

i

BUILDING RELIABLE AND ROBUST

SERVICE-BASED SYSTEMS FOR

AUTOMATED BUSINESS PROCESSES

Julian Jang-Jaccard

A thesis submitted in fulfilment of

the requirement for the degree of

Doctor of Philosophy

School of Information Technologies

University of Sydney

March 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41230778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract
An exciting trend in enterprise computing lies in the integration of
applications across an organisation and even between organisations. This
allows the provision of services by automated business processes that
coordinate business activity among several collaborating organisations. The
best successes in this type of integrated distributed system come through use
of Web Services and Service-based Architecture, which allow interoperation
between applications through open standards based on XML and SOAP. But
still, there are unresolved issues when developers seek to build a reliable and
robust system.

An important goal for the designers of a loosely coupled distributed system is
to maintain consistency for each long running business process in the presence
of failures and concurrent activities. Our approach to assist the developers in
this domain is to guide the developers with the key principles they must
consider, and to provide programming models and protocols, which make it
easier to detect and avoid consistency faults in service-based system.

We start by defining a realistic e-procurement scenario to illustrate the
common problems faced by the developers which prevent them from building
a reliable and robust system. These problems make it hard to maintain the
consistency of the data and state during the execution of a business process in
the occurrence of failures and interference from concurrent activities. Through
the analysis of the common problems, we identify key principles the
developers must consider to avoid producing the common problems.

Then based on the key principles, we provide a framework called GAT in the
orchestration infrastructure. GAT allows developers to express all the
necessary processing to handle deviations including those due to failures and
concurrent activities. We discuss the GAT framework in detail with its
structure and key features. Using an example taken from part of the e-
procurement case study, we illustrate how developers can use the framework
to design their business requirements. We also discuss how key features of the
new framework help the developers to avoid producing consistency faults. We
illustrate how systems based on our framework can be built using today’s
proven technology.

Finally, we provide a unified isolation mechanism called Promises that is not
only applicable to our GAT framework, but also to any applications that run in
the service-based world. We discuss the concept, how it works, and how it
defines a protocol. We also provide a list of potential implementation
techniques. Using some of the implementation techniques we mention, we
provide a proof-of-concept prototype system.

iii

Acknowledgements

My deepest thank goes to my supervisor Alan Fekete for his guidance and
patience during the course of my doctoral studies at the University of Sydney.
His broad knowledge and his clear thinking have always inspired me. Not only
for the research aspect, his warm personality and friendly smile have always
assured me how lucky I have been to work with someone as capable as he is.
Equally, I owe the deepest gratitude to Paul Greenfield. It was Paul who hired
me in CSIRO and trained me as a researcher even when I had no idea what it
meant. During the last 5 years, with much happening in CSIRO, he has
continuously embraced my interests and showed me the right direction: how to
be a good researcher and what it means to do quality research. Alan and Paul,
I am sure I’ll miss very much our regular Friday meetings at 8am.

I would like to thank my colleague Surya Nepal. At many difficult moments
during my research career, he has been there for me, listening to my problems
and complaints. I have been able to overcome many obstacles through the
constructive discussions and friendly advice from him. I also would like to
thank Dean Kuo, as without him, this research project would have not started.

I would like thank to my project manager at my work John Zic for providing
me an opportunity to undertake my study in conjunction with my work
responsibility. I also would like thank to the supervisors and fellow PhD
students of the middleware group for their constructive feedback on
presentations on my thesis topic. Special thanks go to David Levy, Uwe
Roehm, Shiping Chen, and Anna Liu.

This thesis is dedicated to my mom Ok-am Han, my late dad Bong-ok Jang,
and my husband Frederic Jaccard. Without the frequent assurance and
encouragement from my mom, I would have not made this far with my
studies. My husband has been simply superb in showing me continuous love
and support. My long journey would have not been the same without you my
love. And I am sure that my dad watching over far from there must be feeling
proud and happy for his youngest daughter to be where I am today.

iv

Table of Contents

ACKNOWLEDGEMENTS.. III

INTRODUCTION ...1

1.1 Problem Statement..2
1.2 Our Approach ...3
1.3 Contributions: Understanding the Nature of Service-based System4
1.4 Contributions: GAT – New Event-Driven Programming Model for
Defining Business Processes...5
1.5 Contributions: Design Principles in Building a Business Process System
based on GAT Model..5
1.6 Contributions: Promises – New Unified Isolation Mechanisms for
Service-based System ...6
1.7 Contributions: Design Principles in Supporting Promises......................8
1.8 Thesis Structure ..9

RELATED WORK..10
2.1 Traditional Transaction Support ..10

2.1.1 ACID properties...10
2.1.2 Locking Mechanism...11
2.1.3 Two-Phase Commit (2PC)..13
2.1.4 Advanced Mechanisms for Standard ACID15
2.1.5 Extended Transaction Models ..17

2.2 Distributed Computing Platforms..19
2.2.1 Conventional Middleware ..20
2.2.2 Workflow Management Systems (WfMS)....................................22
2.2.3 Business to Business Integration (B2Bi) and Service-oriented
Architecture (SOA)...26

2.3 Summary ..34

UNDERSTANDING THE NATURE OF SERVICE-BASED
SYSTEMS ..35

3.1 Motivating Scenario..35
3.1.1 E-procurement When Ordering Goods ...35
3.1.2 Merchant System..36

3.2 Issues for Service-based Systems ..38
3.2.1 Time Related Issues ...39
3.2.2 No Termination..40
3.2.3 Unprocessed Messages...40

v

3.2.4 Out of Order Processing of Messages ...41
3.2.5 Lack of Isolation ..42
3.2.6 Cancellations..43

3.3 Introduction to Deviations...44
3.3.1 Recoverable Deviations..44
3.3.2 Unrecoverable Deviations ..45
3.3.3 State-related Deviations ...46

3.4 States and State Mismatch...47
3.4.1 States ...47
3.4.2 Classification of Deviations..49

3.5 Desired Features in Handling Deviations ..54
3.5.1 Cancellations..54
3.5.2 Continuing to Make Forward Progress ...57

3.6 Critiques of Standard Mechanisms and Supports from Current
Technologies ..59
3.7 Summary ..60

GAT – NEW EVENT-DRIVEN PROGRAMMING MODEL
FOR DEFINING BUSINESS PROCESSES62

4.1 Payment Process ...63
4.1.1 Send Invoice ..63
4.1.2 Receive Payment..64
4.1.3 Send Receipt ..66
4.1.4 Cancellations..66

4.2 GAT Programming Model ..68
4.2.1 Structure ..68
4.2.2 Key Features ..71

4.3 Payment Process in GAT Model ...72
4.3.1 Activity Group: sendInvoice...72
4.3.2 Activity Group: receivePayment...74
4.3.3 Activity Group: overduePayment ...76
4.3.4 Activity Group: sendReceipt ..78
4.3.5 Activity Group: cancellations ...78

4.4 Experiment with GAT...80
4.5 Evaluation Compared to Other Models ...81
4.6 Summary ..82

DESIGN PRINCIPLES IN BUILDING A BUSINESS
PROCESS SYSTEM BASED ON GAT MODEL....................84

5.1 Case study...84
5.2 GAT Design Consideration...86

5.2.1 Control Flow of Business Activities ...86
5.2.2 Atomicity/Isolation Issues ..87
5.2.3 Management and Distribution of Events.......................................87

vi

5.3 Architecture of GAT Prototype System...88
5.3.1 User Interface...89
5.3.2 Event Handler ..89
5.3.3 GAT Processor...90
5.3.4 Remote Communication Handler ...90
5.3.5 Data Storage...91
5.3.6 Running Business Systems...92
5.3.7 Performance...93

5.4 Implementation of GAT model ...96
5.4.1 Defining Activity Group and Execution of Activities97
5.4.2 Supporting the GAT Event Concept ...100
5.4.3 Inter-process Communication...103

5.5 Design of a General GAT Engine..104
5.5.1 GAT Specifications..106
5.5.2 Analyser...107
5.5.3 Mapper...107
5.5.4 CodeDOM ...107
5.5.5 Generating C# ..107
5.5.6 Compiling ..107

5.6 Evaluation Compared to Other Implementation Alternatives.............108
5.7 Summary ..110

PROMISES – NEW UNIFIED ISOLATION MECHANISMS
FOR SERVICE-BASED SYSTEMS.......................................112

6.1 Promises ...113
6.2 Resources and Predicates ..116

6.2.1 Anonymous View ..117
6.2.2 Named View ..118
6.2.3 View via Properties ..119

6.3 Atomicity and Promises ..121
6.4 Implementation Techniques ..122
6.5 Promise Protocol...124
6.6 Promises and Isolation ..126
6.7 Other Similar Isolation Mechanisms ...127
6.8 Conclusion..129

DESIGN PRINCIPLES IN SUPPORTING PROMISES......130
7.1 Design Issues and Constraints of Promises..130

7.1.1 Compatibility ...131
7.1.2 Representing Promises ...131
7.1.3 Promises and Schemas ...131
7.1.4 Isolation and Concurrency..132
7.1.5 Dynamic Promise List ..132

7.2 Structure ...133
7.2.1 Messages..134

vii

7.2.2 Components ...135
7.2.3 Promise Consistency Checking ..137
7.2.4 Promise Operations ..138

7.3 Reflecting on our design ...139
7.3.1 Compatibility ...139
7.3.2 Representing Promises ...139
7.3.3 Promises and Schemas ...140
7.3.4 Isolation and Concurrency..140
7.3.5 Dynamic Promise List ..141

7.4 Implementation...142
7.4.1 Overview of Promise Consistency Checking Interface................142
7.4.2 Implementation of Promise Operations.......................................146

7.5 Other Alternatives...155
7.6 Summary ..156

CONCLUSIONS..158

viii

List of Figures

Figure 1 Conventional Locking Example (source from [25]).........................12
Figure 2 Two-Phase Commit (2PC) Protocol ..14
Figure 3 Escrow Locking Example (source from [25])..................................16
Figure 4 Long Transaction in Saga ...18
Figure 5 Conventional Workflow Example...22
Figure 6 ECA Example...23
Figure 7 E-procurement Scenario..36
Figure 8 Merchant Workflow..37
Figure 9 Payment Process within the Merchant Process................................63
Figure 10 Receive Payment ..65
Figure 11 GAT Process Structure ...69
Figure 12 GAT Activity Structure...70
Figure 13 Activity Group: receivePayment in GAT86
Figure 14 Architecture of GAT Prototype System...88
Figure 15 Snapshot of the Running Prototype System...................................93
Figure 16 Performance at Each Business Activity in Milliseconds (ms)94
Figure 17 Snapshot of the Performance Monitor ...96
Figure 18 GAT Engine Concepts ..105
Figure 19 GAT Engine Major Stages..106
Figure 20 Example of GAT Syntax...106
Figure 21 Outline of Ordering Process Code...127
Figure 22 Structure of Promise System...134
Figure 23 Promise Manager Flow Chart ...136
Figure 24 Message Sequence on Making New Promises.............................147
Figure 25 Message Sequences on Executing Actions151
Figure 26 Message Sequence on Updating Promises...................................154

ix

Publications on which this Thesis is

Based
• Jang, J., Fekete, A., Greenfield, P. Delivering Promises for Web

Services Applications. Technical Report of University of Sydney
School of Information Technologies, TR-605 December 2006.

• Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nepal, S. Isolation

Support for Service-based Applications. In Proceedings of the 3rd
biennial Conference on Innovative Data Systems Research (CIDR), pp
314-323, Asilomar, USA, January 2007.

• Jang, J., Fekete, A., Nepal, S., Greenfield, P. An Event-Driven

Workflow Engine for Service-based Business System. In Proceedings
of the 10th IEEE International Conference on Enterprise Computing
(EDOC), pp 233-242, Hong Kong, China, October 2006.

• Nepal, S., Fekete, A., Greenfield, P., Jang, J., Kuo, D., Shi, T. A

Service oriented Workflow Language for Robust Interacting
Applications. In Proceedings of the 13th Cooperative Information
Systems (CoopIS), pp 40-58, Cyprus, November 2005.

• Kuo, D., Fekete, A., Greenfield, P., Jang, J. Just What Could Possibly

Go Wrong In B2B Integration? In Proceedings of the 27th Annual
International Computer Software and Applications Conference
(COMSAC), pp 544-549, Dallas, USA, November 2003.

• Greenfield, P., Fekete, A., Jang, J., Kuo, D. What are the consistency

requirements for B2B systems? High Performance Transactions
Systems (HPTS) Workshop, Asilomar, California, USA, October 2003.

• Greenfield, P., Fekete, A., Jang, J., Kuo, D. Compensation is Not

Enough. In Proceedings of the 7th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), pp 232-239,
Brisbane, Australia, September 2003.

• Jang, J., Fekete, A., Greenfield, P., Kuo, D. Expressiveness of

Workflow Description Languages. In Proceedings of the 1st
International Conference on Web Services (ICWS), pp 104-110, Las
Vegas, USA, June 2003.

x

• Fekete, A., Greenfield, P., Kuo, D., Jang, J. Transactions in Loosely
Coupled Distributed Systems. In Proceedings of the 14th Australasian
Database Conference (ADC), pp 7-12, Adelaide, Australia, February
2003.

• Kuo, D., Fekete, A., Greenfield, P., Jang, J. Towards a Framework for

Capturing Transactional Requirements of Real Workflows. The 2nd
International Workshop on Cooperative Internet Computing (CIC),
Hong Kong, August 2002.

1

Chapter 1

Introduction

Businesses continuously seek methods to automate tasks to reduce costs. With
the advent of distributed computing, it is possible to implement Enterprise
Application Integration (EAI) and Business-to-Business integration (B2Bi)
solutions to automate business processes. The key to success is
interoperability between loosely coupled components implemented and hosted
on independent platforms. These may be within the same organisation or
indeed they can be owned by different organisations. Components are written
independently, and they can be combined in multiple ways. In many cases the
component encapsulates a legacy IT system, such as inventory management or
a financial package. The essence of such systems is the ability of collaborating
organisations to allow controlled external access to their internal IT systems
which raises questions familiar to database researchers, such as semantic data
conversion, data integrity, and many more.

There are a number of distributed computing platforms available for
implementing interoperation between application components. Some, like
J2EE or .NET, are proving popular and powerful within a tightly controlled
organisation. However, they lack the cross-platform interoperability needed
for industry-wide collaboration. Other technologies such as CORBA have
proved too heavy-weight and complex for many users.

Web Services is a maturing distributed computing platform that is currently
attracting a lot of attention [25]. This approach to interoperability relies on
both XML messaging and the internet. It is based on a set of standards
managed by the vendor-neutral W3C with support from all major IT vendors.
These standards include SOAP (Simple Object Access Protocol), WSDL (Web
Services Description Language) and UDDI (Universal Description, Discovery
Integration).

The Web Services standards mentioned above allow outsiders to invoke a
remote application, and provide arguments and receive results in a format that
can be understood on both sides. However, for effective EAI and B2Bi, we
need a sequence of operations flowing in both directions providing interaction
among long running business process across multiple organisations. In such

2

situations, interacting components typically maintain per-collaboration state
throughout a long collaboration. Designing a general loosely coupled
distributed system thus requires description of long running business processes
which exchange messages each of which is done using SOAP.

It’s important to distinguish between external and internal descriptions of a
service. A description of an interface or abstract business process is the way
external collaborators interact with a service. Internally, the orchestration or
executable business process describes when each activity is invoked, how
control flows, and how to deal with exceptions and other situations in
sufficient detail. Our thesis deals with the latter: the issues involved in the
orchestration level.

There are now a number of proposed standards for EAI and B2Bi solutions for
long running business transactions. For example, BPEL [7] is a specification
for implementing a business process from collaborating activities. Through
such tool support and standards, it is fairly easy to design and construct this
kind of integrated system. Current technology does not, however, make it easy
to design reliable and robust applications: ones that can deal with events that
cause deviations from normal processing paths, such as failures and
concurrent activities, while still maintaining overall, cross-organisational
consistency.

1.1 Problem Statement
An important goal for the designers of a loosely coupled distributed system is
to maintain consistency for each long running business process in the presence
of failures and concurrent activities. The objectives are thus similar to
transaction processing for database management systems.

The environment of a loosely coupled distributed system however is very
different from traditional database management systems where mechanisms
used for ACID properties worked well. The loosely coupled system is
constructed from pieces that need to remain autonomous, because they were
written, and are run, independently. In many cases, they belong to different
organisations which are competitors as well as collaborators; the
organisations’ goals are not the same, and each can’t extend trust to the other.
The pieces use many resources and may include human intervention, so each
lasts a long time. For these reasons, it is unacceptable for one business process
to hold locks in another business process that is located beyond a trust
boundary. The lack of locks means that processes can’t be completely isolated
from one another; also this means that one can’t follow traditional rollback,
based on the restoration of before images kept in a log.

3

To overcome the limitations of adapting the standard mechanism from ACID,
current technology tools and business process models have borrowed the
exception-handler concept from programming languages and an advanced
distributed transaction model based on compensation [36]. Though there is
high acceptance of the compensator model as a way to provide required failure
atomicity, it has limitations as a primary exception handling mechanism. This
is discussed in detail in Chapter 2 Related Work.

Rather than attempting to provide the equivalent of traditional or advanced
distributed transactions for the loosely-coupled Web Services world, our
approach has been focused on the more modest goal of supporting the
development of tools, programming models and protocols, which make it
easier to detect and avoid consistency faults in service-based system.

Key questions we will address concern the nature of situations that lead to
inconsistency in such systems, how designers can represent a business process
including all processing needed to avoid inconsistency, how designers can
express conditions that must be guaranteed to avoid interference from
concurrent activities, and how these designs can be implemented effectively
using today’s proven technologies.

1.2 Our Approach
We will provide the answers to the questions raised in the previous section
through the analysis of the nature of the service-based world and the
understanding of the issues involved in the domain.

We first present a realistic e-procurement scenario to discuss the common
problems faced by the developers of the service-based system which prevent
them from building a reliable and robust system. These problems make it hard
to maintain the consistency of the data and state during the execution of a
business process in the presence of failures and interference from concurrent
activities. Through the analysis of the common problems, we identify key
principles that will drive our proposals.

In the second part of the thesis, we provide a framework called GAT in the
orchestration infrastructure. GAT allows developers to express all the
necessary processing so that they can produce reliable and robust systems
despite the presence of failures and concurrent activities. We will discuss the
GAT framework in detail with its structure and key features. Using the
example taken from part of the e-procurement case study, we illustrate how
developers can use the framework to design their business requirements. We
also discuss how key features of the new framework help the developers to
avoid producing consistency faults. We will also illustrate how our framework
can be built using today’s proven technology.

4

In the third part of the thesis, we provide a unified isolation mechanism called
Promises that is not only applicable to our GAT framework, but also to any
applications that run in the service-based world. We discuss the concept, how
it works, and how it defines a protocol. We also provide a list of potential
implementation techniques. Using some of these implementation techniques,
we describe a proof-of-concept prototype system.

1.3 Contributions: Understanding the Nature of
Service-based System
We identify some important issues which can prevent the developers of a
service-based system from building reliable and robust systems for automated
business processes. The issues of concern include: time related issues derived
from the asynchronous nature of a service-based system, failure to terminate
resulting from lack of coordination and global knowledge among autonomous
systems, unprocessed messages caused by complex and sophisticated
interactions among loosely-coupled components, messages which arrive and
are processed out of order, lack of isolation due to activities which run for
long duration across trust boundaries, and the increased chance of
cancellation.

These issues are often causes of state mismatches which then produce various
deviations from the expected execution path. If these deviations are not
appropriately handled, the system will produce inconsistent outcomes. We
give our insights into the states, starting from defining the types of state
involved in a service-based system, such as real world state, abstract state and
the business process state. We present different types of state mismatches in
terms of these three types of state. This can provide better insights into the
relationship between the key issues of any service-based system and the types
of deviations.

We present what we consider to be required behaviours to be able to handle
various common deviations resulting from state mismatch. In light of our list
of required deviation handling behaviours, we evaluate the existing standard
deviation handling mechanisms to see how well they can be used as support.
We present the results of the evaluation and summaries the key requirements
for describing business processes if we seek to reduce consistency problems.

5

1.4 Contributions: GAT – New Event-Driven
Programming Model for Defining Business
Processes
We propose a new programming model and notation for expressing business
processes which can help designers of business system to avoid many
common sources of errors. This new model is called “GAT” standing for
Guard-Acton-Trigger following the name from the major elements of the
model.

One of the most innovative features of GAT is that it processes normal
business activities and various unusual situations (including deviations) in a
uniform manner. This allows the developers to have simpler expressive ways
to manage even the most complex and sophisticated deviations. Our GAT
model treats deviations (such as failures and cancellations) as events, just like
message arrival in normal business cases, rather than under a separate and
inflexible fault-handling regime such as rollback or compensators. Once
deviations are dealt with, forward progress can resume through normal
business activities which allows the system to always go forward rather than
having to be aborted.

The degree of knowledge of the overall system can dramatically change the
behaviour of the system in dealing with deviations and other situations.
Typically, existing standards and products only allow the access to Abstract
States, a computer-based representation of the domain typically stored in
databases (i.e. purchase order or payment), in the form of messages or
variables inside business action. Business Process State, which has variables
reflecting what business actions have occurred (i.e. purchase order received,
payment sent), are hidden away and only implicitly used by the system to
handle the failures automatically. Different to the existing approach, the GAT
model makes available both Abstract States and Business Process States to the
developers. The developers can explore and access both states to gain as much
knowledge as possible regarding the state of the current system. This exposure
of a wide range of states allows the developers to control business activities
and to devise better mechanisms to handle deviations.

We have represented the whole e-procurement processing in the GAT
notation, thus showing its usefulness for a business analyst.

1.5 Contributions: Design Principles in Building
a Business Process System based on GAT Model
We define and solve the critical challenges that have to be addressed when
designing a business process system from a description in GAT model. These

6

include implementing control flow based on the evaluation of guards, the
management and distribution of events, and enforcing atomicity constraints
across the evaluation of guards and the execution of the corresponding
activity. We have built a prototype system following this approach which uses
available technologies such as C# and the .NET framework to produce a set of
business process executables from the e-procurement scenario defined in
GAT.

A key issue for a system following GAT approach is to decide how to manage
the control flow, in other word, how to pick the appropriate action to perform
in response to an event. We propose exploiting an event-driven
publish/subscribe model to pick appropriate actions and to raise further events
to make the business process go forward until it completes. We illustrate how
this is done using .NET events and C# language.

In the GAT model, it is essential that the choice of which action to perform
from an activity group (by evaluation of guards), the execution of the chosen
action, and the evaluation of its trigger conditions and raising any further
events, must all form an isolated unit. Our GAT prototype implementation
uses the transaction mechanisms provided in .NET 2.0 to solve this problem.
Each activity group, including the evaluation of its guards, the execution of the
chosen action, and the evaluation of its trigger condition and raising further
events, is constructed as a single transaction. The isolation provided by
transactions guarantees that the state used by a running activity group cannot
be altered by any concurrently executing business processes.

In our GAT model, events are used as communication carrier that delivers
messages within a business process or across multiple business processes. In
our prototype, we map these to .NET events, but there are some complexities.
GAT has three different types of events: Internal Events are used to control
flow among Activities within the same business process, External Events
control the communication between interacting peer business processes, and
Deferred Events are used when a process needs to trigger corrective actions if
anticipated events have not happened by some deadline. We provide examples
with coding details of how the different types of events can be implemented in
our prototype system.

We also discuss how to extend these implementation techniques to a general
workflow engine which can run GAT-described processes.

1.6 Contributions: Promises – New Unified
Isolation Mechanisms for Service-based System
The GAT model requires the programmer to provide code to handle each
possible action under every possible state. What this means is that the

7

programmer will have to write code to handle the effect of all possible
interleaving among concurrent processes. To reduce this burden, we propose
an approach to providing the benefits of isolation in service-oriented
applications where it is not feasible to use the traditional locking mechanism.

Our technique, called ‘Promises’, is a unified approach to describing the
interactions between a client and a service where the client can make sure that
some condition over resources will hold at a later time, despite concurrent
activities that occur between the check and the use of the condition. We
present a promise protocol: here the client application determines the
conditions they need to have hold over a set of resources and express these as
predicates, and the resource manager will determine if it can grant the promise
and reply. Then, once a promise has been granted, the client application can
continue and make changes to the resources protected by its promises, with the
guarantee that they will be allowed if they are within the conditions implied,
and then client applications then release their promises.

Predicates are simply Boolean expressions over resources. Our model imposes
no restrictions on the form these expressions can take, and their ideal form will
normally depend on the nature of the resources involved and the way we want
to view them at the time. We discuss the nature of resources and the way that
this defines the types of predicates that can be used in promises over them. We
describe in detail three ways of viewing resources: anonymous view, named
view, and view via properties. We explore the relationship between these
views and predicates. We also give examples that show how applications can
use these different ways of viewing resources to obtain just the degree of
isolation they need.

The Promise Pattern we propose is a style of interaction, in which a client can
request another service to guarantee that a predicate will remain true for a
limited time into the future. The value of our proposal depends on the
existence of mechanisms by which the provider can keep its promises. We list
some well-known implementation techniques which could work well with
promises.

8

1.7 Contributions: Design Principles in
Supporting Promises
We define some of the implementation issues that need to be resolved in
promise-based systems and discuss how we built a proof-of-concept prototype
of a Promise Manager that supported promise-based isolation. The major
challenge in the implementation is to ensure that the Promise Manager takes
overall responsibility and coordinates the activities to maintain the validity of
non-expired promises; that is, resources must be available to satisfy every
predicate that the Promise Manager is committed to maintain.

One of critical decision we made in implementing Promise Manager was to
avoid changes to existing applications or resource managers that the Promise
Manager interacts with. This allows us to reuse existing applications and
resource managers thus increasing our productivity for the development of a
proof of concept system. Our solution to this constraint is to implement our
Promises prototype as a layer that wrapped existing application systems and
resource manager and ensured that promises could be both granted and
honoured.

The Promise Manager needs to keep a persistent record of all promises that are
currently in effect. Our solution is to create an object for each promise and
store it as a row in an SQL database table. Some mechanism also has to be
provided so that resources defined in the predicates are available. We assume
that the Promise Manager is able to query the resource manager to find out the
availability of resources specified in the predicate. We provide code examples
how this is can be done using SQL queries for both named resources and
anonymous resources. Information about promises and resource availability
are stored in different places and controlled by different managers, but they
are both accessed as part of promise operations. The solution we adopted to
prevent problems arising from concurrent access to the promises table and
shared resources is to wrap each promise operation (such as creating a new
promise, when action performed or updating existing promises) in a
transaction.

Promise checking is at the heart of the Promise Making system. The promise
checking guarantees that resources must be available to satisfy every predicate
that the Promise Manager is committed to maintain. To ensure that granted
promises are not violated, the Promise Manager implements a Promise
Consistency Checking mechanism where it evaluates a set of promises against
the current state of resources. We illustrate two Promise Consistency
Checking mechanisms to cover named resources and anonymous resources.
We also demonstrate the ways Promise Consistency Checking are used in

9

various operations, such as making new promises, executing actions, and
updating existing promises, which could violate the validity of promises.

1.8 Thesis Structure
This thesis provides programming models and protocols which can make it
easier to build a reliable and robust system which can deal with events that
cause deviations from normal processing paths, such as failures and
concurrent activities.

In Chapter 2, we introduce the background and some research works which
have been proposed to solve similar consistency problems on various different
computing platforms. The aim of this chapter is to survey the existing
approaches and show why they cannot be used to solve our problem in the
service-oriented world.

In Chapter 3, we present our understanding of the nature of service-based
systems using a realistic e-procurement scenario. The aim of this chapter is to
define the common problems faced by the developers of the service-based
system, and to identify key principles required in any solution.

In Chapter 4, based on the key principles we identified, we propose a new
process description model called GAT. This can help the developers to build
more reliable and robust system despite the occurrence of the failures and
interference from the concurrent activities. We discuss the innovative ideas of
GAT and its key features which can help the developers to avoid consistency
faults.

Chapter 5 discusses the design principles that have to be addressed when
implementing a business process which is defined in the GAT model. We
illustrate, with code examples, a proof-of-concept GAT prototype system
following the key design issues we identified.

Chapter 6 presents a unified isolation mechanism called Promises that is
applicable to provide an appropriate degree of isolation to many applications
in the service-based world. We discuss the concept, how it works, how it
defines a protocol, and a list of potential implementation techniques.

In Chapter 7, we define some of the implementation issues that need to be
resolved in promise-based systems. We also illustrate a proof-of-concept
system built using today’s proven technology.

Finally in Chapter 8, we present the conclusion of the thesis. The major
contributions of each chapter are summarised and we identify the future
implementation and research work we plan.

10

Chapter 2

Related Work

In this section we review the previous and ongoing research efforts related to
our research topic. We first look at the traditional transaction concept and its
implementation in the database community which it first established the
concept of consistency between data items. Then we look at the distributed
computing and the role of transaction support which become one of the major
key components to build robust systems across multiple organisations.

2.1 Traditional Transaction Support
The concurrency control and recovery mechanisms that ensure preservation of
consistency between data items within a single database were important
discoveries of early database research. The very idea of an ACID transaction
is an important recognition since it involves mechanisms in the infrastructure
to relieve the application programmer from worrying about failure and
interleaving. We look into the concept of ACID properties, and also at
advanced models which have been proposed by early database research to
improve the shortcomings of ACID.

2.1.1 ACID properties
ACID (atomicity, consistency, isolation, and durability) [32] are considered to
be the key transaction processing properties to ensure the integrity of data.
Any database transactions that meet the characteristics of these four properties
are considered reliable. We examine each of these four properties in detail
illustrating them with a transaction that withdraws money from one bank
account and deposits it to another account.

• Atomicity refers to the ability to execute completely or not at all. There
must not be any possibility that only part of a transaction is executed.
We say that the transaction commits if all operations execute, and it
aborts if no changes are made. In our example, we have two
operations: (1) withdraw money from one account; (2) deposit it to
another account. To satisfy the atomicity property, either these two
operations must both execute successfully or the effect is as if nothing
executes. This guarantees that one account won't be debited if the other

11

is not credited, as might happen due to failure during the second
operation.

• Consistency refers to the database being in a legal state when the
transaction begins and when it ends. This means that a transaction can't
break any integrity constrains. For example, if an integrity constraint
states that all accounts must have a positive balance, then any
transaction violating this rule will be aborted.

• Isolation refers to the ability of the application to make operations in a
transaction appear as if no other transactions were running at the same
time. This also means that no operation outside the transaction can ever
see the data and state in an intermediate state. In our example, the
balance of money in the two accounts cannot be accessed or be
modified by other concurrently running operations while they are
being used by the current transaction.

• Durability refers to the guarantee that once the user has been notified
of success, the transaction will persist, and not be undone. Typically,
all transactions are written into a log when the transaction is committed
and the log can be played back to recreate the transaction in case of
system failures.

For decades, these ACID properties played an important role as the means to
provide consistency required for database applications. Now we look at
techniques used to guarantee the ACID properties. We first examine the
locking mechanism which is provided within a local environment. Then we
discuss Two-Phase Commit Protocol (2PC) as a mechanism which can
guarantee ACID properties in a distributed environment where a transaction
involves multiple databases which reside in multiple places.

2.1.2 Locking Mechanism
One of the key properties of transactions is “isolation” [32]. The meaning of
isolation is that the executions of multiple transactions have the same effect as
running the transaction serially, one after the other in sequence without having
any overlap in executing among transactions. Such executions are called
‘serialisable’. Any system must guarantee serialisability to ensure there is no
conflict among the data items used by concurrently running transactions. The
most popular mechanism to ensure serialisability is locking.

Locking uses two types of locks, read locks and write locks. Before reading a
piece of data, a transaction sets a read lock. Before writing the data, it sets a
write lock. Read locks conflict with write locks, and write locks conflict with
write locks. A transaction can obtain a lock only if no other transaction has a
conflicting lock on the same data item. Thus, it can obtain a read lock on x
only if no transaction has a write lock on x. It can obtain a write lock on x only

12

if no transaction has a read lock or write lock on x. For ACID transactions,
obtained locks must be kept until the transaction completes.

The following example in Figure 1 illustrates how two interleaving
transactions can be isolated from each other. Note that we denote setting a
read lock by SLock, XLock means a write lock is set, locks are released by
Unlock operations at the end of each transaction.

Figure 1 Conventional Locking Example (source from [32])

In Case1, two transactions T1 and T2 are isolated as they run in sequence
without intervening with each other at all. In Case2, T1 and T2 interleave but
their lock modes don’t conflict with each other therefore they can be called
isolated. However, in Case3, T1 first places a write on the item y. Before this
lock is released, T2 try to place a write lock on the same item y. Since write
locks conflict with other write locks, T2’s attempt to place a write lock on the
item y won’t be allowed.

Though the locking mechanism ensures the required isolation property, it has
many disadvantages. One of the biggest problems is deadlocks. Deadlock
refers to the situation where two or more transaction are competing for the
same lock in conflicting modes, some of them will become blocked and have
to wait for others to unlock their locks. For example, suppose T1 gets a read
lock on x, and then T2 gets a read lock on y. Now, when T2 requests a write
lock on x, it’s blocked, waiting for T1 to release its read lock on x. When T1
requests a write lock on y, it is blocked too, waiting for T2 to release its read
lock on y. Since each transaction is waiting for the other one, neither
transaction can make progress, so the transactions are deadlocked.

Case1

T1 SLock x
T1 XLock y
T1 Read x
T1 Write y
T1 Unlock x
T1 Unlock y
T2 Slock x
T2 Read x
T2 XLock y
T2 Write y
T2 Write y
T2 Unlock x
T2 Unlock y

Case2

T2 Slock x
T1 SLock x
T2 Read x
T2 XLock y
T2 Write y
T2 Write y
T2 Unlock x
T2 Unlock y
T1 XLock y
T1 Read x
T1 Write y
T1 Unlock x
T1 Unlock y

Case3

T1 SLock x
T1 XLock y
T2 Slock x
T2 Read x
T2 XLock y
T2 Write y
T2 Write y
T2 Unlock x
T2 Unlock y
T1 Read x
T1 Write y
T1 Unlock x
T1 Unlock y

Conflict

13

Apart from deadlocks, other problems are present in the locking mechanism.
Locking mechanism is blocking which means the other transasctions have to
wait until a lock held by the transaction is released. Locks are vulnerable to
failures and faults. If one transaction holding a lock dies, other threads waiting
for the lock may wait forever. Locks cannot scale well, as locks can only be
only held within a trust boundary.

2.1.3 Two-Phase Commit (2PC)
One of the difficult problems solved by the database community was how to
maintain the atomicity property across multiple sites as each machine can fail
and recover independently. For example, now we assume that the update of
withdrawing money takes place in the database which resides at a Sydney
branch while the update of depositing money takes place in a Melbourne
branch. To commit these two updates, both the one at the Sydney branch must
succeed and the update in Melbourne must be successful.

However, it is possible that the update at the Sydney branch succeeds while
the update at the Melbourne branch fails before the transaction commits there
too. If no appropriate mechanism is in place, the failed transaction can never
be recovered therefore atomicity is broken. Two-Phase Commit (2PC) solves
the problem by enforcing that each task participating in the distributed
environment writes its history of updates to stable storage before the
transaction commits. 2PC protocol was developed in several products and later
standardised by the Open Group within the X/Open specification [72]. A
detailed description of 2PC is described in the Figure 2 shown in the context
of our banking example.

14

Figure 2 Two-Phase Commit (2PC) Protocol

Suppose the transaction manager has already started the transaction, and
performed the two updates and that the transaction is now ready to commit.
During the phase one, transaction manager sends a message ‘prepare’ to each
resource manager. Each resource manager wrote its history of updates in the
log as the transaction was executing. For example, the resource manager in the
Sydney branch produces a log record showing the new and old values of the
balance. When ‘prepare’ arrives, the resource manager makes sure these log
resources are flushed to disk, so they will not be lost even if a crash occurs.
The resource manager sends ‘prepared’ message back to the transaction
manager once the log is successfully written to disk (otherwise it sends
‘aborted’ message). Similarly, the resource manager in the Melbourne branch
sends ‘prepared’ message back to the transaction manager after saving on disk
a log record showing the increased balance. The transaction manager waits till
it receives ‘prepared’ from each resource manager (or till it receives ‘aborted’
from one, or till a timeout happens).

