

MECHANISMS OF INTRAVENOUS IMMUNOGLOBULIN IN THE TREATMENT OF EXPERIMENTAL AUTOIMMUNE NEURITIS

Hsin Hsin Lin

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Medicine The University of Sydney

July 2006

i

SUMMARY

The aims of this study were to test the efficacy of immunoglobulin and its Fab and Fc fragment in the treatment of experimental autoimmune neuritis (EAN) in Lewis rats, to investigate which portion of immunoglobulin is operative in the effect of IVIg, and to clarify the possible mechanisms by which immunoglobulin exerts its action in the treatment of EAN in the rat.

EAN was induced by immunization with whole bovine peripheral nerve myelin. groups, The immunized rats were randomized into assessed clinically, electrophysiologically, and histologically, and intravenously injected with normal saline, albumin, human IVIg preparation, purified Fab or Fc fragments. The clinical disease severity was evaluated by the daily clinical grading and weight change. The electrophysiological studies included the spinal somatosensory evoked potential (S wave) and the compound muscle action potential (CMAP). The histopathological findings were analysed semiquantitatively. The treatment efficacy was compared between the normal saline and albumin groups, albumin and IVIg groups, albumin and Fab groups, albumin and Fc groups, Fab and Fc groups, Fab and IVIg groups, and Fc and IVIg groups. Methods of myelin isolation, antibody purification, and Western blot techniques were also applied.

The results revealed that treatment with Fc fragment and IVIg administered at the onset of signs of disease effectively prevented further progression of disease, shortened disease duration, and facilitated recovery from illness as shown in clinical, electrophysiological and histological parameters.

In the study in which the efficacy of the normal saline and albumin was compared, no significant difference was noted between these two groups. By day 30, 1 out of 9 rats (11%) in the normal saline group and 2 out of 9 (22%) in the albumin group completely recovered from the clinical disease.

In the study in which the efficacy of the albumin and IVIg was compared, more rats completely recovered from the clinical disease in the IVIg group (29% in the albumin group and 71% in the IVIg group) by day 30. The animals receiving IVIg treatment exhibited significantly lower clinical scores, less prolongation of S wave latencies, better maintained S wave amplitudes, less reduction of distal motor conduction velocities (MCVs), better maintained distal and proximal amplitudes of CMAPs, and lower histological grades.

In the study in which the efficacy of the albumin, Fab fragment, Fc fragment, and IVIg was compared, more rats completely recovered from the clinical disease in the Fc and IVIg groups (0% in the albumin group, 13% in the Fab group, 50% in the Fc group, and 67% in the IVIg group) by day 30. The animals receiving Fc fragment and IVIg treatment exhibited significantly lower clinical scores, less prominent weight loss, less prolongation of S wave latencies, better maintained S wave amplitudes, less reduction of distal MCVs, better maintained distal and proximal CMAP amplitudes, and lower histological grades.

DECLARATION

I hereby declare that this submission is my own work and to the best of my knowledge it contains no material previously published or written by other person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at the University of Sydney or any other educational institution. Any contribution made to the research by others, with whom I have worked at the University of Sydney, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.

All the experiment described in this thesis was performed in the Neurology laboratory of the Department of Medicine at the University of Sydney between April 2003 to December 2005.

ACKNOWLEDGEMENT

I sincerely thank Professor John Pollard for his encouragement, patience, and generous support throughout this project and for his advice and proofreading this thesis. I am grateful to Dr Judith Spies for her expertise and comment on the area studied. I would also like to express my special thanks to Dr. Min Xia Wang for her valuable support, guidance in laboratory techniques and kindly advice.

I am grateful to all colleagues in the Neurology laboratory of the University of Sydney for their assistance in laboratory techniques. I would like to thank Dr. Wei Xing Yan, Dr. Jude Taylor, and Tom Lin for their help in animal experiment techniques. The helpful advice of Toan Nguyen in the fixing and embedding nerve tissue and preparation of Toluidine Blue sections is also gratefully acknowledged.

