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 NOMENCLATURE 
 

x,y,z 
= Left hand reference frame attached to 

wing root. Z+ up, Y+ over span, X+ chord 
u,v,w = Velocity components in x, y and z 

AR = Aspect ratio  V = Vehicle Velocity (m/s) 

S = Wing wetted area (m2) U� = Freestream velocity magnitude (m/s) 

CR = Root chord length (m) M� = Freestream Mach number 

b = Semi span length (m) Re = Reynolds number 

t/c = Thickness to Chord ratio � = Air Density (kg/m3) 

W = Vehicle Mass (kg) � = Angle of attack (deg) 

�rc = Inboard taper ratio � = Yaw angle (deg) 

�ct = Outboard taper ratio L/D = Lift to drag ratio 

�rc = Inboard sweep angle (deg) CL = Lift coefficient  

�ct = Outboard sweep angle (deg) CD = Drag coefficient 

�rc = Inboard dihedral angle (deg) CD0 = Drag coefficient at zero lift 

�ct = Outboard dihedral angle (deg) Cf = Friction coefficient 

BPInboard = Inboard break point Cm = Moment Coefficient 

BPOutboard = Outboard break point � = Poissons Ratio 

SrTr = Spar Root Thickness Taper Ratio 	 = Shear Strain 

RrTr = Rib Root Thickness Taper Ratio 
 = Stress 

WstTr = Wing Skin Thickness Tip Taper Ratio crankl = Crank Location 

WsTre = Wing Skin Thickness Edge Taper Ratio  Ns = Number of Spars 

WsRt = Wing Skin Root Thickness (m) Nr = Number of Ribs 

Rrt  = Rib Root Thickness (m) Sc = Spar Cap Root Area (m2) 

Srt  = Spar Root Thickness (m) Rc = Rib Cap Root Area (m2) 

HALE = High Altitude Long Endurance CFD = Computational Fluid Dynamics 

MALE = Medium Altitude Long Endurance FEA = Finite Element Analysis 

UAV = Unmanned Aerial Vehicle MDO = Multiple Disciplinary Optimisation 

EP = Evolutionary Programming ES = Evolutionary Strategy 

GA = Genetic Algorithm GP = Genetic Programming 

µ = A population of optimiser solutions EA = Evolutionary Algorithm 
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SUMMARY 
 

The overall objective of this research was to realise the practical application of Hierarchical 

Asynchronous Parallel Evolutionary Algorithms for Multi-objective and Multidisciplinary 

Design Optimisation (MDO) of UAV Systems using high fidelity analysis tools. The research 

looked at the assumed aerodynamics and structures of two production UAV wings and 

attempted to optimise these wings in isolation to the rest of the vehicle. The project was 

sponsored by the Asian Office of the Air Force Office of Scientific Research under contract 

number AOARD-044078. 

 

The two vehicles wings which were optimised were based upon assumptions made on the 

Northrop Grumman Global Hawk (GH), a High Altitude Long Endurance (HALE) vehicle, 

and the General Atomics Altair (Altair), Medium Altitude Long Endurance (MALE) vehicle. 

The optimisations for both vehicles were performed at cruise altitude with MTOW minus 5% 

fuel and a 2.5g load case. The GH was assumed to use NASA LRN 1015 aerofoil at the root, 

crank and tip locations with five spars and ten ribs. The Altair was assumed to use the 

NACA4415 aerofoil at all three locations with two internal spars and ten ribs. Both models 

used a parabolic variation of spar, rib and wing skin thickness as a function of span, and in the 

case of the wing skin thickness, also chord.  

 

The work was carried out by integrating the current University of Sydney designed 

Evolutionary Optimiser (HAPMOEA) with Computational Fluid Dynamics (CFD) and Finite 

Element Analysis (FEA) tools. The variable values computed by HAPMOEA were subjected 

to structural and aerodynamic analysis. The aerodynamic analysis computed the pressure 

loads using a Boeing developed Morino class panel method code named PANAIR. These 

aerodynamic results were coupled to a FEA code, MSC.Nastran® and the strain and 

displacement of the wings computed. The fitness of each wing was computed from the 

outputs of each program. 

