sent

There are two types of business processes. One dgfires the internal
activities of a component and the other defines éxternally visible
behaviour. In the e-procurement example, the matchauld not expose to
its partners (e.g. customers and suppliers) thernat processes but would
expose a sub process which consists entirely ofites that interact with its
partners. There are thus two types of BusinesseBso&tate: Internand
External. An External Business Statacapsulates or summarizes a set of

48

internal states. For example, the external prostase payment received
encapsulates the internal stateexfeived paymenawaiting the validation (of
paymentandreceived validation

3.4.2 Classification of Deviations

This section classifies a number of situations whtre business process
deviates from normal processing as a result of stasmatch situations. Some
of these deviations are recoverable while othees rast. This means an
architect must ensure that there are processesedefio recover from
recoverable deviations and to prevent unrecoverdblgations; otherwise,
unacceptable behaviour will occur that may resuladverse outcomes, such
as financial loss. The events that cause a dewifition the normal processing
paths can occur at any time, even when handlinggus deviation, making it
more difficult to ensure correct behaviour undécmtumstances.

3.4.2.1 Mismatches between the Real World Statatandbstract
State

An Abstract States a representation of a Real World State. The Réaild
Stateof a warehouse is the physical state of the warshosuch as what
products and in what quantity, is stored in theelhause as well as their
storage location in the warehouse. An inventorytesysis an Abstract State
representation of the Real World Stafea warehouse.

In an ideal world, the Abstract Statéad the Real World Stateould be
consistent with each other. Unfortunately, thisiad feasible due to the cost
and effort required to keep them synchronised latiraés. In particular, the
timeliness issue due to the asynchronous natuserafce-based systems leads
to many temporary mismatches between the Real V&idtk and the Abstract
State As well, difference between the Real World Statd the Abstract State
can also be caused by real world events that areraflected within the
computer system. For example, goods can becomeggahiia a warehouse or
can be stolen and are thus no longer availablesdte. This state mismatch
will persist until the inventory system is recoedlwith the actual physical
goods in the warehouse, something that may notdrapptil the next stock
take.

Take an example where an Abstract Staét consistent with &eal World
State in the e-procurement scenario. A deviatiolh @gcur when there are
actually insufficient goods in the warehouse toisbatan order but the
inventory states otherwise.

As it is not feasible to keep the Abstract Stated Real World State
synchronised at all times, these types of deviat@are unavoidable. Thus, to

49

ensure correctness (that is, avoid unacceptablkevimirs), we must be able to
handle deviations caused by inaccurate abstraet sta

Correct handling of deviations arising from ina@ater Abstract States
application dependent. In the e-procurement scendrihere is insufficient
stock available for delivery then there are varimag/s the deviation can be
handled. They include:

» Delay the order until a backorder arrives and redate delivery;

» For orders that include other products, send adlilable goods as
scheduled and send unavailable goods when theymeeewailable —
that is, partial fulfilment of an order;

* Cancel the order.

Depending on the circumstances, how this deviasidrandled may depend on
the decisions and policies of the merchant andistotner.

If this deviation is not appropriately handled theracceptable behaviour may
result. For example, goods may never be deliveoethé customer but the
customer is still invoiced and sends payment tontieechant; or the business
process may never terminate.

3.4.2.2 Prohibited Abstract and Real World State

Integrity constraints define, via the Abstract Stdbat certain Real World
State are prohibited. Examples of integrity constraints £-procurement
include the requirement that each customer doegexused their credit limit,
and that available stock for a particular productnbt below a specified
amount unless there is an active backorder.

Deviations are thrown during a business procesvelmeintegrity constraint
is violated. Though guaranteeing integrity constisiis a job of application
programmers, lack of isolation can often causedengations in this category
to occur. For example, two concurrently runningibess activities read the
credit limit of a customer at the same time thigkihat each business activity
only takes some amount that doesn’'t make the cliedlit exceeding. But in
truth, the sum of these two concurrently runningibess activities exceeds
the credit limit if both are granted.

There are two different approaches to solve suoblem. One is to apply an
appropriate isolation mechanism which can prevewt @eviations to occur
due to integrity constraint being violated. We dis the ideas for this in
Chapter 6 of this thesis. Other approach is tal@tiations occur, and deal
with them after the fact, to keep the system frawimg up in an unacceptable
state such as when the customer credit limit hasaded leaving the customer
unable to pay for orders. How a deviation shouldhbadled is application
dependent. For example, if a customer exceedsrhieocredit limit while

5C

placing a new order, then there are a number obwayandle the deviation.
They include: increasing their credit limit (mayteenporarily); requesting that
the customer deposit funds into their account; amrcelling the order which
caused their credit limit to be exceeded. Noticaimghat there are a number
of possibilities to handle the deviation and tleg business process does not
have to be cancelled as a result of the deviation.

The more interesting example relates to businessti@nts that are important
to guarantee the integrity of overall business gssessuch as available stock
is not below a specified level unless (or) theransactive backorder. If an
order reduces the available stock to somethingwbéie acceptable level, the
deviation should definitely notancel the order but instead trigger a new
backorder. If the backorder throws a deviationhpps because the supplier
no longer stocks the ordered product, then the ima@tccan try to find an
alternative supplier and if no such supplier carfdaend, they might remove
the integrity constraint for this product and ugdttte inventory to reflect that
this product will no longer be available once a&linaining stocks have been
sold.

3.4.2.3 Prohibited Time-based Internal Proces®Stat

An interesting type of prohibited process statesesrifrom events that are
supposed to occur. A business process may spedinvan activity in a

business process has to occur, and if it doesppédra by the specified time
then a deviation should be thrown.

A good example is the requirement that payment filmencustomer should be
received by its due date. When this deadline issadisas might happen
because of message delays or customer tardinesg, #ie many ways to
handle the deviation. They include notifying thestoumer of overdue payment
and extending the deadline for payment; chargin@dditional late fee and
sending a new invoice; cancelling the order if t@ds have not been
shipped, (and possibly charging the customer agltion fee); and as a last
resort, initiating legal action (a human orientethaty) to recover costs.

Additional complexity can be caused by the asynubus nature of the
interactions between the merchant and customerimbéss processes. If the
merchant sends a new invoice, including the lag fa response to an
overdue payment then it is possible that paymentHe initial invoice will
then be received. The merchant would then waipfyment for the late fee
payment only.

If there is no appropriate mechanism in place tepk&rack of state of an
overdue payment, the system might wait forever auithtermination for the
arrival of a message. Care must also be taken wefining how to handle an
exception between the customer and merchant; otberitvis easy to end up

51

with unacceptable outcomes. For example, customey pay the original

invoice, then receive another invoice (which covées original charge plus a
cancellation fee) and pay that in full as well.dnsistency can also occur if,
after the merchant sends a second invoice whicludes a late fee, they
receive payment from the customer for the origim&bice but then forget

about the late fee which is still outstanding.

3.4.2.4 Mismatch between Internal Process State\bsttact State

Successful execution of an activity from a partéculnternal Process State
may depend on the Abstract Sthgving appropriate values at that time. For
example, there must be sufficient funds availakileha time the customer
wishes to send payment to the merchant and therethabe sufficient stocks
available at the warehouse for delivery when trartsion arrives. The most
intuitive scheme for specifying the conditions regd for successful
completion of an activity is by attaching predicatére-conditions) to
activities in a long running business transactibnis was pioneered in [84]
and [52] and we adopt this idea in our proposa&iapter 4.

In a long running business activities, if an a¢yivh depends on a condition to
successfully execute, the business transactiontypitally execute an earlier
activity A’ in the business transaction to ensure that theittomavill be true
when the activityA executes, for example, in e-procurement, the metclkiei
typically reserve the quantity of goods requireddoyorder so that there will
be sufficient goods available at the time of delyveHowever, just because
goods have been successfully reserved does not thearthe goods are
already stored in the warehouse since the resegweds may be goods that
are scheduled to arrive from the supplier befoeedtlivery date, that is, the
predicate may not be actually true when the agtiit executes but is
expected to be true by the tirdeexecutes. Furthermore, & successfully
executes, there is actually no guarantee that thdigate will be true when
activity A executes since the goods may have been taken oudthsr
concurrently running activities.

The traditional approach to solve such problemtisnake A and A’ as a

single transaction to ensure the condition (whiels whecked in A’) is always
true when the activity A executes. The lock plackding the transaction

guarantees that no concurrent running activitiesri@res with the state A and
A’. But as discussed in the Section 3.2.5, the iligkmechanism is only

feasible when it can be guaranteed that clientsailays release locks fairly
quickly; and this is not a guarantee that can bergwith untrusted clients and
long-running business processes. In Chapter 6, w@opge an isolation

mechanism which can work in such long-running bessnprocesses in the
service-based system.

52

3.4.2.5 Mismatch between External Process States

B2B integration often requires autonomous companemtd long stateful
interactions between numerous participants. Theoerypement scenario is a
good example; the participants include a merchamtistomer, and shippers.
Each component exposes its External Business Rr&tde to its partners.
However, the External Process State of one companay not be compatible
with another component’'s external process stateanfgkes of such
incompatibility include:
* The customer is in theeceived receipexternal business process state
while the merchant is in th@voicedstate. These two external states
are incompatible since the customer could not Ipasibly received a
receipt if the merchant has not even sent the agvoHowever, the
external business process statid for the customer is compatible
with the merchant’s external business process stateiced since
payment may be in transit.
» The customer is in the external business stateelledstate while the
merchant is in theuccessfully completed state
« The merchant is in an external business state wisclwaiting
payment but the customer is in a state which indgthat its business
process has terminated.

These incompatibilities can be prevented by engutitat the components’
(dynamic) behaviour is compatible with respect toBaB coordination

protocol. That is, when one component sends a mesta another

component, the destination component is expectimgt tmessage, and
whenever a component is awaiting the arrival of essage, some other
component will (eventually) send a message of theect type.

In a correct design and implementation of a B2Bpligption, the business
processes participating in the B2B interaction #hawever be in a situation

where one business process is waiting for evenesgages) that will never
happen; neither should any component receive umgegbeevents. Such
incompatibilities will cause business processesdwer terminate and cause
messages to be lost or queued somewhere, never properly processed.
Although ensuring the compatibility of different ternal processes is an
important aspect to producing a consistent systemdon’t cover this topic in

our thesis. We refer interested readers to wor&urycolleagues in [33].

3.4.2.6 Incompatible Abstract States
Even though Abstract Stateme internal to a component, two or more
components’ internal state may be incompatible iB28 interaction. In e-
procurement, examples of incompatible AbstracteSiatlude the following:
» The amount payable for an order differs in the @uwsr and
merchant’s Abstract StateSimilarly, if an order is cancelled, the

53

merchant and customer may differ in their undeditam of the
cancellation fee that is payable.

« Similarly, the products ordered in an order diffethe merchant and
customer’s Abstract State

Incompatible Abstract State becomes evident whea oh the business
processes throws an exception after receiving asages from another
component, for example the merchant would throweaoeption when it
receives payment from the customer in which thewarhis incorrect.

The deviation needs to be appropriately handled #ed incompatibility
between the Abstract Statessolved; otherwise, the environment would be
left in an inconsistent state. Issues of the coiniy of different processes
are covered in depth in [33].

3.5 Desired Features in Handling Deviations

In Section 3.4, we have explored various deviatidmes to different cases of
state mismatches. We also discussed potential wialgandling deviations at
each case of state mismatch. This has given ussaght into a more general
set of features needed in handling deviationssargice-based system. Again,
we use e-procurement scenario to illustrate coae&les of the desired
features provide better understanding of each featu

Section 3.5.1 describes the types of behaviounsnedjwhen deviations cause
a business process to deviate from normal proagssinseriously that it is

desirable to cancel the original processing entirdfe focus particularly on

situations where a cancellation request is receied there is a lot of

similarity with the types of processing needed dwihg occurrences of

unrecoverable deviations.

Section 3.5.2 describes the types of behaviourireduvhen recoverable
deviations cause a business process to deviate rimymal process but in a
less serious way that does not require cancellationview of the effort
already invested in a long running process, andntiraber of collaborators
involved, a business process should only be cattal a last resort.

3.5.1 Cancellations

We list a number of desired deviation handling dea¢ when a business
process requires terminating because the deviat@wastoo severe to be
corrected. The simplest from of terminating theibess process is simply
stopping the currently running business processiowit doing anything. A

more complex handling of deviations can be thatstretem runs independent
activities which can reverse the effects of theiviaes so far. A more

advanced form of handling deviations is to examatliestate that had been

54

changed before deviations occurred and correctstage. This needs great
understanding of which state components to exaamagehow to correct them.
The last resort when the system is extremely competo notify human
operators so that even the most complex and rawatisins can be handled
manually.

3.5.1.1 Terminate All Processes and Simple Acasiti

The simplest type of behaviour is to stop, thathis, abnormal situation calls
for the system to terminate whatever activitiesiarderway. Within this case,
we allow for the cancellation to also execute s@aditional simple activities
after terminating whatever is active.

An example of this type of behaviour is if the amser decides to cancel the
order before the merchant has performed any sagmifiactivities that impact
on the real world. Suppose the cancellation requesves before the
reservation of goods has started. The merchantbeagurrently calculating a
price, or it may have just received the purchaskemrout it has not reserved
goods from the inventory system or arranged folivdgl. The business
process can be terminated and all that might bedetkds, optionally,
executing a simple activity which updates the statiithe order fronactiveto
cancelled

For this class of behaviour, notice that cancatatf a business process does
not necessarily return the system back to its esaginal state. For example,
the customer database may have been updated. frootiee same activities
are not undone via compensation transactions, f¥amele, sending and
receiving quotes, and calculating the quote arecoatpensated. All that is
required is basically to terminate the businessgss.

3.5.1.2 Executing Compensator like Activities

A slightly more complex class of behaviour requiredealing with deviations
are reverting the effects of the deviations by mgncompensator like
activities similar to Saga transaction model [36].

In the e-procurement scenario, if an order needset@ancelled after goods
have been reserved and transportation arrangeoearte an invoice has been
sent and the goods shipped, then the order canabeelded by running

compensators in reverse chronological order foiseéhactivities that have
successfully executed.

Compensator like activities do not always needitoin reverse chronological
order, but sometimes application defined order pprapriate. In the e-
procurement scenario, certain circumstances pldfereht constraints on the
order of compensators. For example, if a cancellatis received after

58

payment has been received and transport arrangede tmay be some
cancellation charges from the shipper which mustplssed on to the
customer. Thus the compensator for receiving payifvemch refunds money
to the customer) should only execute after the eorsator for arranging
shipment has executed. Since the original procgssirthe delivery process
was concurrent with the payment process, the cdimopleould have been in
either order. That is, in this case compensatorsi@onecessarily occur in
reverse of the original chronological order.

There are also cases where one activity has taiexéefore another but their
compensators can execute in any order. In the geoase, the compensators
may be required to execute in an order that isiegbn specific.

3.5.1.3 Executing Independent Activities

There are circumstances where the required belraigooot to follow the
traditional view of rolling back. A business prosemay need to execute a
process whose processes are independent of thvetiestthat have executed
in the original forward processing.

For example, in the e-procurement scenario, if mdiegoods have already
been shipped then this will require the invocatbm return goods process. It
would arrange the delivery for the unwanted gooaskbfrom the customer

(either to the original warehouse or perhaps tcalernate storage site). It
would also involve special checks to make sure tihatgoods returned were
the ones originally delivered, that the goods hasebeen damaged, and so
on.

Notice that the return goods process may itself &ad this needs to be
appropriately handled.

3.5.1.4 Activities Dependent on State

The correct behaviour to handle effects of dewigtim a long running process
may depend on the state of other activities and.dBte status may not be
known at the time when a fault needs to be handled.

For example, if an order is cancelled then the ebetton fee is dependent on
the state of the delivery. If there is a fee fa tancellation for delivery, then
the costs are passed onto the customer. If andevws not been sent, then an
invoice for the cancellation fee is sent to thetanrer; if an invoice has been
sent and payment has been received, then a peefiahd is sent to the
customer.

The final case is a more awkward to handle agnbdluces an extra dimension
to the problem: the exact state is unknown. In ¢hise, the merchant has sent

56

the customer an invoice but has not received paynaed the merchant does
not know if the customer’s payment is in transinot. The merchant has to
send the customer an invoice for the cancellatemn but a payment for the
original invoice may arrive after the merchant Isast the invoice. In this

case, the merchant has to assume that if the cast@ueives an invoice for
the cancellation fee and has already sent paynmentthe customer would
ignore the invoice for cancellation fee. The custorwould then wait for a

partial refund from the merchant.

Care needs to be taken in defining the protocolvéenh customer and
merchant; otherwise, inconsistencies could occuere/tthe customer never
receives the correct refund or the merchant neegives due payment.

The final case can be more simply handled if thechent does not allow
orders to be cancelled, and it only sends an irvafter the goods have been
shipped. That is, we can place extra constraintshenbusiness process to
avoid being in unknown states when a fault occurs.

3.5.1.5 Human Intervention

It is not realistic to expect that all deviatiorencbe handled without human
intervention since there may be very complex/speadmcumstances.
Flexibility for handling cancellation is greatlydreased if humans handle the
most complex and rare situations. It is straightBind to initiate and receive
notification of the outcome of human interventiootidties via simple
mechanisms such as sending and receiving emails.

3.5.2 Continuing to Make Forward Progress

Exception issues have been widely investigatedha workflow research
community. Most techniques developed in the workflesearch are similar
in that each first terminates the current busingsxess then deals with
exceptions. For example, Hwang et al. [43] propasmodel for handling
workflow exceptions based on previous experiencéneflVan exception
occurs, a search on the previous experience inlingnsimilar exceptions is
conducted and the result is applied. Casati andiPb2] describe a taxonomy
of expected exceptions by categorization of simabereptions and mapping to
exception handling for each class of categorizedeptton. Based on this
taxonomy and meta-model, Chiu et al. [15],[16],[H&veloped a Web-based
WEMS to support automatic resolution for expectadeptions. Fung and
Hung [26] go a step further by regenerating a wovkfspecification which
can invoke alternative Web Services to remedy #ilere of mission critical
business activities.

However, in a service-based system, it's often issgge to terminate a
business process due to the complex relationshspblean built during the

57

long duration of interactions as well as particidavironment of the system.
If possible, the system should deal with the profsi€i.e. deviations) as they
occur and always progress forward. The simpler famdealing with
deviations is to find alternatives which can praglube same effect as the
event which caused the deviations. Sometimes, ghtmnot be possible to
simply apply the alternatives from the point whareeviation just occurred,
the process might need to rollback to an earliantgavhere most recent stable
states can be retained) and restart from ther#idrsituation, one may aim to
reapply the event that caused the deviations apply alternatives. A more
advanced way of handling the deviation is to cargithe process despite the
deviations, and also to create additional actisiteger which can handle the
effect of the failed events.

3.5.2.1 Alternatives

Activities in a business process may fail, for epén a transportation

company may not be able to deliver the goods atreheired time. When a

failure occurs, it is often inappropriate to take trastic action of aborting the
business process. It is possible in certain sinatito execute alternative
activities, and if they are successful, the busingsocess can continue as
normal such as the merchant finds another shipper.

3.5.2.2 Rollback to Earlier Points in the Procegsind Redo

An activity may fail and the most appropriate cao$ection is to undo via
compensation like activities or other independemtivdies, such as
alternatives, thus returning to an earlier point the business process
(savepoint) and then restarting from the savepoint.

A concrete example where this type of behaviouedgiired is if the delivery
of goods were sent to the wrong address. The shipmeaeturned, and then
the merchant determines the correct address amdrésends the shipment.
This may be done by another shipper than the oimpeth the wrong goods
originally. The activities in the payment procesed not be undone or redone.

3.5.2.3 Continue Processing and Create Additionadd3s

Partial fulfilment may be required when a merchea not provide all the
goods at the time of delivery, for example if a kader is delayed. The
merchant thus ships the available goods and latmranges transport of the
other goods when they become available.

This class requires that the process spawn anptbeess to handle currently
unavailable goods; meanwhile it must continue nérpracessing for the
goods that are already on hand. There is also d toemodify other processes
such as the invoice to the customer is not forftlleamount but only for

58

goods that have been shipped. A later invoice g sden the unavailable
goods are shipped.

3.6 Critiques of Standard Mechanisms and

Supports from Current Technologies

In this section, we explore in more depth the isscencerning the intrinsic
shortcomings in the standard approach to dealirig deviation in systems
composed from Web Services. This standard approsels an exception-
handling mechanism similar to that in programmiagduages, together with
application defined compensators which semanticallydo completed
activities or all or nothing features from traditad ACID transactional model.
We described this approach in Chapter 2.1.5.1.

A fundamental assumption made by the standard misd#iat that every
completed activity can be semantically undone. Teathe model assumes
that application designers can always write a coroempensator for each
activity. However we saw above that it may not lesgible in all cases to
undo the effects of shipping some goods. The ordy the standard model
can deal with activities that cannot be undone dsdefine anempty
compensator, but this is unsatisfactory because treated as successful
compensation and thus enclosing scopes are noedhetrthe activity has not
been undone correctly.

Even if some aspects of an activity can be undins,not always the case
that we can return exactly to the original statbe Tcompensator for an
activity, such as reserving goods, is to remove rdgervation. One might
believe that such a compensator is guaranteedcteessfully execute, but the
reservation may have triggered off a back orderthe backorder plus the
original reservation together would leave the meanthwith an excessive
quantity of goods, then this simple compensatioghtnbe unacceptable.

Furthermore, the standard model does not seemk® a@ecount of possible
state-dependence in how compensation should oéd¢ueast in the BPEL
expression of the model, the compensator has atoed® stored state in
databases etc, and to the state captured in cergdy the original activity,
but it does not have access to the current statenoing concurrent activities.
However we have seen that the correct way to roll@zacompleted shipment
of goods can depend on the status of the concysegmbent process.

Another flaw in the standard approach (such as B&&dcribed in Chapter 2)
to cancellation arises from the assumption thalt-faandling should involve
the immediate termination of all running activitiegthin the scope that has
suffered the fault. This assumption makes sensthéntraditional object-
oriented programming languages where the excepidgoning concept arose,

5¢

but it is not valid for all cases of faults withenlong-running business process.
In contrast, we believe that proper handling maynetimes require the
application-specific fault-handler to intervene eitigently in the running
activities. It should examine the current statetred scope and then act on
different activities in different ways: some may &léowed to reach a stable
point, some may wish to take special preparaticferb termination, some
may need to be killed, and others maybe shouldege@to normal completion,
unaffected by the fault.

The standard approach does not provide sensible cedse between the
default handlers and customised ones written byath@ication developer.
The programmer must either rely entirely on thead&f(which simply runs

compensators in reverse chronological order), ey timust write the entire
handler from scratch. There is no opportunity tosdme preliminary activity

and then invoke the default handler, nor can prograr access information
used by the default handler, such as the orderoaiptetion of the sub-

activities. For example, one couldn’t write a cuasized handler which runs
the compensator of the last completed sub-actikitynot any others.

3.7 Summary

In this Chapter, we started with the question ofatvimakes it difficult for
developers to build a reliable and robust serviasel system. To answer this
guestion, we needed to look at the environment strice-based system.
Some of major concerns of a service-based envirahare:

e The asynchronous nature of interaction among auntong
components which made it harder to deal with timeliness issue.

« The complex web of relationships between multipemponents,
which deal with different partner components dejrggen business
context, makes it difficult to process all messagdsgantly and
correctly. This potentially leads the system tot athout a proper
termination or terminate with unprocessed messages.

» There is a high possibility of interference fromncarrently running
business activities due to lack of appropriateaisoh mechanisms.

* And possible cancellation requests at various stagethe running
system can leave the developers in a challengisipo.

We explored different types of deviations and wesesteed one important
point needing special attention: states. The issuesdentified for service-
based systems have contributed to the number dilpesstate mismatches.
This in turn produces many chances for the systedeviate from its normal
path. We looked at the different deviational siad produced in each type
of state mismatch. For each deviation, we also igeal descriptions of
possible ways to deal with the situation using eyprocurement case study.
This is important because without proper mechanismglace to deal with

6C

deviations it would be difficult for the applicatioprogrammers to build
reliable and robust systems [74].

We then used our understanding of how deviatiorednte be handled, to
discuss requirements on the developers’ descriptiateviation handling. We
showed the drawbacks in the standard mechanisrimiad in BPEL and the
others. In brief, the key requirements for desoglbusiness processes are:
* Need to represent many different approaches inetudioth forward
progress and cancellations.
* Need to allow deviation handling to interact in lsisticated ways with
aspects of state including business process state.

This led us to devise a new model which allows dbeelopers to define all

sorts of handling mechanisms cleanly and declaligti¥We present the model
in the next chapter.

61

Chapter 4

GAT — New Event-Driven
Programming Model for Defining
Business Processes

In the previous chapter, we examined the issueshwiniake it difficult for the

developers to build a reliable and robust serviggeldd system which can
always finish in consistent states. We discussed rtiore frequent and
complex types of deviations which occur due to estatismatches. Our
evaluation of the existing standard mechanisms dgpressing business
process definitions appeared to be pessimistictaheur support for designers
who seek robustness. One of the key problems wistieg mechanisms is
that they treat normal activities and deviationakrgs differently using
separate handling techniques. This means that theery limited support for
dealing with recoverable deviational events, wheedound were important.

In this Chapter, we propose a new model and natdtipexpressing business
processes. This can help designers of businessnsy$b avoid many common
sources of errors in handling various deviationsulteng from state-
mismatches. This new model is called GAT, standiog Guard-Acton-
Trigger following the name from the major elementsthe model. Unlike
most existing standard mechanisms and current tdotp tools, our GAT
model does not separate the normal business &gifiom deviational cases,
nor does it use a special handling mechanism faatens. In addition, GAT
allows each activity to access the wider rangdatks such as Abstract States
and Business Process Stafhis makes it easier for the developers to make
use of more accurate information about the curstaite of the system. This
can greatly help the developers when they plan twohandle different types
of deviations.