This work was supported by the National Health and Medical Research Council of Australia.

I would like to dedicate this work to my husband and daughter, Chien Hui and Yu Ling.

SCIENTIFIC COMMUNICATIONS ARISING FROM THIS THESIS

Papers

HH Lin, JM Spies, JD Pollard

Effective treatment of experimental autoimmune neuritis with human immunoglobulin (submitted)

HH Lin, MX Wang, JM Spies, JD Pollard

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin (submitted)

Published abstracts

HH Lin, JM Spies, JD Pollard

Effective treatment of experimental autoimmune neuritis with human immunoglobulin – Journal of Neuroimmunology 2004, 154: 145

HH Lin, MX Wang, JM Spies, JD Pollard

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin – Journal of the Peripheral Nervous System 2005, 10 (Suppl): S53

HH Lin, MX Wang, JM Spies, JD Pollard

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin – Journal of the Neurological Sciences 2005, 238 (Suppl. 1): S190

Best Poster Award

Effective treatment of experimental autoimmune neuritis with human immunoglobulin IVIG in Neurological disease – 1st Asia Pacific Symposium, Singapore, November 2004

Oral presentations

Effective treatment of experimental autoimmune neuritis with human immunoglobulin 11th Asian & Oceanic Congress of Neurology, Singapore, November 2004

Poster presentations

Effective treatment of experimental autoimmune neuritis with human immunoglobulin 7th International Congress of Neuroimmunology, Venice, Italy, September 2004

Effective treatment of experimental autoimmune neuritis with human immunoglobulin

IVIG in Neurological disease – 1st Asia Pacific Symposium, Singapore, November 2004

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin

2005 Meeting of the Peripheral Nerve Society, Tuscany, Italy, July 2005

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin

18th World Congress of Neurology, Sydney, Australia, 2005 November

Abbreviations

ADCC	antibody-dependent cellular cytotoxicity
AIDP	acute inflammatory demyelinating polyradiculoneuropathy
Alb	albumin
AM	adhesion molecule
AMAN	acute motor axonal neuropathy
AMSAN	acute motor sensory axonal neuropathy
ANOVA	analysis of variance
AP	alkaline phosphatase
APC	antigen-presenting cell
AT-EAN	adoptive transfer experimental autoimmune neuritis
BCR	B-cell receptor
BNB	blood-nerve barrier
С	complement
C domain	constant domain of IgG molecule
C. jejuni	Campylobacter jejuni
CMAP	compound muscle action potential
CMV	Cytomegalovirus
CNS	central nervous system
CR	complement receptor
CSF	cerebrospinal fluid
C terminal	carboxyl terminal of IgG molecule
CV	conduction velocity
EAN	experimental autoimmune neuritis
ELISA	enzyme-linked immunosorbent assay
EM	electro-microscopy
FcγR	Fc gamma receptor
FcR	Fc receptor

Gal-C	galactocerebroside
GalNAc-GD1a	ganglioside N-acetylgalactosaminyl GD1a
GBS	Guillain-Barré syndrome
GD1a	disialoganglioside-GD1a
GD1b	disialoganglioside-GD1b
GM1	monosialoganglioside-GM1
GQ1b	tetrasialoganglioside-GQ1b
GT1a	trisialoganglioside-GT1a
H/A ratio	proximal/distal CMAP amplitude ratio
H chain	heavy chain of IgG molecule
H. influenzae	Haemophilus influenzae
HIV	human immunodeficiency virus
HLA	human leukocyte antigen
HNK	human natural killer
IC	immune complex
ICAM	intercellular adhesion molecule
IFN	interferon
Ig	immunoglobulin
IgA	immunoglobulin A
IgG	immunoglobulin G
IgM	immunoglobulin M
IL	interleukin
ITAM	immune-receptor tyrosine-based activation motif
ITIM	immune-receptor tyrosine-based inhibitory motif
ITP	idiopathic thrombocytopenic purpura
i.v.	intravenous injection
IVIg	intravenous immunoglobulin
kDa	kilo dalton
L chain	light chain of IgG molecule
LFA	lymphocyte function associated antigen
LM	light microscopy