 

In total, 48 design variables were defined to describe both the structural and aerodynamic 

properties of the wings subject to several constraints. These variables allowed for the 

alteration of the three aerofoil sections describing the root, crank and tip sections. They also 

described the internal structure of the wings allowing for variable flexibility within the wing 

box structure. These design variables were manipulated by the optimiser such that two fitness 

functions were minimised. The fitness functions were the overall mass of the simulated wing 

box structure and the inverse of the lift to drag ratio. Furthermore, six penalty functions were 



 xiii

added to further penalise genetically inferior wings and force the optimiser to not pass on 

their genetic material. 

 

The results indicate that given the initial assumptions made on all the aerodynamic and 

structural properties of the HALE and MALE wings, a reduction in mass and drag is possible 

through the use of the HAPMOEA code. The code was terminated after 300 evaluations of 

each hierarchical level due to plateau effects. These evolutionary optimisation results could be 

further refined through a gradient based optimiser if required. Even though a reduced number 

of evaluations were performed, weight and drag reductions of between 10 and 20 percent 

were easy to achieve and indicate that the wings of both vehicles can be optimised.  
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1. INTRODUCTION 
 

1.1 MOTIVATION 
 

The global scope of Unmanned Aerial Vehicle (UAV) applications in both military and 

civilian arenas is increasing rapidly. New vehicles suffer from the pressures of a right-first-

time design where all spheres of influence are addressed. This provides many complications 

as a vehicle may have to fulfil many mission requirements with little to no physical alteration. 

An example of this is the Predator A vehicle which can perform surveillance missions, and 

with the addition of hard points, can carry armaments with which the operator can attack 

spotted enemies. This right-first-time design approach has demanded a new and improved set 

of numerical tools able to optimise functions where traditional deterministic optimisers have 

failed. 

 

Aeronautics has always presented the designer with more than one objective to satisfy when 

designing a vehicle. Furthermore, the fields of interest from which these objectives originate 

normally require different simulation methods making the solution multi-modal, non-convex 

and even discontinuous. It is from this requirement that the Multidisciplinary Design 

Optimisation (MDO) approach was conceived where the different components making up the 

solution sequence are investigated in a systematic approach. This MDO approach also takes 

into account the coupling between variables and optimisation objectives. An example of this 

is wing design where the aerodynamics of the wing strongly influences the structural 

response. 

 

As modern aircraft approach the limits of current design methodologies, even a small 

reduction in drag or an increase in the lift generated at take-off can greatly influence the 

overall performance of the vehicle. The different components contributing to a vehicles 

performance is shown in Figure 1. The interactions between the components are complex and 

it is therefore clear that optimisation and MDO are necessity tools when trying to extend a 

vehicles performance into new territories.  
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A common optimisation objective function found in aerospace engineering is constructed 

through a weighted sum of the different components. A drawback to this approach is that the 

weighting needs to be decided a priori and can have a large influence on the overall operation 

of the code and final determined design. A different approach is to rather produce a surface 

constructed by the optimal values of the different components. This surface is known as a 

Pareto optimal front and represents the set of non-dominated solutions for the trade-offs 

between objectives. 

 

When MDO is applied to the external geometry of an aircraft, several analysis tools are 

required to accurately model the environment and response. The main tools used are 

Computational Fluid Dynamics (CFD) to model the airflow about the vehicle, Finite Element 

Analysis (FEA) to model the structural response and the optimisation tool itself. As modern 

computing power has increased, so the fidelity and user confidence in the different software 

packages has increased to a point where now these tools can accurately be used in conjunction 

with MDO such as in the work by Mason [3], Argarwal [4] and Thomas [5]. An industrial 

fidelity solution still requires too much computational power to effectively be incorporated in 

an MDO framework. A full three-dimensional Navier-Stokes flow solution about a high 

performance wing may take numerous hours to solve. If the optimiser were to perform many 

hundred such solutions, the total time taken to optimise the wing could extend to weeks. 