Using a payment process taken from the e-procurestEmario presented in
the previous chapter, we describe some commorcdliiiés in defining the

business process. Then we show how features @& model can help the
developers in these cases. We give all of the paymecess written in the
GAT model. Finally, we show how GAT relates to poexs proposals for

expressing business processes.

62

4.1 Payment Process

In Chapter 3, we used an e-procurement scenaria oferchant business
process to discuss various issues faced by agplicdevelopers in designing
a service-based system. In this chapter we usdéhjegtayment section of this
larger example (seen in the red circle in the Fdl)ras a case study to discuss
our proposed GAT model and to demonstrate how amewrite a business
process using GAT. We also illustrate how someufest of GAT can guide
the application programmers to write a businessgs® that can maintain data
and state consistency.

< RecQuoteReq __ —

<£%;£MH< endinvalidCustomerMsg —
L I
E 3

I S —— End
< CalculatePrice >
< SendQuote —
< RecPurchaseOrder >
< ReserveGoods >
< ConfirmOrder >

< ArrangeTransport > <

< ShipGoods
(-
< SendGoodsNotify

RecGoodsDeliveredAck

Figure 9 Payment Process within the Merchant Procas

We describe four scenarios derived from the overajiment process in this
section. They describe procedures that are followedealing with payment
which include: sending invoice, receiving paymesgnding receipt and
dealing with cancellation requests (the last issi@wn in the diagram). We
do not consider at the moment any temporal evemdsralated constraints
other than these four procedures. At each scemaialso describe potential
problems which can cause the payment system toupeodnconsistent
outcomes if they are not handled properly. TheSéation 4.3, we illustrate
how features of GAT help the application progransmier write a business
process avoiding the problems we have mentioned.

4.1.1 Send Invoice

The merchant sends a confirmation to the custorfier goods have been
successfully reserved. Then, merchant starts twallphbusiness processes:

63

shipping process to deliver reserved goods to tisomer, and the payment
process which deals with the payment.

The first business step after starting the payrpemtess is to send an invoice
to the designated customer. The merchant at hie sthecks the details of the
customer to ensure there is enough informationh s billing address, an
invoice to send to a designated customer. If artgildeof the customer are
incorrect the payment system must send a notifinatto Customer
Management System (CMS) to deal with the incorredormation, for
example by contacting the customer by phone tohgetorrect address.

A potential problem that may cause the system tmlyme an inconsistent
outcome appears when customer doesn’t responcetotioice: that is, they
do not send payment within the due date. The matatennot wait forever
for payment to arrive as this will cause the paynsgstem to never terminate.

The merchant should define a procedure which ca déh the lack of
response events. For example, when payment is w¥ehiisiness logic may
require the merchant to extend the payment dueatatesend a reminder, with
a penalty, to the customer. This procedure cannbeked as soon as the
payment due date elapses so that customer isaubtfithe overdue payment.
The merchant may allow sending such reminder u@ tomes. Once the
overdue payment is received (within 3 reminderfg payment process
continues its normal path and other parts of thechant's system can be
notified that the payment process has completedesstully. If overdue
payment is not received after 3 reminders, the geagraystem sends an alarm
message to a (human) manager.

4.1.2 Receive Payment

This business scenario describes the procedureaiondth payment sent by
the customer. There are three possible paths @nabe followed in response
to the payment depending on the amount of the payageseen in the Figure
10:

64

received

Amt>owing

Figure 10 Receive Payment

* Full payment:the payment received is equal to the amount owed.
The rest of the merchant’'s application is notiftedt this phase of
the procurement cycle has completed successfully.

» Under-paymentthe payment received is less than the amount owed
In this case, the amount still owing is calculatadl an additional
invoice is sent to the customer. Depends on tphestyf customers,
the calculation of the remainder owning can vargr Example, if
under-payment is made by premium customers, nddatés applied.

If a normal customer makes the under-payment,eaféaet is added to
the additional invoice.

* Over-paymentthe payment received is for more than the amount
owed. In this case, there are two further actionsettaken. One is to
calculate the over-payment and refund it. The o#dwtion notifies
the rest of the merchant’'s application that thetamser has paid in
full.

There are a number of potential problems in thispg example that could

lead to inconsistent outcomes and business prateegations. For example, a
customer under-payment has to be handled as an #hatmeeds correction

rather than as a deviation leading to the wholem@ay process being aborted.
In this case, the customer should receive an ieviuicthe residual amount so
the correct payment can be made. Similar to thedoeexample in the above
scenario, the payment process should continue dogvnormal path and other
parts of the merchant’s system can be notified thatpayment process has
completed successfully once the complete amounbéas received.

Concurrent unprotected actions can also resulhdorisistent outcomes and

process failures. Without suitable protection, @wdican check that it is safe
for them to proceed, only to have a concurrenbacinvalidate this decision

65

by changing critical shared state between the chmuo#t the code that

depended on it. For example, the action that cafeslthe residual amount and
sends an additional invoice runs because the syBganthecked received <
owing. If an incoming payment changes the stat®reethe extra invoice is

sent, an inconsistent state may be produced. Simieen payment that is

more than the money owing is received, the calmriadf refund must not be

interrupted; otherwise the amount of refund mightattered by concurrently

running activities that access the same stateatieunt of refund).

The different possibilities for the payment amoshbuld all be considered
and properly handled. A merchant payment systent e mechanisms in
place that can deal with all different amount ofympent received. For
example, if merchant system only deals with exagtnpent amount, that is
when the payment received equals the money owingan result in the
customer paying more than what they owed withoutirge refund, or the
merchant receiving insufficient payment.

The payment process defines different proceduresdiftierent types of
customers who underpay and this should be measoregkctly in the process
system. For example, premium customers should geiya remainder for the
remaining amount when they underpay whereas namipre customers must
incur a penalty.

Business processes in a service-based world ate byuiputting together

different parts of systems from legacy code to yeudveloped code. It is
most likely organisations implementing businesstesysreuse their legacy
code wherever possible. If the merchant paymertesysalready has code that
deals with payment, the code should be reusable.

4.1.3 Send Receipt

As soon as customer pays the full payment (thaggsals to the amount
specified in the invoice) a receipt is sent tochstomer.

4.1.4 Cancellations

The overall payment process depicted in Figureril® shows the normal path
which is straightforward. However, there are maiffecbnt ways payment
process is forced to cancel, such as due to thelbwedering process being
cancelled, or the customer simply has changed éristhind and sent
cancellation requests, or system and network &slaccurred.

A business transaction typically has some perdisééiect on the overall

system state, even if a cancellation has occuifed.example, just rolling
back is not an appropriate response to an ordeglmincelled. The existence

66

and outcome of the attempted order have to be dedprand there may be
other consequences such as the imposition of datioalfees.

In most situations, a component participating ifl82B transaction cannot

unilaterally cancel (abort) a business transactrather all possible current
states of the system by the time of cancellatiooukh be considered, for

example, once a merchant has accepted a purcliese oeither the customer
nor merchant can unilaterally cancel the order.nEifethe order can be

cancelled, the subsequent process is often compékaps goods may need
to be returned to the merchant and checked bef@rgtocess can continue,
and there is no guarantee that the return goodsepsowill be successful. We
need to be able to deal with problems that care ahiging cancellation of an

order and cannot just assume that a cancellatibamwiays be successful.

When a cancellation occurs in a business prochsse tare typically many
possible ways to handle the deviation and it is alatays the case that the
business transaction itself has to be cancellethdrfollowing examples, we
illustrate different ways to handle cancellatioguests sent by the customer.
Notice the different behaviours required to hanglieeh deviations at the
various stage of the payment process.

 Payment not received and before goods in tran§he simplest
cancellation scenario is where the cancellatioruest) is received
anytime before the payment is received, the payrpemtess can be
terminated without taking any further action. Wewame the merchant
payment process imposes a cancellation fee if tneceadlation is
received after 7 days since an order confirmatas ieen sent.

* Payment received before goods in trangitmore complex class of
cancellation is the one where the cancellation estjis received after
the payment is received, but before the goods ansit. The
cancellation of the process then only requires téiind of the
received amount or the remaining amount after dauyicthe
cancellation fee. The payment process terminates i@fund is sent to
the customer.

* Goods in transitHandling the cancellation once goods in transitld
be very complex. For example, goods need to beredufrom the
customer to the merchant once they arrive at tistéomer’s door, the
cost of returning goods needs to be calculated paid by the
merchant, and a refund needs to be made to thernsestf customer
has already paid, but a cancellation fee may béraeted from the
refund. These descriptions all depend on businesslsa As our aim
for this case study is to show the different patiessible for
cancellation requests which arrive during differesthges of the
system. We simply assume that the merchant refeetgancellation
once goods are in transit rather than trying tocdles complex

67

business scenarios. In this case, the merchantgraypnocess merely
continues to progress as if nothing has happened.

Being able to access to a wider range of stateskey factor in providing
more flexible handling mechanisms for different id&ens (including
cancellations) that occur at different stage of fheyment process. For
example, the payment process does not only acdessAbstract State
representing payment (amount of payment) but alstess the Business
Process State of knowing how far the shipping pedes progressed so that
the state of shipping can be taken into considmmatvhen deciding on a
desired handling mechanisms for a cancellationasiga during the payment
process.

4.2 GAT Programming Model

This section first gives an overview of the orchetstn framework called
GAT, which stands for Guard, Action, and Triggeo)ldwing the critical

components of the model. We then illustrate how gagyment process
procedures discussed in Section 4.1 are expressbi iframework in Section
4.3.

Defining processes specifies their behaviour. Dedinthese processes is
relatively straightforward for the normally expettease when everything
goes according to plan. Unfortunately, many prolslezan arise during an
execution as seen in the above examples. The defirecesses must specify
how each of these problems is to be handled, amqtetdems can be omitted
or neglected without risking serious consequences.

The process description framework GAT is basedroavent model to define
processes. We believe such event based model is m@ygpropriate and
effective than traditional graph based models, iscBPEL (Business Process
Execution Language for Web Services). Graph basedets are sufficiently
expressive to describe a process for the normpaka®d case; however they
lack the flexibility required to clearly and preeig specify how various
deviations should be handled as described in Chaie2.3.

We now look at the details of GAT programming mofitem its structure to
the major features that GAT offers.

4.2.1 Structure

In GAT model a Process is written as a set of AgtiGroups Each activity
group consists of an Event and a set of relatedifies, as shown in Figure
11.

68

Process
Event 1
Activity 1.1 o
Activity 1.2 Activity Group 1

Event 2
Activity 2.1
Activity 2.2 Activity Group 2

Event n
Activity n.1
Activity n.2 Activity Group n

Figure 11 GAT Process Structure

The GAT model defines three types of Events: IikrrExternal and
Deferred. Internal Events are generated and corgwithin a single business
process. External Events are used to communicaigeba peer business
processes. Deferred Events are internal or extenaits that are generated in
the normal way but only sent if certain other egdrdve not occurred within a
specified time period. Other than specifying a regfitime period an event to
happen, no other conditions required to triggeeimded event. All events are
treated uniformly, regardless of whether they arernal or external, and
whether or not they occur on what could be regastedormal or exceptional
processing paths.

Each activity represents one possible response tevant and consists of a
Guard, an Action and a set of Trigger Groups. EBafjger Groupconsists of

a set of TriggerFigure 12shows an Activity composed of a Guard, an Action
and two Trigger Groups, the first containing twaggers and the second
containing four Triggers.

Guards are Boolean expressions that control whetber not their
corresponding action should be executed as paheofesponse to the event.
The Action part of an activity is conventional cogleose task is to handle the
incoming event under the conditions specified yrilated guard expression.
Triggers complete the handling of an incoming ewmntaising any follow-on
events that are needed to continue the businessgs0

69

if (a and b) { ~— Guard

perform some action
when a and b are both true Action
}
if (x) { raise events X1} M ™
if (not x) { raise events X2 } Group
if (a & b) { raise events ... }) >~ Trigger
if ((not @) & b) { raise events ...} groups
if (@ & (not b)) {raise events ... } Group
if ((not @) & (not b)) {raise events ...}

_ _/

Figure 12 GAT Activity Structure

Triggers consist of conditions and correspondintg $¥ events. After the
action has completed, each associated trigger tondixpression is evaluated
in turn and the corresponding events are raiséiukifcondition is true. These
events can be sent immediately or deferred.

The guard expressions in any one activity groupcéosed, meaning that the
guard of exactly one activity in an activity grolias to be true. That is, within

a single activity group, whenever an event is nesbi the Boolean expression
of one of the activities musie true and all the other Boolean expressions must
be false. This coverage property lets us guarahieexactly one action will

be taken every time an event is received.

The trigger expressions in each trigger group dse alosed. That is, in a
single trigger group, exactly one trigger expressitust be true and only the
events corresponding to that trigger expression kel raised as a result.
Activities can have multiple independent triggeoups, each corresponding to
different and parallel possible courses of actibat twill be taken by the

process.

As discussed in Chapter 2.2.2, more traditionalr@gghes to describing
business processes are based on graphs (effecfleglgharts) where the
nodes are actions and the edges specify orderingtreants and the flow of
control. These graph based approaches work wellnwised to describe
processes where there are few deviations that ivent dhe path of execution
away from its normal path. Using these approacbespécify how to handle
such deviations that can occur in any state attamg can be much more
difficult and complex. The event based model presgtinere overcomes this
limitation by treating deviations uniformly with tegr events. This makes it
easy to specify how to correct problems and repotessing back to the
normal path. Guards always define the correct adiiotake when an event

7C

occurs, taking into account the current systenesiite closure properties for
activities ensure that no combinations of eventd apstem state can be
omitted from the definition of a procedure. Thestiee property for trigger
expressions ensures that the result of an execcgiom@lso not be omitted. The
result is that all deviations must be handled byeactivity.

4.2.2 Key Features

The GAT programming model offers several featutes tan help software
developers avoid a number of common mistakes. Tinetele:

« Uniform processingthere is no separation of the normal case from
deviations. All arriving messages, whether theyrespond to normal
or deviation processing cases, are treated equally

* Resumptionbusiness processes can continue to execute naotiahs
after executing actions that could be regarded asesponding to
exceptional cases.

» Access to statehere is no hidden or implicit state. Both Abstratate
and Business Process States can be freely exarhynegiards and
updated from within actions.

* Uniform outcomethere is no inbuilt notion of returning to an iait
state or of compensation for the business processa avhole.
Individual actions may act as atomic transactioasd abort and
rollback, but the whole GAT process merely contgiexecuting
actions as events arrive until the process conmgplateome way.

» Coverage:alternate actions for the same event are groupegelttier
and guard conditions specify which of these acti@muld be
executed. Simple closure tests on these conditiangguarantee that at
least one action will be executed whenever anytagemised.

» Protected actionseach action has a guard that is sufficient to ensu
its code runs without errors. No other concurrentpss can cause this
guard to become false while the action is execufifgs support for
isolation means that an action can rely on théntafita property (such
as the existence of a customer) that was checkethgdguard
evaluation.

* Response to non-occurrence of evetits:trigger mechanism normally
used to raise events that drive business procésseard can also be
used to define events that are raised when expegtats fail to arrive
in time.

» Integration:the raising of new events is separated from ttieracode
that modifies state, allowing legacy code to beduas actions. This
provides the same type of uncoupling of controwfland processing
steps that is found in graph-based workflow models.

The significant contribution of the GAT model istime way that it combines
these features to assist developers in the comsinuof more robust

71

distributed applications.

One of the most important robustness propertiestmisiness process is being
able to guarantee that the application will alwagsninate in one of a
specified set of consistent ‘acceptable’ statesné&Sof these acceptable states
may correspond to successful outcomes, such asgecdived and paid for
in full, while others represent ‘less desirable’tammes, such as purchase
order cancelled and cancellation fee paid. Thessisent outcomes are all
acceptable to all the participants in the distelugpplication, and none of
them are treated as failures or successes [33.prbperty is supported by the
“Uniform outcoméfeature of the GAT model.

The robustness of a business process also deparitle completeness of the
application specification. The application mustdide to handle all possible
events at any stage of its execution, even if thewe when they are no
longer expected or allowed by the application. Tirngperty is supported by
the “Coveragé and “Access to statefeatures of the GAT model. The
application must also be able to deal with nornvatrof expected events and
this is supported by theResponse to non-occurrefickeature of the GAT
model.

It is vital for a robust business process that gaebe of code is only executed
when the system is in an appropriate state. Fompla code that looks up a
customer’s balance must not run if there is noneéor the customer present
in the database. ThePfotected actioh feature of the GAT model supports
this requirement. The necessary state conditionsbeaspecified as a guard,
ensuring that the code will only be invoked whenpteconditions are known
to be satisfied.

4.3 Payment Process in GAT Model

This section defines the paymembcess described in Section 4.1 in the event-
based GAT programming model with the descriptiomoiv features of GAT
helps the developers to avoid common mistakesdohn éusiness scenario.

4.3.1 Activity Group: sendinvoice

The first activity group in this process definitidmndles preparing and
sending an invoice to a customer. This activityugres invoked as soon as
merchant reserves goods for the customer succlysdfudustomer details are
correct an invoice is sent and it sets an eventhvisan be invoked if the
customer does not respond to the invoice, thatusfomer doesn’t send a
payment within the due date. If customer detaits iacorrect a notification

message is sent to Customer Management System (CMS)

There are two activities in this activity group. eTliirst activity sends an

72

invoice to the customer when its guard evaluate$ tustomer details are

correct. The action part of this first activity peres an invoice specifying the
amount customer has to pay for the goods and tkeddte for the payment.

When this action completes successfully, one triggeup generates an event
to send the invoice to the customer while a sed¢ogder group generates an
overdue event which will be raised only if custordees not send payment by
its due date. The second activity of the sendlrvgioup sends a notification
to Customer Management System when its guard eesluhat customer

details are incorrect.

Group: sendinvoice

Event | goodsReserved

Activity: invoicing

Guard The customer details correct
Action prepare invoice messagevoice

set balanceo be the invoiced amount;

setduedatégor the payment from the customer3tbdays
construct theoverduePaymemhessag

Trigger Group | (True)sendinvoiceto the customer

Trigger Group | (True)setoverduePaymerb be sent back to its own
process if the full payment is not received bydihne date
Activity: invalid customer

Guard The customer details are not correct

Action construct anotifyCMS message

Trigger Group | (True)sendnotifyCMSto Customer Management System

One of the motivations in the design of the GAT mlodas to help designers
avoid some common classes of errors. One parti¢yfsr of error that the
model can prevent is where a business processshétgps making forward
progress prior to termination) because it is wgitior a message that will
never arrive or because the message arrived whensystem was not
expecting it. Another common error is ambiguity,emit is unclear which of
several different pieces of code needs to be egdadunta particular situation.
The GAT model forces the designer to define whictipa is to be executed to
handle every event in every situation, throughdbmpleteness properties and
closure properties.

The completeness property ensures that every pessiuent (internal and
external) must have one or more activity groupscividefine how that event
is to be handled when it occurs. If this complessneonstraint is violated,
then the particular event could never be correadgdled and the application
system would hang or fail if it did occur.

The Guard Closure property ensures, within an iégtgroup, exactly one of
the activities must be invoked in response to tturence of a single event.

73

This guarantees that there will be at most oneoadtiat handles the event.
The Trigger Closure property ensures that exacty/ af the trigger conditions
must fire after the related action has completdus Guarantees that there will
normally be at least one follow-on event producesdaa outcome of an
activity and that the overall business processauaititinue making progress. In
the case where the business process reaches teomirees a result of

completing the action, there will be no associategger group defined as
there are no more events to raise or consume. Newcheck how these
completeness and closure properties are defindgkiactivity group.

There are two activities defined in the activitypgp whose guards are closed:
either customer details are correct or incorreefpd&hding on the status of the
customer details, only one activity will have guahluates true, but never
both so only one activity will execute. This guatdsure of the activity group
ensures that there is always one activity thataledp in the event when goods
have reserved.

The trigger expressions in each trigger group dse alosed. That is, in a

single trigger group, exactly one trigger expressitust be true and only the
events corresponding to that trigger expressiohbeilraised as a result. When
the customer has the correct details, two triggeugs are defined. Each
trigger group will trigger at least one trigger. Wkever, since each trigger
group defines a special trigger condition {true} ialh always triggers an

event; both trigger groups will always trigger areet. An event to send an
invoice is always generated by the first triggeouyr. The second trigger

group also always generates a deferred event owanthich is to be raised if

payment is not received by its due date. Thesgdrgyensure that there are
follow-up events as a result of executing the agtiv

4.3.2 Activity Group: receivePayment

Customer responds to an invoice by sending bacyment as message. This
response contains the amount of payment which tstomer pays for the

invoice. The amount of payment can fall in thresesa the payment amount
equals to the amount owing as specified in theioe/ahe payment amount is
less than the owing, and finally the payment isertban the debt.

This activity group contains three activity groupmresponding to the three
possible scenarios of dealing with different amaoointhe payment. The first
activity executes if the payment equals to the amhowing. The action part
of this activity records the full payment. The t&y sends out an event to
other parts of merchant’'s system such as Accountiatfying that full
payment has been received.

74

The second activity executes if the payment amuletss than what is owed.
The action records the received payment amount, thed calculates the
residual the customer has to pay. For the premiustomers, an invoice for
the residual is constructed. For non-premium custsiran additional late fee
is charged on top of the residual. Depending ontype of the customer, the
relevant invoice is sent by the trigger.

The third activity executes if the payment amownimiore than the debt. The
action first records the full payment amount in tla@abase then calculates the
refund to send back to the customer. Two triggeugs are defined to
generate two separate events. An event to notifiggddccounting system that
full payment has been received is triggered byfitise trigger group. Another
trigger to send refund to the customer is genetaydtie second trigger group.

Group: receivePayment
| Payment

Event
Activity: process
Guard
Action

Trigger Group
Activity: process

Guard
Action

Trigger Group

Activity: process
Guard
Action

Trigger Group
Trigger Group

the full payment
Payment equals to amount owing
Record full payment has been received
Construct aPaidInFullevent.
(true) raise thePaidInFullevent to notify other parts of th
merchant’s system that full payment has been redeiv
the under payment
Payment is less than amount owing
Record payment amount
Calculate residual amount
Check the customer type
If (premium customér
no late fee applies
ConstrucResiduallnvoice
If not (premium custom@r
late fee added to residual
ConstrucResiduallnvoiceWithLateFee
(premium customeérsendResiduallnvoicdo the premium
customer
Not(premium customegendResiduallnvoiceWithLateFe
to non premium customer
over payment
Payment is more than amount owing
Record full payment has been received
Calculate the refund amount
ConstructRefundevent
Construct aPaidInFullevent
(true) sendRefundto the customer
(true) raise thePaidInFullevent to notify other parts of th

[0

75

| | merchant’s system that full payment has been redeiv |

The key features of GAT model mentioned deal wité potential problems

illustrated earlier in the Section 4.1 to help dasrs build robust systems. For
example, if an under-payment occurs, the GAT madiews the business

process to deal with it as an activity like anyestfin our case by sending an
invoice for the residual amountYiform Processing Because this case is
not treated as a deviation, normal payment handieny continue once the
residue has been pai@gsumptioj

The GAT model lets designers ensure that codeviermen if the system is in
an inappropriate state. Consider the calculatioa m#fund in the activity that
processes an overpayment. This code clearly cay bal run when the
customer’s payments are less than or equal tortteaiat owing. In GAT, the
designer places the required pre-condition (amgamd > amount owing) in
the guard for the activity which calculates theuref Protected Actiop The
ability for a guard expression to refer to databsisge, as well as business
process state, is used helcdess to StaeIn this case, the atomicity of
evaluating the guard and performing the activityangethat the condition will
still hold when the code is executed.

The business process designer also needs to etmairall events will be
safely and properly handled in all possible sitwadi In the GAT model, this
goal can be achieved by ensuring that the guastsceded with an event are
complete and cover all possibilities. The Paymeenein this example passes
this test as it has activities whose guards coVepassible relationships
between the amount owing and the amount paayéragé.

Existing legacy code can be easily used GAT allties legacy code to be
used as Actionsliftegratior). The feature of GAT model that separates the
action from raising new events makes possible daoaubetween the control
flows (triggers) and processing steps (actions).

4.3.3 Activity Group: overduePayment

The next activity group ensures that an invoicadsinadvertently forgotten.

If a payment is not received before the paymentdiie has expired, another
invoice with the late fee for the overdue paymeansent to the customers. If
no response is received to this overdue invoica) the overdue invoice with

additional late fee is re-sent. If no responseerseived after three overdue
invoices have timed out, then an alarm notificai®oeent to a manager.

There are two activities in this activity group. eTliirst activity sends an

overdue invoice which contains an extended due aladeadditional late fee if
there has been no response to the original invanckfewer than 3 overdue

7€

invoices have been sent so far. The overdue inveitg loop is implemented
by sending another overdue invoice and having tteity re-raises its own
deferred overdue payment timeout event. The seectidity sends an alarm
to a higher authority such as a manager when @sdgoondition determines
that no response has been received and that thweelue invoices have
already been sent.

Group: overduePayment

Event | overduePayment

Activity: send reminder

Guard Full payment has not been received from the custeme:
fewer than 3 overdue invoices sent

Action Extend theduedateby 7 days

Apply late fee.

increment thesent overduelnvoiceounter;
construct theoverduelnvoicanessage;
construct theoverduePaymergvent
Trigger Group | (true¥endoverduelnvoiceo the customer
Trigger Group | (true¥endoverduePaymemhessage to be sent back to its
own process if the full payment is not receivethisy
extended due date ;

Activity: no full payment received

Guard Full payment has not been received after sendiregth
overdue invoices

Action construct an alarm messagéarmMsgto be sent to
manager

Trigger Group | (trueyendalarmMsgto be sent to manager

Timeouts are a critical part of most business pses. Without a proper
mechanism in place, business processes can wasvefiorfor incoming
messages to arrive which could attribute the bgsinerocesses unable to
terminate. Through the use of Deferred Events infG#odel, the developers
can enforce some limit placed on how long it cait ¥ea an event to happen,
if the event has not happened till a wait timesabdifferent path of execution
may be defined to deal with the situatioRe§ponse to non-occurrence of
evenj.