LM1	sialosylneolactotetraosylceramide
LPS	lipopolysaccharide
mAb	monoclonal antibody
MAC	membranolytic attack complex
MAG	myelin-associated glycoprotein
MBP	myelin basic protein
MCV	motor conduction velocity
MFS	Miller Fisher syndrome
МНС	major histocompatibility complex
MIP	macrophage inflammatory protein
MMP	matrix metalloproteinases
MS	multiple sclerosis
MW	molecular weight
NK	natural killer
NMJ	neuromuscular junction
NO	nitric oxide
N/S	non significance
N terminal	amino terminal of IgG molecule
PO	peripheral myelin protein zero
P2	peripheral myelin protein 2
PBS	phosphate buffered saline
PE	plasma exchange
PNM	peripheral nerve myelin
PNS	peripheral nervous system
SC	Schwann cell
SD	standard deviation
SDS	sodium dodecyl sulfate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
SSEP	spinal somatosensory evoked potential
S wave	spinal somatosensory evoked response
TBS	Tris buffered saline

TCR	T-cell receptor
TGF	transforming growth factor
Th cell	T helper cell
TNF	tumor necrosis factor
TTBS	Tris buffered saline with Tween 20
VCAM	vascular cell adhesion molecule
V domain	variable domain of IgG molecule
VLA	very late antigen

Table of Contents

SUMMARY	ii
DECLARATION	iv
ACKNOWLEDGEMENT	v
SCIENTIFIC COMMUNICATIONS ARISING FROM THIS THI	ESISvi
Abbreviations	viii
Table of Contents	xii
Chapter 1 Literature Review	1
1.1 Components and structure of peripheral nerve	1
1.1.1 Axon	1
1.1.2 Myelin	2
1.1.2.1 Characteristics of myelin	2
1.1.2.2 Composition of myelin	4
I. Myelin proteins	4
i. Peripheral myelin protein zero (P0)	4
ii. Myelin basic protein (MBP) and peripheral myelin protein 2 (P2)	5
iii. Peripheral myelin protein 22 (PMP22)	5
iv. Myelin-associated glycoprotein (MAG)	6
II. Myelin lipids	7
1.2 Guillain-Barré syndrome (GBS)	8
1.2.1 Epidemiology and clinical features	8
1.2.2 Subtypes	9

1.2.2.1 Acut	te inflammatory demyelinating polyradiculoneuropathy (AIDP)	10
1.2.2.2 Acut	te motor axonal neuropathy (AMAN)	11
1.2.2.3 Acut	te motor sensory axonal neuropathy (AMSAN)	11
1.2.2.4 Mille	er Fisher syndrome (MFS)	11
1.2.3 Antec	edent infections and molecular mimicry	12
1.2.4 Treat	ments	13
1.2.4.1 Supp	portive treatment	14
1.2.4.2 Plas	ma exchange (PE)	15
1.2.4.3 High	n-dose intravenous immunoglobulin (IVIg)	15
1.2.4.4 Pote	ntially interesting treatments	16
1.3 Immun	opathogenesis in Guillain-Barré Syndrome	19
1.3.1 Exper	rimental autoimmune neuritis (EAN)	19
1.3.1.1 Indu	iction of EAN	19
1.3.1.2 Clini	ical features of rat EAN	20
1.3.1.3 Neur	ropathology in EAN	20
1.3.1.4 Imm	une responses in EAN	23
I. Ind	uction phase	23
i.	Antigen presentation and activation of T helper (Th) cell	23
ii.	Release of cytokines	24
iii.	Lymphocytes homing, adhesion, and migration	25
II. Effe	ector phase	26
i.	Cytotoxic T cell-mediated attack	26
ii.	Antibody-mediated attack	27
iii.	Direct nonspecific effects of macrophages	29
III. Ter	mination of the immune action: apoptosis	29
1.3.2 Humo	oral immunity	30
	tionship between anti-ganglioside antibodies and different types	of
GBS 31		
I. Acı	te inflammatory demyelinating polyradiculoneuropahty (AIDP)	31