Many methods have been proposed to minimise this computational expense such as Design of 

Experiments (DOE) by Giunta [6] or approximation and variable fidelity models by Coello 

[7], Deb [8] and Kim [9].  

 
Figure 1: UAV MDO process 
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While the field of single objective optimisation has received much interest over the years and 

the tools have matured, multiple objective MDO tools are mostly in their infancy and suffer 

robustness issues as noted by Alexandrov [10]. Sobieszczanski-Sobieski [11] and 

Barholomew [12].  

 

To date, traditional deterministic optimisers have found the widest application when 

optimising aeronautical vehicles. These deterministic methods are efficient but require that 

the objective function is differentiable. If the objective function is noisy, non-differentiable or 

involves approximations, a different robust method is required. 

 

A relatively new optimisation method, Evolutionary Algorithms (EAs), models the Darwinian 

theory of evolution where populations of candidate solutions evolve in the search space 

adapting to the environmental constraints placed upon them. In nature, mutation, cross-over 

and selection are used to evolve one generation from another and it is these same mechanisms 

which are employed within EAs to evolve candidates over time. EAs have many advantages 

over traditional deterministic optimisers in that they do not require the calculation of objective 

function derivatives and are very good at finding global minima in a highly oscillatory 

environment with many local minima. EAs are easily executed on a parallel computing 

network and can be made ‘black-box’ optimisers meaning the optimiser does not require any 

problem specific knowledge to find a solution. The above advantages coupled with an EAs 

ability to tackle multi-objective problems directly gives them substantial advantages over 

traditional deterministic optimisers. 

 

Interest in EAs has grown over the last 15 years though the application of EAs for MDO has 

been limited. Although EAs have been successfully applied to many aeronautical problems 

[13-17], when coupled with MDO the number of function evaluations required before the 

global minima is found has been too large for feasible applications. A continued challenge 

within evolutionary optimisation has been in increasing the rate at which the global minima is 

found. 

 

1.2 AIM 
 

The aim of this thesis is to address the issue of High and Medium Altitude Long Endurance 

(HALE and MALE) UAV wing conceptual design from a multi-objective and MDO 

standpoint through the optimisation of two vehicle wings. Different fidelity models along 
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with parallel implementation of an evolutionary algorithm and multiple physics models are 

coupled within the MDO framework to reach a solution.  

 

1.3 OUTLINE 
 

This thesis describes the theory and application of a method for multi-objective 

multidisciplinary design of UAV wings. The method is based on a unique coupling of a robust 

evolutionary optimiser to an aero-structural solver.  

 

The evolutionary optimiser makes use of parallel computing, asynchronous evaluation and a 

hierarchy of different fidelity solvers that reduce the overall computational cost for multi-

objective and MDO problems. The evolutionary optimiser method is applicable to single and 

multi-objective, inverse or direct complex engineering problems that can be multi-modal, 

involve approximations, are non-differentiable, with convex, non-convex or discontinuous 

Pareto optimal fronts. 

 

The aero-structural solver makes use of a CFD program, PanAir and a structural program, 

MSC.Nastran®, to compute the fitness of an optimiser produced candidate wing. 

 

Chapter 2 of this thesis describes the concept of multidisciplinary design optimisation; and the 

method employed in this thesis. Chapter 3 details the Evolutionary Optimiser; Chapter 4 

details and tests the aero-structural solver for two baseline designs. Chapter 5 details the aero-

structural optimisation process and Chapter 6 presents the application of the method for two 

test cases related to aero-structural UAV wing design optimisation. Conclusions are drawn in 

Chapter 7 and possible further extensions to both the aerodynamics and structural components 

of the simulation method are detailed in Chapter 8. The appendices are listed after the 

Bibliography.  

 

 