This activity group illustrates that GAT model ratly deals with the situation
where payment has been received as expected, dmiitatan deal with the
situation where payment is delayed or not recelwedts due date by having
an activity that deals with overdue payment

77

4.3.4 Activity Group: sendReceipt

The next activity group defined is to send a reci@ customer who has paid
in full according to the amount specified in thedite. The activity group
contains just a single activity whose action wealsvwant to execute (full
paying customers always get receipts), and so uerdy condition has to
always evaluate to trum satisfy the closureroperty of guards. The action
constructs a receipt and it is sent by the trigigfined by the single trigger

group.

Group: sendReceipt

Event | PaidInFull

Activity: send receipt

Guard True

Action Construct aReceiptevent;

Trigger Group | (true¥endReceiptto the customer

4.3.5 Activity Group: cancellations

We illustrate three possible ways to handle caatielt requests (deviations)
sent by the customer at different stage of paynpeatess, in this activity

group.

The simplest cancellation handling mechanism islemgnted in the first
activity when a cancellation has been requestedrégfayment has not been
received and goods have not been shipped to thences (as evaluated by the
guard condition). The action simply cancels the npayt process unless
cancellation fees are involved. If cancellation basn requested 7 days after
order confirmation, the business scenario of therchant imposes a
cancellation fee. This is reflected in the action @n additional invoice for
this late fee is sent to the customer.

The cancellation handling mechanism becomes litttee complex if it is
requested after payment has been received (butebgfnds are in transit).
The second activity implements the cancellatiordiag mechanism when its
guard condition evaluates that payment has be@ivest but before goods are
in transit. The merchant calculates the refund arhothat is, if the
cancellation has been requested before 7 days @maler confirmation all
payment is refund; otherwise the merchant deduoesancellation fee from
the refund. There are two trigger groups definedhia activity: one trigger
group sends the refund to the customer while therafigger group sends a
cancellation confirmation message.

We assume the merchant simply rejects the cancella¢quest if its guard
condition evaluates that goods are already in itrans

78

Group: cancellations

Event | cancelRequest

Activity: payment not received

Guard Payment not received and goods not in transit
Action setcancelledo be True;

set cancelFe® beTrueif the cancellation occurs after 7
days of order confirmation;

if (cancelFegconstructs a messa@anceallationinvoice
construct an ever@ancelConfirm

Trigger Group | (cancelFesgndCanceallationinvoicéo the customer
Not(cancelFee) do nothing

Trigger Group | (true¥endcancelConfirnto the customer

Activity: payment received

Guard Payment received and goods not in transit

Action Setcanclledto beTrue

CalculateRefundamount;

Trigger Group | (true¥endRefundto the customer

Trigger Group | (true¥endcancelConfirnto the customer

Activity: goods in Transit

Guard Goods in transit (payment received or not)

Action Construct a cancellation rejection messaggctCancel
Trigger Group | (true) send theejectCanceto send to the customer

One of the innovations of GAT model is to have ami processing between
normal business cases and deviations. Unlike tladitional approach,
deviations are not treated as special cases whiakecthe whole system to
abort and going back to its original state. A meifective and desired way of
handling deviations is to fix the deviations asytteccur using the same
flexibility of normal business scenarios which ddes the current state of the
system and then continue on the normal pdtiiform Processing

One of the key features of GAT is to allow accegdlifferent types of states,
both Abstract State (such as payment recorded én dédwabase) and the
Business Process Stgsaich as progress of payment process and the sbippi
process) which gives better flexibility for the @éapers to discover more
accurate current state of the running systéotéss to StayeThis allows the
developers to design and implement more desiredavbelrs for the
deviations when they occur.

The rejection of cancellation requests has not bwet handled by the
standard deviation approaches. As we discussed hiapt€r 3.6, existing
systems support can throw a fault, perhaps rungeasators, and terminate
the whole process. However, as we see in the adxamples, termination of
a whole process isn’'t always a desired behavioumay not be possible if
additional activities are created such as canoatlatees. In GAT, the

79

merchant payment process can simply reject theetiation and continue the
next business stepRésumption

4.4 Experiment with GAT

So far, we presented a GAT expression for onlypd@gment process part of
the e-procurement. This was enough to show howrfeatof GAT model can

help the designers minimize common mistake and®modesigning service-

based applications. In fact, we have written thelele-procurement scenario
in GAT. In this section, we report on this our enerce, to illustrate the value
of GAT for a designer of business processes.

As described in Chapter 3.1.1, the e-procuremeenat consists the
interactions among three partner systems nameljoimes, merchant, and
shipper. For each partner system, we define afdetisiness processes, each
of which contains a set of Activity Groups and eserfFor example, the
customer system contains four business processdmglavith the different
aspects of business: Quote Process, Purchase @ramgss, Payment Process,
and Delivery Acknowledgement Process. Similarlye timerchant system
contains five business processes: Quote ProcesBimugess, Purchase
Processing Process, Payment Processing ProcessyerpelProcessing
Process, and Cancellation Process. Lastly, thgpehgystem contains a single
business process: Shipping.

Here is a summary of statistics when all businesscgsses in the e-
procurement were written in GAT model.

¢ For the customer system, four business processesdedined having
24 Activity Groups and 24. 29 Activities were defth among all
Activity Groups, each of which contains a guard amdaction and a
set of trigger groups. The total number of triggpreduced by all
Activities was 27. Out of 29 Activities, 24 Actties define what we
consider normal path while 5 Activities define tlwases where
execution deviates from the normal path.

* The merchant system is defined by 29 Activity Gupith 64
enclosed Activities. 63 triggers were produced HyAativities. 29
Activities define the normal path and 35 Activitidsfine deviational
cases.

» The shipper system had 6 Activity Groups. 8 Aciigtand 9 triggers
were defined in all. 6 Activities define a normaitip and 2 Activities
define deviations.

Note the dramatic increase in the number of Acesitdefined for deviations
for the merchant system in proportion to the numifeActivity Groups. In

other partner systems, such as the customer andhipper, the number of
Activities defined is only slightly higher than tmeimber of Activity Groups

8C

reflecting a low number of Activities for deviatiohandling. But in the
merchant system, the number of Activities is abtwite the number of
Activity Groups. This is due to the fact that thenshant system is a lot more
complex and sophisticated than those of the cust@nd the shipper as it
takes an active role of processing requests (frbe ¢ustomer and the
shipper). Thus, the merchant system defines a highber of Activities to
deal with various deviational situations, suchraglid purchase order, when
a customer is not registered, insufficient gootipayment gets delayed, when
goods are out of stock, and so on. In contrastctiomer and the shipper
define only a few deviations as the complexityakatively low compared to
the merchant system. Even the merchant, thougtiarifrom the typical
situation with graph-based models, where deviatandling is
overwhelmingly more voluminous than the normal path

The number of triggers is proportional to the numbé Activities. This
doesn’'t mean that one activity always fires ongger. Among almost 100
Activities between all partner systems, there waveut 15 Activities which
create more than one trigger. However, there wise about 10 Activities
which do not produce any triggers (mainly becauseytwere the last
Activities in a process). This tends to even ow thfference between the
number of Activities and the triggers.

One of the difficulties we faced in writing a GATokel for the e-procurement
case study was to think about the cases whereitadivdeviate from the
normal path. Without an intimate knowledge of tlystem, it was difficult to
devise all possibilities for deviational cases. ldoer, the difficulty seems
reduced once we focused on state. Once we figunédvhich state to pay
attention to, we could easily list all the possibdues for each state. We then
simply wrote Activities for each possible value.

4.5 Evaluation Compared to Other Models

There is a huge literature on notations for deswgibusiness processes,
workflows, or long-running activities. Many of tleesiotations have been
implemented in systems offering workflow-managemanbusiness process
support [29]. The dominant approach in commergiateans presents a graph
controlling the flow of control between steps, arasimplification of this, a
block-structured language with fork and join cousts as well as sequential
flow and conditional branching. This is also thedmoused in standards such
as BPEL [7], and WSCI [87]. A smaller group of ras#h papers and
prototypes however have considered an event-bgsewach similar to the
one in our GAT model.

The initial impetus for event-based control flownea from the flurry of
research in active databases [90] where triggees umed to respond to

81

situations whenever they occur. The first papexdopt this idea for managing
control flow in a long-running activity was Dayal &. [15], where the ECA
(Event-Condition-Action) notation was proposed. Tikea has proved
especially valuable for building prototypes of disited workflow execution

engines such as “6ffein [50], IRules [81], EVE [81] and WIDE [12].
Semantics for the ECA model are proposed by Geppel. [30]. Key

features of our GAT model not found in these ECAtemns include the
grouping of actions with closure property on thenditions (to ensure
coverage), the capacity to raise events which aadur later but only if some
appropriate condition does not happen in the memn{in order to provide
time-outs), the concept of final events, and tleaidf uniform outcome.

One paper does suggest some grouping and covesadéion: Knolmayer et
al. [49] have proposed an ECAA (Event-Conditioni@utAlternateAction)

model, which is in essence an activity group ofc#lyatwo actions with

conditions that are complementary to one anothbe paper mentions the
possibility of larger numbers of actions being gred, but gives no details.

Several other proposals have used ECA rules folindeavith exceptional
conditions, while graph models are used for norcagke processing (these are
often called the “blue sky” paths). These proposatais especially on the
need to adapt and vary the way exceptions are édnds the system evolves.
Casati et al. have defined a language (Chimera-Bxe) implemented a
system FAR [11], Hagen and Alonso built OPERA [3&hd Muller et al
describe AGENT WORK [64]. Because these systemsatooffer uniform
handling, and they terminate the normal case whenekception is raised,
thus they have difficulties in all the situationse wiescribed above where
resumption and access to state are needed to dbeiqeoper response to a
cancellation or other exception.

4.6 Summary

We have proposed a new model and notation for esprg interacting
business processes. It has a number of key feathieh together help the
designer avoid many common sources of errors, dietu inconsistent
outcomes. Unlike most existing business proces<ettiod languages used for
expressing business processes, we do not sep&mataormal case from
exceptional activity, nor do we treat exceptiongér@s as deviations that
require special handling mechanisms such as corapens

Defining a normal behaviour in a process is easy straightforward in the
standard graph-based languages. But the same tdre said for the various
deviations. The main reason is that the standapdoaph uses fault handlers
or compensation handlers to deal with most dewviati®&uch approaches can
handle certain class of deviations, but not allsgme deviations. Moreover,

82

handling deviations leads to the termination of racpss. Describing all
possible execution paths including deviations usipgst fault and
compensation handlers becomes either clumsy oraictipal.

The event-based GAT model presented in this chaptercomes the
limitation of existing business process modellimgduages by making no
distinction between the exception and normal preiogs Guards always
define the correct action to take when an eventuiscdaking into account of
the current system state. The closure propertiegdtvities ensure that no
combinations of events and system state can beeahiiom the definition of
a process. The closure property for trigger expoassensures that the result
of an execution can also not be omitted. The rasuhat the specification is
complete that is every possible event (internal extérnal) must have one or
more activity groups which define how that eventdsbe handled when it
occurs.

We have carried out an extensive case study basednoe-procurement
application. In this chapter, we extract the paymprocess from the e-
procurement application and illustrate how a lotcommon mistakes and
errors from the developers in the service-baseticgtions can be minimized
if GAT model is applied. This work shows that ourodel enables
programmers to write the individual services pgvating in a distributed
application in such a way that they deliver comsisbutcomes despite various
deviations. In the next chapter we explore the ipddgg of implementing our
GAT model using today’s proven technology, to werifs usability and
practicability.

83

Chapter 5

Design Principles in Building a
Business Process System based on
GAT Model

In the previous chapter, we proposed a new wayetzribe a long running
business process. Our GAT approach helps the dasaghieve a reliable and
robust system. In particular, GAT makes it easiertiie designer to describe
sensible processing for all possible deviationmftbe simplest normal path.

This chapter discusses how one can implement gebased applications that
are defined according to the GAT model. We propas@lementation
techniques for key features of GAT. These includplementing control flow
based on the evaluation of guards, the managememndiatribution of events,
and enforcing atomicity across the evaluation arda and the execution of
the corresponding activities. We have built a pygie system following this
approach for a particular example business proc€ss. approach uses
available technologies, such as C# and the furalittes provided by .NET
framework. We also discuss how to build a generT&ngine which can
produce executable business processes from valmsiness scenarios
expressed in GAT model.

5.1 Case study

We illustrate our implementation proposal on thgnpant process present in
Chapter 4. To recap from the previous chapter, réiceivePayment Activity
Group represents that part of the e-procuremerggs®where the merchant
processes payments made by customer. The merchamitess receives
incoming payment messages and checks the amoumg paid against the
amount owed. There are then three possible bussmssarios that can be
triggered in response:
* Full payment has been received: the payment regaes/equal to the
amount owed. The rest of the merchant’s applicaisonotified that
this phase of the procurement cycle has completeckssfully.

84

¢ Under-payment has been received: the payment extessless than
the amount owed. In this case we calculate the atrstill owing and
send an additional invoice to the customer. If tkidor a premium
customer, send a reminder; otherwise send an iavdar the

remaining amount plus penalty.

* Over-payment has been received: the payment retes/éor more
than the amount owed. In this case, there are tntbdr actions to be
taken, each expressed as a separate trigger gomepis to calculate
the over-payment and refund it. The other actiatifiese the rest of the

merchant’s application that the customer has pafdli.

This has been shown as Activity Group “receivePaymasing GAT

programming model ” in the Figure 10 taken from pinevious chapter.

Group: receivePayment

Event | Payment

Activity: process the full payment

Guard Payment equals to amount owing
Action Record full payment has been received

Construct aPaidInFullevent.

Trigger Group (true) raise thePaidlnFullevent to notify other parts of

the merchant’s system that full payment has been

received.
Activity: process the under payment
Guard Payment is less than amount owing
Action Record payment amount

Calculate residual amount
Check the customer type
If (premium customer
no late fee applies
ConstrucReminder
If not (premium customér
late fee added to remaining
ConstructnvoiceWithPanalty
Trigger Group (premium custom@rsendReminderto the premium
customer
Not(premium customegendinvoiceWithPanaltyto
non premium customer
Activity: process over payment

Guard Payment is more than amount owing

Action Record full payment has been received
Calculate the refund amount
ConstructRefundevent

Construct aPaidInFullevent
Trigger Group (true) sendRefundto the customer

Trigger Group (true) raise thePaidInFullevent to notify other parts of

8%

the merchant’s system that full payment has been
received.

Figure 13 Activity Group: receivePayment in GAT

5.2 GAT Design Consideration

We identify a number of key aspects of the GAT nhdliat have an impact on
the design of the GAT prototype system in thisisactand then discuss their
implementation in more detail in the following deat

5.2.1 Control Flow of Business Activities

In conventional graph-based or block-structuredkffow languages, control
flow between stages of the workflow is definedhe syntax or its graphical
representation. Recall that control flow in GATdistermined dynamically as
events are raised and corresponding activitiesraaked. A key issue for a
GAT prototype system is how to manage the contmw:f how to pick the
appropriate action to perform in response to annevéur current
implementation makes use of the .NET Event mechamtich allows code
to subscribe to events and be invoked wheneveetkeents are raised, but
does not support the concept of conditional guands are used in GAT to
choose the one appropriate action from an actgrioyip. In Section 5.4.1, we
describe the way each GAT activity group is repmese in our prototype by a
method which contains code to successively evaldla¢e guards of the
contained actions.

A further complexity for our implementation come®rh our decision to
allow guard expressions to refer to any aspectai€ sGAT guards can refer
to both Business Process State (which has variabféecting what actions
have occurred) and Abstract State (a computer-basgesentation of the
domain, typically stored in databases or in vasgablsed by the code of
particular actions). In contrast, conventional wlnk languages use only
Business Process State (often implicit) when degidiontrol flow, and allow
references to Abstract State only from inside titvidual actions.

The GAT model defines in detail how execution mtete place when
multiple activity groups are dealing with the sament. This is especially
significant because the guard conditions may refetate that can be changed
inside actions. The GAT model defines that wheneaent occurs, all the
activity groups related to this event will be sédel; one of these activity
groups will be chosen and its guards evaluatedeterchine which of its
activities is to be executed. This activity is therecuted, and this may
(through the triggers) raise further events. Anotbiethe originally selected
activity groups is then processed in the same wati| all selected activity
groups have been considered. After this, if addiie@vents have been raised,

86

each is processed in the same way in turn. The @Adfotype system
implements this required behaviour using multiplbscribers to .NET events.

5.2.2 Atomicity/Isolation Issues

In the GAT model, it is essential that the choiéevbich action to perform
from an activity group (by evaluation of guards$je texecution of the chosen
action, and the evaluation of its trigger conditoand the raising of any
further events, must all form a single isolated whiexecution. Without such
isolation, concurrently running business activitesuld alter some critical
shared state referenced by the activity group dmisl ¢ould result in the
process failing or terminating in an inconsisteates For example, the guard
on the action to deliver goods may have been eteduand shown that Alice
has sufficient funds to pay for the goods, allowting action to proceed safely.
Without proper protection on Alice’s account, ifpigssible that a concurrently
running action could use some of Alice’s funds Ieg\Alice no longer able to
make payment for the goods that are being delivdrethis case, the balance
in Alice’s account has been changed between the timvas checked in a
guard and when the funds were needed in the achmhuding both the
evaluation of guards and the execution of the anas#on in a single isolated
unit of execution can prevent such problems.

Our GAT prototype implementation uses the transaathechanisms provided
in .NET 2.0 to provide this required level of ismd@. Each activity group,
including the evaluation of its guards, the exemuif the chosen action, and
the evaluation of its trigger condition and raisfngher events, is constructed
as a single transaction. The isolation providedrbgsactions guarantees that
the state used by a running activity group cannet ditered by any
concurrently executing business processes.

5.2.3 Management and Distribution of Events

As noted above, events play a vital role in drivig GAT programming
model. While the underlying .NET event publish/striise mechanism can be
used to implement the basic control flow mechanigra, GAT event concept
is somewhat more complex and the prototype systeadsito have special
mechanisms for the various types of GAT events. GAddel defines three
different types of events that cover different a&$peof communication in
different circumstances.
¢ Internal Events are used to control flow among gtiGroups within
the same business process. In our engine impletientahese are
mapped directly to .NET Events. Section 5.4.2 dises the various
classes and methods which we define to make thik.wo
* In the GAT model, External Events control the comiation
between interacting peer business processes.édnves-based model,
communication between parties is handled solely elxghanging

87

messages, using technologies such as SOAP or .NfEfofihg. The
GAT prototype needs to convert between messages\ants and we
did this by representing each external GAT evenicdwin our

prototype: both as a message and as an interndl eNént. In Section
5.4.3 we show how our implementation can convertvben these two
forms as external events are received or raised.

+ GAT Deferred Events are used to provide a way iatimg activities
whenever other events and activities do not ocetorke the expiration
of a deadline. For example, when the payment hadeen received
by its due date (so corrective action, such asisgna reminder or
alarming a human operator are needed), we reprdssrds a deferred
event. Our prototype implements deferred eventsoutjin the
combination of .NET events (which are raised anacessed
immediately) and .NET timers.

5.3 Architecture of GAT Prototype System

We have implemented a prototype system for the &vbblthe e-procurement
case study, which was written in GAT model. Thetpiype implementation
follows the design approaches we mentioned abolie.dverall architecture
of the system is pictured in Figure 14 followedthg descriptions of major
components of the system.

Event Handler Incoming
Messge: __
«— =
D
Internal Events Remote o =
Communication =4
GAT processor Handle 5
Event Handler =l
- (2}
2.
‘ Internal Even' @
wn
Outgoing messagt S
Event Handler (External Events) &

Storage

Figure 14 Architecture of GAT Prototype System

88

5.3.1 User Interface

User interface is a front end presentation layecdpture data from human
operators (such as purchase order form, paymemb)far to render a
collection of data received from the processeshHarsiness party uses this
layer to monitor the business activities such aatwhessages have been
received from, or sent to, other services. We ugeddivs Form to capture the
user requirements as well as to display the pregsebusiness activities.

5.3.2 Event Handler

The GAT model is based on an event driven appredwre communication

among various activities are done by sending/réogievents. To realize this
fundamental principle of GAT model, the prototypstem contains an Event
Handler component which controls all aspects oheseit generates events
from various event sources, creates required eargiiments for each event to
carry, and it notifies to various activities abthg events.

For this particular prototype system which impletsethe e-procurement
scenario, there are three possible event sources: ldterface responding to
actions by the human operators, Activity Groups magnaged by GAT
Processor and external messages received by Re@oiemunication
Handler.

* Human operators creating messages, such as a percfuer, via User
Interface, are one event source. For example, whstomer enters the
details of a purchase order using purchase orden #nd clicks the
submit button, an event PO is generated with thaildeof purchase
order as an event argument.

» Activities handled by GAT processors are anotheznéwsource to
create events. For example after receiving full nppagt from the
customer, the Activity to process the full paymexécutes generating
an event “PaidInFull” which is raised to notify ethparts of system
(such as Accounting System) that full payment leenlreceived.

¢ External messages received from interacting pafsiesh as customer
or shipper) are also an event source where evengemerated. Details
of handling external messages are described iBelegdon 5.4.3.

In our prototype, different event sources genedéferent event types. Events
generated by User Interface and GAT processorsnagly Internal Events
and Deferred Events as their likely recipients lm@ated inside the single
business process. On the other hand, External &vem generated from
messages received from externally interacting l@ssiprocesses.

The major role of the Event Handler is three fdtdfirst receives messages
from various event sources. Then it generatesqulatfspecific events. Our

89

current implementation generates .NET Events whiehunderstood by GAT
Processors written in C# language. Once eventgarerated, they are raised
immediately thus these events can be notified emesubscribers as soon as
they are generated. In our implementation, Activdyoups act as event
subscribers to receive .NET Events.

5.3.3 GAT Processor

A GAT Processor is a core part of our GAT prototypglementation. It is
where the business logic is defined. The GAT Premescludes code for
business process in C# with a structure correspgnth a set of activity
groups and activities defined using GAT model. Egample, the payment
process from Chapter 4.1 can be written as a GAtgssor which contains
five Activity Groups “sendinvoice”, “receivePaymént“sendReceipt”,

“overduePayment” and “cancelRequest” each enclosihg respective
Activities.

Activity Groups in the GAT Processor are event subgsrs which consume
events raised by the Event Handler. For example, Altivity Group

“sendlnvoice” subscribes to an event Invoice. Wlan event Invoice is
generated and raised by Event Handler via eventeo@UI User Interface,
the event Invoice is notified to Activity Group ‘fs#nvoice” as its
subscription matches to the event being raised.

Once the subscribed Activity Groups are chosen, @#ocessor picks up an
Activity from each Activity Group and executes eakttivity in turn. More
detailed description of how we define an Activityo@p and how we execute
Activities are given in Section 5.4.

Each Activity picked up within an Activity Group gerates a new set of
events. New events can be of any event types,niateExternal or Deferred.
If new events need to be sent within the same basiparty, the new events
are made as Internal Events or Deferred Eventsew events need to be sent
across interacting business parties, the new evargssent as outgoing
messages. Outgoing messages are .NET Remoting tobjelich are
understood by a remoting server implemented at padyy.

5.3.4 Remote Communication Handler

Each business party implements a single Remote Qomneation Handler to

deal with incoming messages sent from interactingjriess parties. Though
WS-Events [89] provides a standardized way to gereevents in a Web
Services environment, at the time when this pr@@tymplementation was
being carried out, the standard was still at atysaage of development and it
was even hard for us to obtain a reference impléatien. Thus we did not

incorporate this in our design.

9C

Our implementation approach is to use .NET remotingchanism in

conjunction with Event Handler. If there are Extrikvents required to be
sent to external parties, these external eventsareerted to .NET remoting
objects and sent to the external parties as sexdhlobjects. Each party
implements Remote Communication Handler which cwusly listens to

incoming .NET remoting objects. Once an incominde TNremoting object

arrives, Remote Communication Handler de-serializegemoting object and
works with Event Handler to convert it to a cormsging Internal Event.

Then in turn, this Internal Event is notified angbsequently consumed by
designated event subscribers (Activity Groups).

We explain this process more concretely with anrgta from e-procurement
case study. Suppose the customer sends a purattesg¢mthe merchant. The
purchase order is sent as .NET remote object frmttstomer. The purchase
order, now as .NET remote object, is received byn&e Communication
Handler implemented in the merchant system. Thechaet's Remote
Communication Handler now works with Event Handlergenerate ePO
.NET Event. The ePO Event is then received by thdivhy Group
‘processPurchaseOrder’ which records the detailspwichase order and
examines whether the purchase order can be acoeptepkcted.

5.3.5 Data Storage

Each business party stores Abstract State whichtmgpresent many mission
critical aspects of busingssuich as a purchase order, invoice, or paymeiat, int
a persistent storage such as a database. Thisagb$Sitate stored in the
merchant database is then accessed and manipbiattier Activity Groups
that are running in the same trust boundary. Famgte, merchant service
stores the details of invoice (Abstract State)amsas an invoice is sent to the
merchant. When payment arrives from the custonier,merchant retrieves
the invoice from the merchant database to evalgaded conditions to decide
which activity must run. If payment is less thae #imount owning stated in
the invoice, the merchant service runs an actitiitgt deals with under
payment, and so on.