There are two different paths that can be executed by the transaction manager
in phase two. One path executes if the transaction manager receives ‘prepared’
message from all resource managers during the phase one. The transaction
manager sends a ‘commit’ message to all the resource managers. Each
resource manager completes the task, by releasing all the locks and resources
held during the transaction. Each resource manager sends a ‘done’ message to
the transaction manager. This completes the transaction successfully. The

Transaction Manager

Resource Manager
(Sydney branch)

Resource Manager
(Melb branch)

1. Prepare

2. Prepared/Aborted

1. Prepare

2. Prepared/Aborted

Phase One

Phase Two Transaction Manager

Resource Manager
(Sydney branch)

Resource Manager
(Melb branch)

3. Commit/Rollback

4. Done

3. Commit/Rollback

4. Done

15

other path executes if any resource manager sent an abort message during the
phase one. The transaction manager sends a ‘rollback’ message to all the
resource managers. Each resource manager undoes the updates which have
been completed using information in the log, and then releases the resources
and locks held during the transaction. Finally each resource manager sends a
‘done’ to the transaction manager.

The great disadvantage of the 2PC protocol is the fact that it is a blocking
protocol. It has sometimes been called an ‘unavailability protocol’. A process
will block while it is waiting for a message. This means that other processes
competing for resource locks held by the blocked processes will have to wait
for the locks to be released. The blocking becomes worse if the transaction
manager fails permanently as some resource manager will never resolve their
transactions. For example, suppose a resource manager has sent a ‘prepared’
message to the transaction manager but the transaction manager failed. The
resource manager will block until a ‘commit’ or ‘rollback’ is received. If the
transaction manager is permanently down the resource manager will block
indefinitely. This type of blocking algorithm can only work well in a tightly
coupled environment where conflicts between processes can be more easily
monitored therefore resolved.

2.1.4 Advanced Mechanisms for Standard ACID
The original locking mechanism that locks the whole item was proven to be
too expensive for some transactions. For example, suppose there are two
transactions updating the stock on hand (soh). T1 reduces the stock by 150
(soh := soh – 150) while T2 takes 800 (soh := soh – 800). If there is stock on
hand more than 950, these two transactions should be allowed to interleave but
locking will prevent concurrency as each needs an XLock on the stock on
hand.

Many refinements to locking mechanism to improve the level of concurrency
have been proposed. The most relevant to our work is escrow locking [73].
The basic idea of the escrow locking is to preserve the truth of predicates, each
of which is a condition evaluated as a Boolean value true/false, during the
execution of a transaction. The escrow locking does this by recording high and
low limits for the possible values of the item. If a concurrently running
transaction violates the either high or low limits the transaction is rejected.
Figure 3 illustrate how escrow locking operates.

16

Figure 3 Escrow Locking Example (source from [32])

The operation of T1 gets executed after its predicate is satisfied (there are
stock on hand of 1000 which is more than 150 the predicate tested for). The
escrow records the predicate in a range between the value before the operation
and the after the operation, such as [1000, 850].

Before T1 commits, T2 comes along. As this happens, before T1 commits, the
stock on hand is still 1000 and the predicate of T2 is satisfied. The predicate
range changes from 850 to 50 incorporating the possible changes for both T1
and T2. T2 issues commit which is granted because there are enough stock to
commit for both T1 and T2. After T2 commits, the stock on hand values
changes to 200.

Still before T1 commits, T3 comes along and checks the predicate which is
satisfactory as there is more than 100 stocks. However, when T3 issues the
commit, it cannot be granted as there is possible conflict between T1 and T3.
The commit of T3 is delayed until T1 either commits or rollbacks. T3 can only
commit if T1 rollbacks as this means there are still 200 stocks available.
However, if T1 commits leaving only 50 stocks to be taken, T3 naturally gets
rejected to maintain the integrity of the stock on hand.

This example shows how isolation can be achieved without unnecessarily
locking the values that are being modified. However, the escrow locking only
works for ordered numeric sets. In our work in implementing our promises
isolation mechanism in Chapter 7, we use a similar technique to escrow
locking.

soh>150
soh:=soh-150

Commit

T1

soh>800
soh:=soh-800

Commit

Escrow

T2

soh>100
soh:=soh-100

Commit

T3

1000

1000

1000

200

200

100

200

100

[1000,850]

[1000,50]

[200,50]

[200, 50]

[50,50]

Reject/delay

17

2.1.5 Extended Transaction Models
It became clear very early on that the ACID approach was not appropriate for
many activities that manipulate data in environments where assumptions such
as short-living activities and trust no longer apply; therefore using mechanisms
such as rollback or locking were not feasible. A range of extended transaction
models were proposed aimed especially at cooperative processes like
collaborative design, or long running business processes. We summarise and
critique two early works that we think very significant to our research. These
are Sagas [36] and ConTract [84].

2.1.5.1 Saga
The purpose of the Saga [36] is to give the atomicity property for long running
transactions without having to hold locks for the whole duration. Saga
structures a long running process as a sequence of smaller tasks, each of which
would be done as an ACID transaction. Thus the underlying mechanism would
ensure that each task ran without interference, but the tasks of one process
could interleave with the tasks of another process.

The key insight of this work is in the way to respond to failure during a Saga.
If a particular task fails, it can be aborted and rolled back, and then retried.
However, if the Saga as a whole gets into an irretrievable difficulty, and needs
to abort, what should happen? The answer proposed in [36] is that the
application developer should design, for each task, a corresponding
compensator. The compensator executes an operation which does the inverse
of the original task. For example, the compensator for inserting a record might
delete the record; the compensator for depositing to a bank account might
withdraw from the same account, and a read-only task has empty
compensator. To abort a Saga, the system will abort any active task of the
Saga, and then invoke the compensators for each task within the Saga that had
previously committed. The compensators are run in the reverse order from the
order in which the tasks ran originally.

For example as seen in Figure 4, suppose a long running transaction T1 is
composed of three tasks S1, S2, and S3. Programmers define compensators
CS2 to undo the task done by S2, and similarly CS1 undoes the task done by
S1.

S1 S2 S3

CS1 CS2

18

Figure 4 Long Transaction in Saga

The final outcome of this saga will be either the execution sequence:
• S1 -> S2 -> S3 and commit the saga successfully, or
• If the saga has to abort during the execution of S3, S3 is aborted and

CS2 -> CS1 are executed to semantically undo the completed tasks S1
and S2,

• Similarly, an abort in S2 (after S1 has completed) will result in the
execution of CS1 and thus no effect combined execution S1, CS1.

The Saga model has become a standard in transactional workflow model (see
Section 2.2.2.3) and in service orchestration (see Section 2.2.3.2).

It is easy to prove that a concurrent execution of Sagas will be serialisable
provided that each compensator commutes with every task and with every
compensator that executed between the task and its compensator. However, it
is almost impossible for many tasks to write compensators with such a strong
property. In general, the drawback of the compensation approach lies in the
difficulty of writing a compensator that winds back the original task from
states that have changed significantly.

A compensator should remove not only the direct effect of the original task,
but also any indirect effect through other activities which read the data now
discovered to be inappropriate. For example, if the merchant has recorded a
large order, and this has been used to calculate a bonus for the relevant region
manager, then the compensator for the order task ought to recalculate the
manager’s bonus (or rather, to maintain modularity, the compensator should
somehow trigger a recalculation in the bonus process).

It may also be the case that the execution of one compensator ought to
influence the activity of another compensator. This influence may not be
possible when the compensators are run in the reverse chronological order of
the original tasks. For example, in the original workflow the merchant might
arrange shipment then receive payment from the customer. During
compensation, any charges incurred by the merchant as it cancels the
shipment, need to be deducted from the payment amount before the customer
gets sent the refund.

Another difficulty with compensation-based systems lies in their assumption
that the compensator always runs successfully. In real systems we have to deal
with the case where we want to compensate for an overpayment, but it is
possible that the recipient has already spent the money. A business process
should not lead to inconsistent data when a compensator itself can’t be
executed.

19

2.1.5.2 ConTract
In a traditional ACID transaction, each individual operation operates on data
which is unchanged from that seen by earlier steps in the transaction. Thus, if
one step checks the validity of a customer, then we can be sure the customer is
still valid when all later steps use the customer information. In a long running
business process, locks can’t be held for more than a few seconds, so it is
harder to ensure that the customer’s validity is preserved once it has been
checked. In [84], a general workflow description approach was introduced. As
well as providing a language to express the sequence of steps, including the
input and output parameters, a ConTract made explicit the conditions each
task needed to complete successfully. These are called entry invariants of the
task. The ConTract also expresses the conditions that are true at the end of a
task, as exit invariants. For example, if a shipment task should only be
attempted when the customer is valid; the application developer needed to
state that customer validity is an entry invariant for the shipment task. The
developer could also write that customer validity is an exit invariant for the
validity checking task.

The syntax of ConTracts also allowed each exit invariant to indicate how it
was to be preserved, and several possibilities were defined.

• Locks can be held, preventing any change to the data that was checked
• The exit condition can be preserved throughout the period, by having a

check run on each interleaved activity; this other activity would be
rejected if it could violate the truth of the exit condition

• The exit condition could be allowed to become false, and the system
would re-run the check at the time when another task needs this
condition for entry. In this situation, the developer would need to
describe how to proceed if the revalidation check failed, by a ‘conflict
resolution’ step on the task with the entry invariant. For example, the
developer could indicate a procedure to call that would restore the
invariant.

These techniques have not been fully implemented as they require
sophisticated manipulation of logic by the workflow engine. However, we see
these as offering a powerful framework to express the isolation conditions
needed in application consistency. Our promises approach in Chapter 6
extends the ConTract ideas.

2.2 Distributed Computing Platforms
In this section, we examine the evolution of distributed computing platforms.
We especially focus on the role played by transaction support to provide
required reliability and consistency for the data being exchanged among
distributed applications.

20

We start examining distributed computing models in the early era of
procedural programming and later object technologies. Then we move to the
era of workflow technology that is used as an integration tool within a single
enterprise. This allows combining business logic for many steps running on
multiple platforms. We discuss the research efforts to incorporate extended
transaction model which tried to relax the atomicity and isolation part of
ACID standards. Finally we review Web services technology and its role in
integrating autonomous services that reside within different trust boundaries.
We evaluate several standardization proposals to support transactions in this
paradigm.

2.2.1 Conventional Middleware
Conventional middleware technology was an important milestone to facilitate
and manage the interaction between applications across heterogeneous
computing platforms that run on a set of servers. One of the important
concepts developed in the middleware technology was to provide simple
abstractions, and implementation to support such abstractions, for designing
and building distributed applications. Especially, in this section we examine
important concepts and abstractions developed for transaction support by
middleware technology.

2.2.1.1 Communication Channel
The term distributed computing was established to refer to the model where
several heterogeneous servers located in geographically different places work
together to produce a common business goal.

One of the primary goals of middleware technology in the early era of
distributed computing was to establish a communication channel among
remote servers. In the beginning, this was done by sending messages to
procedures located in other machines by using an operating system level
interface called ‘socket’. The socket was an abstraction of underlying
communication protocol such TCP/UDP. However, this method proved to be
too problematic as different servers have different socket interfaces depending
on the different operating system platform; also programmers found it tedious
to deal with bit-layout and similar format issues.

Messaged based RPC was an important concept in distributed computing. This
was the technology which made it possible to call procedures located on other
machines in a uniform and transparent manner that looked just like
conventional procedural code. RPC was introduced at the beginning of the
1980s by Birell and Nelson as part of their work on the Cedar programming
environment [6]. Many important notions of distributed computing were
mentioned in the paper, including client (the program that calls a remote
procedure) and server (the program that implements the remote procedure

21

being invoked). Other significant notions which are still widely used today in
distributed computing system are interface definition languages (IDL), name
and directory services, dynamic binding, service interface and so on.

RPC were developed in the era of procedural languages. As object-oriented
languages took over, the industry required a different technology which could
support remote calls among objects which reside in remote machines. Object
Brokers were developed to do this job. One of the most notable object
brokering technologies developed in this era is the Common Object Request
Broker Architecture (CORBA) [71], which was defined and standardized by
the Object Management Group (OMG). CORBA developed more advanced
specifications for many aspects of object-oriented languages.

2.2.1.2 Transaction Support
Regardless of the different communication channels, all distributed computing
required transactions if there is more than one call that had to work together as
an atomic unit.

In the early era of TP monitors, they provided a primitive way of providing
transactions using vendor specific technology which only works for certain
mainframe or UNIX systems. With the advance of RPC, TP monitors such as
IBM CICS [42] implemented transactional RPC which can deal with data
distributed across multiple systems more uniformly and transparently. The
semantics of transactional RPC is that multiple tasks can form a single unit of
work as a transaction, and the transaction completes (i.e. commits) only if all
tasks within the transaction successfully execute. If any tasks within the
transaction fail to execute, the transaction fails. This idea gained popularity
and was subsequently adapted by other TP monitors such as BEA Tuxedo [5],
Encina from Transarc [19] or IBM LU 6.2 using different underlying
mechanisms such as plain messages rather than RPC.

The semantics of transactional RPC was further developed into Two-Phase
Commit (2PC) and subsequently became standardized by the Open Group
within the X/Open specification [72]. Today, 2PC is the standard mechanism
for guaranteeing atomicity for a distributed transaction.

Still, transactional RPC used synchronous interactions in which a call blocks
the sender until it gets a response. Asynchronous RPC was devised by TP
monitors where calls are placed in a queue and can be processed separately
without having to wait for other calls to complete. The usefulness of such
queuing was realized and they became middleware platforms on their own
under the name of message-oriented middleware (MOM).

MOM presented a very important concept which considerably simplifies the
way one supports managing errors and system failures. MOM ensures that

22

once a message has been sent, it will be eventually delivered once and only
once to recipients, even if the MOM system itself goes down. Messages are
saved in a persistent storage and are made available once the MOM system is
restarted. Recipients can also bundle a set of messages as an atomic unit then
MOM guarantees that either the set of messages are processed altogether or
none of them are processed. Some of the best-known MOM platforms include
IBM MQ Series [43], MSMQ by Microsoft [60], or WebMethods [85].

2.2.2 Workflow Management Systems (WfMS)
An important class of middleware platform is used to control the execution of
business processes built from many smaller activities. The term WfMS is used
for this purpose.

2.2.2.1 Conventional Workflow Technologies
At the core of most workflow system is the notion of a business process. A
business process is a set of business activities with a common business
objective. This business process is built by linking together diverse business
activities and specifying the flow of data and control among them. The
following example illustrates an example of workflow for a simple ordering
process.

Figure 5 Conventional Workflow Example

WfMS typically provides a high level graphical orchestration tool where users
can easily define flow of business activities in a style like Figure 5. The key
concepts in these graph-based workflow notations include sequence (one
activity starts when another finishes), decision, fork (starting several parallel
threads), and join. These notations are very convenient for business analysts
when describing the normal case of operation. However, they become very

Receive Purchase Order

Check Stock

Send Confirmation

Stock available

Backorder

Send CancelOrder

No stock

Not fulfilled

Fulfilled

23

complicated when exceptional conditions must be handled. This is discussed
in Section 2.2.2.3.

2.2.2.2 Event-Condition-Action (ECA)
As business processes become complex and sophisticated, a number of
alternative orchestration models were proposed, each emphasizing different
aspects of managing and controlling business activities. One notable technique
most relevant to our research is ECA [15]. In ECA, a system monitors the
occurrence of events rather than sequentially executing activities defined by a
graph. When an event is detected, a specific action is executed to handle the
situation. An action can be guarded by a condition, which is a Boolean
predicate over event parameters. The condition is evaluated when an event is
detected. The action gets executed if the parameters satisfy the condition.

Figure 6 illustrates an example of an ECA model where an invoice is sent to
the customer when goods are reserved. After receiving the invoice, the
customer sends in a payment. If full payment is received, the merchant makes
a receipt and subsequently send it to the customer.

ON complete (goodsReserved)
IF true
THEN send Invoice

ON receive Payment
If (fullPaymentAmount == true)
THEN invoke makeReceipt

ON complete (makeReceipt)
IF true
THEN send receipt

Figure 6 ECA Example

One of the big advantages of the ECA model is to allow the description to be
more modular and independent from other business activities. This makes it a
lot easier to integrate different business activities in a loosely coupled
environment which allows for dynamic joining and leaving of the business
activities on demand. In addition, since any business activities can be triggered
at any time during the execution, this approach can model activities that need
to be started at the occurrence of any unexpected events such as deviations.
ECA has been used especially to model exception handling even when groups
are used for the normal case [11].

Our GAT model in Chapter 4 was inspired by this ECA model in controlling
the flow of the data and business activities.

24

2.2.2.3 Transactional Workflows
A Workflow process is typically of long duration compared to the short
running activities found in standard database transactions. Such long running
processes are composed of many types of action, not just database transactions
or message queuing. However, the whole set of activities often forms a single
unit of work which ought to have much the same consistency provided by
ACID, such as failure atomicity and isolation.

Due to the complexity involved in a workflow execution, it is often too
expensive to rollback everything that had been done and to restart from
scratch. Also, actions in the workflow not only involve database updates, but
also they can involve actions in the other system, so rolling back some action
could be very difficult because the appropriate rollback depends on the
interaction of many actions. Furthermore, it is not feasible to place locks for
the long lasting processes as they might cause excessive delay for other
applications that need to access the same data. To overcome the
inappropriateness of using mechanisms from standard database transactions,
mechanisms from advanced transactional models were adapted.

WfMS maintain the state of workflow execution for each instance, such as
which activities have been executed, in a persistent storage. Using this
information, if the WfMS crashes and recovers, it will be able to restore the
workflow up to the point of failure. The only work lost is what was performed
by nodes that were active at the time of failure. This mechanism prevents the
workflow system having to restart from scratch.

WfMS also provides a mechanism for use where it is not possible for the
workflow to complete, and so the partial execution needs to be undone. This
adopts the notion of compensation, first mentioned in Sagas [36]. The idea is
to treat business activity as an atomic transaction which can commit. Each
atomic transaction is attached with a compensator. In the case of workflow
failure, compensators for the committed atomic transactions are executed in
the reverse order.

Some WfMS prototypes developed in academic research offered additional
primitives for handling exceptions. [91] shows how to provide Java-style try-
catch-throw as an exception handling mechanism. The idea here is to associate
a try block to an activity (or a set of activities). If the enclosing activity
invokes any exception, it’s captured by the catch block. Depending on the
hierarchy of activities, an exception can be thrown to its parent activities. In
[11], exceptional handling logic is specified by using ECA rules where the
event defines the exceptional event to be captured by a certain action. The
condition is a Boolean expression over the action that verifies whether the

25

action actually corresponds to an exceptional situation that needs to be
handled.

The Exotica project [2] explores the role of advanced transaction management
concepts in the context of workflows. The basic idea was to provide the user
with an extended workflow model that integrates Saga into the commercial
workflow product Flowmark. The user could define a compensating task for
each task of the workflow using a GUI tool. An Exotica engine would then
translate these specifications into plain FDL (Flowmark Definition Language)
by properly inserting additional compensating paths after each task or group of
tasks, which are conditionally executed upon a task failure.

In [51], a transactional model for HP Changengine is presented. The model
allows the definition of Virtual Transaction (VT) regions on top of a workflow
graph. If a failure occurs during the execution of a task enclosed in a VT
region, then all tasks in the region are compensated in the reverse order. Then,
the system can retry the execution up to a maximum number of times. Then it
executes an alternate path if one is present; otherwise the workflow engine
terminates the entire process execution.

However, [88] showed that the concept of using compensators was not directly
applicable to most real-world workflow applications. This is due to the lack of
guidance in writing compensators. This left the developers to devise their own
compensation logic which required intimate knowledge of how business
activities interact in order to properly compensate for one activity’s execution.
The use of semantic transaction models have been proposed to address this
issue. [88] defined a semantically inverse task (commonly referred to as
compensating tasks), or a chain of tasks that could effectively undo or repair
the damage incurred by a failed task within a workflow called Information
Carrier (INCA). INCA workflow model was proposed as a basis for
developing dynamic workflows in distributed environments where the
processing entities are relatively autonomous in nature. In this model, the
INCA is an object that is associated with each workflow and encapsulates
workflow data, history and processing rules. The transactional semantics of
INCA procedures (or steps) are limited by the transaction support guaranteed
by the underlying processing entity. The INCA itself is neither atomic nor
isolated in the traditional sense of the terms. However, transactional and
extended transactional concepts such as redoing of steps, compensating steps,
and contingency steps, have been included in the INCA rules to account for
failures and forward recovery.

Despite these proposals, many researchers have identified a great lack of
adequate support for handling errors and failures in large-scale,
heterogeneous, distributed computing environments with transactional
workflow models [2],[28],[55],[76].

26

2.2.3 Business to Business Integration (B2Bi) and
Service-oriented Architecture (SOA)
The need to integrate existing code or components is not limited to the
systems within a single organization. The same advantages can be obtained by
integrating multiple systems across multiple organizations. Web Services and
Service-oriented Architectures (SOA) are being promoted as the best way to
build such next generation Internet-scale distributed and integrated
applications across multiple organizations. These are needed in business-to-
business integration (B2Bi) and enterprise application integration (EAI).

These applications are made by gluing together opaque and autonomous
services, possibly supplied by business partners and third party service
providers, into loosely-coupled virtual applications that can span
organisational boundaries and connect large-scale business processes. Services
are just applications that expose some of their functionality to other
applications in a particularly simple and restricted way. Services are
autonomous, opaque (and probably stateful) applications that communicate
with each other solely by exchanging asynchronous messages.

The key to success in this is interoperability between loosely coupled
components which understand and process the messages. A set of technologies
such as XML, Internet communication (such as HTTP) and standards from
Web Services world makes this possible. In this section, we examine the
standards from Web Services.

2.2.3.1 Basic Standards for Interoperability
This section we review three standards SOAP, WSDL, and UDDI defined by
vendor-neutral W3C. An autonomous Web service can use WSDL to define its
services, find other services on the Internet using UDDI, and send messages to
other services using the standard message protocol SOAP.

SOAP
SOAP [82] is an XML-based messaging protocol. It defines a set of rules for
structuring messages that can be used for simple one-way messaging though it
is particularly useful for performing request-response style dialogue. The
biggest advantage of SOAP is that it is not tied to any particular transport
protocol nor is it tied to any particular operating system or programming
language. This means that the clients and servers can be running on any
platform and written in any language as long as they can understand and
process SOAP messages. This fundamental assumption of SOAP makes it an
ideal choice of messaging protocol in building a loosely-coupled service-based
system.

27

The heart of SOAP is an envelope which contains an optional SOAP header,
and a mandatory SOAP body. SOAP header is a generic mechanism for
adding features to a SOAP message in a decentralized manner without prior
agreement between the communicating parties. Typical examples of
extensions that can be implemented as header entries are authentication,
transaction management, or security. The SOAP Body element provides a
simple mechanism for exchanging mandatory information intended for the
ultimate recipient of the message. Typical uses of the Body element include
marshalling RPC calls and error reporting.

The following example extracted from [82] illustrates how a client might
format a SOAP message requesting product information for a produce with id
= 827635.

<soap:Envelope
 xmlns:soap=http://schemas.xmlsoap.org/soap/enve lope/>
 <soap:Body>
 <getProductDetails
 xmlns="http://warehouse.example.com/ws" >
 <productID>827635</productID>
 </getProductDetails>
</SOAP:Body>

Here is an example of SOAP message that provides a response for the client
request above.

<soap:Envelope
 xmlns:soap=http://schemas.xmlsoap.org/soap/enve lope/>
 <soap:Body>
 <getProductDetailsResponse
 xmlns="http://warehouse.example.com/ws" >
 <getProductDetailsResult>
 <productID>827635</productID>
 <productName>a dog mug</productName>
 <description> mug with two dogs</descri ption>
 <price>6.50</price>
 </getProductDetailsResult>
 </getProductDetailsResponse>
</soap:Body>

WSDL
Web Services Description Language (WSDL) [83] is the standard format for
describing a web service. It defines the functionality offered by a web service
and the format of messages sent and received by the web service. A web
service's WSDL document defines what services are available in the web
service. The WSDL document also defines the methods, parameter names,
parameter data types, and return data types for the web service. An application

28

that uses a web service relies on the web service's WSDL document to access
the web service's features. Each WSDL document contains four elements to
describe a service: <portType> defines the operations performed by the
service. <message> defines the messages used by the service. <types> defines
the data types, and <binding> which defines the communication protocols.

The following example illustrates an example of WSDL documents for a
stocking quoting service. The service defines two messages using <message>
elements: one to receive a stock request and other to respond to the request.
The operation “GetStockPrice” is defined by <portType> and a soap binding
is specified by <binding> element.

<definitions name="StockQuote"

 <message name="GetStockPriceRequest">
 <part name="msg" element="xs:string"/>
 </message>
 <message name="GetStockPriceResponse">
 <part name="msg" element="xs:string"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetStockPrice">
 <input message="tns:GetStockPriceRequest "/>
 <output message="tns:GetStockPriceRespon se"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding"
 type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/
 soap/http"/>
 <operation name="GetStockPrice">
 <soap:operation
 soapAction="http://example.com/
 GetStockPrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
..
</definitions>

29

UDDI
UDDI [67] is a XML-based protocol that provides a distributed directory that
enables businesses to list themselves on the Internet and discover other
services. Similar to a telephone number, businesses can list themselves by
name, product, location, or the Web services they offer. It is designed to be
searched by SOAP messages and to provide access to WSDL documents
describing the protocol bindings and message formats required to interact with
the web services listed in its directory.

2.2.3.2 Service Orchestration
The basic web services infrastructure presented by SOAP, WSDL, and UDDI
only suffices to implement simple interactions. In particular, it supports
interactions where the client invokes a single operation on a Web service.
When the interaction involved sequences of operations, additional support and
tools are needed to ensure the correctness and consistency of the interactions.

The consistency of the interactions involved in the sequences of operations
across multiple organizations has important implications from both an external
(interaction) and an internal (implementation) perspective.

From the external perspective, the most important implication is how a Web
service describes the set of correct and accepted message exchanges that are
compatible and comparable to interacting Web services. This interaction
problem among Web services has been researched in the area of service
coordination. As this thesis doesn’t deal with the consistency from the external
perspective, we direct interested readers to work such as [33], WS-
Coordination [94], WS-AtomicTransaction [92], WS-BusinessActivties [93],
or WSCI [87].

Closer to the problem we are trying to solve in the thesis is how to provide the
required consistency from the internal perspective. From an internal
perspective, each service in the interaction must be able to execute relatively
complex business activities that are compatible to the messages it exchanges
with other interacting services. The important implication for the internal side
is how to make it easy for developers to specify and implement complex
business activities which are always compatible to messages being exchanged
in the interaction. This is an implementation problem. Possible solutions will
involve developing models, protocols, and tools support which can facilitate
the effort of reacting correctly to a given message exchange. The term ‘service
orchestration’ has been used to describe the efforts to devise solutions for this
implementation problem.

In this section, we especially examine features from Business Process
Execution Language for Web Services (BPEL). This is a primary source to

30

discuss service orchestration and mechanisms used in supporting transactions
in the Web Services area. We look at this proposal from three different angles:
techniques used to control the flow of data and business activities, transactions
which define transactional semantics among business activities which form a
unit of work, and exception handling mechanisms which define how
exceptional situations occurring during the execution of the set of business
activities can be handled.

Business Process Execution Language for Web Services
(BPEL)
BPEL [7] uses an orchestration model that combines the UML activity
diagram [70] and the activity hierarchy (similar to flowchart) approaches
which allow structured activities. These structured activities can group a set of
other structured or simple activities to define ordering constraints among
them. The structured activities can be sequentially executed, tested against a
condition, picked in the occurrence of some event (such as the receipt of a
message or the expiration of a time alarm), executed in loop, and run parallel
with other structured activities.

The next example illustrates a simple purchasing order scenario in BPEL
notation. The merchant receives a purchase order from a client. When PO is
received, merchant runs two concurrent activities: one to calculate price, and
the other to organize shipping. When these two concurrently running activities
are done, the merchant sends an invoice to the customer.

<sequence>

// Receives a Purchase Order from a client
<receive
 partnerLink="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="PO"/>

// <flow> executes two business activities in paral lel
<flow>
 // Calculates price for PO
 <sequence>
 <invoke
 partnerLink="pricing"
 portType="lns:computePricePT"
 operation="initiatePriceCalculation"
 inputVariable="PO"/>
 <receive
 partnerLink="pricing"
 portType="lns:computePricePT"
 operation="sendPrice"

31

 variable="Invoice"/>
 </sequence>

 // Organizes shipping to deliver goods for the PO
 <sequence>
 <assign>
 <copy>
 <from variable="PO" part="customerInfo"/>
 <to variable="shippingRequest"
 part="customerInfo"/>
 </copy>
 </assign>
 <invoke
 partnerLink="shipping"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo"/>
 <receive
 partnerLink="shipping"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 variable="shippingSchedule"/>
 </sequence>
</flow>

// sends an invoice back to the customer
<reply
 partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="Invoice"/>

</sequence>

BPEL follows a try-catch-throw approach borrowed from object oriented
languages such as Java and C# to handle exceptions. Each activity implicitly
defines a scope and includes one or more fault handlers, describing how a
certain exception should be managed. When a fault occurs within a given
scope, a BPEL engine will terminate all running activities in that scope and
execute the activity specified in the fault handler for that scope. If no handler
exists for a given fault, then a default handler is executed.

The next example illustrates a fault handler in BPEL. The operation which
checks the purchase order details throw an exception which subsequently
received by a fault handler which sends a message to the customer that the PO
details is incorrect.

32

<faultHandlers>
<catch
 faultName="lns:cannotCompleteOrder"
 faultVariable="POFault">
 <reply
 partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="POFault"
 faultName="cannotCompleteOrder"/>
</catch>
</faultHandlers>

<invoke name="checkOrderDetails" ..>
 <throw
 faultName="lns:cannotCompleteOrder"
 faultVariable="POFault".../>
</invoke>

BPEL combines exception handling approaches with techniques used in the
advanced transactional models, notably from Sagas [36]. In BPEL, it is
possible to define certain business activity required to semantically undo the
execution of some activities in that scope. The compensation is specified by a
compensation handler that will take care of performing whatever actions are
needed to compensate for the execution. Every scope has a default
compensation handler, whose behaviour consists of invoking the
compensation handler for each enclosed scope in the reverse order of
execution. Similarly, every scope also has a default fault handler, whose
behaviour also consists in compensating enclosing scopes. The compensation
handler for a given scope can only be invoked once the scope execution has
completed normally. Its invocation can either be explicitly initiated by a
compensate activity or it can occur automatically as part of the default
handler. The compensate activity can only be defined within a fault handler or
within a compensation handler of the scope that encloses the one to be
compensated. BPEL also allows a compensation handle to be defined at the
top process level. This enables the compensation of a composite service even
after its completion.

The following example illustrates a compensator. When the ordering
processing is cancelled after an invoice is sent, the compensator sends another
invoice for a zero amount this supersedes the previously sent invoice is
executed to semantically undo the effect of the completed task.

<scope name="sendInvoice">

 <compensationHandler>
 <reply

33

 partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="AnotherInvoice"/>
 </compensationHandler>

 <reply
 partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="Invoice"/>
</scope>

In Chapter 3.6, we evaluate the effectiveness of BPEL and other similar
approaches, for expressing complicated deviation handling.

Other Service Composition Proposals
Before BPEL merged their ideas, IBM and Microsoft had issued alternative
proposals. WSFL [95] was IBM’s proposal for business process standards for
web services. It uses WSDL to describe the service interfaces. A flow model
describes the workflow for a process. Both control flow and data flow can be
defined using a state-transition model. One innovative idea of WSFL was its
handling of exceptions. WSFL supports handling different exceptions that are
indicated in the content of messages by specifying transition conditions that
examine the message for these exceptions. Depending on the transition
conditions, different exceptions are directed to different activities.

XLANG [96] was Microsoft’s proposal for business process standards for web
services. Like WSFL, XLANG uses WSDL to describe the service interfaces
of each participant. The behaviour is specified with a control flow that
choreographs the WSDL operations. Transactions are scoped by context
blocks, within which any number of business activities can be defined.
Compensating blocks can be associated with each scoped context block. If a
fault occurs in a scoped context block then the compensating blocks defined
for the scope can be executed in the order specified by the designers of
XLANG, but the default is reverse order. Exception handlers can be specified
for any scoped context block and explicit recovery actions can be specified
within the exception handler.

BPML [68] was a specification from the Business Process Management
Initiative organization (BPMI.org). BPML supports both coordinated ACID
support for short running transactions and long running transactions. A
transaction can be associated with any complex activity and it can be nested.
Compensation activities can be associated with both coordinated ACID and
long running transactions. If a transaction is aborted, any compensating
activities within the same context will be executed in reverse order.

34

2.3 Summary
Distributed computing support has evolved from simply invoking a single
service within a single application, to arranging several invocations of many
services which can be implemented by different languages and platforms
located remotely outside trust boundaries.

Along with the evolution of the distributed computing platform, the
requirement of transaction support has changed, from only handling short
running transactions within a single trust boundary, to long running extended
model transactions among autonomous applications that run across trust
boundaries.

ACID was an important discovery providing mechanisms in the infrastructure
to offer valuable reliability and robustness for business processes running
short transactions. The mechanisms provided by the ACID model relieved the
application programmer from worrying about failure and interleaving, to focus
on how to automate business processes. Unfortunately, due to the nature of
today’s business processes which are typically autonomously written and
contain long running processes connecting services across trusted boundaries,
ACID cannot be adopted directly. The different assumption applied in these
two environments requires different support for reliability and robustness.

The most popular transaction model adapted by current standardization
proposals and commercial products is from Saga [36]. However, research has
pointed out that the strong assumptions made for compensator models (such as
that developers will successfully write compensators which can semantically
undone the effect of completed business tasks) are too un-realistic. This thesis
proposes new ways to approach this question.

35

Chapter 3

Understanding the Nature of
Service-based Systems

In this chapter we identify some important issues which can prevent the
developers of service-based system from building reliable and robust systems
for automated business processes. The issues of concern include: time related
issues raised from the asynchronous nature of a service-based system; various
failures to terminate resulted from lack of coordination and global knowledge
among autonomous systems, unprocessed messages caused by complex and
sophisticated interactions among loosely-coupled components, messages
which arrive out of order, lack of isolation due to activities run long duration
across trust boundaries, and the increased chance of cancellations.

These issues are often causes of state mismatches which then produce various
deviations from the expected execution path. If these deviations are not
appropriately handled, the system will produce inconsistent outcomes. We
present what we consider to be required behaviours to handle various
deviations which commonly occur in the service-based system resulting from
state mismatch. Based on our list of required deviation handling behaviours,
we evaluate the existing standard deviation handling mechanisms to see how
well they can be used as support.

3.1 Motivating Scenario
In this section, we illustrate an e-procurement scenario of ordering goods. This
has been derived from a consultancy project of CSIRO. It illustrates a service-
based system with the independent and stateful nature of services and the
potential for concurrency. We use the e-procurement scenario as a case study
through the thesis to understand the distinctive characteristics of service-based
systems and the potential issues faced by the developers who are designing
and writing reliable applications which run on the service-based system.

3.1.1 E-procurement When Ordering Goods

Figure 7 shows an overview of the e-procurement scenario. There are three
major types of business parties involved in the scenario: a customer, a

36

merchant, and suppliers. Each business party exposes the services it provides
as Web Services. The communication between business parties are done via
sending and receiving messages. The overall ordering process among three
parties is as follows: the customer initiates the business process by sending a
quote request. When the merchant receives a quote request, it responds with a
quote or a rejection message. If the customer service decides to go ahead with
the purchase, it will send a purchase order message and the merchant system
will then confirm the order after reserving the goods which can honour the
purchase order. After the order is confirmed, the merchant coordinates
payment with customer and delivery with shippers simultaneously. The order
process is completed when the customer pays for the goods and receives the
goods; similarly, the merchant delivers the goods and receives the full
payment. The merchant service might also exchange messages with suppliers
to order goods if there were not sufficient goods on hand.

Figure 7 E-procurement Scenario

3.1.2 Merchant System
Particularly, we pay attention to the details of merchant business process
within the e-procurement scenario because it requires the integration of
numerous components. Internally, the merchant business process interacts
with its internal catalogue and inventory system as part of enterprise
application integration (EAI) strategy. As well it interacts externally with a
customer process, a supplier’s ordering system, and transportation booking,
forming an example of business-to-business integration (B2Bi). Each external
component is implemented, maintained, and managed independently by
different organisations. There is only a partial trust between components
running at different organisations. Also, the business activities within the

37

merchant process typically may take days to months to complete. These
characteristics of the merchant business process thus make it a good example
of an application in a loosely coupled distributed system. Figure 8 shows the
merchant workflow and we describe details of business requirements which
have been defined as a set of tasks in the workflow.