	II.	Acute motor axonal neuropathy (AMAN)	31
	III.	Acute motor sensory axonal neuropathy (AMSAN)	31
	IV	Miller Fisher syndrome (MFS)	32
1.3	3.2.2	Pathogenic mechanisms of anti-ganglioside antibodies	32
	I.	Pathogenicity of ganglioside auto-antibodies	33
	II.	Molecular mimicry	33
	III.	Anti-ganglioside antibody-mediated pathomechanisms	34
1.3	3.3 C	ellular immunity	36
1.3	3.3.1	The role of T cells	36
	I.	Observations in EAN	36
	II.	Evidence for T-cell activation	37
	III.	T-cell responses in GBS	37
	IV	Mechanisms of T cell-mediated nerve damage	38
	V.	Synergy of T cells and antibody	39
1.3	3.3.2	The role of macrophages	39
	Ι	Macrophage recruitment into the inflamed peripheral nerve	40
	II.	Macrophages as sources of pro-inflammatory cytokines	41
	III.	Effector functions of macrophages	41
	IV	Role of macrophages during recovery	42
1.3	3.4 C	onclusions	43
1.4	Int	ravenous immunoglobulins (IVIg)	47
1.4	4.1 Iı	nmunoglobulin G (IgG)	47
1.4	4.1.1	Structure	47
1.4	4.1.2	Protease digestion	48
1.4	4.2 C	omposition, pharmacokinetics and administration of IVIg preparations	49
1.4	4.2.1	Composition of IVIg	49
1.4	4.2.2	Pharmacokinetics of IVIg	50
1.4	4.2.3	Administration of IVIg	51
1.4	4.3 In	nmunomodulatory action of IVIg for GBS	51

1.4.3.1 Effect on autoantibodies	51
1.4.3.2 Inhibition of complement binding and prevention of MAC formation	52
1.4.3.3 Modulation or blockade of FcRs on macrophages	53
1.4.3.4 Suppression of pathogenic cytokines and AMs	53
1.4.3.5 Modulation of T-cell function and antigen recognition	54
1.4.3.6 Interaction with APCs	54
1.4.3.7 Effect of substances other than antibody within IVIg preparations	54
1.4.3.8 Possible effect on remyelination	54
1.5 IgG Fc receptors (FcγRs)	55
1.5.1 FcyR polymorphisms and functions	55
1.5.2 FcyR polymorphisms and the pathogenesis in GBS	57
1.6 Aims of this study	59
Chapter 2 Materials and Methods	60
Chapter 2 Materials and Methods 2.1 Experimental design	60 60
•	60
2.1 Experimental design	60
 2.1 Experimental design 2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 	60 60 60
 2.1 Experimental design 2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 2.1.2 Experiment 2: comparison of treatment with albumin and IVIg 	60 60 60
 2.1 Experimental design 2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 2.1.2 Experiment 2: comparison of treatment with albumin and IVIg 2.1.3 Experiment 3: comparison of treatment with albumin, Fab fragments, F 	60 60 60 c
 2.1 Experimental design 2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 2.1.2 Experiment 2: comparison of treatment with albumin and IVIg 2.1.3 Experiment 3: comparison of treatment with albumin, Fab fragments, F fragments, and IVIg 	60 60 60 c 61
 2.1 Experimental design 2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 2.1.2 Experiment 2: comparison of treatment with albumin and IVIg 2.1.3 Experiment 3: comparison of treatment with albumin, Fab fragments, F fragments, and IVIg 2.2 Experimental autoimmune neuritis (EAN) 	60 60 60 7c 61 62
 2.1 Experimental design 2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 2.1.2 Experiment 2: comparison of treatment with albumin and IVIg 2.1.3 Experiment 3: comparison of treatment with albumin, Fab fragments, F fragments, and IVIg 2.2 Experimental autoimmune neuritis (EAN) 2.2.1 Experimental animals 	60 60 60 61 62 62

