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Abstract

The glass-transition traverses continuously from liquid to solid behaviour, yet the role

of structure in this large and gradual dynamic transition is poorly understood. This

thesis presents a theoretical study of the relationship between structure and dynamics

in two-dimensional glass-forming alloys, and provides new tools and real-space insight

into the relationship at a microscopic level.

The work is divided into two parts. Part I is concerned with the role of structure

in the appearance of spatially heterogeneous dynamics in a supercooled glass-forming

liquid. The isoconfigurational ensemble method is introduced as a general tool for

analysing the effect that a configuration has on the subsequent particle motion, and

the dynamic propensity is presented as the aspect of structural relaxation that can

be directly related to microscopic variations in the structure. As the temperature

is reduced, the spatial distribution of dynamic propensity becomes increasingly het-

erogeneous. This provides the first direct evidence that the development of spatially

heterogeneous dynamics in a fragile glass-former is related to spatial variations in

the structure. The individual particle motion also changes from Gaussian to non-

Gaussian as the temperature is reduced, i.e. the configuration expresses its character

more and more intermittently.

The ability of several common measures of structure and a measure of structural

‘looseness’ to predict the spatial distribution of dynamic propensity are then tested.

While the local coordination environment, local potential energy, and local free vol-

ume show some correlation with propensity, they are unable to predict its spatial

variation. Simple coarse-graining does not help either. These results cast doubt

on the microscopic basis of theories of the glass transition that are based purely

on concepts of free volume or local potential energy. In sharp contrast, a dynamic

measure of structural ‘looseness’ - an isoconfigurational single-particle Debye-Waller

(DW) factor - is able to predict the spatial distribution of propensity in the super-

cooled liquid. This provides the first microscopic evidence for previous correlations



found between short- and long-time dynamics in supercooled liquids. The spatial dis-

tribution of the DW factor changes rapidly in the supercooled liquid and suggests a

picture of structural relaxation that is inconsistent with simple defect diffusion. Over-

all, the work presented in Part I provides a real-space description of the transition

from structure-independent to structure-dependent dynamics, that is complementary

to the configuration-space description provided by the energy landscape picture of

the glass transition.

In Part II, an investigation is presented into the effect of varying the interparticle

potential on the phase behaviour of the binary soft-disc model. This represents a dif-

ferent approach to studying the role of structure in glass-formation, and suggests many

interesting directions for future work. The structural and dynamic properties of six

different systems are characterised, and some comparisons are made between them. A

wide range of alloy-like structures are formed, including substitutionally ordered crys-

tals, amorphous solids, and multiphase materials. Approximate phase diagrams show

that glass-formation generally occurs between competing higher symmetry structures.

This work identifies two new glass-forming systems with effective chemical ordering

and substantially different short- and medium-range structure compared to the glass-

former studied in Part I. These represent ideal candidates for extending the study

presented in Part I. There also appears to be a close connection between quasicrystal-

and glass-formation in 2D via random-tiling like structures. This may help explain

the experimental observation that quasicrystals sometimes vitrify on heating. The

alignment of asymmetric unit cells is found to be the rate-limiting step in the crys-

tal nucleation and growth of a substitutionally ordered crystal, and another system

shows amorphous-crystal coexistence and appears highly stable to complete phase

separation.

The generality of these results and their implications for theoretical descriptions

of the glass transition are also discussed.
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Chapter 1

Introduction

We introduce the study of amorphous solids and glass-formation and emphasise the

importance of a structural underpinning for any complete description of this transi-

tion. The aim of the thesis is also established in relation to recent experimental work

on glass-formers and amorphous alloys.

1.1 What is the Role of Structure in the Glass

Transition?

Glasses and the glass transition represent, in the much quoted estimate of a Nobel

laureate,“perhaps the deepest and most interesting unsolved problem in condensed

matter physics” [1]. Glass-forming materials have also become an integral part of our

lives, from plastics to building facades, food storage, health science and the rewritable

CD; and the recent discovery of bulk metallic glasses looks set to greatly increase the

range of applications. However, a detailed understanding of the connection between

structure and dynamics in these materials, and in glass-formers in general, is lacking.

We believe that this knowledge is necessary for any complete theoretical description of

the glass transition, and will likely aid in the engineering of such materials for specific

applications. As Cahn [2] has argued, it is generally the ability to make a strong

link between microscopic structure and physical properties that essentially defines an

established field of material science.

It has been known for centuries that if a liquid is quenched sufficiently fast, it

can be cooled below its melting/freezing point Tm without crystallising. Below Tm,

the fluid is called a supercooled liquid. With continued cooling its viscosity increases
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rapidly until eventually viscous flow ceases on the timescale of a typical experiment.

At lower temperatures the structural relaxation time can be years or longer. The

glassy state is a true solid, as the shattering of a mirror demonstrates. However, de-

spite its rigidity, mechanical strength and elastic properties, the microscopic structure

of a glass lacks any form of long-range order, thus distinguishing it from crystalline

solids. For this reason, the term amorphous solid is often used synonymously with

glass. The glassy state is sometimes incorrectly assumed to have the same structure

as a liquid. While there is no development of long-range order, there are some changes

in local and medium range ordering which, as we demonstrate in this thesis, become

significant as the glass-forming liquid is supercooled.

The continuous transition from the liquid to solid state associated with the glass

transition presents a number of puzzles with respect to the role of structure: (i)

how does structure change to cause a continuous transition from fluid liquid to rigid

solid? (ii) what is responsible for the rigidity of the glassy state? and (iii) how do

preferred higher-symmetry structures influence the properties of the glass-former and

its stability to crystallisation? While the precise structural details will vary from

material to material, the broad phenomenology common to all glass-formers suggests

that some aspects of the relationship between structure and dynamics are universal.

Experimental probes of structure in the supercooled liquid and glassy states gen-

erally return information on the average structure about particles in the form of the

structure factor - from X-ray and neutron scattering - and the pair distribution func-

tion that can be derived from it. As these show only small changes, most experimental

work on glasses has focused on studying the large changes in dynamic properties and

unusual dynamic behaviour associated with the glass transition, and on finding cor-

relations between various dynamic properties of glass-forming liquids. It has been

largely left to theoreticians to address the role of structure in glass-formation, often

involving the study of simple model systems. In this thesis we use molecular dynamics

to investigate the relationship between dynamics and structure in a family of binary

soft-disc mixtures that form 2D analogues of many of the structures observed in al-

loys. We discuss our choice of model further in Section 1.4. Interestingly, the latest

generation of experiments using modern neutron and synchrotron X-ray sources, to-

gether with a number of new theoretical methods, hold promise for bridging the gap

between experimental and theoretical studies of structure in disordered materials. For

example, new radiation sources have improved the resolution of experimental data,
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and techniques such as reverse Monte Carlo [3, 4], empirical potential structure re-

finement [5] and experimentally constrained molecular relaxation [6], are now able to

provide a pool of candidate structures consistent with the data. While none of these

structures can ever be proven to be ‘correct’, they can help our understanding of the

structure itself, and of the relationships between local structure and other physical

properties. See, for example Sheng et al. [7], for a recent application of reverse Monte

Carlo to the study of structure in metallic glasses.

In the next section we review some aspects of the phenomenology of supercooled

liquids and glasses that will be important for later discussion. In particular, we em-

phasise the discovery of spatially heterogeneous dynamics which, as we demonstrate

in Part I, offers insight into the microscopic relationship between structure and dy-

namics. More extensive reviews and discussion of other aspects of supercooled liquids

and glasses can be found in references [1, 8–15]. Various theoretical models of the

glass transition are discussed in other chapters.

1.2 Phenomenology of Supercooled Liquids and

Glasses

Far from being unusual, glasses are ubiquitous in the world around us and can be

found in many structural and technological applications that exploit both the solid-

like and fluid-like nature of glasses, as well as their optical, electrical and magnetic

properties. These applications include building materials, household utensils, objects

of art, photoconductors, optical fibres, computer memory elements, the rewritable

CD and solar cells. Rawson [8] and Zallen [9] provide many more examples. Metallic

glasses have greatly increased the range of possible applications due to their excep-

tional mechanical strength, magnetism in ferromagnetic alloys, atomic smoothness,

and ability to be easily molded into complex shapes. Their properties and applications

are discussed in more detail in Chapter 4. Many insects, micro-organisms and seeds

also protect themselves against harsh environmental conditions by loading their cells

with a glass-forming liquid or encasing themselves in a glassy coat of sugars. Research

is also being carried out to investigate the glassy properties of carbohydrates for the

preservation of food and protein-derived drugs [17, 18]. In addition to metal alloys,

glass-formers include oxide glasses (e.g. SiO2), polymeric glasses (e.g. polystyrene),

simple molecular organic glasses (e.g. glycerol), hydrogen-bonded fluids (e.g. water)
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Figure 1.1: Arrhenius plots of viscosities scaled by Tg, the temperature at which the
viscosity η = 1013 P, showing strong and fragile extremes of supercooled liquid behaviour.
The inset shows that, in general, strong liquids have small heat capacity jumps at Tg,
whereas fragile liquids have larger steps. Hydrogen bonding enhances the drop in the heat
capacity at Tg. Reproduced from Angell [16].

and ionic glasses (e.g. ZnCl2). Of these, alloys are among the structurally simplest.

Despite their variety, glass-formers all share much common phenomenology.

All glass-formers reach the solid state via a continuous transition from the liquid,

with an accompanying large increase in their viscosity η, sometimes over a relatively

narrow temperature range. In Figure 1.1 the increase in viscosity as the glass tran-

sition temperature Tg is approached has been compared for a variety of different

glass-formers. Here Tg is defined as the temperature at which the viscosity reaches

1013 Poise. For some glass-formers, for example covalent network glasses, the increase

follows an Arrhenius law as indicated by the straight line. These are generally referred

to as strong liquids. However, for many glass-formers, the increase in viscosity near

Tg shows a strongly non-Arrhenius behaviour as indicated by the non-linear increase

in viscosity. These are commonly referred to as fragile liquids. The deviation from
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Arrhenius behaviour is often quantified by a ‘fragility’ parameter, that is large for

fragile glass-formers and small for strong glass-formers.

The transition into the glassy state is accompanied by a rapid change in ther-

modynamic derivatives such as the isobaric heat capacity Cp = (δH/δT )P , where H

is the enthalpy. This change occurs over a small temperature interval, resulting in

a well-defined step in Cp on cooling at constant pressure, as shown in the inset to

Figure 1.1. These rounded discontinuities are the most apparent and commonly used

signatures of the glass transition in the laboratory. The drop in Cp - to within a few

percent of the heat capacity of the crystal - on cooling through the glass transition

is due to the loss of some configurational degrees of freedom on the experimental

timescale. Simple molecular and ionic liquids, which have short range structures

that are quite sensitive to temperature changes, exhibit large Cp jumps at the glass

transition. In contrast, network glass-formers, which form tetrahedrally coordinated

three-dimensional networks that undergo very little structural change around Tg, have

very small Cp changes. These differences are also visible in the inset of Figure 1.1.

One consequence of this dynamic transition is that the density of the final amor-

phous state depends upon the quench rate. Figure 1.2 shows the specific volume

(volume per unit mass) V as a function of temperature T for a typical liquid. Upon

cooling from a high temperature, the liquid may crystallize at the melting/freezing

temperature Tm. This is a first order transition which results in an abrupt discontinu-

ity in V . A liquid that manages to pass Tm without crystallising, typically by cooling

at a faster rate, is called a supercooled liquid. Although this is strictly a metastable

state, supercooled liquids may be stable for years and in the absence of crystal nu-

clei can be regarded as equilibrium states since their thermodynamic properties are

reproducible and independent of thermal history.

As the supercooled liquid is cooled to lower temperatures, its viscosity and density

rapidly increase, and the molecules that comprise it slow down. Eventually, the time

required for relaxation to the equilibrium configuration becomes comparable to or

exceeds the experimental timescale, i.e. the inverse of the cooling rate. At this stage,

the liquid falls out of metastable equilibrium and, at a temperature not much lower

than this, behaves like a rigid solid (the glassy state). This change from fluid-like to

solid-like properties occurs continuously over a temperature interval called the glass

transition region. The glass transition temperature Tg lies somewhere in this region

and can be defined operationally in a number of ways, one common definition being
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Figure 1.2: A schematic representation of the specific volume V as a function of tem-
perature T on cooling for a typical glass-forming liquid. If the quench rate is sufficiently
high, the liquid can be supercooled below the freezing point into a glassy state which de-
pends on the cooling rate. Glass 1 is prepared at a faster cooling rate than Glass 2. The
glass-transition temperature Tg decreases as the cooling rate decreases.

the temperature at which the average relaxation time reaches 102 s. Both Tg and the

width of the transition region depend on the cooling rate. Smaller cooling rates allow

the liquid to stay in metastable equilibrium until lower temperatures, and higher

quench rates cause the transition region to widen. This is particularly prominent

in computer simulations of glasses where the cooling rate is typically greater than

1010 K s−1. The glass transition, at least as observed in the laboratory, is not a

thermodynamic phase transition, but rather a kinetic event.

Besides the thermodynamic signatures of the glass transition and the rapidly in-

creasing relaxation times as Tg is approached, there are dramatic changes in the

manner in which supercooled glass-forming liquids relax towards equilibrium follow-

ing a perturbation such as a change in temperature, pressure or applied external

field. In the following discussion we consider only small perturbations such that the

response of the system is independent of the sign and magnitude of the perturbation,

i.e. linear relaxation.

The return of an observable, such as the dielectric modulus, to its average value
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following a perturbation can be monitored by a relaxation function X. At tem-

peratures above and just below Tm, X often displays simple exponential behaviour

(X = exp[−t/τ ]), characteristic of processes dominated by a single activation energy.

However, as Tg is approached many supercooled liquids exhibit departures from this

simple exponential decay. Such non-exponential relaxation can be reasonably well

described by a stretched exponential function of the form X = Aexp[−(t/τ)γ ], where

0 < γ < 1, indicating a distribution of relaxation times in the system. There is

a rough correlation between the value of the exponent γ and the degree of depar-

ture from Arrhenius temperature dependence of relaxation times, i.e. the degree of

fragility. Strong liquids typically have γ values close to 1, while fragile liquids tend to

have exponents in the range 0.3–0.5. An extensive compilation of γ values and degrees

of fragility for about 70 glass-forming systems is provided by Böhmer et al. [19].

The above discussion has focused on the main relaxation process which gives rise

to viscous flow in supercooled liquids. This is generally referred to in the literature

as the primary or α relaxation. A number of faster relaxation processes have also

been identified. The only one that we will refer to in the present work is the fast

β process. A variety of experiments - neutron scattering [20–22], depolarised light

scattering [23–25] and nuclear magnetic resonance [26] - as well as molecular dynamics

simulations [27, 28], have now clearly shown that for several diverse glass-forming

liquids there exists a fast relaxation process on the picosecond timescale. In contrast

to the α process, the fast β relaxation has an Arrhenius temperature dependence.

Figure 1.3 shows the decay of the incoherent scattering function for ortho-terphenyl

as measured by neutron scattering. The relaxation curves broaden with decreasing

temperature until first a shoulder and then a plateau appears at intermediate times.

Both the width and height of the plateau increase with decreasing temperature. The

initial decay to the plateau is associated with the fast β process and the second decay

from the plateau is associated with the α process.

Measurements of incoherent scattering functions by dynamic light scattering [29,

30], inelastic neutron scattering [31] and neutron spin-echo [32] experiments are often

carried out at wavevectors at, or close to, the main peak of the static structure

factor. This is because the most intense peak in the structure factor kmax provides a

measure of the lengthscale for the dominant short-range ordering in the system. The

decay of density correlation functions, such as the incoherent scattering function, at

wavevectors k close to kmax therefore provides information on the main structural
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Figure 1.3: Temperature dependence of the intermediate scattering function for ortho-
terphenyl as observed by incoherent neutron scattering. Note the appearance of a two-
step relaxation function with the first decay occuring on the picosecond timescale. Figure
reproduced from Kiebel et al. [22].

relaxation process in the system.

Crystallisation is a serious problem for a supercooled liquid on its way to the glassy

state. In order to avoid crystallisation, the cooling rate must exceed the maximum

rate of crystal nucleation and growth, Rc. This rate has a maximum because below

Tm there are two competing effects. Initially, the increasing thermodynamic driving

force towards crystal nucleation, due to the growing free energy difference between the

supercooled liquid and the crystal, causes the rate to increase. At lower temperatures,

however, the increase in viscosity causes diffusional processes to slow down and the

rate to decrease. Below Tg, the rate of structural relaxation is so small that crystal

nucleation and growth are not a problem. It is therefore only in the intermediate

temperature region below and near Tm that the risk of crystallisation is high. Theories

of the rates of crystal nucleation and growth and their implications for glass-formation

are provided by Turnbull et al. [33–35] and Uhlmann [36]. These studies show that if

Tg lies closer to Tm, then the maximum in Rc also moves towards Tm with a decrease

in both the height and width of this peak. Thus, crystallisation can be avoided with

a lower cooling rate. This change is due to the narrower temperature interval over

which the viscosity increases, and the fact that the viscosity near Tm is often greater

if Tg is close to Tm. Good glass-formers like ortho-terphenyl and SiO2, which require

only slow cooling rates ( < 0.1 K s−1) to be quenched into the glassy state, generally

have a ratio of Tg/Tm ≈ 0.7; the latter also has a high viscosity on the order of 106 P
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at Tm [37,38]. In addition, mixtures usually have a greater glass-forming ability than

the individual pure components because of the depression in Tm. For example, metal

alloys are easier to quench into the glassy state than elemental metals. For alloys, the

glass-forming ability is greatest near the eutectic composition where the gap between

Tm and Tg is smallest.

An intriguing aspect of the glass transition is that the slowing down, and associ-

ated increase in the complexity of the dynamic behaviour, occurs without an obvious

structural cause. X-ray and neutron scattering studies of supercooled liquids gener-

ally show only subtle changes in local packing associated with a viscosity change of

12 orders of magnitude [39, 40]. In the next section we introduce a recent discovery

that may help to address this question.

1.2.1 Spatially Heterogeneous Dynamics

Liquids do not become glasses homogeneously. Tammann [41] suggested as much as

far back as 1933, and with the accumulation of data from experiments and simulations

of dynamic heterogeneities in supercooled liquids [11,14,42,43], we can now state the

situation more explicitly. The transition to rigidity involves the appearance of slowly

relaxing domains whose dimensions and lifetimes increase with supercooling. In this

section we briefly review some of the evidence from simulations and experiments for

the existence of spatially heterogeneous dynamics.

An example of spatially heterogeneous dynamics in a supercooled soft-disc liquid

is shown in Figure 1.4. The particle displacement vectors have been plotted over a

timescale that is an order of magnitude longer than the timescale for α-relaxation. For

the 2D mixture that these displacements are taken from, this corresponds to a time

five orders of magnitude longer than the average time between particle collisions. The

particle displacements are shown as arrows connecting the initial and final positions

of each particle. It is clear that some of the particles have moved long distances,

while there are large domains of particles that have hardly moved at all. If this was

a normal liquid the displacements over this timescale would be similar for all the

particles.

Simulations of many different model systems have found direct evidence for such

spatially heterogeneous dynamics on intermediate timescales. Foley and Harrow-

ell [45] studied the two-dimensional facilitated kinetic Ising model and found that the

relaxation rates were spatially correlated, i.e. that slow spins tend to form ‘islands’
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Figure 1.4: The particle displacements, indicated as vectors joining the initial to final
particle positions, for particles in a binary soft-disc mixture over a timescale that is an
order of magnitude longer than that characteristic of the main α-relaxation. Reproduced
from Perera and Harrowell [44].

on the background formed by fast spins; and Kob et al. [46] found that ‘mobile’ parti-

cles in a supercooled 3D Lennard-Jones liquid tend to form clusters whose sizes grow

with decreasing temperature. The purely repulsive 2D model, for which the particle

displacements are plotted in Figure 1.4, has also been found to have spatially hetero-

geneous dynamics [44], and similar dynamics has been observed in a number of other

2D [47, 48] and 3D [49, 50] models. Perera and Harrowell [51] have also shown that

the assumption of dynamic heterogeneity in a diffusing defect model naturally leads

to many of the dynamic properties associated with supercooled liquids, including

strong and fragile behavior, two-step relaxation processes, nonlinear relaxation fol-

lowing temperature jumps, spatially correlated kinetics, and non-Gaussian behavior

of incoherent processes.

While experiments on supercooled liquids cannot, in general, directly access such

structural information, there are now a wide range of experiments that support the ex-

istence of heterogeneous dynamics in fragile glass-formers. These include such diverse

techniques as NMR [52], solvation dynamics [53], and optical [54] and dielectric dy-

namic hole burning [55]. A number of other experimental results have been attributed
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to the existence of spatially heterogeneous dynamics. These include the breakdown

of scaling between translational and rotational diffusion at low temperature [56], the

appearance of non-Fickian or dispersive transport [57], and the dependence of Tg on

film thickness in free-standing polymer films [58].

The first experimental technique to actually measure a dynamic correlation length

- and thus provide strong experimental evidence for spatially heterogeneous dynamics

as opposed to purely heterogeneous dynamics - was a 4D NMR spin diffusion technique

introduced by Tracht et al. [59] in 1998. It uses a specially developed technique to

selectively magnetise domains of slow particles. This magnetisation then spreads

quickly from particle to particle via proton spin diffusion on a timescale that is fast

with respect to the particle motion until eventually the magnetisation is spread evenly

among slow and fast domains. By selectively measuring how long it takes for the

magnetisation in the slow domains to decay and knowing how fast the magnetisation

travels, it is possible to calculate a lengthscale for the slow domains. Lengthscales for

a range of materials including glycerol, ortho-terphenyl and poly(vinyl acetate) have

been measured using this technique. Typical lengthscales obtained are of the order

of 1.0–3.7 nm [60].

With these and many other experiments and simulations carried out over the past

ten years, there is now indisputable evidence that spatially heterogenous dynamics

is a general feature of fragile supercooled liquids. In a sense, this inhomogenous

slowing down answers the question of how the transition from liquid to solid can be

continuous, and provides an explanation for many of the unusual dynamic properties

of supercooled liquids. However, this phenomenological account of the glass transi-

tion neatly sidesteps an important question, namely what is responsible for the slow

domains? It is an intriguing notion that it could be due to some property of the

structure. While experiments are only able to detect subtle changes in the average

structure on cooling, the large spatial variation in dynamics appears to contain much

information about what aspects of structure are important for dynamics. This is

discussed further in Part I.

In the next section we contrast the picture of dynamics in supercooled liquids with

that of normal liquids and crystalline solids. We emphasise the transition from mean-

field to fluctuation-dominated behaviour during glass-formation and the challenges

this poses for any complete theoretical description of glass-formation.
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1.3 On the Applicability of Mean-Field Theories

near the Glass Transition

Self diffusion in a simple liquid above its melting point is generally well described by

mean-field theory, whether one looks at the problem via kinetic theory or a generalised

Langevin with memory [61] (the latter including the mode coupling treatments of the

memory function [62]). These theories are mean-field in the sense that the dynamics

are determined by the average structure of the liquid. In contrast, diffusion in solids

is dominated by rare fluctuations in the structure - point defects, dislocations and

grain boundaries. As happens whenever kinetics are subject to rare events (nucle-

ation phenomena or fracture, for example), the associated theory treats the relevant

fluctuations explicitly rather than trust to the dubious accuracy of the wings of dis-

tributions. This is certainly the case in the extensive theoretical literature concerning

the defect and grain-boundary mediated transport in solids [63].

The continuous transition from fluid to solid associated with the glass transition

traverses between these two extremes. This imposes serious challenges for any com-

plete theoretical description of the glass transition. Can a single theory describe

a range of behaviour that at one extreme is well predicted by averages and at the

other extreme depends upon rare events? The conceptual transition from mean-

field to fluctuation-dominated is perhaps not immediately evident from the litera-

ture. The major theoretical treatment of the glass transition - the mode coupling

theory (MCT) [62] - incorporates the average liquid structure through vertex func-

tions. This qualifies the MCT as a mean-field theory. The term ‘mean-field’, however,

does require some qualification. A hierarchy of generalised Langevin theories can be

imagined in which the neglect of fluctuations (the ‘mean-field’ approximation) occurs

at increasingly higher orders of correlations. Szamel [64] has recently presented a

mode coupling theory of relaxation in a simple lattice model of a glass in which the

factorisation is applied to one order higher in correlation to that of the standard ap-

proximation. This theory captures scaling laws previously thought to be obtainable

only from an explicit treatment of the rare fluctuations responsible for dynamics [65].

In spite of its mean-field character, the evidence that the mode coupling theory

can provide a quantitative treatment of diffusion and structural relaxation leading up

to the glass transition is impressive [62]. The more recent success of mode coupling

theory in providing a unified treatment of colloidal glasses and associating gels is quite
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remarkable [66]. The problem is that the transition itself - the ideal glass transition

- is an artifact of the mathematical structure of the self-consistency introduced by

the factorisation approximation. From one point of view, this is an attractive feature

of the model - the fact that arrest enters naturally without having to burden the

treatment with all the physical correlations that actually stabilise the solid. On the

question of the actual physical origins of rigidity of the glass, however, the mode cou-

pling theory is silent. It is necessary to look elsewhere to understand the relationship

between structure and dynamics in the liquid as this rigid state is approached.

1.4 This Work

We study the relationship between structure and dynamics in 2D glass-forming alloys

by approaching the problem from two directions: (i) by directly examining the spatial

distribution of structure and structure-determined dynamics in a binary soft-disc

mixture; and (ii), by varying one of the interaction parameters in the model and

studying what effect this has on the structure, dynamics and phase behaviour of the

system. In Part I we take the former approach, developing new techniques to explore

the structural origin of the spatially heterogeneous dynamics that has been widely

observed in supercooled liquids. In particular, we consider a binary soft-disc mixture

whose glass-forming ability has previously been studied in detail [44, 67]. Then, in

Part II, we explore the parameter space of the binary soft-disc model. We study the

effect of varying both the interparticle potential and the composition, and show that

this simple model is able to form a wide variety of phases, including substitutionally

ordered crystals, a range of structurally different glasses, and several phase separated

systems. Each has interesting properties (some of which we explore further) and

some comparisons are made between the different systems. Finally, in Chapter 8,

we discuss how further insight may come from comparing the relationship between

structure and dynamics in the initial model with the glass-formers discovered in Part

II.

We choose to study the binary soft-disc model for several reasons. The purely

repulsive potentials make it one of the simplest models in which real particle dynamics

can be studied, and the 2D nature of the model allows for direct visual analysis and

comparison of the spatial distribution of both structural and dynamic properties. As

already mentioned, the system that we study in Part I - which also forms the starting
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point of the exploration of parameter space in Part II - has previously been studied

in detail and found to reproduce the full range of phenomenology of glass-formation.

While there are some differences between the structure and dynamics of 2D and 3D

systems, we note that there are also very large variations among different 3D glass-

formers. Ultimately, there is insight to be gained from a complete description of any

glass-former. If this is not achievable in relatively simple 2D systems then one must

ask what hope is there for understanding more complex glass-formers. We therefore

expect that the physical insight gained from studying binary soft-disc mixtures will

be useful for improving our understanding of real 3D alloys and glass-formers.



Part I

The Relationship Between

Structure and Dynamics in a

Supercooled Liquid
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Introduction to Part I

As explained in Section 1.2.1, the transition to rigidity in glass-forming liquids in-

volves the appearance of spatially heterogeneous dynamics. Using this as a handle,

we examine the relationship between structure and dynamics in a supercooled glass-

forming liquid. In particular, we address the following two questions: (i) Is there

something in the structure that is responsible for dynamics that can vary by orders of

magnitude from one region of the sample to another at Tg? and (ii) Can the mobile

regions, as identified by anharmonic excitations or higher propensities, be associated

with particular types of local structure, and if so what is the structural signature of

these ‘soft’ spots?

There are at least two ways to analyse the spatial distribution of particle dy-

namics. The approach that we take is to consider the correlation between the initial

particle configuration and the subsequent dynamics. The second, which has received

considerable attention, is to consider the correlation between the mobile particles

themselves. For completeness sake, and to provide further motivation for the work

presented in this part, we provide a brief review of the latter approach.

Particle motion in dense liquids is, to a large extent, entrained so that particles

follow along in each other’s path. In 1998, Donati et al. [68] showed that displacements

in a supercooled liquid exhibited a strong tendency to locally align. The dynamics

associated with such correlations are generally quite complex. To appreciate this,

consider, first, the simple scenario of a diffusing vacancy. The linear character of this

pattern of displacements reflects a rough local conservation of free volume, that is,

the volume left free by the motion of a particle is more likely to be filled by a single

particle rather than the collective rearrangement of a number of particles. There

is also a correspondence between spatial structure and temporal sequence so that

one end of the resulting string of displacements represents the first step while the

other end represents the last step. Ritort and Sollich [65] have recently reviewed the

predictions of a number of diffusing defect models.

The diffusing defect picture, presented above, ignores the possibility that the

propensity for motion lies distributed in a configuration and that relaxation is not

a simple consequence of the transport of a rare fluctuation (even one more complex

than a simple vacancy) but rather a sequence of unlocking events which add up, over

the observation interval, to a linear path. Vogel et al. [69] have presented simulation
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evidence of just this latter process. Delaye and Limoge [70], in an interesting study,

considered the different fates of vacancies created in a model glass. The resulting

behaviour was divided into three groups: those defects that remained stable and

stationary, those that relaxed by propagation (the diffusing defects) and a third group

that relaxed by being, essentially, ‘absorbed’ back into the surrounding disordered

medium through a local collective rearrangement. The presence of this last process

distinguishes the amorphous material from the crystalline.

In terms of a simple model that can capture this more complex collective be-

haviour, the class of facilitated spin flip models introduced by Fredrickson and An-

dersen [71] and extended by Jäckle [72] is particularly useful. The term ‘facilitated’

refers to the idea that the local state of a system can influence the kinetics of adjacent

regions. To date, models of facilitated dynamics have all relied on the introduction

of explicit kinetic constraints. Recently, Garraghan and Chandler [73] have proposed

that this idea of ‘facilitation’ represents a general aspect of dense amorphous phases.

The interesting unanswered question here is whether the implied general mapping

from systems of interacting particles to systems governed by kinetic constraints ex-

ists. Central to this question is the need to understand the degree to which a particle

configuration determines the propensity of particles to subsequently move. This is

precisely the subject of Chapter 2.

The analysis of the correlation between particle displacements sketched here pro-

vides (i) a compact summary of the information presented by dynamic heterogeneities,

(ii) an explanation of some observed features of relaxation functions and transport be-

haviour in terms of microscopic dynamics, and (iii) the prospect of identifying kinetic

rules that govern relaxation in disordered systems. This approach, however, does not

explain what it is about a configuration that permits motion in one region but not

in another, nor how this distribution varies with temperature, composition, particle

interactions, etc. One could imagine, for example, studying transport in crystalline

solids via this description, amassing a considerable amount of phenomenological infor-

mation about the dynamic heterogeneities and yet never arriving at a clear structural

(and, hence, predictive) picture of vacancies and interstitials. For this reason, we

would like to directly address the question of the relationship between structure and

dynamics, which we investigate in detail in Chapter 3.
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Dynamic Propensity

In this chapter we tackle the question of the degree to which a given configuration

determines the subsequent particle dynamics. We begin by demonstrating that not all

of the dynamics in the supercooled liquid can be related to structure. Through the

introduction of the isoconfigurational ensemble method and the dynamic propensity,

we are able to provide explicit proof that something in the structure is responsible for

the development of spatially heterogeneous dynamics in this system. In particular,

we find that as the liquid is cooled, the structure-determined propensity for particle

motion becomes increasingly heterogeneous, both in magnitude and in spatial extent.