Figure 8 Merchant Workflow

Quoting
The first task in the workflow is to receive a quote request from customer
(RecQuoteReq).The merchant checks that the customer is a valid customer
(CheckCustomer). In our system, valid customers are ones who are registered
customers with no overdue payment. If the customer is a valid customer, then
the ordering process proceeds. If customers are invalid, either not registered or
have overdue payment or both, the workflow sends a notification to the
customer (SendInvalidCustomerMsg) and then the workflow is aborted (End).
The merchant calculates the total cost of items in the quote request and
generates a quote (CalculatePrice). The total cost will vary as it depends on a
number of factors such as discounts available to the customer and current
specials, amongst others. The quote is then sent to the customer, within 7 days
since receiving a quote request (SendQuote).

Purchase Order
If the customer proceeds with the order, the customer sends a purchase order
which the merchant receives (RecPurchaseOrder). The merchant reserves the
goods from the warehouse’s inventory system (ReserveGoods). The inventory
system will return a date when the ordered products will be available from the
warehouse. There may be insufficient stock in the warehouse to fulfil the order

38

or it may require stocks to be replenished in which case an order to the
supplier may be triggered. Exactly when and what other products are ordered
from the supplier will depend on how the merchant manages its logistics.
Once goods are reserved, the merchant sends an order confirmation to the
customer (ConfrimOrder). After order confirmation is made, the merchant
starts delivery and payment concurrently.

Delivery
The merchant arranges shipping with multiple shippers by sending a shipping
request to each shipper. Depends on business requirements multiple shipping
requests can be sent concurrently, or sequentially. After receiving shipping
responses from shippers, the merchant picks the best shipper that can ship
goods, for the best price with the most effective dates (ArrangeTransport). The
shipper loads the goods onto the transporters and notifies this to the merchant
(ShipGoods). The merchant sends a notification to the customer that the goods
now are in transit (SendGoodsNotify). Customer can send an
acknowledgement to the merchant that goods have been delivered when goods
arrive at the customer’s door and then the merchant receives this
acknowledgement (RecGoodsDeliveredAck).

Payment Processing
At the same time as goods are being shipped to the customer, the merchant
sends an invoice to the customer with a due date for the payment
(SendInvoice). Payment is then received (RecPayment) and a receipt is sent to
the customer (SendReceipt).

3.2 Issues for Service-based Systems
Any service-based system is constructed from pieces that need to remain
autonomous, because they were written, and are run, independently. In many
cases, they belong to different organisations which are competitors as well as
collaborators; the organisations’ goals are not the same, and each cannot
extend trust to the other. The pieces use many resources and may include
human intervention, so each lasts a long time. Although the environment of a
service-based system is much more sophisticated and complex than a
traditional OLTP system, still the goal of the applications built in such a
system remains the same: building a reliable and robust system which can
ensure that the system always finishes in consistent states. Building these
applications is not trivial due to potential problems which could arise from the
complex nature of service-based system, such as failures, races and other such
exceptional events. Without understanding the issues of concern and devising
mechanisms to deal with each issue, building a reliable and robust service-
based system would not be possible. In this section, we discuss a list of key
issues that the developers in this environment are required to understand.

39

3.2.1 Time Related Issues
In a business process, the time when something happens is often crucial to the
success of the business process. In our e-procurement case study, there are
many examples where timeliness is important to the success of the business
process. For example, the total cost calculated for a purchase order must be
based on valid unexpired quotes so the merchant and the customer have a
shared understanding of the amount of payment which will be needed. The
customer must have sufficient fund to pay for the goods before payment due
date. The merchant must have a proper shipping arrangement in place where
the shipper can deliver goods to the customer on time. The merchant needs to
ensure that sufficient stocks are available when a shipper arrives to load
goods, otherwise the customer might not receive the goods after payment has
been made.

The time issue has become much more difficult to implement correctly in the
service-based system due to the nature of services which run for long duration,
and due to interaction between components which is typically asynchronous.

Concretely, we now examine how lack of timeliness can cause an e-
procurement case study to produce undesirable effects, either the system ends
up where customer paid for the goods but the correct items of goods were
never delivered on time to the customer, or the merchant delivered the correct
goods but the correct amount of payment was not received by the merchant
before payment due date.

As we mentioned, e-procurement involves a quote that is only valid for a
specified amount of time. Suppose the customer sends a purchase order before
the expiry of the quote. But, due to network delay, it is possible that the
merchant receives the purchase order only after the quote on which was based
has expired. Subsequently the merchant might apply a new quote that is in
effect by the time purchase order arrives. This situation can potentially cause
different understanding for the payment the customer pays and the merchant
receives. Another example appears when a customer sends payment before its
due date but the merchant receives the payment after its due date and therefore
charges the customer for a late fee.

Effect of delays in the real world can also often complicate business process
implementation. For example, suppose that the merchant confirms the order
because it anticipates more stock will be replenished before the shipment of
the goods was provide. But, the extra stock got delayed, so the supplier was
unable to stock up the necessary goods to the merchant warehouse. This could
potentially leave the merchant unable to deliver the goods to the customer on
time.

40

3.2.2 No Termination
In a distributed service-based system, the services provided by participating
components are autonomous: that is, the implementation of each component is
completely hidden and other components are forbidden to access any of its
internal states. Multiple interactions happen simultaneously among
participating components each having no knowledge of what is happening at
other components. That is, there is no master component which oversees the
overall interactions among multiple participating components. This introduces
greater exposure to the problems due to lack of coordination and global
knowledge of the system, such as deadlocks, starvation and other similar
problems.

For example, the application will deadlock if it can reach the state where the
merchant is waiting for payment before delivering the ordered goods while the
customer is waiting for the goods to arrive before paying for them. Similarly,
deadlock occurs when the merchant is waiting for a shipper’s response as
whether the shipper can deliver the goods and the shipper is also waiting for
the merchant for further information (such shipping date and customer
address) before it can decide whether it can accept the duty of shipping.

Starvation will also occur in situations such as the following: the merchant
confirms more purchase orders than can be filled with the amount of stock on
hand. If this happens, some customers will wait forever for the delivery of
goods which the merchant is unable to deliver. The merchant can also face a
similar starvation problem if the customer sends purchase orders which require
total payment more than the funds available to the customer. If so, the
merchant delivers all the goods for the confirmed purchase orders to the
customer and waits forever for the payment to arrive but the customer is
unable to pay.

3.2.3 Unprocessed Messages
Messages play a vital role in service-based system as messages are only way
to communicate between interacting components of a system [40]. Each
component of a distributed service-based system potentially interacts with
different sets of loosely coupled components. Each set of interaction aims to
produce a different outcome depending on the business objective. For
example, a merchant interacts with supplier A and B and shipper SP1 and SP2
for the e-procurement systems while the merchant interacts with supplier C
and D and bank B1 for a supply-chain system. In such multi-layered
interactions based on loosely coupled components, exchanging messages
could become very complex and sophisticated. Due to such complexity and
sophistication, the challenging issue is whether all mission critical messages
will be handled appropriately. Not being able to handle a mission critical

41

message could potentially become a lethal threat in building a reliable and
robust system.

For example in our case study, the messages to ship goods and receive
payment are two mission critical ones which must be processed together
appropriately. In traditional OLTP systems, the operations dealing with these
two messages would have been wrapped as a transaction, and the atomicity
property of ACID will guarantee that the operations within the transaction are
all processed completely, or none is. That means it will never create a situation
where only one of the messages is processed. But in a service-based system,
the operation to ship goods with the shipper and the operation to receive
payment would be more likely dealt with as two completely different
interactions. This is because each component keeps its autonomy and
maintains a partial trust only during the interaction with its partner. In this
case, the shipper wants to deal with the merchant regardless of how the
merchant interacts with the customer. In such a situation, each node would not
know what is happening at the other side. This might potentially create a
situation where the merchant processes either the payment message or the
shipping message but not both.

Even when messages do not get lost in the transmission, a message may
remain unprocessed if the destination component is not expecting it. For the
ordering process in our case study, the customer may send its payment before
the due date and then terminate. This payment message could be delayed in
transit and not arrive at the merchant until after the due date has expired. As
the merchant has not received the payment by the due date, it would then send
a late fee message to the customer, but this message can never be processed as
the customer has already terminated.

3.2.4 Out of Order Processing of Messages
It is not enough to have all messages arrive and be processed by the
destination. If messages do not arrive in the expected order, consistency can be
at risk. Our e-procurement scenario illustrates many examples where
undesirable effects might be produced due to messages which arrive and are
processed in an unexpected order.

Suppose the merchant expect that payment is already received from the
customer when it organizes shipping with a shipper. The merchant might use
the payment from the customer to pay for the shipping. However, the payment
has been delayed which leaves the merchant unable to pay for the shipping.
The shipper now cancels the shipping. After the payment has finally arrived,
the merchant is unable to ship goods to the customer.

42

3.2.5 Lack of Isolation
Concurrent use of shared resources is the source of many difficulties and many
researchers have been working on mechanisms to isolate shared resources
from other concurrently running activities [32]. One popular mechanism
which has been used to solve isolation problems is locking. Here a lock is
placed on a resource during the entire duration of a transaction so that the
shared resources can only be accessed by the activities within the transaction,
no but where else. Regrettably, this locking mechanism only works in an
environment where activities run very fast and remain within a trust boundary.
This assumption, however, doesn’t apply in a service-based system where
activities run for long durations often crossing trust boundaries. In such
environments, it is unreasonable to place a lock on an interacting component’s
resources when there is no trust between components and when
implementation details of each component are completely hidden from each
other. Furthermore locking for the entire duration which could possibly last
days to months is simply too expensive.

Despite the difficulties of isolating shared resources in the service-based
system, a certain degree of isolation is required to prevent the system from
producing undesirable effects. We list a few concrete examples from our e-
procurement cast study to illustrate how the system can produce undesirable
effects if there is insufficient isolation.

Before confirming an order, merchant may check the amount of available
funds for a customer to ensure the customer has sufficient funds to pay for the
goods. Though the customer might have enough funds at the time when the
check occurs, this may not hold true by the time the customer has to pay. For
example, after checking of the available funds, suppose the merchant delivers
the goods. While merchant is delivering the goods, the customer might have
used the funds for other orders leaving the customer unable to pay for the
goods that are being delivered by the merchant. The funds of the customer,
which is a shared resource, have been modified by other concurrently running
orders other than one the merchant is involved in. This lack of isolation creates
a situation where merchant delivers the goods but the customer is unable to
pay.

Another example where lack of isolation could potentially create a problem is
found with handling of stock level by the merchant. The merchant checks the
availability of goods before confirming the order. While the merchant
organizes shipping, other concurrently running orders could take goods the
merchant was going to ship. This again will leave the merchant unable to ship
goods even though the merchant checked the availability of the goods earlier.

43

3.2.6 Cancellations
Business activities in a service-based system are often of long duration and use
asynchronous messages for communication, with complex business logic
coordinating the collaboration between multiple components. This leaves
many possibilities for failure, from faults in the system infrastructure to
application errors, or simply changed situations in one or more components.
Any of these causes can lead to the need to cancel some process that is
underway or even completed. In traditional OLTP systems, cancellation is
easy since all changes made within an atomic transaction can be rolled back
by the system, restoring all data to its previous state. Unfortunately, it is not
feasible to run an entire service-based application as a single atomic
transaction because of the performance and other impacts of the locks used to
ensure isolation [52], and so the applications in the service-based system need
to contain application-specific mechanisms for dealing with the cancellation of
an interaction.

The simplest cancellation is where the application stops the processing that
was underway, and then terminates with no other action needs to be taken. For
example, in the e-procurement example, taking no action is a reasonable
response when the order is cancelled at any time before goods are reserved.

A slightly more complex class of cancellation is when normal processing is
stopped, and some simple actions need to be performed to re-establish an
appropriate state. For example, if an order is cancelled before transportation is
arranged and before the invoice is sent, but after the goods have been reserved,
then to cancel the order only requires that we undo the reservation. This class
of cancellation is based on the Sagas model [36] where a business process is
cancelled (aborted) by executing compensators in reverse chronological order
for each task that has completed.

Some cases may require more complex cancellation handling. Suppose the
order has to be cancelled for some reason after transportation arrangements
have been made. One can try to cancel the arrangements but, if a cancellation
fee is charged by the transport company, how do we define the business
process used to pass on the costs onto the customer? Furthermore, how do we
define a process to handle the situation where the transport company refuses to
cancel its process, because the truck is already on its way to the warehouse?

Customer cancellation requests that arrive at certain points in the order process
may require approval from a manager. The merchant may also need to interact
with several of its partners as part of the cancellation process possibly
applying different cancellation policies. For example, if an order had resulted
in a back order being placed with a supplier, then this may also need to be
cancelled. The manager’s decision may depend on the internal state of the

44

business (e.g. will there be too much stock in the warehouse) and whether its
interacting components are also willing to accept the cancellation. If the
cancellation is accepted, a fee may be charged; otherwise (when the cancel
request is rejected) the normal order processing must be resumed regardless.

Cancellation after goods have been delivered introduces further complexity
since we need to define processes for returning goods, checking that the
correct goods are returned and ensuring that they are in acceptable condition.
We also need processes to define how to handle the case when the wrong
goods were returned or the returned goods are unacceptable.

3.3 Introduction to Deviations
Business processes run at each component of service-based system. Business
activities that carry out instructions for business requirements are implemented
within business processes. Defining a business process and modelling it would
be a straightforward exercise if every activity within a business process always
completed successfully and could never be cancelled. But as we examined in
the section above, there are many issues to be faced by workflow modellers
and software developers when activities deviate in various ways from their
normal path. This is quantified in [74] where the authors report that nearly
80% of the time implementing a business process is spent on handling
deviations.

The main focus of our work has been the consistency problem: ensuring that
the set of autonomous components making up one service-based application
always finish in consistent states. Building such applications which can
maintain consistency is not easy due to various deviations which can occur
from the simpler processing when everything goes well.

In this section, we look into the details of different types of deviations which a
service-based system might produce. We argue that there are different types of
deviations: recoverable deviations refer to deviations which have responses to
correct them and return to the normal path. The responses are corrective
actions which can fix the deviations as they occur then continue the process as
if nothing has ever happened. Unrecoverable deviations have no responses to
correct the problems. These can bring disastrous consequences such as system
being terminated inappropriately. Both types of deviations can be caused by a
mismatch between different states representing different aspects of system.

3.3.1 Recoverable Deviations
A business process is built from many smaller business activities. For some
business activities, there is only one way to execute the business activity. If
that only way of executing the activity fails, there is no way to correct things.
On the other hand, for some business activities there are several different ways

45

to execute the business activities. In such cases, if one way of execution fails it
is still possible that there are other ways to execute that produce the correct
result. In this scenario, when an original execution fails to execute
successfully, it typically takes a business process away from its normal path.
Corrective actions can be applied which take the business process back to its
normal path. We call this type of deviation, which has responses which we can
run to correct the situation, as recoverable deviations. Throughout the example
of e-procurement, examples of recoverable deviations appear many times,
some of which are listed below.

• Sudden popularity of certain goods may leave insufficient stock which
results in the failure of the step for reservation of goods. Rather than
rejecting the purchase order and aborting the ordering process, the
merchant business process can instead trigger backorders which can
replenish goods in the warehouse. Once goods are in stock, the
reservations can be made successfully as if there had been enough
goods in stock all along.

• Similarly, there are multiple transportation companies that can
transport ordered goods to the customer. If one transportation company
can not deliver, the merchant business process can find an alternative
transportation company to deliver goods to the customer. From the
customer point of view, the difference in transportation companies
does not matter in receiving the goods so long as goods are delivered
on time.

• When the merchant receives payment from a customer it is possible
that the payment is less than the amount owing. This can result in an
inconsistent result where the merchant shipped goods with value more
than what the customer paid. To correct the situation, the merchant
sends an additional invoice for a remaining amount plus some penalty,
with an extended payment due date. The customer pays the remaining
amount and penalty, and the ordering process then continue as if the
customer paid in full in the first place.

In a traditional view, such recoverable deviations would be considered as
failures. Thus they would not be recovered, but instead, subject to run one of
standard deviation handling mechanisms [32] to take the system to its original
state. However, taking the system to its original state in a service-based system
is often either too expensive or it might not be possible due to the
characteristics of the system we discussed in the Section 3.2.

3.3.2 Unrecoverable Deviations
There are some deviations where the system cannot find a way to continue
forward to a reasonable. We call these unrecoverable deviations. Examples
arise because of hardware or system failures, or from human error in
application design.

46

There are system deviations where the network or server fails. In our e-
procurement case study, system failures can cause ordering process to remains
incomplete. For example, calculating a price can fail due to the failure of the
price server. Reserving goods can fail if the reservation system is down.
Arranging transport or shipping can also fail due to crashes in particular
components. Sending messages (such as quote, purchase order, invoice) and
receiving messages can all fail due to network failures. If one component of a
service-based system fails, it is more likely that the overall interaction will fail
as a consequence. Interacting components will be unable to progress, when
they do not receive messages that are critical for them. For example, without
receiving a payment from the customer, the merchant ordering process cannot
complete.

Another common deviation in this category is due to programming bugs, a
term which refers to an error, flaw, mistake, failure, or fault in a computer
program. These prevent the system from behaving as intended, so producing
an incorrect result. Programming bugs can come from mistakes made by
people in either design or in connecting a correct design to code. For example,
suppose an overdue customer has been evaluated as a valid customer even
though the customer is recorded as having overdue, or a quote has been
calculated based on the old price list even though new price list is available at
the time of calculation, or the incorrect number of goods were reserved despite
purchase order correctly stating the number. These situations can all happen
due to mistakes made by developers. No matter how each component
successfully processes all the messages as expected, the bug introduced by
programmers will prevent the system from producing a correct result.

3.3.3 State-related Deviations
One notable type of deviations, which may be either the recoverable
deviations or unrecoverable deviations, needs special attention. This is the
state-related deviations. State-related deviations occur due to mismatch
between states which represent different aspects of a system. For example, a
state stock_on_hand represents the amount of stock being held in the
warehouse in the real world. A state invoice_sent represents that a business
activity has occurred (namely that an invoice was sent to the customer).

The accuracy of states is dependent on states being updated correctly every
time reality changes. For example, the state stock_on_hand should be updated
accurately every time the stock amount in the warehouse is changed. The state
invoice_sent should only be produced after an invoice is really sent to the
customer. As well, the accuracy of states may also be affected as a
consequence of another state. For example, depending on the amount of funds
available as represented by the state funds_available, the outcome of

47

payment_sent will be decided. If the state funds_available contains sufficient
money to pay for goods, the payment_sent will succeed. If funds_available
contains less than what the customer owes for the goods, the payment_sent
will fail.

But in reality, this synchronised updating between states doesn’t happen
perfectly all the time. Data entry errors can occur, there may be an anticipated
changes in the world that are not captured in the computer system,
network/server failures may present communication at the exact moment a
synchronised update was supposed to happen, or the costs to maintain
accuracy could be too great. However, the major causes that produce state
mismatches remain the issues we discussed in Section 3.2.

Building a reliable and robust system cannot be done without handling the
various deviations appropriately. In the next section, we closely examine
different deviational situations which are created by the different types of state
mismatches. Then we discuss the way different deviational situations can be
handled, as a first step to guide the developers in handling deviations.

3.4 States and State Mismatch
The section is divided into two subsections. In the first subsection, we
examine different types of states in the system that represents different aspects
of the system. In the second subsection, we classify different deviational
situations which can arise due to state mismatch.

We provide descriptions of how to handle various deviational situations as
they occur in the example of e-procurement cast study. The description will
provide a way to evaluate current and proposed B2Bi and EAI technologies on
their support for deviation handling. In Section 3.6 we show that current
technologies have limited support for handling various deviations.

3.4.1 States
We first define three different types of states that represent different aspect of
business process – Abstract State, Business Process State and Real World
State. We describe each of these types of state in detail, and we discuss the
relationships between states.

3.4.1.1 Real World State
The Real World State is simply the state of the physical world, such as goods
on hand and financial agreements. In our e-procurement scenario, the quantity
of each product stored in the warehouse, the physical location in the
warehouse where the goods are stored, the conditions of the goods (damaged
or in good condition) and the locations of the warehouses are all part of the
Real World State.

48

3.4.1.2 Abstract State
The Abstract State is a computer-based representation of the Real World State.

Each component in a loosely coupled distributed computing system has state.
This state is an Abstract State as it is based on the data held within these
computer-based models of the real world. This model includes information
such as the expected availability of each product, the location in the
warehouse where the goods are supposed to be stored and the customer’s
delivery address.

The Abstract State of a component is not necessarily exposed externally. This
means that a component in the distributed environment may have no direct
knowledge of the internal Abstract State of other components. For example, a
customer would not normally know the level of stock available for any
particular product; in airline reservations, a passenger would not know the
exact number of seats available for a particular flight. However, it is possible
for an external component to derive partial information about the Abstract
State of a component by considering the component’s behaviour – e.g. if a
merchant accepts a purchase order then the customer knows that the merchant
believes it will have at least the ordered quantity available at the time of
shipment. The merchant may provide the customer with direct interfaces to
query the value of the internal state, but this can never be more than a snapshot
and so is potentially inaccurate.

3.4.1.3 Business Process State
A business process is defined by a set of activities and a specification of the
order in which the activities are required to execute. In the e-procurement
example, the business process for the merchant includes receiving a quote,
verifying that the customer is a registered customer with no overdue payments,
calculating a quote and sending the quote to the customer. The Business
Process State is the point that the process is up to in its execution. A business
process may contain forks (sets of activities that execute in parallel), thus a
Business Process State can point to multiple positions in a process.

Examples of process state in e-procurement include states such as quote
request received, quote sent, invoice sent, payment received and receipt sent.

There are two types of business processes. One type defines the internal
activities of a component and the other defines the externally visible
behaviour. In the e-procurement example, the merchant would not expose to
its partners (e.g. customers and suppliers) the internal processes but would
expose a sub process which consists entirely of activities that interact with its
partners. There are thus two types of Business Process State: Internal and
External. An External Business State encapsulates or summarizes a set of

49

internal states. For example, the external process state payment received
encapsulates the internal state of received payment, awaiting the validation (of
payment) and received validation.

3.4.2 Classification of Deviations
This section classifies a number of situations where the business process
deviates from normal processing as a result of state mismatch situations. Some
of these deviations are recoverable while others are not. This means an
architect must ensure that there are processes defined to recover from
recoverable deviations and to prevent unrecoverable deviations; otherwise,
unacceptable behaviour will occur that may result in adverse outcomes, such
as financial loss. The events that cause a deviation from the normal processing
paths can occur at any time, even when handling previous deviation, making it
more difficult to ensure correct behaviour under all circumstances.

3.4.2.1 Mismatches between the Real World State and the Abstract
State
An Abstract State is a representation of a Real World State. The Real World
State of a warehouse is the physical state of the warehouse, such as what
products and in what quantity, is stored in the warehouse as well as their
storage location in the warehouse. An inventory system is an Abstract State
representation of the Real World State of a warehouse.

In an ideal world, the Abstract State and the Real World State would be
consistent with each other. Unfortunately, this is not feasible due to the cost
and effort required to keep them synchronised at all times. In particular, the
timeliness issue due to the asynchronous nature of service-based systems leads
to many temporary mismatches between the Real World State and the Abstract
State. As well, difference between the Real World State and the Abstract State
can also be caused by real world events that are not reflected within the
computer system. For example, goods can become damaged in a warehouse or
can be stolen and are thus no longer available for sale. This state mismatch
will persist until the inventory system is reconciled with the actual physical
goods in the warehouse, something that may not happen until the next stock
take.

Take an example where an Abstract State isn’t consistent with a Real World
State in the e-procurement scenario. A deviation will occur when there are
actually insufficient goods in the warehouse to satisfy an order but the
inventory states otherwise.

As it is not feasible to keep the Abstract State and Real World State
synchronised at all times, these types of deviations are unavoidable. Thus, to

50

ensure correctness (that is, avoid unacceptable behaviours), we must be able to
handle deviations caused by inaccurate abstract state.

Correct handling of deviations arising from inaccurate Abstract State is
application dependent. In the e-procurement scenario, if there is insufficient
stock available for delivery then there are various ways the deviation can be
handled. They include:

• Delay the order until a backorder arrives and reschedule delivery;
• For orders that include other products, send all available goods as

scheduled and send unavailable goods when they become available –
that is, partial fulfilment of an order;

• Cancel the order.
Depending on the circumstances, how this deviation is handled may depend on
the decisions and policies of the merchant and/or customer.

If this deviation is not appropriately handled then unacceptable behaviour may
result. For example, goods may never be delivered to the customer but the
customer is still invoiced and sends payment to the merchant; or the business
process may never terminate.

3.4.2.2 Prohibited Abstract and Real World State
Integrity constraints define, via the Abstract State, that certain Real World
State are prohibited. Examples of integrity constraints for e-procurement
include the requirement that each customer does not exceed their credit limit,
and that available stock for a particular product is not below a specified
amount unless there is an active backorder.

Deviations are thrown during a business process when an integrity constraint
is violated. Though guaranteeing integrity constraints is a job of application
programmers, lack of isolation can often cause the deviations in this category
to occur. For example, two concurrently running business activities read the
credit limit of a customer at the same time thinking that each business activity
only takes some amount that doesn’t make the credit limit exceeding. But in
truth, the sum of these two concurrently running business activities exceeds
the credit limit if both are granted.

There are two different approaches to solve such problem. One is to apply an
appropriate isolation mechanism which can prevent any deviations to occur
due to integrity constraint being violated. We discuss the ideas for this in
Chapter 6 of this thesis. Other approach is to let deviations occur, and deal
with them after the fact, to keep the system from ending up in an unacceptable
state such as when the customer credit limit has exceeded leaving the customer
unable to pay for orders. How a deviation should be handled is application
dependent. For example, if a customer exceeds his or her credit limit while

51

placing a new order, then there are a number of ways to handle the deviation.
They include: increasing their credit limit (maybe temporarily); requesting that
the customer deposit funds into their account; or cancelling the order which
caused their credit limit to be exceeded. Notice again that there are a number
of possibilities to handle the deviation and that the business process does not
have to be cancelled as a result of the deviation.

The more interesting example relates to business constraints that are important
to guarantee the integrity of overall business processes, such as available stock
is not below a specified level unless (or) there is an active backorder. If an
order reduces the available stock to something below the acceptable level, the
deviation should definitely not cancel the order but instead trigger a new
backorder. If the backorder throws a deviation, perhaps because the supplier
no longer stocks the ordered product, then the merchant can try to find an
alternative supplier and if no such supplier can be found, they might remove
the integrity constraint for this product and update the inventory to reflect that
this product will no longer be available once all remaining stocks have been
sold.

3.4.2.3 Prohibited Time-based Internal Process State
An interesting type of prohibited process state arises from events that are
supposed to occur. A business process may specify when an activity in a
business process has to occur, and if it doesn’t happen by the specified time
then a deviation should be thrown.

A good example is the requirement that payment from the customer should be
received by its due date. When this deadline is missed as might happen
because of message delays or customer tardiness, there are many ways to
handle the deviation. They include notifying the customer of overdue payment
and extending the deadline for payment; charging an additional late fee and
sending a new invoice; cancelling the order if the goods have not been
shipped, (and possibly charging the customer a cancellation fee); and as a last
resort, initiating legal action (a human oriented activity) to recover costs.

Additional complexity can be caused by the asynchronous nature of the
interactions between the merchant and customer’s business processes. If the
merchant sends a new invoice, including the late fee, in response to an
overdue payment then it is possible that payment for the initial invoice will
then be received. The merchant would then wait for payment for the late fee
payment only.

If there is no appropriate mechanism in place to keep track of state of an
overdue payment, the system might wait forever without termination for the
arrival of a message. Care must also be taken when defining how to handle an
exception between the customer and merchant; otherwise it is easy to end up

52

with unacceptable outcomes. For example, customer may pay the original
invoice, then receive another invoice (which covers the original charge plus a
cancellation fee) and pay that in full as well. Inconsistency can also occur if,
after the merchant sends a second invoice which includes a late fee, they
receive payment from the customer for the original invoice but then forget
about the late fee which is still outstanding.

3.4.2.4 Mismatch between Internal Process State and Abstract State
Successful execution of an activity from a particular Internal Process State
may depend on the Abstract State having appropriate values at that time. For
example, there must be sufficient funds available at the time the customer
wishes to send payment to the merchant and there have to be sufficient stocks
available at the warehouse for delivery when transportation arrives. The most
intuitive scheme for specifying the conditions required for successful
completion of an activity is by attaching predicates (pre-conditions) to
activities in a long running business transaction. This was pioneered in [84]
and [52] and we adopt this idea in our proposal in Chapter 4.

In a long running business activities, if an activity A depends on a condition to
successfully execute, the business transaction will typically execute an earlier
activity A’ in the business transaction to ensure that the condition will be true
when the activity A executes, for example, in e-procurement, the merchant will
typically reserve the quantity of goods required by an order so that there will
be sufficient goods available at the time of delivery. However, just because
goods have been successfully reserved does not mean that the goods are
already stored in the warehouse since the reserved goods may be goods that
are scheduled to arrive from the supplier before the delivery date, that is, the
predicate may not be actually true when the activity A’ executes but is
expected to be true by the time A executes. Furthermore, if A’ successfully
executes, there is actually no guarantee that the predicate will be true when
activity A executes since the goods may have been taken out by other
concurrently running activities.

The traditional approach to solve such problems is to make A and A’ as a
single transaction to ensure the condition (which was checked in A’) is always
true when the activity A executes. The lock placed during the transaction
guarantees that no concurrent running activities interferes with the state A and
A’. But as discussed in the Section 3.2.5, the locking mechanism is only
feasible when it can be guaranteed that clients will always release locks fairly
quickly; and this is not a guarantee that can be given with untrusted clients and
long-running business processes. In Chapter 6, we propose an isolation
mechanism which can work in such long-running business processes in the
service-based system.

53

3.4.2.5 Mismatch between External Process States
B2B integration often requires autonomous components and long stateful
interactions between numerous participants. The e-procurement scenario is a
good example; the participants include a merchant, a customer, and shippers.
Each component exposes its External Business Process State to its partners.
However, the External Process State of one component may not be compatible
with another component’s external process state. Examples of such
incompatibility include:

• The customer is in the received receipt external business process state
while the merchant is in the invoiced state. These two external states
are incompatible since the customer could not have possibly received a
receipt if the merchant has not even sent the invoice. However, the
external business process state paid for the customer is compatible
with the merchant’s external business process state invoiced since
payment may be in transit.

• The customer is in the external business state cancelled state while the
merchant is in the successfully completed state.

• The merchant is in an external business state which is awaiting
payment but the customer is in a state which indicates that its business
process has terminated.

These incompatibilities can be prevented by ensuring that the components’
(dynamic) behaviour is compatible with respect to a B2B coordination
protocol. That is, when one component sends a message to another
component, the destination component is expecting that message, and
whenever a component is awaiting the arrival of a message, some other
component will (eventually) send a message of the correct type.

In a correct design and implementation of a B2Bi application, the business
processes participating in the B2B interaction should never be in a situation
where one business process is waiting for events (messages) that will never
happen; neither should any component receive unexpected events. Such
incompatibilities will cause business processes to never terminate and cause
messages to be lost or queued somewhere, never to be properly processed.
Although ensuring the compatibility of different external processes is an
important aspect to producing a consistent system, we don’t cover this topic in
our thesis. We refer interested readers to work by our colleagues in [33].

3.4.2.6 Incompatible Abstract States
Even though Abstract States are internal to a component, two or more
components’ internal state may be incompatible in a B2B interaction. In e-
procurement, examples of incompatible Abstract States include the following:

• The amount payable for an order differs in the customer and
merchant’s Abstract State. Similarly, if an order is cancelled, the

54

merchant and customer may differ in their understanding of the
cancellation fee that is payable.

• Similarly, the products ordered in an order differ in the merchant and
customer’s Abstract State.

Incompatible Abstract State becomes evident when one of the business
processes throws an exception after receiving a message from another
component, for example the merchant would throw an exception when it
receives payment from the customer in which the amount is incorrect.

The deviation needs to be appropriately handled and the incompatibility
between the Abstract States resolved; otherwise, the environment would be
left in an inconsistent state. Issues of the compatibility of different processes
are covered in depth in [33].

3.5 Desired Features in Handling Deviations
In Section 3.4, we have explored various deviations due to different cases of
state mismatches. We also discussed potential ways of handling deviations at
each case of state mismatch. This has given us an insight into a more general
set of features needed in handling deviations in a service-based system. Again,
we use e-procurement scenario to illustrate concrete examples of the desired
features provide better understanding of each feature.

Section 3.5.1 describes the types of behaviours required when deviations cause
a business process to deviate from normal processing so seriously that it is
desirable to cancel the original processing entirely. We focus particularly on
situations where a cancellation request is received, but there is a lot of
similarity with the types of processing needed following occurrences of
unrecoverable deviations.

Section 3.5.2 describes the types of behaviour required when recoverable
deviations cause a business process to deviate from normal process but in a
less serious way that does not require cancellation. In view of the effort
already invested in a long running process, and the number of collaborators
involved, a business process should only be cancelled as a last resort.

3.5.1 Cancellations
We list a number of desired deviation handling features when a business
process requires terminating because the deviations are too severe to be
corrected. The simplest from of terminating the business process is simply
stopping the currently running business process without doing anything. A
more complex handling of deviations can be that the system runs independent
activities which can reverse the effects of the activities so far. A more
advanced form of handling deviations is to examine all state that had been

55

changed before deviations occurred and correct the state. This needs great
understanding of which state components to examine and how to correct them.
The last resort when the system is extremely complex is to notify human
operators so that even the most complex and rare situations can be handled
manually.

3.5.1.1 Terminate All Processes and Simple Activities
The simplest type of behaviour is to stop, that is, the abnormal situation calls
for the system to terminate whatever activities are underway. Within this case,
we allow for the cancellation to also execute some additional simple activities
after terminating whatever is active.

An example of this type of behaviour is if the customer decides to cancel the
order before the merchant has performed any significant activities that impact
on the real world. Suppose the cancellation request arrives before the
reservation of goods has started. The merchant may be currently calculating a
price, or it may have just received the purchase order, but it has not reserved
goods from the inventory system or arranged for delivery. The business
process can be terminated and all that might be needed is, optionally,
executing a simple activity which updates the status of the order from active to
cancelled.

For this class of behaviour, notice that cancellation of a business process does
not necessarily return the system back to its exact original state. For example,
the customer database may have been updated. Furthermore, same activities
are not undone via compensation transactions, for example, sending and
receiving quotes, and calculating the quote are not compensated. All that is
required is basically to terminate the business process.

3.5.1.2 Executing Compensator like Activities
A slightly more complex class of behaviour requires in dealing with deviations
are reverting the effects of the deviations by running compensator like
activities similar to Saga transaction model [36].

In the e-procurement scenario, if an order needs to be cancelled after goods
have been reserved and transportation arranged but before an invoice has been
sent and the goods shipped, then the order can be cancelled by running
compensators in reverse chronological order for those activities that have
successfully executed.

Compensator like activities do not always need to run in reverse chronological
order, but sometimes application defined order is appropriate. In the e-
procurement scenario, certain circumstances place different constraints on the
order of compensators. For example, if a cancellation is received after

56

payment has been received and transport arranged, there may be some
cancellation charges from the shipper which must be passed on to the
customer. Thus the compensator for receiving payment (which refunds money
to the customer) should only execute after the compensator for arranging
shipment has executed. Since the original processing of the delivery process
was concurrent with the payment process, the completion could have been in
either order. That is, in this case compensators do not necessarily occur in
reverse of the original chronological order.

There are also cases where one activity has to execute before another but their
compensators can execute in any order. In the general case, the compensators
may be required to execute in an order that is application specific.

3.5.1.3 Executing Independent Activities
There are circumstances where the required behaviour is not to follow the
traditional view of rolling back. A business process may need to execute a
process whose processes are independent of the activities that have executed
in the original forward processing.