2.2.5 Clinical score	63
2.2.6 Electrophysiologic studies	64
2.2.6.1 Sciatic nerve motor studies	64
2.2.6.2 Spinal somatosensory evoked potentials (SSEPs)	64
2.2.7 Histological techniques	65
2.2.8 Morphometric analysis	65
2.2.9 Statistical analysis	66
2.3 IVIg fractions	67
2.3.1 Human IVIg and albumin	67
2.3.2 Preparation of Fab and Fc fragments	67
2.3.2.1 Equipment	67
2.3.2.2 Reagents	68
2.3.2.3 Buffers	69
2.3.2.4 Procedures	70
I. Cleavage of IgG molecule with papain	70
II. Affinity chromatography	70
III. Dialysis and concentration of protein	71
IV. Size exclusion chromatography (gel filtration)	72
V. Protein assay	73
VI. SDS-PAGE (SDS-polyacrylamide gel electrophoresis) (L	aemmli, 1970)73
VII. Transfer and immunoblotting	74
VIII. Sterile filtration	76
Chapter 3 Results	77
3.1 Treatment of rat EAN with normal saline and albumi	n 77
3.1.1 Clinical scores and weight changes	77
3.1.2 Electrophysiological changes	78

3.1.2.1 Somatosensory evoked potentials (SSEPs)	78
3.1.2.2 Motor conduction velocity (MCV) and compound muscle action	
potential (CMAP) amplitude	78
3.2 Treatment of rat EAN with albumin and IVIg	86
3.2.1 Clinical scores and weight changes	86
3.2.2 Electrophysiological changes	87
3.2.2.1 Somatosensory evoked potentials (SSEPs)	87
3.2.2.2 Motor conduction velocity (MCV) and compound muscle action	
potential (CMAP) amplitude	87
3.2.3 Histological changes	88
3.3 Treatment of rat EAN with albumin, Fab fragments, Fc	
fragments, and IVIg	103
3.3.1 Clinical scores and weight changes	103
3.3.2 Electrophysiological changes	104
3.3.2.1 Somatosensory evoked potentials (SSEPs)	104
3.3.2.2 Motor conduction velocity (MCV) and compound muscle action	
potential (CMAP) amplitude	105
3.3.3 Histological changes	107
Chapter 4 Discussion	128
4.1 Treatment of rat EAN with normal saline and albumin	128
4.2 Treatment of rat EAN with albumin and IVIg	129
4.2.1 Comparisons with other studies	129
4.2.2 Comparisons with other treatments	131
4.2.3 Activity of human Ig in animal models	132

4.2.4 Effectiveness of human IVIg in the treatment of rat EAN	132
4.3 Treatment of rat EAN with albumin, Fab fragments, Fc	
fragments, and IVIg	136
4.3.1 Studies concerning the Fab and Fc-mediated mechanisms of IVIg	136
4.3.1.1 Studies supporting Fab-mediated mechanism of IVIg	136
4.3.1.2 Studies supporting Fc-mediated mechanism of IVIg	138
4.3.2 IVIg and FcγR	140
4.3.2.1 Inhibition of phagocytosis via blockade of FcyRs on macrophages	and
effector cells	140
4.3.2.2 Inhibiton of phagocytosis via inhibitory FcyR	140
4.3.2.3 Increased catabolism of IgG antibody	141
4.3.3 Purification of Fab and Fc fragments	142
4.3.3.1 Affinity chromatography	142
4.3.3.2 Purity of Fab and Fc fragments	144
4.3.3.3 Change of Fab and Fc biological features after digestion and	
purification	146
4.3.4 Effectiveness of Fc fragment and IVIg in the treatment of rat EAN	147
Conclusions	151

Bibliography

153