For our prototype implementation, we use Micros®@L 2005 database to
store abstract state. Activity Groups use ADO.NBTatcess and manipulate
the data inside SQL database.

The current prototype implementation does not, h@westore Business
Process State such @®voice sentor payment receivedin the persistent
storage such as database. Rather Business PraatssStored simply in the
memory for each instance of business process arebsed and manipulated
by other Activity Groups in the same manner as pdos$t State. When a

91

cancellation request is received, its processimtifisrent depending on which
variables are true. fayment receiveis false andjoods in transits false, and

confirmation sends true the cancellation is quite simple. Othduga of these

variables may mean the cancellation request hbs tejected.

5.3.6 Running Business Systems

Following the architecture described the above cigtype system has been
built which consists of three interacting businpasgties in our e-procurement
case study (namely, customer, merchant and shipper)

The prototype system has been built on .NET framkw®.0 using C#

language on Windows XP platform with SP2. Thereaisingle GUI user

interface which interacts with human operatorsaathebusiness system. Also
each business system implements one module of Re@ommunication

Handler to deal with incoming messages from intimgcparties. Event

Handler sits along with GUI, Remote CommunicatioanHdler to convert

messages to events. These events are receivedoasdnoed by Activity

Groups controlled by GAT processors. GAT processise generate events
as results of executing Activities.

The snapshot of all three running business systermsr prototype is shown
below in Figure 15.

92

£ CustomerForm

QR Puichase Dider Delivery Payment

customend [oniEn
I RecelveConfimation | Receivelrvoice |

| — T
Fleceived ~
el Paylami] [200
iipe seniustomertck |

POsubmit
ReceiveReceint
Canfirmation Rejected ReceiveRefund

ReceivePaymentReminder

e mare ‘

LCancellation

cancel

] | B bt

cancelRejected

Internet
Explorer

& MerchantForm

 Shipment

puichase oider | Delivery Payment
ReceiveShipment

ReceivePD j e ‘ [

et =

Confimalioent | Shippeiesporse | FiecaivePayment
SendShipmenFissporss
e | ReeclPOser: | Customerdck | ReceiptSent

Shipperhick
FiecsiveConfimation
FiessiveCancelShipment
RessiveDelivaryReminder

Deivery

Delivered -
SendShipperdck

RefundSent

TT— r r r [a
‘d start r@e s [Brbox.. |t Do, + Conss, - [Eeusto., [verch..

Figure 15 Snapshot of the Running Prototype System

5.3.7 Performance

We have run various performance tests to obsenee féasibility and
practicability of business processes implementdidviing our GAT model
approach. In this section we illustrate the perfamoe results we obtained on
DELL Optiplex GX270SMT with a 3 GHz Intel Pentiun¥ Iprocessor and
1GByte RAM.

First we measured the latency of the overall pyp®tsystem to evaluate how
long it takes from when a client sends a purchaderaequest to the server
until the client receives a final response from ¢bever. In this measurement,
we exclude time spent inside physical processesh(as shipping goods) or
waiting for human interaction (such as approving thoice of shipper). For
the purpose, we used a high resolution counteryPasformanceCounter [40]
with the counter frequency of 1/2999272000 secomds¢ch returns system
clock counters approximately every 10 microsecofs on typical Intel
Pentium IV processor. Such high performance cougiters 1000 times better
accuracy than typical counters which only retura fiystem clock counters
every 10 milliseconds (ms). The result of measutirglatency using the high
resolution counter for our prototype system waswerage 23ms.

93

Figure 16 shows how overall latency of 23ms is serdifferent stages of
business activities in our prototype system.

Customer Merchant Shipper

Purchase Order (1.71)

Reserve Goods (5.82)
Confirmation (0.09)

A

Shipping Arrangement (3.16

»

Invoice (2.39)

A

Shipper Response (0.09)

Payment (0.09) <

Ship Goods (1.65)
Receipt (2.61) >

Send Goods Notification (0.09
Delivery Confirmation (2.64)

A

Goods Received Ack (0.31)

Figure 16 Performance at Each Business Activity iMilliseconds (ms)

The measurement of each stage is done in termsomiputing the time
between the following sequences of steps: An eveneceived. Activity
Group evaluates guard conditions and finds an Agtwhich satisfies the
guard. Action within the chosen Activity is theneexted and following
event(s) are triggered. For example, the time nredsim Receipt (2.61ms) is
a result of the Activity Group ‘receivePayment’ thginotified of an event
payment after payment message is received frontustomer. The Activity
Group ‘receivePayment’ evaluates its guard conalitioy fetching the invoice
amount from the SQL database to compare with thempat amount. If
payment amount equals the invoice amount, the Actibthe Activity to
process the full payment is executed which updaepayment amount in the
database and constructs a “PaidInFull” event, wiidubsequently raised.

As expected, any business activities with datalieesesactions take longer
than those simply processing events by Activity @po The business
activities with database transactions such as RseclOrder (1.71), Reserve
goods (5.82), Shipping Arrangement (3.16), Invo(@39), Ship Goods
(1.65), Receipt (2.61), and Delivery ConfirmatioR.64) all take longer

94

processing time than business activities which Birppocess events such as
Confirmation (0.09), Shipper Response (0.09), Payni@.09), Send Goods
Notification (0.09), and Goods Received Ack (0.3A)so as the number of
database transactions increase, the processingptioportionally increases.
For example, the activity Reserve Goods (5.82)aiostthe highest number of
database transactions with 7 selects and updatesoirtrast Shipping
Arrangement (3.16), Invoice (2.39), Receipt (2.613nd Delivery
Confirmation (2.64) contains on average 2-3 upda®eschase Order (1.71)
and Ship Goods (1.65) have one update each hawnipast processing time
among business activities with database transachlote that the business
activities with no database transaction all havatirely smaller number of
processing time ranging from 0.09ms to 0.31ms. Thesrly indicates that
database access and manipulation remains the rfegjtor in the overall
processing time.

Note that there is approximately 2.5ms of overhaedmbn sending remote
messages across different components. An exam@eniding of a purchase
order as remote object. This overhead is not medsur our system as
network latency will greatly vary depending on thetwork topology and
location of interacting components. We consides ttd@se beyond the scope of
the simple performance study of GAT.

We look at the processing time of each componewuofprototype system in
Figure 17.

9t

% Perfarmance /" Microphione #Tods B 2
BD Fle Action Vew Favortes Window Help ==l

S
Total Processing

Time
A i
User Processing Time

Merchant Processing
Time

Customer Processing
Time

Last 23.000 Average 20,1685 Minimum 7.000 Maximum 40,000 Duration 140
Color | Scale | Counter | nstance | Parent | Object]ComEuter |

1.000 Disk Transfers/sec _Total PhysicalDisk. ~ \IMORSEEY...
il

1.000 % Processor Time _Total Processor WMORSEEY..,
L.000 % User Time _Tatal Frocessor WMORSEEY...

(8% Debug. {5 Performance [G Shipp . | G Pk, | C P, & {L"lp f

Figure 17 Snapshot of the Performance Monitor

As can be seen, the full processing time indicgtehb green line includes the
processing time used by the system itself and skeesuof the system. Among
the overall processing time, 85% is user procedssing, indicated by the blue
line. Among the user time, about 25% is consumedhleymerchant process
(the black line) as it contains the most processibgnsive business activities
such as goods (5.82), Shipping Arrangement (3.l&pice (2.39), Receipt
(2.61), and Delivery Confirmation (2.64). Approxitaly 10% processing time
is used by the customer process (the yellow liodpwed by the smallest
processing time 5% used by the shipper process stigblue line) which
contains a relatively small number of businessvidigs and no database
updates.

5.4 Implementation of GAT model

In this section, we discuss details of the impletagon of each of the key
features of GAT that were covered in Section BN2. first explain how each
business process, represented in GAT as a settwityagroups, can be
expressed as a collection of C# classes and thathiads. We then discuss the
event-handling and message-passing infrastructubechw provides the
equivalent of conventional control flow mechanidmsGAT.

96

5.4.1 Defining Activity Group and Execution of
Activities
A business process is defined in the GAT model asteof activity groups,

where each activity group consists of an eventagdt of related activities to
handle that event in different situations.

Each Activity Group is translated into a single @#thod within a class that
corresponds to the business process. Each actwitlyin the group is

represented as one if-then-else block inside tlethod. An activity group is
run as a transaction by using System.Transactioeshanisms. The Guard
condition of the Activity is, naturally, the Booleaondition that is tested by
the ‘if’ clause. The action part of each Activity GAT typically contains the
piece of code that fulfils a business step, sucbhasking customer validity.
For simplicity, our current prototype system imptarts C# code for the
Action, so no conversion is needed to produce tay lof the ‘then’ clause.

Each execution of an activity is followed by funth@’ statements that

represent the triggers which generate new events.

The result of this translation process is showthmm following pseudo code
corresponding to the example from Figure 10. Thare three different
activities in this pseudo code for handling paymeas discussed previously,
allowing the application to respond appropriatety the payment amount
received.

Method receive payment
begin transaction

/I activity group: process the full payment

if payment amount equals to the amount owing
update the payment
generate an event paidinFull

/I activity group: process the under payment
if payment amount is less than the amount owing
update the payment and calculates remaining
if premium customer, generate an event Reminder
if non premium customer, generate an event
RamaininglnvoiceWithPenalty

[activity group: process over payment

if payment amount is more than the amount owing
update the payment and calculates refund
generate an event paidinFull
generate an event Refund

commit/rollback transaction

97

The Activity Group ‘receivePayment’ gets executeldew an event Payment
arrives from the customer. There are three diffefantivities in this example

for handling payments as discussed previouslywatig the application to

respond appropriately to the payment amount redeiVbe GAT specification

selects from amongst these alternatives using Geapgessions, that are
translated into the conditions for each of the Il ‘if’ expressions. Once

an activity is chosen, the prototype runs its Actomde and then falls into the
series of ‘if’ statements that represent this dgt trigger expressions that
will send out any follow-on events. The followingde excerpt shows the
detailed implementation illustrated in the aboveys® code.

/[Activity Group: ReceivePayment
public void ReceivePayment (PaymentEventArgs e)

{
/I Make ActivityGroup transactional so the eval uation
/I of the guard and execution of correspondi ng
/l activity is run as a transaction
using(TransactionScope scope=new Transaction Scope())
[lretreive the invoice to compare the payme nt
// with owing

Invoice inv = fetchinvoice(e.payment.ld);
double owing = invoice.amount ;
/[Activity : processFullPayment

/IGuard: payment amount equals to the amount
/lowing
if (invoice == e.payment.Paid)

/IACTION: record the payment
UpdatePayment (e.payment);

/ITRIGGER GROUP:
/I A single Trigger is defined for an e vent
// PaidINFull to notify Account System that
/I full payment has been received.
argsPaidlnFull =

new paidinFullEventArgs(invoice);
OnEPaidInFull(argsPaidinFull);

}

/I Activity : processUnderPayment
/l GUARD : Payment received is less than ow ing
if (invoice > e.payment.Paid)
{
/IACTION: record the payment
1l
/Il and construct events send
/I to different types of customers.
UpdatePayment (e.payment);

98

int remaining = invoice — e.payment.Pa

/I construct a message reminder to sen
/I premium customers
If (e.payment.customer == “PREMIUM")

Reminder = constructReminder(remai

}

/l construct a remaing invoice with penalty
/l send to non_premium customers
Else If (e.payment.customer == “NON_PRE
{

RemaininglnvoiceWithPenalty =
constructRemaininglnvoiceWithPenalty
(remaining)

}

/ITRIGGER GROUPS:
/I A single trigger group contains two
// triggers, only one of them is trigger
/I If customer is a premium customer a
/I reminder is sent. If customer is a
// non_premium customer an invoice with
/l remaining owing + penalty is sent
If (e.payment.customer == “PREMIUM”")

Cust.receiveReminder(Reminder);
}
Else If (e.payment.customer == “NON_PRE
{

Cust.receiveRIWP(
RemaininglnvoiceWithPenalty);

}

/I Activity : processOverPayment
/IGUARD : payment is more than amount owing
if (invoice < e.payment.Paid)
{
/IACTION: record the payment and construc
// Refund
UpdatePayment (e.payment);
Int refundamt = invoice — e.payment.Paid

Il Construct Refund to send to the custome
refund = constructRefund(refundamt);

/ITRIGGER GROUPS:
/I Two Trigger Groups are defined. Each Tr
/IGroup triggers a single event. One trigg
/I is trigger to send a refund to the cust
/I Another trigger notifies Accounting Sys
Il that full payment has been received.
Cust.receiveRefund(Refund);

9¢

dto

ning);

MIUM?)

MIUM”)

igger
eris
omer.
tem

argsPaidIinFull =
new PaidInFullEventArgs(invoice);
OnEPaidInFull(argsPaidinFull);

}

scope.Complete();

}
5.4.2 Supporting the GAT Event Concept

There are three types of events in the GAT modwé&rhal Events, External
Events, and Deferred Events. We describe signifid#ferences in the way
they are handled.

5.4.2.1 Internal Events

Internal events are used to communicate betwedwites within a single

business process. New Events are published by drigiroups after the
execution of Action code. These Events will be eoned by any Activity

Groups whose subscriptions match its event typé&h Be GAT event concept
and its .NET implementation follow the publish/stitiise model.

There are four classes involved in the implememtatiof event
communication. The class that raises the everdlisctctheevent senderThe
class that consumes the event and responds tadlesd theevent receiver
The event sender does not know which object wilenee the events it raises.
An intermediary class called @elegateconnects the event sender and the
event receiver, and an additional class is usednas/ent argumento pass
data between the event sender and the event recdiveour GAT
implementation, the Triggers and Remote Commurdnatiandler which
raise events are mapped into event senders in .INEile Activity Groups are
mapped into event receivers.

The next code excerpt illustrates payment procdsshacreates a new event
“PaidinFull” after payment sent by the customereisough to cover the
amount owing. The payment process is written asvi@hg way in order to
create .NET events.

» Defines arevent argument.

» Defines an evendelegatewhich can connect from agvent sendeto
event receiver.

» Define a method which maps the event andethent argument.

¢ Defines a method named Bwvent_Nameavhich maps the event (with
argument) and the event delegate.

/I Defining an event argument class for the event
/I PaidInFull

10C

public class PaidInFullEventArgs : EventArgs

private Invoice inv;

public PaidinFullEventArgs(Invoice inv)
{this.inv = inv;}
public Invoice paidinFull {get {return inv;}}

/I Defining event delegate for the event ePaidinFul
public delegate void PaidIinFullEventHandler(
PaidInFullEventArgs e);

public class PaymentProcess

{

/I Use the event delegate class created for
/I ePaidInFull
public event PaidIinFullEventHandler ePaidInFull ;

/I Use the event argument class created for
{/l ePaidInFull
public PaidinFullEventArgs argsPaidinFull;

/I The method receivePayment raises theh event

[l paidinFull
public void ReceivePayment (PaymentEventArgs e)
{
if (invoice == e.payment.Paid)
{
é{fgsPaidlnFuII =
new PaidInFullEventArgs(invoice);
OnEPaidInFull(argsPaidInFull);
}
}
/I definition of pre-defined ON Event _name method to

[l raise ePaidInFull
protected virtual void OnEPaidInFull(
PaidinFullEventArgs e)

/I The event delegate is combined with the event
if (ePaidInFull != null) ePaidlnFull(e);

When the event PaidInFull is raised, it is receilsgdhe method SendReceipt
so that the method SendReceipt can generates #tréoesend to the
customer.

/I The event delegate invokes Activity Group
/I *“SendReceipt” when event ePaidInFull is received

101

ePaidinFull += new PaidlnFullEventHandler(SendReceli pt);
public void SendReceipt(PaidInFullEventArgs e)

/[Activity: Send a receipt: Note no guard condi tion
/las merchant always send a receipt whenever a full
/lpayment is received

Receipt receipt = new Receipt ();
receipt.ld = e.paidinFull.Id ;
receipt.Amount = e.paidinFull.Paid ;

/ISend the receipt to the customer as extenal eve nt
cs.ReceiveReceipt(receipt);

}

5.4.2.2 External Events

In GAT, External Events are used to communicatevéen activities in

different business processes. The GAT prototypeessmts these External
Events using .NET Remote objects. These messagetstare converted to
local Internal Events when they arrive at the ndog system. This

mechanism is discussed in detail in Section 5.418vl

5.4.2.3 Deferred Events

Deferred Events are used when a process needgdertcorrective actions if
anticipated events have not happened by some deathi our GAT example,
a deferred event OverduePayment is raised as soan mvoice is sent. This
event may be received later on by the Activity Groliat handles the overdue
payment process - but only if the anticipated paymeas not received within
the due period. In contrast .NET events are condumenediately. Thus we
cannot simple represent each deferred GAT eveatl&T event.

The next code sample shows how the Sendinvoicevijcsets a timer that

waits until payment due period has expired and tlages the Elapsed event.
The timer is turned off if the payment is receivedhin the payment due

period. The Elapsed event is received by the Agti@iroup Overdue that then
sends a reminder to the customer and notifiesdouwatting officer.

/I Define a timer that checks the payment due
Timer paymentdue = new Timer ();

/I As soon as an invoice sent, sets a timer for the
/I duraton of the payment due
public void Sendinvoice(GoodsReservedEventArgs e)

{

“r'Jaymentdue.EIapsed +=
new ElapsedEventHandler(Overdue);
paymentdue.Interval = returnPaymentDueDuration();

10z

paymentdue.enable = true;

/l the timer is turned off if payment is received
public void ReceivePayment(PaymentEventArgs e)

{
paymentdue.enable = false;
}
[/l if payment is not received till the payment due, the
/I timer elapses generating an event overduePayment which
/I subsequently received by Overdue method which ca n
/I handle the overdue such as sending reminder of t he

/[payment and notifying the acoounting office
public void Overdue (OverduePaymentEventArgs e)

/[Activity: send a reminder

))Activity: send an alarm to an accounting
/I officer that the payment is overdued

=

5.4.3 Inter-process Communication

The GAT prototype contains three components (custprmerchant and
shipper) of the e-procurement case study. Thesemuoncate with one
another by transferring objects using .NET Remotifbis use of .NET
Remoting means that business processes can bmietansparent; they may
be on the same computer, on different computerthersame network, or on
computers across separate networks. In this seegoshow how this works.

As mentioned above, external events in the GAT rhade implemented as
object parameters passed using .NET Remoting. Huerlying Remoting

mechanism also supports different transport andnwanncation protocols.

Currently, our GAT prototype allows code to be proeld which uses either of
two transport protocols, TCP and HTTP.

The following code excerpt illustrates a custonearding a purchase order as
a remote object to the merchant service.

/I Defines a proxy for MerchantService
MerchantService ms =
Activator.GetObject(
typeof(MerchantService),

"http://remotehostname:7001/MerchantService.rem");

/I customer sending a purchase order
public void SendPurchaseOrder(POEventArgs e)
{

10z

/I Construct a PurchaseOrder from the event ePO
PurchaseOrder po = new PurchaseOrder();

po.id = e.ePO.id;

po.items = e.ePO.items;

po.totalPrice = e.ePO.totalPrice;

po.deliveryDate = e.ePO.deliveryDate ;

/I Sends the purchase order as a remote object to the
/l merchant remote service
ms.ReceivePO (po);

}

The prototype implements a remote service clas®¬e Communication

Handler for each business component. A service odeth each of these
classes receives incoming messages as a parameteaises ordinary local

.NET Events according to what type of messagesre@sved. Local activity

groups will then consume these events, possiblylisgnout messages in
response as parameters to calls on other remogetsbjThe following code

excerpt illustrates the receiving of a purchaseeoab a remote object. The
method ReceivePO, uses the purchase order objest agent argument and
raises an event ePO.

/I The merchant remote service that receives all

/[arriving messages as remoting objects from peer

/I business processes and turn them into internal e vents
MerchantService: MarshalByRefObject

{

/I Receives a purchase order
public void ReceivePO(PurchaseOrder po){

/I Constructs an event argument using purchas e
/I order object
POEventArgs argsPO = new POEventArgs(po);

/I Raise an event ePO
OnEPO(argsPO);

}
5.5 Design of a General GAT Engine

The GAT prototype system we explained so far ontyks in a situation
where developers write code for a particular appibn in a stylized way.
They implement business processes starting from @édcriptions of these
procedures. This type of prototype system is endagthow the feasibility of
the GAT model approach for building reliable antust systems. However,
this requires developers to learn a particularesoflcoding. To overcome the
limitation, we explored the possibility of develagi a general GAT engine

104

which can produce executable business processesaing business scenarios
written in GAT model.

In this section, we describe our initial work orvé®ping the general GAT
engine which converts from GAT specifications, vhiare any business
scenarios written in the GAT model, to C # applmag running on the .NET
platform. Business analysts will represent thenidezl business requirements
in the GAT specifications. The GAT engine readss¢h&AT specifications,
and translates into code written as C# classeshamigke use of the support
provided by Microsoft's .NET environment. The ergithen automatically
compiles and executes these C# programs on the .plEfform. This
separation of specification from implementationsimilar to the approach
taken by MDA (Model driven Architecture) [61]. Figu 18 illustrates the
overall operation of the engine.

GAT specification GAT engine Business processes

Figure 18 GAT Engine Concepts

We look in more detail at the internal structuretlod engine as it carries out
the conversion from GAT syntax to executable be®riThe GAT engine has
two major stages: translation and generation.

* The translating stage reads specifications writte@AT syntax and
translates them to corresponding C# code. As eaelof GAT syntax
is read, the engine creates an ‘analyser’ tableesemting the C#
components corresponding to the GAT specificatlbalso creates a
‘mapper’ table that contains enough informatiordédine the specific
.NET mechanisms needed for each C# components.

* The generation stage is based on the mapper tablases CodeDOM
[59] to create C# classes with matching methodsvamibles. These
C# files are compiled into executable DLL filesthg engine.

Figure 19 shows the major steps the engine goesgdhrto produce tables of
structures, classes, and files.

10¢

> Analyser

GAT specification —»CodeDOM—— C#—»DLL

T Mapper
- / - 4
hd e
Translation Stage Generation Stage

Figure 19 GAT Engine Major Stages

5.5.1 GAT Specifications

The GAT model describes each participating appboatvithin a distributed
business activity as a set of Activity Groups. TBAT presentation form
shown in Figure 10 is unsuitable for machine tratish and instead we use
the more concrete GAT syntax shown in Figure 20ds Blgntax was devised
just for the purpose of showing that it is possibte construct business
processes using the GAT model and that these meseuld be translated
into executable code.

ACTIVTYGROUP: ReceivePayment
EVENT: Payment

ACTIVITY: processFullPayment
GUARD: Invoice.amt = payment.amt
ACTION: FullPaymentAction(payment)
TRIGGER GROUP: (true)[INT] PaidInFull

ACTIVITY: processUnderpayment

GUARD: Invoice.amt > payment.amt

ACTION: UnderpaymentAction(payment)
TRIGGER GROUP: (true) [EXT]Residuelnvoice

ACTIVITY: processOverpayment
GUARD: Invoice.amt < payment.amt
ACTION: OverpaymentAction(payment)
TRIGGER GROUP: (true) [EXT]Refund
TRIGGER GROUP: (true)[INT]PaidInFull

ACTIVITY: processOverdue

GUARD: Not(payment)

ACTION: OverdueAction()

TRIGGER GROUP: (true)[EXT]PaymentReminder

Figure 20 Example of GAT Syntax

The notation such as [INT] and [EXT] is used tatidiguish between internal
and external events. Further work is still to be@®n improving the GAT
syntax and building better tools for defining GAd@ded applications. One

10¢

could envision sophisticated support for syntax ckimg, automatic
generation of GAT syntax from diagrams and othehstdevelopment tools;
however our current initial work on a GAT enginenply asks the system
developer to produce text such as that shown above.

5.5.2 Analyser

Analyser reads a GAT specification file, parses G#yntax, and stores
information in table structures. For example, AityiGroups, complete with
their Events and Activities, are parsed and stametthe activity group table.
Information about activities are held in the adyiviable, each entry referring
to a guard table entry with its conditional expi@ssa method name for the
code that implements the action (normally pre-entiegacy code) and a
reference to a trigger table entry.

5.5.3 Mapper

The role of the Mapper is to map GAT structures itite corresponding C#
syntax. For example, an Activity Group is converietb a method call

containing ‘if-then-else’ blocks representing eakttivity statement within

the group. GAT events are translated directly ilN&T Events and code is
generated to subscribe Activity Groups to thesenisveéAny outgoing events
are made as .NET remoting objects.

5.5.4 CodeDOM

The core of the GAT engine generates the source oegded to run the
business process corresponding to the given GATifsgmion. The GAT

engine uses the CodeDOM [59] source code genertawhich is designed
to work with .NET framework. This tool generatesusi® code from a
language-neutral defined set of statements and GBAE engine builds

CodeDOM structures from information held in the Map table, including
class names, member variables and member methods.

5.5.5 Generating C#

The end result of the CodeDOM builder is a fullypptated CodeDOM tree.
Developers can then generate source code in any IhiEguages such as
VBScript, J#, or C# from these CodeDOM trees.

5.5.6 Compiling

The GAT engine provides its own code-compilingitieit that can access a
C# complier. The C# compiler is then used to gereeaecutables after the
successful compilation of generated C# code. Thel @Agine then runs

generated executables to produce the running BsBystems. Alternatively,
these generated executables can be taken anywisreuhs .NET platform

and can be executed manually.

5.6 Evaluation Compared to Other

Implementation Alternatives

In this section we review implementation alternagithat can provide similar
functionalities to the .NET based solutions as tum our GAT prototype
system.