We characterise the variation of the propensity distribution with temperature and con-

figuration, study its convergence properties, and demonstrate that additional insight

into glass-formation can be obtained via the analysis of other correlations within the

isoconfigurational ensemble.

2.1 Introduction

Over the last ten years, dynamic heterogeneity has become recognised as a general

phenomenological feature of glass formation [11]. The existence of these long-lived

kinetic fluctuations has been useful in rationalising some puzzling aspects of kinetics

in supercooled liquids. These include non-Fickian diffusion [74, 75], deviations from

classical nucleation theory [76], and the breakdown of the scaling between transla-

tional diffusion, on the one hand; and, on the other, rotational diffusion [77], shear

viscosity [57], and structural relaxation [78]. Helpful as these developments are, they

do not address the fundamental question of the relationship between structure and
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kinetics in the supercooled liquid.

The spatial distribution of particle mobilities, however, does appear to offer a

considerable amount of information on this very point. A number of papers have

considered the local connection between dynamics and structure, the latter being

characterised using topology [44], potential energy [69, 79], and free volume [80].

While most have reported some correlation, none have established a correlation of

sufficient strength to indicate a causal link, i.e. that the local kinetics was determined

by the selected aspect of the local structure. In a recent review [11], Ediger observed,

“At present, it is an article of faith that something in the structure is responsible

for dynamics that can vary by orders of magnitude from one region of the sample to

another at Tg.”

Instead of trying to directly address the question ‘What aspect of the structure

gives rise to the observed dynamic heterogeneity?’, we will answer the related ques-

tion, ‘What aspect of the dynamic heterogeneity actually arises from the structure?’

It is logically necessary to answer this question before attempting the first. As we

show, it is also possible to answer the latter question without having to first identify

the correct measure of the particle structure relevant to determining the subsequent

dynamics.

The degree to which the liquid dynamics reflects a persistent influence of a con-

figuration is related to the idea, introduced in Section 1.3, of the crossover between

liquid-like and solid-like behaviour on cooling. One measure of this transition from

the liquid to solid-like descriptions is the crossover temperature proposed by Gold-

stein in 1969 [81]. The crossover temperature marks the transition from the high-

temperature liquid - where momentum transfer (as binary collisions and, collectively,

in hydrodynamic modes) plays a dominant role - to the low-temperature liquid in

which dynamics is said [82] to become ‘landscape dominated’, the landscape referring

to the potential energy surface over the configuration space. The configuration space,

in other words, has begun to break up into kinetically isolated domains.

We answer the question - ‘what aspect of particle dynamics in a liquid is deter-

mined by the initial configuration?’ - with the construction of a new measure of

structure-related dynamics, which we term the dynamic propensity. The isoconfig-

urational method used to calculate the dynamic propensity, and the analysis of the

resulting ensemble of runs, are the subject of this chapter.

The rest of this chapter is structured as follows. In Section 2.2 we describe the
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model glass-former and algorithms used in this work and introduce the general isocon-

figurational ensemble method. We begin, in Section 2.3, by testing the reproducibility

of the dynamics, and demonstrate that not all of it can have a structural origin. Then

we introduce the dynamic propensity as a measure of structure-dependent particle

dynamics, and show that this new dynamic quantity is also spatially heterogeneous.

The effect of varying configuration and temperature is examined, and the conver-

gence properties of the propensity are also discussed. In Section 2.4 we show that

the variance in individual particle motion from run to run represents a new piece of

dynamic information, and discuss the consequences of this ‘intermittent’ particle mo-

tion. And in Section 2.5 we demonstrate how the isoconfigurational ensemble method

can be used to obtain insight into the process of relaxation by looking at correlations

between particle motion within the same run and within different runs of the isocon-

figurational ensemble. Finally, we summarise the key results of this work in Section

2.6, discuss their implications, and suggest some areas for further study.

2.2 Model and Algorithms

We consider a two-dimensional (2D) glass-forming liquid consisting of an equimolar

binary mixture of particles interacting via purely repulsive potentials of the form

uab(r) = ǫ
[σab

r

]12

(2.1)

where σ12 = 1.0 × σ11 and σ22 = 1.4 × σ11. All units quoted will be reduced so that

σ11 = ǫ = m = 1.0 where m is the mass of both types of particle. Specifically, the

reduced unit of time is given by τ = σ11

√
m/ǫ.

A total ofN = 1024 particles were enclosed in a square box with periodic boundary

conditions. The molecular dynamics simulations were carried out at constant num-

ber of particles, pressure and temperature using the Nosé-Poincaré-Andersen (NPA)

algorithm developed by Laird et al. [83, 84]. See Appendix A for further details of

this method. The use of constant NPT constaints allows one to compare systems

with different composition and particle interactions, as we do in Part II. The pressure

(P = 13.5), was chosen so that our results would be directly comparable to those

of Weeks et al. [85] for the single-component soft-disk system. The ‘masses’ of the

Anderson piston and Nosé thermostat were Qv = 0.0002 and Qs = 1000, respectively,

for all temperatures. The equations of motion were integrated using a generalised
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Figure 2.1: An equilibrated particle configuration at T = 0.4. The large and small
particles are indicated by filled and open circles, respectively.

leapfrog algorithm [84], and are provided for 2D simulations in Appendix A. The

time step employed was 0.05τ for T > 1, and 0.01τ for T ≤ 1. For argon units

of η = 120kB, m = 6.6 × 10−23g and σ11 = 3.4Å, these time steps correspond to

approximately 10 and 20 femtoseconds respectively.

The structural, dynamic and thermodynamic properties of this model glass-forming

liquid have been characterised by Perera and Harrowell [44, 67]. For reference, the

onset of the plateau region in the mean-squared displacement, and in the incoherent

scattering functions, occurs near T = 0.5. The structural relaxation time and dif-

fusion constants also have non-Arrhenius temperature dependence below T = 0.55.

Together, these dynamic changes suggest the presence of at least two relaxation pro-

cesses for T ≤ 0.5.

All configurations investigated were equilibrated configurations taken from the

study in ref. [67] and re-equilibrated with the NPA Hamiltonian. They represent

amorphous stationary states in the sense that these states are stable over time scales

at least an order of magnitude longer than the structural relaxation time and show

no development of long-range correlations associated with established ordered phases.

While the supercooled liquid state is strictly metastable, we will refer to such config-

urations as ‘equilibrated’.

In this work we analyse correlations among the set of N -particle trajectories that
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pass through a given configuration. To generate this isoconfigurational ensemble of

runs at a given temperature T , we start with a configuration that has been equi-

librated at T and for each run randomly assign the initial particle momenta from

the appropriate Maxwell-Boltzmann distribution. A representative configuration at

T = 0.4 is shown in Figure 2.1.

2.3 The Spatial Distribution of Dynamic

Propensity

We examine the reproducibility of the dynamic heterogeneities in the supercooled

liquid. Figure 2.2 shows the particle displacement vectors following three different

runs starting from the same configuration - plotted in Figure 2.1 - of an equilibrated

liquid. The three runs differ only in the random assignment of particle momenta from

the Maxwell-Boltzmann distribution at the appropriate temperature. Each run was

carried out at a pressure P = 13.5 and a temperature T = 0.4, which is below the

onset-temperature of two-step relaxation.

Each plot in Figure 2.2 exhibits the now familiar features of dynamics in deeply

supercooled liquids: large variations in the particle displacements, clear clustering

of the ‘slow’ particles, and aggregation of the more mobile particles, sometimes in

‘string-like’ features. What is striking is that the spatial arrangement of particle

x xx

y

x

y

Figure 2.2: The particle displacements, indicated as vectors joining the initial to final
particle positions, resulting from three MD runs of 1000τ at T = 0.4. All runs made use
of the same initial configuration and differed only in the assignment of initial momenta to
particles.
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displacements differs markedly from plot to plot. While some particles exhibit a

mobility that is reproducible from run to run, the dynamics of other particles varies

substantially. We conclude that not all the dynamics can be determined by the initial

configuration.

The variation in an individual particle’s motion from run to run provides addi-

tional insight into the relationship between structure and dynamics. We explore this

further in Section 2.4.

Now consider the possibility that there is no correlation at all between an ini-

tial configuration and the subsequent particle dynamics. In this case, each particle’s

squared displacement, averaged over many trajectories with the same initial config-

uration, would be the same as that of every other particle of the same species. This

conclusion arises from the fact that the only point of connection between the different

trajectories is the common initial configuration. It follows, therefore, that the magni-

tude of variation between the trajectory-averaged squared displacements of different

particles of the same species is sufficient to establish the degree to which the initial

configuration determines the dynamics.

To this end, we introduce the isoconfigurational ensemble consisting of Nruns sep-

arate simulation runs over a fixed time interval, all starting from the same particle

configuration but with momenta randomly assigned from the Maxwell-Boltzmann

distribution at the appropriate temperature. (Note that Doliwa and Heuer [86] have

used multiple trajectories from a single configuration at different temperatures to

establish the Arrhenius character of transitions between metabasins.) Let fi(∆r) be

the ensemble distribution of the displacement of particle i over the fixed time interval.

These distributions represent the ensemble characterisation of each particle’s capacity

for movement from a specific initial configuration. They are also invariant to time

reversal. We shall refer to the second moment of fi(∆r), i.e. the ensemble mean of the

squared displacement of particle i, < ∆r2
i >ic, as the dynamic propensity of particle i

in the given initial configuration. The expression < · · · >ic indicates an average over

the isoconfigurational ensemble. We stress that ‘propensity’ as defined here should

not be associated with the actual equilibrium distribution of trajectories that pass

through a point in configuration space, since in constructing the propensity we have

not taken into account the correlation between a particle’s momentum and either the

potential energy of that particle or the force acting on that particle.

To compare propensities from different temperatures T , we set the run time for a
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Figure 2.3: The distribution of small-particle propensities calculated using 1000 runs
for single configurations at T = 0.4 and 1.0. Note the increase in width with increasing
supercooling.

given trajectory to be 1.5 times the structural relaxation time τe (τe is defined in terms

of the intermediate incoherent scattering function F (k, t) such that F (kmax, τe) = 1/e,

where kmax is the wavevector of the Bragg peak and e = 2.7183, the base of the nat-

ural logarithm). This run interval was chosen to maximise the observed dynamic

heterogeneities. If one was to choose run times much shorter or longer the dynamic

heterogeneities would be unobservable - since they represent only a transient phe-

nomenon - and all discussion of their relationship to structure would be obsolete.

Figure 2.3 shows the distribution of propensities for the small particles for con-

figurations at T = 1.0 and 0.4, averaging over 1000 runs at each temperature. The

width of the distribution increases substantially on cooling. As argued above, this

increase in the range of the propensity distribution on cooling can only be the result

of the increasing degree to which particle configurations determine the subsequent

dynamics. With this result we can now replace the ‘act of faith’ of ref. [11] with the

explicit demonstration of the heterogeneity of particle propensities, a feature that is

completely determined by the initial configuration.

To visualise the spatial distribution of the propensity, it is useful to first remove

the additional complexity of the configuration and use contour plots that contain no

information about the location of individual particles. Any suitable graphing program

can be used to generate a contour plot from regularly spaced data. In our case the
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Figure 2.4: The spatial distribution of propensities at T = 0.4, calculated using 100 runs.

data points are generally located at irregularly spaced coordinates, namely the particle

coordinates, so it is necessary to interpolate them. We found the modified version of

Shepard’s method [87] that is built into Origin [88] a useful algorithm for obtaining

good fits to the data without introducing erroneous peaks and valleys. Interpolation

parameters of 6 and 6 worked well. The occasional inconsistencies introduced by the

interpolation near the periodic boundaries could be removed by fitting to a set of

coordinates containing additional periodic images.

The spatial distribution of dynamic propensity for the same T = 0.4 configuration

used in Figure 2.2 is mapped in Figure 2.4. Note the substantial spatial heterogeneity.

There is a large sea of low propensity populated by islands of high propensity. On

comparison of the propensity map with the individual trajectory maps, we find that

the domains of high propensity are generally more compact than the often ‘string-like’

clusters of large displacements observed in individual trajectories. This suggests that

the occasional string-like motion that is observed does not generally have a structural

origin but rather must be the result of how mobility is transferred through the system.

The comparison between particle trajectories and the propensity map also demon-

strates that, as expected, motion occurs predominantly in regions of high propensity.

We therefore conclude that the development of spatially heterogeneous dynamics in
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this glass-former is due to the increasing influence of microscopic variations in struc-

ture on the motion of particles in the supercooled liquid.

An interesting question that arises is whether or not the local peaks in propensity

represent ‘defects’. We stress that the peaks indicate those particles with the highest

average mobility over the runs examined, and may therefore not be the initiators

of motion but rather some essential path through which relaxation is propagated.

The propensity can provide only limited insight into the actual process of relaxation

since it is the overlap of the individual relaxation processes. Other analyses of the

isoconfigurational ensemble, however, can provide some insight into relaxation, e.g.

the analysis of correlations between particle motion within the same run and within

different runs. This is discussed further in Section 2.5.

2.3.1 The Increasing Heterogeneity upon Cooling

Because we are effectively probing single configurations, there will be variation in the

spatial structure and degree of heterogeneity from run to run. We therefore study the

effect of varying both the configuration and the temperature on the shape and spatial

variation of the resulting propensity distribution. We generated ten configurations

each at T = 0.4, 0.46, 0.5, 0.55, 0.6, 0.8 and 1 and calculated the propensities. The

propensities were averaged over 100 runs, and the configurations were separated by

75τe to ensure that they were significantly different from each other. The run time

was kept constant at 1.5τe for all temperatures. As a result, the run time ranged from

1000τ at T = 0.4 to 1.155τ at T = 1.

Table 2.1: Characteristic times for the 2D glass-former. τe is the structural relaxation
time and t∗ is the time at which the non-Gaussian parameter A(t) (see text) reaches a
maximum. The run times used to calculate the propensity have also been listed.

T τe run time t∗

0.4 673 1000 200
0.46 51.7 76.8 65
0.5 13.6 20.2 32
0.55 4.31 6.4 16
0.6 2.91 4.32 8.5
0.8 1.19 1.77 3.5
1 0.775 1.155 1.4
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Figure 2.5: The mean, range, standard deviation (stdev) and the ratio stdev/mean for
the propensity distributions calculated for ten configurations each at T = 0.4, 0.46, 0.5,
0.6, 0.8, and 1. At each temperature, the configurations were separated by 75τe from each
other, and the propensities were averaged over 100 runs of 1.5τe. Note the different y-axis
scales.

We note that any choice of time scaling as a function of temperature is somewhat

arbitrary given that different characteristic times can be chosen that scale differently

with temperature. Another characteristic time that has previously been used [46] to

study dynamic heterogeneities is the time t∗ at which the non-Gaussian parameter

A(t) reaches a maximum (see Section 5.3.3 for the definition of A(t)). In Table 2.1 we

list t∗, τe and the run time used to define the propensity as a function of temperature

for our model glass-former, i.e. 1.5τe. The values of τe were taken from ref. [44] and

t∗ was calculated from data in ref. [89]. Note that t∗ and τe scale quite differently.

From a similar value at T = 1, t∗ initially increases more rapidly with cooling. Later,

τe increases more rapidly, until at T = 0.4 τe > 3t∗. We note that at T = 0.4 the run

time of 1000τ is several times longer than t∗; therefore the maximum heterogeneity

in the propensity at T = 0.4 may well be larger than what we calculate here.

In Figure 2.5, we compare the mean, range, standard deviation (stdev) and the

ratio stdev/mean for the propensity distribution calculated for each configuration.

The most obvious change is a rapid increase in the range and standard deviation

below T = 0.5, with the mean showing a smaller increase at low temperature. These

changes are accompanied by an increase in the variation between different isothermal

configurations, however a clear trend with change in temperature can still be distin-

guished. We conclude that below T = 0.5, there is a strong increase in the effect that
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Figure 2.6: The propensity distributions over small and large particles for selected con-
figurations at (a) T = 1 and (b) T = 0.4. The propensities were averaged over 100 runs of
1.5τe.

the structure has on the dynamics, and also in the effect that fluctuations in struc-

ture, both within and between different configurations, have on dynamics. In other

words, the particle motion becomes increasingly sensitive to differences in structure.

In Figure 2.6 we plot the propensity distributions separately for small and large

particles for individual configurations at T = 0.4 and 1. At T = 1 the distributions

are very narrow and quite similar for both particle species, but as the temperature

decreases the distributions become more spread out and the small and large particle

distributions become less similar. The distributions still overlap, but on average the

small particles have higher propensity than the large ones. This association between

species type and propensity is discussed further in Section 3.2.1.

A change in temperature or configuration also affects the spatial variation of

propensity. The propensity maps for four configurations at T = 0.4 are shown in

Figure 2.7. As expected, the distribution of high and low propensity regions varies

significantly from plot to plot. Particles that have low propensity in one configuration

have high propensity in the next and vice versa, suggesting that sufficient change

in structure has taken place to affect large changes in the spatial distribution of

propensity. In Section 3.18 we present further analysis and discussion of the timescale

over which structural changes affect the spatial distribution of mobility. Also note that

although the mean propensity varies between configurations, i.e. some configurations

are more mobile than others, their propensity distributions all have a high degree of

spatial heterogeneity.

For comparison, Figure 2.8 shows the spatial distribution of propensity for selected
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Figure 2.7: The spatial distribution of propensities at T = 0.4 for four configurations
separated by 75τe. The propensities were averaged over 100 runs, and the scale is the same
as in Figure 2.4.

configurations at T = 0.46, 0.5, 0.6 and 1. In order to observe the spatial variation at

these higher temperatures, we have used different propensity scales than in Figures

2.4 and 2.7. Although the propensity range is similar for T = 0.5–1, there is a clear

increase in spatial variation as the temperature is reduced (mainly due to an increase

in the population of the extremes of the distribution), with further large increases at

T = 0.46 and again at T = 0.4 (both of these mainly due to an increase in the width

of the distribution).

There also appears to be an increase in the clustering of particles with similar

mobility below T = 1. To better quantify this, we consider the aggregation of high
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Figure 2.8: The spatial distribution of propensity for selected configurations at (a) T =
0.46, (b) T = 0.5, (c) T = 0.6, and (d) T = 1; where the propensities were averaged over
100 runs. Note the different propensity scales.

propensity particles using a cluster analysis that is described in general terms in

Section 3.2.2. Basically, for each configuration we select the 10% of particles with

the highest propensities and assign them to clusters depending on whether they are

a nearest neighbour to another particle already in a cluster. When all particles have

been assigned to clusters, we count the total number of clusters and the variance

in cluster size, and use these two quantities to characterise the degree of spatial

clustering. Figure 2.9 shows the results of the cluster analysis for ten configurations

each at T = 0.4, 0.5, 0.6, 0.8 and 1. While there is considerable variation in the

clustering of high propensity particles between different isothermal configurations and

overlap between data points from different temperatures, it is clear that, on average,

particles with high propensity cluster together more as the temperature is reduced.
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Figure 2.9: Cluster measures of spatial heterogeneity for particles with propensities in
the top 10%. Data points are shown individually for ten configurations each at T = 0.4,
0.5, 0.6, 0.8 and 1. Statistics obtained using random values are shown for comparison. The
dotted line represents the maximum variance possible for a given number of clusters (see
text for more details).

In summary, we have established three ways in which the spatial heterogeneity

of propensity increases upon cooling: (i) through a gradual increase in the clustering

of particles with similar propensity, (ii) through an increase in the population of the

extremes of the propensity distribution, and (iii) through a rapid increase in the range

of the propensity distribution below T = 0.5. We also observed increasing variation

between different isothermal configurations as the temperature was reduced. We

therefore conclude that as the binary soft-disc liquid is cooled, variations in structure

become increasingly important for the dynamic properties of the glass-former.

2.3.2 Statistical Convergence and Reliability

The need for the propensity as a measure of structure-related dynamics is directly

due to the large difference in particle displacements from run to run, as discussed

above. Given this high variability in particle motion, it is sensible to consider how

the size of the isoconfigurational ensemble affects the propensity distribution and

the comparisons that can meaningfully be made. In this section we investigate the

uncertainty in the propensity distribution as a function of the number of runs, and

discuss the practical consequences of our results.

The uncertainty in the propensity (mean squared displacement) of particle i is
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Figure 2.10: Convergence of the spatial distribution of propensity as a function of the
number of runs for a configuration at T = 0.4. The propensities were calculated using (a)
50 runs and (b) 1000 runs. Note that there is little difference in the coarse grained spatial
variation between the two plots.

measured by the standard error σi/
√
Nruns, where Nruns is the total number of runs

and σi =
√
< ∆r 4

i >ic −(< ∆r 2
i >ic)2 is the standard deviation in the squared dis-

placement distribution for particle i. Hence, the standard error decreases as a function

of 1/
√
Nruns, and the number of runs needed to further reduce the uncertainty in-

creases rapidly. While this means that it takes many runs to reduce the uncertainty

in a single propensity - for example after 200 runs some particles at T = 0.4 still have

relative uncertainties of 60% - we find that both the shape of the total propensity

distribution and its coarse-grained spatial variation converge far more rapidly.

In Figure 2.10 we compare the spatial distribution of propensity averaged over

ensembles of 50 and 1000 runs for the same configuration at T = 0.4. Although there

are minor differences between the two plots, it is clear that the coarse grained spatial

variation has already converged by 50 runs, i.e. it is possible to distinguish all the

regions of high, low and intermediate propensity after only 50 runs. We also find that

it takes only 100 runs, at both T = 0.4 and T = 1, for the standard deviation of

the total propensity distribution to converge to within 2% of the extrapolated limit

at infinite number of runs. We therefore conclude that ensembles of 100 runs are

large enough to determine the spatial distribution of propensity with a high degree

of confidence.

To investigate the convergence of the individual propensities in more detail, we

define the relative uncertainty in the propensity at the 95% confidence level and
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Figure 2.11: Convergence of the relative uncertainty in the propensity R (see Eq. 2.2)
as a function of the total number of runs Nruns for configurations at (a) T = 0.4 and (b)
T = 1. The error bars indicate the range of R values at a given number of runs, and the
curve joins the mean values of R, where the average is taken over particles.

study its convergence as the number of runs increases. The P% confidence interval is

defined as the interval in which there is a P% chance of finding the true population

mean. To calculate the confidence interval for the propensity one should strictly use

the two-sided Student’s t-distribution [90] since the population mean and variance

are unknown. However, in practice we find that the sample size, i.e. the number

of runs, is sufficiently large that we can use the normal distribution instead (note

that Student’s t-distribution converges to the normal distribution as the sample size

increases). The relative uncertainty Ri in the propensity of a particle i at the 95%

confidence level as a function of the number of runs is therefore given by

Ri(Nruns) = 1.649
σi√
Nruns

/ < ∆r 2
i >ic (2.2)

where < ∆r 2
i >ic is the propensity of particle i and Nruns is the number of runs used

to calculate the propensity. The normal and t-distributions can also be used to test

whether the difference in propensity between two particles is significant or not.

In Figure 2.11, we plot the mean uncertainty < R > (averaged over particles)

as a function of the total number of runs for configurations at T = 0.4 and T = 1.

The error bars indicate the range of Ri values at a given Nruns. At T = 0.4 [plot

(a)], we find that while < R > has decreased to about 0.2 (i.e. 20%) after 200

runs, the maximum value decreases much slower, e.g. there are still some particles
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with Ri = 0.6. By 1000 runs < R > has decreased to 0.1, but the largest relative

uncertainties are still around 25%. In comparison, the uncertainty decreases much

faster at T = 1 [plot (b)]. After 200 runs < R >= 0.12 and the maximum uncertainty

is about 20%, and by 1000 runs < R >= 0.06 and the maximum is around 8%.

We therefore conclude that it is difficult to compare propensities that are similar in

magnitude. How similar depends on how many runs one is willing to wait for, e.g. at

T = 0.4 it will be rather impractical to compare propensities that are within 25% of

each other. The reason why the spatial distribution of propensity converges far more

rapidly is that the difference between high and low propensities, i.e. the range of the

propensity distribution, is generally much larger than the mean. In fact, as shown

in Figure 2.5(a), the range increases rapidly relative to the mean below T = 0.5. If

this rate is faster than the rate at which the uncertainty in the propensity increases,

which it appears to be, then the spatial distribution of propensity should converge

even more rapidly at lower temperatures. It is an attractive idea that this may make

propensity calculations practical at deeper supercoolings than we have studied here.

2.4 The Increasing Variance of the Individual

Particle Motion

The variation in an individual particle’s mobility between runs not only affects the

convergence properties of the propensity, but represents another area where analysis

of the isoconfigurational ensemble can provide new insight, this time into the manner

in which the configuration influences the dynamics. To illustrate what we mean by

this it is useful to consider that the same spatial distribution of propensity could

be produced in many different ways. For example, a particle could move the same

amount in every run, or its mobility could vary strongly from run to run, without

necessarily changing its mean-squared displacement, i.e. its propensity. The shape

of the displacement distribution therefore contains additional information about how

the structure affects dynamics.

The increasing variation in particle mobility between runs, which we investigate

here, indicates that there is considerable randomness or noise in the manner in which

the configuration influences the dynamics at low temperature. We argue that this

could be interpreted in terms of stick-release events. While there is a higher prob-

ability of a release event occurring in a high propensity region, both high and low
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propensity regions are capable of sticking the particles, i.e. not allowing them to move

in a given run. In other words, the configuration expresses its character intermittently.

The results in this section provide: (i) the reason why the propensity is needed to

characterise the effect of structure on dynamics; (ii) physical information on the pro-

cess by which the configuration influences the dynamics; and (iii) a view of dynamics

that is consistent with recent experiments describing the intermittency of relaxation

events in colloidal clays.

2.4.1 Variance versus Propensity

We quantify the variation in the ith particle’s mobility between different runs using the

standard deviation, σi, of the propensity, where σi =
√
< ∆r 4

i >ic −(< ∆r 2
i >ic)2.

As shown in Figure 2.12, σi at T = 0.4 is significantly larger relative to the propensity

< ∆r 2
i >ic than one would have expected from a continuum random walk in 2D. The

inset shows the same results at T = 1.

To understand the significance of this finding we provide some background infor-

mation. Freely diffusing particles in a liquid can be modelled as a continuum random
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Figure 2.12: A scatter plot of the standard deviation σi (calculated over 1000 runs at
T = 0.4) of the squared displacement of each particle plotted against its propensity. The
inset shows the same data obtained for a configuration at T = 1. Note the difference in
scale. The dashed line is the expected relation for a 2D random walk where each point
along the line can be interpreted as arising from a different value of the diffusion constant.
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Figure 2.13: A scatter plot of the standard deviation σi of the squared displacement of
each particle plotted against its propensity for ten configurations each at (a) T = 0.4, (b)
T = 0.46, and T = 0.5. All quantities have been calculated using ensembles of 100 runs,
and the solid grey line is the expected relation for a 2D random walk where each point along
the line can be interpreted as arising from a different value of the diffusion constant.

walk. After a large number of independent steps in the random walk, i.e. after a time

that is long compared to the mean collision time in the liquid, the particle’s position

will be given by a probability distribution that is equal to a normal distribution [91].

The isoconfigurational distribution of particle displacements for each particle in the

2D binary mixture should therefore be given by a normal distribution if the particle

motion can be described by simple diffusion. In 2D the standard deviation and mean

of a normal distribution are equal. Therefore each point along the line of slope equal

to one in Figure 2.12 can be interpreted as arising from a different value of the diffu-

sion constant. Hence, our results indicate that at low temperature the heterogeneity

in the propensity cannot be described simply by a scenario in which particles are

undergoing simple diffusion, but with different diffusion constants.
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We investigate the relationship between the variability in particle motion, as mea-

sured by σi, and the propensity as a function of temperature and configuration. Figure

2.13 shows the relationship between σi and the particle propensity for ten configura-

tions each at T = 0.4, T = 0.46 and T = 0.5. All quantities were calculated using

ensembles of 100 runs. The data points at T = 0.4 show greater scatter compared to

the results in Figure 2.12, partly due to the greater convergence of the variance and

propensity in Figure 2.12 where these quantities were calculated over 1000 runs, and

partly due to some variation from configuration to configuration. There is, however,

a clear increase in variability below T = 0.5. At T = 0.5 the majority of data points

are still clustered around the expected relation for a 2D random walk. The change in

the variability of particle motion is therefore a strong characteristic of the change in

dynamics as the liquid is supercooled.

We conclude that the increasingly large variation, upon supercooling, in an indi-

vidual particle’s movement from run to run represents an important piece of kinetic

information, distinct from the propensities and their spatial distribution.

2.4.2 The Single Particle Non-Gaussian Parameter

The large variances of the individual particles are typically associated with highly

asymmetric fi(∆r) distributions, with a peak at a low value of ∆r and a long tail

extending to large displacements, as shown in Figure 2.14 for a representative particle

at T = 0.4.

This asymmetry can be quantified as a deviation from a Gaussian form through

the use of a non-Gaussian parameter αi for particle i given by

αi =
< ∆r 4

i >ic

2(< ∆r 2
i >ic)2

− 1 (2.3)

The quantity αi equals zero for a Gaussian distribution. The αi distributions for

configurations at T = 1.0 and 0.4 are plotted in Figure 2.15. While all the individ-

ual fi(∆r) distributions are close to Gaussian at high temperature, the supercooled

sample exhibits a broad distribution of αi values with most particles exhibiting a

significantly non-Gaussian distribution of displacements.

Note that this non-Gaussian parameter is quite distinct from that discussed pre-

viously in the context of supercooled liquids [74, 92]. The αi introduced here refers

to the variety of displacements achieved by a single particle over the ensemble of
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Figure 2.14: The distribution of particle displacements, fi(∆r), over an isoconfigurational
ensemble of 100 runs for a single particle at T = 0.4. Note the highly asymmetric and non-
Gaussian shape of the distribution.
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Figure 2.15: The distribution of single particle non-Gaussian parameters αi (see Eq. 2.3)
for configurations at T = 0.4 and 1.0, calculated using ensembles of 1000 runs.

trajectories, as opposed to the variety of displacements achieved by different particles

in a single trajectory. In the language of the jump model of particle motion [93],

the propensity characterises the average waiting time and jump length, while the

non-Gaussian character of the fi(∆r) distributions is a result of either displacement

correlations between successive jumps and/or non-Poisson statistics for the number

of jumps within the observation time. We explore this question further in the next

section.
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2.4.3 The Jump Model of Particle Motion

We investigate the origin of the non-Gaussian character of the fi(∆r) distributions

in terms of the jump model of particle motion [93]. In particular, we define a jump,

compare the propensity to the average waiting time, and investigate whether the

number of jumps per run can be described by a Poisson distribution. This analysis is

incomplete as we do not study temperatures below T = 0.5, where the variability in

particle dynamics changes most dramatically. Instead, it serves as a useful introduc-

tion to some conceptual views of dynamics in supercooled liquids and the methods

by which they can be investigated.

The dynamics in supercooled alloys is often discussed in terms of ‘caging’ and the

‘escape’ from the cage. In this picture the plateau that develops in the intermediate

scattering function upon supercooling (see Section 1.2) is ascribed to particles being

trapped in the cage formed by their neighbours. The scattering function only starts

to decay again once particles begin to escape from this cage. It is this picture of

diffusive motion via large discrete jumps, between which the atoms oscillate as in

a solid, that has inspired the jump model and large number of similar models and

simulations (see, for example, refs. [94,95]). The common assumption is that jumping

is the main process that explains the dynamics. Starting, generally, from a random

walk, the anomalous diffusion is then incorporated via a distribution of waiting times

or jump lengths.