For example, in the e-procurement scenario, if ordered goods have already
been shipped then this will require the invocation of a return goods process. It
would arrange the delivery for the unwanted goods back from the customer
(either to the original warehouse or perhaps to an alternate storage site). It
would also involve special checks to make sure that the goods returned were
the ones originally delivered, that the goods have not been damaged, and so
on.

Notice that the return goods process may itself fail and this needs to be
appropriately handled.

3.5.1.4 Activities Dependent on State
The correct behaviour to handle effects of deviations in a long running process
may depend on the state of other activities and data. The status may not be
known at the time when a fault needs to be handled.

For example, if an order is cancelled then the cancellation fee is dependent on
the state of the delivery. If there is a fee for the cancellation for delivery, then
the costs are passed onto the customer. If an invoice has not been sent, then an
invoice for the cancellation fee is sent to the customer; if an invoice has been
sent and payment has been received, then a partial refund is sent to the
customer.

The final case is a more awkward to handle as it introduces an extra dimension
to the problem: the exact state is unknown. In this case, the merchant has sent

57

the customer an invoice but has not received payment, and the merchant does
not know if the customer’s payment is in transit or not. The merchant has to
send the customer an invoice for the cancellation fee but a payment for the
original invoice may arrive after the merchant has sent the invoice. In this
case, the merchant has to assume that if the customer receives an invoice for
the cancellation fee and has already sent payment that the customer would
ignore the invoice for cancellation fee. The customer would then wait for a
partial refund from the merchant.

Care needs to be taken in defining the protocol between customer and
merchant; otherwise, inconsistencies could occur where the customer never
receives the correct refund or the merchant never receives due payment.

The final case can be more simply handled if the merchant does not allow
orders to be cancelled, and it only sends an invoice after the goods have been
shipped. That is, we can place extra constraints on the business process to
avoid being in unknown states when a fault occurs.

3.5.1.5 Human Intervention
It is not realistic to expect that all deviations can be handled without human
intervention since there may be very complex/special circumstances.
Flexibility for handling cancellation is greatly increased if humans handle the
most complex and rare situations. It is straightforward to initiate and receive
notification of the outcome of human intervention activities via simple
mechanisms such as sending and receiving emails.

3.5.2 Continuing to Make Forward Progress
Exception issues have been widely investigated in the workflow research
community. Most techniques developed in the workflow research are similar
in that each first terminates the current business process then deals with
exceptions. For example, Hwang et al. [43] propose a model for handling
workflow exceptions based on previous experience. When an exception
occurs, a search on the previous experience in handling similar exceptions is
conducted and the result is applied. Casati and Pozzi [12] describe a taxonomy
of expected exceptions by categorization of similar exceptions and mapping to
exception handling for each class of categorized exception. Based on this
taxonomy and meta-model, Chiu et al. [15],[16],[17] developed a Web-based
WFMS to support automatic resolution for expected exceptions. Fung and
Hung [26] go a step further by regenerating a workflow specification which
can invoke alternative Web Services to remedy the failure of mission critical
business activities.

However, in a service-based system, it’s often impossible to terminate a
business process due to the complex relationship has been built during the

58

long duration of interactions as well as particular environment of the system.
If possible, the system should deal with the problems (i.e. deviations) as they
occur and always progress forward. The simpler form of dealing with
deviations is to find alternatives which can produce the same effect as the
event which caused the deviations. Sometimes, it might not be possible to
simply apply the alternatives from the point where a deviation just occurred,
the process might need to rollback to an earlier point (where most recent stable
states can be retained) and restart from there. In this situation, one may aim to
reapply the event that caused the deviations or to apply alternatives. A more
advanced way of handling the deviation is to continue the process despite the
deviations, and also to create additional activities later which can handle the
effect of the failed events.

3.5.2.1 Alternatives
Activities in a business process may fail, for example, a transportation
company may not be able to deliver the goods at the required time. When a
failure occurs, it is often inappropriate to take the drastic action of aborting the
business process. It is possible in certain situations to execute alternative
activities, and if they are successful, the business process can continue as
normal such as the merchant finds another shipper.

3.5.2.2 Rollback to Earlier Points in the Processing and Redo
An activity may fail and the most appropriate cause of action is to undo via
compensation like activities or other independent activities, such as
alternatives, thus returning to an earlier point in the business process
(savepoint) and then restarting from the savepoint.

A concrete example where this type of behaviour is required is if the delivery
of goods were sent to the wrong address. The shipment is returned, and then
the merchant determines the correct address and then resends the shipment.
This may be done by another shipper than the one shipped the wrong goods
originally. The activities in the payment process need not be undone or redone.

3.5.2.3 Continue Processing and Create Additional Process
Partial fulfilment may be required when a merchant can not provide all the
goods at the time of delivery, for example if a backorder is delayed. The
merchant thus ships the available goods and later it arranges transport of the
other goods when they become available.

This class requires that the process spawn another process to handle currently
unavailable goods; meanwhile it must continue normal processing for the
goods that are already on hand. There is also a need to modify other processes
such as the invoice to the customer is not for the full amount but only for

59

goods that have been shipped. A later invoice is sent when the unavailable
goods are shipped.

3.6 Critiques of Standard Mechanisms and
Supports from Current Technologies
In this section, we explore in more depth the issues concerning the intrinsic
shortcomings in the standard approach to dealing with deviation in systems
composed from Web Services. This standard approach uses an exception-
handling mechanism similar to that in programming languages, together with
application defined compensators which semantically undo completed
activities or all or nothing features from traditional ACID transactional model.
We described this approach in Chapter 2.1.5.1.

A fundamental assumption made by the standard model is that that every
completed activity can be semantically undone. That is, the model assumes
that application designers can always write a correct compensator for each
activity. However we saw above that it may not be possible in all cases to
undo the effects of shipping some goods. The only way the standard model
can deal with activities that cannot be undone is to define an empty
compensator, but this is unsatisfactory because it is treated as successful
compensation and thus enclosing scopes are not aware that the activity has not
been undone correctly.

Even if some aspects of an activity can be undone, it is not always the case
that we can return exactly to the original state. The compensator for an
activity, such as reserving goods, is to remove the reservation. One might
believe that such a compensator is guaranteed to successfully execute, but the
reservation may have triggered off a back order. If the backorder plus the
original reservation together would leave the merchant with an excessive
quantity of goods, then this simple compensation might be unacceptable.

Furthermore, the standard model does not seem to take account of possible
state-dependence in how compensation should occur. At least in the BPEL
expression of the model, the compensator has access to the stored state in
databases etc, and to the state captured in containers by the original activity,
but it does not have access to the current state of running concurrent activities.
However we have seen that the correct way to rollback a completed shipment
of goods can depend on the status of the concurrent payment process.

Another flaw in the standard approach (such as BPEL described in Chapter 2)
to cancellation arises from the assumption that fault-handling should involve
the immediate termination of all running activities within the scope that has
suffered the fault. This assumption makes sense in the traditional object-
oriented programming languages where the exception-handling concept arose,

60

but it is not valid for all cases of faults within a long-running business process.
In contrast, we believe that proper handling may sometimes require the
application-specific fault-handler to intervene intelligently in the running
activities. It should examine the current state of the scope and then act on
different activities in different ways: some may be allowed to reach a stable
point, some may wish to take special preparations before termination, some
may need to be killed, and others maybe should proceed to normal completion,
unaffected by the fault.

The standard approach does not provide sensible code reuse between the
default handlers and customised ones written by the application developer.
The programmer must either rely entirely on the default (which simply runs
compensators in reverse chronological order), or they must write the entire
handler from scratch. There is no opportunity to do some preliminary activity
and then invoke the default handler, nor can programmer access information
used by the default handler, such as the order of completion of the sub-
activities. For example, one couldn’t write a customized handler which runs
the compensator of the last completed sub-activity, but not any others.

3.7 Summary
In this Chapter, we started with the question of what makes it difficult for
developers to build a reliable and robust service-based system. To answer this
question, we needed to look at the environment of a service-based system.
Some of major concerns of a service-based environment are:

• The asynchronous nature of interaction among autonomous
components which made it harder to deal with the timeliness issue.

• The complex web of relationships between multiple components,
which deal with different partner components depending on business
context, makes it difficult to process all messages elegantly and
correctly. This potentially leads the system to halt without a proper
termination or terminate with unprocessed messages.

• There is a high possibility of interference from concurrently running
business activities due to lack of appropriate isolation mechanisms.

• And possible cancellation requests at various stages of the running
system can leave the developers in a challenging position.

We explored different types of deviations and we observed one important
point needing special attention: states. The issues we identified for service-
based systems have contributed to the number of possible state mismatches.
This in turn produces many chances for the system to deviate from its normal
path. We looked at the different deviational situations produced in each type
of state mismatch. For each deviation, we also provided descriptions of
possible ways to deal with the situation using our e-procurement case study.
This is important because without proper mechanisms in place to deal with

61

deviations it would be difficult for the application programmers to build
reliable and robust systems [74].

We then used our understanding of how deviations need to be handled, to
discuss requirements on the developers’ description of deviation handling. We
showed the drawbacks in the standard mechanisms as found in BPEL and the
others. In brief, the key requirements for describing business processes are:

• Need to represent many different approaches including both forward
progress and cancellations.

• Need to allow deviation handling to interact in sophisticated ways with
aspects of state including business process state.

This led us to devise a new model which allows the developers to define all
sorts of handling mechanisms cleanly and declaratively. We present the model
in the next chapter.

62

Chapter 4

GAT – New Event-Driven
Programming Model for Defining
Business Processes

In the previous chapter, we examined the issues which make it difficult for the
developers to build a reliable and robust service-based system which can
always finish in consistent states. We discussed the more frequent and
complex types of deviations which occur due to state mismatches. Our
evaluation of the existing standard mechanisms for expressing business
process definitions appeared to be pessimistic about their support for designers
who seek robustness. One of the key problems with existing mechanisms is
that they treat normal activities and deviational events differently using
separate handling techniques. This means that there is very limited support for
dealing with recoverable deviational events, where we found were important.

In this Chapter, we propose a new model and notation for expressing business
processes. This can help designers of business systems to avoid many common
sources of errors in handling various deviations resulting from state-
mismatches. This new model is called GAT, standing for Guard-Acton-
Trigger following the name from the major elements of the model. Unlike
most existing standard mechanisms and current technology tools, our GAT
model does not separate the normal business activities from deviational cases,
nor does it use a special handling mechanism for deviations. In addition, GAT
allows each activity to access the wider range of states such as Abstract States
and Business Process State. This makes it easier for the developers to make
use of more accurate information about the current state of the system. This
can greatly help the developers when they plan how to handle different types
of deviations.

Using a payment process taken from the e-procurement scenario presented in
the previous chapter, we describe some common difficulties in defining the
business process. Then we show how features of the GAT model can help the
developers in these cases. We give all of the payment process written in the
GAT model. Finally, we show how GAT relates to previous proposals for
expressing business processes.

63

4.1 Payment Process
In Chapter 3, we used an e-procurement scenario of a merchant business
process to discuss various issues faced by application developers in designing
a service-based system. In this chapter we use just the payment section of this
larger example (seen in the red circle in the Figure 9) as a case study to discuss
our proposed GAT model and to demonstrate how one can write a business
process using GAT. We also illustrate how some features of GAT can guide
the application programmers to write a business process that can maintain data
and state consistency.

Figure 9 Payment Process within the Merchant Process

We describe four scenarios derived from the overall payment process in this
section. They describe procedures that are followed in dealing with payment
which include: sending invoice, receiving payment, sending receipt and
dealing with cancellation requests (the last is not shown in the diagram). We
do not consider at the moment any temporal events and related constraints
other than these four procedures. At each scenario we also describe potential
problems which can cause the payment system to produce inconsistent
outcomes if they are not handled properly. Then in Section 4.3, we illustrate
how features of GAT help the application programmers to write a business
process avoiding the problems we have mentioned.

4.1.1 Send Invoice
The merchant sends a confirmation to the customer after goods have been
successfully reserved. Then, merchant starts two parallel business processes:

64

shipping process to deliver reserved goods to the customer, and the payment
process which deals with the payment.

The first business step after starting the payment process is to send an invoice
to the designated customer. The merchant at this stage checks the details of the
customer to ensure there is enough information, such as billing address, an
invoice to send to a designated customer. If any details of the customer are
incorrect the payment system must send a notification to Customer
Management System (CMS) to deal with the incorrect information, for
example by contacting the customer by phone to get the correct address.

A potential problem that may cause the system to produce an inconsistent
outcome appears when customer doesn’t respond to the invoice: that is, they
do not send payment within the due date. The merchant cannot wait forever
for payment to arrive as this will cause the payment system to never terminate.

The merchant should define a procedure which can deal with the lack of
response events. For example, when payment is overdue, business logic may
require the merchant to extend the payment due date and send a reminder, with
a penalty, to the customer. This procedure can be invoked as soon as the
payment due date elapses so that customer is notified of the overdue payment.
The merchant may allow sending such reminder up to 3 times. Once the
overdue payment is received (within 3 reminders), the payment process
continues its normal path and other parts of the merchant’s system can be
notified that the payment process has completed successfully. If overdue
payment is not received after 3 reminders, the payment system sends an alarm
message to a (human) manager.

4.1.2 Receive Payment
This business scenario describes the procedure to deal with payment sent by
the customer. There are three possible paths that can be followed in response
to the payment depending on the amount of the payment as seen in the Figure
10:

65

Figure 10 Receive Payment

• Full payment: the payment received is equal to the amount owed.
The rest of the merchant’s application is notified that this phase of
the procurement cycle has completed successfully.

• Under-payment: the payment received is less than the amount owed.
In this case, the amount still owing is calculated and an additional
invoice is sent to the customer. Depends on the types of customers,
the calculation of the remainder owning can vary. For example, if
under-payment is made by premium customers, no late fee is applied.
If a normal customer makes the under-payment, a late fee is added to
the additional invoice.

• Over-payment: the payment received is for more than the amount
owed. In this case, there are two further actions to be taken. One is to
calculate the over-payment and refund it. The other action notifies
the rest of the merchant’s application that the customer has paid in
full.

There are a number of potential problems in this simple example that could
lead to inconsistent outcomes and business process deviations. For example, a
customer under-payment has to be handled as an event that needs correction
rather than as a deviation leading to the whole payment process being aborted.
In this case, the customer should receive an invoice for the residual amount so
the correct payment can be made. Similar to the overdue example in the above
scenario, the payment process should continue down the normal path and other
parts of the merchant’s system can be notified that the payment process has
completed successfully once the complete amount has been received.

Concurrent unprotected actions can also result in inconsistent outcomes and
process failures. Without suitable protection, actions can check that it is safe
for them to proceed, only to have a concurrent action invalidate this decision

66

by changing critical shared state between the check and the code that
depended on it. For example, the action that calculates the residual amount and
sends an additional invoice runs because the system has checked received <
owing. If an incoming payment changes the state before the extra invoice is
sent, an inconsistent state may be produced. Similar when payment that is
more than the money owing is received, the calculation of refund must not be
interrupted; otherwise the amount of refund might be altered by concurrently
running activities that access the same state (the amount of refund).

The different possibilities for the payment amount should all be considered
and properly handled. A merchant payment system must have mechanisms in
place that can deal with all different amount of payment received. For
example, if merchant system only deals with exact payment amount, that is
when the payment received equals the money owing, it can result in the
customer paying more than what they owed without getting refund, or the
merchant receiving insufficient payment.

The payment process defines different procedures for different types of
customers who underpay and this should be measured correctly in the process
system. For example, premium customers should only get a remainder for the
remaining amount when they underpay whereas non-premium customers must
incur a penalty.

Business processes in a service-based world are built by putting together
different parts of systems from legacy code to newly developed code. It is
most likely organisations implementing business system reuse their legacy
code wherever possible. If the merchant payment system already has code that
deals with payment, the code should be reusable.

4.1.3 Send Receipt
As soon as customer pays the full payment (that is equals to the amount
specified in the invoice) a receipt is sent to the customer.

4.1.4 Cancellations
The overall payment process depicted in Figure 10 only shows the normal path
which is straightforward. However, there are many different ways payment
process is forced to cancel, such as due to the overall ordering process being
cancelled, or the customer simply has changed his/her mind and sent
cancellation requests, or system and network failures occurred.

A business transaction typically has some persistent effect on the overall
system state, even if a cancellation has occurred. For example, just rolling
back is not an appropriate response to an order being cancelled. The existence

67

and outcome of the attempted order have to be recorded, and there may be
other consequences such as the imposition of cancellation fees.

In most situations, a component participating in a B2B transaction cannot
unilaterally cancel (abort) a business transaction, rather all possible current
states of the system by the time of cancellation should be considered, for
example, once a merchant has accepted a purchase order, neither the customer
nor merchant can unilaterally cancel the order. Even if the order can be
cancelled, the subsequent process is often complex, perhaps goods may need
to be returned to the merchant and checked before the process can continue,
and there is no guarantee that the return goods process will be successful. We
need to be able to deal with problems that can arise during cancellation of an
order and cannot just assume that a cancellation will always be successful.

When a cancellation occurs in a business process, there are typically many
possible ways to handle the deviation and it is not always the case that the
business transaction itself has to be cancelled. In the following examples, we
illustrate different ways to handle cancellation requests sent by the customer.
Notice the different behaviours required to handle such deviations at the
various stage of the payment process.

• Payment not received and before goods in transit: The simplest
cancellation scenario is where the cancellation request is received
anytime before the payment is received, the payment process can be
terminated without taking any further action. We assume the merchant
payment process imposes a cancellation fee if the cancellation is
received after 7 days since an order confirmation has been sent.

• Payment received before goods in transit: A more complex class of
cancellation is the one where the cancellation request is received after
the payment is received, but before the goods in transit. The
cancellation of the process then only requires the refund of the
received amount or the remaining amount after deducting the
cancellation fee. The payment process terminates after refund is sent to
the customer.

• Goods in transit: Handling the cancellation once goods in transit could
be very complex. For example, goods need to be returned from the
customer to the merchant once they arrive at the customer’s door, the
cost of returning goods needs to be calculated and paid by the
merchant, and a refund needs to be made to the customer if customer
has already paid, but a cancellation fee may be subtracted from the
refund. These descriptions all depend on business needs. As our aim
for this case study is to show the different paths possible for
cancellation requests which arrive during different stages of the
system. We simply assume that the merchant rejects the cancellation
once goods are in transit rather than trying to describe complex

68

business scenarios. In this case, the merchant payment process merely
continues to progress as if nothing has happened.

Being able to access to a wider range of states is a key factor in providing
more flexible handling mechanisms for different deviations (including
cancellations) that occur at different stage of the payment process. For
example, the payment process does not only access the Abstract State
representing payment (amount of payment) but also access the Business
Process State of knowing how far the shipping process has progressed so that
the state of shipping can be taken into consideration when deciding on a
desired handling mechanisms for a cancellation requested during the payment
process.

4.2 GAT Programming Model
This section first gives an overview of the orchestration framework called
GAT, which stands for Guard, Action, and Trigger, following the critical
components of the model. We then illustrate how the payment process
procedures discussed in Section 4.1 are expressed in this framework in Section
4.3.

Defining processes specifies their behaviour. Defining these processes is
relatively straightforward for the normally expected case when everything
goes according to plan. Unfortunately, many problems can arise during an
execution as seen in the above examples. The defined processes must specify
how each of these problems is to be handled, and no problems can be omitted
or neglected without risking serious consequences.

The process description framework GAT is based on an event model to define
processes. We believe such event based model is more appropriate and
effective than traditional graph based models, such as BPEL (Business Process
Execution Language for Web Services). Graph based models are sufficiently
expressive to describe a process for the normal, expected case; however they
lack the flexibility required to clearly and precisely specify how various
deviations should be handled as described in Chapter 2.2.2.3.

We now look at the details of GAT programming model from its structure to
the major features that GAT offers.

4.2.1 Structure
In GAT model a Process is written as a set of Activity Groups. Each activity
group consists of an Event and a set of related Activities, as shown in Figure
11.

69

 Process
 Event 1
 Activity 1.1
 Activity 1.2

…
Event 2
 Activity 2.1
 Activity 2.2

…

 ….

 Event n

 Activity n.1

 Activity n.2

 ….

Activity Group 1

Activity Group 2

Activity Group n

Figure 11 GAT Process Structure

The GAT model defines three types of Events: Internal, External and
Deferred. Internal Events are generated and consumed within a single business
process. External Events are used to communicate between peer business
processes. Deferred Events are internal or external events that are generated in
the normal way but only sent if certain other events have not occurred within a
specified time period. Other than specifying a required time period an event to
happen, no other conditions required to trigger a deferred event. All events are
treated uniformly, regardless of whether they are internal or external, and
whether or not they occur on what could be regarded as normal or exceptional
processing paths.

Each activity represents one possible response to an event and consists of a
Guard, an Action and a set of Trigger Groups. Each Trigger Group consists of
a set of Trigger. Figure 12 shows an Activity composed of a Guard, an Action
and two Trigger Groups, the first containing two Triggers and the second
containing four Triggers.

Guards are Boolean expressions that control whether or not their
corresponding action should be executed as part of the response to the event.
The Action part of an activity is conventional code whose task is to handle the
incoming event under the conditions specified by the related guard expression.
Triggers complete the handling of an incoming event by raising any follow-on
events that are needed to continue the business process.

70

 if (a and b) {
 perform some action
 when a and b are both true
}
if (x) { raise events X1}
if (not x) { raise events X2 }

if (a & b) { raise events … }
if ((not a) & b) { raise events … }
if ((a & (not b)) {raise events … }
if ((not a) & (not b)) {raise events …}

Trigger
groups

Action

Guard

Group
1

Group
2

Figure 12 GAT Activity Structure

Triggers consist of conditions and corresponding sets of events. After the
action has completed, each associated trigger condition expression is evaluated
in turn and the corresponding events are raised if the condition is true. These
events can be sent immediately or deferred.

The guard expressions in any one activity group are closed, meaning that the
guard of exactly one activity in an activity group has to be true. That is, within
a single activity group, whenever an event is received, the Boolean expression
of one of the activities must be true and all the other Boolean expressions must
be false. This coverage property lets us guarantee that exactly one action will
be taken every time an event is received.

The trigger expressions in each trigger group are also closed. That is, in a
single trigger group, exactly one trigger expression must be true and only the
events corresponding to that trigger expression will be raised as a result.
Activities can have multiple independent trigger groups, each corresponding to
different and parallel possible courses of action that will be taken by the
process.

As discussed in Chapter 2.2.2, more traditional approaches to describing
business processes are based on graphs (effectively flowcharts) where the
nodes are actions and the edges specify ordering constraints and the flow of
control. These graph based approaches work well when used to describe
processes where there are few deviations that can divert the path of execution
away from its normal path. Using these approaches to specify how to handle
such deviations that can occur in any state at any time can be much more
difficult and complex. The event based model presented here overcomes this
limitation by treating deviations uniformly with other events. This makes it
easy to specify how to correct problems and return processing back to the
normal path. Guards always define the correct action to take when an event

71

occurs, taking into account the current system state. The closure properties for
activities ensure that no combinations of events and system state can be
omitted from the definition of a procedure. The closure property for trigger
expressions ensures that the result of an execution can also not be omitted. The
result is that all deviations must be handled by some activity.

4.2.2 Key Features
The GAT programming model offers several features that can help software
developers avoid a number of common mistakes. These include:

• Uniform processing: there is no separation of the normal case from
deviations. All arriving messages, whether they correspond to normal
or deviation processing cases, are treated equally.

• Resumption: business processes can continue to execute normal actions
after executing actions that could be regarded as corresponding to
exceptional cases.

• Access to state: there is no hidden or implicit state. Both Abstract State
and Business Process States can be freely examined by guards and
updated from within actions.

• Uniform outcome: there is no inbuilt notion of returning to an initial
state or of compensation for the business process as a whole.
Individual actions may act as atomic transactions, and abort and
rollback, but the whole GAT process merely continues executing
actions as events arrive until the process completes in some way.

• Coverage: alternate actions for the same event are grouped together
and guard conditions specify which of these actions should be
executed. Simple closure tests on these conditions can guarantee that at
least one action will be executed whenever any event is raised.

• Protected actions: each action has a guard that is sufficient to ensure
its code runs without errors. No other concurrent process can cause this
guard to become false while the action is executing. This support for
isolation means that an action can rely on the truth of a property (such
as the existence of a customer) that was checked during guard
evaluation.

• Response to non-occurrence of events: the trigger mechanism normally
used to raise events that drive business processes forward can also be
used to define events that are raised when expected events fail to arrive
in time.

• Integration: the raising of new events is separated from the action code
that modifies state, allowing legacy code to be used as actions. This
provides the same type of uncoupling of control flow and processing
steps that is found in graph-based workflow models.

The significant contribution of the GAT model is in the way that it combines
these features to assist developers in the construction of more robust

72

distributed applications.

One of the most important robustness properties of a business process is being
able to guarantee that the application will always terminate in one of a
specified set of consistent ‘acceptable’ states. Some of these acceptable states
may correspond to successful outcomes, such as goods received and paid for
in full, while others represent ‘less desirable’ outcomes, such as purchase
order cancelled and cancellation fee paid. These consistent outcomes are all
acceptable to all the participants in the distributed application, and none of
them are treated as failures or successes [30]. This property is supported by the
“Uniform outcome” feature of the GAT model.

The robustness of a business process also depends on the completeness of the
application specification. The application must be able to handle all possible
events at any stage of its execution, even if they arrive when they are no
longer expected or allowed by the application. This property is supported by
the “Coverage” and “Access to state” features of the GAT model. The
application must also be able to deal with non-arrival of expected events and
this is supported by the “Response to non-occurrence” feature of the GAT
model.

It is vital for a robust business process that each piece of code is only executed
when the system is in an appropriate state. For example, code that looks up a
customer’s balance must not run if there is no record for the customer present
in the database. The “Protected action” feature of the GAT model supports
this requirement. The necessary state conditions can be specified as a guard,
ensuring that the code will only be invoked when its preconditions are known
to be satisfied.

4.3 Payment Process in GAT Model
This section defines the payment process described in Section 4.1 in the event-
based GAT programming model with the description of how features of GAT
helps the developers to avoid common mistakes for each business scenario.

4.3.1 Activity Group: sendInvoice
The first activity group in this process definition handles preparing and
sending an invoice to a customer. This activity group is invoked as soon as
merchant reserves goods for the customer successfully. If customer details are
correct an invoice is sent and it sets an event which can be invoked if the
customer does not respond to the invoice, that is, customer doesn’t send a
payment within the due date. If customer details are incorrect a notification
message is sent to Customer Management System (CMS).

There are two activities in this activity group. The first activity sends an

73

invoice to the customer when its guard evaluates that customer details are
correct. The action part of this first activity prepares an invoice specifying the
amount customer has to pay for the goods and the due date for the payment.
When this action completes successfully, one trigger group generates an event
to send the invoice to the customer while a second trigger group generates an
overdue event which will be raised only if customer does not send payment by
its due date. The second activity of the sendInvoice group sends a notification
to Customer Management System when its guard evaluates that customer
details are incorrect.

Group: sendInvoice
Event goodsReserved
Activity: invoicing
Guard The customer details correct
Action prepare invoice message invoice

set balance to be the invoiced amount;
set duedate for the payment from the customer to 30 days;
construct the overduePayment messag

Trigger Group (True) send invoice to the customer
Trigger Group (True) set overduePayment to be sent back to its own

process if the full payment is not received by the due date
Activity: invalid customer
Guard The customer details are not correct
Action construct a notifyCMS message
Trigger Group (True) send notifyCMS to Customer Management System

One of the motivations in the design of the GAT model was to help designers
avoid some common classes of errors. One particular type of error that the
model can prevent is where a business process ‘hangs’ (stops making forward
progress prior to termination) because it is waiting for a message that will
never arrive or because the message arrived when the system was not
expecting it. Another common error is ambiguity, where it is unclear which of
several different pieces of code needs to be executed in a particular situation.
The GAT model forces the designer to define which action is to be executed to
handle every event in every situation, through the completeness properties and
closure properties.

The completeness property ensures that every possible event (internal and
external) must have one or more activity groups which define how that event
is to be handled when it occurs. If this completeness constraint is violated,
then the particular event could never be correctly handled and the application
system would hang or fail if it did occur.

The Guard Closure property ensures, within an activity group, exactly one of
the activities must be invoked in response to the occurrence of a single event.

74

This guarantees that there will be at most one action that handles the event.
The Trigger Closure property ensures that exactly one of the trigger conditions
must fire after the related action has completed. This guarantees that there will
normally be at least one follow-on event produced as an outcome of an
activity and that the overall business process will continue making progress. In
the case where the business process reaches termination as a result of
completing the action, there will be no associated trigger group defined as
there are no more events to raise or consume. Now we check how these
completeness and closure properties are defined in the activity group.

There are two activities defined in the activity group whose guards are closed:
either customer details are correct or incorrect. Depending on the status of the
customer details, only one activity will have guard evaluates true, but never
both so only one activity will execute. This guard closure of the activity group
ensures that there is always one activity that responds in the event when goods
have reserved.

The trigger expressions in each trigger group are also closed. That is, in a
single trigger group, exactly one trigger expression must be true and only the
events corresponding to that trigger expression will be raised as a result. When
the customer has the correct details, two trigger groups are defined. Each
trigger group will trigger at least one trigger. However, since each trigger
group defines a special trigger condition {true} which always triggers an
event; both trigger groups will always trigger an event. An event to send an
invoice is always generated by the first trigger group. The second trigger
group also always generates a deferred event overdue which is to be raised if
payment is not received by its due date. These triggers ensure that there are
follow-up events as a result of executing the activity.

4.3.2 Activity Group: receivePayment
Customer responds to an invoice by sending back a payment as message. This
response contains the amount of payment which the customer pays for the
invoice. The amount of payment can fall in three cases: the payment amount
equals to the amount owing as specified in the invoice, the payment amount is
less than the owing, and finally the payment is more than the debt.

This activity group contains three activity groups corresponding to the three
possible scenarios of dealing with different amount of the payment. The first
activity executes if the payment equals to the amount owing. The action part
of this activity records the full payment. The trigger sends out an event to
other parts of merchant’s system such as Accounting notifying that full
payment has been received.

75

The second activity executes if the payment amount is less than what is owed.
The action records the received payment amount, and then calculates the
residual the customer has to pay. For the premium customers, an invoice for
the residual is constructed. For non-premium customers, an additional late fee
is charged on top of the residual. Depending on the type of the customer, the
relevant invoice is sent by the trigger.

The third activity executes if the payment amount is more than the debt. The
action first records the full payment amount in the database then calculates the
refund to send back to the customer. Two trigger groups are defined to
generate two separate events. An event to notify to the Accounting system that
full payment has been received is triggered by the first trigger group. Another
trigger to send refund to the customer is generated by the second trigger group.

Group: receivePayment
Event Payment
Activity: process the full payment
Guard Payment equals to amount owing
Action Record full payment has been received

Construct a PaidInFull event.
Trigger Group (true) raise the PaidInFull event to notify other parts of the

merchant’s system that full payment has been received.
Activity: process the under payment
Guard Payment is less than amount owing
Action Record payment amount

Calculate residual amount
Check the customer type
If (premium customer)
 no late fee applies
 Construct ResidualInvoice
If not (premium customer)
 late fee added to residual
 Construct ResidualInvoiceWithLateFee

Trigger Group (premium customer) send ResidualInvoice to the premium
customer

 Not(premium customer) send ResidualInvoiceWithLateFee
to non premium customer

Activity: process over payment
Guard Payment is more than amount owing
Action Record full payment has been received

Calculate the refund amount
Construct Refund event
Construct a PaidInFull event

Trigger Group (true) send Refund to the customer
Trigger Group (true) raise the PaidInFull event to notify other parts of the

76

merchant’s system that full payment has been received.

The key features of GAT model mentioned deal with the potential problems
illustrated earlier in the Section 4.1 to help designers build robust systems. For
example, if an under-payment occurs, the GAT model allows the business
process to deal with it as an activity like any other (in our case by sending an
invoice for the residual amount) (Uniform Processing). Because this case is
not treated as a deviation, normal payment handling can continue once the
residue has been paid (Resumption).

The GAT model lets designers ensure that code is never run if the system is in
an inappropriate state. Consider the calculation of a refund in the activity that
processes an overpayment. This code clearly can only be run when the
customer’s payments are less than or equal to the amount owing. In GAT, the
designer places the required pre-condition (amount paid > amount owing) in
the guard for the activity which calculates the refund (Protected Action). The
ability for a guard expression to refer to database state, as well as business
process state, is used here (Access to State). In this case, the atomicity of
evaluating the guard and performing the activity means that the condition will
still hold when the code is executed.

The business process designer also needs to ensure that all events will be
safely and properly handled in all possible situations. In the GAT model, this
goal can be achieved by ensuring that the guards associated with an event are
complete and cover all possibilities. The Payment event in this example passes
this test as it has activities whose guards cover all possible relationships
between the amount owing and the amount paid (Coverage).

Existing legacy code can be easily used GAT allows the legacy code to be
used as Actions (Integration). The feature of GAT model that separates the
action from raising new events makes possible decoupling between the control
flows (triggers) and processing steps (actions).

4.3.3 Activity Group: overduePayment
The next activity group ensures that an invoice is not inadvertently forgotten.
If a payment is not received before the payment due date has expired, another
invoice with the late fee for the overdue payment is sent to the customers. If
no response is received to this overdue invoice, then the overdue invoice with
additional late fee is re-sent. If no response is received after three overdue
invoices have timed out, then an alarm notification is sent to a manager.

There are two activities in this activity group. The first activity sends an
overdue invoice which contains an extended due date and additional late fee if
there has been no response to the original invoice and fewer than 3 overdue

77

invoices have been sent so far. The overdue invoice retry loop is implemented
by sending another overdue invoice and having the activity re-raises its own
deferred overdue payment timeout event. The second activity sends an alarm
to a higher authority such as a manager when its guard condition determines
that no response has been received and that three overdue invoices have
already been sent.

Group: overduePayment
Event overduePayment
Activity: send reminder
Guard Full payment has not been received from the customer and

fewer than 3 overdue invoices sent
Action Extend the duedate by 7 days;

Apply late fee.
increment the sent overdueInvoice counter;
construct the overdueInvoice message;
construct the overduePayment event;

Trigger Group (true) send overdueInvoice to the customer
Trigger Group (true) send overduePayment message to be sent back to its

own process if the full payment is not received by the
extended due date ;

Activity: no full payment received
Guard Full payment has not been received after sending three

overdue invoices
Action construct an alarm message alarmMsg to be sent to

manager
Trigger Group (true) send alarmMsg to be sent to manager

Timeouts are a critical part of most business processes. Without a proper
mechanism in place, business processes can wait forever for incoming
messages to arrive which could attribute the business processes unable to
terminate. Through the use of Deferred Events in GAT model, the developers
can enforce some limit placed on how long it can wait for an event to happen,
if the event has not happened till a wait times out a different path of execution
may be defined to deal with the situation (Response to non-occurrence of
event).

This activity group illustrates that GAT model not only deals with the situation
where payment has been received as expected, but also it can deal with the
situation where payment is delayed or not received by its due date by having
an activity that deals with overdue payment.

78

4.3.4 Activity Group: sendReceipt
The next activity group defined is to send a receipt to a customer who has paid
in full according to the amount specified in the invoice. The activity group
contains just a single activity whose action we always want to execute (full
paying customers always get receipts), and so its guard condition has to
always evaluate to true to satisfy the closure property of guards. The action
constructs a receipt and it is sent by the trigger defined by the single trigger
group.

Group: sendReceipt
Event PaidInFull
Activity: send receipt
Guard True
Action Construct a Receipt event;
Trigger Group (true) send Receipt to the customer

4.3.5 Activity Group: cancellations
We illustrate three possible ways to handle cancellation requests (deviations)
sent by the customer at different stage of payment process, in this activity
group.

The simplest cancellation handling mechanism is implemented in the first
activity when a cancellation has been requested before payment has not been
received and goods have not been shipped to the customer (as evaluated by the
guard condition). The action simply cancels the payment process unless
cancellation fees are involved. If cancellation has been requested 7 days after
order confirmation, the business scenario of the merchant imposes a
cancellation fee. This is reflected in the action and an additional invoice for
this late fee is sent to the customer.

The cancellation handling mechanism becomes little more complex if it is
requested after payment has been received (but before goods are in transit).
The second activity implements the cancellation handling mechanism when its
guard condition evaluates that payment has been received but before goods are
in transit. The merchant calculates the refund amount, that is, if the
cancellation has been requested before 7 days from order confirmation all
payment is refund; otherwise the merchant deduces the cancellation fee from
the refund. There are two trigger groups defined in this activity: one trigger
group sends the refund to the customer while the other trigger group sends a
cancellation confirmation message.