As previously mentioned, defining Activity GroupadaActivities are done
through the use of C# methods within a class armdifethhen-else block inside
this method. Guard and Trigger conditions are esg@d as Boolean condition
that are tested by ‘if’ clause. Action code is eegsed as a set of C# function
that executes when Guard ‘if’ clause evaluates. tAlieother procedural and
OO languages (java, python, C++ etc) provide siméatures and so could be
used for code generation.

Events in GAT model follow the feature of publigiiiscribe service. A
publish/subscribe service is a logically centralizeinfrastructure
that intermediates the communication between pudis and subscribers of
information. The information is represented as ¢jesets of data provided at
a particular point in time. GAT is based on a distted publish/subscribe
model where information sources (publishers) gdreaad publish events,
while information consumers (subscribers) manifedrest in sets of events.
Hence, the notification service collects and roaesnts from their producers
to the appropriate subscribers, delivering themasications. Many modern
systems such as CORBA Event/Notification servic8],[@ava Messaging
Service (JMS) [48], Elvin [23], Siena [10], and it [9] all provide a type of
Publish/Subscribe service though each system digshes itself by providing
different subscription mechanisms. The big advantafy.NET events over
other similar pub/sub model is that the publishared subscribers are
decoupled by the use otlelegates The subscriber can change its
implementation of how it detects events without ddeg any other
subscribing classes. The subscribing classes camgehhow they respond to
events without breaking the publisher. The impletagons of two classes can
be rewritten independently of one another, whiclkenfr code that is easier
to maintain.

We used .NET remoting for inter-process communicatiJava RMI or
CORBA 1IOP channel also allow programs and softwacenponents to
interact across application domains, processesyrauhine boundaries. This
enables applications to take advantage of remaeurees in a networked
environment. All these three cross-platform comroation technologies
allow using binary communication over TCP channdliclh allows a high
performance. The biggest disadvantage of .NET remaand Java RMI is
that they are proprietary technologies that rely specific programming
language and platform such as .NET framework orEJpEtform. Though

10¢

CORBA IIOP is devised by a standard body such asSISA its
implementation is considered difficult due to #@sk of supporting tools.

Other communication approaches are possible. Thie $¥evices technology
enables cross-platform integration by using HTTRMLXand SOAP for
communication thereby enabling true business-toAless application
integrations across firewalls. Because Web servielyson industry standards
to expose application functionality on the Interrieéy are more suited for the
users looking for vendor and platform agnostic soiu However, verbose
implementation of XML makes Web services relativeljower as a
communication protocol [66]. WS-Events [89] defireset of XML syntax
and rules for advertising, producing and consuntingnts for Web Services
applications. An Event is an abstract concept ithaghysically represented by
a Notification. Notifications flow from Event proder to Event consumer
using asynchronous or synchronous delivery modes. might be a good fit
for implementing External Events for our GAT moddbwever, at the time of
this prototyping, WS-Events was only a proposalnfraVWWw with no
implementation support.

Another group of potential implementation mechamsisare the workflow
processing systems. BizTalk [58] server providesodution as a general
framework to create business processes that uaparate systems into a
coherent much the same goal as envisaged by our &Wihe. The BizTalk
server provides two main parts: (1) a messagingpoom@nt that provides the
ability to communicate with a range of other softevly the use of various
adapters. (2) Support for creating and running lycghly-defined processes
called orchestrations Messages are received and converted as XML format
used by BizTalk engine. These converted XML message then delivered
into a database called the MessageBox, which idemmgnted using SQL
Server. The logic that drives a business proceissgiemented as one or more
orchestrations using a graphical tool provided bg brchestrations. Each
orchestration creates subscriptions to indicatekthds of messages it wants
to receive. When an appropriate message arriveabanMessageBox, that
message is dispatched to its target orchestrasomyuhe pub/sub model of
MSMQ message queuing technology incorporated wigT &k engine, then
takes whatever action business process requiresrédult of this processing
is typically another message, produced by the stchiion and saved in the
MessageBox. This message may convert it to the dbmaquired by its
destination then sent out to the destination. Mbnginess cases defined in
GAT model can be directly implemented using BizTaskit supports a wide
set of technologies that can deliver messagespgmppate event subscribers.
However, deferred events are not supported by BkzTahe biggest
disadvantage of BizTalk server engine is the usercdfiestration as a tool to
define business processes. Through our evaluaf8h fve found that the

BizTalk orchestration tool suffers from a signifitalack of simplicity in
expressing various deviations that are commonch system.

In this section, we reviewed several technologied tan be used to build an
executing system for a business processes desdribta@ GAT model. We
note that one can use any procedural or OO languttgeescribe Activity
Groups and Activities as a set of methods andefblse blocks to capture
business requirements. Transaction support ismedjad form an isolated unit
from an activity group (by evaluation of guards)e xecution of the chosen
action, and the evaluation of its trigger conditoand the raising of any
further events to prevent the interference fromcoorently running business
activities. We also demonstrated that we need antesystem that can accept
Activity Groups as event subscribers and Triggeoups and arriving
messages as event consumers. The mediation betiveesvent consumers
and the event subscribers is also required to areneents generated by the
event publishers to the event subscribers. Car¢ bautaken since there may
exist multiple event subscribers which subscrib¢ht same event. If this is
the case, all the subscribers must be notified wherevent is raised. Inter-
process communication technology is another esdeméquirement for
building a system that follows the GAT model.

5.7 Summary

We have presented a list of design consideratiérs $ystem that executes
long-running business processes defined accordititget GAT model.

We demonstrated that it is possible use today'seardechnology to build a
system following the GAT model. The prototype systee described in this
chapter contains executable business processé#seferprocurement scenario
we discussed in Chapter 3. We have shown in déiail; each GAT construct
can be implemented using C# methods and classesctwtrol flow among
business activities can be implemented using tse bNET event mechanism
where Activity Groups are made event consumers hvhie notified when
events are raised which generate further events,hamv GAT events are
expressed as .NET events and also as .NET remoject®bwhen
communication carries them to other business psases

We also presented our initial work on developirgeaeral GAT engine which
can read from GAT specifications (that is any besgscenarios written in
GAT syntax) and generate executable business meseashich can run on
.NET platform environments.

Though our GAT model provides a framework where tlevelopers can

represent a reliable and robust design, the GAT eanhagquires the
programmers to provide code to handle all possdid@ons under every

11C

possible state. This includes many conditions &by the interference of
concurrent activities. In the next chapter we dsscour work on providing
isolation mechanisms to reduce this part of theebgper’s task.

111

Chapter 6

Promises — New Unified Isolation
Mechanisms for Service-based
Systems

In our GAT approach, normal activities and excemdio(deviational) events
are processed equally without any limitations ow ho handle different types
of exceptional events. This increases the chantgqwaalucing robust and
reliable service-based distributed applicationsabgwing the developers to
define often complex and sophisticated behavioeguired to deal with
various deviations that could occur during the exea of applications.

Using our GAT model, different activities which deéth different situations
of business (both normal activities and exceptiawnts) can be defined so
each will not meet problems, relying on its guaoddition. Once the activity
which can deal with the current state of systemxiscuted, further events are
triggered to notify the follow-up business acte#i This model allows the
system to execute business activities that areogpipte for the current state
of system, so it deals with problems (such as diewvia) as they occur without
having to abort or roll back to the original orlesrstate.

However, the GAT model requires the programmerravige code to handle
each possible event under every possible statet Bhamany different
activities must be written each with its own guaahdition and these guards
must cover all possibilities (the closure propertlfpr example, after the
merchant checks that sufficient stock is availabte the warehouse, it
organises transportation to ship the goods to tistomer. At the time a truck
from the transportation company arrives at the tvaumee, there must be code
for every possible stock level, such as (1) if ¢hisr sufficient stock when the
truck arrives (and so the truck can load the gqods)(2) if there is not
sufficient stock due to perhaps stock taken foreotbrder requests (in this
case the merchant service might have to triggeackdrder to its suppliers
and return the truck back to its suppliers).

What would be better for the developers in thisiagibn is that after the
merchant checked stock levels when the order weepéed, it could then rely

11z

on having sufficient stock available throughout tkest of the order process,
regardless of any concurrent orders or other desvi The challenge we deal
with in this chapter is providing a useful degrdeismlation in a services-
based world where autonomy and lack of trust melait traditional lock-
based isolation mechanisms could not be used. ©@aohnique, called
‘Promises’, provides a uniform mechanism that ¢Becan use to ensure that
they can rely on the values of information resosin@maining unchanged in
the course of long-running operations. The Promé&gsoach covers a wide
range of implementation techniques on the seniie, sll allowing the client
to first check a condition and then rely on thahditon still holding when
performing subsequent actions.

6.1 Promises

A Promise is an agreement between a client appicda ‘promise client’)
and a service (a ‘promise maker’). By accepting@se request, a service
guarantees that some set of conditions (‘prediatel be maintained over a
set of resources for a specified period of time.

In the conceptual model discussed in this chaemnises are granted and
guaranteed by a Promise Manager rather than dirbgtservices. A promise

manager sits between clients and application ses\and implements Promise
functionality on behalf of a number of services ardource managers. The
job of a promise manager is to work with applicat&ervices and resource
managers to grant or deny promise requests, cheoksource availability and

ensure that promises are not violated.

Client applications can determine what resourcey tieed to have available
in order to always complete successfully, expréesd as a precise set of
predicates and send them to the relevant promiseagest as a promise

request. The promise manager will examine bothctmplete set of existing

promises and the availability of the requested ueses, and either grant or
reject the promise request. Once a promise reqgsegtanted, the client

application is isolated from the effects of coneutractivities with respect to

the resources protected by its promises. For exantpe merchant order-

handling process we mentioned above can now ask#mager of the stock

resource for an initial promise that the goods megito meet an order will not

be sold to anyone else for the duration of the rondexdling process. Once this
promise has been obtained, the order-handling psocan proceed with the
knowledge that the required stock will be availaleen needed, even though
concurrent order processes may be also sellingah® type of goods to other
customers.

Traditional lock-based isolation can be seen asrg strong and monolithic
form of promise, one where the resource managgrasanteeing that no other

11z

concurrent process can alter, or possibly even exarthe state of a protected
resource for the duration of an operation. The @sep promise-based
isolation mechanism is weaker but can be just eectfe because it can be
more precise. The predicates contained within anme specify a client

application’s exact resource requirements, allowotiger promises covering
the same resources to be granted concurrentlyngsas they do not conflict

with any already granted promises.

Promises do not last forever. The client and prenmenager agree on the
period of time for which a promise will be valid @srt of the promise

request/granting process, and promises will expiréghe end of this time.

Promise managers return ‘promise-expired’ errorgltents that attempt to

perform operations under the protection of exppamzmises.

Promise-aware applications can be written with Kmowledge that the

resources they need for successful completion alillays be available, and
any unavailability exceptions can be treated agwsggrerrors rather than as
part of the normal processing flow. Applicationsiaways perform actions
that are not protected by promises, but resouraegds that violate promises
will be detected by the promise manager and undoreder to honour the

guarantees it has made.

Promises are an abstract way for a client to speled resources they need to
ensure that they can complete successfully. A gchptomise guarantees that
the requested resources will be available when ewdxy later actions, but
does not necessarily guarantee that any partimgéance of the resource will
be used to meet this promise. For example, a alieyt request a promise that
a 8" floor room will be available on the requested ddtee response to this
promise will be that a room matching the requiretsenill be available, not
that the client has been assigned room 512. Theages and services used in
the application have to reflect this level of ahstion, in this case by later
making a booking for a"Sfloor room, rather than trying to confirm a boadin
for room 512.

Promises are both a pattern and a protocol thapastsp this pattern. The
pattern is simply that client applications deterenihe constraints they need to
have hold over a set of resources and express #sepeedicates that are sent
within promise requests to a promise manager. Tioenige manager will
consult with resource managers to determine wheth@romise can be
granted, and reply with either a granted or regbectsponse. Once a promise
has been granted, the client application can coatand call services that will
make changes to the resources protected by itsigesmvith the guarantee
that they will be successful if they are within tbenstraints implied by its
promises. Client applications then release theamises by sending promise
release messages to their promise managers. Prosiesese requests can be

114

combined with application request messages. Indase the promise release
and the application request form an atomic unitd, #r@ promise will only be
released if the associated action succeeded.

The Promises model places no limitations on thereadr form of predicates

nor on the way that promise managers should impierteese predicates to
guarantee that they hold despite concurrent updatedbe same resources.
This flexibility means that promise managers argboece managers are free
to implement what ever form of constraint checkimgsolation mechanism is

best for the type of resource being protected.

Some forms of promises could be implemented udiegcommon business
practice sometimes called ‘soft locks'. This appioauses a field in the
database record to show whether an item has bésmated or reserved for a
client. The record is not locked against access dhe allocation has been
made; instead applications read this field wherkilogp for available resources
and ignore any record that has been already adldcddifferent forms of
promises, such as guaranteeing that there wilhioeigh money in an account
to pay for a future purchase, could best be implgattusing techniques such
as escrow locking [73].

The Promise pattern accommodates both of these whymplementing
isolation, but it is more general, separating thedeht and its supporting
protocol from any specific implementation or resmuschema considerations.
The flexibility that results lets us also supporren general predicates where
the actual allocation of a particular resource thient is delayed to long after
the promise is made, and also to support promiges mools of different but
acceptable resources that export the same set afepies. Section 6.4
discusses a range of implementation alternatives.

The motivation behind the development of the Premapproach to isolation
was to provide application programmers with sonmgthsimilar to the
simplicity that comes from the traditional ACID misaction model. By
implementing weaker but effective constraints ogbared resources, we
wanted to let programmers establish those reschased pre-conditions
needed to ensure their application can completeesstully, letting them then
write their application code with the guaranted gwncurrent activities could
not violate these promises. Promise violationils mbssible for other reasons
(an accident might damage previously-promised stuck third party may
default on a promise they have made) but thesdents can now be treated as
serious exceptions. This is very far from the sibrawithout isolation where
the effects of concurrency are common enough tiet heed to be included
throughout the normal processing paths.

11t

The promises obtained by clients conceptually plaoastraints on the
behaviour of the services that they invoke. Cliggspromises about resource
availability and the services they then call shoaldy make changes to
protected resources that comply with these promBesexample, if a client
obtains a promise that 5 pink widgets will be aafal to fulfil an order, then
the services it calls can complete the order poéasthese promised goods,
or the client can release the promise. The cliratisl not use the promise for
pink widgets to ask the order service to delivemesoun-promised blue
widgets. This restriction on the behaviour of seeei could be largely
theoretical, being more like a design pattern thaype-safety mechanism, or
the restrictions could be enforced to some degse@rbmise and resource
managers.

Our proposed Promise protocol fits very naturailyithe SOAP protocol and
the Web Services model. All of our promise protocoéssages can be
transferred as elements in SOAP message headerthamdsociated actions
can be carried within the body of the same SOAPsamgss. The fit between
the Promise protocol and SOAP is discussed mokgifuSection 6.5.

Section 6.7 compares our ideas to previous workhia area. Our key

innovations lie in the analysis of the variety ebources and conditions, in
considering how to atomically combine several eflaaspects of managing a
single promise, and in integrating these ideas itte services-oriented

message exchange framework.

6.2 Resources and Predicates

This section discusses several different waysrésdurces can be viewed by
client applications, and how these differences rafected in the types of

predicates that can be used in promises over #ugaahility of these resources.

Applications can use these different types of res@availability predicates to

obtain just the degree of isolation they need togirt purposes, without

needing to resort to using traditional locking teiciues.

Predicates are simply Boolean expressions oveuress. Our model imposes
no restrictions on the form these expressions aka, tand in practice their
form will depend on the application involved, n&wf the resources and the
way we want to view these resources at the time.

The simplest form of predicate expression is arliegpn-dependent request
for resources, such as asking for ‘room 212, Sydtitgn, 12/3/2007’. In this
case there is a close coupling between the apiplicathe promise manager
and the resource schema, and the promise managesspensible from
translating from this application-dependent preidida any necessary queries
and updates on the room availability data heldHgyresource manager. The

11¢

relationship between predicates, applications asdurces can be much more
abstract than shown in this simple example, andptexnapplications could
define their own resource predicate language anglemment their own
promise managers to guarantee resource availability

In their most general and complex form, predicat@s be general Boolean
expressions over defined resource availability dhet is specified using
standard schemas. In this case, the client would ré@ponsible for
understanding resource schemas and how resouridabaitg is represented,
and for constructing suitable predicates in theeedrstandard syntax. The
promise manager in this case can be completelyrgeperpose, knowing
nothing about the applications, schemas or resoavedability. All that the
promise manager has to be able to do is maintésnaferedicate expressions
represented in this standard syntax, check thensdosistency, and evaluate
them with the assistance of the appropriate regoaranager. For example,
we could send and maintain resource availabilitgdmates written in a
standard language such as XPath using XML or S@4, leve these query
expressions evaluated by a compatible resource geanahenever the
promise manager needs to check for resource aildylabr predicate
violation.

Predicates are expressions over resources bubiimeaind structure they take
in any particular application can depend on the wayregard the resources
involved. Different applications may want to tréfa¢ same physical resource,
such as a particular airline seat or an indivichak widget, in different ways,
and so will want to use different types of predésato achieve the required
level of isolation from any other applications timaight be using the same or
related resources at the same time.

In this section we discuss three different ways refjlarding resources:

Anonymous View, Named View, and View via Properti€eese abstractions

were derived from a study of different isolationahanisms commonly used
in existing business practices. These different svay viewing resources

influence the sort of predicates that clients wdked to use in order to achieve
the level of isolation they require to always opereorrectly.

6.2.1 Anonymous View

From the point of view of client applications, somsources can naturally be
regarded as pools of indistinguishable and ideht&source instances, any of
which could meet a client application’s requirensell the resources in the
same pool have the exactly same values for theofsetitributes that are

relevant to the client and it is not importanthe tlient which items from the

pool it is allocated and when this allocation tagkce.

Most retail goods can be regarded as anonymoumémry purposes. Barnes
and Noble may have many copies of each book titiack, and a client who
wants a promise that a book will be available doescare which physical
copy they are given when the order is dispatchedhis case, the book title
represents a resource pool, consisting of manytig#rand indistinguishable
copies, and all that the retailer needs to traclorier to be able to make
promises about availability is the number of copiesy have available for
sale.

Financial applications, such as banking, use anomgnmesources all the time.
For example, if a promise is made that a clientliepyon will be able to
withdraw $500 from an account, the bank is not gedi to set aside five
specific $100 bills, uniquely identified by thegrgal numbers.

There can be any number of promises outstandingn@mmymous resources,
the only constraint being that the sum of all presdi resources should not
exceed the resources that are actually availalde.ekample, our bank can
grant many promises against Alice’s account, jgsioag as the account will
not be overdrawn if all of these promises are f@dd by withdrawal requests.

The availability of anonymous resources is usuakplicitly tracked and
recorded in an attribute associated with each resopool. These attributes
are traditionally called something like ‘quantity band’ or ‘account balance’.

6.2.2 Named View

Clients using a named view of a resource know #wth instance of the

resource is unique and possesses an identifidr,asia serial number or some
other set of distinguishing characteristics that lsa used to refer to it. Clients
can obtain a promise about the availability of aotgce based on this

identifier, and they can later make use of thabuese instance, knowing that
the promise will ensure it will be available whezeded.

Some resources are naturally unique and therelysoore instance of a given
resource. For example, used cars could be considareque and not

interchangeable, as each one is distinguishabtbdyistance it has travelled
and its condition. A client who gets a promise orpaticular vehicle is

expecting to get that one, not an ‘equivalent’ sitlte. Conversely, new cars
and hire cars would normally be accessed anonymdnysimodel or category
as they can be considered identical for the pupogselling or hiring.

Resources such as airline seats or hotel roomsara#her common class of
named resources. These are virtual resources whpsent the opportunity
to use a (more or less) physical resource at aifgpd¢ime. For example,

‘Room 212, Sydney Hilton’, 12/3/2007’ names a sfjecbom instance, and

11€

the date is the necessary part of the unique itlEnthat distinguishes one
booking for the room from another.

The concepts of named and anonymous resourcesbatg #éne way client
applications view the resources, not about theuress themselves. A group
of related named resources might be accessed awoosiymin some
situations, and by their unique names in others.dxample, each seat on a
flight has a unique name (e.g. seat 24G on QF1rdegan 8/10/2007). Some
client applications may let customers try to bopkdfic seats on a flight, and
so need named access to the seat instance. Ingaaey though, all economy
seats will be regarded as equivalent, and cliemliegions will be using
anonymous access to get promises about the aviylati economy class
seats on that flight.

The availability of named resources will often backed by the use of
something like free/busy attributes associated we#lch resource instance.
Many resources will support both anonymous and wnlawews at the same
time, allowing some clients to obtain promises pac#ic resources instances
while others are getting promises over a collectibsuch resource instances.

A single named resource instance cannot be promsetbre than one client

application at the same time, regardless of thdipaées being used and how
resources are being viewed by client applicatiés.example, if one client is

promised ‘seat 24G on QF1 departing on 8/10/200%¥§ seat must not be

included in the considerations leading to the gngnbf a promise for an

arbitrary economy-class seat on the same flight.

6.2.3 View via Properties

The concepts of named and anonymous resource viewsst discussed are
really based the properties (or attributes) expdsgda resource, and the
characteristics of these properties are what déterrthe type of promise

predicates can be requested over these resour@eset of properties can be
used to always uniquely determine a specific resoumstance, we can use
these properties in predicates where we want a chame® of the resources. If

a set of properties inherently determine a setesburce instances, then we
could use these properties when we want anonymoassa to a pool of

acceptable and interchangeable resources.

An individual resource or collection of resourcesuld normally expose
multiple properties, many of which could be of me& to clients and
potentially be the target of promise predicates. &@ample, a hotel booking
service would maintain a collection of rooms anébimation about their
availability on specific dates. Each of these rodras a number of properties,
such as the size and type of beds, whether ormokiag is allowed in the

room, whether or not there is a view, and whiclorfld is on. All of these
properties can be used in promise predicates bwtcipplications wanting to
determine room availability.

Different client applications, acting on behalfdifferent customers, can make
concurrent requests over the same collection ahsoand use different sets of
these properties in their promise predicates. Kamgple, one customer may
be asking for a room with a view, while another ntige requesting any"s
floor room. Room 512 could be a suitable availabsource that would allow
the promise manager to grant either of these regjulest the manager has to
ensure that the same room is not allocated to twafhests at once. The use of
different properties in the two competing promigguests makes this task
more difficult as it may not be straightforwardgee that their predicates are
effectively overlapping.

Users may regard some properties as essentialthatsas desirable but not
required, and this could be reflected in their pgmrpredicates. The interplay
between essential and desirable properties wheainihg a promise may be
complicated and could lead to systems where theige requestor and the
promise maker negotiate to find a promise that ashbsatisfiable and

maximally desirable. For example, the client maitiatty request a non-

smoking room with a view and twin beds, and evdhtwcept a promise for

a room with just twin beds.

Another interesting possibility is that the valugscertain properties could be
treated as ordered in acceptability, with it beimglerstood that a promise can
be satisfied either by a resource that meets theige value for a property as
requested or by one offering a ‘better’ value. Egample, a customer who
holds a promise for an economy class airline séainat normally complain
if, when they fly, they are upgraded to busineas<l

Predicates are expressions over the values ofagbgtiroperties of resources,
not over concrete fields in database tables. Th&draction gives rise to the
possibility of treating resources polymorphicalallowing a single predicate
to cover any number of acceptable resources asdsnthey all expose the
required properties. For example, a hotel bookiavise could aggregate
availability information from a number of providersach with their own

schemas for describing available rooms. A singkdijgate could be used to
obtain a promise from any of these providers, ag las they all exported the
set of properties required by the predicate (ahef properties they do export
can be transformed to the required ones by the ispomanager).

12C

6.3 Atomicity and Promises

In this section we identify three important atortyicrequirements for the

implementation of promises and promise managersleVithe autonomy of

service-providers means that there is no way toashehatomicity across long
duration business processes, it is feasible toinegbat specific atomicity

guarantees apply during the handling of a singlemise message. These
requirements are:

Request guarantees on several predicates at dmtele it may be
common to seek a single guarantee such as ‘enbateat least 5
widgets are available when | decide to buy theminstimes a client
will want to ensure that several different propst{perhaps involving
several resources) will all be true when the resesirare required at
later stages of the application’s execution. Thasgc example is from
travel planning, where a client may want a prontiee a flight and a
rental car and a hotel room will all be availabBy treating the
evaluation and granting of all the predicates edrm a single promise
request as an atomic unit, the client can ensatetiiey will either get
all the resources they need or none of them. Assate here, the travel
agent client could also build up the set of requpeomises needed by
obtaining them one at a time, trying alternativesorgces and
predicates when other promise requests are rejected

Perform an action which depends on, but violatespraviously
promised condition, together with releasing therpige.One common
pattern where promises are useful is where a pmrofsresource
availability is used to protect a later operatiohisth consumes the
resource (and thus makes it not available any m&@eppose an art
gallery service has promised a client that a pagrcpainting will be
available, and the client then goes ahead and theypainting. When
the purchase occurs, the gallery service is retefsen the promise
(the client cannot expect the painting to still deilable after they
themselves bought it!); however if the purchasés fiir some reason
(perhaps no shipper is available that day) thenpitwmise should
remain in force. In this case, the promise releastthe action which
depends on the promise form a unit and both pauts succeed or fail
together.

Modify the predicate whose preservation is promissdobtaining a
new promise and releasing a previous one atomicalty important
use-case is where the client requests changesomiges they have
already been granted. The requested change can bpgrade the
promises, or to weaken them. For example, if antlileas obtained a
promise that an account will have a balance oéas$tl $100, they may
find that their anticipated later withdrawal hasacbed to $200 (a
stronger promise is needed) or to $50 (a weakemigg). In either
case, it would be too restrictive to force the &erto honour the new

121

guarantee as well as the previous one, nor wowddctient want to
release the previous one until the new one wasimdga Thus
obtaining a new promise should be atomic with Elegthe old one,
and the previous one should be retained if theiceman’t guarantee
the modified request.