Now imagine the simple scenario in which the waiting time, for a given particle, is

the same for every jump. Then the resulting distribution of jumps per run should be

given by a Poisson distribution (see Eq. 2.4 on page 41). Conversely, if the distribu-

tion of jumps per run is not Poisson distributed, then the waiting time cannot be the

same for every jump. In this conceptual framework, the non-Gaussian character of

the fi(∆r) distributions must be due to either displacement correlations between suc-

cessive jumps or a tendency for mobile particles to continue being mobile, i.e. waiting

times that are smaller for successive jumps. For this reason, we investigate whether

the number of jumps per run can be described by a Poisson distribution.

To study the particle dynamics in this context, we first need to define a jump

length. Ideally this jump length will maximise the amount of non-vibrational motion

that is captured while minimising the amount of vibrational motion that is measured.

One possibility is to define each jump individually using a relative criterion, where

for each particle a jump is defined as motion that is of large amplitude relative
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to short-time (vibrational) fluctuations in position. This method has been used to

study motion in a Lennard-Jones (LJ) glass-former below Tg [95]. However, it appears

unlikely that this method will be suitable for the present system. We are interested in

motion that occurs above the glass transition, and it is not obvious that there will be

a clear distinction between vibrational and non-vibrational motion. Even for the LJ

glass studied in ref. [95], near Tg the amplitude of short-time fluctuations (0.14–0.16u)

is not much smaller than the smallest (reversible) jumps (0.2u). A different jump

criterion that has been used involves defining a minimum hopping distance [96, 97].

This criterion should provide us with sufficient dynamic information for the present

question. Provided that we choose a distance that means that the local environment

of the particle must have changed, this should be large enough that successive jumps

or moves are statistically independent in time and direction for a normal liquid.

In this work we define a ‘move’ as occurring when a particle has moved a distance

of Rmove from its previous position. We choose Rmove = 1 for all particles. Perera

and Harrowell found that this distance maximised the degree of spatial segregation of

the dynamics in the present glass-former when it was used to define a local relaxation

time [44]. Values of 0.5 and 0.7 were also investigated, but appear to capture much

vibrational motion. Single configurations at T = 0.5 and T = 1 were investigated

using 1000 runs of 1.5τe and 100 runs of 100τ at each temperature. We note that

additional analysis below T = 0.5 would be interesting since the variability of particle

motion increases rapidly below this temperature.

We consider the number of moves per run k for each particle, and define p as the

probability of ‘moving’ into a new position in a given time interval. By increasing

the number of time intervals N per run we can make p arbitrarily small. If p is the

same for every move, then the distribution of moves per run P (k) should be given by

a Poisson distribution, i.e. we expect

P (k) =
ak

k!
e−a (2.4)

where k is the number of moves per run, and a = Np is the mean value of k

We define fi(k) as the distribution of the number of moves per run for particle i.

To quantify how far this distribution deviates from Poisson we define a non-Poisson

parameter as nonP = u2/u1 − 1, where un =
∑

i(ki − < k >)n is the n-th central

moment of the the fi(k) distribution. For a Poisson distribution nonP will equal
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Figure 2.16: The distribution of non-Poisson parameters nonP (see text) for particles in a
configuration at T = 0.5. The distributions were calculated using (a) 1000 runs of duration
1.5τe = 20.2τ , and (b) 100 runs of duration 100τ each.

zero, since u1 = u2 = a. To calculate an unbiased estimator for nonP we use k-

statistics [98], i.e. we calculate

nonP =
k2

k1

=
nruns

nruns−1
m2

µ
(2.5)

where kn is the n-th k-statistic, nruns is the total number of runs (i.e. the sample

size), m2 = 1

nruns

∑nruns

i=1 (ki − µ)2 is the sample variance, and µ = u1 is the sample

mean.

The results are plotted in Figures 2.16 and 2.17. At T = 0.5, most individual

particles have P (k) distributions that are approximately Poisson distributed (−0.4 ≤
nonP ≤ 0.4 for most particles) for both choices of run length. At T = 1 we obtain

similar results, although the longer 100τ runs have nonP values that range from −0.6

to −0.2 rather than being centered about 0. The fact that we get Poisson statistics

for the number of moves per run tells us that P , the probability of ‘moving’ into a

new position, is roughly the same for every move. This suggests that there is little

tendency for moving particles to continue moving above T = 0.5. The higher nonP

values obtained for the longer 100τ = 86.6τe runs at T = 1 are probably due to the

fact that particles are able to sample both fast and slow regions over this very long

timescale and thus have P values that change significantly over the course of the run.

We conclude that the waiting time per particle is roughly the same for every move

above T = 0.5, at least over times that are of the same order of magnitude as the

structural relaxation time. Similar analysis at T = 0.4 would help to address whether
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Figure 2.17: The distribution of non-Poisson parameters nonP for particles in a con-
figuration at T = 1. The distributions were calculated using (a) 1000 runs of duration
1.5τe = 1.155τ , and (b) 100 runs of duration 100τ each.

it is correlated jump directions that produce the non-Gaussianity of the single particle

displacement distributions observed at this temperature. Direct measurement of such

directional correlations are recommended to verify this in the case that non-Poisson

statistics are found for the number of moves per run.

Finally, we consider the distribution of move times, where the move time is defined

as the time taken for a particle to move a distance of Rmove = 1. Previously, we

hypothesized that the propensity characterises the average waiting time and jump

length. Here we test this hypothesis by considering the correlation between propensity

and average move time with the jump length fixed at Rmove = 1. We note that the

propensities will only contain information about the average move time of those moves

that are able to occur in the time period used to calculate the propensities. Hence

it is only valid to compare the average move time obtained from runs of duration

1.5τe with the propensities, since the same run times were used in calculating both

quantities.

In Figure 2.18 we plot the propensity against the average move time < tmove >

for a configuration at T = 0.5. Only data for the 796 particles that moved in at

least 50 of the total 1000 runs are plotted. This was done to ensure that there

were adequate statistics to calculate the average move time for each particle. We

find a moderate negative correlation between the propensity and the average move

time. This provides some support for our previous hypothesis that the propensity

characterises the average waiting time and jump length, but the broad scatter suggests

that this is too simple a description to completely describe the data. It would be



44 Dynamic Propensity

0.0 0.2 0.4 0.6 0.8

8

10

12

14

16

 

 

<t
m
ov
e>

< r 2
i >ic

Figure 2.18: The relationship between propensity and average move time < tmove > for
796 particles at T = 0.5. Properties were calculated using an ensemble of 1000 runs, and
data points have only been plotted for particles that moved in at least 50 runs. The solid
grey line is a linear fit to the data.

interesting to see if the correlation improves at lower temperature. At T = 1 we did

not observe any correlation but this may have been due to a lack of data points (only

45 particles moved in at least 50 runs).

2.4.4 The Spatial Distribution of the Single-Particle

Non-Gaussian Parameter

Given that the non-Gaussian fi(∆r) distributions represent a new piece of kinetic

information, the spatial distribution of single-particle non-Gaussian parameters (αi,

defined in Eq. 2.3) may offer additional insight into the manner in which the con-

figuration influences relaxation. Here we compare this distribution with the spatial

distribution of dynamic propensity and discuss what insight may be gained from such

analysis. Those particles with motion that varies the most from run to run can be

thought of as having the least structural constraint on their mobility.

Figure 2.19 shows the spatial distribution of αi and propensity for a configuration

at T = 0.4. Regions with high propensity and particles with L06 topology (filled

circles) tend to have low αi, and particles with high αi tend to have low propensity.

Lines of high αi appear to represent paths for rare motion in regions of low propensity,
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Figure 2.19: (a) The spatial distribution of the single particle non-Gaussian parameter
αi for a configuration at T = 0.4. The black circles indicate the positions of large particles
with six large neighbours. (b) The propensity map for the same configuration used in (a).
Quantities were calculated using ensembles of 100 runs.

and therefore a study of these may provide insight into mechanisms for relaxation of

the slow regions.

2.4.5 Intermittency

One consequence of the high variability in particle motion from run to run, and

the accompanying asymmetry of the displacement distributions, is that rare events

(large displacements) have a significant impact on the mean squared displacement,

i.e. the propensity. Other physical phenomena in which rare events have a significant

influence on some mean property have previously been described as ‘intermittent’.

In particular, the term intermittency has been used to to describe distributions in

which maxima in space or time are widely spaced and rare, but make a dominating

contribution to the physical quantity of interest. See, for example, ‘The Almighty

Chance’ [99] for an introduction to the concept of intermittency. The term was

introduced by Batchelor and Townsend [100] for the patched temperature distribution

in turbulence, and has been applied to the distribution of matter in space among other

physical phenomena. The principal and characteristic property of intermittency is the

abnormal relationship (when compared to the Gaussian one) between the consequent

statistical moments.

In the present case, the rare events are not scattered in space or time, but over
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the isoconfigurational ensemble, i.e. over the space of possible futures. However, the

abnormal relation between the statistical moments is similarly non-Gaussian. Another

way of interpreting this is to say that the configuration expresses its character, or effect

on the dynamics, intermittently.

The concept of intermittency has also recently been used to describe some experi-

mental results on relaxation in glasses. Ciliberto et al. [101] have reported intermittent

voltage noise signals characterised by rare large noise spikes above the regular fluc-

tuations during dielectric studies of a colloidal glass of clay particles called Laponite.

The result is a non-Gaussian distribution for the voltage noise which, based on nu-

merical work, has been interpreted in terms of activated and spontaneous relaxation

events [102]. However, discrepancies have been found between different experiments,

and between simulations and theory, and this area appears to need further work to

rationalise the contrasting findings. A review of recent experimental, numerical and

theoretical work on the intermittency of relaxation in glassy soft matter can be found

in ref. [15].

In terms of the present work, we suggest that another way of interpreting the

intermittent manner in which the configuration affects the dynamics, and possibly

also the intermittent voltage noise, is in terms of ‘stick’ and ‘slip’ events. Even high

propensity regions are able to ‘stick’ particles, i.e. to not allow significant motion to

occur, but occasionally ‘slips’ occur, i.e. large displacements take place during a run.

The difference between high and low propensity regions in this picture is that the

frequency (or probability) of slips is higher in the high propensity regions. Of course,

this is a rather crude picture in the sense that the distribution of displacements for

a particle tends to be continuous rather than forming two discrete peaks, but the

basic picture of an increasing variability of particle motion as the system is cooled is

consistent with our results.

2.5 Correlations in Particle Motion

The isoconfigurational ensemble technique can also be used to explore the character

of the dynamics in the supercooled liquid. This can be done by exploring correlations

in particle motion, for example between different particles within the same run or

between the same particle (self-correlation) in different runs. Information about the

lengthscale over which particle motion is correlated can also be obtained.
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2.5.1 Self-Correlation within the Isoconfigurational

Ensemble

Analysis of correlations between the motion of a particle and itself in different runs

can give information on the degree to which the original configuration confers di-

rectionality on particle motion. By directionality we mean a tendency to move in a

preferred direction. In particular, we investigate the following question: is the varia-

tion in propensity due to the tendency of some particles to have a strong directional

preference?

We define the directionality di of a particle i as the mean dot product over all

pairs of displacement vectors normalised by the propensity, i.e.

di =

1

Nαβ

∑
α

∑
β>α(∆~ri,α · ∆~ri,β)

< ∆r 2
i >

(2.6)

where α and β are run indices, Nαβ = NrunsC2 is the number of distinct pairs of

runs in the isoconfigurational ensemble, ~ri,β is the displacement vector of particle i

in run β, and < ∆r 2
i > is the propensity of particle i. For a random distribution

of displacements, the vector pairs will be evenly distributed in magnitude and in

intervector angle. Therefore, we should have di = 1

π

∫ ∞

0
cos θ dθ = 0. And if the

particle moves in the same direction in every run, we should have di = 1.
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Figure 2.20: Displacement vectors for selected particles at T = 0.4 with high directionality
and either (a) low or (b) high propensity. The vectors are from isoconfigurational ensembles
of 100 runs.
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Figure 2.21: The particle directionality di as a function of propensity for ten configurations
each at (a) T = 0.4 and (b) T = 1. Quantities were calculated using 100 runs. Note the
different x-axis scales.

Figure 2.20 shows the displacement vectors for selected particles at T = 0.4. In

particular, we considered an ensemble of 100 runs and selected particles with high

directionality and either high or low propensity. We find that there are particles

with di > 0.8, independent of propensity, whose displacement vectors fall almost

exclusively within a 60◦ angle, i.e. that have strong directionality conferred upon

their motion by the initial configuration.

An obvious question to ask is what role do particles with high directionality have

in determining the propensity distribution. In Figure 2.21 we plot di against propen-

sity, using data pooled from ten configurations each at T = 0.4 and T = 1. The

configurations were separated from one another by 75τe, and the propensities and

directionalities were calculated over ensembles of 100 runs. At T = 1, particles with

high directionality have high propensity. This suggests that at high temperature the

most mobile particles are those that have a high degree of directionality conferred

upon their motion by the initial configuration. In contrast, at T = 0.4 the particles

with high propensity generally have low directionality, suggesting that any direction-

ality conferred by the initial configuration is rapidly ‘forgotten’ as a particle moves

away from its initial position. Of course, this difference may be a consequence of how

we have scaled the run time for the isoconfigurational ensemble. The mean collision

time for this glass-former is 0.10τ for all T ≤ 1 [89], therefore the run time at T = 1 is

only one order of magnitude longer than this, compared to four orders of magnitude

longer at T = 0.4.
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The large number of particles with high directionality and low propensity at T =

0.4 could be explained by the following picture. At low temperature many particles

remain trapped in the ‘cage’ formed by their neighbours. Since we are studying

instantaneous configurations it is likely that some of these particles will be far from

the centre of their local potential energy minimum (due to the cage) when the runs

are begun, i.e. in the initial configuration. There is therefore a high probability that

they will undergo mainly vibrational motion during the run and will consequently

be found closer to the local potential energy minimum at the end of the run, thus

resulting in a high directional bias in their motion.

We conclude that directional bias on particle motion due to the initial configura-

tion is insufficient to explain the heterogeneity in the spatial distribution of propensi-

ties at low temperature. We do, however, note that some particles with high propen-

sity also have high directionality. Given the increased clustering of high propensity

particles at low temperature (see Figure 2.9), it is possible that these rare particles,

with both high propensity and high directionality, have a role to play as initiators of

motion in the high propensity regions. This could be an area for future research.

2.5.2 Correlation Between Motion of Unlike Particles

An analysis of correlations between the motion of unlike particles can yield informa-

tion about the cooperativity of particle dynamics. For example, one can ask whether

neighbouring particles move in the same direction, or investigate the lengthscale over

which particle motion is correlated. This is an area that, as discussed in the intro-

duction to Part I, has already been studied in much detail. The unique feature of the

present analysis is that we average such measures over an isoconfigurational ensem-

ble. This makes it possible, for example, to calculate the distance over which particle

motion is correlated for individual particles in a given configuration.

Before discussing the distance over which particle motion is correlated, we present

an analysis that can be used to identify particles whose motion is highly correlated

with that of their neighbours. We define the flow fi of a particle i as the mean dot

product between the displacement vector of i and that of all its nearest neighbours,

where the vectors are normalised and the isoconfigurational average is taken, i.e.

fi =

〈
1

ni

ni∑

j=1

(
∆~ri,α

|∆~ri,α|
· ∆~rj,α

|∆~rj,α|

)〉
(2.7)
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Figure 2.22: The particle flow fi as a function of propensity for single configurations at
(a) T = 0.4 and (b) T = 0.6. Quantities were calculated using 50 runs.

where α is the run index, ni is the number of nearest neighbours of particle i, ~ri,α is

the displacement vector of particle i in run α, and the angular brackets <> represent

an average over runs. If the motion of a particle i is uncorrelated with that of its

neighbours then fi = 0. On the other hand, if the motion of the particle is always in

the same direction as that of its neighbours then fi = 1.

In Figure 2.22 we plot fi against propensity, for single configurations at T = 0.4

and T = 0.6. The propensities and flows were calculated over ensembles of 50 runs.

While there is no strong correlation between propensity and flow, a few relations can

be identified. Particles with high flow tend to be limited to those with < ∆r2
i >< 0.5.

The high flow of these low propensity particles may be due to normal modes or

small hydrodynamic flows. There is also a strong change in the behaviour of high

propensity particles upon cooling. At T = 0.6 there is a weak tendency for high

propensity particles to have high flow, while at T = 0.4 there is a stronger tendency

in the opposite direction, i.e. particles with high propensity tend to have lower flows

on average than particles with low propensity. This relationship at T = 0.4 may be

due to the large displacements and long run times involved compared to at T = 0.6.

If several relaxation events take place in the same region over the course of many

runs then the overall displacement vectors for these high propensity particles may no

longer reflect the character of the motion during the individual relaxation events. This

analysis may therefore be more useful at low temperature if applied to displacement

vectors resulting from motion over shorter timescales.
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Distance over which Motion is Correlated

Intuitively, it makes sense that if, in a dense supercooled liquid, one particle moves,

then the particles nearby must also move to create the space needed for this particle

to move into. One can ask over what distance such dynamical correlations persist. In

this section we demonstrate how analysis of the isoconfigurational ensemble can be

used to address this question.

Take a configuration and select a single particle i. Then, for each particle j,

calculate the Pearson’s correlation coefficient [90] K between the displacement mag-

nitudes of particle i and particle j over an ensemble of 100 runs. Figure 2.23 shows

the correlation coefficients for particles in a configuration at T = 0.4 as a function of

their distance from particle i, where i is the high propensity particle at (-18,-15.5) in

Figure 2.4. For distances greater than 5σ11 the correlation coefficient is scattered be-

tween −0.2 and 0.2 with an average value of about zero. The correlation coefficients

are only greater than 0.2 for nearest neighbour particles, but the average correlation

coefficient for particles at approximately the same distance (probably in the same

coordination shell) remains greater than zero for distances up to at least 4σ11 and
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Figure 2.23: The correlation between the motion of a particle i and all other particles j
as a function of the distance between i and j. The moving average has been indicated by
a thick line, and the Pearson’s correlation coefficient K between displacement magnitudes
was calculated using data from an ensemble of 100 runs.
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possible longer. Our results therefore suggests that the motion of i depends on the

motion of at least some particles outside of its first coordination shell. This technique

could be extended to calculate, for example, the mean distance over which particle

motion is correlated for high and low propensity particles.

2.6 Discussion and Conclusions

Because the glass transition is defined by its dynamics, the task of establishing its

structural origin requires us to begin with the dynamics and deduce what structures

are responsible. This is an inversion of the usual problem in condensed matter physics

and presents us with an important question, namely how trustworthy are the struc-

tural clues provided by the observed particle dynamics? In this chapter, we have

demonstrated that there is considerable variation in the dynamical evolution of a

specific particle configuration. We conclude that some aspects of the particle dynam-

ics are not significantly correlated with the initial configuration and therefore cannot

be ‘explained’ by reference to that configuration.

Through the introduction of the isoconfigurational ensemble, we have established

that it is the spatial variation in the propensity for particle motion, rather than the

motion itself, that is completely determined by the initial configuration. We find that,

upon cooling, the spatial heterogeneity in the propensity increases both in amplitude

and wavelength, i.e. the difference between high and low propensity increases and

particles with similar propensity increasingly cluster together.

The increasingly large variation, upon supercooling, in an individual particle’s

movement from run to run also represents an important new piece of kinetic infor-

mation, distinct from the propensities and their spatial distribution. At high tem-

perature all particles have a variability in their motion from run to run, relative to

their propensity, that is typical for a particle undergoing a continuum random walk

in 2D. As the temperature decreases particles increasingly have a variability from run

to run that is higher than would be expected if they were undergoing a random walk,

characterised by highly non-Gaussian single-particle displacement distributions.

In summary, the increasing variability in particle motion that we have charac-

terised provides: the reason why the propensity is needed to characterise the effect

of structure on dynamics; physical information on the process by which the config-

uration influences the dynamics; and a view of dynamics that may explain recent
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experiments describing the intermittency of relaxation events in colloidal clays. We

have also outlined a number of ways in which further analysis of the variability of

particle motion may provide additional insight into the process of relaxation and the

role of structure in supercooled glass-formers.

The assignment of propensities to particles represents the major result of this

chapter. This result provides a rigorous method for establishing the link between

a given configuration and the subsequent dynamics. The remaining problem is to

uncover the causal link between specific structural features of a configuration and the

resulting propensities. A detailed account of the correlation between propensity and

structure in the 2D mixture is presented in Chapter 3. Before moving on, however,

we will discuss a number of other implications of the work presented in this chapter.

In the language of the jump model of particle motion [93], the propensity charac-

terises the average waiting time and jump length, while the non-Gaussian character

of the individual particle displacement distributions is a result of either displacement

correlations between successive jumps and/or non-Poisson statistics for the number

of jumps within the observation time. We have outlined how analysis of the isoconfig-

urational ensemble can directly test this conceptual view of dynamics in supercooled

liquids.

A number of recent papers have characterised the transition in particle dynam-

ics on supercooling as a transition from hydrodynamically-governed dynamics to

landscape-dominated dynamics [86, 103]. The ‘landscape’ here refers to the poten-

tial energy surface over the configuration space. In this chapter we have arrived at

an alternative description of this fundamental temperature dependent change, i.e. a

transition, on cooling, from structure-independent (hence liquid-like) propensities for

motion to structurally-determined propensities. One advantage of this new account

over the landscape picture is that it refers directly to the behaviour of the liquid in

real space rather than the abstract configuration space.

The propensity is related to the probability of a particle in a configuration un-

dergoing a substantial displacement within a given time interval. Note that this

is distinct from how far it is actually observed to move in a single trajectory. The

propensity is therefore the starting point for several models of glass relaxation such as

the facilitated spin models [71–73] and the cooperative lattice gas models [104–106].

In each of these, a set of rules determine the probability for movement based on the

instantaneous configuration. In contrast, most models of molecular glass-formers are
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defined by a Hamiltonian and structural constraints. Uncovering the relationship be-

tween particle configurations and the probability of particle motion in these models

represents a major challenge. Having now defined and described the dynamic propen-

sity, we have taken a first and necessary step. In the next chapter we address our

ultimate goal, which is to predict the spatial pattern of dynamic propensity from a

given configuration.



Chapter 3

Predicting Dynamic Propensity

Having established the dynamic propensity as the part of the dynamics that must be

due to a property of the structure, we now search for its specific structural origins. In

particular, we test the ability of reduced measures of structure to predict the spatial

variation in dynamic propensity. We consider the local coordination environment,

local free volume, local potential energy, and coarse-grained versions of these, among

others. While we find some correlations between structure and dynamics, none of

these measures are able to predict the spatial variation in propensity. We therefore

turn to the short-time dynamics as a direct measure of structural ‘looseness’. We

define a single-particle Debye-Waller factor and find that it is able to predict the

spatial distribution of propensity. We suggest that this provides an upper bound on

the predictive ability of any structural measure. We then use the Debye-Waller factor

to study the time evolution of dynamic heterogeneity and obtain results that are at

odds with a simple picture of defect diffusion. Finally, we test whether there is a

microscopic basis for a relationship reported between short-time dynamics and the

geometric free volume.

3.1 Introduction

Some aspect of the structure in a glass-forming alloy determines the observed slow

particle dynamics. For example, strong correlations are observed between the increase

in shear viscosity and large angle scattering structure in metallic alloys following a

temperature quench [107]. In the previous chapter we have shown that there is also

something in the structure that is responsible for the spatial variation in dynamics.
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More precisely, the spatial variation in dynamic propensity is determined by the

initial configuration. But what aspect of the initial configuration is responsible for

the spatial variation in propensity? In this chapter we test the proposition that

reduced measures of structure are able to predict the spatial variation in propensity.

Variations in local environment have been cited as important in a number of

studies of the local connection between structure and dynamics. For example, in a

study of the same 2D glass-former considered in this part of the thesis, Perera and

Harrowell found that large particles with high local six-fold orientational order had,

on average, longer relaxation times than large particles with low six-fold orientational

order [44]. And in studies of a Lennard-Jones (LJ) liquid, Kob et al. found differences

in the radially averaged structure about particles with different mobilities [46, 79].

The latter work also found a correlation between the average potential energy and

the average mobility of particles divided into subsets according to their mobility.

However, no correlations were found of sufficient strength to indicate a causal link,

i.e. that the selected aspect of the local structure determined the local kinetics.

As briefly discussed in the previous chapter, a number of recent papers have

characterised the transition in particle dynamics on supercooling as a transition from

hydrodynamically-governed dynamics to landscape-dominated dynamics, where the

‘landscape’ refers to the potential energy surface over the configuration space. Sastry

et al. [103, 108] have shown that changes in various dynamic properties of a glass-

forming LJ liquid can be related to changes in the energy of the accessible part of the

energy landscape. This conceptual picture therefore provides a link between dynamics

and structure, albeit in the abstract configuration space. Heuer et al. [86, 109] and

La Nave and Sciortino [110] have also reported correlations between the dynamics of

small systems of 60–120 particles and the potential energy of the inherent structure

(IS). These calculations did not examine whether the correlations extend to the spatial

distribution of the two quantities, an issue that we address here.

Free volume [34] is a another widely used concept to explain the relationship be-

tween structure and dynamics. The generation or disappearance of free volume has

been invoked to explain shear banding [111] and positron annihilation [112] in metal-

lic glasses. The concept of ‘shear transition zones’ [113] is also used in the context

of non-equilibrium mechanical response. Intuitively, it is easy to conceive that less

crowded regions will have more space for particle motion and will therefore be ‘looser’

or more ‘mobile’. This intuitive picture has been formalised in free volume theories,
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which are able to accurately describe some thermodynamic observations such as the

temperature dependence of the viscosity (over more than 12 decades in magnitude

for the viscosity in some cases [114]), and the dependence of Tg on quench rate [115].

A recent simulation study also found a strong correlation between the average free

volume and the bulk averaged short-time mean squared displacement for monomers

in a ‘bead-spring’ model of a glass-forming polymer over a range of temperatures [80].

Despite its popularity and the success of the free volume concept at a phenomeno-

logical level, there remains a persistent problem concerning the application of free

volume to describe dynamics. In particular, what is the relationship between the geo-

metric free volume - a quantity that can be well defined at the atomic scale - and the

phenomenological free volume (a macroscopic quantity that is usually derived from

the bulk density).

We begin by defining a measure of the local coordination environment and investi-

gate the relationship between this and the propensity (Section 3.2.1). This is followed

by a comparison of the spatial distribution of propensity and (i) the local potential

energy (Section 3.2.2), and (ii) the local free volume (Section 3.2.3). In Section 3.2.4,

we look at the effect of coarse graining the potential energy and the free volume on

their spatial correlation with the propensity. We then consider a number of other

structural measures (Section 3.2.5), including force networks and the proximity to

crystalline clusters of large particles. In Section 3.3.1 we define a local Debye-Waller

factor as a measure of structural ‘looseness’ and study its ability to predict the spatial

distribution of propensity. We also use this quantity to study the time evolution of

dynamic heterogeneities (in Section 3.3.2), and in Section 3.3.3 we investigate the

ability of the geometric free volume to predict the spatial distribution of the short-

time dynamics. Finally, we summarise the main results, draw some conclusions and

suggest directions for future work (Section 3.4).

3.2 The Failure of Structural Measures to Predict

the Spatial Variation in Propensity

Phenomenological correlations are the staple of the glass field. There is much evidence

from experiments and simulations for correlations or anti-correlations between various

bulk dynamic and thermodynamic properties (see, for example, ref. [116] and refer-

ences therein). This is perhaps not surprising when one considers that, ultimately, it
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must be the interaction potential that determines all dynamic, thermodynamic and

vibrational properties of glass-formers. However, it is important to recognise that a

correlation between two variables does not necessarily imply that there is a causal

link between the two, i.e. that a change in one property is responsible for the change

in the other. We propose that it is necessary that a strong microscopic correlation

exist for there to be a causal link between two properties. In particular, we are in-

terested in establishing whether or not structural measures are able to explain the

spatial variation in propensity in a dense amorphous alloy.

3.2.1 Local Coordination Environment

We investigate the local coordination environment of each particle by defining a mea-

sure in terms of the number of neighbours it has of each type. The particles of species

a that are nearest neighbour to a particle of species b are defined as those that lie

within a distance cutab, the distance to the first minimum in the appropriate partial

pair distribution function (PPDF) gab(r). The PPDFs for this model can be found in

ref. [67]. For reference, the cutoff distances, cutab, used to define nearest neighbours

for T = 0.4–1 were (cut11, cut12, cut22)=(1.45, 1.65, 1.85).

We identify a particular neighbourhood, or local environment, with the following

notation: A small particle with m small neighbours and n large neighbours is des-

ignated as Smn and the analogous large particle is indicated as Lmn. For example,

S14 indicates a small particle surrounded by 1 small and 4 large neighbours, and L06

indicates a large particle surrounded by 0 small and 6 large particles. In this way, all

the particles are divided into subsets.

For the following analysis, we pool the data from ten well-spaced configurations

of the 2D binary mixture, each separated by a run time of 75τe from the previous

one. Propensities were calculated using a total of 100 runs for each configuration.

Figure 3.1(b) shows the populations of the different environments at T = 0.4.

The small particles have either five or six neighbours, while the large particles find

themselves in six- or seven-fold environments. Hence the four distinct clumps in the

distribution. Also note the large number of different environments. The purely steric

interactions of the 2D binary mixture do not lead to any significant chemical ordering

in the liquid, unlike, for example, the Kob-Andersen model. The fractions in (a), (b)

and (c) are relative to the total number of particles in each distribution.
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Figure 3.1: The distribution of local coordination environments in the binary mixture at
T = 0.4 for (a) the slowest 5% of particles, (b) all the particles, and (c) the fastest 5% of
particles. The environment code is explained in the text.
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In Figure 3.1(a) we present the distribution of environments found among the slow-

est 5% of particles, i.e. the lowest 5% when ranked by their propensities. This subset

is dominated by large particles, and in particular the L06 environment corresponding

to local hexagonal packing of large particles. Particles with the L15 environment are

also prominent. This finding is consistent with the earlier observation that large par-

ticles with high local six-fold orientational order had, on average, longer relaxation

times than large particles with low six-fold orientational order [44].

More interesting perhaps, is the question of where motion will happen. Figure

3.1(c) shows the distribution of environments for the 5% fastest particles, i.e. the

highest 5% when ranked by their propensities. This subset is clearly dominated by

small particles, with a preference, relative to the total distribution in (b), for the

more mixed environments: S23, S32, S33, S42, and S51.

Thus, we find some variation in the distribution of local environments between

particles with high and low propensity, which is consistent with previous observations

of differences in the radially averaged structure about particles with different mobili-

ties [46,79]. However, consider a particle with a given coordination environment and it

is clear that it may be present in either the high or the low propensity subsets, i.e. the

local environment does not determine the variation in propensity. Another way to

visualise this is to plot the distribution of propensities for the different environments.

The distribution of propensities for a selection of local environments are shown in

Figure 3.2. While some environments, e.g. L06, provide a relatively strong constraint

on particle motion, it is clear that most provide little constraint. Particles with

low or high propensity can have almost any local environment. We conclude that

some property other than the local coordination environment must be responsible for

determining which of the particles exhibits high propensity.

While the local environment is unable to predict the spatial distribution of propen-

sity, there is evidence for a general trend from lowest to highest average propensity

as the number of large neighbours decreases and the number of small neighbours in-

creases. Overall, particles with the L06 environment have the lowest propensity on

average and particles with the S60 environment have the highest. That is, there is

some correlation between local coordination environment and propensity when these

variables are averaged over subsets of particles. However, we find no microscopic

correlation of sufficient strength to indicate a causal link between the two.