We assume the merchant simply rejects the cancellation request if its guard
condition evaluates that goods are already in transit.

79

Group: cancellations
Event cancelRequest
Activity: payment not received
Guard Payment not received and goods not in transit
Action set cancelled to be True;

set cancelFee to be True if the cancellation occurs after 7
days of order confirmation;
if (cancelFee) constructs a message CanceallationInvoice;
construct an event CancelConfirm;

Trigger Group (cancelFee) send CanceallationInvoice to the customer
 Not(cancelFee) // do nothing
Trigger Group (true) send cancelConfirm to the customer
Activity: payment received
Guard Payment received and goods not in transit
Action Set canclled to be True;

Calculate Refund amount;
Trigger Group (true) send Refund to the customer
Trigger Group (true) send cancelConfirm to the customer
Activity: goods in Transit
Guard Goods in transit (payment received or not)
Action Construct a cancellation rejection message rejectCancel
Trigger Group (true) send the rejectCancel to send to the customer

One of the innovations of GAT model is to have uniform processing between
normal business cases and deviations. Unlike the traditional approach,
deviations are not treated as special cases which cause the whole system to
abort and going back to its original state. A more effective and desired way of
handling deviations is to fix the deviations as they occur using the same
flexibility of normal business scenarios which consider the current state of the
system and then continue on the normal path (Uniform Processing).

One of the key features of GAT is to allow accessing different types of states,
both Abstract State (such as payment recorded in the database) and the
Business Process State (such as progress of payment process and the shipping
process) which gives better flexibility for the developers to discover more
accurate current state of the running system (Access to State). This allows the
developers to design and implement more desired behaviours for the
deviations when they occur.

The rejection of cancellation requests has not been well handled by the
standard deviation approaches. As we discussed in Chapter 3.6, existing
systems support can throw a fault, perhaps runs compensators, and terminate
the whole process. However, as we see in the above examples, termination of
a whole process isn’t always a desired behaviour or may not be possible if
additional activities are created such as cancellation fees. In GAT, the

80

merchant payment process can simply reject the cancellation and continue the
next business steps (Resumption).

4.4 Experiment with GAT
So far, we presented a GAT expression for only the payment process part of
the e-procurement. This was enough to show how features of GAT model can
help the designers minimize common mistake and errors in designing service-
based applications. In fact, we have written the whole e-procurement scenario
in GAT. In this section, we report on this our experience, to illustrate the value
of GAT for a designer of business processes.

As described in Chapter 3.1.1, the e-procurement scenario consists the
interactions among three partner systems namely customer, merchant, and
shipper. For each partner system, we define a set of business processes, each
of which contains a set of Activity Groups and events. For example, the
customer system contains four business processes dealing with the different
aspects of business: Quote Process, Purchase Order Process, Payment Process,
and Delivery Acknowledgement Process. Similarly, the merchant system
contains five business processes: Quote Processing Process, Purchase
Processing Process, Payment Processing Process, Delivery Processing
Process, and Cancellation Process. Lastly, the shipper system contains a single
business process: Shipping.

Here is a summary of statistics when all business processes in the e-
procurement were written in GAT model.

• For the customer system, four business processes were defined having
24 Activity Groups and 24. 29 Activities were defined among all
Activity Groups, each of which contains a guard and an action and a
set of trigger groups. The total number of triggers produced by all
Activities was 27. Out of 29 Activities, 24 Activities define what we
consider normal path while 5 Activities define the cases where
execution deviates from the normal path.

• The merchant system is defined by 29 Activity Groups with 64
enclosed Activities. 63 triggers were produced by all Activities. 29
Activities define the normal path and 35 Activities define deviational
cases.

• The shipper system had 6 Activity Groups. 8 Activities and 9 triggers
were defined in all. 6 Activities define a normal path and 2 Activities
define deviations.

Note the dramatic increase in the number of Activities defined for deviations
for the merchant system in proportion to the number of Activity Groups. In
other partner systems, such as the customer and the shipper, the number of
Activities defined is only slightly higher than the number of Activity Groups

81

reflecting a low number of Activities for deviation handling. But in the
merchant system, the number of Activities is about twice the number of
Activity Groups. This is due to the fact that the merchant system is a lot more
complex and sophisticated than those of the customer and the shipper as it
takes an active role of processing requests (from the customer and the
shipper). Thus, the merchant system defines a high number of Activities to
deal with various deviational situations, such as invalid purchase order, when
a customer is not registered, insufficient goods, if payment gets delayed, when
goods are out of stock, and so on. In contrast, the customer and the shipper
define only a few deviations as the complexity is relatively low compared to
the merchant system. Even the merchant, though, is far from the typical
situation with graph-based models, where deviation-handling is
overwhelmingly more voluminous than the normal path.

The number of triggers is proportional to the number of Activities. This
doesn’t mean that one activity always fires one trigger. Among almost 100
Activities between all partner systems, there were about 15 Activities which
create more than one trigger. However, there were also about 10 Activities
which do not produce any triggers (mainly because they were the last
Activities in a process). This tends to even out the difference between the
number of Activities and the triggers.

One of the difficulties we faced in writing a GAT model for the e-procurement
case study was to think about the cases where activities deviate from the
normal path. Without an intimate knowledge of the system, it was difficult to
devise all possibilities for deviational cases. However, the difficulty seems
reduced once we focused on state. Once we figured out which state to pay
attention to, we could easily list all the possible values for each state. We then
simply wrote Activities for each possible value.

4.5 Evaluation Compared to Other Models
There is a huge literature on notations for describing business processes,
workflows, or long-running activities. Many of these notations have been
implemented in systems offering workflow-management or business process
support [29]. The dominant approach in commercial systems presents a graph
controlling the flow of control between steps, or as a simplification of this, a
block-structured language with fork and join constructs as well as sequential
flow and conditional branching. This is also the model used in standards such
as BPEL [7], and WSCI [87]. A smaller group of research papers and
prototypes however have considered an event-based approach similar to the
one in our GAT model.

The initial impetus for event-based control flow came from the flurry of
research in active databases [90] where triggers are used to respond to

82

situations whenever they occur. The first paper to adopt this idea for managing
control flow in a long-running activity was Dayal et al. [15], where the ECA
(Event-Condition-Action) notation was proposed. The idea has proved
especially valuable for building prototypes of distributed workflow execution
engines such as C2offein [50], IRules [81], EVE [81] and WIDE [12].
Semantics for the ECA model are proposed by Geppert et al. [30]. Key
features of our GAT model not found in these ECA systems include the
grouping of actions with closure property on the conditions (to ensure
coverage), the capacity to raise events which will occur later but only if some
appropriate condition does not happen in the meantime (in order to provide
time-outs), the concept of final events, and the idea of uniform outcome.

One paper does suggest some grouping and coverage condition: Knolmayer et
al. [49] have proposed an ECAA (Event-Condition-Action-AlternateAction)
model, which is in essence an activity group of exactly two actions with
conditions that are complementary to one another. The paper mentions the
possibility of larger numbers of actions being grouped, but gives no details.

Several other proposals have used ECA rules for dealing with exceptional
conditions, while graph models are used for normal case processing (these are
often called the “blue sky” paths). These proposals focus especially on the
need to adapt and vary the way exceptions are handled, as the system evolves.
Casati et al. have defined a language (Chimera-Exc) and implemented a
system FAR [11], Hagen and Alonso built OPERA [37], and Muller et al
describe AGENT WORK [64]. Because these systems do not offer uniform
handling, and they terminate the normal case when the exception is raised,
thus they have difficulties in all the situations we described above where
resumption and access to state are needed to decide the proper response to a
cancellation or other exception.

4.6 Summary
We have proposed a new model and notation for expressing interacting
business processes. It has a number of key features which together help the
designer avoid many common sources of errors, including inconsistent
outcomes. Unlike most existing business process modelling languages used for
expressing business processes, we do not separate the normal case from
exceptional activity, nor do we treat exceptional events as deviations that
require special handling mechanisms such as compensation.

Defining a normal behaviour in a process is easy and straightforward in the
standard graph-based languages. But the same can not be said for the various
deviations. The main reason is that the standard approach uses fault handlers
or compensation handlers to deal with most deviations. Such approaches can
handle certain class of deviations, but not all possible deviations. Moreover,

83

handling deviations leads to the termination of a process. Describing all
possible execution paths including deviations using just fault and
compensation handlers becomes either clumsy or impractical.

The event-based GAT model presented in this chapter overcomes the
limitation of existing business process modelling languages by making no
distinction between the exception and normal processing. Guards always
define the correct action to take when an event occurs, taking into account of
the current system state. The closure properties for activities ensure that no
combinations of events and system state can be omitted from the definition of
a process. The closure property for trigger expressions ensures that the result
of an execution can also not be omitted. The result is that the specification is
complete that is every possible event (internal and external) must have one or
more activity groups which define how that event is to be handled when it
occurs.

We have carried out an extensive case study based on an e-procurement
application. In this chapter, we extract the payment process from the e-
procurement application and illustrate how a lot of common mistakes and
errors from the developers in the service-based applications can be minimized
if GAT model is applied. This work shows that our model enables
programmers to write the individual services participating in a distributed
application in such a way that they deliver consistent outcomes despite various
deviations. In the next chapter we explore the possibility of implementing our
GAT model using today’s proven technology, to verify its usability and
practicability.

84

Chapter 5

Design Principles in Building a
Business Process System based on
GAT Model

In the previous chapter, we proposed a new way to describe a long running
business process. Our GAT approach helps the designer achieve a reliable and
robust system. In particular, GAT makes it easier for the designer to describe
sensible processing for all possible deviations from the simplest normal path.

This chapter discusses how one can implement service-based applications that
are defined according to the GAT model. We propose implementation
techniques for key features of GAT. These include implementing control flow
based on the evaluation of guards, the management and distribution of events,
and enforcing atomicity across the evaluation of guards and the execution of
the corresponding activities. We have built a prototype system following this
approach for a particular example business process. Our approach uses
available technologies, such as C# and the functionalities provided by .NET
framework. We also discuss how to build a generic GAT engine which can
produce executable business processes from various business scenarios
expressed in GAT model.

5.1 Case study
We illustrate our implementation proposal on the payment process present in
Chapter 4. To recap from the previous chapter, the receivePayment Activity
Group represents that part of the e-procurement process where the merchant
processes payments made by customer. The merchant’s process receives
incoming payment messages and checks the amount being paid against the
amount owed. There are then three possible business scenarios that can be
triggered in response:

• Full payment has been received: the payment received is equal to the
amount owed. The rest of the merchant’s application is notified that
this phase of the procurement cycle has completed successfully.

85

• Under-payment has been received: the payment received is less than
the amount owed. In this case we calculate the amount still owing and
send an additional invoice to the customer. If this is for a premium
customer, send a reminder; otherwise send an invoice for the
remaining amount plus penalty.

• Over-payment has been received: the payment received is for more
than the amount owed. In this case, there are two further actions to be
taken, each expressed as a separate trigger group. One is to calculate
the over-payment and refund it. The other action notifies the rest of the
merchant’s application that the customer has paid in full.

This has been shown as Activity Group “receivePayment using GAT
programming model ” in the Figure 10 taken from the previous chapter.
Group: receivePayment
Event Payment
Activity: process the full payment
Guard Payment equals to amount owing
Action Record full payment has been received

Construct a PaidInFull event.
Trigger Group (true) raise the PaidInFull event to notify other parts of

the merchant’s system that full payment has been
received.

Activity: process the under payment
Guard Payment is less than amount owing
Action Record payment amount

Calculate residual amount
Check the customer type
If (premium customer)
 no late fee applies
 Construct Reminder
If not (premium customer)
 late fee added to remaining
 Construct InvoiceWithPanalty

Trigger Group (premium customer) send Reminder to the premium
customer

 Not(premium customer) send InvoiceWithPanalty to
non premium customer

Activity: process over payment
Guard Payment is more than amount owing
Action Record full payment has been received

Calculate the refund amount
Construct Refund event
Construct a PaidInFull event

Trigger Group (true) send Refund to the customer
Trigger Group (true) raise the PaidInFull event to notify other parts of

86

the merchant’s system that full payment has been
received.

Figure 13 Activity Group: receivePayment in GAT

5.2 GAT Design Consideration
We identify a number of key aspects of the GAT model that have an impact on
the design of the GAT prototype system in this section, and then discuss their
implementation in more detail in the following section.

5.2.1 Control Flow of Business Activities
In conventional graph-based or block-structured workflow languages, control
flow between stages of the workflow is defined in the syntax or its graphical
representation. Recall that control flow in GAT is determined dynamically as
events are raised and corresponding activities are invoked. A key issue for a
GAT prototype system is how to manage the control flow: how to pick the
appropriate action to perform in response to an event. Our current
implementation makes use of the .NET Event mechanism which allows code
to subscribe to events and be invoked whenever these events are raised, but
does not support the concept of conditional guards that are used in GAT to
choose the one appropriate action from an activity group. In Section 5.4.1, we
describe the way each GAT activity group is represented in our prototype by a
method which contains code to successively evaluate the guards of the
contained actions.

A further complexity for our implementation comes from our decision to
allow guard expressions to refer to any aspect of state. GAT guards can refer
to both Business Process State (which has variables reflecting what actions
have occurred) and Abstract State (a computer-based representation of the
domain, typically stored in databases or in variables used by the code of
particular actions). In contrast, conventional workflow languages use only
Business Process State (often implicit) when deciding control flow, and allow
references to Abstract State only from inside the individual actions.

The GAT model defines in detail how execution must take place when
multiple activity groups are dealing with the same event. This is especially
significant because the guard conditions may refer to state that can be changed
inside actions. The GAT model defines that when an event occurs, all the
activity groups related to this event will be selected; one of these activity
groups will be chosen and its guards evaluated to determine which of its
activities is to be executed. This activity is then executed, and this may
(through the triggers) raise further events. Another of the originally selected
activity groups is then processed in the same way, until all selected activity
groups have been considered. After this, if additional events have been raised,

87

each is processed in the same way in turn. The GAT prototype system
implements this required behaviour using multiple subscribers to .NET events.

5.2.2 Atomicity/Isolation Issues
In the GAT model, it is essential that the choice of which action to perform
from an activity group (by evaluation of guards), the execution of the chosen
action, and the evaluation of its trigger conditions and the raising of any
further events, must all form a single isolated unit of execution. Without such
isolation, concurrently running business activities could alter some critical
shared state referenced by the activity group and this could result in the
process failing or terminating in an inconsistent state. For example, the guard
on the action to deliver goods may have been evaluated and shown that Alice
has sufficient funds to pay for the goods, allowing the action to proceed safely.
Without proper protection on Alice’s account, it is possible that a concurrently
running action could use some of Alice’s funds leaving Alice no longer able to
make payment for the goods that are being delivered. In this case, the balance
in Alice’s account has been changed between the time it was checked in a
guard and when the funds were needed in the action. Including both the
evaluation of guards and the execution of the chosen action in a single isolated
unit of execution can prevent such problems.

Our GAT prototype implementation uses the transaction mechanisms provided
in .NET 2.0 to provide this required level of isolation. Each activity group,
including the evaluation of its guards, the execution of the chosen action, and
the evaluation of its trigger condition and raising further events, is constructed
as a single transaction. The isolation provided by transactions guarantees that
the state used by a running activity group cannot be altered by any
concurrently executing business processes.

5.2.3 Management and Distribution of Events
As noted above, events play a vital role in driving the GAT programming
model. While the underlying .NET event publish/subscribe mechanism can be
used to implement the basic control flow mechanism, the GAT event concept
is somewhat more complex and the prototype system needs to have special
mechanisms for the various types of GAT events. GAT model defines three
different types of events that cover different aspects of communication in
different circumstances.

• Internal Events are used to control flow among Activity Groups within
the same business process. In our engine implementation, these are
mapped directly to .NET Events. Section 5.4.2 discusses the various
classes and methods which we define to make this work.

• In the GAT model, External Events control the communication
between interacting peer business processes. In a service-based model,
communication between parties is handled solely by exchanging

88

messages, using technologies such as SOAP or .NET Remoting. The
GAT prototype needs to convert between messages and events and we
did this by representing each external GAT event twice in our
prototype: both as a message and as an internal .NET event. In Section
5.4.3 we show how our implementation can convert between these two
forms as external events are received or raised.

• GAT Deferred Events are used to provide a way of initiating activities
whenever other events and activities do not occur before the expiration
of a deadline. For example, when the payment has not been received
by its due date (so corrective action, such as sending a reminder or
alarming a human operator are needed), we represent this as a deferred
event. Our prototype implements deferred events through the
combination of .NET events (which are raised and processed
immediately) and .NET timers.

5.3 Architecture of GAT Prototype System
We have implemented a prototype system for the whole of the e-procurement
case study, which was written in GAT model. The prototype implementation
follows the design approaches we mentioned above. The overall architecture
of the system is pictured in Figure 14 followed by the descriptions of major
components of the system.

Figure 14 Architecture of GAT Prototype System

User Interface

Event Handler

GAT processor

Activity Group

Activity Group

Activity Group

Remote
Communication
Handler

Event Handler

Storage

Internal Events

Incoming
Messages

Internal Events

Outgoing messages
(External Events)

Interacting business process

Event Handler

89

5.3.1 User Interface
User interface is a front end presentation layer to capture data from human
operators (such as purchase order form, payment form) or to render a
collection of data received from the processes. Each business party uses this
layer to monitor the business activities such as what messages have been
received from, or sent to, other services. We use Windows Form to capture the
user requirements as well as to display the progress of business activities.

5.3.2 Event Handler
The GAT model is based on an event driven approach where communication
among various activities are done by sending/receiving events. To realize this
fundamental principle of GAT model, the prototype system contains an Event
Handler component which controls all aspects of events: it generates events
from various event sources, creates required event arguments for each event to
carry, and it notifies to various activities about the events.

For this particular prototype system which implements the e-procurement
scenario, there are three possible event sources: User Interface responding to
actions by the human operators, Activity Groups as managed by GAT
Processor and external messages received by Remote Communication
Handler.

• Human operators creating messages, such as a purchase order, via User
Interface, are one event source. For example, when customer enters the
details of a purchase order using purchase order form and clicks the
submit button, an event PO is generated with the details of purchase
order as an event argument.

• Activities handled by GAT processors are another event source to
create events. For example after receiving full payment from the
customer, the Activity to process the full payment executes generating
an event “PaidInFull” which is raised to notify other parts of system
(such as Accounting System) that full payment has been received.

• External messages received from interacting parties (such as customer
or shipper) are also an event source where events are generated. Details
of handling external messages are described in the Section 5.4.3.

In our prototype, different event sources generate different event types. Events
generated by User Interface and GAT processors are mostly Internal Events
and Deferred Events as their likely recipients are located inside the single
business process. On the other hand, External Events are generated from
messages received from externally interacting business processes.

The major role of the Event Handler is three fold. It first receives messages
from various event sources. Then it generates platform specific events. Our

90

current implementation generates .NET Events which are understood by GAT
Processors written in C# language. Once events are generated, they are raised
immediately thus these events can be notified to event subscribers as soon as
they are generated. In our implementation, Activity Groups act as event
subscribers to receive .NET Events.

5.3.3 GAT Processor
A GAT Processor is a core part of our GAT prototype implementation. It is
where the business logic is defined. The GAT Processor includes code for
business process in C# with a structure corresponding to a set of activity
groups and activities defined using GAT model. For example, the payment
process from Chapter 4.1 can be written as a GAT processor which contains
five Activity Groups “sendInvoice”, “receivePayment”, “sendReceipt”,
“overduePayment” and “cancelRequest” each enclosing the respective
Activities.

Activity Groups in the GAT Processor are event subscribers which consume
events raised by the Event Handler. For example, the Activity Group
“sendInvoice” subscribes to an event Invoice. When an event Invoice is
generated and raised by Event Handler via event source GUI User Interface,
the event Invoice is notified to Activity Group “sendInvoice” as its
subscription matches to the event being raised.

Once the subscribed Activity Groups are chosen, GAT processor picks up an
Activity from each Activity Group and executes each Activity in turn. More
detailed description of how we define an Activity Group and how we execute
Activities are given in Section 5.4.

Each Activity picked up within an Activity Group generates a new set of
events. New events can be of any event types, Internal, External or Deferred.
If new events need to be sent within the same business party, the new events
are made as Internal Events or Deferred Events. If new events need to be sent
across interacting business parties, the new events are sent as outgoing
messages. Outgoing messages are .NET Remoting objects which are
understood by a remoting server implemented at each party.

5.3.4 Remote Communication Handler
Each business party implements a single Remote Communication Handler to
deal with incoming messages sent from interacting business parties. Though
WS-Events [89] provides a standardized way to generate events in a Web
Services environment, at the time when this prototype implementation was
being carried out, the standard was still at an early stage of development and it
was even hard for us to obtain a reference implementation. Thus we did not
incorporate this in our design.

91

Our implementation approach is to use .NET remoting mechanism in
conjunction with Event Handler. If there are External Events required to be
sent to external parties, these external events are converted to .NET remoting
objects and sent to the external parties as serialized objects. Each party
implements Remote Communication Handler which continuously listens to
incoming .NET remoting objects. Once an incoming .NET remoting object
arrives, Remote Communication Handler de-serializes the remoting object and
works with Event Handler to convert it to a corresponding Internal Event.
Then in turn, this Internal Event is notified and subsequently consumed by
designated event subscribers (Activity Groups).

We explain this process more concretely with an example from e-procurement
case study. Suppose the customer sends a purchase order to the merchant. The
purchase order is sent as .NET remote object from the customer. The purchase
order, now as .NET remote object, is received by Remote Communication
Handler implemented in the merchant system. The merchant’s Remote
Communication Handler now works with Event Handler to generate ePO
.NET Event. The ePO Event is then received by the Activity Group
‘processPurchaseOrder’ which records the details of purchase order and
examines whether the purchase order can be accepted or rejected.

5.3.5 Data Storage
Each business party stores Abstract State which might represent many mission
critical aspects of business, such as a purchase order, invoice, or payment, into
a persistent storage such as a database. This Abstract State stored in the
merchant database is then accessed and manipulated by other Activity Groups
that are running in the same trust boundary. For example, merchant service
stores the details of invoice (Abstract State) as soon as an invoice is sent to the
merchant. When payment arrives from the customer, the merchant retrieves
the invoice from the merchant database to evaluate guard conditions to decide
which activity must run. If payment is less than the amount owning stated in
the invoice, the merchant service runs an activity that deals with under
payment, and so on.

For our prototype implementation, we use Microsoft SQL 2005 database to
store abstract state. Activity Groups use ADO.NET to access and manipulate
the data inside SQL database.

The current prototype implementation does not, however, store Business
Process State such as invoice sent or payment received, in the persistent
storage such as database. Rather Business Process State is stored simply in the
memory for each instance of business process and accessed and manipulated
by other Activity Groups in the same manner as Abstract State. When a

92

cancellation request is received, its processing is different depending on which
variables are true. If payment received is false and goods in transit is false, and
confirmation send is true the cancellation is quite simple. Other values of these
variables may mean the cancellation request has to be rejected.

5.3.6 Running Business Systems
Following the architecture described the above a prototype system has been
built which consists of three interacting business parties in our e-procurement
case study (namely, customer, merchant and shipper).

The prototype system has been built on .NET framework v2.0 using C#
language on Windows XP platform with SP2. There is a single GUI user
interface which interacts with human operators at each business system. Also
each business system implements one module of Remote Communication
Handler to deal with incoming messages from interacting parties. Event
Handler sits along with GUI, Remote Communication Handler to convert
messages to events. These events are received and consumed by Activity
Groups controlled by GAT processors. GAT processors also generate events
as results of executing Activities.

The snapshot of all three running business systems in our prototype is shown
below in Figure 15.

93

Figure 15 Snapshot of the Running Prototype System

5.3.7 Performance
We have run various performance tests to observe the feasibility and
practicability of business processes implemented following our GAT model
approach. In this section we illustrate the performance results we obtained on
DELL Optiplex GX270SMT with a 3 GHz Intel Pentium IV processor and
1GByte RAM.

First we measured the latency of the overall prototype system to evaluate how
long it takes from when a client sends a purchase order request to the server
until the client receives a final response from the server. In this measurement,
we exclude time spent inside physical processes (such as shipping goods) or
waiting for human interaction (such as approving the choice of shipper). For
the purpose, we used a high resolution counter QueryPerformanceCounter [40]
with the counter frequency of 1/2999272000 seconds, which returns system
clock counters approximately every 10 microseconds (us) on typical Intel
Pentium IV processor. Such high performance counter gives 1000 times better
accuracy than typical counters which only return the system clock counters
every 10 milliseconds (ms). The result of measuring the latency using the high
resolution counter for our prototype system was on average 23ms.

94

Figure 16 shows how overall latency of 23ms is spent at different stages of
business activities in our prototype system.

Figure 16 Performance at Each Business Activity in Milliseconds (ms)

The measurement of each stage is done in terms of computing the time
between the following sequences of steps: An event is received. Activity
Group evaluates guard conditions and finds an Activity which satisfies the
guard. Action within the chosen Activity is then executed and following
event(s) are triggered. For example, the time measured in Receipt (2.61ms) is
a result of the Activity Group ‘receivePayment’ being notified of an event
payment after payment message is received from the customer. The Activity
Group ‘receivePayment’ evaluates its guard conditions by fetching the invoice
amount from the SQL database to compare with the payment amount. If
payment amount equals the invoice amount, the Action of the Activity to
process the full payment is executed which updates the payment amount in the
database and constructs a “PaidInFull” event, which is subsequently raised.

As expected, any business activities with database transactions take longer
than those simply processing events by Activity Groups. The business
activities with database transactions such as Purchase Order (1.71), Reserve
goods (5.82), Shipping Arrangement (3.16), Invoice (2.39), Ship Goods
(1.65), Receipt (2.61), and Delivery Confirmation (2.64) all take longer

Customer Merchant Shipper

Purchase Order (1.71)

Reserve Goods (5.82)

Confirmation (0.09)

Invoice (2.39)

Payment (0.09)

Receipt (2.61)

Shipping Arrangement (3.16)

Shipper Response (0.09)

Ship Goods (1.65)

Send Goods Notification (0.09)
Delivery Confirmation (2.64)

Goods Received Ack (0.31)

95

processing time than business activities which simply process events such as
Confirmation (0.09), Shipper Response (0.09), Payment (0.09), Send Goods
Notification (0.09), and Goods Received Ack (0.31). Also as the number of
database transactions increase, the processing time proportionally increases.
For example, the activity Reserve Goods (5.82) contains the highest number of
database transactions with 7 selects and updates in contrast Shipping
Arrangement (3.16), Invoice (2.39), Receipt (2.61), and Delivery
Confirmation (2.64) contains on average 2-3 updates. Purchase Order (1.71)
and Ship Goods (1.65) have one update each having the least processing time
among business activities with database transaction. Note that the business
activities with no database transaction all have relatively smaller number of
processing time ranging from 0.09ms to 0.31ms. This clearly indicates that
database access and manipulation remains the major factor in the overall
processing time.

Note that there is approximately 2.5ms of overhead when sending remote
messages across different components. An example is sending of a purchase
order as remote object. This overhead is not measured in our system as
network latency will greatly vary depending on the network topology and
location of interacting components. We consider this case beyond the scope of
the simple performance study of GAT.

We look at the processing time of each component of our prototype system in
Figure 17.

96

Figure 17 Snapshot of the Performance Monitor

As can be seen, the full processing time indicate by the green line includes the
processing time used by the system itself and the users of the system. Among
the overall processing time, 85% is user processing time, indicated by the blue
line. Among the user time, about 25% is consumed by the merchant process
(the black line) as it contains the most processing intensive business activities
such as goods (5.82), Shipping Arrangement (3.16), Invoice (2.39), Receipt
(2.61), and Delivery Confirmation (2.64). Approximately 10% processing time
is used by the customer process (the yellow line) followed by the smallest
processing time 5% used by the shipper process (the skyblue line) which
contains a relatively small number of business activities and no database
updates.

5.4 Implementation of GAT model
In this section, we discuss details of the implementation of each of the key
features of GAT that were covered in Section 5. 2. We first explain how each
business process, represented in GAT as a set of activity groups, can be
expressed as a collection of C# classes and their methods. We then discuss the
event-handling and message-passing infrastructure which provides the
equivalent of conventional control flow mechanisms for GAT.

User Processing Time

Merchant Processing
Time

Customer Processing
Time

Shipper
Processing time

Total Processing
Time

97

5.4.1 Defining Activity Group and Execution of
Activities
A business process is defined in the GAT model as a set of activity groups,
where each activity group consists of an event and a set of related activities to
handle that event in different situations.

Each Activity Group is translated into a single C# method within a class that
corresponds to the business process. Each activity within the group is
represented as one if-then-else block inside this method. An activity group is
run as a transaction by using System.Transactions mechanisms. The Guard
condition of the Activity is, naturally, the Boolean condition that is tested by
the ‘if’ clause. The action part of each Activity in GAT typically contains the
piece of code that fulfils a business step, such as checking customer validity.
For simplicity, our current prototype system implements C# code for the
Action, so no conversion is needed to produce the body of the ‘then’ clause.
Each execution of an activity is followed by further ‘if’ statements that
represent the triggers which generate new events.

The result of this translation process is shown in the following pseudo code
corresponding to the example from Figure 10. There are three different
activities in this pseudo code for handling payments as discussed previously,
allowing the application to respond appropriately to the payment amount
received.

Method receive payment
begin transaction

 // activity group: process the full payment
 if payment amount equals to the amount owing
 update the payment
 generate an event paidInFull

 // activity group: process the under payment
 if payment amount is less than the amount owing
 update the payment and calculates remaining
 if premium customer, generate an event Reminder
 if non premium customer, generate an event
 RamainingInvoiceWithPenalty

 // activity group: process over payment
 if payment amount is more than the amount owing
 update the payment and calculates refund
 generate an event paidInFull
 generate an event Refund

commit/rollback transaction

98

The Activity Group ‘receivePayment’ gets executed when an event Payment
arrives from the customer. There are three different Activities in this example
for handling payments as discussed previously, allowing the application to
respond appropriately to the payment amount received. The GAT specification
selects from amongst these alternatives using Guard expressions, that are
translated into the conditions for each of the top-level ‘if’ expressions. Once
an activity is chosen, the prototype runs its Action code and then falls into the
series of ‘if’ statements that represent this activity’s trigger expressions that
will send out any follow-on events. The following code excerpt shows the
detailed implementation illustrated in the above pseudo code.

//Activity Group: ReceivePayment
public void ReceivePayment (PaymentEventArgs e)
{

 // Make ActivityGroup transactional so the eval uation

 // of the guard and execution of correspondi ng
 // activity is run as a transaction
 using(TransactionScope scope=new Transaction Scope())
 {

 //retreive the invoice to compare the payme nt
 // with owing
 Invoice inv = fetchInvoice(e.payment.Id);

 double owing = invoice.amount ;

 //Activity : processFullPayment

 //Guard: payment amount equals to the amount
 //owing

 if (invoice == e.payment.Paid)
 {
 //ACTION: record the payment
 UpdatePayment (e.payment);

 //TRIGGER GROUP:
 // A single Trigger is defined for an e vent
 // PaidINFull to notify Account System that
 // full payment has been received.
 argsPaidInFull =
 new paidInFullEventArgs(invoice);
 OnEPaidInFull(argsPaidInFull);
 }

 // Activity : processUnderPayment
 // GUARD : Payment received is less than ow ing
 if (invoice > e.payment.Paid)
 {
 //ACTION: record the payment
 //
 // and construct events send
 // to different types of customers.
 UpdatePayment (e.payment);

99

 int remaining = invoice – e.payment.Pa id

 // construct a message reminder to sen d to
 // premium customers
 If (e.payment.customer == “PREMIUM”)
 {
 Reminder = constructReminder(remai ning);
 }

 // construct a remaing invoice with penalty
 // send to non_premium customers
 Else If (e.payment.customer == “NON_PRE MIUM”)
 {
 RemainingInvoiceWithPenalty =

 constructRemainingInvoiceWithPenalty
 (remaining)

 }

 //TRIGGER GROUPS:
 // A single trigger group contains two
 // triggers, only one of them is trigger .
 // If customer is a premium customer a
 // reminder is sent. If customer is a
 // non_premium customer an invoice with
 // remaining owing + penalty is sent
 If (e.payment.customer == “PREMIUM”)
 {
 Cust.receiveReminder(Reminder);
 }
 Else If (e.payment.customer == “NON_PRE MIUM”)
 {

 Cust.receiveRIWP(
 RemainingInvoiceWithPenalty);

 }
 }

 // Activity : processOverPayment
 //GUARD : payment is more than amount owing
 if (invoice < e.payment.Paid)
 {
 //ACTION: record the payment and construc t
 // Refund
 UpdatePayment (e.payment);
 Int refundamt = invoice – e.payment.Paid

 // Construct Refund to send to the custome r
 refund = constructRefund(refundamt);

 //TRIGGER GROUPS:
 // Two Trigger Groups are defined. Each Tr igger
 //Group triggers a single event. One trigg er is
 // is trigger to send a refund to the cust omer.
 // Another trigger notifies Accounting Sys tem
 // that full payment has been received.
 Cust.receiveRefund(Refund);

100

 argsPaidInFull =
 new PaidInFullEventArgs(invoice);

 OnEPaidInFull(argsPaidInFull);
 }

 scope.Complete();
 }

}

5.4.2 Supporting the GAT Event Concept
There are three types of events in the GAT model: Internal Events, External
Events, and Deferred Events. We describe significant differences in the way
they are handled.

5.4.2.1 Internal Events
Internal events are used to communicate between activities within a single
business process. New Events are published by Trigger Groups after the
execution of Action code. These Events will be consumed by any Activity
Groups whose subscriptions match its event type. Both the GAT event concept
and its .NET implementation follow the publish/subscribe model.

There are four classes involved in the implementation of event
communication. The class that raises the event is called the event sender. The
class that consumes the event and responds to it is called the event receiver.
The event sender does not know which object will receive the events it raises.
An intermediary class called a delegate connects the event sender and the
event receiver, and an additional class is used as an event argument to pass
data between the event sender and the event receiver. In our GAT
implementation, the Triggers and Remote Communication Handler which
raise events are mapped into event senders in .NET, while Activity Groups are
mapped into event receivers.

The next code excerpt illustrates payment process which creates a new event
“PaidInFull” after payment sent by the customer is enough to cover the
amount owing. The payment process is written as following way in order to
create .NET events.

• Defines an event argument.
• Defines an event delegate which can connect from an event sender to

event receiver.
• Define a method which maps the event and the event argument.
• Defines a method named OnEvent_Name which maps the event (with

argument) and the event delegate.

// Defining an event argument class for the event
// PaidInFull

101

public class PaidInFullEventArgs : EventArgs
{
 private Invoice inv;
 public PaidInFullEventArgs(Invoice inv)
 {this.inv = inv;}

 public Invoice paidInFull {get {return inv;}}
}

// Defining event delegate for the event ePaidInFul l
public delegate void PaidInFullEventHandler(
 PaidInFullEventArgs e);
}

public class PaymentProcess
{

 // Use the event delegate class created for
 // ePaidInFull
 public event PaidInFullEventHandler ePaidInFull ;

 // Use the event argument class created for
 // ePaidInFull
 public PaidInFullEventArgs argsPaidInFull;

 // The method receivePayment raises theh event
 // paidInFull

 public void ReceivePayment (PaymentEventArgs e)
 {

 if (invoice == e.payment.Paid)
 {
 …
 argsPaidInFull =

 new PaidInFullEventArgs(invoice);
 OnEPaidInFull(argsPaidInFull);
 }
 …
 }

 // definition of pre-defined ON Event_name method to
 // raise ePaidInFull

 protected virtual void OnEPaidInFull(
 PaidInFullEventArgs e)
 {
 // The event delegate is combined with the event
 if (ePaidInFull != null) ePaidInFull(e);
 }

When the event PaidInFull is raised, it is received by the method SendReceipt
so that the method SendReceipt can generates a receipt to send to the
customer.