6.4 Implementation Techniques

The Promise Pattern we are proposing allows cli¢otaisk a service to

guarantee that a supplied predicate will remaie fiar some specified time

into the future. The usefulness of this proposaletels on the existence of
mechanisms which will allow the provider to guassnthat they can honour
these promises, regardless of other promise regjtlest may be made and any
other actions that may take place against the ssh®f resources. In this

section we describe several well-known technighes tould be used in the

implementation of promises.

These implementation techniques are not meant t@xp®sed to clients
through the language used to express promise @tedicThis principle means
that clients can express their resource requiresndiyt using abstract
predicates over resource properties, and the peomignager that receives
these requests can then use whatever techniqwesnis to implement the
promises and meet the guarantees it has made.app®ach lets the client
deal in the abstractions of predicates and reseui@ed gives the promise
manager the ability to implement these abstractionghatever way is best at
the time, and to change these implementations tiwee without forcing
corresponding changes in client applications.

* Resource Poolln managing anonymous interchangeable resouitces,
is common to keep the available instances of easburce in a pool,
and move them to a separate ‘allocated’ pool taenthat a promise
can be honoured. For example, when we promisevikatan supply
10 widgets, we remove 10 widgets from the pool\&ilable widgets
and place them in the allocated pool. The digiiealent can be
implemented by keeping a count of available anacalied items in the
record corresponding to each type of resource. Téhnique is
similar to escrow locking [73].

» Allocated TagslIn the case of resources that are accessednaanad
view, we can keep an availability status field ag pf the data used to
describe the resource instance. This field wouldséeto something
like ‘available’ initially and then to ‘promised’ ken the instance was
provisionally allocated to a client as a resultnmdking a promise. It
would then be either set to ‘taken’ by a subseqaetion, or would be
reset back to ‘available’ if the promise is relehaad the client has no
further use for the resource.

12z

Satisfiability Check The promise manager keeps a record of all the
promises it is currently committed to honouring aisb has access to
the current state of all resources covered by thesmises. Whenever

a new promise request is received, the managekshbat it and all
relevant existing promises can be honoured basdatecurrent state

of the resources involved. Similarly, a check isf@ened after every
client-requested operation has completed to be thak the state
afterwards still allows all existing promises tolmnoured.

If property-based access is used, the decisiontaituich resource will
be used to honour a granted promise can be delay@dhe execution
of the operation which takes the resource. Indpigroach, the promise
manager needs to be able to check the compatitfita set of
promises with the state of the resources. This trighdone by finding
a matching in a bipartite graph where edges lirkuhtaken resources
to the promise predicates that they can satisfy.

One consequence of this model is that the avaitialuf a resource is
indicated by the presence (or absence) of a caygnedicate, as well
as (possibly) fields in the resources themselvascdntrast to the
‘allocated tag’ mechanism just described above, ne& have the
situation where the availability field in the resoel now only indicates
whether or not the resource has been definitelgrtakThis means that
status information for a single set of resourcesasv distributed
between the promise and resource managers, anthlspa@ will be
needed to ensure consistency.

Tentative allocation This is a hybrid mechanism, where property-
based promise requests are met by marking the chossource
instances as ‘promised’, and also remembering pleeiic predicate
that resulted in this resource allocation. If @igiromise request is not
satisfiable from the pool of unallocated instandé® manager can
consider rearranging these tentative allocationslitw it continue to
meet all previous promises as well as grantingnée request. For
example, a request for a hotel room with a view theay to tentatively
allocating room 512 (on the basis that it has avkieNhen a later
request is made to promise & fioor room, the system may reallocate
512 to the new request as long as a different ratim a view can be
still be provided to meet the earlier request.

Delegation Promises are made that rely on the promises iofl th
parties. For example, a purchase order can be tectbp the merchant
if it has received a promise from the distributwaitta backorder will be
fulfilled on time. In this scenario, the promisedslegated from the
merchant to the merchant’s supplier.

12z

As mentioned earlier, the architectural model we @sing here has promises
being granted and guaranteed by a Promise Man&abirsystem component
acts as an intermediary between clients and serigeeceiving and granting
promises, working with resource managers to hetprdene availability and
passing application requests on to services forugian.

In this model, client applications always send bptbmise messages and
application requests to an intermediate promiseaganrather than directly to
services or resource managers. The promise mamagj@ct on the promise
messages, consulting with applications and resooraeagers as needed to
determine if promises can be granted. Applicatiequests pass through the
promise manager so that they can be rejected if amspciated promises
cannot be granted or if executing the request woalgse existing promises to
be violated.

This is only a conceptual model, although it is tme implemented in our
prototype which we describe in Chapter 7. Actugblementations are free to
implement the required promise functionality in anyay at all
Implementations could move all promise functionalito the application
services, letting them use whatever applicatioreddpnt mechanisms they
wish to express predicates, record promises ancerrdete resource
availability. Another alternative would be to movee responsibility for
granting and enforcing promises to the resourceagers where they could be
implemented as a form of dynamic integrity consirai

6.5 Promise Protocol

This section discusses the structure of some pobtelements that could be
used in a SOAP-based implementation of the ProRadtern. In this protocol,

clients and promise managers exchange promisedelaformation using

<promise> and<environment> message header elemert&omise> elements are

used in the creation and release of promiggsironment> elements are used
to specify the promise context that applies for 8@AP service requests
carried in the associated message body.

A <promise> element can have zero or mafgomise-request> elements; each
representing one request for the recipient to mak@romise that will
guarantee the included predicates for a certaifoghesf time. A <promise>
element can also include zero or mepeomise-response> elements which are
used to return outcomes from previous requests ftbaed in the reverse
direction. Each participating service can act ah lsbent and promise-maker,
S0 a singlepromise> element can include botpromise-request> and<promise-
response> elements.

124

A <promise-request> defines:

* A request identifierthat can uniquely identify each promise-request.
This request identifier is used to correlate prewsguests and
promise-responses.

* A set ofpredicatesthat specify the conditions on which the clientl wi
rely in a later interaction and that the promisekemanust maintain.

¢ A set ofresourcedhat specify the subjects of the promise.

* A promise durationthat indicates how long the client wants the
promise to be kept.

« An optional set ofpromise identifierghat refer to existing promises
that can be released if this new promise requestdsessfully granted.

Each promise-request must be treated atomicallyofithe predicates over
the specified resources must be promised or th&eeptomise must be
rejected. A promise request may hand back preypooisises in exchange for
new promises, and if these new promises cannotraetayl, the existing
promises must continue to hold.

Promise makers send promise responses back tog@gaaguestors to inform
them whether their promise requests have been trtep rejected. The
elements of apromise response> are:

* A promise identifiethat the promise maker uses to uniquely identify
this promise

* A promise resulthat says whether a promise request is accepted or
rejected. Promise responses could also return o#wmeits, such as
‘pending’ or ‘accepted with the condition XX’ bubdse possibilities
have still to be investigated.

* A promise duratiorthat indicates how long the promise manager will
guarantee to keep this promise. This may be thes ssarthe duration
which was requested, but the promise manager mightexample,
offer a guarantee that expires sooner than thatakeshed.

* A promise correlationwhich is therequest identifierof the earlier
promise request.

Successful promise requests establish promise amaignts. Application
requests can specify that they must be executeldinvé specific promise
environment (with the set of resource guaranteéisatt by its promises) by
including an<environment> element in the associated message header. An
<environment> must define;
» A set ofpromise identifiergdhat define which promises will apply for
the execution of the request.
* A corresponding set giromiserelease optionshat indicate whether
the associated promises should be released afeerrafuest has
completed.

12t

We note that each message may contain any subse¢ dfifferent elements
relating to promises, and these may be relatedh& message body or
unrelated. For example, we allow an application sage from A to B to

contain a related request for B to make a pronasel it can also carry a
piggybacked response reporting on the outcome megious request that B
had sent to A.

6.6 Promises and Isolation

The key contribution of the Promise pattern is ibatlows a client to check
for the availability of resources and then latekengervice requests with the
assurance that these operations will not fail beeadhe required resources are
no longer available (except for very rare catastiogsituations that might
need human intervention). Programmers are reli@fetie need to consider
the frequent but unwelcome situation where conatreetivity has changed
the truth of relied-on conditions after they wehecked.

We will illustrate how applications can use prorside achieve the precise
degree of isolation they require through two exaapglased on the merchant
example mentioned earlier. Both of these examplekenuse of the Promise
Pattern but differ in the resources involved, theywhey view them and the
predicates they use.

The first example Figure 21 shows how the ordepiraxess can check for the
availability of goods using a promise and then bargnteed that these goods
will continue to be available for purchase, regasdl of any concurrent
activities, until the order is completed or abarethnin this example, the
customer is trying to order 5 pink widgets. As awstomer doesn’t care
exactly which 5 of the many identical pink widgatsstock they will receive
as a result of this order, we will use the anonysnaacess view defined in
Section 6.2.2 for this example.

Order process Promise manager
Determine we need 5 pink widgets to be

in stock

Send promise request that (quantity of

‘pink widgets’ >= 5)

Check stock levels of pink widgets

Accept promise if >=5 currently available
and not promised elsewhere.

Record promise as predicate over stock
levels, guaranteeing that at least 5 units
will always be available. This predicate
will be checked before any further
promises are granted or purchases are
performed.

12¢

Send ‘accept’ <promise response>

Reject promise request otherwise
Send ‘reject’ <promise response>

If promise rejected

Terminate order process saying
goods unavailable
If promise accepted

Continue processing order (organise
payment, shippers)

Send ‘purchase stock’ request to
promise manager

and release promise to keep stock level
>=5

Pass ‘purchase stock’ to application
service

(Release 5 pink widgets for delivery and
reduce stock-on-hand by 5)

Remove this promise from the set of
predicates over the pink widget stock
level

Figure 21 Outline of Ordering Process Code

The second example is more complex and illustriguedlexibility of promise
predicates. In this example, our merchant offeesxtnday’ shipping to its
customers for a fixed additional cost on all ord@itse order process asks the
promise manager for the shipping component for amgse of next day
delivery, with the predicate making no assumptiabsut how this promise
will be implemented or needing any information abthe structure of the
shipping component and its internal states. Thepshg promise manager
could implement the promise by obtaining soft-loaks warehouse and
shipping capacity but other implementations aresids. The merchant may
even have a number of shipping alternatives availadach with different
capacity and cost structure, and the actual chadigeénich shipper to use could
be deferred until shipping is required in orderréduce costs and optimise
utilisation. This flexibility is not visible to therder process or the customer,
all that they need to know is that the shipping ponent has promised next-
day delivery and guarantees that this will occur.

6.7 Other Similar Isolation Mechanisms

One of our inspirations in this project was thdye@onTract work of Wachter
and Reuter [84]. This introduced the importanceexjressing preconditions
(‘entry invariants’) needed to allow actions withen workflow to execute
successfully. The authors identified several d#ferstyles of ensuring that
these preconditions still hold at the time whenliapgions rely on them later

in an execution. Among the styles proposed wasisigeof semantic locks to
preserve conditions and notifying the client whencleecked condition
changes. Our work extends the semantic lock idE&ooTract to the services
world with its interacting autonomous participan@ur consideration of
atomically combining steps is also new. We prowdecher analysis of the
variety of resource and predicate types, and of wlags to ensure that
predicates remain true over an extended periodalate support a variety of
possible implementation mechanisms, each tailooethé needs of specific
ways of viewing and accessing resources.

In previous work [54], one of the co-authors ofsthwork developed a

transaction model for spatial data which was basedxplicit constraints that
could be set and unset to limit concurrent modiftca of properties of the

data. Our current paper extends this to a worl@ubdnomous services; as well
we now offer an analysis of predicate types, antetter mechanism to

structure the operations by providing atomicitywestn aspects of a single
step of the promise exchange.

Recently Dieter Gawlick and other members of theid GEomputing
community have suggested the ‘Option’ protocol [R%]reserving access to
resources. This has similarities to Promises butvawrk deals with a wider
class of conditions including those on anonymowsueces and property-
based views of resources, and supports a widercehali implementation
mechanisms. Also, our use of atomicity allows usimify concepts such as
securing, modifying, confirming, and dropping whiee represented as
separate message types in [24]. The “options” aubrdias been implemented
inside an Oracle database management system, (catg cartridges” to
define data types with appropriate indexing anggers. Zhao at el [97] use
the WS-* standards to coordinate the message egelam reservation
handling. These papers do not consider how to imeig¢ various
reservations.

There are interesting parallels between promisestha IMS/VS Fast Path

mechanism [25]. In Fast Path, each operationigtsired as a predicate check
and a transformation on the data. The predicatbesked when the operation
is submitted, and then at commit-time, the checkrapeated, and the

transformation is performed (provided the checkceeded). We can consider
the operation submission as like a promise requast, commit as like the

operation done under promise protection; howevar,Fast Path, other

operations do not worry about outstanding predgatsd so the commit

check might fail because of concurrent activity.

Our Promises pattern unifies and abstracts overrpassible implementation

mechanisms, including those that are based on qusvwork mentioned
above. The Promises approach offers a common waylients to work

12¢

without knowledge of the implementation techniqsediinside a service that
can maintain some property between the time ithiscked and a later time
when the client relies on the property.

6.8 Conclusion

In this chapter we propose a unified approach s&cuging the interactions
between a client and a service where the client mmake sure that some
condition over resources will hold at a later tirdespite concurrent activities
that occur between the check and the use of theitomm

We have analysed the variety of resource typescanditions on those types,
identifying an important distinction between resms which are accessed
anonymously (where the key property is just whethegiven amount or
volume is available), resources which are accelsgethme, and a wider class
where access is based on values for some subaetadiection of properties.

We have identified important cases where severage-related activities
need to be combined into an atomic unit in ordesupport valuable use-cases
such as processing multiple predicates within alsinpromise request,
consuming/releasing promises, and upgrading or amal a previously
obtained promise.

Our proposed Promises allows clients to ask a @erto guarantee that a
supplied predicate will remain true for some speditime into the future. The
usefulness of this proposal depends on the existenanechanisms which
will allow the provider to guarantee that they daonour these promises
despite any other actions that may take place agtia same set of resources.
We explored several well-known techniques that @¢obke used in the
implementation of promises for different resoungeet.

We summarise the structure and content of the m®rmiotocol elements as
they would be used in a SOAP-based implementatidheoPromise Pattern.
Clients and resource managers exchange promigedeiaformation using

<promise> and <environment> Message header elemenigomise> elements are used
in the creation and release of promis&swironment- elements are used to
establish a promise context for the SOAP requeastsed in the associated
message body.

In the next chapter we discuss the issues invoivednplementing this
Promise concept in a service provision frameworkisTwill involve

developing further details of the implementatiorr fthecking predicates
against resources.

Chapter 7

Design Principles in Supporting
Promises

One of the many problems facing the designer of gtexnmulti-participant
Web services-based applications is dealing withctiresequences of the lack
of suitable isolation mechanisms. This deficiencgams that concurrent
applications can interfere with each other, resgltn race conditions and lost
updates which become one of the many cause sdramed systems to
produce consistent outcomes.

In the previous chapter, we proposed a unified @gghr called ‘Promises’
which can provide an isolation mechanism for senbased applications by
describing the interactions between a client asdraice where the client can
make sure that some condition over resources (atxH) will hold at a later
time, despite concurrent activities that occur leetwthe check and the use of
the condition.

In this chapter, we discuss some of the implemeEmtassues that need to be
resolved in promise-based systems and discuss hewvbuwilt a proof-of-
concept prototype of a Promise Manager that supgogtromise-based
isolation without requiring changes to existing lagggions and resources. The
major challenge in the implementation is to enderemise Manager takes
overall responsibility and coordinates the actdtio maintain the validity of
non-expired promises; that is, resources must ladladle to satisfy every
predicate that the Promise Manager is committeddmtain.

7.1 Design Issues and Constraints of Promises

The primary motivations behind the work reportedthis chapter were to
demonstrate the viability of the promise model mnstructing a working
prototype, and to observe what this prototype cdalth us about building
more general and higher-performing implementatidings limited goal meant
that we could ignore some of the optimizations sophistications that would
be necessary if we were building general-purposgastructure, and
concentrate instead on some of the important isthegswould underlie all
implementations of Promise-based system or infrasire.

13C

Some of the key design issues that have to be salehtan the implementation
of any promise making system are: compatibilityhwéxisting applications
and infrastructure; the representation of Promisies;relationship between
Promises, resource schemas and the promise cheabileg ensuring that the
promise checking code itself works correctly whieeré can be many threads
concurrently changing the state of promises andouregs; and the
construction and use of dynamically constructed sEPromises.

7.1.1 Compatibility

The main constraint we placed on this prototype washould provide
Promise-based isolation support for existing appilins, without requiring
changes to applications, resource managers orctiengs of the resources
being managed. This allows us to reuse existindiGgmns and resource
managers thus increasing the productivity of dgualent of isolation support
via promise manager as a proof of concept to detramirsour research
concept of “promises”.

7.1.2 Representing Promises

The Promise Manager needs to keep a persistentretall promises that are
currently in effect. Promises are added to the&etrrent promises as a result
of a successful promise request, and are deletezh wihey are explicitly
released by clients.

Promises also only have a limited duration, thathesy are valid only for a
limited time and then expire. Promise managers n@edmplement this
attribute of Promises and remove them from theoeictive promises when
they expire.

7.1.3 Promises and Schemas

Promises are basically predicate expressions ower dvailability of
conceptual resources, such as ‘hotel room’ or ‘daallance’. These resources
are defined and controlled by resource managerseSuechanism has to be
provided that will allow the availability of thesesources to be queried during
the promise checking process.

A general implementation of the Promises mechanismquires some way of
automatically mapping between the resource idensifiused in predicate
expressions and the corresponding database colemmse-defined query
expressions. This close-coupling between predieafgessions and schemas
leads naturally to Promise implementations where tasponsibility for
promise checking is shared between a Promise Marage the relevant
resource managers. Alternatively, a Promise Manageld retrieve resource

131

schemas from a resource manager and use this iafiormto generate direct
SQL query expressions that determine the avaitglafiresources.

This degree of sophistication and complexity is esessary for a proof-of-
concept prototype where we can restrict the naaumk type of our predicate
expressions and can write predicate evaluation cpeeific to the example
data we are using.

7.1.4 Isolation and Concurrency

Information about promises and resource availgbdite stored in different
places and controlled by different managers, bey #ire both accessed as part
of promise operations. For example, performing etioa which releases a
promise requires changing the state of the resowmaeager (through action
code), examining the promise table (to carry ooihpse checking), and then
modifying the promise table (to remove the prontieeng released). Granting
a promise request involves examining the state Mf fRsources and the
promise table, as well as inserting the new pronmse the promise table.
Without taking special care when engineering a Fseraystem, we could be
vulnerable to race conditions and other isolatiailufes resulting from
concurrent promise operations.

For example, suppose that a request to create pramise to keep a balance
of at least $100 in Alice’s bank account operat®running concurrently with
an action that withdraws $60 from the account, t#redbalance is $150. If
these two operations run without proper considenadf the potential impacts
of concurrency, the check for whether the withdrdawalates any promises
might use a list of promises that does not incltite new promise, and the
promise granting check might use a balance whice hat yet been
decremented. Both of these operations could succeesllting in an
inconsistent outcome with a promise being granted ¢annot be satisfied by
the current state of the resource.

We use traditional transactions to prevent thesetons. Note that we are
not guilty of circular reasoning; promises are mued to offer isolation

support between long running activities, while weleit the isolation support

that transactions provide between individual prenuperations.

7.1.5 Dynamic Promise List

Promise checking is at the heart of the Promise iMplsystem. It is the
mechanism that allows us to honour the guarantesshiave been given to
promise clients. Promise checking is conceptualtypke: it must make sure
that every unexpired promise can be met using @vailresources at all times.

13z

Promise checking works on a dynamically construclistl of relevant
promises rather than on the complete set of pramigech have been granted.
The main reason for this is that promise checkiitgnoneeds to be undertaken
on proposed sets of promises rather than the coenpét of already-granted
promises. For example, promise checking duringgtlamting process is done
over a proposed new set of promises, includingptioenises being requested
as well as any relevant existing promises.

Using a dynamically constructed list of promisegracted from the already-
granted promises and modified according to circamsts, simplifies the

promise checking process. By moving the deternomatf which promises

are relevant out to the Promise Manager, the p@rmchiecker is left with the

simpler task of checking for consistency withined ef promises and against
resource availability.

One advantage of this approach is that we can smeetreduce the number
of promises that must be checked by using semdmmwvledge of the
promises and the resources they cover. For examwplen a promise request
for a named or anonymous resource is being coridéne promise checker
does not need to check any promises that do net tefthe same resources as
the new request. The reduction in checking depemdthe type of promise
operation, so it is better placed outside the psemahecker which executes the
same code no matter which promise operation iggjgeemformed.

7.2 Structure

The major contribution of this chapter is to demimate the feasibility of the
Promises concept by building a proof of conceptesyshat provides isolation
support for existing applications and resourcesis Tection explains the
system design and Section 7.3 discusses the debmpnes we made when
building this prototype.

Figure 22 shows the architecture of our Promisedtbasrototype system
containing different types of messages being exgbdnand three major
components, namely Promise Manager (PM), Applicagerver (App), and
Resource Manager (RM), that handle different typésmessages. The
following discussion covers more details of thesejan messages and
components of the system.

13z

P i -
roinlse > Action |—»
Action PM App
< R e
RM

Figure 22 Structure of Promise System

7.2.1 Messages

The messages which arrive at the Promise Managecaatain two parts: an
optional Promises part and an optional Action part.

« The Promises part contains the information relevarmromises. For
example, it can contain a promise request askiegteation of a new
promise that will ensure a given list of predicatel be valid at some
later time. It may also contain a promise environtrihat indicates
how the action relates to existing promises (faareple, by releasing
them if the action is successful).

* The Action part defines the application operatiobé performed, with
appropriate parameters. For example, the actionnpay indicate that
the client wants to invoke the BookRoom operatiod apecify the
room and date for the reservation. This part of itiessage is not
changed by the addition of promises and will becpssed by existing
application code. The only difference is that therfise Manager can
now cause otherwise successful operations tofféilei changes they
made to resource availability are prevented by erily active
promises.

This message structure fits very naturally into SOAP &Wdb Services
standards. All Promises parts can be transferredemsents within the SOAP
message header while the Action parts messagesared within the SOAP
message body.

The Promises model makes each part of these reguessages optional.
However, a typical usage would be that the pronlgnt sends a message
that contains a promise request (Promise part omyjequest creating a
promise. Once the promise has been made, anotlssageis sent with both
Promise and Action parts, to perform a state-depenndiction with an

associated promise environment which indicates eme that ensures

134

success of the action, and is to be released inemion with performing the
action.

The design in Chapter 6 is symmetric, so the PrerMaker can also act as
Promise client; thus a single message might cotaih promise requests and
also responses to requests in the other diredtiothis chapter we focus on
the design of the Promise Maker, and so we do isotuids how to process any
promise material related to the service’s actigiis a client.

7.2.2 Components

There are three different components shown in Eig22. The Promise
Manager is best seen as an interception layer antarmediary. The client
adds Promises header messages to its normal seeguests and sends them
to the Promise Manager for processing. The Prommaeager then does its
work and passes the request on to the applicafldre roles of each
component of the Promise system are explainedeifalfowing.

7.2.2.1 Promise Manager (PM)

PM takes overall responsibility and coordinates dlkgvities throughout the
promise system. The key data structure kept inRMeis Promise Table
recording all currently active promises.

The Promise Manager receives each message asvigsafrom a promise
client and breaks it up into its Promise and Actmymponent pieces. If a
message contains a Promise part, this is split ilstpromise requests and
promises environments and any new promise requasschecked for
consistency against the existing promises and resoavailability (more
details in the Section 7.2.3). After this step, &wtion is passed on to the
associated application and the Promise Manageisvi@aita response. If the
Action succeeded, the Promise Manager then usgwdngise environment to
update the set of applicable promises and checks again that all relevant
promises are consistent with the resource avaihaliformation held by the
RM. This step is what allows the Promise Manageguarantee that promises
will be honoured, regardless of what state chahges occurred as a result of
executing the Action. If all promises can still Ibb@noured, the Promise
Manager passes back the response it received freragplication back to the
client. If the result of the action was that proesisvere violated, the promise
manager will roll back the changes made by theokcaind return a failure
message to the client. The process of the Promesealyer is depicted in the
flow chart in Figure 23.

13t

Start Processing time

If Action

A 4

Pass Action td
App

|

Action execute
response from

App

Promise
environment

If Promise

ise request

A 4

Update temp
promise list

according to
promise env.

under promisg

If violated

Promise
Consisten
Checking

Add new promise
into temp promise
list

If violated

A 4

If ok

Make a new
promise

A 4

Reject promise

N

request

Accept promis
request

‘___

If ok

Rollback Action

Commit Action

Figure 23 Promise Manager Flow Chart

End

In our current implementation, an ACID transactisrused for the complete
processing of each promise and each action, arsdallows us to either
commit or rollback any changes made by the apjptinatNote that the
transaction covers short-term activity entirely hint the components of the
Promise Making System. Thus we do not suffer fraawdacks to autonomy
that ruled out using a transaction across seveealteservice interactions.