For comparison, we plot the distribution of local coordination environments at
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Figure 3.2: The distribution of particle propensities for selected local coordination envi-
ronments at T = 0.4. The environment code is explained in the text, and the solid line
indicates the propensity distribution over all particles.
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Figure 3.3: The distribution of local coordination environments in the binary mixture at
T = 1 for (a) the slowest 5% of particles, (b) all the particles, and (c) the fastest 5% of
particles. The environment code is explained in the text.
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T = 1 in Figure 3.3. The proportion of L06 environments is now much smaller among

the slowest 5% of particles, but the lowest and highest propensity subsets are still

dominated by large and small particles, respectively, thus demonstrating that this

is not a unique feature of low-temperature dynamics. It is also clear that the local

environment does not provide a strong constraint on the propensity of a particle.

We therefore conclude that, while on average small particles tend to be more

mobile than large particles, and the L06 environment is a good predictor of low

propensity in the supercooled liquid, the local coordination environment is in general

unable to predict the spatial distribution of dynamic propensity.

3.2.2 Potential Energy

We define the potential energy ui of particle i as the sum over all potential interactions

between it and its nearest neighbours (see Section 3.2.1 for the definition of nearest

neighbours). We find that this local definition of the potential energy (PE) accounts

for greater than 99.5% of the total potential energy in the soft-disc mixture at T = 0.4.

As described in the introduction, Doliwa and Heuer [86] and La Nave and Sciortino

[110] have reported correlations between the dynamics of small systems and the in-

herent structure (IS) energy, but did not look at whether the correlation extends to

the spatial distribution of these two quantities. We shall now examine the correlation

between the spatial distribution of potential energy in the initial IS and the particle

propensity. The inherent structures were obtained from the initial instantaneous con-

figurations via a conjugate gradient minimisation of the energy and were used instead

of the instantaneous configurations in order to remove the random effect of thermal

fluctuations on the structure.

In order to aid in visualising the spatial variation of various quantities, we use

contour plots. These are generated by interpolating the irregularly spaced particle

properties onto a grid, as described for the propensity in Section 2.3. In Figure 3.4

we compare the spatial distribution of the IS potential energy and of the propensity

for a configuration at T = 0.4. Note that the two maps are quite different, and that

the spatial heterogeneities of the IS particle energies involve considerably shorter

lengthscales than those of the propensity. We obtain similar results for nine other

configurations at T = 0.4.

To quantify the spatial heterogeneity in a given property P , we use the following

cluster analysis. The 10% of particles (102 particles in this case) with the largest



64 Predicting Dynamic Propensity

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

(a)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
3.5
4.1
4.7
5.3
5.9
6.5
7.1
7.7
8.3

(b)

Figure 3.4: The spatial distribution of (a) dynamic propensity for a configuration taken
from an equilibrated system at T = 0.4, and (b) potential energy per particle for the
inherent structure of the same configuration used in (a). Propensities were averaged over
100 runs.

values of P are ‘tagged’. Each tagged particle is then assigned to a cluster if it is a

nearest neighbour to another tagged particle already in that cluster. When all tagged

particles have been assigned to a cluster we count the number of clusters and calculate

the variance in the number of particles per cluster. The maximum variance possible

for a given number of clusters N occurs when N − 1 clusters consist of one particle
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Figure 3.5: Cluster measures of spatial heterogeneity for particles with potential energies
and propensities in the top 10%. Data points are shown individually for ten configurations
at T = 0.4. Statistics obtained using random values are shown for comparison. The dotted
line represents the maximum variance possible for a given number of clusters (see Eq. 3.1).

and one cluster consists of 102 − (N − 1) particles and is given by the relationship

max(σ2) = −205 − 10404/N2 + 10608/N +N. (3.1)

A random distribution without any spatial correlation will produce a large number

of clusters with a correspondingly small variance, while a heterogeneous distribution

will produce a smaller number of clusters.

In Figure 3.5 we plot the results of the cluster analysis for the propensity and the

IS potential energy for ten configurations at T = 0.4. Particles with high potential

energy cluster slightly more than an equal number of randomly selected particles, but

significantly less than particles with high propensity.

These results highlight the absence of any significant spatial correlation between

a particle’s potential energy and its propensity. The apparent contradiction between

our results and the previous reports [86,110] underscores the difficulty in interpreting

correlations. A correlation between average values of two quantities does not neces-

sarily mean that a microscopic, and hence causal, relationship exists. Conversely, if

no microscopic correlation exists then we can explicitly rule out a direct causal link

between the two properties. These are both important steps en route to understand-

ing the macroscopic correlations. In the remainder of this section we demonstrate
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Figure 3.6: Potential energy per particle as a function of propensity. Data for ten con-
figurations at T = 0.4 have been pooled together, and the particles divided into 20 subsets
according to their propensities. Each subset is represented by a point in the graph. Note
that we have plotted the square of the average potential energy < ui >2 in order to keep
the units of the two axes the same. Error bars in the main graph represent one standard
error. The inset shows the same data but with error bars corresponding to one standard
deviation.

that correlations between suitably chosen averages also exist in the present system,

despite their absence at a microscopic level.

If the particles are divided into 20 equal subsets according to their propensity, and

the average propensity < ∆r2
i > and potential energy < ui > is calculated for each

subset, then we do find a correlation. As shown in Figure 3.6, there is a clear increase

in the average propensity as the average potential energy decreases. However, the

size of the standard deviations (see inset) clearly demonstrates that it is impossible

to predict the propensity of a particle from its potential energy. We have plotted the

square of the average potential energy < ui >
2 in order to keep the units of the two

axes the same.

Kob et al. [79] have performed a similar analysis for an attractive Lennard-Jones

liquid. They found that as the average potential energy increased, so too did the

average mobility, and suggested that this was because particles with higher potential

energy were able to find and move into more stable environments. For the repulsive 2D

mixture that we have studied, the more stable environments - in the sense that they

are less likely to be mobile - appear to be those with higher potential energy, i.e. the

relationship between average potential energy and average mobility in the repulsive
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Figure 3.7: Average potential energy < ui > versus the fraction of large particles x2 for
the subsets considered in Figure 3.6. Each subset is represented by a point in the graph,
and the error bars represent one standard error. There is a strong linear correlation between
the two quantities as indicated by the dashed line.

soft-disc mixture is opposite to that in the attractive Lennard-Jones mixture.

We also find that, on average, small particles have lower potential energy than

large particles, which is consistent with the observation in Section 3.2.1 that the

subset of particles with the highest (lowest) 5% of propensities is dominated by the

small (large) particles. To investigate this further, we again consider the propensity

subsets but this time plot the average potential energy < ui > of each subset against

the fraction of large particles x2 in the subset. The results are plotted in Figure 3.7.

There is a clear linear relationship between potential energy and composition, i.e. as

the average potential energy increases so does the fraction of large particles in each

subset.

In summary, correlations exist between average propensity and average potential

energy, and between average potential energy and composition, when the particles are

ordered by propensity and averages are taken over subsets. However, these correla-

tions do not persist at a microscopic spatial level, and we conclude that local potential

energy is unable to predict the spatial distribution of propensity. In Section 3.2.4 we

consider the effect of coarse graining the potential energy, but first we investigate the

spatial correlation between free volume and propensity.
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3.2.3 Free Volume

Following Sastry et al. [117], we define the geometric free volume of a particle as the

volume accessible to that particle with all its neighbours fixed. Our algorithm differs

from that described in ref. [117] by considering overlaps between exclusion spheres

rather than using the Voronoi construction. While this modified algorithm will not

work well for systems with large voids, it provides an efficient method for calculating

free volumes in the current system, and we expect it will work well for condensed

phases consisting of mixtures of similarly sized particles. For the purpose of this

calculation, we created a mapping to a hard-particle system by using a temperature

dependent effective hard disc diameter corresponding to the distance of closest ap-

proach of two particles. We identified the closest approach by the distance at which

the respective partial pair distribution function first exceeds 0.01. At T = 0.4 this

corresponds to a distance of 0.9σab, where σab is the lengthscale of the interparticle

potential between particles of species a and b as listed in Section 2.2. We note that the

relative ordering of particles by free volume, and in particular the spatial distribution

of free volume, are both fairly insensitive to small changes in this effective hard disc

diameter. Diameters of 0.85σab and 0.8σab resulted in changes in the relative ordering

of free volumes by +/− 10%, but made little difference to their spatial distribution.

And while values of 0.95σab and σab caused some particles to have zero free volume,

those particles that still had non-zero free volumes were ordered similarly to what we

found using other values.

We again consider the ten well-spaced configurations at T = 0.4 for which we

calculated the propensity distributions. The distribution of free volume was calculated

for each initial configuration and for its inherent structure, i.e. the local potential

energy minimum obtained when the initial configuration is used as the start of a

conjugate gradient minimisation of the energy. Slightly stronger correlations were

observed using the inherent structures, therefore we present only the free volume

analysis for these configurations.

To account for differences in particle size, we scale the free volume for each particle

by π.σ2
aa/4, where a is the particle species. The scaled free volume vi has the added

property that a very local correlation exists between this geometrical measure and

the local potential energy (ui) in both the inherent and instantaneous structures. In

Figure 3.8 the raw and scaled free volumes are plotted against the local potential

energies of particles in the inherent structure. Unlike the raw free volumes, the scaled
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Figure 3.8: The relation between potential energy ui and (a) raw free volume (b) scaled
free volume vi for particles in ten configurations at T = 0.4. Scaling the raw free volumes
by π.σ2

aa/4, where a is the species of each particle, collapses the data onto a single curve

that is well described by the relation ui = 1.1464v
−1/2

i .

free volumes from the two particle species produce a single smooth curve when plotted

against the energy. This curve is well described by the expression ui = 1.1464v
−1/2

i .

As a consequence of this relation, most of the results described in this section are

similar to those already presented for the potential energy. This will, of course, not

necessarily be the case for all glass-forming liquids. From now on we consider only

the scaled free volume, which we shall refer to simply as the free volume.

In Figure 3.9 we compare the spatial distribution of free volume and propensity

for a configuration at T = 0.4. In spite of the coincidence of high propensity and



70 Predicting Dynamic Propensity

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

(a)

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
0
0.21
0.42
0.63
0.84
1.05
1.26
1.47
1.68

(b)

Figure 3.9: Contour plots of the spatial distribution of (a) free volume and (b) propensity
for a configuration at T = 0.4. The black dots in (b) indicate the 10% of particles with the
highest free volume. Propensities were averaged over 100 runs.

high free volume in some cases, there are clearly many ‘false positives’, i.e. particles

with high free volume but low propensity. The spatial distribution of free volume and

propensity are also clearly different. This is quantified in Figure 3.10(a) using the

cluster analysis described in the previous section. Particles with high free volume clus-

ter only marginally more than an equivalent number of randomly selected particles.

For completeness, we repeat the subset analysis by dividing particles into 20 subsets
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Figure 3.10: (a) Cluster measures of spatial heterogeneity for particles with propensities
and free volumes in the top 10%. Data points are shown individually for ten configurations
at T = 0.4. Statistics obtained using random values are shown for comparison. The solid
line represents the maximum variance possible for a given number of clusters (see Eq. 3.1).
(b) Free volume as a function of propensity. Data for ten configurations at T = 0.4 have been
pooled together, and the particles divided into 20 subsets according to their propensities.
Each subset is represented by a point in the graph. Error bars in the main graph represent
one standard error. The inset shows the same data but with error bars corresponding to
one standard deviation.

according to propensity and calculating the average free volume and propensity for

each subset. The results are plotted in Figure 3.10(b). Similar to the potential energy

analysis, there is an approximately linear correlation at low propensity followed by

a rollover to a plateau with an asymptotic value of vi ≈ 0.06. However, the large
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standard deviations (see inset) clearly demonstrate that there is considerable overlap

between the free volume of particles in the different propensity subsets.

In spite of this general failure of the free volume to exhibit any strong spatial

correlation with the propensity, there appears to be some cause for hope. Referring

to the contour plot of free volume in Figure 3.9(a), we note the presence of a significant

number of isolated particles with a high free volume. These ‘rattlers’ are the source

of most of the false positives in Figure 3.9(b). It seems reasonable to expect that the

degree to which a particle can ‘utilise’ a neighbour’s free volume depends upon the

size of its own free volume. Based on this argument, one may hope to distinguish

‘useful’ free volume from that which cannot contribute to relaxation based on an

analysis of clustering of particles with significant free volume. We therefore study the

effect of coarse-graining.

3.2.4 The Effect of Coarse-Graining

Given that the local potential energy and the geometric free volume fail as predictors

of the spatial variation in propensity, it makes sense to ask if we can improve the

correlation by using a suitable spatial averaging. For example, Qian et al. [50] found

that there was an optimal local averaging length (a coarse-graining length) for which

the Pearson’s correlation coefficient of density and a residence time was maximised in

simulations of the low molecular weight glass-formers propylene carbonate and salol.

We coarse-grained the free volume, the potential energy and the propensity by

assigning to each particle the value of the relevant property averaged over the local

values for that particle and of the particles lying within a distance r of that particle.

Values of r in the range 0 ≤ r ≤ 10σ11 were used. The degree of clustering, as

measured by the cluster analysis described in Section 3.2.2, increases steadily with

increasing r. This is a trivial consequence of the coarse-graining. The clustering

observed in the particle propensity is approximately reproduced in the coarse-grained

free volume and potential energy for r = 2.

To measure correlation, we use Spearman’s rank-order correlation coefficient K

[118]. This calculates a linear correlation coefficient of ranks rather than values. We

use this method because it is more robust than standard linear correlation meth-

ods such as Pearson’s. Also, because the distribution of ranks is known (they are

uniformly distributed), it is possible to calculate the significance of non-zero values.

Except for rare cases where |K| < 0.1, we typically obtain non-zero K values with
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Figure 3.11: Correlation between propensity and (a) potential energy, (b) free volume,
as a function of coarse-graining radius r. Correlation coefficients (Spearman’s rank-order
correlation) have been averaged over ten configurations. Error bars represent one standard
deviation.

greater than 99.9% significance. As for Pearson’s correlation coefficient, K varies

from -1 to 1, with 0 indicating that the two data sets are uncorrelated.

Figure 3.11(a) shows the correlation between potential energy and propensity as

a function of coarse-graining radius. For the case without coarse-graining K = −0.35

averaged over the ten configurations studied (potential energy and propensity are

anti-correlated). We find only a marginal increase in the average correlation on

coarse-graining. The correlation between free volume and propensity as a function of

coarse-graining radius is plotted in Figure 3.11(b). Without coarse-grainingK = 0.30,

averaged over the ten configurations studied, and there is only a small increase in

the average correlation on coarse-graining. In particular, we note that while coarse-

graining improves the correlation for some configurations it makes the correlation

worse for others. This is evidenced by the growing standard deviation in the correla-

tion coefficient with increasing coarse-graining radius, for both the potential energy

and the free volume.

The average rank-order correlation coefficients that we find are equal to or larger

than any of the (Pearson’s) correlation coefficients obtained by Qian et al. [50]. Given

that we find no spatial correlation between structure and dynamics in the present

study, we suggest that it is unlikely that there will be any spatial correlation between

the structural and dynamic measures considered in ref. [50].

In light of these results, and the analysis presented in the previous three sections,

we conclude that neither the local coordination environment, local potential energy,
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geometric free volume, nor simple spatial averaging of the latter two, are able to

predict the spatial distribution of propensity. This is despite finding correlations

between all of these quantities and dynamics, as measured by the propensity, when

suitable averages are taken. We find that the L06 local environment provides a strong

constraint on the propensity, and that on average particles with lower propensity

have higher potential energy, lower free volume and are dominated by large particles.

However, our spatial analysis clearly demonstrates that there is insufficient correlation

between these reduced measures of structure and the propensity on a microscopic level

to be able to argue that the particular aspect of structure is the cause of the spatial

heterogeneity in the propensity. While it is possible that more elaborate coarse-

graining/clustering schemes may improve upon the correlation between propensity

and structure, we consider it unlikely that any of these structural measures alone will

be sufficient to explain the spatial distribution of dynamics.

3.2.5 Other Reduced Measures of Structure

This section describes some less common descriptions of structure that we also exam-

ined. Some interesting results are obtained, but the results are similarly negative or

inconclusive as regards predicting the spatial distribution of propensity. In Section

3.3 we describe a different approach to the problem of predicting propensity.

Proximity to Particles with the L06 Environment

A number of studies suggest that relaxation times in amorphous materials are affected

by proximity to boundaries. In the case of free-standing polymer films Tg is found

to decrease [58], indicating that the relaxation time must be reduced by proximity

to a free boundary. And a study of the correlation length of cooperative motion

in the facilitated kinetic Ising model [119] found that the relaxation time close to a

rigid/free wall was increased/decreased relative to the bulk. In addition, there are

plenty of experimental results that find confinement of glass-formers can influence

Tg [120]. Ref. [121] reviews recent computational work on the effect of confinement

and also discusses some experimental results.

Therefore, motivated by the observation that a large proportion of low propensity

particles have the L06 environment, and that the number of L06 particles and their

degree of clustering increases with cooling, we consider the following hypothesis: that

the spatial variation in dynamic propensity is dominated by the proximity of particles
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Figure 3.12: Distance from L06 particles as a predictor of the spatial distribution of
dynamic propensity for two configurations at T = 0.4. The black circles indicate the
positions of L06 particles, and the white circles indicate the 50 particles that lie furthest
from these. The contour maps have been drawn to different scales to emphasise the spatial
variation in propensity.

to crystalline L06 clusters, being higher in regions that are furthest away from these

‘rigid walls’. We tested this hypothesis by plotting the location of L06 particles for

ten configurations at T = 0.4 (the same configurations that were used previously)

and compared their spatial distribution to the respective propensity maps. We also

predicted the location of high propensity particles using several measures of distance

from L06 particles. Finally, we considered the effect of including L15 particles in

the analysis. The results shown here are for analysis of the inherent configurations,

however very similar results are obtained from analysis of the instantaneous configu-

rations since the local particle environments only change rarely during the conjugate

gradient quench.

In Figure 3.12 we plot contour maps for the propensity for two configurations at

T = 0.4 along with the location of particles with the L06 environment (black circles)

and the location of the 50 particles (white circles) that lie furthest from any L06

particle. This measure does well at predicting the spatial distribution of propensity

for the configuration plotted in (a), but poorly for the configuration plotted in (b).

These results are typical of what we find for the other configurations. Sometimes

distance from L06 particles is a good predictor of propensity and sometimes it is a
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poor predictor. Including particles with the L15 environment in the analysis, by iden-

tifying those particles furthest from any L06 or L15 particle, improves the prediction

of high mobility for some configurations but does not work in general, e.g. for the

configuration in (b).

We also considered a more complex scoring function for predicting the location of

high propensity particles in the following. The score for each particle i is calculated

as

Pi =

N∑

j=1

exp−rij/η δ(~ri − ~rj) (3.2)

where the sum if taken over all the particles with the L06 local environment (or the

L06 and L15 environments), rij = |~ri − ~rj| is the distance between particles i and

j, η is a weight parameter for the distance, and the delta function ensure the score

is 0 if i = j. The higher the score the more mobile the particle is predicted to

be. We considered η values in the range 1–5, but found no improvement with this

measure. With η = 1 we obtain results that are very similar to the simple minimum

distance criterion used above, and we expect the results to approach those above as

η approaches 0. And with η = 5 we found that the high propensity particles were

predicted to lie in almost the same position for all configurations.

In general, clusters of hexagonally-packed large particles influence the dynamics

by strongly defining where regions of high propensity cannot be located, however

they do not appear to strongly influence which of the remaining configuration will

have high propensity. We therefore propose that at low temperature there are special

configurations that impart high mobility, e.g. when high propensity particles are found

very close to L06 clusters they often appear to be part of a group of particles rotating

about a single central particle.

The Force Network

Alexander [122] has argued that the relaxation of internal stresses is the most impor-

tant mechanism in ‘selecting’ the structure of the amorphous state and in determining

its stability. With this in mind, Kustanovich, Rabin and Olami [123] have studied

atomic bond tensions in 2D and 3D binary Lennard-Jones glasses at zero tempera-

ture and argued that they are not randomly distributed, but instead associated with

directional correlations in the nearest neighbour interactions. While they do not ex-

plicitly consider dynamics, they make the interesting point that isotropic measures
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Figure 3.13: (a) The propensity map for a configuration at T = 0.4, and (b) the force
network for the same configuration. The thickness of the lines connecting particles is pro-
portional to the force between them. Propensities were averaged over 100 runs.

of disorder (which include free volume, local potential energy and local composition)

will fail to take into account such correlations. We consider the relationship between

the force network and the spatial distribution of propensity as a first step towards in-

vestigating whether anisotropic bond tensions are responsible for the spatial variation

in dynamics. The results presented here do not form a complete study, but rather
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serve to indicate some directions in which this work could be continued.

In the purely repulsive soft-disc model that we study all ‘bond’ tensions are neg-

ative. We therefore consider the force network instead, where the force between two

particles i and j is given by

Fij = −dU(rij)

rij

= −Jij (3.3)

U(rij) is the interparticle potential, rij is the distance between i and j, and Jij is the

‘bond’ tension. We calculate the force between each pair of neighbouring particles

for the inherent structure of a configuration at T = 0.4. The force network, shown

in Figure 3.13(b), is represented by connecting neighbouring particles with a line

whose thickness is proportional to the force between them. The spatial distribution

of propensity for the same configuration is shown in plot (a). While there is no obvious

correlation between the force network and the propensities, it is difficult to analyse

the anisotropy visually and further numerical analysis may yield more insight and

may be worthwhile. Interestingly, we found no correlation between the magnitude of

the net force on a particle (in the instantaneous configuration) and its propensity.

3.3 The Single-Particle Debye-Waller Factor as a

Measure of Structural ‘Looseness’

As we have demonstrated, local structural measures fail to predict the spatial dis-

tribution of propensity. We therefore reconsider the question of what determines a

particle’s ability to move. Ultimately, this must be associated with the degree to

which particles are constrained by their surroundings. The hypothesis that potential

energy or free volume would correlate with local mobility rests on the expectation

that these local scalar measures capture an essential aspect of this constraint. Hav-

ing found this not to be the case, we now consider the nature of local constraints

explicitly.

Thorpe [124,125], building on earlier work of Maxwell [126] and Phillips [127], has

shown how the lack of full constraint in network glass-formers is manifest as floppy

modes, an observation that appears to offer a connection between a configuration and

its dynamic heterogeneity. However, this constraint counting has not been applied to

glasses stabilised by dense packing (as opposed to directional bonds) because of the
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unsolved problem of identifying local constraints in the former case. Brito and Wyart

[128] have recently made some progress on this problem, reporting that the stability

of a hard sphere glass can be related to that of networks of elastic bonds through

the use of a time-averaged effective potential. On the other hand, Donev et al. [129]

have developed an algorithm for testing whether a large continuous deformation of a

hard-disc configuration is possible. These deformations, however, are highly collective

and their algorithm is unable to single out dynamically significant motions associated

with a small number of particles. We will sidestep this problem by looking directly for

floppy modes, rather than trying to quantify the constraints responsible. The central

question then becomes, is there a spatial correlation between the floppy modes (a

measure of the short-time dynamics) and the propensity (a measure of the long-time

dynamics)?

There is already experimental evidence that the short-time dynamics of particles

can provide information about the long-time behaviour of a system. Buchenau and

Zorn have reported that in selenium the mean-squared particle displacement, < u2 >,

scales with the viscosity, η, as

η = η0exp(C/[< u2 >crystal − < u2 >liquid]) (3.4)

over many order of magnitude in η [130]. Subsequently, a range of polymeric and small

molecule glass-formers have also exhibited strong correlations between the short-time

fluctuations associated with the Debye-Waller (DW) factor and the viscosity [131].

And there are other reports in the literature of correlations between the DW factor

and fragility [132], the non-ergodicity parameter and fragility [133], and between the

shape of the interaction potential and both the fragility and the non-ergodicity, thus

tying the latter two results together [116].

Here we provide evidence that such correlations between short- and long-time

dynamics can exist at a microscopic spatial level. This is especially noteworthy con-

sidering that all the other macroscopic correlations that we have tested - between

propensity and composition, free volume and potential energy - do not hold at the

microscopic level.
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3.3.1 Predicting Propensity on the Basis of Short-Time

Heterogeneities

To characterise the short-time dynamics, we again consider an isoconfigurational en-

semble of runs, all starting from the same ‘equilibrated’ configuration, with random

initial momenta chosen from the appropriate Maxwell-Boltzmann distribution. How-

ever, in contrast to the propensity, we consider much shorter runs and study the

variance in the particle positions. In this way, we define a particle Debye-Waller

(DW) factor.

The DW factor is a standard measure of displacement fluctuations in solids, de-

fined as the mean-squared deviation of an atom from its equilibrium position, averaged

over all particles. Thus, one may write the DW factor as << (< ~ri > −~ri(t))
2 >>,

where ~ri is the instantaneous position of particle i, the inner angle brackets <> and

< ~ri > refer to the time average and the outer brackets denote an average over par-

ticles. To calculate a DW factor for each individual particle in a configuration, we

use a similar definition, except now the outer brackets indicate an average over an

isoconfigurational ensemble of runs. We shall refer to this variance in the position of

a single particle as the particle DW factor, i.e.

DWi =<< (< ~ri >time −~ri(t))
2 >time>ic, (3.5)

Figure 3.14: The incoherent scattering function as a function of temperature for the small
particles in the 2D mixture. The times used to define the local DW factor (10τ) and the
propensity (1000τ) at T = 0.4 are indicated by dashed vertical lines. Figure reproduced
(with modifications) from ref. [44].
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Figure 3.15: Particle displacement vectors connecting the inherent structures belonging
to configurations at either end of a 10τ Debye-Waller run at T = 0.4. The vectors are drawn
as arrows pointing from the initial to final particle positions.

where the time average is taken over the selected time interval and the isoconfigu-

rational average is taken over the multiple trajectories. All results presented in this

section are calculated using an ensemble of 100 runs.

We choose a runtime that lies in the middle of the characteristic plateau region

in the log-log plot of the mean-squared displacement, and in the log-linear plot of

the incoherent scattering function, and is therefore a characteristic time for fast β

relaxation. At T = 0.4 we use a duration of 10τ to calculate the particle DW factors,

which is two orders of magnitude shorter than the 1000τ runtime used to calculate the

propensities. The incoherent scattering functions for the 2D mixture, with run times

indicated, are shown in Figure 3.14. For reference, the structural relaxation time τe

(the time at which the incoherent intermediate scattering function has decayed to 1/e,

and therefore a characteristic time for the primary α relaxation) is 673τ at T = 0.4.

From comparison of the inherent structure (IS) configurations at either end of the

10τ intervals, we find that this time roughly corresponds to the first ‘escape’ from

the initial IS, involving a small localised reorganisation of particles. In Figure 3.15

we show the displacement vectors connecting IS configurations at either end of a DW

run. Note the small localised rearrangements that consist mostly of displacements of

less than one particle diameter. Analysing a small sample of runs we find they all end
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Figure 3.16: A cluster analysis of the spatial distribution of propensity, Debye-Waller
factors (DW), and potential energy per particle (PE) for ten independent configurations at
T = 0.4. ‘Random’ refers to the number of clusters generated by random samples of 102
particles.

up in different IS’s to the initial configuration, and that most of these are unique.

We repeat the cluster analysis described in Section 3.2.2 for the particle DW fac-

tors, and compare the clustering of the DW in Figure 3.16. The DW factors result

in a relatively small number of clusters, evidence of a substantial and non-trivial het-

erogeneity, and the number of these clusters is quite similar to that produced by the

propensities and significantly smaller than that produced by the PE and random sam-

ples. Next we consider how well the local DW factors predict the spatial distribution

of the propensity.

To use the DW factors as a predictor of propensity we shall require them to meet

two criteria: they must exceed a Lindemann-like threshold of 0.035, which is similar

to values obtained for a soft-sphere mixture near Tg [134], and the particles must be in

a cluster of three or more particles. Our Lindemann-like threshold is inspired by the

observation that crystals can sustain a maximum vibrational amplitude before they

melt. This maximum vibrational amplitude, equivalent to the bulk DW factor relative

to the interparticle spacing, is usually referred to as the Lindemann criterion [135].

Here we use a similar threshold with the aim of identifying local ‘melting’, in the sense

of local particle mobility. We note that Stillinger [136] has suggested and studied an

alternative definition of the Lindemann parameter, that can be extended into the
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high temperature liquid phase, based on intrabasin vibrational displacements of the

inherent structures accessible at a given temperature. Our minimum cluster criteria

is to reflect the fact that any substantial displacement in a dense liquid will require

more than one particle to be mobile. In 2D the smallest group of particles that can

locally rearrange is three.

We find that the selected particles do very well at predicting the spatial variation

of the propensity. In Figure 3.17 we compare the prediction of high propensity using

the particle DW factors (black circles) with the propensity maps for six indepen-

dent configurations. Most regions of high propensity are identified by the selected

particles, and very few points lie in regions of low propensity. Compare this to the

predictions of high propensity based on the potential energy or free volume maps and

the improvement is obvious.

Our data supports the proposition that the high DW regions represent the precur-

sors to the long-time motion, and that the subsequent propagation of the consequences

of these ‘seed’ motions is not readily accessible from the initial configuration, hence

the coarse-grained character of the DW factors’ predictive success. Interestingly, in

a study of a supercooled Lennard-Jones (LJ) liquid, Kob et al. [46] found that the

alpha-relaxation time of particles with high mobility (measured on the timescale of

the maximum in the non-Gaussian function) was on the order of the end of the

beta relaxation time of the bulk. Thus, it appears likely that there will also be spa-

tial correlation between the short-time and long-time dynamics in this attractive 3D

glass-former. Additionally, Vollmayr-Lee et al. [137] have studied the same binary LJ

system below the glass transition, characterising the particle mobility via a measure

similar to our local Debye-Waller factor but averaged over multiple time intervals

rather than multiple runs, and found that the dynamics was spatially heterogeneous.

They found that those particles with high vibrational amplitude formed clusters that

were compact relative to the lower-dimensional dynamic structures found for the same

system above Tg. This is similar to our observation of relatively compact clusters of

particles with similar mobility, as measured by the particle DW factor and propen-

sity, relative to the structures found in single trajectories. Furthermore, Vollmayr-

Lee and co-workers speculated that the clusters of highly mobile particles below Tg

may be the nucleation point of the large scale motions found above Tg. Here, we

have demonstrated that above Tg the short- and long-time propensities for motion

are spatially correlated. We therefore conclude that it is likely that the compact



84 Predicting Dynamic Propensity

Figure 3.17: A comparison of the predictions of high propensity (filled circles) based on
the local Debye-Waller data as described in the text with the actual propensity distributions
for 6 independent configurations taken from an equilibrated system at T = 0.4. The colour
scale is the same for all plots.
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mobile clusters found in ref. [137] below Tg are indeed the nucleation point of the

large scale motions found above Tg, and that the spatially heterogeneous distribution

of these nucleation points is directly due to something in the structure. Laird and

Schober [138] have reported spatial clustering of low-frequency modes in a quenched

soft-sphere model glass, which suggests that the same relationship may also exist in

one-component glass-formers. And Weeks et al. [139] have studied a colloidal glass-

former and observed statistically similar clusters of mobile particles on the timescale of

the β relaxation in both the supercooled liquid and glassy states. This could possibly

be experimental evidence for the same relationship between structure and dynamics

that we have described here.

3.3.2 Time Evolution of the Debye-Waller Factor

While much effort has gone into studying dynamic heterogeneities in supercooled

liquids, little work appears to have been devoted to the time evolution of the dynamic

heterogeneities in space. Doliwa and Heuer [47] have studied the time evolution of

dynamic heterogeneities in a polydisperse hard-disc system. They found that clusters

of slow particles can persist for very long times (up to 1300τe), that the dynamics

of slow clusters are sub-diffusive and highly restricted in space, and that particles

leave and join the cluster during its lifetime. In contrast, few particles leave and join

clusters of fast particles during their comparatively short lifetime, and they undergo

relatively little translational motion.