// The event delegate invokes Activity Group
// “SendReceipt” when event ePaidInFull is received

102

ePaidInFull += new PaidInFullEventHandler(SendRecei pt);

public void SendReceipt(PaidInFullEventArgs e)
{
 //Activity: Send a receipt: Note no guard condi tion
 //as merchant always send a receipt whenever a full

 //payment is received

 Receipt receipt = new Receipt ();
 receipt.Id = e.paidInFull.Id ;
 receipt.Amount = e.paidInFull.Paid ;

 //Send the receipt to the customer as extenal eve nt
 cs.ReceiveReceipt(receipt);

}

5.4.2.2 External Events
In GAT, External Events are used to communicate between activities in
different business processes. The GAT prototype represents these External
Events using .NET Remote objects. These message objects are converted to
local Internal Events when they arrive at the receiving system. This
mechanism is discussed in detail in Section 5.4.3 below.

5.4.2.3 Deferred Events
 Deferred Events are used when a process needs to trigger corrective actions if
anticipated events have not happened by some deadline. In our GAT example,
a deferred event OverduePayment is raised as soon as an invoice is sent. This
event may be received later on by the Activity Group that handles the overdue
payment process - but only if the anticipated payment was not received within
the due period. In contrast .NET events are consumed immediately. Thus we
cannot simple represent each deferred GAT event as a .NET event.

The next code sample shows how the SendInvoice Activity sets a timer that
waits until payment due period has expired and then raises the Elapsed event.
The timer is turned off if the payment is received within the payment due
period. The Elapsed event is received by the Activity Group Overdue that then
sends a reminder to the customer and notifies to accounting officer.

// Define a timer that checks the payment due
Timer paymentdue = new Timer ();

// As soon as an invoice sent, sets a timer for the
// duraton of the payment due
public void SendInvoice(GoodsReservedEventArgs e)
{
 ...

 paymentdue.Elapsed +=
 new ElapsedEventHandler(Overdue);

 paymentdue.Interval = returnPaymentDueDuration();

103

 paymentdue.enable = true;
}

// the timer is turned off if payment is received
public void ReceivePayment(PaymentEventArgs e)
{
 paymentdue.enable = false;
 …
}

// if payment is not received till the payment due, the
// timer elapses generating an event overduePayment which
// subsequently received by Overdue method which ca n
// handle the overdue such as sending reminder of t he
// payment and notifying the acoounting office
public void Overdue (OverduePaymentEventArgs e)
{
 //Activity: send a reminder
 ...
 //Activity: send an alarm to an accounting
 // officer that the payment is overdued
 ...
}

5.4.3 Inter-process Communication
The GAT prototype contains three components (customer, merchant and
shipper) of the e-procurement case study. These communicate with one
another by transferring objects using .NET Remoting. This use of .NET
Remoting means that business processes can be location-transparent; they may
be on the same computer, on different computers on the same network, or on
computers across separate networks. In this section we show how this works.

As mentioned above, external events in the GAT model are implemented as
object parameters passed using .NET Remoting. The underlying Remoting
mechanism also supports different transport and communication protocols.
Currently, our GAT prototype allows code to be produced which uses either of
two transport protocols, TCP and HTTP.

The following code excerpt illustrates a customer sending a purchase order as
a remote object to the merchant service.

// Defines a proxy for MerchantService
MerchantService ms =
 Activator.GetObject(
 typeof(MerchantService),

"http://remotehostname:7001/MerchantService.rem");

// customer sending a purchase order
public void SendPurchaseOrder(POEventArgs e)
{

104

 …

 // Construct a PurchaseOrder from the event ePO
 PurchaseOrder po = new PurchaseOrder();
 po.id = e.ePO.id;
 po.items = e.ePO.items;
 po.totalPrice = e.ePO.totalPrice;
 po.deliveryDate = e.ePO.deliveryDate ;

 // Sends the purchase order as a remote object to the
 // merchant remote service

 ms.ReceivePO (po);
}

The prototype implements a remote service class for Remote Communication
Handler for each business component. A service method in each of these
classes receives incoming messages as a parameter and raises ordinary local
.NET Events according to what type of messages was received. Local activity
groups will then consume these events, possibly sending out messages in
response as parameters to calls on other remote objects. The following code
excerpt illustrates the receiving of a purchase order as a remote object. The
method ReceivePO, uses the purchase order object as an event argument and
raises an event ePO.

// The merchant remote service that receives all
// arriving messages as remoting objects from peer
// business processes and turn them into internal e vents
MerchantService: MarshalByRefObject
{

 // Receives a purchase order
 public void ReceivePO(PurchaseOrder po){

 // Constructs an event argument using purchas e
 // order object

 POEventArgs argsPO = new POEventArgs(po);

 // Raise an event ePO
 OnEPO(argsPO);
 }
}

5.5 Design of a General GAT Engine
The GAT prototype system we explained so far only works in a situation
where developers write code for a particular application in a stylized way.
They implement business processes starting from GAT descriptions of these
procedures. This type of prototype system is enough to show the feasibility of
the GAT model approach for building reliable and robust systems. However,
this requires developers to learn a particular style of coding. To overcome the
limitation, we explored the possibility of developing a general GAT engine

105

which can produce executable business processes from any business scenarios
written in GAT model.

In this section, we describe our initial work on developing the general GAT
engine which converts from GAT specifications, which are any business
scenarios written in the GAT model, to C # applications running on the .NET
platform. Business analysts will represent the intended business requirements
in the GAT specifications. The GAT engine reads these GAT specifications,
and translates into code written as C# classes which make use of the support
provided by Microsoft’s .NET environment. The engine then automatically
compiles and executes these C# programs on the .NET platform. This
separation of specification from implementation is similar to the approach
taken by MDA (Model driven Architecture) [61]. Figure 18 illustrates the
overall operation of the engine.

Figure 18 GAT Engine Concepts

We look in more detail at the internal structure of the engine as it carries out
the conversion from GAT syntax to executable binaries. The GAT engine has
two major stages: translation and generation.

• The translating stage reads specifications written in GAT syntax and
translates them to corresponding C# code. As each line of GAT syntax
is read, the engine creates an ‘analyser’ table representing the C#
components corresponding to the GAT specification. It also creates a
‘mapper’ table that contains enough information to define the specific
.NET mechanisms needed for each C# components.

• The generation stage is based on the mapper table and uses CodeDOM
[59] to create C# classes with matching methods and variables. These
C# files are compiled into executable DLL files by the engine.

Figure 19 shows the major steps the engine goes through to produce tables of
structures, classes, and files.

GAT specification GAT engine Business processes

106

Figure 19 GAT Engine Major Stages

5.5.1 GAT Specifications
The GAT model describes each participating application within a distributed
business activity as a set of Activity Groups. The GAT presentation form
shown in Figure 10 is unsuitable for machine translation and instead we use
the more concrete GAT syntax shown in Figure 20. This syntax was devised
just for the purpose of showing that it is possible to construct business
processes using the GAT model and that these processes could be translated
into executable code.

ACTIVTYGROUP: ReceivePayment

EVENT: Payment

ACTIVITY: processFullPayment
GUARD: Invoice.amt = payment.amt
ACTION: FullPaymentAction(payment)
TRIGGER GROUP: (true)[INT] PaidInFull

ACTIVITY: processUnderpayment
GUARD: Invoice.amt > payment.amt
ACTION: UnderpaymentAction(payment)
TRIGGER GROUP: (true) [EXT]ResidueInvoice

ACTIVITY: processOverpayment
GUARD: Invoice.amt < payment.amt
ACTION: OverpaymentAction(payment)
TRIGGER GROUP: (true) [EXT]Refund
TRIGGER GROUP: (true)[INT]PaidInFull

ACTIVITY: processOverdue
GUARD: Not(payment)
ACTION: OverdueAction()
TRIGGER GROUP: (true)[EXT]PaymentReminder

Figure 20 Example of GAT Syntax

The notation such as [INT] and [EXT] is used to distinguish between internal
and external events. Further work is still to be done on improving the GAT
syntax and building better tools for defining GAT-based applications. One

GAT specification
Analyser

Mapper

CodeDOM C# DLL

Translation Stage Generation Stage

107

could envision sophisticated support for syntax checking, automatic
generation of GAT syntax from diagrams and other such development tools;
however our current initial work on a GAT engine simply asks the system
developer to produce text such as that shown above.

5.5.2 Analyser
Analyser reads a GAT specification file, parses GAT syntax, and stores
information in table structures. For example, Activity Groups, complete with
their Events and Activities, are parsed and stored in the activity group table.
Information about activities are held in the activity table, each entry referring
to a guard table entry with its conditional expression, a method name for the
code that implements the action (normally pre-written legacy code) and a
reference to a trigger table entry.

5.5.3 Mapper
The role of the Mapper is to map GAT structures into the corresponding C#
syntax. For example, an Activity Group is converted into a method call
containing ‘if-then-else’ blocks representing each Activity statement within
the group. GAT events are translated directly into .NET Events and code is
generated to subscribe Activity Groups to these events. Any outgoing events
are made as .NET remoting objects.

5.5.4 CodeDOM
The core of the GAT engine generates the source code needed to run the
business process corresponding to the given GAT specification. The GAT
engine uses the CodeDOM [59] source code generation tool which is designed
to work with .NET framework. This tool generates source code from a
language-neutral defined set of statements and the GAT engine builds
CodeDOM structures from information held in the Mapper table, including
class names, member variables and member methods.

5.5.5 Generating C#
The end result of the CodeDOM builder is a fully populated CodeDOM tree.
Developers can then generate source code in any .NET languages such as
VBScript, J#, or C# from these CodeDOM trees.

5.5.6 Compiling
The GAT engine provides its own code-compiling utilities that can access a
C# complier. The C# compiler is then used to generate executables after the
successful compilation of generated C# code. The GAT engine then runs
generated executables to produce the running business systems. Alternatively,
these generated executables can be taken anywhere that runs .NET platform
and can be executed manually.

108

5.6 Evaluation Compared to Other
Implementation Alternatives
In this section we review implementation alternatives that can provide similar
functionalities to the .NET based solutions as found in our GAT prototype
system.

As previously mentioned, defining Activity Groups and Activities are done
through the use of C# methods within a class and one if-then-else block inside
this method. Guard and Trigger conditions are expressed as Boolean condition
that are tested by ‘if’ clause. Action code is expressed as a set of C# function
that executes when Guard ‘if’ clause evaluates true. All other procedural and
OO languages (java, python, C++ etc) provide similar features and so could be
used for code generation.

Events in GAT model follow the feature of publish/subscribe service. A
publish/subscribe service is a logically centralized infrastructure
that intermediates the communication between publishers and subscribers of
information. The information is represented as events, sets of data provided at
a particular point in time. GAT is based on a distributed publish/subscribe
model where information sources (publishers) generate and publish events,
while information consumers (subscribers) manifest interest in sets of events.
Hence, the notification service collects and routes events from their producers
to the appropriate subscribers, delivering them as notifications. Many modern
systems such as CORBA Event/Notification service [69], Java Messaging
Service (JMS) [48], Elvin [23], Siena [10], and Herald [9] all provide a type of
Publish/Subscribe service though each system distinguishes itself by providing
different subscription mechanisms. The big advantage of .NET events over
other similar pub/sub model is that the publishers and subscribers are
decoupled by the use of delegates. The subscriber can change its
implementation of how it detects events without breaking any other
subscribing classes. The subscribing classes can change how they respond to
events without breaking the publisher. The implementations of two classes can
be rewritten independently of one another, which make for code that is easier
to maintain.

We used .NET remoting for inter-process communication. Java RMI or
CORBA IIOP channel also allow programs and software components to
interact across application domains, processes, and machine boundaries. This
enables applications to take advantage of remote resources in a networked
environment. All these three cross-platform communication technologies
allow using binary communication over TCP channel which allows a high
performance. The biggest disadvantage of .NET remoting and Java RMI is
that they are proprietary technologies that rely on specific programming
language and platform such as .NET framework or J2EE platform. Though

109

CORBA IIOP is devised by a standard body such as OASIS, its
implementation is considered difficult due to its lack of supporting tools.

Other communication approaches are possible. The Web services technology
enables cross-platform integration by using HTTP, XML and SOAP for
communication thereby enabling true business-to-business application
integrations across firewalls. Because Web services rely on industry standards
to expose application functionality on the Internet, they are more suited for the
users looking for vendor and platform agnostic solution. However, verbose
implementation of XML makes Web services relatively slower as a
communication protocol [66]. WS-Events [89] defines a set of XML syntax
and rules for advertising, producing and consuming Events for Web Services
applications. An Event is an abstract concept that is physically represented by
a Notification. Notifications flow from Event producer to Event consumer
using asynchronous or synchronous delivery modes. This might be a good fit
for implementing External Events for our GAT model. However, at the time of
this prototyping, WS-Events was only a proposal from WWW with no
implementation support.

Another group of potential implementation mechanisms are the workflow
processing systems. BizTalk [58] server provides a solution as a general
framework to create business processes that unite separate systems into a
coherent much the same goal as envisaged by our GAT engine. The BizTalk
server provides two main parts: (1) a messaging component that provides the
ability to communicate with a range of other software by the use of various
adapters. (2) Support for creating and running graphically-defined processes
called orchestrations. Messages are received and converted as XML format
used by BizTalk engine. These converted XML messages are then delivered
into a database called the MessageBox, which is implemented using SQL
Server. The logic that drives a business process is implemented as one or more
orchestrations using a graphical tool provided by the orchestrations. Each
orchestration creates subscriptions to indicate the kinds of messages it wants
to receive. When an appropriate message arrives in the MessageBox, that
message is dispatched to its target orchestration using the pub/sub model of
MSMQ message queuing technology incorporated with BizTalk engine, then
takes whatever action business process requires. The result of this processing
is typically another message, produced by the orchestration and saved in the
MessageBox. This message may convert it to the format required by its
destination then sent out to the destination. Many business cases defined in
GAT model can be directly implemented using BizTalk as it supports a wide
set of technologies that can deliver messages to appropriate event subscribers.
However, deferred events are not supported by BizTalk. The biggest
disadvantage of BizTalk server engine is the use of orchestration as a tool to
define business processes. Through our evaluation [53], we found that the

110

BizTalk orchestration tool suffers from a significant lack of simplicity in
expressing various deviations that are common to such system.

In this section, we reviewed several technologies that can be used to build an
executing system for a business processes described in the GAT model. We
note that one can use any procedural or OO languages to describe Activity
Groups and Activities as a set of methods and if-then-else blocks to capture
business requirements. Transaction support is required to form an isolated unit
from an activity group (by evaluation of guards), the execution of the chosen
action, and the evaluation of its trigger conditions and the raising of any
further events to prevent the interference from concurrently running business
activities. We also demonstrated that we need an event system that can accept
Activity Groups as event subscribers and Trigger Groups and arriving
messages as event consumers. The mediation between the event consumers
and the event subscribers is also required to connect events generated by the
event publishers to the event subscribers. Care must be taken since there may
exist multiple event subscribers which subscribe to the same event. If this is
the case, all the subscribers must be notified when the event is raised. Inter-
process communication technology is another essential requirement for
building a system that follows the GAT model.

5.7 Summary
We have presented a list of design considerations of a system that executes
long-running business processes defined according to the GAT model.

We demonstrated that it is possible use today’s proven technology to build a
system following the GAT model. The prototype system we described in this
chapter contains executable business processes for the e-procurement scenario
we discussed in Chapter 3. We have shown in detail; how each GAT construct
can be implemented using C# methods and classes, how control flow among
business activities can be implemented using the basic .NET event mechanism
where Activity Groups are made event consumers which are notified when
events are raised which generate further events, and how GAT events are
expressed as .NET events and also as .NET remote objects when
communication carries them to other business processes.

We also presented our initial work on developing a general GAT engine which
can read from GAT specifications (that is any business scenarios written in
GAT syntax) and generate executable business processes which can run on
.NET platform environments.

Though our GAT model provides a framework where the developers can
represent a reliable and robust design, the GAT model requires the
programmers to provide code to handle all possible actions under every

111

possible state. This includes many conditions affected by the interference of
concurrent activities. In the next chapter we discuss our work on providing
isolation mechanisms to reduce this part of the developer’s task.

112

Chapter 6

Promises – New Unified Isolation
Mechanisms for Service-based
Systems

In our GAT approach, normal activities and exceptional (deviational) events
are processed equally without any limitations on how to handle different types
of exceptional events. This increases the chances of producing robust and
reliable service-based distributed applications by allowing the developers to
define often complex and sophisticated behaviours required to deal with
various deviations that could occur during the execution of applications.

Using our GAT model, different activities which deal with different situations
of business (both normal activities and exceptional events) can be defined so
each will not meet problems, relying on its guard condition. Once the activity
which can deal with the current state of system is executed, further events are
triggered to notify the follow-up business activities. This model allows the
system to execute business activities that are appropriate for the current state
of system, so it deals with problems (such as deviations) as they occur without
having to abort or roll back to the original or earlier state.

However, the GAT model requires the programmer to provide code to handle
each possible event under every possible state. That is, many different
activities must be written each with its own guard condition and these guards
must cover all possibilities (the closure property). For example, after the
merchant checks that sufficient stock is available at the warehouse, it
organises transportation to ship the goods to the customer. At the time a truck
from the transportation company arrives at the warehouse, there must be code
for every possible stock level, such as (1) if there is sufficient stock when the
truck arrives (and so the truck can load the goods), or (2) if there is not
sufficient stock due to perhaps stock taken for other order requests (in this
case the merchant service might have to trigger a backorder to its suppliers
and return the truck back to its suppliers).

What would be better for the developers in this situation is that after the
merchant checked stock levels when the order was accepted, it could then rely

113

on having sufficient stock available throughout the rest of the order process,
regardless of any concurrent orders or other activities. The challenge we deal
with in this chapter is providing a useful degree of isolation in a services-
based world where autonomy and lack of trust meant that traditional lock-
based isolation mechanisms could not be used. Our technique, called
‘Promises’, provides a uniform mechanism that clients can use to ensure that
they can rely on the values of information resources remaining unchanged in
the course of long-running operations. The Promises approach covers a wide
range of implementation techniques on the service side, all allowing the client
to first check a condition and then rely on that condition still holding when
performing subsequent actions.

6.1 Promises
A Promise is an agreement between a client application (a ‘promise client’)
and a service (a ‘promise maker’). By accepting a promise request, a service
guarantees that some set of conditions (‘predicates’) will be maintained over a
set of resources for a specified period of time.

In the conceptual model discussed in this chapter, promises are granted and
guaranteed by a Promise Manager rather than directly by services. A promise
manager sits between clients and application services and implements Promise
functionality on behalf of a number of services and resource managers. The
job of a promise manager is to work with application services and resource
managers to grant or deny promise requests, check on resource availability and
ensure that promises are not violated.

Client applications can determine what resources they need to have available
in order to always complete successfully, express these as a precise set of
predicates and send them to the relevant promise manager as a promise
request. The promise manager will examine both the complete set of existing
promises and the availability of the requested resources, and either grant or
reject the promise request. Once a promise request is granted, the client
application is isolated from the effects of concurrent activities with respect to
the resources protected by its promises. For example, the merchant order-
handling process we mentioned above can now ask the manager of the stock
resource for an initial promise that the goods required to meet an order will not
be sold to anyone else for the duration of the order handling process. Once this
promise has been obtained, the order-handling process can proceed with the
knowledge that the required stock will be available when needed, even though
concurrent order processes may be also selling the same type of goods to other
customers.

Traditional lock-based isolation can be seen as a very strong and monolithic
form of promise, one where the resource manager is guaranteeing that no other

114

concurrent process can alter, or possibly even examine, the state of a protected
resource for the duration of an operation. The proposed promise-based
isolation mechanism is weaker but can be just as effective because it can be
more precise. The predicates contained within a promise specify a client
application’s exact resource requirements, allowing other promises covering
the same resources to be granted concurrently as long as they do not conflict
with any already granted promises.

Promises do not last forever. The client and promise manager agree on the
period of time for which a promise will be valid as part of the promise
request/granting process, and promises will expire at the end of this time.
Promise managers return ‘promise-expired’ errors to clients that attempt to
perform operations under the protection of expired promises.

Promise-aware applications can be written with the knowledge that the
resources they need for successful completion will always be available, and
any unavailability exceptions can be treated as serious errors rather than as
part of the normal processing flow. Applications can always perform actions
that are not protected by promises, but resource changes that violate promises
will be detected by the promise manager and undone in order to honour the
guarantees it has made.

Promises are an abstract way for a client to specify the resources they need to
ensure that they can complete successfully. A granted promise guarantees that
the requested resources will be available when needed by later actions, but
does not necessarily guarantee that any particular instance of the resource will
be used to meet this promise. For example, a client may request a promise that
a 5th floor room will be available on the requested date. The response to this
promise will be that a room matching the requirements will be available, not
that the client has been assigned room 512. The messages and services used in
the application have to reflect this level of abstraction, in this case by later
making a booking for a 5th floor room, rather than trying to confirm a booking
for room 512.

Promises are both a pattern and a protocol that supports this pattern. The
pattern is simply that client applications determine the constraints they need to
have hold over a set of resources and express these as predicates that are sent
within promise requests to a promise manager. The promise manager will
consult with resource managers to determine whether a promise can be
granted, and reply with either a granted or rejected response. Once a promise
has been granted, the client application can continue and call services that will
make changes to the resources protected by its promises with the guarantee
that they will be successful if they are within the constraints implied by its
promises. Client applications then release their promises by sending promise
release messages to their promise managers. Promise release requests can be

115

combined with application request messages. In this case the promise release
and the application request form an atomic unit, and the promise will only be
released if the associated action succeeded.

The Promises model places no limitations on the nature or form of predicates
nor on the way that promise managers should implement these predicates to
guarantee that they hold despite concurrent updates to the same resources.
This flexibility means that promise managers and resource managers are free
to implement what ever form of constraint checking or isolation mechanism is
best for the type of resource being protected.

Some forms of promises could be implemented using the common business
practice sometimes called ‘soft locks’. This approach uses a field in the
database record to show whether an item has been allocated or reserved for a
client. The record is not locked against access once the allocation has been
made; instead applications read this field when looking for available resources
and ignore any record that has been already allocated. Different forms of
promises, such as guaranteeing that there will be enough money in an account
to pay for a future purchase, could best be implemented using techniques such
as escrow locking [73].

The Promise pattern accommodates both of these ways of implementing
isolation, but it is more general, separating the model and its supporting
protocol from any specific implementation or resource schema considerations.
The flexibility that results lets us also support more general predicates where
the actual allocation of a particular resource to a client is delayed to long after
the promise is made, and also to support promises over pools of different but
acceptable resources that export the same set of properties. Section 6.4
discusses a range of implementation alternatives.

The motivation behind the development of the Promises approach to isolation
was to provide application programmers with something similar to the
simplicity that comes from the traditional ACID transaction model. By
implementing weaker but effective constraints over shared resources, we
wanted to let programmers establish those resource-based pre-conditions
needed to ensure their application can complete successfully, letting them then
write their application code with the guarantee that concurrent activities could
not violate these promises. Promise violation is still possible for other reasons
(an accident might damage previously-promised stock or a third party may
default on a promise they have made) but these incidents can now be treated as
serious exceptions. This is very far from the situation without isolation where
the effects of concurrency are common enough that they need to be included
throughout the normal processing paths.

116

The promises obtained by clients conceptually place constraints on the
behaviour of the services that they invoke. Clients get promises about resource
availability and the services they then call should only make changes to
protected resources that comply with these promises. For example, if a client
obtains a promise that 5 pink widgets will be available to fulfil an order, then
the services it calls can complete the order process for these promised goods,
or the client can release the promise. The client should not use the promise for
pink widgets to ask the order service to deliver some un-promised blue
widgets. This restriction on the behaviour of services could be largely
theoretical, being more like a design pattern than a type-safety mechanism, or
the restrictions could be enforced to some degree by promise and resource
managers.

Our proposed Promise protocol fits very naturally into the SOAP protocol and
the Web Services model. All of our promise protocol messages can be
transferred as elements in SOAP message headers and the associated actions
can be carried within the body of the same SOAP messages. The fit between
the Promise protocol and SOAP is discussed more fully in Section 6.5.

Section 6.7 compares our ideas to previous work in this area. Our key
innovations lie in the analysis of the variety of resources and conditions, in
considering how to atomically combine several related aspects of managing a
single promise, and in integrating these ideas into the services-oriented
message exchange framework.

6.2 Resources and Predicates
This section discusses several different ways that resources can be viewed by
client applications, and how these differences are reflected in the types of
predicates that can be used in promises over the availability of these resources.
Applications can use these different types of resource availability predicates to
obtain just the degree of isolation they need for their purposes, without
needing to resort to using traditional locking techniques.

Predicates are simply Boolean expressions over resources. Our model imposes
no restrictions on the form these expressions can take, and in practice their
form will depend on the application involved, nature of the resources and the
way we want to view these resources at the time.

The simplest form of predicate expression is an application-dependent request
for resources, such as asking for ‘room 212, Sydney Hilton, 12/3/2007’. In this
case there is a close coupling between the application, the promise manager
and the resource schema, and the promise manager is responsible from
translating from this application-dependent predicate to any necessary queries
and updates on the room availability data held by the resource manager. The

117

relationship between predicates, applications and resources can be much more
abstract than shown in this simple example, and complex applications could
define their own resource predicate language and implement their own
promise managers to guarantee resource availability.

In their most general and complex form, predicates can be general Boolean
expressions over defined resource availability data that is specified using
standard schemas. In this case, the client would be responsible for
understanding resource schemas and how resource availability is represented,
and for constructing suitable predicates in the agreed standard syntax. The
promise manager in this case can be completely general purpose, knowing
nothing about the applications, schemas or resource availability. All that the
promise manager has to be able to do is maintain sets of predicate expressions
represented in this standard syntax, check them for consistency, and evaluate
them with the assistance of the appropriate resource manager. For example,
we could send and maintain resource availability predicates written in a
standard language such as XPath using XML or SQL, and have these query
expressions evaluated by a compatible resource manager whenever the
promise manager needs to check for resource availability or predicate
violation.

Predicates are expressions over resources but the form and structure they take
in any particular application can depend on the way we regard the resources
involved. Different applications may want to treat the same physical resource,
such as a particular airline seat or an individual pink widget, in different ways,
and so will want to use different types of predicates to achieve the required
level of isolation from any other applications that might be using the same or
related resources at the same time.

In this section we discuss three different ways of regarding resources:
Anonymous View, Named View, and View via Properties. These abstractions
were derived from a study of different isolation mechanisms commonly used
in existing business practices. These different ways of viewing resources
influence the sort of predicates that clients will need to use in order to achieve
the level of isolation they require to always operate correctly.

6.2.1 Anonymous View
From the point of view of client applications, some resources can naturally be
regarded as pools of indistinguishable and identical resource instances, any of
which could meet a client application’s requirements. All the resources in the
same pool have the exactly same values for the set of attributes that are
relevant to the client and it is not important to the client which items from the
pool it is allocated and when this allocation takes place.

118

Most retail goods can be regarded as anonymous for many purposes. Barnes
and Noble may have many copies of each book title in stock, and a client who
wants a promise that a book will be available does not care which physical
copy they are given when the order is dispatched. In this case, the book title
represents a resource pool, consisting of many identical and indistinguishable
copies, and all that the retailer needs to track in order to be able to make
promises about availability is the number of copies they have available for
sale.

Financial applications, such as banking, use anonymous resources all the time.
For example, if a promise is made that a client application will be able to
withdraw $500 from an account, the bank is not obliged to set aside five
specific $100 bills, uniquely identified by their serial numbers.

There can be any number of promises outstanding on anonymous resources,
the only constraint being that the sum of all promised resources should not
exceed the resources that are actually available. For example, our bank can
grant many promises against Alice’s account, just as long as the account will
not be overdrawn if all of these promises are followed by withdrawal requests.

The availability of anonymous resources is usually explicitly tracked and
recorded in an attribute associated with each resource pool. These attributes
are traditionally called something like ‘quantity on hand’ or ‘account balance’.

6.2.2 Named View
Clients using a named view of a resource know that each instance of the
resource is unique and possesses an identifier, such as a serial number or some
other set of distinguishing characteristics that can be used to refer to it. Clients
can obtain a promise about the availability of a resource based on this
identifier, and they can later make use of that resource instance, knowing that
the promise will ensure it will be available when needed.

Some resources are naturally unique and there is only one instance of a given
resource. For example, used cars could be considered unique and not
interchangeable, as each one is distinguishable by the distance it has travelled
and its condition. A client who gets a promise on a particular vehicle is
expecting to get that one, not an ‘equivalent’ substitute. Conversely, new cars
and hire cars would normally be accessed anonymously by model or category
as they can be considered identical for the purposes of selling or hiring.

Resources such as airline seats or hotel rooms are another common class of
named resources. These are virtual resources which represent the opportunity
to use a (more or less) physical resource at a specific time. For example,
‘Room 212, Sydney Hilton’, 12/3/2007’ names a specific room instance, and

119

the date is the necessary part of the unique identifier that distinguishes one
booking for the room from another.

The concepts of named and anonymous resources are about the way client
applications view the resources, not about the resources themselves. A group
of related named resources might be accessed anonymously in some
situations, and by their unique names in others. For example, each seat on a
flight has a unique name (e.g. seat 24G on QF1 departing on 8/10/2007). Some
client applications may let customers try to book specific seats on a flight, and
so need named access to the seat instance. In many cases though, all economy
seats will be regarded as equivalent, and client applications will be using
anonymous access to get promises about the availability of economy class
seats on that flight.

The availability of named resources will often be tracked by the use of
something like free/busy attributes associated with each resource instance.
Many resources will support both anonymous and named views at the same
time, allowing some clients to obtain promises on specific resources instances
while others are getting promises over a collection of such resource instances.

A single named resource instance cannot be promised to more than one client
application at the same time, regardless of the predicates being used and how
resources are being viewed by client applications. For example, if one client is
promised ‘seat 24G on QF1 departing on 8/10/2007’, this seat must not be
included in the considerations leading to the granting of a promise for an
arbitrary economy-class seat on the same flight.

6.2.3 View via Properties
The concepts of named and anonymous resource views we just discussed are
really based the properties (or attributes) exposed by a resource, and the
characteristics of these properties are what determine the type of promise
predicates can be requested over these resources. If a set of properties can be
used to always uniquely determine a specific resource instance, we can use
these properties in predicates where we want a named view of the resources. If
a set of properties inherently determine a set of resource instances, then we
could use these properties when we want anonymous access to a pool of
acceptable and interchangeable resources.

An individual resource or collection of resources would normally expose
multiple properties, many of which could be of interest to clients and
potentially be the target of promise predicates. For example, a hotel booking
service would maintain a collection of rooms and information about their
availability on specific dates. Each of these rooms has a number of properties,
such as the size and type of beds, whether or not smoking is allowed in the

120

room, whether or not there is a view, and which floor it is on. All of these
properties can be used in promise predicates by client applications wanting to
determine room availability.

Different client applications, acting on behalf of different customers, can make
concurrent requests over the same collection of rooms and use different sets of
these properties in their promise predicates. For example, one customer may
be asking for a room with a view, while another might be requesting any 5th
floor room. Room 512 could be a suitable available resource that would allow
the promise manager to grant either of these requests, but the manager has to
ensure that the same room is not allocated to both requests at once. The use of
different properties in the two competing promise requests makes this task
more difficult as it may not be straightforward to see that their predicates are
effectively overlapping.

Users may regard some properties as essential and others as desirable but not
required, and this could be reflected in their promise predicates. The interplay
between essential and desirable properties when obtaining a promise may be
complicated and could lead to systems where the promise requestor and the
promise maker negotiate to find a promise that is both satisfiable and
maximally desirable. For example, the client may initially request a non-
smoking room with a view and twin beds, and eventually accept a promise for
a room with just twin beds.

Another interesting possibility is that the values of certain properties could be
treated as ordered in acceptability, with it being understood that a promise can
be satisfied either by a resource that meets the precise value for a property as
requested or by one offering a ‘better’ value. For example, a customer who
holds a promise for an economy class airline seat will not normally complain
if, when they fly, they are upgraded to business class.

Predicates are expressions over the values of abstract properties of resources,
not over concrete fields in database tables. This abstraction gives rise to the
possibility of treating resources polymorphically, allowing a single predicate
to cover any number of acceptable resources as long as they all expose the
required properties. For example, a hotel booking service could aggregate
availability information from a number of providers, each with their own
schemas for describing available rooms. A single predicate could be used to
obtain a promise from any of these providers, as long as they all exported the
set of properties required by the predicate (or if the properties they do export
can be transformed to the required ones by the promise manager).

121

6.3 Atomicity and Promises
In this section we identify three important atomicity requirements for the
implementation of promises and promise managers. While the autonomy of
service-providers means that there is no way to demand atomicity across long
duration business processes, it is feasible to require that specific atomicity
guarantees apply during the handling of a single Promise message. These
requirements are:

• Request guarantees on several predicates at once. While it may be
common to seek a single guarantee such as ‘ensure that at least 5
widgets are available when I decide to buy them’, sometimes a client
will want to ensure that several different properties (perhaps involving
several resources) will all be true when the resources are required at
later stages of the application’s execution. The classic example is from
travel planning, where a client may want a promise that a flight and a
rental car and a hotel room will all be available. By treating the
evaluation and granting of all the predicates carried in a single promise
request as an atomic unit, the client can ensure that they will either get
all the resources they need or none of them. As an aside here, the travel
agent client could also build up the set of required promises needed by
obtaining them one at a time, trying alternative resources and
predicates when other promise requests are rejected.

• Perform an action which depends on, but violates, a previously
promised condition, together with releasing the promise. One common
pattern where promises are useful is where a promise of resource
availability is used to protect a later operation which consumes the
resource (and thus makes it not available any more). Suppose an art
gallery service has promised a client that a particular painting will be
available, and the client then goes ahead and buys the painting. When
the purchase occurs, the gallery service is released from the promise
(the client cannot expect the painting to still be available after they
themselves bought it!); however if the purchase fails for some reason
(perhaps no shipper is available that day) then the promise should
remain in force. In this case, the promise release and the action which
depends on the promise form a unit and both parts must succeed or fail
together.

• Modify the predicate whose preservation is promised, by obtaining a
new promise and releasing a previous one atomically. An important
use-case is where the client requests changes to promises they have
already been granted. The requested change can be to upgrade the
promises, or to weaken them. For example, if a client has obtained a
promise that an account will have a balance of at least $100, they may
find that their anticipated later withdrawal has changed to $200 (a
stronger promise is needed) or to $50 (a weaker promise). In either
case, it would be too restrictive to force the service to honour the new

122

guarantee as well as the previous one, nor would the client want to
release the previous one until the new one was obtained. Thus
obtaining a new promise should be atomic with releasing the old one,
and the previous one should be retained if the service can’t guarantee
the modified request.

6.4 Implementation Techniques
The Promise Pattern we are proposing allows clients to ask a service to
guarantee that a supplied predicate will remain true for some specified time
into the future. The usefulness of this proposal depends on the existence of
mechanisms which will allow the provider to guarantee that they can honour
these promises, regardless of other promise requests that may be made and any
other actions that may take place against the same set of resources. In this
section we describe several well-known techniques that could be used in the
implementation of promises.

These implementation techniques are not meant to be exposed to clients
through the language used to express promise predicates. This principle means
that clients can express their resource requirements by using abstract
predicates over resource properties, and the promise manager that receives
these requests can then use whatever techniques it wants to implement the
promises and meet the guarantees it has made. This approach lets the client
deal in the abstractions of predicates and resources, and gives the promise
manager the ability to implement these abstractions in whatever way is best at
the time, and to change these implementations over time without forcing
corresponding changes in client applications.

• Resource Pool: In managing anonymous interchangeable resources, it
is common to keep the available instances of each resource in a pool,
and move them to a separate ‘allocated’ pool to ensure that a promise
can be honoured. For example, when we promise that we can supply
10 widgets, we remove 10 widgets from the pool of available widgets
and place them in the allocated pool. The digital equivalent can be
implemented by keeping a count of available and allocated items in the
record corresponding to each type of resource. This technique is
similar to escrow locking [73].

• Allocated Tags: In the case of resources that are accessed via a named
view, we can keep an availability status field as part of the data used to
describe the resource instance. This field would be set to something
like ‘available’ initially and then to ‘promised’ when the instance was
provisionally allocated to a client as a result of making a promise. It
would then be either set to ‘taken’ by a subsequent action, or would be
reset back to ‘available’ if the promise is released and the client has no
further use for the resource.