7.2.2.2 Application

The responsibility of the application is to procelss action request passed
from the Promise Manager. The application in owigieis unchanged and is
exactly the same code as would have been exectggtbpsly. For example,

the application for a hotel booking service must &ele to process

CheckAvailability and BookRoom operations and these what are passed
untouched from the client to the application vie thromise Manager. We
assume that application uses a Resource Manaderetp the state which is
shared between operations. After the action hasptied, the application

sends a response message back to the Promise Manage

7.2.2.3 Resource Manager (RM)

The role of RM is also unchanged and its respolitgilis to store the state of
the domain, and to process queries and updatelsi®unldta requested by the
application and the Promise Manager. For examiie, RM for a hotel
booking service will keep information about thed¢laboms, their prices, and
which rooms have been booked for each day. In &eati3.3, we discuss the
extent to which the schema of the resource stdtenmation must be made
explicit to the Promise Manager. The design is dblénandle applications
which spread their data across several RMs, asderigey support distributed
transactions.

7.2.3 Promise Consistency Checking

The crucial responsibility of a Promise system @intaining the validity of
non-expired promises; that is, resources must lagladle to satisfy every
predicate that the Promise Manager is committaddmtain. Ensuring this is
made difficult as promises are maintained and wided by the Promise
Manager while information about the availability i&fsources is maintained
by RM which has no awareness of promises. To ernbategranted promises
are not violated, the Promise system must havechamésm in place where it
can evaluate a set of promises against the custatdé of resources. We call
this mechanism promise consistency checking. Theptexity of the promise
checking process depends on the particular pregicathich have been
guaranteed in promises.

For the case of a named resource, promise checkirgjatively simple. We
must ensure that one of the following situationkl&iothere are no duplicate

promises for the resource identified by the samiguenidentifiers; or the
resource must be recorded as available in the R, there is at most one
unexpired promise over that resource.

For an anonymous resource where there is a poelquoivalent items, the
promise checking sums the quantities of the spgetifesource required by all
unexpired promises, and this must be at leastrge ks the amount recorded
in the RM as being available for this item.

When we have a type of resource which could bevaglieto several different
predicates, the check is much more complicated. @mof-of-concept
implementation does not deal with this. We wouldd& consider a bipartite
graph containing all the predicates from unexpidmises and all the
available resources, with an edge from a predicaéxery resource that could
satisfy the predicate. A set of promises is coastiswith the state of resources
provided that a matching edge can be found ingtaph.

7.2.4 Promise Operations

Promise checking is then used in several placesglinessage processing,
with various sets of promises:

* Making New PromisesA Promise request can be sent by a promise
client to a promise server in order to create a pewnise. Granting
the new promise must consider the mutual satidifipluf all existing
unexpired promises, together with the requestedmis® using
currently available resources as known by the Rdt.éxample, when
Alice requests a new promise that a specific rodf i ‘Sydney
Hilton’ is available for the date 30 December 20@6is promise
request must be rejected if the room is not aviEléhlready booked)
for that date, or if there is already a promisetf@ same room on that
date.

» Executing ActionsThe Application executes actions that were coded
without knowledge of the PM or its promises. Thdicams might
change the state of resources, for example by uqod#éhe account
balance upon receiving payment or modifying thalakdity of rooms
when customers make a booking. In a well-desigrystes, actions
would make no state changes except those guaraboyesaly covering
promises. However the Promise Making System caretpton coding
of the Application, and so the promise checking thnesperformed by
the PM once an action has been executed to enbatethe state
changes made in RM (by the App code) have not tadlany existing
promises (except for the promises that are beitepsed atomically
with the action).

» Updating Existing PromisesPromise clients can request to update
existing promises. The request can be either emgthen the existing

13¢

promise or to weaken it. Updating existing promisas be seen as the
combination of two operations: removing the presiqaromise and
creating the new promise. These two changes mestdéne
atomically. Thus a check must be performed to chibekconsistency
of the resource state against the newly requestedige as well as the
set of all unexpired promises except the one tordmaoved. For
example, if Alice wishes to upgrade an existingnpise of at least 5
pink widgets, to now guarantee at least 10 pinkgeid, and Bob has
already been promised 6 pink widgets, then we reasture that the
number of available pink widgets is at least 16.

7.3 Reflecting on our design

This section we discuss our responses to the keigriéssues we discussed in
Section 7.1. These design decisions reflect thedsxesf the prototype
implementation only, and different decisions, andoren complex
implementations, would be justifiable, and probaidygessary, for production-
quality Promise-based infrastructure components.

7.3.1 Compatibility

The compatibility constraint required us to engmibe Promises prototype so
that we could provide Promises-based isolation srippithout requiring any
changes to existing server applications, resoul@eagers or schemas.

Our solution to this constraint was to implement Buomises prototype as a
layer that wrapped existing application systems andured that promises
could be both granted and honoured. Client apjpdicathad to be changed to
request promises and associate actions with proems#ronments, but no

changes were required to applications or resouraeagers. The Promise
Manager takes action requests from clients andegabem along, unchanged,
to existing applications. These applications precdsese requests in the
normal way and pass back their responses to theigoManager which

checks for promise violations before committing aetirning the response to
the client.

7.3.2 Representing Promises

The Promise Manager needs to keep a persistentiretall promises that are
currently in effect. Each promise is representedabyobject that is persisted
by storing it as a row in an SQL database tablehEaomise has attributes of
Promise Identifier, promise request correlatiogdizate and expiration. The
set of all currently-effective promises make up®nemise Table.

The database Promise Table is reflected in an mong table that is
protected by locks as necessary. Changes to thie e committed and
persisted by storing them into the database versitime table.

Every promise has a fixed duration, representedtdyexpiration attribute.
These expiry times are used by the Promise Managewnstructing lists of
promises for checking and expired promises ardetblet appropriate times.

7.3.3 Promises and Schemas

The compatibility constraint discussed above meaait the prototype had to
assume that the application, RM and schemas asn gind were developed
without knowledge or understanding of promises.r @esign does not require
changes to the application or schemas but the gmwhecker does need to
access the RM in order to check resource avaitgbilihis means that the
Promise Manager must understand something of thense of the RM so that
it can generate the appropriate queries. We waladtb limit the coupling,
however, so that a Promise Manager can be codedainly generic way.

We have assumed that the Promise Manager is algjaeiy the RM to find
out the availability of each named resource. Codimg Promise Manager
involves finding out the schema that describes¢iseurces. At least we need
to know how to express a primary key for the reseuffor example, in the
hotel booking service the primary key might be anposite of the columns
hotel_name, city, room_number, date) and how ta fout whether the
resource is available. Similarly, the Promise Mamageeds to know how to
identify a pool of equivalent anonymous resoure@si how the RM stores the
available quantity for the pool. Finally, for geakpredicates, the Promise
Manager must be able to determine which resourcsst @ given predicate;
this requires matching attributes mentioned in pinedicate with columns
stored in the RM.

All of this can be solved with a reflection mectsmiin which the Promise
Manager dynamically-generates the appropriate S@le ¢o access the RM,
supposing that the RM publishes the list of resesirit manages, and the
relevant schema. This degree of sophistication emehplexity were not
needed for a proof-of-concept prototype, and irstea have hard-coded the
Promise Manager using knowledge of the schemahititited resources we
are managing.

7.3.4 Isolation and Concurrency

The solution we adopted to prevent problems ari§iom concurrent access
to the promises table and shared resources isdp @ach promise operation
in a transaction. This transaction is started wivenbegin processing each
client request and committed or rolled back jusoieethe result of the request

14C

is returned to the client. This transaction coarsf the action code executed
inside the application as well as the subsequeomise checking (and
possible modifications of the promise table if thetion has a promise
environment that releases previous promises). ifi@ans that all accesses to
the RM’s tables, as well as the accesses to thmipeotable are transactional
which gives us the required level of isolation.

This design makes coding the Promise Manager vasy ddut does risk

creating a performance bottleneck under very hagid Isince there are times
where we will want to scan (and so lock) the enBremise Table, and this
could block concurrent insertions or deletions.

We also have considered more sophisticated implatiens, where
insertions in the promises table are speculatidelye in a separate transaction
from the promise checking and deletions are dona separate transaction
after the promise checking has completed. Howewerdecided to use the
straightforward design based on using a transadtiomugh entire promise
process since our purpose was to demonstrate aiséoility of implementing
Promises using existing technologies rather thaidibg high-performance
infrastructure.

7.3.5 Dynamic Promise List

The design we adopted for the prototype has thenBe manager first
searching the promise table and extracting thevaeke promises to be
checked. These promises are placed in a local staiature which is then
adjusted by adding or deleting promises to cregteoposed set of promises
which is passed to the promise checking code. @ensfor example, where
we are calling promise checking after performingaation whose promise
environment indicates that a promise will be redeki$ the action succeeds. In
this case we construct of list of all relevant piges and construct a proposed
set of promises by removing the promise that isualbo be released. This
proposed set of promises is then checked for ciemsig before making the
same changes to the real Promise Table.

Alternative designs to dynamically constructingsset proposed promises
were considered. We initially intended promise &g to take no
arguments, but rather to find the list of promis@®ctly by looking up the
Promise Table. This would require that each proraeration would modify
the global Promise Table and then call promise kihgcto verify that the
table was consistent. For the example just giveoveb we have to
speculatively remove the promise from the tableotmefcalling promise
checking, since the action just completed is vémgly to have introduced an
inconsistency between the resources and the abdig-temoved promise.
Speculative modification of the Promise Table isumareasonable when under

141

a transaction covering the whole promise operation,this approach is less
flexible and limits our ability to introduce greateoncurrency between
promise operations.

7.4 Implementation

In this section, we discuss the details of a padafoncept implementation we
have built embodying the design decisions mentioaieove. Our prototype
uses the .NET platform with C# as programming laggy and it extends a
simple App and RM which provide the services typiocha hotel booking

service.

We first explain how Promise Consistency Checkirigriface has been coded.
We also show the different implementation mechasismhich need to be
applied in checking the resource availability, foromises that refer to
different types of resources. Due to time limdas, the current prototype
system can deal with named resources and anonymeseurces only;

resources mentioned via properties will be implete@mn the future. We then
show the coding of the main Promise Operationsincglleach of which

includes a call to Promise Consistency Checking.

7.4.1 Overview of Promise Consistency Checking
Interface

The promise checking evaluates consistency betagaomises list, which is
provided by PM, and information about the resouawailability which is
maintained by RM.

In our system, the promise checking is implemeted method within PM

that takes a list of promises as an input and metarBoolean value indicating
whether the promise system will be able to satilséylist of promises passed
in with the current resources that are availablee Thput parameter is a list
that is dynamically constructed by the PM fromRt®mises table, reflecting
those unexpired promises that might need to bekeltecand also being

modified to reflect the potential changes in thenpise operation for which

the check is done. The following code excerpt itltgs the promise checking
interface in our prototype system;

public bool promise_consistency_checking
(ArrayList promises)

{
.~

The real complexities are inside the checking dligor. In the next two
subsections, we discuss in detail how we checkatralability of different

14z

types of resources. Currently we have two diffetgpes of promises objects;
one object type represents promises that concenedaesources. The other
object type represents promises that use anonynesosrces.

7.4.1.1 Named Resource Promise Consistency Checking

It is straightforward to check the consistency loé fpromises over Named
Resources. Since each resource is distinguishéd byique key, it is easy to
see whether each promised resource is availalileeiiRM, and also to avoid
the situation where a resource is doubly promised.

We illustrate the promise checking for named resesiwith code where the
resources are hotel rooms described as follows.

* RM maintains a list of resources in a table [roantsdch room is
uniquely identified by the composite key (hotel manroom_id,
available_date). The “availability” field indicateghether the room is
still available or has been booked.

« Each promise object over a hotel room contains anfge_id, a
combination of (hotel_name, room_id, date) as aumiresource key,
and a field expiry.

Here is the promise checking code for these naesalrces.

public bool promise_consistency_checking (
ArrayList promises)

bool consistency = true;

Il check first if there are duplicate promises

I/l concerning the unique key (hotel_name,room_id,
/[available date)

IEnumerator iel = promises.GetEnumerator();

/' We use a hashtable to check for duplicates of the
/l resource’s unique key

Hashtable ht = new Hashtable();

while (iel.MoveNext())

{

Promise p = (Promise)iel.Current;

string key = p.hotel_name + p.room_id +
p.available_date;

try

/I check the expiry of promises
DateTime today = DateTime.Today;

14z

if (p.expiry_date >= today)ht.Add(key, p);

catch (Exception e)

{

consistency = false;
}

if (consistency == false) break;

}

/I Now check if resources used by promises are

[/l available: we does by returning an arbituary value
/I 1. SQL server returns 1 if matching record d efined
/I by a compsite key is found. Otherwise it ret urns
/I empty

foreach (DictionaryEntry de in balances)

{

Promise p = (Promise)de.Value;

/I finding a matching record from [rooms] t able
try

{
string sql =" SELECT 1 FROM rooms " +

" WHERE hotel =" + p.hotel + """ +

" AND room_id =" + p.room_id +"" +
' AND date =™ + p.date + """ +

" AND availability = 1";

SglCommand cmd = new SqglCommand(sql, co nn);
SglDataReader reader = cmd.ExecuteReade rQ);

/l if no matching record is found, the re is
/I no available resources used by the

/I promise, therefore consistency falil S.
if (Ireader.Read())consistency = false ;

catch (Exception e)

{

consistency = false;
if (consistency == false) break;

}

return consistency;

}
}

7.4.1.2 Anonymous Resource Promise Consistencykiiigec

Checking the consistency of promises over Anonymi@asources is more
complex, compared to promises about Named Resquasesve need to
compare the quantity on hand to the total amouetdeeé to satisfy all the
promises concerning this pool of resources.

144

We show our implementation for Anonymous Resourtest use bank
account balances. We first explain the data stractu
* RM maintains amount of funds available for custsnar a table
[fund]. For each customer, his/her balance is dtanea record with
fields including (customer_id, funds_available)
* Promise objects contain promises for keeping aedaaounts of funds
for registered customers. Each promise object amtapromise_id, a
customer_id, amount which indicates the amountafl§é the system
has promised to keep available in the given custsnmlance, and
expiry.

In this scenario, the consistency requirement et tine total amount in
promises for the same customer does not exceedbdlzce held by the
customer as recorded in the resource maintaindivby

We first process the promises list to combine psaw®iover the same
customer’s balance.

public bool promise_consistency_checking (
ArrayList promises)

IEnumerator ie = promises.GetEnumerator();

/l a new list that contains the total unexpired
// funds promised for each customer
Hashtable balances = new Hashtable();

¥vhile (ie.MoveNext())

Promise p = (Promise)ie.Current;

/I first check expiry of promises
DateTime today = DateTime.Today;

/I if promises are not expired, accumulate all
/l funds for the same customer
if (p.expiry_date >= today)

if (balances.Contains (p.customer_id))

decimal b = (decimal)balances
[p.customer_id];

b += p.amount;

balances[p.customer_id] = b;

Il insert each customer with their total funds
//'in the list
else balances.Add (p.customer_id, p.amou nt);

}

14¢

}

After all promises for each customer have beenlléotathen we check
whether this total exceeds his/her balance recardei.

IEnumerator iel = balances.GetEnumerator();
bool consistency = false;

//'look up the list which contains customers with
/Il their total funds
foreach (DictionaryEntry de in balances)

try
{
/I get funds available maintained by RM for
// each customer
string sql = "SELECT funds_available" +
"FROM funds " +
" WHERE cust_id= "'+(string)de.Key+" ";

SglCommand cmd = new SqlCommand(sqgl, con n);
SglDataReader reader = cmd.ExecuteReader 0;

decimal funds_avail = 0;
if (reader.Read())
funds_avail = reader.GetDecimal(0);

/I if total amount promised for this cus tomer
/lexceeds the funds available, consisten ¢y has
//been violated.
if (funds_avalil - (decimal)de.Value < 0)

consistency = false;

catch (Exception e)// eg database problem

consistency = false; // for safety

if (consistency == false) break;

}

return consistency;

}

7.4.2 Implementation of Promise Operations

In this section, we discuss how Promises Operatwasimplemented in our
prototype system, using the promise checking meth®dlescribed in the
previous subsection.

Depending on the nature of each Promise Operatidsessential to find an
appropriate set of promises to check for consistevith one another and with

146

the state recorded in RM; if consistency is shotlien we update the PM’s
promises table. As described earlier, we use .NERshctions to provide
isolation between interleaving Promise Operations.

7.4.2.1 Making New Promises

The important consideration is to grant a promisy @ we can satisfy it (and
all previous promises) with resources that arelalkd. To achieve this, the
operation for making new promises runs as a traiegadt takes a snapshot of
the relevant entries from the promises table stgedistently by PM and
makes a temporary promise list using the snapshtiten includes the new
(requested) promise into the temporary promisésdisd passes this for the
promise consistency checking. If granting the neanpse would not violate
consistency, PM now inserts the requested prongiserd into the persistent
promise table in the persistent storage and conthetsransaction. If promise
checking returndalse granting the request would violate the consistenic
promises, so PM aborts the transaction. These messaquences are
illustrated in Figure 24.

PM RM

Promise
request

ets promises list and put them into temporary

promises list.

Add the new promise into the temporary
promises list

A 4

Promise Consistency Checking

<
| <

If (promises consistency checking runge), insert a
new promise into the permanent promise list, then
accept the promise request.
Promise If (promise consistency checking rufiaése reject th

response promise request

]

Figure 24 Message Sequence on Making New Promises

We show code examples that illustrate the scertmsaribed in the message
sequence in the following.

/I method that handles the making of new promises
public void making_new_promises(Promise p)
{
/l Create an explict transaction instance to run this
/l method as a transaction. Transaction begins he re.
CommittableTransaction tx =
new CommittableTransaction();

/I Form Get the current promises PM kept in its
/l Promise Table and make a temporary promises li st
ArrayList promises = get_promises();

/I Add the requested promise into the temporary
I/l promises list
promises.Add(p);

/l run the promise consistency checking passing t he
/l temporary promises list
bool pcc = promise_consistency_checking(promises)

/I if all promises in the list can be satisfied
if (pcc == true)

I/l grant the promise request and insert into the
I/l Promise table

create_promise(p);

tx.Commit();

/l'If all promises are violated reject the promis e
else

tx.Rollback();

}
}

For a request over the hotel room named resoureesliscussed earlier,
getting the list of relevant unexpired promisesaded as follows.

/I Gets the current promises kept in the PM’s promi se
/ table
private ArrayList get_promises()

/[declare a list to contain the current promis es
ArrayList promises = new ArrayList();

DateTime today = DateTime.Today;

14¢

/I Get all unexpired promises that is the promise s
/I whose expiry_date is beyond the moment the que ry
/l'is requested
string sql =

"SELECT promise_id, hotel_name, room_id,

available_date, expiry_date " +
" FROM promisesNR " +
" WHERE expiry_date >=" + today;

/I Query is executed
SglCommand cmd = new SqglCommand(sgl, conn);
SglDataReader reader = cmd.ExecuteReader();

/IAdd each promise record to the promises list

while (reader.Read())

{
Promise p = new Promise();
p.promise_id = reader.GetInt32(0);
p.hotel_name = reader.GetString (1);
p.room_id = readr.GetString(2);
p.available_date = reader.GetDateTime(3);
p.expiry_date = reader.GetDateTime(4);

promises.Add(p);

return promises;

}

In our implementation, we remove expired promisdsnever inserts or
deletes are made to the persistent promises tab& following code except
illustrate this.

private void create_promise(Promise p)

{

/l inserting a new promise into promises table
string sql =

"INSERT INTO promisesNR" +

"(promise_id, " +

" hotel name, " +

"room_id, " +

" available_date,” +

" expiry_date " +

"VALUES (" + p.promise_id + "™ +

p.available_date +™," +
p.expiry_date +™)";

14¢

SglCommand cmd = new SqglCommand(sgl, conn);
cmd.ExecuteNonQuery();

/l remove all expired promises from the promises
/I table
DateTime today = DateTime.Today;

string sql1 = "DELETE FROM promisesNR " +
" WHERE expiry_date <" + today;

SglCommand cmdl = new SqlCommand(sgll, conn);
cmdl.ExecuteNonQuery();

}

7.4.2.2 Executing Actions

The messages being exchanged among ComponentsPafngise Making
System need careful coordination to allow the clesaparation between
executing actions and the checking for the conststeWhen invocation of an
action arrives from the promise client at PM, aagaction is created by PM,
and PM then passes the action to App with the &@tien context. App
executes the action which may update/query theurees maintained by RM.

Once the action has been executed, PM checks #ddtien made any updates
on resources so these are no longer consistentiwgtpromises that must be
maintained. For this check, PM first gets a snapshdist the promises table,
called the temporary promises list. Then, PM upsitite temporary promises
list to reflect any promise environment which wasgented by the action. For
example, if the action is in the context of a preenienvironment which
releases existing promises, then the promisessedielay the action need to be
removed from the promises list. The possibly medifpromises list is used
when running the promise checking. If promise cheglketurnstrue, the
updates on resources made by the action have mdated promises
consistency so the persistent promise table carptlated and the transaction
is committed. On the contrary, if the promise clieghketurnsfalse the action
has changed the resources so as to conflict wilptbmises which must still
be maintained, so it needs to be rolled back. Tmeessage sequences are
illustrated in Figure 25.

15C

PM App RM

action : :
— Pass action (with

transaction contex

»
»

update/query

A 4

Execute action
response

response <

A

ets promises list and pyt them into temporary
promisesilist.

Updates the temporary promises list according
to promise enyironment

query

Y

Promise Consistency Checking
response

P
<

Depending on the promise checking respc
Changes the promises table according to promise

environment, and commits transaction
respons

Figure 25 Message Sequences on Executing Actions

We show the implementation of executing actionun gystem in the
following code examples.

We first define a class that represents a proms&@nment which contains
list of promise identifiers with options as whether release the listed
promises.

class PromiseEnvironment
public int[] promise_id;

public int releaseOption;

}

151

We also assume that there is an action executednbywpplication. The
execution of an action is demonstrated by the nuetteking_payment() in
our implementation. If the actiomaking_payment() is in the context of a
promise environment to release the existing pronfise example a user is
paying to take the hotel room that has been bodiðe user, the action is
successfully executed and the promises in the m®n@nvironment are
released permanently from the promises kept by RMvever, if the action
making_payment() is not in the context of a promise environment, fo
example a different user is paying for the hoteltthas been booked for
another user, if the consistency of promises lmild be violated. The PM
must roll back the action in this case to maintdie consistency of the
promises list kept in the PM.

The following code excerpt illustrates how PM caaimtain consistency when
an action is executed with or without the presesfce promise environment.

/ Method handles executing actions
public void executing_actions(PromiseEnvironment pe)

{

I/l Create and begin a transaction to run while
Il checking validity of action being executed
CommittableTransaction tx =

new CommittableTransaction();

Il Let's assume make_payment() action has been
I/l executed by an application

App app = new App();
app.make_payment(tx);

Il Gets the current promises list kept in PM and make
/it as a temporary list
ArrayList promises = get_promises();

/I Create another promise list that is presented in
/l the promise environment. This list is used to
/I remove promises from the pemerant promises lis t
/l kept in PM

ArrayList promises_affected = new ArrayList();

/I if a promise environment presents with the a ction
if (pe != null && pe.releaseOption == RELEASE)
{
/l remove all promises presented to release i n
/I promise environment from the temporary lis t
for (inti=0; i< pe.promise_id.Length; i ++)
{

int promise_id = pe.promise_id[i];

15z

Promise p = get_promise(promise_id);
promises.Remove(p);

// add promises in the promise environm ent
promises_affected.Add(p);
}
}

I/l Pass the updated temporary list for the
/I consistency checking

bool pcc = promise_consistency_checking(promise S);
I If the consistency is still maintained with th e
/l updated promise list, the action can be grante dto
/I commit.
if (pcc == true)
{
// Promises presented in the promise environm ent
/I are removed permanantly from the promises list
I/l keptin PM

IEnumerator ie =
promises_affected.GetEnumerator();

while (ie.MoveNext())

Promise p = (Promise)ie.Current;
remove_promise(p);

}

tx.Commit();

}

/l'If consistency is violated with the updated

/l temporary list, the action must be roll back
else

tx.Rollback();

}
}

7.4.2.3 Updating Promises

The promise allows clients to request to updatestexj promises. The
important consideration is to grant an update rsgoely if the update doesn’t
conflict with existing promises and resources fbe tupdate promise are
available. Similar to other promise operations, thgeration to update
promises runs as a transaction. In the start ofrdresaction, the PM takes a
shapshot of the current promises kept in the prenable and makes it a
temporary list. As updating existing promises cansben as the combination

15z

of removing the previous promise and creating v promise, PM removes
the previous promise and adds the new promise intonthe temporary list.
The temporary list which has been updated accorttirthe update request is
passed for the consistency checking. If grantirgujpdate would not violate
consistency, which is confirmed by consistency &hmegreturningtrue, PM
now deletes the previous promise and inserts thepremise record into the
persistent promise and commits the transactioncalfisistency checking
returnsfalse,PM aborts the transaction to avoid violation of tie&sistency of
promises. These message sequences are illustnafeglire 26.

PM RM

Update
request

ets promises list and put them into temporary

promises list.

emove previous promise and add the new
romise from/into the temporary promises list

A 4

Promise Consistency Checking

A

If (promises consistency checking retunse),
remove the previous promise and insert a neyw
promise into the permanent promiseléalbhen acce
Promise the update request.
response If (promise consistency checking rufiaése reject th

< update request

Figure 26 Message Sequence on Updating Promises

The code showing the message sequence of updatimgses is illustrated in
the following example.