We have used our definition of a local DW factor to study the time evolution of

dynamic heterogeneities at T = 0.4. In Figure 3.18, we plot the spatial distribution

of DW factors for six configurations separated from each other by the timescale of a

DW run (10τ). What is striking is that there are substantial changes in the spatial

distribution of mobility over this short timescale. ‘Loose’ red regions disappear from

one configuration to the next, sometimes to reappear again later. And new red regions

appear that are not next to any existing red regions. Some configurations, such as the

one in (f), have very few ‘loose’ regions. The timescale over which the distribution of

DW factors changes is also significant. Although the system is able to move from one

inherent structure (IS) to the next over 10τ , little diffusion of particles is able to take

place during this time. Therefore, whatever it is that allows a susceptible subset of

particles to become mobile must be able to be transmitted through space without the

intervening particles moving substantially. This strongly suggests that the transfer
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 3.18: Time evolution of the spatial distribution of DW factors at T = 0.4. The
configurations used to generate plots (a)–(f) are separated from each other by 10τ , i.e. the
timescale of a DW run. Ensembles of 100 runs were used to calculate the DW factors.
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Figure 3.19: The spatial distribution of propensity at T = 0.4 for the configuration used
to start the time series of DW maps shown in Figure 3.18. Propensities were calculated
using an ensemble of 100 runs.

of mobility through the system cannot be explained simply in terms of the concept of

defect diffusion [140], i.e. the transfer of some structural defect that allows for particle

mobility. Note that it is this latter mechanism that operates in crystalline materials,

in the form of the diffusion of vacancies and interstitials [141], and which, in a more

abstract sense, is the picture built into facilitation models [71–73].

From the rapid change in the location of mobile regions in the DW maps it seems

likely that the effect of the initial configuration on mobility changes faster than the

timescale used to calculate the propensity. An obvious question to ask, then, is why

does the DW factor predict the spatial distribution of propensity as well as it does? We

suggest that this is because: (i) large regions of the structure, with low probability

for motion, remain largely unchanged during most runs even after the longer α-

relaxation time, and therefore still retain ‘memory’ of the initial configuration; (ii) as

a result, the fast motion is confined to the remaining parts of the structure, resulting

in the larger length scale of spatial heterogeneity in the propensity maps compared to

the DW maps; and (iii) the propensity will retain ‘memory’ of the effect of the initial

configuration on dynamics long after the instantaneous dynamics has forgotten about

the initial structure, since the propensity will not become uniform until all regions

have moved the same amount on average, i.e. the initial motion is included in the
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propensity and needs to be averaged out by motion that no longer remembers the

initial configuration and this won’t happen until some time after the slowest regions

become fast. For comparison, we have plotted the propensity map for the initial

configuration used to start the time series of DW maps in Figure 3.19.

Considering the time evolution of the DW maps and the propensity maps for

different configurations at T = 0.4, a natural dynamic hierarchy of domains can be

identified. On short times, these are those that never become mobile (e.g. regions

of hexagonally packed large particles), those that are mobile at any given moment,

and those that have the potential to become mobile. On the longer timescale of the

propensity maps this hierarchy can be extended. The slowest regions to relax are the

crystalline L06 clusters, which remain largely intact over the 675τe that separate the

configurations studied at T = 0.4. Then there are non-L06 regions that remain slow

on the timescale of the propensity (1.5τe), but which relax on a timescale shorter

than the 75τe between configurations. Next come the regions in the DW maps that

have the potential to be ‘loose’ over short times, and finally those that have a high

probability of significant relaxation over longer times (the high propensity regions).

The similarity between the DW and propensity maps described in Section 3.3.1 tells

us that although the spatial distribution of short-time mobility changes rapidly, the

‘loose’ spots remain confined to certain regions of the sample over much longer times.

In light of these results, the following questions still await a satisfactory expla-

nation: (i) what determines the susceptibility of a particle region to mobility? and

(ii) what is it that can allow a susceptible subset of particles to become mobile and

that can be transmitted long distances through space without significant particle mo-

tion? Answers to these questions may also help to explain why some non-L06 regions

remain slow on the timescale of the propensity.

Continuing the idea of ‘stick’ and ‘slip’ introduced in Section 2.4, we suggest that

at T = 0.4 the most mobile regions can be viewed as marginally stable states in

the sense that they are able to ‘stick’ the configuration, i.e. to not allow diffusional

motion in a given run, but more often that not become mobile, i.e. ‘slip’. Since their

stability is not optimised their structure is also not likely to be unique. This wealth of

structural possibilities may help to explain why none of the simple structural measures

that we have tested have been able to predict the spatial distribution of propensity.

The hierarchy of dynamic domains would then imply a hierarchy of states of different

stabilities. This picture of marginally stable states would also explain why mobility is
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able to occur, and to be transferred, via small-scale rearrangements in the supercooled

liquid. In contrast, in crystalline materials - which have unique optimised structures

- motion can only occur via large-scale rearrangements. We note that Nagel and

co-workers have also discussed the idea of marginal stable states in the context of

granular materials and glasses. See ref. [142] and references therein.

Given that the DW factor is perhaps a better reflection of the effect that an

instantaneous configuration has on the dynamics, one may ask whether the structural

measures that we have considered are able to predict its spatial variation. The simple

answer is, not in general. In the next section we present a direct comparison of the

DW factor and free volume, since this directly addresses a correlation reported in the

literature between the bulk averages of these two quantities. Additional spatial plots

of propensity, DW factors, free volume, potential energy and inherent structures at

T = 0.4 can be found in Appendix B.

3.3.3 Free Volume cannot Explain the Spatial Heterogeneity

of Debye-Waller Factors

As described in the introduction, the free volume concept has been both popular

and successful at a phenomenological level, yet there remains a persistent problem

concerning the application of free volume to describe dynamics. In particular, what

is the relationship between the geometric free volume - a quantity that can be well

defined at the atomic scale - and the phenomenological free volume (a macroscopic

quantity that is derived from the bulk density)? We address this question here.

For hard disc and sphere systems, and for systems that can be mapped to these, it

is possible to define the local free volume unambiguously, as the volume accessible to

a particle with all its nearest neighbours fixed in place [117]. Using this method, Starr

et al. [80] recently found a power law relation between the average free volume and

the bulk averaged short-time mean-squared displacement for monomers in a ‘bead-

spring’ model of a glass-forming polymer over a range of temperatures. This success

of the free volume idea was qualified by their failure to find any significant correla-

tion between the mobility of a specific monomer and its local free volume. In this

section we use our definition of the local DW factor to test for a causal relationship

between the geometrical free volume and the short-time dynamics. We then discuss

the relationship between the geometrical and the phenomenological free volume in

the context of our results.
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Figure 3.20: Free volume as a function of particle Debye-Waller factor. Data for ten
configurations at T = 0.4 have been pooled together, and the particles divided into 20
subsets according to their DW factors. Each subset is represented by a point in the graph.
Error bars in the main graph represent one standard error. The inset shows the same data
but with error bars corresponding to one standard deviation.

We calculate the particle DW factors and local free volume, as described previ-

ously, for ten well-spaced configurations at T = 0.4. As shown in Figure 3.20, we find

a smooth monotonic relation between the particle DW factor and the average free

volume when particles are divided into 20 subsets according to their DW factors. For

values of the DW factor up to about 0.022 this relationship is linear, a result analo-

gous to that found in Starr et al. [80]. In addition, our work identifies an upper bound

on the average particle free volume of about 0.06. This is visible as a plateau for DW

factors above 0.03. We note that the maximum value of the DW factor, and hence

the length of this plateau, increases with increasing time interval used to calculate

the DW factor. For example, compare this plot to the one in Figure 3.10(b). Our

results certainly support the phenomenological results of a strong connection between

free volume and dynamics. The data also appear to support the idea that there is a

well-defined threshold value of free volume or particle DW factor, above which large

amplitude displacements occur.

This interpretation fails, however, when applied on a particle-by-particle basis.

To see this, consider the standard deviation of the free volumes shown in the insert

in Figure 3.20. Clearly, the free volume in a given dynamically defined subpopula-

tion exhibits substantial fluctuations. Particles with wildly varying free volumes can
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Figure 3.21: Contour plots of the spatial distribution of (a) free volume and (b) particle
Debye-Waller factors for a configuration at T = 0.4. There is some spatial correlation
between regions with low free volume and low DW factors but not in general between
regions of high free volume and high DW factors.

exhibit similar values of the DW factor. We conclude that a particle’s mobility, as

characterised here by the DW factor, is not the result of its geometric free volume.

As the amplitude of a particle’s DW factor is a measure of the degree to which it is

constrained by its surroundings, we conclude that the geometric free volume of that

particle can only provide a haphazard glimpse of the degree of that constraint.

Our conclusion, that the variations between particles in terms of their geometric

free volume cannot explain the variations observed in their DW factors, is supported

by consideration of the spatial distribution of the two quantities. In Figure 3.21

we show contour maps for the free volume and the DW factor for a configuration
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Figure 3.22: Cluster measures of spatial heterogeneity for particles with Debye-Waller
factors and free volumes in the top 10%. Data points are shown individually for ten con-
figurations at T = 0.4. Statistics obtained using random values are shown for comparison.
The dotted line represents the maximum variance possible for a given number of clusters
(see Eq. 3.1).

at T = 0.4. There is a clear difference in the characteristic length scales of the

distributions with the DW factors exhibiting significantly stronger clustering than

the free volume.

We have quantified this observation using the cluster analysis described previously

(see Section 3.2.2). Figure 3.22 shows the results of the cluster analysis for the free

volume and the particle DW factor for the ten configurations. Particles with high free

volume show no significantly greater clustering than an equal number of randomly

selected particles. In contrast, particles with high DW factor show significantly more

clustering. These results, in addition to highlighting the absence of any significant

correlation between a particle’s free volume and its DW factor, point to the source

of the problem. The clear spatial clustering of those particles with large DW factors

is evidence of the cooperative character of even this short-time dynamics. The geo-

metrical free volume fails to capture the subtle configurational features that result in

enhanced local motion.

If the geometric free volume fails as a predictor of the local dynamic heterogene-

ity because the latter relies strongly on non-local correlations, can we improve the

relevance of the free volume by using a suitable spatial average? For example, as

mentioned in Section 3.2.4, Qian et al. [50] found that there was an optimal local
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Figure 3.23: Correlation between free volume and particle Debye-Waller factor as a func-
tion of coarse-graining radius r. Correlation coefficients (Spearman’s rank-order correlation)
have been averaged over ten configurations. The error bars represent one standard devia-
tion.

averaging length (a coarse-graining length) for which the Pearson’s correlation coef-

ficient of density and a residence time was maximised.

We have coarse-grained the free volume and the local DW factor, in the same

way that we coarse-grained the propensity and local potential energy, by assigning to

each particle the value of the relevant property averaged over the local values for that

particle and of the particles lying within a distance r of that particle. We consider

values of r in the range 0 ≤ r ≤ 10σ11. The degree of clustering as measured in

Figure 3.22 increases steadily with increasing r. This is a trivial consequence of the

coarse-graining. The clustering observed in the particle DW factor is approximately

reproduced in the coarse-grained free volume for r = 2.

To measure correlation, we again used Spearman’s rank-order correlation coeffi-

cient K [118]. This calculates a linear correlation coefficient of ranks rather than

values. For the case without coarse-graining we find a value of K = 0.40, aver-

aged over the ten configurations studied. Readers are reminded that we have already

demonstrated that there is no strong correlation between the scaled free volume and

the particle DW factor through the comparison of spatial maps and the cluster anal-

ysis. As shown in Figure 3.23, we find no increase in the average correlation between

the free volume and the particle DW factor on coarse-graining. The short-comings of

geometric free volume as a predictor of dynamics, we conclude, are not to be corrected
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by simple spatial averaging.

We conclude that, in this 2D glass-former, having a larger free volume does not

cause a particle to exhibit larger amplitude fluctuations in position. Rather, as the

correlation between averages over subsets indicates, it only increases the likelihood

that the reduced local constraints necessary for large amplitude motion might apply.

Even over the short timescales studied here, collective (i.e. non-local) processes are

important and these are not well correlated with a purely local measure such as free

volume. For this reason, we believe that the results reported here are likely to be

common to many glass formers.

In most of its popular usages, however, the phenomenological free volume refers,

not to an explicit geometrical volume, but to a reduction of mechanical constraints

on particle motion. In this sense, the single particle Debye-Waller factor that we

have defined in this chapter probably provides the better match, since it is an explicit

measure of particle constraint, even if it lacks a purely geometric definition. If one

accepts this proposition - that it is the particle DW factor rather than the geometrical

free volume that provides the better microscopic expression of the phenomenological

free volume - then the outstanding question for developing a microscopic treatment of

dynamics in glassy materials is to see if there exists a method for predicting the par-

ticle Debye-Waller factors from a given configuration that is algorithmically simpler

than the dynamic averages presented in Section 3.3.1.

3.4 Discussion and Conclusions

In this chapter we have sought to identify a measure of the configuration that can pre-

dict the spatial pattern of propensity for the 2D binary mixture. We have examined

the local coordination environment, local potential energy and local free volume, and

coarse-grained versions of these, as well as the proximity to ‘rigid’ L06 clusters. In

addition, we have used our isoconfigurational approach to examine whether the cor-

relations observed in simulations and experiments between bulk averaged quantities

(structural versus dynamic, and dynamic versus dynamic) persist at a microscopic

level, in the sense that they are spatially correlated. Such microscopic correlations,

we argue, must be present for any causal relation to exist between the two quantities.

While we found that high and low propensity was clearly associated with small and
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large particles, respectively, and that the L06 local environment provides a strong con-

straint on the propensity, some property other than local coordination environment

must also be involved. Most environments provide little constraint on the particle

propensity, and particles with a given propensity can be found among most of the 23

different types of local environment. We also found that on average particles with

lower propensity have higher potential energy, lower free volume and are dominated

by large particles. However, our spatial analysis clearly demonstrates that there is in-

sufficient correlation between these reduced measures of structure and the propensity

on a microscopic level to be able to argue that any of these aspects of the structure

are the cause of the spatial heterogeneity in the propensity.

This inability of local measures to predict the spatial distribution of propensity

is perhaps not surprising. With increasing supercooling the particle motion becomes

increasingly collective. The degree to which a particle is constrained must therefore

depend not just on the arrangement of neighbours, but also on the degree to which

those neighbours themselves are constrained, which in turn requires consideration of

the neighbours’ neighbours, and so on. Naively, one would expect coarse-graining

to provide a non-local extension of, for example, the free volume that reflects this

cooperativity and distinguishes ‘rattlers’ from those particles whose free volume is

available for collective reorganisation. Yet we found that simple coarse-graining does

not in general improve the correlation between structure and propensity. While the

prediction of propensity improved for some configurations it become worse for others.

We therefore conclude that neither the local composition, local potential energy,

geometric free volume, nor simple spatial averaging of the latter two, are able to

predict the spatial distribution of propensity. The best we can say is that there are

definite packings that in general inhibit motion, which can be topologically defined as

L06 clusters. There also appear to be definite things in the structure that in general

make motion more likely, however these cannot be simply understood in terms of

accumulation of free volume, low potential energy, special environments, or distance

from ‘rigid’ clusters.

With this failure of reduced measures of structure to predict the spatial distribu-

tion of propensity, we defined a direct measure of structural looseness in the form of

the local Debye-Waller (DW) factor. Invoking criteria inspired by a heterogeneous

extension of the Lindemann melting criterion for amorphous materials, we have shown

that the DW factors provide an excellent predictor of the spatial distribution of the
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high propensity domains in each configuration studied. This success is the more strik-

ing when compared with the absence of any strong correlation between propensity and

quantities like the local energy or free volume. We conclude that the initial configu-

ration determines the local DW distribution (corresponding to the β process), which

in turn is the precursor to the subsequent dynamic propensity (characteristic of the

α process). These results extend the growing evidence from experiments [130–133]

and simulations [116] for correlations between high and low frequency response to the

spatial heterogeneities of the two processes. We also conclude that it is likely that the

soft spots observed in several different glass-formers below Tg [137–139] are indeed

the nucleation point of the large scale motions found above Tg, and that the spa-

tially heterogeneous distribution of these nucleation points is directly due to spatial

variations in the structure.

Given the subtlety of the collective mechanical constraints probed by the short-

time dynamics, it is very unlikely that any measure of the initial configuration will

provide a better prediction of the dynamic propensity than that provided by the spa-

tial distribution of the DW factors. Subsequent answers may improve the algorithmic

efficiency in mapping between configuration and the selected DW map, but it is also

unlikely that they will improve upon the quality of the answer. If this proposal is

accepted then one has, in this work, a sense of the limits one should expect in the

answer to the core problem of the glass transition, i.e the causal connection between

structure and dynamics. Wolfram [143,144] has pointed out that there are phenom-

ena in complex systems that are irreducible, in the sense that the future behaviour

cannot be obtained by an algorithm more efficient than the solution of the equations

of motion. Recently, Israeli and Goldenfeld [145] have qualified this observation by

arguing that prediction is possible for suitably coarse-grained versions of the out-

come. Our results certainly support the idea that judicious coarse-graining of the

structure-dynamics problem is an important part of obtaining a satisfactory solution.

We also studied the time evolution of the DW factor and found that its spatial

distribution changed significantly over times almost two orders of magnitude faster

than the structural relaxation time. ‘Loose’ regions appeared and disappeared from

one configuration to next, and were not present at all in some configurations. This

suggests a hierarchy of dynamic regions on short times: those that are never mobile,

those that have the potential to become mobile, and those that are mobile at any given

time. These results indicate that whatever it is that allows a susceptible region to
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become mobile can be transferred through space without significant particle motion.

This picture of dynamics is significantly different from that built into models of defect

diffusion and facilitation.

Continuing the idea of ‘stick’ and ‘slip’ introduced in Section 2.4, we suggest

that a distribution of states with differing stability may provide a better conceptual

picture of the low-temperature dynamics. The most mobile regions can be viewed as

marginally stable states, in the sense that they are able to ‘stick’ the configuration,

i.e. to not allow diffusional motion in a given run, but more often that not become

mobile, i.e. ‘slip’. Since their stability is not optimised their structure is also not

likely to be unique. This wealth of structural possibilities may help to explain why

none of the simple structural measures that we have tested were able to predict the

spatial distribution of propensity. The hierarchy of dynamic domains would then

imply a hierarchy of states of different stabilities. And this picture of marginally

stable states would also explain why mobility is able to occur, and to be transferred,

via small-scale rearrangements in the supercooled liquid. In contrast, in crystalline

materials, which have unique optimised structures, motion can only occur via large-

scale rearrangements.

We also conclude that the success of the DW factor in predicting the spatial distri-

bution of propensity is because large regions of the structure, with low probability for

motion, remain largely unchanged during most runs even after the longer α-relaxation

time, and therefore still retain ‘memory’ of the initial configuration. As a result, the

fast motion is confined to the remaining parts of the structure, resulting in the larger

length scale of spatial heterogeneity in the propensity maps compared to the DW

maps. Furthermore, the propensity will retain ‘memory’ of the effect of the initial

configuration on dynamics long after the instantaneous dynamics has forgotten about

the initial structure, since the propensity will not become uniform until all regions

have moved the same amount on average, i.e. the initial motion is included in the

propensity and needs to be averaged out by motion that no longer remembers the

initial configuration and this will not happen until some time after the slowest regions

become fast.

Finally, we examined the microscopic relationship between the short-time dynam-

ics and the geometrical free volume and found no correlation of sufficient strength to

indicate a causal link. As discussed in Section 3.1, free volume has been invoked to
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explain a variety of dynamic changes in supercooled liquids, and at least one numer-

ical study [80] has found a relationship between the average geometrical free volume

and the bulk averaged short-time mean-squared displacement. While having a larger

free volume might increase the likelihood that the reduced local constraints neces-

sary for large amplitude motion will exist, we found that in this 2D alloy it does not

cause a particle to exhibit larger amplitude fluctuations in position. Even over the

short timescale of the DW factor, collective (i.e. non-local) processes are important

and these are not well correlated with a purely local measure such as free volume.

For this reason, we believe that the results reported here are likely to be common to

many glass-formers. In most of its popular usages, however, the phenomenological

free volume refers not to an explicit geometric volume, but to a reduction of mechan-

ical constraints on particle motion. In this sense, the single particle Debye-Waller

factor, that we have introduced in this chapter, probably provides the better match

since it is an explicit measure of particle constraint, even if it lacks a purely geomet-

ric definition. If one accepts this proposition, i.e. it is the particle DW factor rather

than the geometric free volume that provides the better microscopic expression of

the phenomenological free volume, then the outstanding question for developing a

microscopic treatment of dynamics in glassy materials is to see if a method exists for

predicting the particle DW factors from a given configuration that is algorithmically

simpler than the dynamic averages presented in this chapter.

There may be some value in the idea that the stability of the different regions is

related to the symmetry of the bond tensions or forces around each atom. Certainly,

the most stable L06 domains have the most symmetric local force networks. It is

also possible that the relationship between structure and dynamics may be simpler

in other glass-formers, for example those with strong chemical ordering, such as the

Kob-Andersen model or the 2D glass-formers that we characterise in Part II. It will

certainly be interesting to apply the tools developed in this part to the study of

structurally different glass-formers.
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Chapter 4

Introduction and Overview of

Results

Ultimately, all the structural, dynamic and thermodynamic properties of glass-formers

must be determined by the interaction potentials acting between their constituent

atoms or molecules. Therefore, one way to study the relationship between these prop-

erties is to systematically vary the interaction potentials and see what effect this has

on the system. With this as motivation, we explore the parameter space of the binary

soft-disc model. The goals of this work are: (i) to discover what other types of order

and phase behaviour this model is able to reproduce; (ii) to gain some insight into

the stability of the glass-forming system investigated in Part I; and (iii) to discover

if there are related systems that can form amorphous solids, and to compare and con-

trast their structural and dynamic properties and thus gain further insight into the

relationship between structure and glassy behaviour.

The binary soft-disc model that we explore in this part forms two-dimensional

analogues of many of the structures observed in real alloys. To put our study into

context, we therefore provide a brief introduction to the use of particulate models in

structural studies and to the range of structures formed by alloys, with particular

emphasis on amorphous alloys. We then provide an overview of our exploration of

the parameter space of the binary soft-disc model (presented in detail in the following

three chapters), including a discussion of the philosophical approach behind this work

and a summary of the main results.
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4.1 The Use of Particulate Models in Structural

Studies

The use of simple models in the study of liquids and glasses has a long history.

Bernal [146] introduced the idea of analysing random packings of spheres. Spheres

were placed in bags, shaken and allowed to settle in various ways, before glue was

poured over them. The geometry of the sphere-sphere contacts were then analysed in

agonising detail. Such early geometric analysis gave birth to the concept of geometric

frustration. The densest local packing of uniform spheres in 3D is the tetrahedron,

however regular tetrahedra cannot pack together to fill space completely [147]. There

is therefore competition between the densest local packing and the need to fill space

resulting in frustration. Models of the glass transition have been based on this concept

(see ref. [148] for a recent review).

Thermal effects were initially approximated crudely by shaking. In some cases

elaborate mechanical devices were built to mix different sized spheres randomly and

to shake planar arrays of such mixtures [149,150]. More recently, molecular dynamics

simulations have allowed for the correct treatment of the equations of motion, and

the use of more realistic models, including long-range potentials and the ability to

study non-spherical molecules, e.g. water. However, the study of disc- and sphere-like

‘atoms’ has remained an important way to gain physical insight into the structure

and dynamics of real systems. For example, such simple models can reproduce much

of the phenomenology of real glass-formers and remain important tests for our under-

standing of the physics behind glass-formation. One of the most widely studied 3D

glass-formers, introduced by Kob and Andersen [151], consists of a binary mixture

of particles with spherically-symmetric Lennard-Jones interactions. Simple models

also remain important for understanding the structural details of other processes,

e.g. crystal nucleation and growth [152], and the competition between crystallisation

and glass-formation [153]. Their continued relevance is perhaps because many prop-

erties of real materials, including alloys, appear to be dominated by packing effects.

4.1.1 Studies of 2D Models

Because of their relative simplicity, two-dimensional (2D) models have been important

for addressing a wide range of problems in condensed matter physics. The most com-

monly studied models involve particles interacting via hard-disc (hard interactions),
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soft-disc (purely repulsive interactions) and Lennard-Jones (LJ) potentials. The LJ

potential has both repulsive and attractive parts and is therefore the most similar

of these to real atomic potentials. While these potentials are all isotropic, i.e. inde-

pendent of direction, anisotropic potentials have also been investigated. Historically,

single-component systems were studied first. However, binary and polydisperse mix-

tures tend to be more interesting because of their added structural and dynamic

complexity. For example, binary mixtures are generally more suited to the study of

glass-formation because the amorphous state is kinetically stabilised by the additional

compositional fluctuations necessary for crystallisation to occur. Problems that have

been addressed include the formation, structure and stability of crystals [154–158],

quasicrystals [159–161] and glasses. In particular, glass-formation has been studied

in binary hard disc mixtures [162], polydisperse hard disc mixtures [48], binary LJ

mixtures [163–166], and binary soft-disc mixtures [44,67,167]. Recently, a 2D model

consisting of LJ particles with an adjustable anisotropy has been shown to span

the full range of glass behaviour from fragile to strong [168]. 2D models have also

been used to study ordering in monolayers of charged colloids [169] and dipolar hard

spheres [170], of interest for creating nanostructured devices through self-assembly. In

the remainder of this section we briefly summarise some research on soft-disc systems,

since the thesis constitutes a major extension of these studies. Additional discussion

of relevant work can be found in Chapters 5–7.

The one component soft-disc model was studied by Broughton, Gilmer and Weeks

[85,171], who used molecular dynamics (MD) to characterise the melting and freezing

transitions, and to calculate equations of state for the crystal and liquid phases along

with the thermodynamic freezing temperature. And the additive binary mixture

that we studied in Part I, has been studied before in the context of glass-formation

by Muranaka and Hiwatari [167], and by Perera and Harrowell [44, 67]. Bocquet et

al. [172] studied the effect of starting with a one-component system and gradually

increasing the diameter of half the atoms while simultaneously reducing the diameter

of the other half, keeping constant the mean diameter and the temperature. They

found a discontinuous transition to an amorphous solid at a critical size ratio of

the two species equal to 0.78. In comparison, non-additive soft-disc models have

received almost no attention. Mountain and Harvey [173] used MD and Monte Carlo

simulations to study a non-additive mixture with σ12 > σ11 = σ22, in which they

observed first-order fluid-fluid phase separation. We are not aware of any previous
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studies of ordered crystals, crystallisation or glass-formation in non-additive soft-disc

mixtures, nor of any studies of ordered crystals or crystallisation in additive soft-disc

mixtures.

Despite their simplicity, these models form many of the different types of order

observed in real alloys, including substitutionally ordered crystals, quasicrystals and

amorphous solids. We therefore provide a brief introduction to alloys and the range

of structures that they form in the next section.

4.2 Alloys and Alloy Structures

Alloys are solutions or compounds of two or more elements, at least one of which is

a metal. They have metallic properties and are usually designed to have properties

which are more desirable than those of their components. For example, steel is harder

than its principal component iron. In addition to forming a wide variety of periodic

crystalline structures [174, 175], alloys also form more complex structures, including

quasicrystals and glasses. Alloys can also micro-segregate when cooled from the melt,

resulting in a composite of several different phases.

Periodic crystalline structures have long-range translational order that can be

succinctly described by a relatively simple unit cell and rules for translating it to

fill space. In substitutionally ordered crystals, the unit cell consists of two or more

elements each with distinct environments, while in substitutionally disordered crystals

the unit cell consists of a single solvent element with the other solute element(s)

randomly substituting for it thus forming a solid solution. Structural defects are well-

defined in crystalline alloys and many material properties are now well understood

in terms of these [2]. The study of crystal nucleation and growth is an active area of

research that we discuss further in Chapter 6.

Quasicrystals (QCs) belong to the family of aperiodic crystals. They produce

sharp diffraction peaks just like periodic crystals, but lack long-range translational

order. Quasicrystals are remarkable in that some of them display five-fold symmetry.

Prior to their discovery in 1982 [176], it was thought that five-fold crystal symmetry

could never occur, because there are no space-filling periodic tilings, or space groups,

which have five-fold symmetry. They also have some potentially useful properties

including low wettability in contact with most aqueous solutions, low coefficients of

friction, and low thermal conductivity. Hence there is great interest in resolving the
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details of their physical structure. While the physical structure of quasicrystals is still

an area of debate (which we discuss further in Section 5.1), a quasiperiodic pattern of

points can be formed from a periodic pattern in some higher dimension. For example,

to create the pattern for a one-dimensional (1D) quasicrystal, you can start with a

regular grid of points in two-dimensional (2D) space. Let the 1D space be a linear

subspace that passes through 2D space at an angle. Take every point in the 2D space

that is within a certain distance of the 1D subspace. Project those points into the

subspace. If the angle is an irrational number such as the golden mean, the pattern

will be quasiperiodic. This geometric approach is a useful way to analyze physical

quasicrystals. In a crystal, flaws are locations where the pattern is interrupted. In

a quasicrystal, flaws are locations where the 1D ‘subspace’ is bent, or wrinkled, or

broken as it passes through the higher-dimensional space. In 2D, a quasiperiodic

structure can also be formed by a suitable tiling of squares and equilateral triangles.

The relationship between quasicrystalline order, random tilings and amorphous solids

is discussed further in Chapter 5.

Alloys can form another type of aperiodic crystal known as an incommensurately

modulated structure (IMS). While modulated structures are not discussed further in

this thesis, we describe them here for the sake of completeness. They can be consid-

ered as resulting from a 1D, 2D or 3D displacive and/or substitutional modulation

of an underlying periodic structure. When the periods of the modulation wave and

the basic structure are incommensurate to each other, an aperiodic crystal is formed,

referred to as an IMS. The modulation wavevector may continuously vary with tem-

perature or pressure running through all rational and irrational multiples of the lattice

parameters. At low temperatures IMSs often undergo a transition to a periodic phase

(the irrational wavevector locks in at a rational value), which can be described as a

commensurately modulated phase.

Amorphous alloys, like other glasses, lack any form of long-range order. While

the details of their structure is an unsolved problem, recent progress has been made

which we review in the next section. Not only are they among the structurally sim-

plest glasses, but they also have a number of useful properties - e.g. high strength,

corrosion resistance and soft magnetism - the exploitation of which depends upon

better understanding of their structure and phase behaviour. Questions of interest

include how to make them more stable to crystallisation, and how to add small do-

mains of crystalline order to improve their toughness. Many alloys, including the first
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one made in 1959 [177], require very high cooling rates to avoid crystallisation and

can therefore only be formed in very thin strips. Recently, however, new alloys have

been discovered that form glasses at much lower cooling rates [178, 179]. As these

cooling rates can be achieved by simple casting into metallic molds it has become

possible to make a much greater diversity of shapes. Perhaps the most useful prop-

erty of bulk amorphous alloys is that they are true glasses, which means that they

soften and flow upon heating. This allows for easy processing, such as by injection

molding, in much the same way as polymers. As a result, amorphous alloys have

been commercialised for use in sports equipment, medical devices, and as cases for

electronic equipment [180]. However, metallic glasses at room temperature are not

ductile and tend to fail suddenly when loaded in tension. Therefore, there is consid-

erable interest in producing composite materials consisting of a metallic glass matrix

containing particles or fibers of a ductile crystalline metal.