123

• Satisfiability Check: The promise manager keeps a record of all the
promises it is currently committed to honouring and also has access to
the current state of all resources covered by these promises. Whenever
a new promise request is received, the manager checks that it and all
relevant existing promises can be honoured based on the current state
of the resources involved. Similarly, a check is performed after every
client-requested operation has completed to be sure that the state
afterwards still allows all existing promises to be honoured.

If property-based access is used, the decision about which resource will
be used to honour a granted promise can be delayed until the execution
of the operation which takes the resource. In this approach, the promise
manager needs to be able to check the compatibility of a set of
promises with the state of the resources. This might be done by finding
a matching in a bipartite graph where edges link the untaken resources
to the promise predicates that they can satisfy.

One consequence of this model is that the availability of a resource is
indicated by the presence (or absence) of a covering predicate, as well
as (possibly) fields in the resources themselves. In contrast to the
‘allocated tag’ mechanism just described above, we now have the
situation where the availability field in the resource now only indicates
whether or not the resource has been definitely taken. This means that
status information for a single set of resources is now distributed
between the promise and resource managers, and special care will be
needed to ensure consistency.

• Tentative allocation: This is a hybrid mechanism, where property-
based promise requests are met by marking the chosen resource
instances as ‘promised’, and also remembering the specific predicate
that resulted in this resource allocation. If a later promise request is not
satisfiable from the pool of unallocated instances, the manager can
consider rearranging these tentative allocations to allow it continue to
meet all previous promises as well as granting the new request. For
example, a request for a hotel room with a view may lead to tentatively
allocating room 512 (on the basis that it has a view). When a later
request is made to promise a 5th floor room, the system may reallocate
512 to the new request as long as a different room with a view can be
still be provided to meet the earlier request.

• Delegation: Promises are made that rely on the promises of third
parties. For example, a purchase order can be accepted by the merchant
if it has received a promise from the distributor that a backorder will be
fulfilled on time. In this scenario, the promise is delegated from the
merchant to the merchant’s supplier.

124

As mentioned earlier, the architectural model we are using here has promises
being granted and guaranteed by a Promise Manager. This system component
acts as an intermediary between clients and services by receiving and granting
promises, working with resource managers to help determine availability and
passing application requests on to services for execution.

In this model, client applications always send both promise messages and
application requests to an intermediate promise manager rather than directly to
services or resource managers. The promise manager will act on the promise
messages, consulting with applications and resource managers as needed to
determine if promises can be granted. Application requests pass through the
promise manager so that they can be rejected if any associated promises
cannot be granted or if executing the request would cause existing promises to
be violated.

This is only a conceptual model, although it is the one implemented in our
prototype which we describe in Chapter 7. Actual implementations are free to
implement the required promise functionality in any way at all.
Implementations could move all promise functionality into the application
services, letting them use whatever application-dependent mechanisms they
wish to express predicates, record promises and determine resource
availability. Another alternative would be to move the responsibility for
granting and enforcing promises to the resource managers where they could be
implemented as a form of dynamic integrity constraint.

6.5 Promise Protocol
This section discusses the structure of some protocol elements that could be
used in a SOAP-based implementation of the Promise Pattern. In this protocol,
clients and promise managers exchange promise-related information using
<promise> and <environment> message header elements. <Promise> elements are
used in the creation and release of promises. <Environment> elements are used
to specify the promise context that applies for the SOAP service requests
carried in the associated message body.

A <promise> element can have zero or more <promise-request> elements; each
representing one request for the recipient to make a promise that will
guarantee the included predicates for a certain period of time. A <promise>
element can also include zero or more <promise-response> elements which are
used to return outcomes from previous requests that flowed in the reverse
direction. Each participating service can act as both client and promise-maker,
so a single <promise> element can include both <promise-request> and <promise-
response> elements.

125

A <promise-request> defines:
• A request identifier that can uniquely identify each promise-request.

This request identifier is used to correlate promise-requests and
promise-responses.

• A set of predicates that specify the conditions on which the client will
rely in a later interaction and that the promise-maker must maintain.

• A set of resources that specify the subjects of the promise.
• A promise duration that indicates how long the client wants the

promise to be kept.
• An optional set of promise identifiers that refer to existing promises

that can be released if this new promise request is successfully granted.

Each promise-request must be treated atomically. All of the predicates over
the specified resources must be promised or the entire promise must be
rejected. A promise request may hand back previous promises in exchange for
new promises, and if these new promises cannot be granted, the existing
promises must continue to hold.
Promise makers send promise responses back to promise requestors to inform
them whether their promise requests have been accepted or rejected. The
elements of a <promise response> are:

• A promise identifier that the promise maker uses to uniquely identify
this promise.

• A promise result that says whether a promise request is accepted or
rejected. Promise responses could also return other results, such as
‘pending’ or ‘accepted with the condition XX’ but these possibilities
have still to be investigated.

• A promise duration that indicates how long the promise manager will
guarantee to keep this promise. This may be the same as the duration
which was requested, but the promise manager might, for example,
offer a guarantee that expires sooner than the client wished.

• A promise correlation which is the request identifier of the earlier
promise request.

Successful promise requests establish promise environments. Application
requests can specify that they must be executed within a specific promise
environment (with the set of resource guarantees defined by its promises) by
including an <environment> element in the associated message header. An
<environment> must define;

• A set of promise identifiers that define which promises will apply for
the execution of the request.

• A corresponding set of promise release options that indicate whether
the associated promises should be released after the request has
completed.

126

We note that each message may contain any subset of the different elements
relating to promises, and these may be related to the message body or
unrelated. For example, we allow an application message from A to B to
contain a related request for B to make a promise, and it can also carry a
piggybacked response reporting on the outcome of a previous request that B
had sent to A.

6.6 Promises and Isolation
The key contribution of the Promise pattern is that it allows a client to check
for the availability of resources and then later make service requests with the
assurance that these operations will not fail because the required resources are
no longer available (except for very rare catastrophic situations that might
need human intervention). Programmers are relieved of the need to consider
the frequent but unwelcome situation where concurrent activity has changed
the truth of relied-on conditions after they were checked.

We will illustrate how applications can use promises to achieve the precise
degree of isolation they require through two examples based on the merchant
example mentioned earlier. Both of these examples make use of the Promise
Pattern but differ in the resources involved, the way they view them and the
predicates they use.

The first example Figure 21 shows how the ordering process can check for the
availability of goods using a promise and then be guaranteed that these goods
will continue to be available for purchase, regardless of any concurrent
activities, until the order is completed or abandoned. In this example, the
customer is trying to order 5 pink widgets. As our customer doesn’t care
exactly which 5 of the many identical pink widgets in stock they will receive
as a result of this order, we will use the anonymous access view defined in
Section 6.2.2 for this example.

Order process Promise manager
Determine we need 5 pink widgets to be
in stock
Send promise request that (quantity of
‘pink widgets’ >= 5)

 Check stock levels of pink widgets

Accept promise if >=5 currently available
and not promised elsewhere.
Record promise as predicate over stock
levels, guaranteeing that at least 5 units
will always be available. This predicate
will be checked before any further
promises are granted or purchases are
performed.

127

Send ‘accept’ <promise response>

Reject promise request otherwise
Send ‘reject’ <promise response>

If promise rejected
 Terminate order process saying
goods unavailable
If promise accepted
 Continue processing order (organise
payment, shippers)

Send ‘purchase stock’ request to
promise manager
and release promise to keep stock level
>= 5

 Pass ‘purchase stock’ to application
service
(Release 5 pink widgets for delivery and
reduce stock-on-hand by 5)
Remove this promise from the set of
predicates over the pink widget stock
level

Figure 21 Outline of Ordering Process Code

The second example is more complex and illustrates the flexibility of promise
predicates. In this example, our merchant offers ‘next day’ shipping to its
customers for a fixed additional cost on all orders. The order process asks the
promise manager for the shipping component for a promise of next day
delivery, with the predicate making no assumptions about how this promise
will be implemented or needing any information about the structure of the
shipping component and its internal states. The shipping promise manager
could implement the promise by obtaining soft-locks on warehouse and
shipping capacity but other implementations are possible. The merchant may
even have a number of shipping alternatives available, each with different
capacity and cost structure, and the actual choice of which shipper to use could
be deferred until shipping is required in order to reduce costs and optimise
utilisation. This flexibility is not visible to the order process or the customer,
all that they need to know is that the shipping component has promised next-
day delivery and guarantees that this will occur.

6.7 Other Similar Isolation Mechanisms
One of our inspirations in this project was the early ConTract work of Wachter
and Reuter [84]. This introduced the importance of expressing preconditions
(‘entry invariants’) needed to allow actions within a workflow to execute
successfully. The authors identified several different styles of ensuring that
these preconditions still hold at the time when applications rely on them later

128

in an execution. Among the styles proposed was the use of semantic locks to
preserve conditions and notifying the client when a checked condition
changes. Our work extends the semantic lock ideas of ConTract to the services
world with its interacting autonomous participants. Our consideration of
atomically combining steps is also new. We provide a richer analysis of the
variety of resource and predicate types, and of the ways to ensure that
predicates remain true over an extended period. We also support a variety of
possible implementation mechanisms, each tailored to the needs of specific
ways of viewing and accessing resources.

In previous work [54], one of the co-authors of this work developed a
transaction model for spatial data which was based on explicit constraints that
could be set and unset to limit concurrent modification of properties of the
data. Our current paper extends this to a world of autonomous services; as well
we now offer an analysis of predicate types, and a better mechanism to
structure the operations by providing atomicity between aspects of a single
step of the promise exchange.

Recently Dieter Gawlick and other members of the Grid Computing
community have suggested the ‘Option’ protocol [24] for reserving access to
resources. This has similarities to Promises but our work deals with a wider
class of conditions including those on anonymous resources and property-
based views of resources, and supports a wider choice of implementation
mechanisms. Also, our use of atomicity allows us to unify concepts such as
securing, modifying, confirming, and dropping which are represented as
separate message types in [24]. The “options” approach has been implemented
inside an Oracle database management system, using “data cartridges” to
define data types with appropriate indexing and triggers. Zhao at el [97] use
the WS-* standards to coordinate the message exchanges in reservation
handling. These papers do not consider how to implement various
reservations.

There are interesting parallels between promises and the IMS/VS Fast Path
mechanism [25]. In Fast Path, each operation is structured as a predicate check
and a transformation on the data. The predicate is checked when the operation
is submitted, and then at commit-time, the check is repeated, and the
transformation is performed (provided the check succeeded). We can consider
the operation submission as like a promise request, and commit as like the
operation done under promise protection; however, in Fast Path, other
operations do not worry about outstanding predicates, and so the commit
check might fail because of concurrent activity.

Our Promises pattern unifies and abstracts over many possible implementation
mechanisms, including those that are based on previous work mentioned
above. The Promises approach offers a common way for clients to work

129

without knowledge of the implementation technique used inside a service that
can maintain some property between the time it is checked and a later time
when the client relies on the property.

6.8 Conclusion
In this chapter we propose a unified approach to describing the interactions
between a client and a service where the client can make sure that some
condition over resources will hold at a later time, despite concurrent activities
that occur between the check and the use of the condition.

We have analysed the variety of resource types and conditions on those types,
identifying an important distinction between resources which are accessed
anonymously (where the key property is just whether a given amount or
volume is available), resources which are accessed by name, and a wider class
where access is based on values for some subset of a collection of properties.

We have identified important cases where several promise-related activities
need to be combined into an atomic unit in order to support valuable use-cases
such as processing multiple predicates within a single promise request,
consuming/releasing promises, and upgrading or weakening a previously
obtained promise.

Our proposed Promises allows clients to ask a service to guarantee that a
supplied predicate will remain true for some specified time into the future. The
usefulness of this proposal depends on the existence of mechanisms which
will allow the provider to guarantee that they can honour these promises
despite any other actions that may take place against the same set of resources.
We explored several well-known techniques that could be used in the
implementation of promises for different resource types.

We summarise the structure and content of the promise protocol elements as
they would be used in a SOAP-based implementation of the Promise Pattern.
Clients and resource managers exchange promise-related information using
<promise> and <environment> message header elements. <promise> elements are used
in the creation and release of promises. <Environment> elements are used to
establish a promise context for the SOAP requests carried in the associated
message body.

In the next chapter we discuss the issues involved in implementing this
Promise concept in a service provision framework. This will involve
developing further details of the implementation for checking predicates
against resources.

130

Chapter 7

Design Principles in Supporting
Promises

One of the many problems facing the designer of complex multi-participant
Web services-based applications is dealing with the consequences of the lack
of suitable isolation mechanisms. This deficiency means that concurrent
applications can interfere with each other, resulting in race conditions and lost
updates which become one of the many cause service-based systems to
produce consistent outcomes.

In the previous chapter, we proposed a unified approach called ‘Promises’
which can provide an isolation mechanism for service-based applications by
describing the interactions between a client and a service where the client can
make sure that some condition over resources (predicates) will hold at a later
time, despite concurrent activities that occur between the check and the use of
the condition.

In this chapter, we discuss some of the implementation issues that need to be
resolved in promise-based systems and discuss how we built a proof-of-
concept prototype of a Promise Manager that supported promise-based
isolation without requiring changes to existing applications and resources. The
major challenge in the implementation is to ensure Promise Manager takes
overall responsibility and coordinates the activities to maintain the validity of
non-expired promises; that is, resources must be available to satisfy every
predicate that the Promise Manager is committed to maintain.

7.1 Design Issues and Constraints of Promises
The primary motivations behind the work reported in this chapter were to
demonstrate the viability of the promise model by constructing a working
prototype, and to observe what this prototype could teach us about building
more general and higher-performing implementations. This limited goal meant
that we could ignore some of the optimizations and sophistications that would
be necessary if we were building general-purpose infrastructure, and
concentrate instead on some of the important issues that would underlie all
implementations of Promise-based system or infrastructure.

131

Some of the key design issues that have to be addressed in the implementation
of any promise making system are: compatibility with existing applications
and infrastructure; the representation of Promises; the relationship between
Promises, resource schemas and the promise checking code; ensuring that the
promise checking code itself works correctly when there can be many threads
concurrently changing the state of promises and resources; and the
construction and use of dynamically constructed sets of Promises.

7.1.1 Compatibility
The main constraint we placed on this prototype was it should provide
Promise-based isolation support for existing applications, without requiring
changes to applications, resource managers or the schemas of the resources
being managed. This allows us to reuse existing applications and resource
managers thus increasing the productivity of development of isolation support
via promise manager as a proof of concept to demonstrate our research
concept of “promises”.

7.1.2 Representing Promises
The Promise Manager needs to keep a persistent record of all promises that are
currently in effect. Promises are added to the set of current promises as a result
of a successful promise request, and are deleted when they are explicitly
released by clients.

Promises also only have a limited duration, that is they are valid only for a
limited time and then expire. Promise managers need to implement this
attribute of Promises and remove them from the set of active promises when
they expire.

7.1.3 Promises and Schemas
Promises are basically predicate expressions over the availability of
conceptual resources, such as ‘hotel room’ or ‘bank balance’. These resources
are defined and controlled by resource managers. Some mechanism has to be
provided that will allow the availability of these resources to be queried during
the promise checking process.

A general implementation of the Promises mechanism requires some way of
automatically mapping between the resource identifiers used in predicate
expressions and the corresponding database columns or pre-defined query
expressions. This close-coupling between predicate expressions and schemas
leads naturally to Promise implementations where the responsibility for
promise checking is shared between a Promise Manager and the relevant
resource managers. Alternatively, a Promise Manager could retrieve resource

132

schemas from a resource manager and use this information to generate direct
SQL query expressions that determine the availability of resources.

This degree of sophistication and complexity is unnecessary for a proof-of-
concept prototype where we can restrict the nature and type of our predicate
expressions and can write predicate evaluation code specific to the example
data we are using.

7.1.4 Isolation and Concurrency
Information about promises and resource availability are stored in different
places and controlled by different managers, but they are both accessed as part
of promise operations. For example, performing an action which releases a
promise requires changing the state of the resource manager (through action
code), examining the promise table (to carry out promise checking), and then
modifying the promise table (to remove the promise being released). Granting
a promise request involves examining the state of RM resources and the
promise table, as well as inserting the new promise into the promise table.
Without taking special care when engineering a Promise system, we could be
vulnerable to race conditions and other isolation failures resulting from
concurrent promise operations.

For example, suppose that a request to create a new promise to keep a balance
of at least $100 in Alice’s bank account operation is running concurrently with
an action that withdraws $60 from the account, and the balance is $150. If
these two operations run without proper consideration of the potential impacts
of concurrency, the check for whether the withdrawal violates any promises
might use a list of promises that does not include the new promise, and the
promise granting check might use a balance which has not yet been
decremented. Both of these operations could succeed, resulting in an
inconsistent outcome with a promise being granted that cannot be satisfied by
the current state of the resource.

We use traditional transactions to prevent these situations. Note that we are
not guilty of circular reasoning; promises are intended to offer isolation
support between long running activities, while we exploit the isolation support
that transactions provide between individual promise operations.

7.1.5 Dynamic Promise List
Promise checking is at the heart of the Promise Making system. It is the
mechanism that allows us to honour the guarantees that have been given to
promise clients. Promise checking is conceptually simple: it must make sure
that every unexpired promise can be met using available resources at all times.

133

Promise checking works on a dynamically constructed list of relevant
promises rather than on the complete set of promises which have been granted.
The main reason for this is that promise checking often needs to be undertaken
on proposed sets of promises rather than the complete set of already-granted
promises. For example, promise checking during the granting process is done
over a proposed new set of promises, including the promises being requested
as well as any relevant existing promises.

Using a dynamically constructed list of promises, extracted from the already-
granted promises and modified according to circumstances, simplifies the
promise checking process. By moving the determination of which promises
are relevant out to the Promise Manager, the promise checker is left with the
simpler task of checking for consistency within a set of promises and against
resource availability.

One advantage of this approach is that we can sometimes reduce the number
of promises that must be checked by using semantic knowledge of the
promises and the resources they cover. For example, when a promise request
for a named or anonymous resource is being considered, the promise checker
does not need to check any promises that do not refer to the same resources as
the new request. The reduction in checking depends on the type of promise
operation, so it is better placed outside the promise checker which executes the
same code no matter which promise operation is being performed.

7.2 Structure
The major contribution of this chapter is to demonstrate the feasibility of the
Promises concept by building a proof of concept system that provides isolation
support for existing applications and resources. This section explains the
system design and Section 7.3 discusses the design choices we made when
building this prototype.

Figure 22 shows the architecture of our Promise-based prototype system
containing different types of messages being exchanged and three major
components, namely Promise Manager (PM), Application Server (App), and
Resource Manager (RM), that handle different types of messages. The
following discussion covers more details of these major messages and
components of the system.

134

Figure 22 Structure of Promise System

7.2.1 Messages
The messages which arrive at the Promise Manager can contain two parts: an
optional Promises part and an optional Action part.

• The Promises part contains the information relevant to promises. For
example, it can contain a promise request asking the creation of a new
promise that will ensure a given list of predicates will be valid at some
later time. It may also contain a promise environment that indicates
how the action relates to existing promises (for example, by releasing
them if the action is successful).

• The Action part defines the application operation to be performed, with
appropriate parameters. For example, the action part may indicate that
the client wants to invoke the BookRoom operation and specify the
room and date for the reservation. This part of the message is not
changed by the addition of promises and will be processed by existing
application code. The only difference is that the Promise Manager can
now cause otherwise successful operations to fail if the changes they
made to resource availability are prevented by currently active
promises.

This message structure fits very naturally into SOAP and Web Services
standards. All Promises parts can be transferred as elements within the SOAP
message header while the Action parts messages are carried within the SOAP
message body.

The Promises model makes each part of these request messages optional.
However, a typical usage would be that the promise client sends a message
that contains a promise request (Promise part only) to request creating a
promise. Once the promise has been made, another message is sent with both
Promise and Action parts, to perform a state-dependent action with an
associated promise environment which indicates a promise that ensures

Response

PM

App

RM

Action
Promise

+
Action

Response

135

success of the action, and is to be released in connection with performing the
action.

The design in Chapter 6 is symmetric, so the Promise Maker can also act as
Promise client; thus a single message might contain both promise requests and
also responses to requests in the other direction. In this chapter we focus on
the design of the Promise Maker, and so we do not discuss how to process any
promise material related to the service’s activities as a client.

7.2.2 Components
There are three different components shown in Figure 22. The Promise
Manager is best seen as an interception layer or an intermediary. The client
adds Promises header messages to its normal service requests and sends them
to the Promise Manager for processing. The Promise manager then does its
work and passes the request on to the application. The roles of each
component of the Promise system are explained in the following.

7.2.2.1 Promise Manager (PM)
PM takes overall responsibility and coordinates the activities throughout the
promise system. The key data structure kept in the PM is Promise Table
recording all currently active promises.

The Promise Manager receives each message as it arrives from a promise
client and breaks it up into its Promise and Action component pieces. If a
message contains a Promise part, this is split into its promise requests and
promises environments and any new promise requests are checked for
consistency against the existing promises and resource availability (more
details in the Section 7.2.3). After this step, any Action is passed on to the
associated application and the Promise Manager waits for a response. If the
Action succeeded, the Promise Manager then uses the promise environment to
update the set of applicable promises and checks once again that all relevant
promises are consistent with the resource availability information held by the
RM. This step is what allows the Promise Manager to guarantee that promises
will be honoured, regardless of what state changes have occurred as a result of
executing the Action. If all promises can still be honoured, the Promise
Manager passes back the response it received from the application back to the
client. If the result of the action was that promises were violated, the promise
manager will roll back the changes made by the Action and return a failure
message to the client. The process of the Promise Manager is depicted in the
flow chart in Figure 23.

136

Figure 23 Promise Manager Flow Chart

Message Type?

Pass Action to
App

Action executed
response from

App

Action executed
under promise

env?

Update temp
promise list
according to
promise env.

Promise
Consistency
Checking

Rollback Action Commit Action

Add new promise
into temp promise

list

Promise Type?

Result?

Result?

Promise
Consistency
Checking

Reject promise
request

Make a new
promise

Accept promise
request

Start

End

If Action If Promise

Promise request

Promise
environment

If violated

If ok

If violated
If ok

Processing time

137

In our current implementation, an ACID transaction is used for the complete
processing of each promise and each action, and this allows us to either
commit or rollback any changes made by the application. Note that the
transaction covers short-term activity entirely within the components of the
Promise Making System. Thus we do not suffer from drawbacks to autonomy
that ruled out using a transaction across several client-service interactions.

7.2.2.2 Application
The responsibility of the application is to process the action request passed
from the Promise Manager. The application in our design is unchanged and is
exactly the same code as would have been executed previously. For example,
the application for a hotel booking service must be able to process
CheckAvailability and BookRoom operations and these are what are passed
untouched from the client to the application via the Promise Manager. We
assume that application uses a Resource Manager to keep the state which is
shared between operations. After the action has completed, the application
sends a response message back to the Promise Manager.

7.2.2.3 Resource Manager (RM)
The role of RM is also unchanged and its responsibility is to store the state of
the domain, and to process queries and updates on this data requested by the
application and the Promise Manager. For example, the RM for a hotel
booking service will keep information about the hotel rooms, their prices, and
which rooms have been booked for each day. In Section 7.3.3, we discuss the
extent to which the schema of the resource state information must be made
explicit to the Promise Manager. The design is able to handle applications
which spread their data across several RMs, as long as they support distributed
transactions.

7.2.3 Promise Consistency Checking
The crucial responsibility of a Promise system is maintaining the validity of
non-expired promises; that is, resources must be available to satisfy every
predicate that the Promise Manager is committed to maintain. Ensuring this is
made difficult as promises are maintained and understood by the Promise
Manager while information about the availability of resources is maintained
by RM which has no awareness of promises. To ensure that granted promises
are not violated, the Promise system must have a mechanism in place where it
can evaluate a set of promises against the current state of resources. We call
this mechanism promise consistency checking. The complexity of the promise
checking process depends on the particular predicates which have been
guaranteed in promises.

For the case of a named resource, promise checking is relatively simple. We
must ensure that one of the following situations holds: there are no duplicate

138

promises for the resource identified by the same unique identifiers; or the
resource must be recorded as available in the RM, and there is at most one
unexpired promise over that resource.

For an anonymous resource where there is a pool of equivalent items, the
promise checking sums the quantities of the specified resource required by all
unexpired promises, and this must be at least as large as the amount recorded
in the RM as being available for this item.

When we have a type of resource which could be relevant to several different
predicates, the check is much more complicated. Our proof-of-concept
implementation does not deal with this. We would need to consider a bipartite
graph containing all the predicates from unexpired promises and all the
available resources, with an edge from a predicate to every resource that could
satisfy the predicate. A set of promises is consistent with the state of resources
provided that a matching edge can be found in this graph.

7.2.4 Promise Operations
 Promise checking is then used in several places during message processing,
with various sets of promises:

• Making New Promises: A Promise request can be sent by a promise
client to a promise server in order to create a new promise. Granting
the new promise must consider the mutual satisfiability of all existing
unexpired promises, together with the requested promise, using
currently available resources as known by the RM. For example, when
Alice requests a new promise that a specific room 202 in ‘Sydney
Hilton’ is available for the date 30 December 2006, this promise
request must be rejected if the room is not available (already booked)
for that date, or if there is already a promise for the same room on that
date.

• Executing Actions: The Application executes actions that were coded
without knowledge of the PM or its promises. The actions might
change the state of resources, for example by updating the account
balance upon receiving payment or modifying the availability of rooms
when customers make a booking. In a well-designed system, actions
would make no state changes except those guaranteed by any covering
promises. However the Promise Making System cannot rely on coding
of the Application, and so the promise checking must be performed by
the PM once an action has been executed to ensure that the state
changes made in RM (by the App code) have not violated any existing
promises (except for the promises that are being released atomically
with the action).

• Updating Existing Promises: Promise clients can request to update
existing promises. The request can be either to strengthen the existing

139

promise or to weaken it. Updating existing promises can be seen as the
combination of two operations: removing the previous promise and
creating the new promise. These two changes must be done
atomically. Thus a check must be performed to check the consistency
of the resource state against the newly requested promise as well as the
set of all unexpired promises except the one to be removed. For
example, if Alice wishes to upgrade an existing promise of at least 5
pink widgets, to now guarantee at least 10 pink widgets, and Bob has
already been promised 6 pink widgets, then we must ensure that the
number of available pink widgets is at least 16.

7.3 Reflecting on our design
This section we discuss our responses to the key design issues we discussed in
Section 7.1. These design decisions reflect the needs of the prototype
implementation only, and different decisions, and more complex
implementations, would be justifiable, and probably necessary, for production-
quality Promise-based infrastructure components.

7.3.1 Compatibility
The compatibility constraint required us to engineer the Promises prototype so
that we could provide Promises-based isolation support without requiring any
changes to existing server applications, resource managers or schemas.

Our solution to this constraint was to implement our Promises prototype as a
layer that wrapped existing application systems and ensured that promises
could be both granted and honoured. Client applications had to be changed to
request promises and associate actions with promise environments, but no
changes were required to applications or resource managers. The Promise
Manager takes action requests from clients and passes them along, unchanged,
to existing applications. These applications process these requests in the
normal way and pass back their responses to the Promise Manager which
checks for promise violations before committing and returning the response to
the client.

7.3.2 Representing Promises
The Promise Manager needs to keep a persistent record of all promises that are
currently in effect. Each promise is represented by an object that is persisted
by storing it as a row in an SQL database table. Each promise has attributes of
Promise Identifier, promise request correlation, predicate and expiration. The
set of all currently-effective promises make up the Promise Table.

140

The database Promise Table is reflected in an in-memory table that is
protected by locks as necessary. Changes to this table are committed and
persisted by storing them into the database version of the table.

Every promise has a fixed duration, represented by its expiration attribute.
These expiry times are used by the Promise Manager is constructing lists of
promises for checking and expired promises are deleted at appropriate times.

7.3.3 Promises and Schemas
The compatibility constraint discussed above meant that the prototype had to
assume that the application, RM and schemas are given and were developed
without knowledge or understanding of promises. Our design does not require
changes to the application or schemas but the promise checker does need to
access the RM in order to check resource availability. This means that the
Promise Manager must understand something of the schema of the RM so that
it can generate the appropriate queries. We would like to limit the coupling,
however, so that a Promise Manager can be coded in a fairly generic way.

We have assumed that the Promise Manager is able to query the RM to find
out the availability of each named resource. Coding the Promise Manager
involves finding out the schema that describes the resources. At least we need
to know how to express a primary key for the resource (for example, in the
hotel booking service the primary key might be a composite of the columns
hotel_name, city, room_number, date) and how to find out whether the
resource is available. Similarly, the Promise Manager needs to know how to
identify a pool of equivalent anonymous resources, and how the RM stores the
available quantity for the pool. Finally, for general predicates, the Promise
Manager must be able to determine which resources meet a given predicate;
this requires matching attributes mentioned in the predicate with columns
stored in the RM.

All of this can be solved with a reflection mechanism in which the Promise
Manager dynamically-generates the appropriate SQL code to access the RM,
supposing that the RM publishes the list of resources it manages, and the
relevant schema. This degree of sophistication and complexity were not
needed for a proof-of-concept prototype, and instead we have hard-coded the
Promise Manager using knowledge of the schema for the limited resources we
are managing.

7.3.4 Isolation and Concurrency
The solution we adopted to prevent problems arising from concurrent access
to the promises table and shared resources is to wrap each promise operation
in a transaction. This transaction is started when we begin processing each
client request and committed or rolled back just before the result of the request

141

is returned to the client. This transaction covers all of the action code executed
inside the application as well as the subsequent promise checking (and
possible modifications of the promise table if the action has a promise
environment that releases previous promises). This means that all accesses to
the RM’s tables, as well as the accesses to the promise table are transactional
which gives us the required level of isolation.

This design makes coding the Promise Manager very easy but does risk
creating a performance bottleneck under very high load since there are times
where we will want to scan (and so lock) the entire Promise Table, and this
could block concurrent insertions or deletions.

We also have considered more sophisticated implementations, where
insertions in the promises table are speculatively done in a separate transaction
from the promise checking and deletions are done in a separate transaction
after the promise checking has completed. However we decided to use the
straightforward design based on using a transaction through entire promise
process since our purpose was to demonstrate the feasibility of implementing
Promises using existing technologies rather than building high-performance
infrastructure.

7.3.5 Dynamic Promise List
The design we adopted for the prototype has the Promise manager first
searching the promise table and extracting the relevant promises to be
checked. These promises are placed in a local data structure which is then
adjusted by adding or deleting promises to create a proposed set of promises
which is passed to the promise checking code. Consider, for example, where
we are calling promise checking after performing an action whose promise
environment indicates that a promise will be released if the action succeeds. In
this case we construct of list of all relevant promises and construct a proposed
set of promises by removing the promise that is about to be released. This
proposed set of promises is then checked for consistency before making the
same changes to the real Promise Table.

Alternative designs to dynamically constructing sets of proposed promises
were considered. We initially intended promise checking to take no
arguments, but rather to find the list of promises directly by looking up the
Promise Table. This would require that each promise operation would modify
the global Promise Table and then call promise checking to verify that the
table was consistent. For the example just given above, we have to
speculatively remove the promise from the table before calling promise
checking, since the action just completed is very likely to have introduced an
inconsistency between the resources and the about-to-be-removed promise.
Speculative modification of the Promise Table is not unreasonable when under

142

a transaction covering the whole promise operation, but this approach is less
flexible and limits our ability to introduce greater concurrency between
promise operations.

7.4 Implementation
In this section, we discuss the details of a proof of concept implementation we
have built embodying the design decisions mentioned above. Our prototype
uses the .NET platform with C# as programming language, and it extends a
simple App and RM which provide the services typical of a hotel booking
service.

We first explain how Promise Consistency Checking interface has been coded.
We also show the different implementation mechanisms which need to be
applied in checking the resource availability, for promises that refer to
different types of resources. Due to time limitations, the current prototype
system can deal with named resources and anonymous resources only;
resources mentioned via properties will be implemented in the future. We then
show the coding of the main Promise Operations calling, each of which
includes a call to Promise Consistency Checking.

7.4.1 Overview of Promise Consistency Checking
Interface
The promise checking evaluates consistency between a promises list, which is
provided by PM, and information about the resource availability which is
maintained by RM.

In our system, the promise checking is implemented as a method within PM
that takes a list of promises as an input and returns a Boolean value indicating
whether the promise system will be able to satisfy the list of promises passed
in with the current resources that are available. The input parameter is a list
that is dynamically constructed by the PM from its Promises table, reflecting
those unexpired promises that might need to be checked, and also being
modified to reflect the potential changes in the promise operation for which
the check is done. The following code excerpt illustrates the promise checking
interface in our prototype system;

public bool promise_consistency_checking
(ArrayList promises)
{
 ….
}

The real complexities are inside the checking algorithm. In the next two
subsections, we discuss in detail how we check the availability of different

143

types of resources. Currently we have two different types of promises objects;
one object type represents promises that concern named resources. The other
object type represents promises that use anonymous resources.

7.4.1.1 Named Resource Promise Consistency Checking
It is straightforward to check the consistency of the promises over Named
Resources. Since each resource is distinguished by its unique key, it is easy to
see whether each promised resource is available in the RM, and also to avoid
the situation where a resource is doubly promised.

We illustrate the promise checking for named resources with code where the
resources are hotel rooms described as follows.

• RM maintains a list of resources in a table [rooms]. Each room is
uniquely identified by the composite key (hotel_name, room_id,
available_date). The “availability” field indicates whether the room is
still available or has been booked.

• Each promise object over a hotel room contains a promise_id, a
combination of (hotel_name, room_id, date) as a unique resource key,
and a field expiry.

Here is the promise checking code for these named resources.

public bool promise_consistency_checking (
 ArrayList promises)
{
 bool consistency = true;

 // check first if there are duplicate promises
 // concerning the unique key (hotel_name,room_id,
 // available_date)
 IEnumerator ie1 = promises.GetEnumerator();

 // We use a hashtable to check for duplicates of the
 // resource’s unique key

 Hashtable ht = new Hashtable();

 while (ie1.MoveNext())
 {
 Promise p = (Promise)ie1.Current;

 string key = p.hotel_name + p.room_id +
 p.available_date;

 try
 {
 // check the expiry of promises
 DateTime today = DateTime.Today;

144

 if (p.expiry_date >= today)ht.Add(key, p);
 }
 catch (Exception e)
 {
 consistency = false;
 }
 if (consistency == false) break;
 }

 // Now check if resources used by promises are
 // available: we does by returning an arbituary value
 // 1. SQL server returns 1 if matching record d efined
 // by a compsite key is found. Otherwise it ret urns
 // empty
 foreach (DictionaryEntry de in balances)
 {
 Promise p = (Promise)de.Value;

 // finding a matching record from [rooms] t able
 try
 {
 string sql = " SELECT 1 FROM rooms " +
 " WHERE hotel = '" + p.hotel + "'" +
 " AND room_id = '" + p.room_id + "'" +
 " AND date = '" + p.date + "'" +
 " AND availability = 1";

 SqlCommand cmd = new SqlCommand(sql, co nn);
 SqlDataReader reader = cmd.ExecuteReade r();

 // if no matching record is found, the re is
 // no available resources used by the
 // promise, therefore consistency fail s.
 if (!reader.Read())consistency = false ;
 }
 catch (Exception e)
 {
 consistency = false;
 if (consistency == false) break;
 }
 return consistency;
 }
}

7.4.1.2 Anonymous Resource Promise Consistency Checking
Checking the consistency of promises over Anonymous Resources is more
complex, compared to promises about Named Resources, as we need to
compare the quantity on hand to the total amount needed to satisfy all the
promises concerning this pool of resources.

145

We show our implementation for Anonymous Resources that use bank
account balances. We first explain the data structure.

• RM maintains amount of funds available for customers in a table
[fund]. For each customer, his/her balance is stored in a record with
fields including (customer_id, funds_available)

• Promise objects contain promises for keeping certain amounts of funds
for registered customers. Each promise object contains a promise_id, a
customer_id, amount which indicates the amount of funds the system
has promised to keep available in the given customer’s balance, and
expiry.

In this scenario, the consistency requirement is that the total amount in
promises for the same customer does not exceed the balance held by the
customer as recorded in the resource maintained by RM.