/I the method handles updating promises
public void updating_promises(
Promise old_p, Promise new_p)

/lthe updating promise operation runs as a
transaction
CommittableTransaction tx =
new CommittableTransaction();

154

/I Get the current promises kept in PM and make i tas
/[a temporary list. Remove the previous promise in
/I the update from the temporary list, and add th e
/l new promise into the temporary list

ArrayList promises = get_promises();

promises.Add(new_p);

promises.Remove(old_p);

I/l Pass the udpated temporary list for the
/I consistency checking
bool pcc = promise_consistency_checking(promise S);

I if consistency checking returns true
if (pcc == true)

/I delete the previous promise and insert the new
/I promise into the permanent promise list, t hen
/I commit the operation

update_promise(old_p, new_p);

tx.Commit();

/I if consistency checking returns false, abort t he
// operation
else

tx.Rollback();

}
}

7.5 Other Alternatives

There are some similarities between the implemmemamechanisms we
introduce for maintaining a promise, and algorithpreviously used in
database locking such as escrow locking [73] ardipates [21]. However we
can identify some clear differences. All our proesishave limited duration,
and thus none of our techniques violate autonomalloyving a client to deny
access to resources unduly. Also, our promise mgatechniques generally
deal with problems by rejecting a promise requedher than blocking as in
traditional database concurrency control. The dhdgking we allow is during
the ACID transaction that checks if a promise rastjgan be granted, or if an
action has violated any promises; these are veigkateps, and can be coded
with resource ordering to avoid deadlock, whiclkaigsery common error in
conventional locking systems.

Promises are also analogous to integrity constaimmd many researchers

have considered how to enforce integrity in datab@snagement systems.
Techniques based on index data structures are calpwmsed for the simplest

15t

constraints such as primary and foreign keys. A engeneral approach
involves modifying each query to incorporate thestoaint [77]. In [73], it
showed how compile-time checks could ensure thatlicgtion code
preserved constraints. Techniques like these ntighiseful in implementing
a promise manager which needs to check each @atiwn for compatibility
with previously granted promises. However, there ianportant differences
between integrity constraints and promises. Magtitantly, each integrity
constraint can be considered independently, whilempes need to be
satisfiable by disjoint resources. For example, tiategrity constraints
‘balance>100" and ‘balance>50" are both met if baance is 120, but two
promises for ‘balance>100" and ‘balance>50" impiattthe balance must be
kept over 150. Any promises that may violate “kegpthe balance over 150"
will be rejected by the promise system. With préypeviews, promise
satisfiability can require a graph matching aldorit whereas integrity
satisfiability is just logical satisfiability. Alsoour promises could ensure
checking of dynamic constraints on the fly amongl-tene business process
interactions.

7.6 Summary

We have presented a detailed design for how taneegisupport for Promise
Making in a web service, to provide support forlasion of long running
activities. A prototype implementation has been eomsing .NET
technologies, using two scenarios to cover theegfit handling mechanisms
for named and anonymous resources.

Our prototype is designed to provide Promise-basethtion support for
existing applications, without requiring changes dpplications, resource
managers or the schemas of the resources beinggetnd/e implement our
Promise Manager prototype as a layer that wrappastieg application
systems and ensured that promises could be botitegr@and honoured. The
Promise Manager takes action requests from cliants passes them along,
unchanged, to existing applications. These apjdieatprocess these requests
in the normal way and pass back their responseheioPromise Manager
which checks for promise violations before commgtiand returning the
response to the client.

The crucial responsibility of a Promise system @intaining the validity of

non-expired promises. In other words, resourcest inesavailable to satisfy
every predicate that the Promise Manager is corachitt maintain. To ensure
that granted promises are not violated, the Prorvlaeager implements a
Promise Consistency Checking mechanism where iluates a set of
promises against the current state of resources.ilM&rate two Promise

Consistency Checking mechanisms to cover namedines® and anonymous
resources. We also demonstrate the ways Promissisiemcy Checking are

15¢

used in various operations, such as making new igesnexecuting actions,
and updating existing promises, which could viothe validity of promises.

In the next chapter we bring together the lessansave learnt and the insight
we have built up through this research.

Chapter 8

Conclusions

Web Services and service-oriented architecturesbaneg promoted as the
best way to build the next generation of Interreetles distributed applications.
These applications are made by gluing together wpaand autonomous
services, possibly supplied by business partnex$ third party service
providers, into loosely-coupled virtual applicaonthat can span
organisational boundaries and connect large-seaméss processes.

Services are just applications that expose sonthedf functionality to other

applications in a particularly simple and restuctevay. Services are
autonomous, opaque (and probably stateful) appitatthat communicate
with each other solely by exchanging asynchronoassages. This services
model is extremely simple but, unfortunately, thisplicity does not mean
that large-scale service-based applications wilverto be easy to develop in
practice or sufficiently reliable when they are ldgpd.

There are now a number of proposed standards foaBé B2Bi solutions for
building service-based systems. Through such tgmbasrt and standards, it is
fairly easy to design and construct this kind dlegrated system. Current
technology does not, however, make it easy to desifjable and robust
applications: ones that can deal with events thate deviations from normal
processing paths, such as failures and concurretivitigs, while still
maintaining overall, cross-organisational consisyemThe main focus of our
work has been providing programming models andoaas which make it
easier to detect and avoid consistency faultsarstrvice-based system.

In Chapter 3, in order to understand the naturseovice-based systems, we
defined a realistic e-procurement scenario anédish detail the common
problems faced by the developers which prevent thiem building a reliable
and robust system. Through the analysis of the ocmmmroblems, we
identified key principles the developers must cdesito avoid producing the
common problems.

In Chapter 4, based on the key principles we ifiedtin the previous chapter,

we proposed a new framework called GAT in the ostiaéion infrastructure.
We discussed key innovative features of GAT, sushumiform processing

15¢

between the normal activities and deviational eveatcessing a wide range
of state aspects, and many more. Using the exatakdn from part of the e-
procurement case study, we illustrated how devetopeuld use the GAT
framework to design their business requirements.a¥e discussed how key
features of the new framework help the developersavoid producing
consistency faults.

In Chapter 5, we defined the critical challengex trave to be addressed when
designing a business process system to suppoB@Afilemodel. These include
implementing control flow based on the evaluatibguards, the management
and distribution of events, and enforcing atomictiynstraints across the
evaluation of guards and the execution of the spwading activity. We
demonstrated that one can build a system followiinig approach and
illustrated our proof-of-concept GAT prototype withde examples.

The GAT model still requires the developers to ardode that handles
deviations that arise from interference from conenir activities. In Chapter 6,
we provided a sophisticated unified isolation mea$ra called Promises that
is not only applicable to our GAT framework, bus@ko any applications that
run in the service-based world. We discussed timeegt, how it works, and
how it defines a protocol.

In Chapter 7, we defined some of the implementaissnes that need to be
resolved in promise-based systems such as howstareeiPromise Manager
takes overall responsibility and coordinates th#vies in order to maintain
the validity of non-expired promises. We provided peoof-of-concept
prototype system showing that one can implemenptbmises mechanism.

For future work, we plan to build a fully generaAG engine which can take
any business descriptions and turn them into eabteitcode, as was briefly
mentioned in Chapter 5. In this new version, ratih@n using a proprietary
technology such as .NET, we plan to use Web serstaedards for the
sending and receiving of external event messagealdav any underlying

implementations to be interoperable.

We also plan to add a feature which the enginecback for various mistakes
at compile time and also we wish to support a matavhich checks that
consistency conditions are correct at terminatioe t

We are also considering building a graphical us&rface to make it easier
for business analysts to define a business degrigollowing the GAT
model. We also plan to include optimisations in #rgine to improve the
performance of the compilation process itself ahdhe executable code it
produces.

We will implement support for Promise interactioirs several service-

provision frameworks, including our own GAT engirend also some

commercial approaches. This will involve developingher implementations

for checking predicates against resources, asshsduin Chapter 7. This may
need more understanding of semantics of resounves/ed. Some techniques
studied in Ontology can perhaps be useful. As wadl plan to provide simple

heuristics to choose an appropriate implementagohnique for each class of
resources. We also will integrate the processingpaimises with other

frameworks for service-oriented messaging, inclgdime transaction support
found in standards like WS-Transactions and WS+BssActivity.

Web 2.0 is the latest buzzword that has hit cylsysp Though the exact
definition of “what it is Web 2.0” seems to be Istibntroversial depending on
who interprets it, still it can be generally undeosl as referring to a next
generation of internet and web-based communitiesiclwhfacilitate
collaboration and sharing between users.

According to a white paper [79] published by theirfder of Web 2.0 Tim

O'Rellly, there are some key principles typicallppaar in the Web 2.0

applications such as web blogs, social bookmarkitgs (e.g. del.licio.us),

wikis, podcasts, RSS/Atom, internet forums, Web sARAnd many more.

These applications use a web as a delivery platfaltowing users to use

applications entirely through a browser. Architeetis designed to encourage
user participations which add value to the apphbecags they use it. They
provide a rich, interactive, user-friendly interdabased on Ajax or similar
frameworks often providing social networking fomomunities of people who

share interests and activities.

In [19], the author reports that the concept actinelogies advocated by Web
2.0 to have many similarities with SOA computingoti® technologies
encourage the autonomy of services that hides hadl implementation
complexity underneath and only provides open angple access to users.
Both embrace Web services and they advocate pravalinew solution by the
aggregation of existing functionality that crosseast boundaries. The
importance of making large, back-end database wirifnctionality is
realized. And both Web 2.0 and SOA provide theding blocks for creating
more user-centric processes where the end usensseatie system without a
steep learning curve.

Due to its lack of maturity with Web 2.0 being aarlg stage of the

development, there still seems to be a lot of ersighan connecting people
and resources to form a social network among conitresrof people rather

than using the web for business use. For this reath® emphasis on the
quality of service, such as robustness issues, séere often ignored from
many discussions of the Web 2.0.

16C

However, more recently, Enterprise 2.0 [19] has rge to embrace the
convergence of Web 2.0 technologies with web sesvand SOA to enable
enterprises to deploy robust, reliable, and sebusiness applications over the
Web. In this regard, it will be really interestityinvestigate in the future how
our work on GAT and Promises will find ways to pide/ robustness support
for the Web 2.0 applications.

161

BIBLIOGRAPHY

[1].Alonso, G., Abbadi, A. El.,, Kamath, M., Gunthor,, Rgrawal, D.,
Mohan, C. Failure handling in large scale workflomanagement
systems. 1994, Technical Report IBM RJ9913.

[2]. Alonso, G., Agrawal, D., Abbadi, A. El., Kamath,. MGunthor, R.,
Mohan, C. Advanced transaction models in workflaantexts.|IEEE
Conference on Data Engineeringp 574-581, 1996.

[3].Babara, D., Mehrotra, S., Rusinkiewicz, M. INCAs:ahaging
Dynamic Workflows in Distributed Environmentsjournal of
Database Management, Special Issue on Multidatehaggd):5-15,
1996

[4]. BizTalk Server. http://www.microsoft.com/biztalk/

[5]. BEA Systems Inc. BEA tuxedo: The Programming ModE)96.
http://edocs.bea.com/wle/tuxedo/main/stref.htm

[6].Birrell, A.D., Nelson, B. J. Implementing remotepedure callsACM
Transaction Computer Systen2$1):39-59, February 1984

[7].Borgida, A., Murata, T. Tolerating exceptions inritows: a unified
framework for data and proce$¥oceedings of WACC’99.999.

[8].Business Process Execution Language for Web Ser(iB&EL),
Version 1.0. http://www-
106.ibm.com/developerworks/webservices/library/\psib

[9].Cabrera, L. F., Jones, M. B., Theimer, M. Heraldhi&ving a Global
Event Notification Servicen Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems (HotOS-VIIBimau, Germany.
IEEE Computer Society, May 2001

[10]. Carzaniga, A., Rosenblum, D.S., Wolf, A.L. Desigrd&valuation
of a Wide-Area Event Notification ServicACM Transactions on
Computer System$9(3):332-383, August 2001

[11]. Casati, F., Ceri, S., Parboschi, S., Pozzi, G. Epaton and
Implementation of Exceptions in Workflow Managemesystems.
ACM Transactions on Database Systewd. 24, no. 3, pp. 405-451,
1999.

[12]. Casati, F., Pozzi, G. Modeling Exceptional Behawvior Workflow
management System®roceedings of International Conference on
Cooperative Information Systems (CooplS,9%99.

[13]. Ceri, S., Grefen, P., Sanchez, G. WIDE - a distel architecture
for workflow managementin Proceedings of RIDE'Q7pp 76-81,
1997.

[14]. Chiu, D. K. K., Li, Q. ADOME-WFMS: Towards coopeinst
handling of workflow exceptions. In Romaovsky, ADony, C.,

16z

Knudsen, J. L., Tripathi, A. editorddvances in Exception Handling
Techniquepp 271-288. Springer-Verlag, LNCS-20022, 2001.

[15].Chiu, D. K. W., Li Q., and Karlapalem, K. A Meta Meling
Approach for Workflow Management System Supportixgeption
Handling.Information Systems, vol. 24, ng.@». 159-184, May 1999.

[16]. Chiu, D. K. W., Li, Q., and Karlapalem, K. Facititag Exception
Handling with Recovery Techniques in ADOME Workflow
Management Systerdournal of Applied Systems Studies, vol. 1, no. 3
pp. 467-488, 2000.

[17]. Chiu, D.K.W., Li, Q., and Karlapalem, K. Web Int&cE-Driven
Cooperative Exception Handling in ADOME Workflow Magement
SystemInformation Systems, vol. 26, ng.@. 93-120, 2001

[18]. Dayal, U., Hsu, M., Ladin, R. Organizing Long-RumgiActivities
with Triggers and TransactiorBroceedings of the ACM International
Conference on Management of Data (SIGMQip). 204-214, 1990.

[19]. Dion Hinchcliffe’s Web 2.0 Blog.
http://web2.socialcomputingmagazine.com/

[20]. Encina from Transarc. http://www-306.ibm.com/softe/aw-atoz/

[21]. Eswaren, K., Gary, J., Lorie, R., Traiger, |. Thetions of
consistency and predicate locks in a databasemyS&temmunications
of the ACM 19(11):624-633, 1976.

[22]. Eder, J., Liebhart, W. The Workflow Activity ModelWVAMO.
Proceedings of the International Conference on @oative
Information Systemd/ienna, Austria, 1995.

[23]. Fitzpatrick, G. Kaplan, S., Mansfield, T., Arnol@., Segall, B.
Supporting public availability and accessibility tii Elvin:
Experiences and reflections, Computer Supportedp@adive Work:
the Journal of Collaborative Computing002

[24]. Fletcher A. (ed).GRID Transaction Management Research Group
Report.http://www.ggf.org/mail_archive/tm-rg/2006/06/d@fD5.doc

[25]. Freemantle, P., Weerawarana, S. & Khalaf, R. Ens&pServices
Communications of the ACK¥b(10), 77-82. 2002

[26]. Fung, C., Hung, P. Distributed System RecoveryubhoDynamic
Regeneration of Workflow Specificatiothe &' IEEE International
Symposium on Object-Oriented Real-Time Distribu@aimputing
May 18-20, 2005

[27]. Gawlick D. and Kinkade D. Varieties of Concurren©pntrol in
IMS/VS Fast pathlEEE Data Engineering Bulletjr8(2):3-10, 1985.

[28]. Georgakopoulos, D., Hornick, M. A Framework for Brdeable
Specification of Extended Transaction Models andin$actional
Workflows, Journal of Intelligent and Cooperative Information
Systems3(3):599-617, 1994.

[29]. Georgakopoulos, D., Hornick, M. F., Sheth, A. P. é&rerview of
workflow management: From process modelling to work

162

automation infrastructurd)istributed and Parallel Databasgesol. 3,
no. 2, pp. 119-153, 1995.

[30]. Geppert, A., Tombros, D., Dittrich, K. Defining tHg&emantics of
Reactive Components in Event-Driven Workflow Exémut with
Event HistoriesInformation System23(3/4):235-252, 1998.

[31]. Goodenough, J.B. Exception Handling Issues and @pd3ed
Notation.Communications of the ACM8(12):683-696, 1975.

[32].Gray, J. Reuter, A. Transaction Processing: Cascegnd
Techniques, Morgan Kaufmann Publishers, 1993.

[33]. Greenfield, P., Fekete, A., Kuo, D., Nepal, S. Gstesicy for Web
Services ApplicationsVery Large Database Conference (VLDB)
2005

[34]. Greenfield, P., Fekete, A., Jang, J., Kuo, D. Cengation is Not
Enough. In proceedings of the 7th IEEE International Entige
Distributed Object Computing Conference (EDOC/08). 232-239,
Brisbane, Australia, September 2003.

[35]. Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nefa Isolation
Support for Service-based Applicatiofi$tird Biannual Conference on
Innovative Database Systems Research (CIDR'88)lomar, USA,
January 2007.

[36]. Garcia-Molina, H., Salem, K., "Sagas,ACM International
Conference on Management of Data (SIGMQip), 249-259, 1987.
[37]. Hagen, C., Alonso, G. Exception Handling in Workflo
Management System$EEE Transactions on Software Engineering

26(10):943-958, October 2000.

[38]. Hagen, C., Alonso, G. Flexible Exception Handlimgthe OPERA
Process Support SystemlEEE International Conference on
Distributed Computing Systensp 526-533, 1998.

[39]. Hagen, C., Alonso, G. Beyond the Black Box: Eveat&d Inter-
process Communication in Process Support SystehiEEE
International Conference on Distributed Computingt®ms pp 450-
457, 1999.

[40].Helland, P. Data on the Outside versus Data on Itisde.
Conference on Innovative Database Systems Res@albiR’07), pp
144-153, Asilomar, USA, January 2005.

[41]. High Performance Counter.
http://support.microsoft.com/kb/q172338/

[42]. Horswill, J., Miller, S. Designing and Programmin@ICS
Applications. O'Reilly & Associates, 2000.

[43]. HwWang, S. Y., Ho, S. F., and Tang, J. Mining exicgpinstances to
facilitate workflow exception handlingProceedings of the 6th
International Conference on Database Systems forvaAcked
Applications pp. 45-52, 1999

[44]. 1BM. WebSphere MQ Integrator Broker: IntroductiomdaPlanning,
June 2002.

164

[45].Jang, J., Fekete, A., Greenfield, P., Kuo, D. Espireness of
Workflow Description Languagednternational Conference on Web
Services(ICWS)Las Vegas, USA, June 2003

[46].Jang, J., Fekete, A., Greenfield, P., Nepal, S. Event-Driven
Workflow Engine for Service-Based Business Systebusiference on
the Enterprise Computing (EDOCpp 233-242, Hong Kong, China,
October 2006

[47].Jang, J., Fekete A., Greenfield, P. Delivering Rses for Web
Service Applications Technical Report of University of Sydney
School of Information Technologies, TR-605, Deceni6.

[48]. Java Messaging Service. http://java.sun.com/preduots/

[49]. Knolmayer, G., Endl, R., Pfahrer, M. Modeling Prsses and
Workflows by Business Rule$n Business Process Management, ed
W. van der Aalst,NCS 1806, pp 16-29, 2000.

[50]. Koschel, A., Kramer, R. Applying Configurable Everiggered
Services in Heterogeneous, Distributed Informatidystems.
Engineering Federated Information Systergorkshop EFIS'99
Kidhlungsborn, Germany, pp 147-157, May 5-7, 1999.

[51]. Krishnamoorthy, V., Shan, M. Virtual transaction debd for
workflow applications. International Symposium on Applied
Computing (SAG)Como, Italy, March 2000.

[52].Kuo, D., Fekete, A., Greenfield, P., Jang, J. Talsaa Framework
for Capturing Transactional Requirements of Real riffows.
International Workshop on Cooperative Internet Cating, pp. 113-
122.

[53]. Kuo, D., Fekete, A., Greenfield, P., Jang, J. Wisat Could Possibly
Go Wrong In B2B Interactionthternational Computer Software and
Applications Conference(COMSA®@allas, USA, November 2003

[54]. Kuo D., Gaede V. and Taylor K. Using Constraint$vianage Long
Duration Interactions in Spatial Databas€aoplS'98 pp 383-395,
1998.

[55]. Leymann, F. Supporting Business Trnasactions vitaP®8ackward
Recovery in Workflow Management Systems&l-Fachtagung
Datenbanken in Buro Technik und WissencH#95.

[56]. Luo, Z., Sheth, A., Kochut, K., Miller, J. ExceptidHandling in
Workflow Systems.Applied Intelligencel3(2):125-147, September
2000.

[57]. Mehrotra, S., Rastogi, R., Silberschatz, A., Ko#h,A Transaction
Model for Multidatabase Systemdnternational Conference on
Distributed Computing Systems.

[58]. Microsoft BizTalk. http://www.microsoft.com/biztalékefault.mspx

[59]. Microsoft CodeDOM. http://msdn2.microsoft.com/en-
us/library/y2k85ax6.aspx

[60]. Microsoft Corporation. Message Queuing in Windows, 2001.

[61]. Model Driven Architecture (MDA). http://www.omg.ofmda/

16t

[62]. Mourani, H., Antunus, P. Exception Handling ThroughVorkflow.
CooplS 2004pp. 37-54, 2004.

[63]. MSDB .NET Framework Developer's Guide Using CodeDOM
http://msdn.microsoft.com/library/default.asp?uibrary/en-
us/cpguide/html/cpconUsingCodeDOM.asp

[64]. Muller, R., Greiner, U., Rahm, E. AGENTWORK: a wiidw
system supporting rule-based workflow adaptatiddata and
Knowledge Engineering1(2):223-256, November 2004.

[65]. Naur, P. "Revised Report on the Algorithmic LangeiaALGOL
60.", Communications of the ACMWol. 3 No.5, pp. 299-314, May
1960

[66].Ng, A., Chen, S., Greenfield, P. An evaluation @ntemporary
commercial SOAP implementationdVorkshop on Software and
System Architecturepp64-71, June 2004

[67]. OASIS UDDI Specification. http://www.uddi.org/fagsml

[68]. Object Management Group. BPMI.org http://www.bpmg/o

[69]. Object Management Group CORBA Notification Server
Specification 1.1
http://www.omg.org/technology/documents/formal/fiosition_servic
e.htm

[70]. Object Management Group. Unified Modeling Language
Specification (Version 1.3), June 1999.

[71]. Object Management Group. CORBAservices: Common €bje
Services Specfications, 1997.

[72]. The Open Group. Transaction Processing Titles. @pen Group.
http://www.opengroup.org/products/publications/tagép.htm

[73].O'Neil P. The Escrow Transactional MethoddCM TODS
11(4):405-430, 1986

[74]. Petlz, C.
http://devresource.hp.com/drc/technical_white_psfésOrch/WSOr
chestration.pdf

[75]. Puustj arvi, J., Laine, H. WorkMan — A Transactibhsorkflow
Prototype.In Database and Expert Systems Applicatigs212—-221.
Springer, 2000.

[76]. Sheth, A., Georgakopoulos, D., Joosten, S., Rusmkz, M.,
Scacchi, W., Wileden, J., Wolf, A. Report from tR&F Workshop on
Workflow and Process Automation in Information 8yt Technical
report, University of Georgia, UGA-CS-TR-96-003 969

[77]. Stonebraker, M. Implementation of integrity coasits and views
by query modificationACM SIGMOD Conferencep 65-78, 1975.

[78].Sheard T. and Stemple D. Automatic Verification D&tabase
Transaction SafetyACM TODS14(3):322-368, 1989.

[79]. Tim O'Reilly. What is Web 2.0 white paper.
http://www.oreillynet.com/pub/a/oreilly/tim/news/@5/09/30/what-is-
web-20.html

16¢

[80]. Tombros, D., Geppert, A. Building Extensible Woddfl Systems
using an Event-Based Infrastructu@AiSE’0Q pp 325-339

[81]. Urban, S. D., Kambhamepati, S., Dietrich, S. W., ¥in Sundermier,
A. An Event Processing System for Rule-Based Corapbn
Integration, International Conference on Enterprise Information
SystemsPortugal, pp.312-319, April, 2004,

[82]. W3C SOAP Specification. http://www.w3.org/TR/soap/

[83]. W3C WSDL Specification. http://www.w3.org/TR/wsdl

[84]. Wachter, H., Reuter, A. The ConTract Modeh Database
transaction Models for Advanced Applications (edlitdy A.
Elmagarmid) pp. 219-263. Reprinted in ‘Readings in Database
Systems, 4 edition’ (edited by M. Stonebraker and J. Helleirsy,
1992.

[85]. WebMethods. MebMethods Enterprise Integrator: seBuide,
2002.

[86]. WebSphere MQ Workflow. http://www-
3.ibm.com/software/integration/wmaqwf/

[87].Web Service Choreography Interface (WSCI) 1.0 Spation.
http://wwws.sun.com/software/xml/developers/wsci/

[88]. Weikum, G. Extending Transaction Management to wapimore
Consistency with better Performand&ench Database Conference
pp. 27-30, 1993.

[89]. WWW WS-Events Version 2.0
http://devresource.hp.com/drc/specifications/wsn8ABvents. pdf

[90]. Widom, J., Ceri, S. Active Database Systems: Triggel Rules For
Advances Database Processing. Morgan Kaufmann, 1995

[91]. Wise. A. Little-JIL 1.0: Language reports. TechhiBaport UM-CS-
1998-024, University of Massachussets, Amherst, M8A, 1998.

[92]. WS-AtomicTransaction Specification.
ftp://Iwww6.software.ibm.com/software/developer/dby/WS-
AtomicTransaction.pdf

[93]. WS-BusinessActivity Specification.
ftp://Iwww6.software.ibm.com/software/developer/dby/WS-
BusinessActivity.pdf

[94]. WS-Coordination Specification.
ftp://Iwww6.software.ibm.com/software/developer/dby/WS-
Coordination.pdf

[95]. WSFL specification.
http://www4.ibm.com/software/solutions/webservipe$/WSFL. pdf
[96]. XLANG specification.

http://www.gotdotnet.com/team/xml_wsspecs/xlangetadlt.ntm

[97]. Zhao, W., Moser, L., Melliar-Smith, M. A Reservatibased
Coordination Protocol for Web Servicd2oceedings of ICWS’'Q%p
49-56, 2005.