The structure that a particular alloy, or model, will adopt when cooled is deter-

mined by both thermodynamics (stability) and kinetics (speed of formation). De-

pending on their thermal history, many alloys will micro-segregate into a composite

material consisting of two different phases. The interfaces between the two phases

can be very elaborate [181], for example, steel can microsegregate into the crys-

talline phases ferrite and cementite in a layered (lamellar) pattern to form pearlite.

In addition to segregation into different crystal phases, alloys may microsegregate

in other ways, amorphous-quasicrystal (nanoquasicrystalline) and amorphous-crystal

(nanocrystalline) materials being two recent discoveries [182, 183]. Such composite

materials are often desirable because they combine good properties of both compo-

nents, e.g. the hardness of metallic glasses with the toughness of ductile crystalline

alloys. Consequently, the study of transitions between these different types of order

is of interest for both practical [183, 184] and fundamental [185] reasons.

4.2.1 The Structure of Amorphous Alloys

The lack of long-range order in amorphous alloys led early researchers to compare

their structure to Bernal’s ‘dense random packing of hard spheres in liquids’ [186]. In

this model, the larger solvent atoms are packed densely but randomly and the solute

atoms fill the resulting cavities. Gaskell later proposed a stereochemically-defined

model, in which the local packing consists of atom clusters in fixed ratios [187] with

the same structure as that of crystalline compounds with similar composition. We now
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know that the attractive interactions between atoms of different types in amorphous

alloys, and their differences in size, result in short-range order (SRO) that can be

described by clusters of ‘solute’ atoms of one type surrounded by atoms of a more

numerous species referred to as the solvent. However, amorphous alloys also possess

medium-range order (MRO), typically over 3–5 atomic diameters. How the clusters

of atoms interconnect to generate this MRO is only just starting to become clear, as

we describe below.

Miracle [188] recently proposed a model in which face-centred cubic (fcc) packing

of overlapping clusters is the building scheme for amorphous alloy structures. This

model has been able to predict the compositions of most glass-forming alloys, and

of alloys - known as eutectics - with lower melting points than any of their con-

stituents [189], but has not been structurally verified. Sheng et al. have since used a

combination of experimental and computational techniques to resolve the atomic level

structure of a number of binary nickel-based and zirconium-based amorphous alloys

with different ratios of atomic sizes and different solute concentrations [7]. They found

that the SRO consisted of a large range of different solute-centred coordination polyhe-

dra, but that these tend to be dominated by certain classes depending on the effective

atomic size ratio (R) between the solute and solvent atoms. In order of decreasing

R these were: the Frank-Kasper type; the icosahedral type; the bi-capped square

archimedean antiprism; and the tri-capped trigonal prism. They also found that the

MRO was dominated by three types of structures in order of increasing solute concen-

tration: the icosahedral packing of solute-centred quasi-equivalent clusters; the dense

packing of ‘extended’ clusters (pairs and strings); and a network-like arrangement of

solute atoms. Additionally, they found that the fcc packing previously proposed gave

a poorer fit to the experimental data for some transition metal-metalloid alloys. Fer-

nandez and Harrowell have identified similar extended clusters in a well-known model

of a metal-metalloid glass-former (the Kob-Andersen model) [190]. They found that

the extended clusters were composed of local coordination polyhedra with shared tri-

angular faces, and propose that it is the stability of these triangular-faced polyhedra

that suppress crystallisation of the preferred CsCl crystal phase.

Thus, a clearer structural picture is gradually forming of both the SRO and MRO

in amorphous alloys. This will likely be important for further applications involving

these materials, which are already used commercially because of their special magnetic

and mechanical properties. In particular, it appears that better understanding of
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the relationship between their structural and dynamic properties will be important.

For example, more extensive use of their mechanical properties depends on better

understanding of their plastic deformation [191]. And the path to understanding their

stability to crystallisation in terms of their structure is already being forged [153,190,

192–194]. The additional stability to crystallisation of the bulk metallic glasses is

likely due to the addition of solute species of appropriate sizes and concentrations to

fit into the holes left behind by the packing of solute clusters. Therefore a detailed

understanding of the atomic packing geometry is likely to be important for the design

of new bulk metallic glasses.

The work presented in this part of the thesis identifies, among other phases, a

new set of structurally different but related model glass-formers. While we do not

expect these to be good structural models for any real metallic glass-formers, we do

expect they will help us to gain further insight into the physical principles behind

the structure and dynamics of amorphous alloys and the relationship between the

two. As stated previously, 2D models are especially attractive because, compared to

3D systems, it is relatively simple to directly visualise both the structure and the

dynamics.

4.3 Overview of Model and Results

4.3.1 The Binary Soft-Disc Model

In this part of the thesis we explore the parameter space of the binary soft-disc model.

This simple model consists of particles interacting via purely repulsive potentials of

the form

uab(r) = ǫ
[σab

r

]12

(4.1)

where the subscripts a and b specify particle types (either 1 or 2 for the binary

model). Scaling the dimensions by σ11, it is clear that there are only two independent

lengthscales, σ12 and σ22. The entire parameter space for the model is therefore a 3D

space in σ22, σ12 and x1, the fraction of particles of type 1. For this study we fixed

σ22 = 1.4, the value for the model glass-former studied in Part I, and investigated

the effect of varying σ12 from 1.0–1.3. We considered both equimolar mixtures (x1 =

0.5) and non-equimolar mixtures with x1 ≈ 0.317, and characterised the structure,

dynamics and phase behaviour of the different systems. Figure 4.1 illustrates the
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Figure 4.1: Parameter space of the two-component soft-disc model. The dashed line
indicates the set of additive parameters, and divides the space into two regions: (a), in
which there is an effective attraction between unlike particle species; and (b), in which
there is an effective repulsion between unlike particle species. The solid line at σ22 = 1.4
indicates the part of the parameter space explored by the present work.

region of the parameter space that was explored.

It is interesting to study the variation of σ12 for several reasons. Firstly, while both

the one-component and binary soft-disc models have been studied extensively, the

effect of making the interparticle potential non-additive has received far less attention,

as was discussed in Section 4.1.1. Secondly, by changing σ12 from additive (i.e. equal

to [σ11+σ22]/2) to non-additive, it should be possible to tune the model from a system

in which there is no chemical ordering to a system in which there is strong chemical

ordering. Although this is a purely repulsive system, by decreasing σ12 it is possible to

create an effective attraction between unlike species, since the PV term in the Gibbs

free energy is able to be reduced when there are more contacts between unlike particle

species. Similarly, by increasing σ12 it is possible to create an effective repulsion

between like particle species. This is interesting because glassy alloys appear to fall

into two main groups: (i) the random alloy glasses (RAGs) - generally metal-metal,

in which chemical ordering is insignificant; and (ii) the chemically ordered glasses

(COGs) - generally metal-metalloid, in which there is strong chemical ordering. The

additive soft-disc system studied in Part I falls into the former group, while the Kob-

Andersen model falls into the latter. The binary soft-disc model may therefore allow
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us to compare the relationship between structure and dynamics in several related,

but structurally different, glass-formers.

In total, six systems were investigated. Detailed studies of these are presented

in the following three chapters. First, however, we provide an overview of the phase

behaviour of the different systems to illustrate some of the interesting comparisons

that can be made between them. These comparisons are the ultimate goal of the

work presented in this part of the thesis.

4.3.2 Low-temperature Phases

As our results demonstrate, this simple three-parameter model is able to form a wide

variety of structurally distinct solid phases, including substitutionally ordered crys-

tals, amorphous solids, random tiling-like structures and multiphase systems. Here

we present an overview of the different types of low-temperature structures that were

found. Representative configurations are shown in Figures 4.2. The equimolar mix-

tures with σ12 = 1.0 and 1.1 freeze to form substitutionally ordered crystals. Config-

urations corresponding to their ideal solid-state structures are shown in (b) and (d),

which we will refer to as the S1 and H2 structures, respectively. They are related

by a slight distortion and merging of adjacent square S1 unit cells. We investigate

the process of freezing for the H2 crystal and discuss its stability to supercooling in

Chapter 6. In contrast, when the non-equimolar mixtures with the same interpar-

ticle potentials are cooled they form solids lacking long-range periodic order, shown

in (a) and (c). We argue that these are good glass-formers. For comparison, a con-

figuration of the additive glass-former studied in Part I, i.e. the equimolar mixture

with σ12 = 1.2, is shown in (f). The non-equimolar mixture with the same additive

interparticle potential forms the structure shown in (e) when it is cooled gradually,

i.e. it forms a partially phase separated multiphase system consisting of crystalline

and amorphous regions, and offers the intriguing possibility of studying the coexis-

tence between crystalline and amorphous states. Cooling of the equimolar mixture

with the effectively repulsive interparticle potential σ12 = 1.3 results in liquid-liquid

phase separation and freezing into two single-component crystalline phases, as shown

in Figure 4.3.
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Figure 4.2: Low-temperature phases obtained upon cooling the following systems: (a)
σ12 = 1.0, x1 = 0.3167; (b) σ12 = 1.0, x1 = 0.5; (c) σ12 = 1.1, x1 = 0.3167; (d) σ12 = 1.1,
x1 = 0.5; (e) σ12 = 1.2, x1 = 0.3164; and (f) σ12 = 1.2, x1 = 0.5. The small and large
particles are represented by filled and open circles respectively.
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Figure 4.3: Low-temperature phase obtained upon cooling the system with σ12 = 1.3,
x1 = 0.5. The small and large particles are represented by filled and open circles respectively.

4.3.3 Comparison of Amorphous States as the Interparticle

Potential is Varied

Representative low-temperature configurations for the two non-additive glass-formers

identified by the present work, and for the additive glass-former studied in Part I, are

shown in Figure 4.2, plots (a), (c), and (f). These form a complete structural range

of alloy glasses from random alloy to chemically ordered. As the degree of chemical

ordering increases, i.e. as σ12 decreases from additive, the number of dominant local

environments decreases, the structure becomes more homogeneous, and the medium-

range order becomes more defined. The structures also differ with respect to the

amount of crystalline order that they incorporate. The random alloy - plot (f) - has

substantial regions of large particle crystallites, while the glass-former with σ12 = 1.1

- plot (c) - shows very little sign of these or of the H2 crystal environment. And

the glass-former with σ12 = 1.0 - plot (c) - is noteworthy because it appears to have

very well-defined local order and obvious structural defects. Its structure can be

described in terms of a decorated random tiling of squares and equilateral triangles

with additional defects. The structural and dynamics properties of these new glass-

formers are characterised in detail in Chapters 5 and 6.

As was discussed in Part I, the presence of structural variations in the random

alloy glass-former has a significant impact on its dynamic properties. Therefore,

given the structural differences just described, it should be insightful to use the tools
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developed in Part I to compare the effect of structure on dynamics over this range of

glass-forming systems. In Chapter 8 we provide a taste of where this may lead.

4.3.4 Phase Diagrams for the Binary Soft-Disc Model

In Figure 4.4 we compare the different phases formed as a function of the interparticle

potential σ12 and the composition x1. The drawn lines are visual guides and do not

necessarily correspond to actual phase boundaries. They do however suggest that

the phase space is roughly divided into three regions: (i) a substitutionally ordered

crystal region in the top left; (ii) a glass-forming region extending diagonally across

the parameter space; and (iii) a phase separated region at the right. Intriguingly,

the glass-former studied in Part I, i.e. the equimolar mixture with σ12 = 1.2, is

balanced between the extremes of phase separation on the one hand, and formation

of a substitutionally ordered crystal on the other [compare Figure 4.2(f) with Figures

4.3 and 4.2(d)].
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Figure 4.4: Different phases formed by the various soft-disc mixtures investigated in this
work. Filled squares indicate substitutionally ordered crystals, open squares indicate glass-
forming systems, the split hexagon indicates crystal-amorphous coexistence, and the split
square indicates liquid-liquid phase separation resulting in coexistence between the single-
component large- and small-particle crystal phases XL and XS , respectively. The lines are
speculative phase boundaries and may not be correct.
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Figure 4.5: Phase diagrams for the binary soft-disc model with σ22 = 1.4 and (a) x1 = 0.5
(b) x1 = 0.317. The black squares represent the approximate melting point of different
substitutionally ordered crystals (the error bars indicate the extent of the melting/freezing
hysteresis region in our studies). The half-filled squares represent the freezing point of the
large particle crystalline phase XL, and the half-filled hexagons represent the freezing point
of the small particle crystalline phase XS . The open squares indicate when the supercooled
liquid falls out of equilibrium, roughly the temperature at which Fs,1(k, 104τ) = 0.2, where
Fs,1(k, t) is the incoherent scattering function for the small particles calculated at the wave
vector corresponding to the largest peak in the respective structure factor S11(k). The
lines roughly indicate proposed phase boundaries, and the regions in which we expect glass-
formation to be possible.

We used our results to construct tentative phase diagrams for the binary soft-

disc model as a function of σ12. Figure 4.5(a) summarises the phase behaviour of

the equimolar mixture, and Figure 4.5(b) summarises the phase behaviour of the

x1 = 0.317 mixture. Since the substitutionally ordered S1 and H2 crystals are related

by a continuous deformation of the unit cell, we have indicated these by a single

‘binary crystal’ region. ‘Tilings’ refers to a large number of different structures that

can be described as decorated tilings of squares and equilateral triangles. We expect

the ground state for the non-equimolar mixture in the vicinity of σ12 = 1.1 to be

coexistence between the binary crystal and the large particle crystalline phaseXL. For

the equimolar additive mixture, we have used data from ref. [67] for the freezing points

of the large and small particle crystalline phases. Given the small number of data

points, the lines defining the stability of the different phases are highly speculative,

especially as T → 0. They do, however, provide a sense of the change in phase

behaviour of the binary soft-disc model as the interparticle potential is varied, and of

the relationship between the different phases.



Chapter 5

The S1 Crystal and a Defected

Random Tiling (σ12 = 1.0)

The binary soft-disc mixture with σ12 = 1.0 forms low-temperature structures that

can be interpreted in terms of tilings of squares and equilateral triangles. Such tilings

have previously been used as models for glass-formers and quasicrystals. We study the

structure and dynamics of both equimolar and non-equimolar (x1 = 0.3167) mixtures

in the fluid-solid phase region. We find that the equimolar mixture readily freezes

into a crystalline solid that we will refer to as the S1 crystal. Both cooling and

heating traverses are characterised. In contrast, the non-equimolar mixture forms an

amorphous solid state when cooled, yet a crystalline structure with almost identical

composition is found to undergo a first order melting transition when heated. This

leads us to speculate on the relationship between random tilings, quasicrystals and

amorphous structures.

5.1 Square-Triangle Tilings and Quasicrystals

The set of model parameters studied in this chapter allows four large particles to

pack almost perfectly around one small particle (the ideal σ12 length with all else

fixed would be
√

2 × (1.4)2/2 ≈ 0.9899). Ideal particle packings for this system can

therefore be described as decorated tilings of squares - decorated with 4 large and

1 small particle - and equilateral triangles - decorated with 3 large particles (see

Figure 5.1(a)). These two structural units can further pack together to give a total of

four different types of large-particle vertices, also shown in Figure 5.1, whose relative
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(d) (e)

(c)(b)

(a)

Figure 5.1: (a) Small particles (filled circles) and large particles (open circles) pack to-
gether to create square and triangular tiles (thick lines). These units can further pack
together to form the local configurations around large particle vertices that are shown in
(b)–(e). The central large particle and its nearest neighbours have been indicated to em-
phasise the local coordination environment.

abundance depends on the composition and particular arrangement of particles. Most

compositions have the potential to form several different structures with unique vertex

frequencies. This model may therefore be suitable for studying the physical effects

of solid state entropy. Both regular tilings - with translational and rotational order -

and random tilings - with only rotational order - can be constructed.

Square-triangle tilings have previously been used as structural models for real ma-

terials. Kawamura [195] studied the statistical mechanics of random square-triangle

tilings in the context of amorphous systems, while Frank-Kasper phases [196] can

be described in terms of ordered layers of particular square-triangle tilings. Ran-

dom square triangle-tilings have also been used as a model for twelvefold-symmetric

quasicrystals [197], and the structure of some alloys with twelvefold quasicrystalline

order have been described in terms of dodecagonal tilings by equilateral triangles and

squares [198, 199]. Intriguingly, a recent review [185] of phase transitions in metal

alloys found that many alloys have amorphous to quasicrystal phase transitions upon

de-vitrification suggesting that these two types of order may be strongly related.

We limit the current investigation to two compositions. An equimolar mixture

that readily freezes into a 2D version of the CsCl lattice, which we will refer to as

the S1 structure (after a similar packing constructed by Likos and Henley [155]), and

a non-equimolar mixture whose composition x1 = 0.3167 was specifically chosen to

maximise the configurational entropy of the solid state. Nienhuis [200] has explicitly
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calculated the entropy of square-triangle tilings and shown that the configurational

entropy is sharply peaked when the area occupied by triangles is equal to the area

occupied by squares. It is straightforward to show that this corresponds to a number

ratio of squares to triangles of
√

3/4, which with the particle decoration shown in

Figure 5.1(a) corresponds to a small particle fraction of x1 = 0.31699 (to 5 d.p.). It

is an interesting question how the high configurational entropy of the solid state at

this composition affects the nature of the fluid-solid phase transition.

Several particulate models that form square-triangle tilings are already known.

Weber and Stillinger [158] studied the melting and freezing of a 2D binary mixture of

Lennard-Jones (LJ) particles with 2- and 3-body interactions that crystallises into the

same S1 structure as our equimolar mixture, and the structure of a dense randomly

packed one-component 2D liquid has been interpreted in terms of tilings of squares

and triangles [201]. Leung, Henley and Chester have made extensive use of another

LJ model, with the same composition as our non-equimolar mixture, to investigate

the stability of quasicrystals (see, for example, ref. [159]). The ratio of squares to

triangles at which the maximal configurational entropy occurs also happens to be the

ratio at which a subset of the tilings have quasicrystalline order.

Simulations of 2D binary LJ models have observed spontaneous formation of

random-tiling like structures that lack ideal quasiperiodic order but which have long-

range 10- or 12-fold orientational order and which produce quasicrystal-like diffraction

patterns (with peaks that may be sharp or broad depending on the model) [159,160].

Widom et al. [160] have argued that one of these models is stabilised by the high con-

figurational entropy of the random tilings, and in a later paper [161] demonstrated

that its thermodynamic ground state was indeed crystalline.

In contrast, a recent review [202] of experimental work on quasicrystals provides

strong evidence that: (i) at least one real quasicrystal has near-ideal quasiperiodic

order (not just on average); (ii) that this structure can be well-described by a pack-

ing of overlapping symmetry-breaking decagons proposed by Grummelt [203]; and

(iii) that this structure is energetically, not entropically, stabilised. They do, how-

ever, concede that the structure of some quasicrystals may be well described by a

random packing of clusters which on average produce high symmetry. The precise

structural and energetic relationship between 2D and 3D quasicrystals remains to be

fully understood.

The rest of this chapter is structured as follows. The model and computational
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methods are described in Section 5.2, and in Section 5.3 we characterise the struc-

tural and dynamic properties of the equimolar mixture for both heating and cooling

traverses. Our study of the non-equimolar mixture is presented in Section 5.4. We

characterise the structural and dynamic changes during cooling from the liquid state

to an amorphous solid, and in Section 5.4.4 we show that a periodic solid with sim-

ilar composition undergoes a discontinuous melting transition. This is followed by a

summary of the main results and a comparison of the structure and phase behaviour

of the two mixtures in Section 5.5.

5.2 Model and Computational Details

We consider a 2D system consisting of a binary mixture of particles interacting via

purely repulsive potentials of the form

uab(r) = ǫ
[σab

r

]12

(5.1)

where σ12 = 1.0 × σ11 and σ22 = 1.4 × σ11. All units quoted will be reduced so that

σ11 = ǫ = m = 1.0 where m is the mass of both types of particle. Specifically, the

reduced unit of time τ = σ11

√
m/ǫ. A total of N particles were enclosed in a square

box with periodic boundary conditions - except for one set of runs (described in

Section 5.4.4) for which the particles were enclosed in a rectangular box with periodic

boundary conditions.

The molecular dynamics simulations were carried out at constant number of parti-

cles, pressure (P = 13.5) and temperature using the Nosé-Poincaré-Andersen (NPA)

algorithm developed by Laird et al. [83, 84]. This algorithm is discussed further in

Appendix A, where we also list the equations of motion in 2D. The equations of

motion were integrated using a generalised leapfrog algorithm [84]. The time step

employed was 0.05τ for T > 1, and 0.01τ for T ≤ 1. For argon units of ǫ = 120kB,

m = 6.6 × 10−23g and σ11 = 3.4Å, these time steps correspond to approximately 10

and 20 femtoseconds respectively.

A non-equimolar mixture consisting of N1 = 456 small particles and N2 = 984

large particles (giving N = 1440 and x1 = 0.3167 to 4 d.p.) was studied at 31

different reduced temperatures from T = 5 to T = 0.2. The starting configuration of

the run at T = 5 was an equilibrated configuration at T = 5 for the equimolar system

described in Chapter 6 with the appropriate number of small particles changed to
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large particles. The starting configuration of each lower temperature equilibration

run came from the final configuration of the preceding higher temperature run. For

T ≥ 0.5, the equilibration times were longer than the times taken for all the dynamic

correlation functions investigated to decay to zero. Below T = 0.5 the system is

no longer able to reach equilibrium within the finite timescale of the simulations.

Thus, the computer glass transition temperature for these simulations, defined as

the temperature at which the system falls out of equilibrium, lies between T = 0.5

and T = 0.45. At all temperatures, the equilibration runs were taken out until

steady state was achieved, i.e. until the average thermodynamic properties remained

constant in time. Table C.6 (in Appendix C.2) lists the temperatures of each state

studied as well as the equilibration and production times. The final configurations

of the equilibration runs were used to start the production runs. The ‘masses’ of the

Anderson piston and Nosé thermostat were Qv = 0.002 and Qs = 1000, respectively,

for all temperatures.

Both cooling and heating traverses were studied for the equimolar mixture. Tables

C.1 and C.2 (in Appendix C.1) list the temperatures of each state studied as well as the

equilibration and production times for the cooling and heating traverses, respectively.

The initial configuration for the cooling traverse was an equilibrated configuration at

T = 5 for the equimolar system described in Chapter 6 with a total of N = 1440

particles, while the initial configuration for the heating traverse was the constructed

periodic structure shown in Figure 5.4(a) that has a total of N = 1444 particles. The

starting configurations for production runs and for lower (or higher) temperature

equilibration runs are as described above for the non-equimolar mixture. The ‘mass’

of the Nosé thermostat was Qs = 1000 for all temperatures. For the cooling traverse,

the ‘mass’ of the Anderson piston was Qv = 0.0002 for T ≥ 1.1 and Qv = 10−6 for

T ≤ 1.08. For the heating traverse, Qv = 10−8 for all temperatures.

5.3 Freezing and Melting of the Equimolar

Mixture (x1 = 0.5)

5.3.1 Thermodynamic Properties

The thermodynamic averages for the potential energy per particle (U), energy per

particle (E), enthalpy per particle (H), and number density per particle (ρ) are
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Figure 5.2: Isobaric (P = 13.5) phase diagram. Squares and circles indicate data points for
the heating and cooling traverses, respectively. Error bars represent one standard deviation.
The steps in density upon cooling and heating form a region of metastability extending from
T = 1.02 to T = 1.08.

summarised in Table C.1 for the cooling traverse, and in Table C.2 for the heating

traverse, for the range of temperatures that were investigated. Also tabulated are the

compressibility factor (Z = P/(ρT )), the coupling constant Γ = ρT−1/6, as well as

the root mean square (rms) deviations of the instantaneous thermodynamic properties

from their averages, calculated as
√
〈x2〉 − 〈x〉2 where x is the property of interest

and the angular brackets indicate an average over time.

The isobaric phase diagram for the equimolar mixture is shown in Figure 5.2. For

the cooling traverse there is a clear step increase in density at T = 1.02, suggesting

a first order freezing transition between T = 1.02 and T = 1.04. The resulting

solid continues to have slightly lower density than the constructed perfect S1 crystal,

which is consistent with the presence of defects that are frozen-in (see Figure 5.3

for representative configurations). When the constructed crystal is heated, there is a

clear step decrease in density at T = 1.08, indicative of a first order melting transition

between T = 1.06 and T = 1.08. The resulting liquid has the same density as the

liquid for the cooling traverse. The different positions of the steps in density for

the cooling and heating traverses indicate a region of hysteresis extending from T =

1.02–1.08 over which the liquid and solid phases are metastable to supercooling and

superheating, respectively. The thermodynamic freezing temperature Tf should lie

somewhere in this region.
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5.3.2 Structural Properties

Particle Configurations

Representative particle configurations from the cooling traverse are shown in Figure

5.3. Several changes in structure can be identified. At T = 2 the particles are well

mixed and there is little recognisable order. Neither of the particle species form

large clusters. By T = 1.04, i.e. just before freezing, there are large clusters of

crystalline domains, characterised by squares of four large particles surrounding one

small particle packed together. After the step increase in density at T = 1.02 (see

Figure 5.2) there is obvious long-range order in the system, consistent with this being a

(a)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

(b)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

(c)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

(d)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

Figure 5.3: Representative particle configurations for the cooling traverse at (a) T = 2,
(b) T = 1.04, (c) T = 1.02, and (d) T = 0.7. The small and large particles are represented
by filled and open circles respectively.
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Figure 5.4: Representative particle configurations for the heating traverse at (a) T = 0.4,
(b) T = 1.06, (c) T = 1.08, and (d) T = 1.2. The small and large particles are represented
by filled and open circles respectively.

freezing transition. The units of S1 squares packed together are easy to identify. There

are some defects in the crystal - mainly of the interstitial/vacancy and substitutional

types - which appear to decrease in number with further cooling.

Representative particle configurations from the heating traverse are shown in Fig-

ure 5.4. The regular order of the equilibrated crystal at T = 0.4 has become somewhat

less regular by T = 1.06, and a few defects are visible, but the long-range periodic

order remains. At T = 1.08 there is still significant clustering of S1 units but the

long-range order has been lost. This is where the step decrease in density occurs (see

Figure 5.2, and is consistent with this being a melting transition. By T = 1.02 there

is less crystalline order in the liquid.
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Pair Distribution Functions

The pair distribution functions describe the radially averaged structure about parti-

cles. They are a useful way to identify long-range translational order and also contain

much information about the local structure in a system. For an isotropic substance,

the pair distribution function (PDF) is defined as

gall(r) =

〈
1

Nρ

N∑

i

N∑

j 6=i

δ[r − rij ]

〉

, (5.2)

where N is the total number of particles, ρ the number density, rij the separation

between two particles, and the angular brackets denote an average over different

configurations in time.

For two component systems, there are three partial pair distribution functions

(PPDFs):

gab(r) =
1

xaxbNρ

〈
Na∑

i

Nb∑

j

′δ[r − rij]

〉
a, b = 1, 2, (5.3)

where ρ is the total number density, xa = Na/N is the number fraction of species a

with N = N1 +N2, and the prime in the second summation indicates that terms for

which i = j are omitted when a = b.

The PDF and PPDFs for the cooling traverse are plotted in Figures 5.5 and

5.6. They all show a clear transition from medium to long-range translational order

between T = 1.04 and T = 1.02, which confirms a transition from liquid to crystalline

order at T = 1.02 during the cooling traverse. There are also strong correlations

prior to freezing, with solid-like structure in the PDFs extending out to at least 8σ11.

Note, however, that there is significant change in g11(r) local structure both before and

during freezing. The first peak shifts from r = 1 at high temperature to r = 1.4 in the

crystalline state, with a change in peak intensity already visible prior to freezing. This

can be explained by the disappearance of small particle nearest neighbours (with an

expected separation distance of r = 1), to a local structure where small particles are

contained in square cells of the type shown in Figure 5.1(a). When these are packed

together the expected small-small separation is equal to σ22 = 1.4. To distinguish

this change in local order, we use the first minimum in g11(r) at T = 1.04 as the

cutoff for defining small particle nearest neighbours below T = 1.04. The definition

of nearest neighbours is discussed further below. A consequence of this shift in peak
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Figure 5.5: The partial pair distribution functions g11(r) and g22(r) for the cooling traverse
as a function of distance from T = 5 down to T = 0.7. For T ≤ 3, each curve has been
shifted upwards by one unit from the higher temperature curve directly preceding it.

intensity - and the associated weak local ordering - is that for much of the liquid state

the most intense peak in g11(r) is the third one. This is found at r = 2 and is likely

due to a linear small-large-small particle arrangement. The lack of strong crystalline

local ordering of the small particles prior to freezing (as evidenced by the significant

change in g11(r)) is rather unusual, especially in a 2D system. On the other hand,

both g12(r) and g22(r) show strong local crystalline ordering prior to freezing.

The PDF and PPDFs for the heating traverse are plotted in Figures 5.7 and

5.8. These are very similar to those obtained for the cooling traverse at the same

temperature, the major difference being that the transition from long-range to short-

range translational order occurs between T = 1.08 and T = 1.06. As for the cooling
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Figure 5.6: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) for the cooling traverse as a function of distance from T = 5 down to
T = 0.7. For T ≤ 3, each curve has been shifted upwards by one unit from the higher
temperature curve directly preceding it.

traverse, this change in translational order coincides with a discontinuity in the den-

sity. Additional structure develops in the PDF and PPDFs at very low temperature,

presumably due to a decrease in vibrational motion.

From this data we extract cutoff distances to use for defining nearest neighbours.

Two particles of type a and b are defined to be nearest neighbours if they are separated

by a distance less than cutab. This definition of nearest neighbours will be used when

calculating various structural properties including the local coordination environment

and orientational order parameters. We have generally used the position of the first

minimum in gab(r) as the value for cutab, as this distance usually allows for the best
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Figure 5.7: The partial pair distribution functions g11(r) and g22(r) for the heating traverse
as a function of distance from T = 0.1 up to T = 1.2. For T ≥ 1.18, each curve has been
shifted upwards by one unit from the lower temperature curve directly preceding it.

distinction between the first and second coordination shells. That said, we have not

followed this rule for the current model (with σ11 = 1.0) when defining cut11 at low

temperature. This is because the first maximum in g11(r) shifts to a substantially

larger distance at low temperature that can no longer correspond to a small-small

nearest neighbour interaction, as has been explained above. To be able to identify

this change in local structure about small particles, we have therefore set cut11 at low

temperature equal to the smallest value of cut11 that was calculated from a minimum

following a maximum in g11(r) corresponding to a nearest neighbour interaction.

Cutoff distances for the cooling traverse are listed in Table C.3. For cut11 at T ≤
1.02 we have used the position of the minimum in g11(r) at T = 1.04 for the reasons

just explained. Cutoff distances used for the heating traverse were cut11 = 1.32,

cut12 = 1.66 and cut22 = 1.80. The latter two values were obtained from the first
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Figure 5.8: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) for the heating traverse as a function of distance from T = 0.1 up to T = 1.2.
For T ≥ 1.18, each curve has been shifted upwards by one unit from the lower temperature
curve directly preceding it.

minima in the respective PPDFs, while the value for cut11 was set equal to the value

obtained for the cooling traverse at T = 1.15.

Structure Factors

The partial structure factors can be calculated from the PPDFs as follows:

Sab(k) = xaδab + xaxbρĥab(k), a = 1, 2, (5.4)

where ĥab is the Fourier transform of the total correlation function hab(r) = gab(r)−1

and has the form:

ĥab =

∫ ∞

0

rhabJ0(kr)dr (5.5)
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Figure 5.9: The partial structure factors S11(k) and S22(k) for the cooling traverse for
temperatures from T = 5 down to T = 0.7. For clarity, each curve below T = 5 has been
shifted upwards by 0.2 units above the higher temperature curve directly preceding it.

for a homogeneous fluid in 2D. J0 is the Bessel function of order 0. We have also

calculated the total structure factor

Sall(k) = 1 + ρĥall(k) (5.6)

where ĥall is the Fourier transform of hall(r) = gall(r)−1. The integrals were evaluated

using the extended Simpson’s rule [204].