We first process the promises list to combine promises over the same
customer’s balance.

public bool promise_consistency_checking (
 ArrayList promises)
{
 IEnumerator ie = promises.GetEnumerator();

 // a new list that contains the total unexpired
 // funds promised for each customer

 Hashtable balances = new Hashtable();

 while (ie.MoveNext())
 {
 Promise p = (Promise)ie.Current;

 // first check expiry of promises
 DateTime today = DateTime.Today;

 // if promises are not expired, accumulate all
 // funds for the same customer
 if (p.expiry_date >= today)
 {
 if (balances.Contains (p.customer_id))
 {
 decimal b = (decimal)balances
 [p.customer_id];
 b += p.amount;
 balances[p.customer_id] = b;
 }
 // insert each customer with their total funds
 // in the list
 else balances.Add (p.customer_id, p.amou nt);
 }

146

 }

After all promises for each customer have been totalled, then we check
whether this total exceeds his/her balance recorded in RM.

 IEnumerator ie1 = balances.GetEnumerator();

 bool consistency = false;

 // look up the list which contains customers with
 // their total funds

 foreach (DictionaryEntry de in balances)
 {
 try
 {
 // get funds available maintained by RM for
 // each customer
 string sql = "SELECT funds_available" +
 " FROM funds " +
 " WHERE cust_id= ‘"+(string)de.Key+"’ ";

 SqlCommand cmd = new SqlCommand(sql, con n);
 SqlDataReader reader = cmd.ExecuteReader ();

 decimal funds_avail = 0;
 if (reader.Read())
 funds_avail = reader.GetDecimal(0);

 // if total amount promised for this cus tomer
 //exceeds the funds available, consisten cy has
 //been violated.
 if (funds_avail - (decimal)de.Value < 0)

 consistency = false;
 }

 catch (Exception e)// eg database problem
 {
 consistency = false; // for safety
 }

 if (consistency == false) break;

 }
 return consistency;

}

7.4.2 Implementation of Promise Operations
In this section, we discuss how Promises Operations are implemented in our
prototype system, using the promise checking method as described in the
previous subsection.

Depending on the nature of each Promise Operation, it is essential to find an
appropriate set of promises to check for consistency with one another and with

147

the state recorded in RM; if consistency is shown, then we update the PM’s
promises table. As described earlier, we use .NET transactions to provide
isolation between interleaving Promise Operations.

7.4.2.1 Making New Promises
The important consideration is to grant a promise only if we can satisfy it (and
all previous promises) with resources that are available. To achieve this, the
operation for making new promises runs as a transaction. It takes a snapshot of
the relevant entries from the promises table stored persistently by PM and
makes a temporary promise list using the snapshot. It then includes the new
(requested) promise into the temporary promises list, and passes this for the
promise consistency checking. If granting the new promise would not violate
consistency, PM now inserts the requested promise record into the persistent
promise table in the persistent storage and commits the transaction. If promise
checking returns false, granting the request would violate the consistency of
promises, so PM aborts the transaction. These message sequences are
illustrated in Figure 24.

Figure 24 Message Sequence on Making New Promises

PM RM

Promise
request

Promise
response

Gets promises list and put them into temporary
promises list.

Add the new promise into the temporary

promises list

Promise Consistency Checking

If (promises consistency checking runs true), insert a
new promise into the permanent promise list, then

accept the promise request.
If (promise consistency checking runs false) reject the

promise request

148

We show code examples that illustrate the scenario described in the message
sequence in the following.

// method that handles the making of new promises
public void making_new_promises(Promise p)
{

 // Create an explict transaction instance to run this
 // method as a transaction. Transaction begins he re.

 CommittableTransaction tx =
 new CommittableTransaction();

 // Form Get the current promises PM kept in its
 // Promise Table and make a temporary promises li st
 ArrayList promises = get_promises();

 // Add the requested promise into the temporary
 // promises list

 promises.Add(p);

 // run the promise consistency checking passing t he
 // temporary promises list

 bool pcc = promise_consistency_checking(promises) ;

 // if all promises in the list can be satisfied
 if (pcc == true)

 {
 // grant the promise request and insert into the
 // Promise table

 create_promise(p);
 tx.Commit();

 }
 // If all promises are violated reject the promis e

 else
 {
 tx.Rollback();
 }
}

For a request over the hotel room named resources we discussed earlier,
getting the list of relevant unexpired promises is coded as follows.

// Gets the current promises kept in the PM’s promi se
// table
private ArrayList get_promises()
{
 // declare a list to contain the current promis es

 ArrayList promises = new ArrayList();

 DateTime today = DateTime.Today;

149

 // Get all unexpired promises that is the promise s
 // whose expiry_date is beyond the moment the que ry
 // is requested
 string sql =
 "SELECT promise_id, hotel_name, room_id,
 available_date, expiry_date " +

 " FROM promisesNR " +
 " WHERE expiry_date >=" + today;

 // Query is executed
 SqlCommand cmd = new SqlCommand(sql, conn);
 SqlDataReader reader = cmd.ExecuteReader();

 //Add each promise record to the promises list
 while (reader.Read())
 {
 Promise p = new Promise();
 p.promise_id = reader.GetInt32(0);
 p.hotel_name = reader.GetString (1);
 p.room_id = readr.GetString(2);
 p.available_date = reader.GetDateTime(3);
 p.expiry_date = reader.GetDateTime(4);

 promises.Add(p);
 }
 …

 return promises;
}

In our implementation, we remove expired promises whenever inserts or
deletes are made to the persistent promises table. The following code except
illustrate this.

private void create_promise(Promise p)
{

 …
 // inserting a new promise into promises table
 string sql =
 "INSERT INTO promisesNR" +
 "(promise_id, " +
 " hotel_name, " +
 " room_id, " +
 " available_date,” +
 " expiry_date " +
 "VALUES (" + p.promise_id + ",'" +
 p.hotel_name + "','" +
 p.room_id + "','" +
 p.available_date + "','" +
 p.expiry_date + "')";

150

 SqlCommand cmd = new SqlCommand(sql, conn);
 cmd.ExecuteNonQuery();

 // remove all expired promises from the promises
 // table

 DateTime today = DateTime.Today;

 string sql1 = "DELETE FROM promisesNR " +
 " WHERE expiry_date < " + today;

 SqlCommand cmd1 = new SqlCommand(sql1, conn);
 cmd1.ExecuteNonQuery();
 …
}

7.4.2.2 Executing Actions
The messages being exchanged among Components of a Promise Making
System need careful coordination to allow the clean separation between
executing actions and the checking for the consistency. When invocation of an
action arrives from the promise client at PM, a transaction is created by PM,
and PM then passes the action to App with the transaction context. App
executes the action which may update/query the resources maintained by RM.

Once the action has been executed, PM checks if the action made any updates
on resources so these are no longer consistent with the promises that must be
maintained. For this check, PM first gets a snapshot of list the promises table,
called the temporary promises list. Then, PM updates the temporary promises
list to reflect any promise environment which was presented by the action. For
example, if the action is in the context of a promise environment which
releases existing promises, then the promises released by the action need to be
removed from the promises list. The possibly modified promises list is used
when running the promise checking. If promise checking returns true, the
updates on resources made by the action have not violated promises
consistency so the persistent promise table can be updated and the transaction
is committed. On the contrary, if the promise checking returns false, the action
has changed the resources so as to conflict with the promises which must still
be maintained, so it needs to be rolled back. These message sequences are
illustrated in Figure 25.

151

Figure 25 Message Sequences on Executing Actions

We show the implementation of executing action in our system in the
following code examples.

We first define a class that represents a promise environment which contains
list of promise identifiers with options as whether to release the listed
promises.

class PromiseEnvironment
{
 public int[] promise_id;
 public int releaseOption;
}

PM RM

action

response

App

Pass action (with
transaction context)

update/query

response
response

Gets promises list and put them into temporary
promises list.

Updates the temporary promises list according

to promise environment

query

response

Execute action

Promise Consistency Checking

Depending on the promise checking response:
Changes the promises table according to promise

environment, and commits transaction

152

We also assume that there is an action executed by an application. The
execution of an action is demonstrated by the method making_payment() in
our implementation. If the action making_payment() is in the context of a
promise environment to release the existing promise, for example a user is
paying to take the hotel room that has been booked for the user, the action is
successfully executed and the promises in the promise environment are
released permanently from the promises kept by PM. However, if the action
making_payment() is not in the context of a promise environment, for
example a different user is paying for the hotel that has been booked for
another user, if the consistency of promises list could be violated. The PM
must roll back the action in this case to maintain the consistency of the
promises list kept in the PM.

The following code excerpt illustrates how PM can maintain consistency when
an action is executed with or without the presence of a promise environment.

// Method handles executing actions
public void executing_actions(PromiseEnvironment pe)
{

 // Create and begin a transaction to run while
 // checking validity of action being executed
 CommittableTransaction tx =
 new CommittableTransaction();

 // Let’s assume make_payment() action has been
 // executed by an application

 App app = new App();
 app.make_payment(tx);

 // Gets the current promises list kept in PM and make
 // it as a temporary list
 ArrayList promises = get_promises();

 // Create another promise list that is presented in
 // the promise environment. This list is used to
 // remove promises from the pemerant promises lis t
 // kept in PM

 ArrayList promises_affected = new ArrayList();

 // if a promise environment presents with the a ction
 if (pe != null && pe.releaseOption == RELEASE)

 {
 // remove all promises presented to release i n
 // promise environment from the temporary lis t

 for (int i = 0; i < pe.promise_id.Length; i ++)
 {
 int promise_id = pe.promise_id[i];

153

 Promise p = get_promise(promise_id);
 promises.Remove(p);

 // add promises in the promise environm ent
 promises_affected.Add(p);
 }
 }

 // Pass the updated temporary list for the
 // consistency checking

 bool pcc = promise_consistency_checking(promise s);

 // If the consistency is still maintained with th e
 // updated promise list, the action can be grante d to
 // commit.

 if (pcc == true)
 {
 // Promises presented in the promise environm ent
 // are removed permanantly from the promises list
 // kept in PM

 IEnumerator ie =
 promises_affected.GetEnumerator();

 while (ie.MoveNext())
 {
 Promise p = (Promise)ie.Current;
 remove_promise(p);
 }

 tx.Commit();

 }
 // If consistency is violated with the updated
 // temporary list, the action must be roll back

 else
 {
 tx.Rollback();
 }
}

7.4.2.3 Updating Promises
The promise allows clients to request to update existing promises. The
important consideration is to grant an update request only if the update doesn’t
conflict with existing promises and resources for the update promise are
available. Similar to other promise operations, the operation to update
promises runs as a transaction. In the start of the transaction, the PM takes a
snapshot of the current promises kept in the promise table and makes it a
temporary list. As updating existing promises can be seen as the combination

154

of removing the previous promise and creating the new promise, PM removes
the previous promise and adds the new promise from/into the temporary list.
The temporary list which has been updated according to the update request is
passed for the consistency checking. If granting the update would not violate
consistency, which is confirmed by consistency checking returning true, PM
now deletes the previous promise and inserts the new promise record into the
persistent promise and commits the transaction. If consistency checking
returns false, PM aborts the transaction to avoid violation of the consistency of
promises. These message sequences are illustrated in Figure 26.

Figure 26 Message Sequence on Updating Promises

The code showing the message sequence of updating promises is illustrated in
the following example.

// the method handles updating promises
public void updating_promises(
 Promise old_p, Promise new_p)
{
 //the updating promise operation runs as a
transaction

 CommittableTransaction tx =
 new CommittableTransaction();

PM RM

Update
request

Promise
response

Gets promises list and put them into temporary
promises list.

Remove previous promise and add the new

promise from/into the temporary promises list

Promise Consistency Checking

If (promises consistency checking returns true),
remove the previous promise and insert a new

promise into the permanent promise table, then accept
the update request.

If (promise consistency checking runs false) reject the
update request

155

 // Get the current promises kept in PM and make i t as
 // a temporary list. Remove the previous promise in
 // the update from the temporary list, and add th e
 // new promise into the temporary list

 ArrayList promises = get_promises();
 promises.Add(new_p);
 promises.Remove(old_p);

 // Pass the udpated temporary list for the
 // consistency checking

 bool pcc = promise_consistency_checking(promise s);

 // if consistency checking returns true
 if (pcc == true)

 {
 // delete the previous promise and insert the new
 // promise into the permanent promise list, t hen
 // commit the operation

 update_promise(old_p, new_p);
 tx.Commit();

 }
 // if consistency checking returns false, abort t he
 // operation

 else
 {
 tx.Rollback();
 }
}

7.5 Other Alternatives
There are some similarities between the implementation mechanisms we
introduce for maintaining a promise, and algorithms previously used in
database locking such as escrow locking [73] and predicates [21]. However we
can identify some clear differences. All our promises have limited duration,
and thus none of our techniques violate autonomy by allowing a client to deny
access to resources unduly. Also, our promise making techniques generally
deal with problems by rejecting a promise request, rather than blocking as in
traditional database concurrency control. The only blocking we allow is during
the ACID transaction that checks if a promise request can be granted, or if an
action has violated any promises; these are very quick steps, and can be coded
with resource ordering to avoid deadlock, which is a very common error in
conventional locking systems.

Promises are also analogous to integrity constraints, and many researchers
have considered how to enforce integrity in database management systems.
Techniques based on index data structures are commonly used for the simplest

156

constraints such as primary and foreign keys. A more general approach
involves modifying each query to incorporate the constraint [77]. In [73], it
showed how compile-time checks could ensure that application code
preserved constraints. Techniques like these might be useful in implementing
a promise manager which needs to check each client action for compatibility
with previously granted promises. However, there are important differences
between integrity constraints and promises. Most significantly, each integrity
constraint can be considered independently, while promises need to be
satisfiable by disjoint resources. For example, two integrity constraints
‘balance>100’ and ‘balance>50’ are both met if the balance is 120, but two
promises for ‘balance>100’ and ‘balance>50’ imply that the balance must be
kept over 150. Any promises that may violate “keeping the balance over 150”
will be rejected by the promise system. With property views, promise
satisfiability can require a graph matching algorithm, whereas integrity
satisfiability is just logical satisfiability. Also, our promises could ensure
checking of dynamic constraints on the fly among real-time business process
interactions.

7.6 Summary
We have presented a detailed design for how to engineer support for Promise
Making in a web service, to provide support for isolation of long running
activities. A prototype implementation has been done using .NET
technologies, using two scenarios to cover the different handling mechanisms
for named and anonymous resources.

Our prototype is designed to provide Promise-based isolation support for
existing applications, without requiring changes to applications, resource
managers or the schemas of the resources being managed. We implement our
Promise Manager prototype as a layer that wrapped existing application
systems and ensured that promises could be both granted and honoured. The
Promise Manager takes action requests from clients and passes them along,
unchanged, to existing applications. These applications process these requests
in the normal way and pass back their responses to the Promise Manager
which checks for promise violations before committing and returning the
response to the client.

The crucial responsibility of a Promise system is maintaining the validity of
non-expired promises. In other words, resources must be available to satisfy
every predicate that the Promise Manager is committed to maintain. To ensure
that granted promises are not violated, the Promise Manager implements a
Promise Consistency Checking mechanism where it evaluates a set of
promises against the current state of resources. We illustrate two Promise
Consistency Checking mechanisms to cover named resources and anonymous
resources. We also demonstrate the ways Promise Consistency Checking are

157

used in various operations, such as making new promises, executing actions,
and updating existing promises, which could violate the validity of promises.

In the next chapter we bring together the lessons we have learnt and the insight
we have built up through this research.

158

Chapter 8

Conclusions

Web Services and service-oriented architectures are being promoted as the
best way to build the next generation of Internet-scale distributed applications.
These applications are made by gluing together opaque and autonomous
services, possibly supplied by business partners and third party service
providers, into loosely-coupled virtual applications that can span
organisational boundaries and connect large-scale business processes.

Services are just applications that expose some of their functionality to other
applications in a particularly simple and restricted way. Services are
autonomous, opaque (and probably stateful) applications that communicate
with each other solely by exchanging asynchronous messages. This services
model is extremely simple but, unfortunately, this simplicity does not mean
that large-scale service-based applications will prove to be easy to develop in
practice or sufficiently reliable when they are deployed.

There are now a number of proposed standards for EAI and B2Bi solutions for
building service-based systems. Through such tool support and standards, it is
fairly easy to design and construct this kind of integrated system. Current
technology does not, however, make it easy to design reliable and robust
applications: ones that can deal with events that cause deviations from normal
processing paths, such as failures and concurrent activities, while still
maintaining overall, cross-organisational consistency. The main focus of our
work has been providing programming models and protocols which make it
easier to detect and avoid consistency faults in the service-based system.

In Chapter 3, in order to understand the nature of service-based systems, we
defined a realistic e-procurement scenario and listed in detail the common
problems faced by the developers which prevent them from building a reliable
and robust system. Through the analysis of the common problems, we
identified key principles the developers must consider to avoid producing the
common problems.

In Chapter 4, based on the key principles we identified in the previous chapter,
we proposed a new framework called GAT in the orchestration infrastructure.
We discussed key innovative features of GAT, such as uniform processing

159

between the normal activities and deviational events, accessing a wide range
of state aspects, and many more. Using the example taken from part of the e-
procurement case study, we illustrated how developers could use the GAT
framework to design their business requirements. We also discussed how key
features of the new framework help the developers to avoid producing
consistency faults.

In Chapter 5, we defined the critical challenges that have to be addressed when
designing a business process system to support the GAT model. These include
implementing control flow based on the evaluation of guards, the management
and distribution of events, and enforcing atomicity constraints across the
evaluation of guards and the execution of the corresponding activity. We
demonstrated that one can build a system following this approach and
illustrated our proof-of-concept GAT prototype with code examples.

The GAT model still requires the developers to write code that handles
deviations that arise from interference from concurrent activities. In Chapter 6,
we provided a sophisticated unified isolation mechanism called Promises that
is not only applicable to our GAT framework, but also to any applications that
run in the service-based world. We discussed the concept, how it works, and
how it defines a protocol.

In Chapter 7, we defined some of the implementation issues that need to be
resolved in promise-based systems such as how to ensure Promise Manager
takes overall responsibility and coordinates the activities in order to maintain
the validity of non-expired promises. We provided a proof-of-concept
prototype system showing that one can implement the promises mechanism.

For future work, we plan to build a fully general GAT engine which can take
any business descriptions and turn them into executable code, as was briefly
mentioned in Chapter 5. In this new version, rather than using a proprietary
technology such as .NET, we plan to use Web service standards for the
sending and receiving of external event messages to allow any underlying
implementations to be interoperable.

We also plan to add a feature which the engine can check for various mistakes
at compile time and also we wish to support a protocol which checks that
consistency conditions are correct at termination time.

We are also considering building a graphical user interface to make it easier
for business analysts to define a business description following the GAT
model. We also plan to include optimisations in the engine to improve the
performance of the compilation process itself and of the executable code it
produces.

160

We will implement support for Promise interactions in several service-
provision frameworks, including our own GAT engine and also some
commercial approaches. This will involve developing further implementations
for checking predicates against resources, as discussed in Chapter 7. This may
need more understanding of semantics of resources involved. Some techniques
studied in Ontology can perhaps be useful. As well, we plan to provide simple
heuristics to choose an appropriate implementation technique for each class of
resources. We also will integrate the processing of promises with other
frameworks for service-oriented messaging, including the transaction support
found in standards like WS-Transactions and WS-BusinessActivity.

Web 2.0 is the latest buzzword that has hit cyberspace. Though the exact
definition of “what it is Web 2.0” seems to be still controversial depending on
who interprets it, still it can be generally understood as referring to a next
generation of internet and web-based communities which facilitate
collaboration and sharing between users.

According to a white paper [79] published by the founder of Web 2.0 Tim
O’Reilly, there are some key principles typically appear in the Web 2.0
applications such as web blogs, social bookmarking sites (e.g. del.licio.us),
wikis, podcasts, RSS/Atom, internet forums, Web APIs, and many more.
These applications use a web as a delivery platform, allowing users to use
applications entirely through a browser. Architecture is designed to encourage
user participations which add value to the application as they use it. They
provide a rich, interactive, user-friendly interface based on Ajax or similar
frameworks often providing social networking for communities of people who
share interests and activities.

In [19], the author reports that the concept and technologies advocated by Web
2.0 to have many similarities with SOA computing. Both technologies
encourage the autonomy of services that hides all the implementation
complexity underneath and only provides open and simple access to users.
Both embrace Web services and they advocate providing a new solution by the
aggregation of existing functionality that crosses trust boundaries. The
importance of making large, back-end database driven functionality is
realized. And both Web 2.0 and SOA provide the building blocks for creating
more user-centric processes where the end users can use the system without a
steep learning curve.

Due to its lack of maturity with Web 2.0 being an early stage of the
development, there still seems to be a lot of emphasis on connecting people
and resources to form a social network among communities of people rather
than using the web for business use. For this reason, the emphasis on the
quality of service, such as robustness issues, seems to be often ignored from
many discussions of the Web 2.0.

161

However, more recently, Enterprise 2.0 [19] has emerged to embrace the
convergence of Web 2.0 technologies with web services and SOA to enable
enterprises to deploy robust, reliable, and secure business applications over the
Web. In this regard, it will be really interesting to investigate in the future how
our work on GAT and Promises will find ways to provide robustness support
for the Web 2.0 applications.

162

BIBLIOGRAPHY

[1]. Alonso, G., Abbadi, A. El., Kamath, M., Gunthor, R., Agrawal, D.,
Mohan, C. Failure handling in large scale workflow management
systems. 1994, Technical Report IBM RJ9913.

[2]. Alonso, G., Agrawal, D., Abbadi, A. El., Kamath, M., Gunthor, R.,
Mohan, C. Advanced transaction models in workflow contexts. IEEE
Conference on Data Engineering, pp 574-581, 1996.

[3]. Babara, D., Mehrotra, S., Rusinkiewicz, M. INCAs: Managing
Dynamic Workflows in Distributed Environments, Journal of
Database Management, Special Issue on Multidatabases, 7(1):5-15,
1996

[4]. BizTalk Server. http://www.microsoft.com/biztalk/
[5]. BEA Systems Inc. BEA tuxedo: The Programming Model, 1996.

http://edocs.bea.com/wle/tuxedo/main/stref.htm
[6]. Birrell, A.D., Nelson, B. J. Implementing remote procedure calls. ACM

Transaction Computer Systems, 2(1):39-59, February 1984
[7]. Borgida, A., Murata, T. Tolerating exceptions in workflows: a unified

framework for data and process. Proceedings of WACC’99, 1999.
[8]. Business Process Execution Language for Web Services (BPEL),

Version 1.0. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[9]. Cabrera, L. F., Jones, M. B., Theimer, M. Herald. Achieving a Global
Event Notification Service. In Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems (HotOS-VIII), Elmau, Germany.
IEEE Computer Society, May 2001

[10]. Carzaniga, A., Rosenblum, D.S., Wolf, A.L. Design and Evaluation
of a Wide-Area Event Notification Service. ACM Transactions on
Computer Systems, 19(3):332-383, August 2001

[11]. Casati, F., Ceri, S., Parboschi, S., Pozzi, G. Specification and
Implementation of Exceptions in Workflow Management Systems.
ACM Transactions on Database Systems, vol. 24, no. 3, pp. 405-451,
1999.

[12]. Casati, F., Pozzi, G. Modeling Exceptional Behaviors in Workflow
management Systems. Proceedings of International Conference on
Cooperative Information Systems (CoopIS’99), 1999.

[13]. Ceri, S., Grefen, P., Sanchez, G. WIDE – a distributed architecture
for workflow management. In Proceedings of RIDE’97, pp 76-81,
1997.

[14]. Chiu, D. K. K., Li, Q. ADOME-WFMS: Towards cooperative
handling of workflow exceptions. In Romaovsky, A., Dony, C.,

163

Knudsen, J. L., Tripathi, A. editors, Advances in Exception Handling
Technique, pp 271-288. Springer-Verlag, LNCS-20022, 2001.

[15]. Chiu, D. K. W., Li Q., and Karlapalem, K. A Meta Modeling
Approach for Workflow Management System Supporting Exception
Handling. Information Systems, vol. 24, no. 2, pp. 159-184, May 1999.

[16]. Chiu, D. K. W., Li, Q., and Karlapalem, K. Facilitating Exception
Handling with Recovery Techniques in ADOME Workflow
Management System. Journal of Applied Systems Studies, vol. 1, no. 3,
pp. 467-488, 2000.

[17]. Chiu, D.K.W., Li, Q., and Karlapalem, K. Web Interface-Driven
Cooperative Exception Handling in ADOME Workflow Management
System. Information Systems, vol. 26, no. 2, pp. 93-120, 2001

[18]. Dayal, U., Hsu, M., Ladin, R. Organizing Long-Running Activities
with Triggers and Transactions. Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pp. 204-214, 1990.

[19]. Dion Hinchcliffe’s Web 2.0 Blog.
http://web2.socialcomputingmagazine.com/

[20]. Encina from Transarc. http://www-306.ibm.com/software/sw-atoz/
[21]. Eswaren, K., Gary, J., Lorie, R., Traiger, I. The notions of

consistency and predicate locks in a database system. Communications
of the ACM, 19(11):624-633, 1976.

[22]. Eder, J., Liebhart, W. The Workflow Activity Model WAMO.
Proceedings of the International Conference on Cooperative
Information Systems, Vienna, Austria, 1995.

[23]. Fitzpatrick, G. Kaplan, S., Mansfield, T., Arnold, D., Segall, B.
Supporting public availability and accessibility with Elvin:
Experiences and reflections, Computer Supported Cooperative Work:
the Journal of Collaborative Computing, 2002

[24]. Fletcher A. (ed). GRID Transaction Management Research Group
Report. http://www.ggf.org/mail_archive/tm-rg/2006/06/doc00005.doc

[25]. Freemantle, P., Weerawarana, S. & Khalaf, R. Enterprise Services
Communications of the ACM 45(10), 77–82. 2002

[26]. Fung, C., Hung, P. Distributed System Recovery through Dynamic
Regeneration of Workflow Specification. The 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing,
May 18-20, 2005

[27]. Gawlick D. and Kinkade D. Varieties of Concurrency Control in
IMS/VS Fast path. IEEE Data Engineering Bulletin, 8(2):3-10, 1985.

[28]. Georgakopoulos, D., Hornick, M. A Framework for Enforceable
Specification of Extended Transaction Models and Transactional
Workflows, Journal of Intelligent and Cooperative Information
Systems, 3(3):599-617, 1994.

[29]. Georgakopoulos, D., Hornick, M. F., Sheth, A. P. An overview of
workflow management: From process modelling to workflow

164

automation infrastructure, Distributed and Parallel Databases, vol. 3,
no. 2, pp. 119–153, 1995.

[30]. Geppert, A., Tombros, D., Dittrich, K. Defining the Semantics of
Reactive Components in Event-Driven Workflow Execution with
Event Histories. Information Systems. 23(3/4):235-252, 1998.

[31]. Goodenough, J.B. Exception Handling Issues and a Proposed
Notation. Communications of the ACM, 18(12):683-696, 1975.

[32]. Gray, J. Reuter, A. Transaction Processing: Concepts and
Techniques, Morgan Kaufmann Publishers, 1993.

[33]. Greenfield, P., Fekete, A., Kuo, D., Nepal, S. Consistency for Web
Services Applications. Very Large Database Conference (VLDB),
2005

[34]. Greenfield, P., Fekete, A., Jang, J., Kuo, D. Compensation is Not
Enough. In proceedings of the 7th IEEE International Enterprise
Distributed Object Computing Conference (EDOC'03), pp. 232-239,
Brisbane, Australia, September 2003.

[35]. Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nepal, S. Isolation
Support for Service-based Applications: Third Biannual Conference on
Innovative Database Systems Research (CIDR’07), Asilomar, USA,
January 2007.

[36]. Garcia-Molina, H., Salem, K., "Sagas," ACM International
Conference on Management of Data (SIGMOD), pp. 249-259, 1987.

[37]. Hagen, C., Alonso, G. Exception Handling in Workflow
Management Systems. IEEE Transactions on Software Engineering,
26(10):943-958, October 2000.

[38]. Hagen, C., Alonso, G. Flexible Exception Handling in the OPERA
Process Support System. IEEE International Conference on
Distributed Computing Systems, pp 526-533, 1998.

[39]. Hagen, C., Alonso, G. Beyond the Black Box: Event-Based Inter-
process Communication in Process Support Systems. IEEE
International Conference on Distributed Computing Systems, pp 450-
457, 1999.

[40]. Helland, P. Data on the Outside versus Data on the Inside.
Conference on Innovative Database Systems Research (CIDR’07), pp
144-153, Asilomar, USA, January 2005.

[41]. High Performance Counter.
http://support.microsoft.com/kb/q172338/

[42]. Horswill, J., Miller, S. Designing and Programming CICS
Applications. O’Reilly & Associates, 2000.

[43]. Hwang, S. Y., Ho, S. F., and Tang, J. Mining exception instances to
facilitate workflow exception handling. Proceedings of the 6th
International Conference on Database Systems for Advanced
Applications, pp. 45-52, 1999

[44]. IBM. WebSphere MQ Integrator Broker: Introduction and Planning,
June 2002.

165

[45]. Jang, J., Fekete, A., Greenfield, P., Kuo, D. Expressiveness of
Workflow Description Languages. International Conference on Web
Services(ICWS), Las Vegas, USA, June 2003

[46]. Jang, J., Fekete, A., Greenfield, P., Nepal, S. An Event-Driven
Workflow Engine for Service-Based Business Systems. Conference on
the Enterprise Computing (EDOC), pp 233-242, Hong Kong, China,
October 2006

[47]. Jang, J., Fekete A., Greenfield, P. Delivering Promises for Web
Service Applications. Technical Report of University of Sydney
School of Information Technologies, TR-605, December 2006.

[48]. Java Messaging Service. http://java.sun.com/products/jms/
[49]. Knolmayer, G., Endl, R., Pfahrer, M. Modeling Processes and

Workflows by Business Rules. In Business Process Management, ed
W. van der Aalst, LNCS 1806, pp 16-29, 2000.

[50]. Koschel, A., Kramer, R. Applying Configurable Event-triggered
Services in Heterogeneous, Distributed Information Systems.
Engineering Federated Information Systems Workshop EFIS'99,
Kühlungsborn, Germany, pp 147-157, May 5-7, 1999.

[51]. Krishnamoorthy, V., Shan, M. Virtual transaction model for
workflow applications. International Symposium on Applied
Computing (SAC), Como, Italy, March 2000.

[52]. Kuo, D., Fekete, A., Greenfield, P., Jang, J. Towards a Framework
for Capturing Transactional Requirements of Real Workflows.
International Workshop on Cooperative Internet Computing, pp. 113-
122.

[53]. Kuo, D., Fekete, A., Greenfield, P., Jang, J. Just What Could Possibly
Go Wrong In B2B Interaction? International Computer Software and
Applications Conference(COMSAC), Dallas, USA, November 2003

[54]. Kuo D., Gaede V. and Taylor K. Using Constraints to Manage Long
Duration Interactions in Spatial Databases. CoopIS’98, pp 383-395,
1998.

[55]. Leymann, F. Supporting Business Trnasactions via Partial Backward
Recovery in Workflow Management Systems, GI-Fachtagung
Datenbanken in Buro Technik und Wissenchaft, 1995.

[56]. Luo, Z., Sheth, A., Kochut, K., Miller, J. Exception Handling in
Workflow Systems. Applied Intelligence 13(2):125-147, September
2000.

[57]. Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H. A Transaction
Model for Multidatabase Systems. International Conference on
Distributed Computing Systems.

[58]. Microsoft BizTalk. http://www.microsoft.com/biztalk/default.mspx
[59]. Microsoft CodeDOM. http://msdn2.microsoft.com/en-

us/library/y2k85ax6.aspx
[60]. Microsoft Corporation. Message Queuing in Windows XP, 2001.
[61]. Model Driven Architecture (MDA). http://www.omg.org/mda/

166

[62]. Mourani, H., Antunus, P. Exception Handling Through a Workflow.
CoopIS 2004, pp. 37-54, 2004.

[63]. MSDB .NET Framework Developer’s Guide Using CodeDOM.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconUsingCodeDOM.asp

[64]. Muller, R., Greiner, U., Rahm, E. AGENTWORK: a workflow
system supporting rule-based workflow adaptation. Data and
Knowledge Engineering, 51(2):223-256, November 2004.

[65]. Naur, P. "Revised Report on the Algorithmic Language ALGOL
60.", Communications of the ACM, Vol. 3 No.5, pp. 299-314, May
1960

[66]. Ng, A., Chen, S., Greenfield, P. An evaluation of contemporary
commercial SOAP implementations. Workshop on Software and
System Architectures, pp64-71, June 2004

[67]. OASIS UDDI Specification. http://www.uddi.org/faqs.html
[68]. Object Management Group. BPMI.org http://www.bpmi.org/
[69]. Object Management Group CORBA Notification Server

Specification 1.1
http://www.omg.org/technology/documents/formal/notification_servic
e.htm

[70]. Object Management Group. Unified Modeling Language
Specification (Version 1.3), June 1999.

[71]. Object Management Group. CORBAservices: Common Object
Services Specfications, 1997.

[72]. The Open Group. Transaction Processing Titles. The Open Group.
http://www.opengroup.org/products/publications/catalog/tp.htm

[73]. O’Neil P. The Escrow Transactional Methods. ACM TODS.
11(4):405-430, 1986

[74]. Petlz, C.
http://devresource.hp.com/drc/technical_white_papers/WSOrch/WSOr
chestration.pdf

[75]. Puustj¨arvi, J., Laine, H. WorkMan — A Transactional Workflow
Prototype. In Database and Expert Systems Applications, pp 212–221.
Springer, 2000.

[76]. Sheth, A., Georgakopoulos, D., Joosten, S., Rusinkiewicz, M.,
Scacchi, W., Wileden, J., Wolf, A. Report from the NSF Workshop on
Workflow and Process Automation in Information Systems, Technical
report, University of Georgia, UGA-CS-TR-96-003, 1996.

[77]. Stonebraker, M. Implementation of integrity constraints and views
by query modification. ACM SIGMOD Conference, pp 65-78, 1975.

[78]. Sheard T. and Stemple D. Automatic Verification of Database
Transaction Safety. ACM TODS 14(3):322-368, 1989.

[79]. Tim O’Reilly. What is Web 2.0 white paper.
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html

167

[80]. Tombros, D., Geppert, A. Building Extensible Workflow Systems
using an Event-Based Infrastructure. CAiSE’00, pp 325-339

[81]. Urban, S. D., Kambhampati, S., Dietrich, S. W., Jin, Y., Sundermier,
A. An Event Processing System for Rule-Based Component
Integration, International Conference on Enterprise Information
Systems, Portugal, pp.312-319, April, 2004,

[82]. W3C SOAP Specification. http://www.w3.org/TR/soap/
[83]. W3C WSDL Specification. http://www.w3.org/TR/wsdl
[84]. Wachter, H., Reuter, A. The ConTract Model, in Database

transaction Models for Advanced Applications (edited by A.
Elmagarmid), pp. 219-263. Reprinted in ‘Readings in Database
Systems, 3rd edition’ (edited by M. Stonebraker and J. Hellerstein),
1992.

[85]. WebMethods. MebMethods Enterprise Integrator: User’s Guide,
2002.

[86]. WebSphere MQ Workflow. http://www-
3.ibm.com/software/integration/wmqwf/

[87]. Web Service Choreography Interface (WSCI) 1.0 Specification.
http://wwws.sun.com/software/xml/developers/wsci/

[88]. Weikum, G. Extending Transaction Management to capture more
Consistency with better Performance, French Database Conference,
pp. 27-30, 1993.

[89]. WWW WS-Events Version 2.0
http://devresource.hp.com/drc/specifications/wsmf/WS-Events.pdf

[90]. Widom, J., Ceri, S. Active Database Systems: Trigger and Rules For
Advances Database Processing. Morgan Kaufmann, 1995

[91]. Wise. A. Little-JIL 1.0: Language reports. Technical Report UM-CS-
1998-024, University of Massachussets, Amherst, MA, USA, 1998.

[92]. WS-AtomicTransaction Specification.
ftp://www6.software.ibm.com/software/developer/library/WS-
AtomicTransaction.pdf

[93]. WS-BusinessActivity Specification.
ftp://www6.software.ibm.com/software/developer/library/WS-
BusinessActivity.pdf

[94]. WS-Coordination Specification.
ftp://www6.software.ibm.com/software/developer/library/WS-
Coordination.pdf

[95]. WSFL specification.
http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[96]. XLANG specification.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

[97]. Zhao, W., Moser, L., Melliar-Smith, M. A Reservation-based
Coordination Protocol for Web Services. Proceedings of ICWS’05, pp
49-56, 2005.