The structure factors for the cooling traverse, displaced vertically for clarity, are

plotted in Figures 5.9 and 5.10. The oscillations at small k for T ≤ 1.02 are artifacts

of the Fourier transformation procedure due to the truncation of the long-ranged pair
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Figure 5.10: The partial structure factor S12(k) and the total structure factor Sall(k) for
the cooling traverse as a function of wave vector from T = 5 down to T = 0.7. For clarity,
each curve below T = 5 has been shifted upwards by 0.2 units above the higher temperature
curve directly preceding it.

distribution functions at non-zero values and should be ignored. As the temperature

is lowered, the heights of the peaks become more pronounced, and at T = 1.02 they

increase dramatically in height and become very sharp.

The location of the most intense peak (kmax) represents a characteristic length-

scale for the dominant short-range ordering in the system. The decay of density

correlation functions at wave vectors close to kmax therefore provides information

about the main structural relaxation process in the system. As explained in Section

1.2, measurements of intermediate scattering by dynamic light scattering, inelastic

neutron scattering and neutron spin-echo experiments are often made at wave vectors
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close to kmax. We therefore calculate the incoherent intermediate scattering functions

(Section 5.15) at the wave vectors corresponding to the first maxima in S11(k) and

S22(k). For reference, these are listed in Table C.4. We did not investigate structural

relaxation in the solid state and have therefore not calculated structure factors for

the heating traverse.

Local Structure Parameters

Several quantities were used to characterise the local structure of the equimolar mix-

ture. In Figure 5.11 we present the ‘bond’ fractions nab for the cooling and heating

traverses. The ‘bond’ fractions are defined as the fraction of all nearest neighbour

particle pairs that occur between particles of type a and b (see Section 5.3.2 for the

definition of nearest neighbours). They can be related to, and give similar information

to, the first shell partial coordination numbers calculated previously for the equimolar

mixture with σ12 = 1.2 [67].

The changes in local structure during the cooling and heating traverses are very

similar. The majority of nearest neighbour interactions occur between unlike particle

species (about 60%), with most of the remaining interactions being between large

particles. During cooling, there is a sudden decrease in n11 at T = 1.02 that is

accompanied by smaller step increases in n12 and n22; and during heating, the reverse

occurs at T = 1.08. These temperatures coincide with the temperatures at which

there are sudden changes in the other properties already studied. In particular, the

sudden decrease in small particle nearest neighbours at T = 1.02 is consistent with

our interpretation that the first peak in g11(r) at this temperature is no longer due

to small particle nearest neighbours.

Another way to characterise the change in local structure is via the local coordina-

tion environment. We have identified a particular neighbourhood with the following

notation: a small particle with m small neighbours and n large neighbours is desig-

nated as Smn and the analogous large particle is indicated as Lmn. The distribution

of these local environments is plotted as a function of temperature in Figure 5.12 for

both the heating and cooling traverses. Only the most common environments are

shown.

As the equimolar mixture is cooled, the fraction of S04 environments - correspond-

ing to the square tile in Figure 5.1 - increases gradually until T = 1.02 at which point

there is a sudden large increase, followed by a gradual increase as the temperature
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Figure 5.11: ‘Bond’ fractions as a function of temperature for the cooling and heating
traverses. The filled symbols indicate data from the heating traverse. nab is the fraction
of all nearest neighbours particle pairs that occur between particles of type a and b. Error
bars represent one standard deviation.

is further reduced. There is a smaller increase in S14 until T = 1.02 after which

the fraction of these environments begins to fall. Both these results are consistent

with a freezing transition to the S1 crystal at T = 1.02; the S14 order could be due

to a vibrational distortion of two square S04 environments packed together, which

would explain why it decreases when the crystal is cooled. The main changes in large

particle environments is a gradual increase in L43 until T = 1.02 at which point there

is a sudden drop followed by a further gradual decrease with cooling. In a perfect S1

crystal the large particles will lie at the centre of four square unit cells packed together

- corresponding to vertex (b) in Figure 5.1 - and will thus have an L44 environment.

As this quantity was not calculated we can only speculate that the variation in L43 at

low temperature is due to this being a vibrational distortion of the L44 environment.

We do know that 52% of local environments are unaccounted for at T = 0.7. Since the

S04 and S14 environments make up about 48% of all local environments at T = 0.7,

and all 5-, 6- and 7-fold environments have been quantified, we assume that most of

the remaining 52% is in the form of L44 environments. The other local environments

present at high temperature make a neglible contribution below T = 1.02.

The heating traverse shows very similar variation in the distribution of local en-

vironments as a function of temperature. The major difference is that the sudden
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Figure 5.12: The distribution of local environments as a function of temperature for (a)
heating, and (b) cooling traverses. We have identified a particular neighbourhood with the
following notation: A small particle with m small neighbours and n large neighbours is
designated as Smn and the analogous large particle is indicated as Lmn.
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jumps now occur between T = 1.06 and T = 1.08. All the large particles must be in

L44 environments at T = 0.1.

Orientational Order Parameters

We have already established that the equimolar mixture has long-range translational

order at low temperature. Here we define a set of order parameters to investigate

the local orientational order and long-range correlations between local environments.

Following the definition of a hexatic order parameter by Broughton et al. [171], we

define a set family of n-fold orientational order parameters for particle j as

ψn(rj) =
1

nj

nj∑

k=1

expinθjk (5.7)

where nj is the number of nearest neighbours of particle j at position rj and θjk is

the angle (in radians) made by the bond between particle j and particle k and an

arbitrary direction (here chosen to be the x axis). The order parameter equals one if

particle j lies at the centre of a regular n-fold polygon made up of its neighbours.

A set of bulk averaged n-fold order parameters can then be defined as follows:

Ψn =

〈
1

N

N∑

j=1

|ψn(rj)|
〉
, (5.8)

where the partial n-fold order parameters are given by

Ψn,a =

〈
1

Na

Na∑

j=1

|ψn(rj)|
〉

with a = 1, 2. (5.9)

The angular brackets represent an average over various configurations separated in

time.

The bulk averaged n-fold order parameters Ψn probe the local orientational order.

We consider the 4-, 6- and 12-fold order parameters. Both 4- and 6-fold local envi-

ronments are common in the set of models that we have studied, and a random tiling

of squares and triangles (a possible structure for the non-equimolar mixture explored

in Section 5.4) will have long-range 12-fold order.

Their temperature variation is plotted in Figure 5.13 for both the heating and

cooling traverses. Ψ4,1 increases gradually below T = 1.5 and undergoes a sudden
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Figure 5.13: The temperature dependence of the bulk averaged n-fold order parameters
Ψn, where n = 4, 6, 12, and their small (Ψn,1) and large (Ψn,2) particle contributions, for the
cooling and heating traverses. The filled symbols indicate data from the heating traverse.
The error bars represent one standard deviation about the average.
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increase at T = 1.02 followed by a further gradual increase, very similar to the

behaviour of the S04 environment. At the same time there is a decrease in Ψ4,2,

which can be explained by large particles increasingly finding themselves in vertices

of type (b) (see Figure 5.1). The large particles at the centre of these vertices will have

L44 environment which, having 8-fold orientational order, will result in Ψ4,2 = 0. The

local 6-fold order decreases suddenly during cooling at T = 1.02. The variations in

Ψ12,a appears to contain no additional information. The changes in bulk orientational

order are similar for the heating traverse, except that the jump in properties now

occurs at T = 1.08.

Next we test for the presence of long-range orientational correlation between local

domains. The spatial correlation of the orientation of the local n-fold environments

is measured by the associated correlation functions

Cn(r) =

〈
1

Nρ

N∑

j=1

N∑

k 6=j

ψn(rj)ψ
∗
n(rk)δ(r − |rj − rk|)

〉

(5.10)

and

Cn,a(r) =

〈
1

Nρx 2
a

Na∑

j=1

Na∑

k 6=j

ψn(rj)ψ
∗
n(rk)δ(r − |rj − rk|)

〉

with a = 1, 2. (5.11)

These orientational correlation functions are weighted by the translational corre-

lations. To see them free of this bias we plot the ratios Gn(r) = Cn(r)/gAll(r),

Gn,1(r) = Cn,1(r)/g11(r), and Gn,2(r) = Cn,2(r)/g22(r). We consider the cases where

n = 4, 6, 12 for the reasons outlined above.

In Figure 5.14, we plot the partial 4-fold orientational correlation function G4,1(r)

for both the cooling and heating traverses. We have not plotted G4,2(r) as there was

no observable structure in this function. The functions have been displaced verti-

cally for clarity. There is clearly long-range 4-fold orientational correlation between

small particle environments for T ≤ 1.02 during the cooling traverse, and T ≤ 1.06

during the heating traverse, and only local order at higher temperature, which is

consistent with the existence of the S1 crystal state at these temperatures. We have

also calculated the 6- and 12-fold orientational correlation functions, however as they

provide little additional insight we do not plot them. The 6-fold correlation functions

have only a single peak and show little variation with temperature, while the 12-fold

correlation functions are very similar to the 4-fold correlation functions and can be
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Figure 5.14: The partial 4-fold orientational correlation function G4,1(r) for the small
particles, for the (left) cooling and (right) heating traverses. For clarify, functions have
been offset vertically by 0.4 units above the preceding curve.

explained by the presence of 4-fold order in the system.

In summary, the equimolar mixture freezes at T = 1.02 into a largely defect-free

S1 crystal structure. There appears to be substantial crystalline order in the liquid

prior to freezing, in the form of S04 environments and a large uncounted fraction

of local environments most of which are probably L44 environments. There is also

evidence for medium-range packing of S04 cells, from the medium-range structure in

the pair distribution functions, and from the high proportion of S14 environments.

The structural changes during heating from a perfect S1 crystal are very similar, and

confirm a region of metastability extending from T = 1.02–1.08.



5.3 Freezing and Melting of the Equimolar Mixture 137

5.3.3 Dynamics and Structural Relaxation

In this section, we present an analysis of the changes in particle transport and struc-

tural relaxation that occur upon cooling and heating of the equimolar mixture. We

report some of the main time correlation functions that are routinely measured in

MD simulations.

Intermediate Scattering Functions

The timescales of structural relaxation can be probed quite readily by computing

density correlation functions such as the incoherent and coherent intermediate scat-

tering functions. For the equimolar mixture, we have calculated the incoherent (or
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Figure 5.15: The incoherent scattering functions Fs,1(k1, t) and Fs,2(k2, t) for the small
and large particles, respectively. The wave vectors k1 and k2 are the first peak positions in
the respective partial structure factors (listed in C.4). From left to right the temperatures
of the curves are T = 5, 3, 2, 1.5, 1.2, 1.15, 1.1, 1.08, 1.06, and 1.04.



138 The S1 Crystal and a Defected Random Tiling

0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

 

 e,1   e,2

 D  -1 
1   D  -1

2

 D   -1
h

 D   -1
h

lo
g 10

 X

1/T

T=1.04
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calculated for the heating traverse, D−1
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self) intermediate scattering functions

Fs,a(k, t) =
1

Na

〈
Na∑

j=1

exp(ik.[rj(t) − rj(0)])

〉
, a = 1, 2 (5.12)

for both particle species. The angular brackets denote an average over time origins

and an angular average over the directions of the wave vector k. The magnitudes of

k were chosen as the positions of the first maxima in the respective partial structure

factors. The first peak was used since this is the largest one and therefore the best

wave vector at which to monitor structural relaxation. Since the position of this

peak varies significantly with temperature, we have used a temperature dependent

magnitude for k, the values of which are listed in Table C.4.

We have only calculated incoherent scattering functions for the cooling traverse.

These are plotted in log-linear form in Figure 5.15 for T ≥ 1.04, i.e. for the liquid

phase. It would be interesting to extend this analysis to the solid phase and to the
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heating traverse to further investigate the nature of defect motion in the S1 crystal.

We find that the relaxation curves decay smoothly and broaden with decreasing tem-

perature, until at T = 1.04 they span over two decades in time. There is no sign of a

plateau region at intermediate times.

Structural relaxation times τe,1 and τe,2 are defined as the time taken for the

incoherent scattering functions Fs,1(k, t) and Fs,2(k, t), respectively, to decay to 1/e

of their initial values. The temperature dependences of these relaxation times, plotted

in Figure 5.16, appear to be Arrhenius at all T ≥ 1.04. This is consistent with the

equimolar mixture existing as a normal liquid in this temperature range.

Mean-Squared Particle Displacements

The mean-squared displacement (MSD) can provide important information regarding

the dynamics of particles on different length scales, and is defined as

R2(t) =
1

N

〈
N∑

i=1

|ri(t) − ri(0)|2
〉
, (5.13)

where the angular brackets represent an average over time origins. The MSD is also

a useful way to distinguish between a rigid system and a fluid one.

At very short times, the MSD has a power law dependence on time with an

exponent of two, which corresponds to ballistic motion. A particle undergoes ballistic

motion until it experiences its first collision with another particle, and such motion

is therefore present even in systems that are configurationally frozen. The end of

this region can therefore be used to estimate the first collision time. At much longer

times, if the system is fluid, the MSD has a power law dependence on time with a

slope of one, indicating diffusive motion.

A long-time diffusion constant can be extracted from the MSD. For the 2D system

this is given by

D =
1

4
lim
t→∞

dR2(t)

dt
(5.14)

Strictly speaking, the diffusion constant cannot be defined asymptotically in 2D as,

according to the Landau-Peierls theorem [205], it diverges in the thermodynamic

limit. However, in practice this is not an issue. The upward curve in the MSD

at long times is so slow to appear that the diffusion constant is still well-defined

and meaningful on the timescale of the simulations. A comparison of the diffusion
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constants and structural relaxation times can sometimes reveal interesting differences

in the dynamics of incoherent processes on different length scales.

The MSDs over all particles R2(t), and averaged over the two particle species,

R 2
2 (t) and R 2

1 (t) are plotted in Figure 5.17 for the cooling traverse and in Figure

5.18 for the heating traverse. All the plots are qualitatively very similar. At very

short times, the curves have a power law dependence on time with an exponent of

two, which corresponds to ballistic motion, while at much longer times, for sufficiently

high temperature, the curves have a smaller slope of one indicating diffusive motion.

The first collision time for this system is about 0.01τ . The sudden increase in R 2
1 (t)

for the heating traverse at T = 0.9 is due to the appearance of defect approx. 2000τ

into the production run.

Upon cooling, there is an increasing separation in timescales between ballistic

and diffusive motion, accompanied by the sudden appearance of a plateau region at

intermediate times at T = 1.02. This intermediate region is often associated with

transient caging of particles by their neighbours. As we have already described, the

structure of the equimolar mixture changes dramatically at T = 1.02, consistent with

a freezing transition to a defected S1 crystal at this temperature. The MSD curves

therefore suggest that there must be significant motion - presumably of the defects

- in the S1 crystal. Additional cooling runs would be useful to investigate at what

temperature the defect motion eventually stops.

During the heating traverse, only ballistic motion is present at low temperature.

The constructed S1 crystal must therefore remain defect free. Eventually, at T = 0.95,

R 2
1 (t) begins to rise again after about 100τ followed by R 2

2 (t) after about 1000τ . For

T ≥ 1.08 the MSD curves again show typical liquid behaviour with no plateau region

at intermediate times. A survey of the equilibrated configurations show that the

crystal structure remains defect free until T = 0.95 at which point a few defects

appear. We therefore suggest that it is these defects that are responsible for the rise

in the MSD at long times between T = 0.95 and T = 1.06. We therefore conclude that

motion in the defected crystal is dominated by small particles. This contrasts with

the behaviour observed after freezing during the cooling traverse when both particle

species have similar mobility.

Diffusion constants were measured for both the cooling and heating traverses in

the region where the MSD has reached its long-time constant value (R 2
a (t) > σ2

11).

An Arrhenius plot of the inverse diffusion constants is shown in Figure 5.16. They
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Figure 5.17: The time dependence of the MSD averaged over all particles R2(t), and
averaged over the two particle species, R 2

2 (t) and R 2
1 (t) for the cooling traverse. The
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Figure 5.18: The time dependence of the MSD averaged over all particles R2(t), and
averaged over the two particle species, R 2

2 (t) and R 2
1 (t) for the heating traverse. The
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have Arrhenius temperature dependence for the entire liquid region (T ≥ 1.04 for the

cooling traverse, and T ≥ 1.08 for the heating traverse). For reference, the struc-

tural relaxation times and diffusion constants are also listed in Table C.5. Diffusion

constants measured for the defected crystals are generally two orders of magnitude

smaller than for the low-temperature liquid.

The Non-Gaussian Parameter

In a harmonic solid, and in an equilibrium liquid at times sufficiently long for particles

to randomise the initial distribution of momenta, the probability of a particle displace-

ment of magnitude r is proportional to a simple Gaussian function exp(−Cr2), where

C is a constant that may depend on time. Substantial deviations from such Gaussian

behaviour have been observed in many simulations of supercooled liquids at interme-

diate times. These deviations can be quantified by a non-Gaussian parameter [206]

defined as

A(t) =
R4(t)

C[R2(t)]2
− 1, (5.15)

where R4(t) = 〈|ri(t) − ri(0)|4〉 is the mean-quartic displacement, R2(t) is the mean-

squared displacement, and the constant C equals 5/3 in 3D and 2 in 2D. For a

Gaussian process A(t) = 0 for all times. Non-Gaussian parameters for individual

particles species, represented by Aa(t), can also be defined by averaging only over

particles of type a.

Hurley and Harrowell [74], studying a model of particles undergoing a random walk

in a dynamically heterogeneous environment, demonstrated that large values of A(t)

at intermediate times could be attributed to a broad distribution of local mobilities

in the system. Thus, the non-Gaussian parameter can be used as a measure of the

degree of dynamic heterogeneity. The maximum in A(t) is expected to increase as

the distribution of local relaxation times broadens.

We have calculated the non-Gaussian parameters for both the cooling traverse

(plotted in Figure 5.19) and the heating traverse (plotted in Figure 5.20). During

cooling, the non-Gaussian parameters remain very small at all times for T ≥ 1.04.

Suddenly, at T = 1.02, a large peak appears at intermediate times, and upon further

cooling the amplitude of the peak and the time at which it occurs increase. During

heating, the non-Gaussian parameters remain very small at all times for T < 0.9 and

T ≥ 1.08. At T = 0.9 a relatively narrow peak of large amplitude appears at relatively

late time in A1(t) that can be attributed to the appearance of a defect in the crystal
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structure at about 2000τ into the production run. Between T = 0.95 and T = 1.06,

a large peak again occurs at intermediate times with an amplitude that is larger at

lower temperature. The unusually shaped peak at T = 1.06 can be attributed to

a late onset of large particle defect motion. These results are all consistent with a

freezing transition at T = 1.02 during cooling and a melting transition at T = 1.08

during heating. The appearance of the large peak at intermediate times in the non-

Gaussian parameters coincides with the appearance of mobile defects in the crystal

structure and can be explained by these. The peaks in A2(t) during the heating

traverse appear at much later times, for the equivalent temperature, than during the

cooling traverse. This suggests that the defect motion during the heating traverse is

qualitatively different than during the cooling traverse.

Additionally, the large oscillations inA1(t) are visible between 10τ and 100τ during

the heating traverse. These coincide with similar oscillations in the plateau region

of R 2
1 (t) for all T ≤ 1.06. Similar damped oscillations have been observed in the

plateau region of the incoherent scattering functions for several glass-formers including

the model studied in Part I. For that particular model, Perera and Harrowell [44]

concluded that while system size could influence the frequency of these modes, their

presence was a consequence of the transient rigidity of the liquid [44]. The present

work demonstrates that such oscillations can also appear in a crystalline solid, either

with or without defects. The unusually large size of the oscillations in A1(t) observed

during the heating traverse may be related to the very small ‘mass’ used for the

Anderson pressure piston Qv (see Section 5.2).

Prior to freezing, the structural relaxation times follow an Arrhenius temperature

dependence and the equimolar mixture shows typical liquid dynamics. In the solid

phase, there is substantial defect motion in the high-temperature crystal, during both

the heating and cooling traverses, as evidenced by a late rise in the MSDs and large

peaks in the non-Gaussian parameters. During heating defects appear at T = 0.9

- initially due to small-particle motion, but at later times also due to large-particle

motion. This reduced large-particle mobility contrasts with the frozen crystal in

which the small and large particles have almost identical mobilities. The structural

and dynamic data for both heating and cooling traverses is consistent with a transition

from rigid S1 crystal to crystal with defect motion to normal liquid and vice versa.

The equimolar mixture is discussed further in Section 5.5.
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Figure 5.19: The non-Gaussian parameter averaged over all particles, A(t), and averaged
over only the small and large particles, A1(t) and A2(t), respectively, for the cooling traverse.
The temperatures of the curves are as listed for Figure 5.17. Observe the sudden change in
behaviour at T = 1.02.
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Figure 5.20: The non-Gaussian parameter averaged over all particles, A(t), and averaged
over only small and large particles, A1(t) and A2(t), respectively, for the heating traverse.
The temperatures of the curves are as listed for Figure 5.18. Observe the sudden change in
behaviour at T = 1.08. The sharp peak in A1(t) at T = 0.9 is due to the appearance of a
defect during the production run.
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5.4 Amorphisation and Melting of the

Non-Equimolar Mixture (x1 = 0.3167)

In this section we characterise the thermodynamic, structural and dynamic properties

of the non-equimolar mixture. The composition (x1 = 0.3167) was chosen to favour

a random tiling with maximal configurational entropy as explained in Section 5.1. A

2D quasicrystal approximant can also be constructed at this composition [159]. When

cooled from the fluid state, we find that the mixture forms an amorphous solid with

well-defined local order and defects. In contrast, a periodic structure with similar

composition melts discontinuously (see Section 5.4.4). This leads us to speculate on

the relationship between random tilings, quasicrystal and amorphous solids.

5.4.1 Thermodynamic Properties

For reference, thermodynamic averages for the cooling traverse of the non-equimolar

mixture are tabulated in Table C.6. The non-equimolar mixture was studied at many

closely spaced temperatures, including at high temperature, to improve confidence

in the nature of the transition from liquid to solid. Figure 5.21 shows the isobaric
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Figure 5.21: Isobaric (P = 13.5) phase diagram. Error bars represent one standard
deviation. Note the lack of a step in density upon cooling.
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phase diagram for the cooling traverse. The density increases smoothly indicating a

continuous transition from the liquid to solid state. There is perhaps a small change

in slope at T = 0.45, which is when the system falls out of local equilibrium. In the

next section we characterise the changes in structure that occur during cooling of the

non-equimolar mixture. Only data at selected temperatures (T = 5, 3, 2, 1, 0.9, 0.8,

0.7, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, and 0.2) are plotted.
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Figure 5.22: Representative particle configurations at (a) T = 1, (b) T = 0.7, (c) T = 0.4,
and (d) T = 0.2 for the cooling traverse. The small and large particles are represented by
filled and open circles respectively.
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5.4.2 Development of Random-Tiling Order

Particle Configurations

Selected particle configurations are plotted in Figure 5.22. At high temperature

(T = 1) the liquid appears homogeneous but there is no clustering of small particles.

By T = 0.7 local square and equilateral packings are apparent and small regions of

S1 crystal order can be observed. These crystalline regions appear to have grown by

T = 0.4 and the structure is now well described as a random tiling of squares and

equilateral triangles with the occasional defect. Most of the structure is now rigid,

as can be seen by comparing this configuration with the one after further cooling

to T = 0.2. However, some changes are apparent in the lower left quarter of the

structure indicating that motion is still possible at these very low temperatures.

Pair Distribution Functions

In Figures 5.23 and 5.24 we plot the pair distribution function (PDF) and the partial

pair distribution functions (PPDFs), as defined in Section 5.3.2. It is clear that there

is no development of long-range translational order on cooling. Some increase in

local structure is apparent but this does not extend beyond r = 7σ11. The most

obvious change is that the position of the first peak in g11(r) shifts from r = σ11 to

r = 1.4σ11 as the temperature is decreased. This is similar to what was observed for

the equimolar mixture and can be explained by the disappearance of small particle

nearest neighbours. As we demonstrate in Section 5.4.2, the small particles become

surrounded by four large particles at low temperature forming the equivalent of square

tiles resulting in a small particle closest interaction length of σ22 = 1.4σ11. The large

intensity of the peak around r = 2σ11 relative to the first peak in g11(r) is due to

a high relative proportion of linear small-large-small particle arrangements and can

be explained by the majority of large particle vertices being of types (c) and (d) as

illustrated in Figure 5.1. Thus the medium-range order in the non-equimolar mixture

is quite different from that in the equimolar mixture. We explore this further in

Section 5.4.2.

From these data we extract cutoff distances to use for defining nearest neighbours.

We have generally used the position of the first minimum in gab(r) as the value for

cutab. The exception is for cut11 where we have used the position of the first minimum

in g11(r) at T = 1.5 as the cutoff for all T ≤ 1. This is necessary in order to distinguish
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Figure 5.23: The partial pair distribution functions g11(r) and g22(r) as a function of
distance from T = 5 down to T = 0.2. For T ≤ 3, each curve has been shifted upwards by
one unit from the higher temperature curve directly preceding it.

changes in local structure about small particles. Recall that as the temperature

decreases there is a large shift in the position of the first peak to a value no longer

corresponding to a nearest neighbour particle interaction. The following cutoffs were

obtained: (cut11, cut12, cut22) = (1.44, 1.71, 2.06) for T ≥ 2, and (1.37, 1.61, 1.83) for

T ≤ 1.

The partial structure factors were calculated from the PPDFs as explained in

Section 5.3.2. For reference, they are plotted along with the total structure factor in

Figures C.1 and C.2.
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Figure 5.24: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) as a function of distance from T = 5 down to T = 0.2. For T ≤ 3, each
curve has been shifted upwards by one unit from the higher temperature curve directly
preceding it.

Local Structure

Several quantities (defined in Section 5.3.2) were used to characterise the local struc-

ture of the non-equimolar mixture. The ‘bond’ fractions nab are shown in Figure 5.25.

The majority of nearest neighbour interactions occur between large particles at all

temperatures, closely followed by unlike particle interactions. Upon cooling below

T = 0.6, there is a small step in n12 to lower values and a similar increase in n22,

consistent with a small increase in the clustering of large particles. n11 remains very

low for all T ≤ 1, indicating that small particles are separated from each other at

these temperatures. This is consistent with the earlier observation that the peak in
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Figure 5.25: Nearest neighbour ‘bond’ fractions as a function of temperature for T ≤ 1.
nab is the fraction of all nearest neighbours particle pairs that occur between particles of
type a and b.

g11(r) around r = σ11 disappears when the mixture is cooled below T = 2 (see Figure

5.23).

In Figure 5.26 the distribution of local environments is plotted as a function of

temperature. This analysis reveals that there is more variation in local structure

during cooling than was picked up by the ‘bond’ fractions. There is a large gradual

increase in the fraction of L25 environments between T = 1 and T = 0.4 that is

accompanied by smaller smooth decreases in the fraction of L34, L24 and L15 envi-

ronments. There is also a small increase in the fraction of L06 environments. Large

particles at the centre of vertices of types (c) and (d) shown in Figure 5.1 will have

L25 local order. Thus the increase in L25 order could be due to an increase in the

formation of these types of vertices. The presence of some L16 order in the system

could be due to slightly distorted L25 environments. The observation that L16 or-

der decreases with temperature is consistent with these being vibrational distortions.

The small increase in L06 environments could indicate an increase in the clustering of

large particles or an increase in the number of isolated vertices of type (e) in Figure

5.1. Although not calculated, the fraction of L44 environments, corresponding to
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Figure 5.26: The distribution of local packing environments as a function of temperature.
We have identified a particular neighbourhood with the following notation. A small particle
with m small neighbours and n large neighbours is designated as Smn and the analogous
large particle is indicated as Lmn.

vertex (b) in Figure 5.1, cannot account for more than 8% of the total. Therefore

the majority of large particles vertices are of type (c) and (d), in contrast to the

non-equimolar mixture where the structural data is consistent with the majority of

large particle vertices being of type (b).

For small particles, the main changes during cooling are a sudden increase in S04

environments at T = 0.55 accompanied by a similarly sized decrease in S05 order.

S04 order can be identified with the square tile shown in Figure 5.1(a), while the

S05 environment is a non-ideal local packing. The substantial fraction of S14 order

must be due to a vibrational distortion of two S04 units packed together, as the

peak in g11(r) at r = σ11 disappears on cooling and we observe no pentagonal S14

environments in the low-temperature configurations [see, for example, Figure 5.22(d)].

Reducing the cutoff distance used to define nearest neighbour interactions between

small particles would help to better distinguish between S04 and S14 environments.

Below T = 0.4 there is little change in any of the local environments, consistent with
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the structure being largely frozen below this temperature.

Orientational Order Parameters

In order to quantify the orientational order throughout the system we have introduced

the n-fold orientational order parameters (see Section 5.3.2 for their definitions). The

temperature variation for the 4-, 6- and 12-fold local order parameters is plotted in

Figure 5.27. The major change upon cooling is an increase in the 4-fold order about

small particles Ψ4,1 below T = 2 from 0.4 to 0.7, and a decrease in Ψ6,1 over the

same temperature range from 0.45 to 0.25. There is also a small increase in 6-fold

order about large particles from T = 2–1. There are no particles with 12 nearest

neighbours so the increase in 12-fold bulk order must be due to the changes in 4- and

6-fold orientational order.

Next we test for long-range orientational correlation of the local domains. In

Figure 5.28 we plot the partial 4-fold orientational correlation function about small

particles G4,1(r) and the partial 6-fold orientational correlation function about large

particles G6,2. There was no structure in G4,2(r) and only a small first peak in G6,1,

so we do not plot these. Upon cooling, there is a small increase in orientational cor-

relation between 4-fold environments about small particles. The peak structure is

complex and different to that observed for the S1 crystal (see Figure 5.14). We there-

fore conclude that the medium-range order that develops about small particles is not

of the S1 crystal type. There is also a similar but smaller increase in structure in G6,2.

This peak structure is different from that observed when there are substantial crys-

talline domains of large particles (see, for example, Figure 7.9), so we conclude that

the medium-range order that develops about large particles is not due to crystalline

domains of hexagonally-packed large particles, i.e. clustering of type (e) vertices. A

random square-triangle tiling would be expected to have long-range 12-fold orienta-

tional order, so we plot the 12-fold orientational correlation function in Figure 5.29.

There is some growth in the extent of 12-fold orientational correlations between both

small and large particle environments, however there is clearly no long-range orienta-

tional order in the system. Therefore, we conclude that the local packing defects in

this system are sufficient to disrupt this long-range orientational order.

We conclude that the non-equimolar mixture shows no sign of crystallisation or

phase separation upon cooling from the liquid state. The low-temperature local struc-

ture is dominated by square S04 small particle environments, and L25 large particle
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Figure 5.27: The temperature dependence of the bulk averaged n-fold order parameters
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bars represent one standard deviation.
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Figure 5.28: The partial 4-fold orientational correlation function G4,1(r) for the small
particles (left), and the partial 6-fold orientational correlation function G6,2(r) for the large
particles (right), as defined in the text. For clarify, functions have been offset vertically.

environments. Our results suggest that approximately 50% of large particles find

themselves in vertices of type (c) and (d), with another 10-20% each in vertices of

type (b) and (e), where the vertex types refer to those in Figure 5.1. Although only

3% of particles find themselves in pentagonal S05 environments, these appear suffi-

cient to disrupt the formation of long-range 12-fold orientational order. In the next

section, we present an analysis of the changes in particle transport and structural

relaxation that occur during cooling.
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Figure 5.29: The partial 12-fold orientational correlation functions G12,1(r) and G12,2(r)
for the small and large particles respectively, as defined in the text. For clarify, functions
have been offset vertically.

5.4.3 Onset of Glassy Dynamics

Intermediate Scattering Functions

The timescales of structural relaxation can be probed quite readily by computing den-

sity correlation functions such as the incoherent and coherent intermediate scattering

functions. For the non-equimolar mixture, we have calculated the incoherent (or self)

intermediate scattering functions Fs,1(k, t) and Fs,2(k, t) for the small and large parti-

cles, respectively (see Section 5.3.3 for their definitions). Fs,1(k, t) and Fs,2(k, t) have

been measured at the positions of the first maxima in the static structure factors

S11(k) and S22(k) (plotted in Figure C.1). The positions of these maxima are weakly
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Figure 5.30: The incoherent scattering functions Fs,1(k1, t) and Fs,2(k2, t) for the small
and large particles, respectively. The wave vectors k1 and k2 are the first peak positions
in the respective partial structure factors (listed in Table C.7). From left to right the
temperatures of the curves are T = 5, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3
and 0.2. Note the appearance of a two-step relaxation process at low temperature.

dependent on temperature and are listed in Table C.7.

Log-linear plots of the self intermediate scattering functions are shown in Figure

5.30. The relaxation curves broaden with decreasing temperature until below T = 0.5

they are no longer able to decay to zero within the finite time scale of the simulations.

The relaxation functions already span over five decades in time at these temperatures.

At T = 0.6 a step appears in the relaxation curves at intermediate times. This step

broadens into a plateau with an amplitude that increases with decreasing temper-

ature. The height of the plateau also increases with decreasing temperature. Such

two-step relaxation functions have been observed in a wide range of glass-forming

systems as discussed in Section 1.2. Damped oscillations are also observed in the
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Figure 5.31: Arrhenius plot of the structural relaxation times τe,1 and τe,2 and the inverse
diffusion constants D−1

1 and D−1
2 . The dashed lines are linear regressions through the data

for T ≥ 0.7. Note the divergence from Arrhenius behaviour at low temperature.

plateau region similar to what has been observed for other glass-formers including

the model studied in Part I. Perera and Harrowell [44] concluded that while system

size can influence the frequency of these modes, their presence is a consequence of

the transient rigidity of the liquid.

Structural relaxation times τe,1 and τe,2 are defined as the time taken for the

incoherent scattering functions Fs,1(k, t) and Fs,2(k, t), respectively, to decay to 1/e

of their initial values. The temperature dependences of these relaxation times, plotted

in Figure 5.31, appear to be Arrhenius at high temperature, but diverge strongly from

Arrhenius dependence as the temperature drops below T = 0.7, behaviour typical of

a fragile liquid. Note that the structural relaxation times for the small and large

particles are almost identical, which is somewhat unusual.

Mean-Squared Particle Displacements

The mean-squared displacement (MSD) over all particles R2(t), and averaged over

the two particle species, R 2
2 (t) and R 2

1 (t) are plotted in Figure 5.32. All three plots
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are qualitatively very similar. At very short times, the curves have a power law

dependence on time with an exponent of two, which corresponds to ballistic motion,

while at much longer times, for sufficiently high temperatures, the curves have a

smaller slope of one indicating diffusive motion. Upon cooling, there is an increasing

separation in timescales between ballistic and diffusive motion, accompanied by the

appearance of a plateau region at intermediate times. This intermediate region is

often associated with transient caging of particles by their neighbours. As for the

relaxation curves, the MSDs also show behaviour that is typical of glass-forming

systems.

Diffusion constants were measured in the region where the MSD has reached its

long-time constant value (R 2
a (t) > σ2

11). The inverse diffusion constants are plotted

against temperature in Figure 5.31. They show a weaker deviation from Arrhenius

temperature dependence than the structural relaxation times, with the onset of this

deviation occurring around the same temperature, i.e. T = 0.6. The ratio D1/D2 ≈ 1

for T ≥ 0.7 after which it increases slightly with further cooling, i.e. the diffusion

constants, like the relaxation times, are almost identical for the small and large par-

ticles. For reference, the structural relaxation times and diffusion constants are also

listed in Table C.8. In the next section we investigate the appearance of dynamic

heterogeneity in the liquid.

Non-Gaussian Parameter

As explained in Section 5.3.3, the non-Gaussian parameters Aa(t) can be used as a

measure of the degree of dynamic heterogeneity in a sample. They are plotted for the

present system in Figure 5.33. A rapid rise in non-Gaussian behaviour is observed at

low temperature for both the large and small particle species. As expained earlier,

large values at intermediate times can be attributed to a broad distribution of local

mobilities. Therefore, this is evidence that the dynamics in the supercooled liquid

is becoming heterogeneous. The maximum value of A1(t) increases rapidly below

T = 0.7, while the maxima in A2(t) show a similar but smaller increase over the same

temperature range. The trend is for the maxima to move to longer times as they

increase in height; below T = 0.4 the finite observation time of the simulations is too

short to observe them. A2(t) and A1(t) are no longer able to decay to zero below

T = 0.45. From this, we conclude that the system falls out of equilibrium near this

temperature.
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The changes in dynamic properties upon cooling of the non-equimolar mixture -

the rapid increase in structural relaxation times, the appearance of a plateau in the in-

coherent scattering functions and MSDs, the non-Arrhenius temperature dependence

of the structural relaxation times and inverse diffusion constants at low temperature,

and the onset of non-Gaussian dynamics - are all consistent with what has been ob-

served for other model glass-formers. Our structural analysis found no development

of long-range translational or orientational order, or tendency to crystallise or phase

separate. Thus the non-equimolar mixture appears to be a good glass-former.

5.4.4 Melting of a Periodic Structure

The continuous transition from fluid to amorphous solid for the non-equimolar system

is intriguing. Why does it not freeze into a solid phase with perfect local packing, into

either a random or ordered tiling with only square and triangular local order? How

does the high configurational entropy of the solid state affect the nature of this phase

transition? Is the presence of a few defects sufficient to disrupt a weak first-order

transition?

As a first step towards addressing these questions, we constructed and heated

a periodic structure with similar composition. The constructed particle packing is

shown in Figure 5.34(a), and has vertex frequencies in the ratio b : c : d : e = 0 :

6 : 6 : 1, where the vertices are as drawn in Figure 5.1. The book ‘Tilings and

Patterns’ [207] contains this and many other examples of periodic square-triangle

tilings. In comparison, the ratio of vertex frequencies for a random tiling at this

composition is b : c : d : e = 0 : 1.26 : 11.6 : 1 [198].

A total of N = 1444 particles were enclosed in a rectangular box with periodic

boundary conditions in order to accommodate the rectangular unit cell of the crystal.

We used a simulation cell with a fixed width:height ratio of x/y = 0.866, and the

ratio of small to large particles was N1 : N2 = 456 : 988 giving a composition of

x1 = 0.3158. The model parameters and MD algorithm were as described previously

in Section 5.2. The NPA Hamiltonian for independent scaling of x and y axes is given

in Appendix A.

Only a limited set of equilibration runs were made to probe the nature of the

solid to fluid phase transition. The system was equilibrated for 1000τ at reduced

temperatures of T = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,

0.85 and 0.9. The starting configuration of the run at T = 0.2 was the constructed
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Figure 5.34: (a) The constructed periodic packing equilibrated at T = 0.2, and config-
urations (b) during and (c) after melting at T = 0.6. The small and large particles are
represented by filled and open circles respectively.

periodic packing shown in Figure 5.34(a) whereas, for each of the higher temperatures,

the initial configuration for the equilibration run came from the final configuration

of the preceding lower temperature run. During these runs, the crystalline solid

melted at T = 0.7. To test for stability to melting, additional 10, 000τ runs were

made at T = 0.65, 0.6 and 0.55 starting from the final configuration of the initial

1000τ equilibration runs. The solid melted at both T = 0.65 and 0.6 but was stable

at T = 0.55. We therefore conclude that the melting temperature lies somewhere

between T = 0.55 and T = 0.6. There are some structural defects present at T = 0.55

in the form of particle packings that do not correspond to ideal tilings.
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Figure 5.35: Isobaric (P = 13.5) phase diagram. Note the step in density upon cooling.

Selected configurations before, during, and after melting are shown in Figure 5.34.

The latter part of the equilibration runs - when there was no longer any apparent

change in thermodynamic properties - was used to obtain values for the equilibrium

densities (shown in Figure 5.35). There is a clear step in density between T = 0.6

and 0.55. The densities of the liquid state points are very similar to those obtained

previously upon cooling.

5.5 Discussion and Conclusions

The equimolar mixture freezes into a largely defect-free S1 crystal structure at T =

1.02. There appears to be substantial crystalline order in the liquid prior to freez-

ing, in the form of S04 environments and a large unaccounted for fraction of local

environments which are most likely L44 environments. There is also evidence for

medium-range packing of S04 cells. The structural changes during heating from a per-

fect S1 crystal are very similar, and confirm a region of metastability extending from

T = 1.02–1.08. Prior to freezing, the structural relaxation times follow an Arrhenius

temperature dependence and the equimolar mixture shows typical liquid dynamics.
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In the solid phase, there is substantial defect motion in the high-temperature crys-

tal, during both the heating and cooling traverses. During heating, defects appear

at T = 0.9, initially due to small-particle motion, but at later times also involving

large-particle motion. This reduced large-particle mobility contrasts with the frozen

crystal in which the small and large particles have almost identical mobilities. The

structural and dynamic data for the heating traverse is consistent with a transition

from rigid S1 crystal to crystal with defect motion to normal liquid and vice versa

for the cooling traverse.

In contrast, the non-equimolar mixture shows no sign of crystallisation or phase

separation upon cooling from the liquid state. The low temperature local structure is

dominated by square S04 small particle environments, and L25 large particle environ-

ments. Our results suggest that approximately 50% of large particles find themselves

in vertices of type (c) and (d), with another 10-20% each in vertices of type (b) and

(e), where the vertex types refer to those in Figure 5.1. Although only 3% of particles

find themselves in pentagonal S05 environments, these appear sufficient to disrupt

the formation of long-range 12-fold orientational order. The changes in dynamic

properties upon cooling below T = 0.7 - the rapid increase in structural relaxation

times; the appearance of a plateau in the incoherent scattering functions and MSDs;

the non-Arrhenius temperature dependence of the structural relaxation times and in-

verse diffusion constants at low temperature; and the onset of non-Gaussian dynamics

- show behaviour typical of supercooled glass-forming liquids. Since our structural

analysis found no development of long-range translational or orientational order, or

tendency to crystallise or phase separate, we conclude that the non-equimolar mixture

is a good glass-former.

This behaviour is rather surprising, as the model parameters are almost ideal

for the formation of local square and triangular structures with the ability to tile

space. It is also surprising given that a periodic structure with similar composition

undergoes a first-order melting transition when heated from the solid state. We have

not looked at heating a solid structure corresponding to an ideal random tiling - due

to the time constraints of this project and the non-trivial problem of constructing

such a configuration - but we suspect that it would also undergo a discontinuous

transition to the liquid state despite its lack of long-range translational order. So is

there another reason for the glass-forming ability of the non-equimolar mixture? The

dynamics indicate that the liquid is supercooled below T = 0.7, and the equilibration
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runtimes remain sufficiently long for both the intermediate scattering functions and

non-Gaussian parameters to decay to zero above T = 0.45 (which is when the system

falls out of local equilibrium). And yet a substantial fraction of non-ideal packings

remain at T = 0.5, which ultimately are sufficient to disrupt the formation of long-

range orientational order. Perhaps these defects are stabilised because the particle

numbers that we have chosen cannot form an ideal random tiling that fits perfectly

into a square simulation cell. In this case, the absence of larger domains with ideal 12-

fold orientational order indicates that the random tiling structure is not substantially

favoured relative to the amorphous structure.

Many models of glass-formers are based on particle interactions that encourage

local ordering that cannot pack to fill space, for example the Dzugutov model [208].

In comparison to these, the non-equimolar mixture is noteworthy because it extends

glass-formation to a model in which the interparticle potentials favour local ordering

that can pack to fill space. In this latter case, it appears to be the large configurational

entropy of the solid state that stabilises the amorphous state. Recall that we have

chosen the composition that can decorate a square-triangle tiling ratio with maximal

configurational entropy. In addition, this work suggests that metal alloys that form

quasicrystals may also be good glass-formers, and that their structures may be related.

Certainly, there is evidence for nanoquasicrystalline materials [183], and amorphous

to quasicrystal transitions are often observed in metallic glasses upon devitrification

[185].

The low temperature dynamics of the non-equimolar system are also interesting.

The structural relaxation times of the small and large particles remain equal at all

temperatures and the diffusion constants are equal until T = 0.7, below which they

diverge slightly. This coupling of mobility and relaxation of both species in the

present system may be explained by the lack of small particle nearest neighbours,

since this implies that for a small particle to move or for its local structure to change,

a large particle must also move. Structural relaxation of both particle species is

also coupled in the equimolar mixture. The low-temperature dynamics of the non-

equimolar mixture are also interesting. While we have not presented the results here,

videos of the low-temperature particle motion (below T = 0.5) show that the main

mechanism for motion is via a local distortion that allows a small particle to move

from a square S04 environment into a neighbouring triangle of large particles, thus

converting the initial square S04 environment into a triangular tile and the initial
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triangular packing into a square S04 tile. This mechanism appears to be enhanced by

nearby defects, e.g. S05 environments. This would also explain the enhanced mobility

of small particles relative to large particles at low temperature. Kawamura [195] and

Henley et al. [155, 159] both describe the minimum rearrangement that must take

place to convert one ideal random square-triangle tiling into another. This involves

the motion of at least 6 small and 6 large particles and is thus expected to have

a high activation energy. Therefore the significant motion, and mechanism, that we

observe at low temperature strongly suggests that the activation energy for structural

rearrangements is significantly lowered in the presence of non-ideal packings. These

may therefore be entropically stabilised.



Chapter 6

The Asymmetric H2 Crystal and a

Chemically Ordered Glass (σ12 = 1.1)

We study the structure and dynamics of both equimolar and non-equimolar mixtures

with σ12 = 1.1 in the fluid-solid phase region. The equimolar liquid is relatively stable

to supercooling but eventually freezes into a substitutionally ordered crystal with an

elongated hexagonal unit cell. Both heating and cooling traverses are characterised and

the process of crystallisation is investigated. In contrast, the non-equimolar mixture

shows no sign of crystallisation and forms an amorphous solid state when cooled. We

argue that this system is a good glass-former and structurally distinct from the model

with additive interparticle potential that was investigated in Part I.

6.1 Introduction

Although highly metastable to supercooling, the equimolar mixture of the present

model eventually forms a crystal phase that can be described as a tiling of the plane

by unit cells consisting of two small particles surrounded by six large particles in an

elongated hexagonal arrangement. This unit cell, illustrated in Figure 6.3(a), has

previously been described by Likos and Henley [155], who investigated the phase

diagram of binary hard-disc mixtures but did not perform any simulations. We will

follow their convention and refer to the local hexagonal unit as the H2 unit cell and

the crystal as the H2 crystal. A 2D binary Lennard-Jones (LJ) mixture studied

in the context of quasicrystal stability also has the H2 crystal as one of its ground

states [161], however this LJ model has substantially different interactions lengths and
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forms structures not observed in the present system. We characterise the structure

and dynamics of the equimolar mixture in Section 6.3.

The non-equimolar mixture (with composition x1 = 0.3167) is noteworthy for its

ability to form an amorphous solid that is structurally more homogeneous than the

equimolar model studied in Part I, despite over two-thirds of its components being

of the same species. It also has less diversity of local coordination environments and

a medium-range order that can be described in terms of favoured packings of local

environments. Surprisingly, it shows little sign of the H2 crystal order present in

the equimolar liquid, with dynamic behaviour that is typical of other glass-forming

liquids. We characterise the structure and dynamics of this system in Section 6.4.

While the main object of the present study is to characterise the changes in phase

behaviour and dynamics that occur as the interparticle potential σ12 is varied, we

also spend some time in this chapter studying the process of crystallisation in the

equimolar mixture. This work is presented in Section 6.3.4. This is not meant to form

a comprehensive study of nucleation and crystallisation, but rather to demonstrate

that non-additive soft-disc mixtures may serve as useful model systems for such work.

To put this into context, we give a brief introduction to the study of crystallisation

in the remainder of this section.

Crystal nucleation is an important phenomenon in many processes, yet scientific

understanding of its molecular mechanism remains incomplete. Despite progress,

many open questions concerning crystallisation phenomena still remain, including

the rate of formation of the crystal phase, structure and composition of the critical

nucleus, role of solvents and foreign objects etc. Crystals can take many forms, only

one of which is the most stable. However it is usually not known in advance which

structure will form upon nucleation. Ostwald’s rule of stages [209] states that the

crystal phase that nucleates from a supercooled liquid is the one that is closest to

the liquid state in its free energy. Hence crystallisation via nucleation may yield

the metastable form instead of the most stable structure. This issue is particularly

important, for example, in the pharmaceutical industry where the same drug molecule

can have different properties due to differences in its crystal structure.

A fundamental understanding of the nucleation, growth kinetics, and morphology

of crystals grown from the melt requires a detailed microscopic description of the

crystal-melt interface [210–213]. However, such information is difficult to obtain ex-

perimentally. For example, it is difficult to detect the presence of small nuclei, and it
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is difficult to probe the crystal-melt interface, especially at the high melting/freezing

temperatures typical of metal alloys. Not surprisingly, computer simulations have

played a leading role in the determination of the microscopic structure, dynamics,

and thermodynamics of such systems [214]. The majority of simulation studies so

far have focused on single component systems, ranging from simple models such as

hard spheres [214–217] or LennardJones [218, 219] to more ‘realistic’ systems, such

as water [220–222], silicon [223, 224] or simple metals [225, 226]. In contrast, there

have been relatively few studies of multicomponent systems [152, 227–232], despite

the reality that most materials of technological interest are mixtures (for example,

doped semiconductors, alloys, and intermetallic compounds).

We therefore suggest that the ordered S1 and H2 crystal phases, characterised

in this chapter and in Chapter 5, offer valuable models systems in which to further

our understanding of crystallisation. These non-additive soft-disc mixtures have the

added complexity of two particle species with the simplicity of two dimensions and

purely repulsive potentials. They may also be viewed as model systems for the study

of ordering in monolayers. We are not aware of any previous studies of ordered

crystals, crystallisation or glass-formation in non-additive soft-disc mixtures, nor of

any studies of ordered crystals or crystallisation in additive soft-disc mixtures.

The rest of this chapter is structured as follows. In Section 6.2 we describe the

model and computational methods used. We characterise the structural and dynamic

properties of the equimolar mixture in Section 6.3 and, in Section 6.3.4, study the

process of crystallisation for this system. Our study of glass-formation in the non-

equimolar mixture is presented in Section 6.4. This is followed by a summary of

the main results and a comparison of the structure and phase behaviour of the two

mixtures in Section 6.5.

6.2 Model and Computational Details

We consider a 2D system consisting of a binary mixture of particles interacting via

purely repulsive potentials of the form

uab(r) = ǫ
[σab

r

]12

(6.1)

where σ12 = 1.1 × σ11 and σ22 = 1.4 × σ11. All units quoted will be reduced so that

σ11 = ǫ = m = 1.0 where m is the mass of both types of particle. Specifically, the
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reduced unit of time τ = σ11

√
m/ǫ. A total of N = 1440 particles were enclosed in a

square box with periodic boundary conditions.

The molecular dynamics simulations were carried out at constant number of parti-

cles, pressure (P = 13.5) and temperature using the Nosé-Poincaré-Andersen (NPA)

algorithm developed by Laird et al. [83, 84]. This algorithm is discussed further in

Appendix A, where we also list the equations of motion in 2D. The equations of

motion were integrated using a generalised leapfrog algorithm [84]. The time step

employed was 0.05τ for T > 1, and 0.01τ for T ≤ 1. For argon units of η = 120kB,

m = 6.6 × 10−23g and σ11 = 3.4Å, these time steps correspond to approximately 10

and 20 femtoseconds respectively.

A non-equimolar mixture consisting of N1 = 456 small particles and N2 = 984

large particles (giving x1 = 0.3167 to 4 sig. fig.) was studied at 16 different reduced

temperatures from T = 5 to T = 0.2. The starting configuration of the run at T = 5

was an equilibrated configuration at T = 5 for the equimolar system described in this

chapter with the appropriate number of small particles changed to large particles.

The starting configuration of each lower temperature equilibration run came from

the final configuration of the preceding higher temperature run. For T ≥ 0.45, the

equilibration times were longer than the times taken for all the dynamic correlation

functions investigated to decay to less than 0.1. Below T = 0.45 the system is

no longer able to reach equilibrium within the finite time scale of the simulations.

Thus, the computer glass transition temperature for these simulations, defined as the

temperature at which the system falls out of equilibrium, lies between T = 0.45 and

T = 0.4. At all temperatures the equilibration runs were taken out until steady state

was achieved, i.e. until the average thermodynamic properties remained constant in

time. Table C.15 (in Appendix C.4) lists the temperatures of each state studied as well

as the equilibration and production times. The final configurations of the equilibration

runs were used to start the production runs, and the ‘masses’ of the Anderson piston

and Nosé thermostat (see Appendix A) were Qv = 0.002 and Qs = 1000, respectively,

for all temperatures.

Both cooling and heating traverses were studied for the equimolar mixture (with

N1 = 720 small particles and N2 = 720 large particles). Tables C.9 and C.10 (in

Appendix C.3) list the temperatures of each state studied as well as the equilibra-

tion and production times for the cooling and heating traverses, respectively. Full

production runs were not performed for cooling runs at T < 0.6 and heating runs at
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T > 0.7. In these cases the thermodynamic averages were calculated during the latter

part of the equilibration run after there was no further change in average properties.

These ‘production’ runs are indicated by an asterisk (*) after the production runtime.

No further properties, structural or dynamic, were calculated at these temperatures.

The initial configuration for the cooling traverse was a previously equilibrated con-

figuration at T = 5, while the initial configuration for the heating traverse was the

constructed periodic structure shown in Figure 6.2(e). The starting configurations

for production runs and for lower (or higher) temperature equilibration runs are as

described above for the non-equimolar mixture. For the cooling traverse, the ‘masses’

of the Anderson piston and Nosé thermostat were Qv = 0.0002 and Qs = 1000, re-

spectively, for all temperatures. For the heating traverse, we used Qv = 0.0002 for

T ≤ 0.62 and Qv = 0.000001 for T ≥ 0.64, and Qs = 10 for T ≤ 0.2 and Qs = 1000

for T ≥ 0.3. At low temperatures the kinetic energy fluctuations for the crystal phase

became regular unless Qs was reduced, and at high temperatures the density fluc-

tuations became regular unless Qv was reduced. We note that changing Qs and Qv

generally has little effect on the thermodynamic averages, except near a critical point

where increasing the size of the fluctuations can cause one phase (usually the solid)

to become unstable with respect to the other.

6.3 Metastability and Freezing of the Equimolar

Mixture (x1 = 0.5)

6.3.1 Thermodynamic Properties

For reference, thermodynamic averages are listed in Table C.9 for the cooling tra-

verse, and in Table C.10 for the heating traverse. The isobaric phase diagram for

the equimolar mixture is shown in Figure 6.1 for T < 1.1. Upon cooling, the density

increases smoothly at a greater than linear rate. Given sufficient time, the system

crystallises at T = 0.6 into a labile crystal, a representative configuration of which

is shown in Figure 6.2(d). The density of this defected crystal is indicated by the

filled diamond in the isobaric phase diagram (Figure 6.1). Heating of the crystalline

configuration shown in Figure 6.2(e) reveals a hysteresis region in the isobaric phase

diagram extending from T = 0.6 to T = 0.8. This is very large compared to the hys-

teresis regions observed for freezing/melting in the single-component soft-disc system
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Figure 6.1: Isobaric (P = 13.5) phase diagram. Squares and circles indicate data points
of the heating and cooling traverses, respectively. The filled diamond indicates the final
density after a freezing transition at T = 0.6. Error bars represent one standard deviation.
Note the large region of metastability extending from T = 0.6 to T = 0.8.

at the same pressure and for the S1 crystal phase studied in Chapter 5. For the for-

mer, the region extends from T = 0.95–0.98, and for the latter, it extends from T =

1.02–1.06. We have heated the defective crystal shown in Figure 6.2(d) and found

that melting occurs at T = 0.7 but not at T = 0.68. The true thermodynamic melt-

ing/freezing temperature should therefore lie somewhere in the range T = 0.69–0.8.

The apparent high metastability of the liquid phase to supercooling is investigated in

the following work. We also study the process of crystallisation at T = 0.6.

In the next section we characterise the changes in structure that occur during

heating and cooling of the equimolar mixture. Note that structural properties have

only been calculated for the heating traverse in the range T = 0.1–0.7.

6.3.2 Development of Crystalline Order

Particle Configurations

Representative particle configurations from the cooling and heating traverses are

shown in Figure 6.2. We draw attention to several important features. The small
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Figure 6.2: Representative particle configurations: during cooling at (a) T = 1, (b)
T = 0.6 before freezing, (c) T = 0.6 during freezing, and (d) T = 0.6 after freezing; and
during heating at (e) T = 0.1 and (f) T = 0.8. The small and large particles are represented
by filled and open circles respectively.
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Figure 6.3: Drawing of (a) the H2 unit cell and (b) parallel and (c) herringbone packings
of these. The filled and open circles represent small and large particles, respectively, and
the thick line represents the H2 unit cell. The dashed line, passing through the two small
particles, is the cell axis, θH2 is the orientation of the cell, and rH2 is the midpoint of the
line joining the two small particles.

and large particles species appear to be well-mixed at all temperatures, consistent

with an effective attraction between unlike particle species. During cooling, the ini-

tially disordered liquid (a) appears to develop large quantities of crystalline-like order

(b) prior to freezing. The crystal that is formed consists of elongated hexagonal

unit cells, of the type illustrated in Figure 6.3(a), that we will refer to as H2 unit

cells. These pack together in both parallel and near-perpendicular (herringbone-like)

arrangements, as represented schematically in Figure 6.3(b)-(c).

The structure of the growing crystal appears to be quite labile; some of the her-

ringbone packing present during crystallisation [Figure 6.2(c)] has changed to parallel

packing by the time the main crystallisation event is complete (d). There are still

small amorphous regions in (d). A perfect crystalline configuration of parallel-packed

H2 cells fits well into a square simulation box and was used for the heating traverse.

The constructed crystal (e), with all unit cells packed in a parallel fashion, is stable

right up to T = 0.8 (f), the only defects present being a couple of substitutions and

some herringbone packing in the upper right-hand corner. We note that because the

H2 unit cells are able to pack together in both parallel and herringbone alignments

without constraints on the periodicity of these, it is theoretically possible for this

system to form a solid state with perfect H2 local order, and long-range orientational

order, yet lacking in long-range translational order. The relative stability of such

configurations could be investigated by using a simulation algorithm that allows for
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the box shape to change, for example that of Melchionna et al. [233].

Pair Distribution Functions

The pair distribution functions (PDFs), defined in Section 5.3.2, describe the radially

averaged structure about particles. The PDFs for the cooling traverse are plotted in

Figures 6.4 and 6.5. Also shown, for comparison, are the respective PDFs at T = 0.6

during the heating traverse. For reference, the complete PDFs for the heating traverse

are plotted in Figures C.3 and C.4.
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Figure 6.4: The partial pair distribution functions g11(r) and g22(r) for the cooling traverse
as a function of distance from T = 5 down to T = 0.6. For T ≤ 3, each curve has been
shifted upwards by one unit from the higher temperature curve directly preceding it. For
comparison, the respective functions at T = 0.6 during the heating traverse have also been
plotted.



178 The Asymmetric H2 Crystal and a Chemically Ordered Glass

0 1 2 3 4 5 6 7 8 9 10 11 12
r (σ11)

0

5

10

15

T = 0.6

0.62

0.64

0.66

0.68

0.7

0.8

0.9

1

2

3

5

0 1 2 3 4 5 6 7 8 9 10 11 12
r (σ11)

0

5

10

15

T = 0.6

0.62

0.64

0.66

0.688

0.7

0.8

0.9

1

2

3

5

g12(r) gall(r)

T = 0.6, heating T = 0.6, heating

Figure 6.5: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) for the cooling traverse as a function of distance from T = 5 down to T = 0.6.
For T ≤ 3, each curve has been shifted upwards by one unit from the higher temperature
curve directly preceding it. For comparison, the respective functions at T = 0.6 during the
heating traverse have also been plotted.

Upon cooling, the liquid shows increasing local ordering until at T = 0.6 there

are undulations in the PDFs out to r = 8σ11. The initial peak structure is similar

to that in the solid-state PDFs at the same temperature, but there are significant

differences beyond r = 2.5σ11. For example, the fourth peaks in the crystalline partial

pair distribution function (PPDFs) are absent in the liquid state PPDFs. Therefore,

whatever crystalline order is present in the liquid prior to freezing must be in very

small domains or involve herringbone packing, as the latter would result in a different

peak structure to the parallel-packed crystal used for the heating traverse.
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The partial structure factors were calculated from the PPDFs, using the method

explained in Section 5.3.2. They are plotted along with the total structure factor in

Figures C.5 and C.6. We did not investigate structural relaxation in the solid-state

and have therefore not calculated structure factors for the heating traverse.

We further investigate the local order in the liquid and solid states using a number

of measures built upon nearest neighbour interactions. Two particles of type a and b

are defined to be nearest neighbours if they are separated by a distance less than cutab,

where cutab is the distance at which the first minimum in the respective partial PDF,

gab(r), occurs. For reference, cutoff distances obtained for the cooling and heating

traverses are listed in Tables C.11 and C.12, respectively.

Local Structure Parameters

In Figure 6.6 we plot the distribution of local packing environments as a function

of temperature. The main change during the cooling traverse is a rapid increase

in the fraction of L43 and S14 environments below T = 1; by the time freezing
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Figure 6.6: The distribution of local packing environments as a function of temperature.
We have identified a particular neighbourhood with the following notation: A small particle
with m small neighbours and n large neighbours is designated as Smn and the analogous
large particle is indicated as Lmn.
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Figure 6.7: (a) The fraction of particles in H2 unit cells (fH2) as a function of temperature
during the cooling and heating traverses. (b) ‘Bond’ fractions as a function of temperature.
nab is the fraction of all nearest neighbour particle pairs that occur between particles of
type a and b. Results are only shown for T ≤ 1, and the error bars represent one standard
deviation.

commences, over half the particles are in these environments. Analysis of the H2

crystal (both parallel and herringbone packings) shows that all the small particles

have S14 environments and all the large particles have L43 environments. Therefore,

these results indicate that there may be a high degree of crystalline order in the low-

temperature liquid phase. As expected, the solid phase during the heating traverse

is composed almost entirely of L43 and S14 environments. Above T = 0.6, there

is a small decrease in the fraction of these environments that is most likely due to

vibrational distortions, as substitutional defects do not appear until T = 0.7.

To resolve to what extent the S14 environments pack together to form H2 unit

cells [see Figure 6.3(a)], we consider the fraction of particles in H2 cells fH2 as a

function of temperature. An H2 cell is defined as a small particle with S14 local

environment whose neighbouring small particle also has the S14 local environment.

Figure 6.7(a) clearly demonstrates that fH2 also rises rapidly prior to freezing. In

contrast, the distribution of nearest neighbour interactions nab between particles of

type a and b, plotted in Figure 6.7(b), shows relatively little change with temperature.

From these results we conclude: (i) that the liquid has a high degree of crystalline-like

local structure prior to freezing; and (ii) that the dominant change in local structure

on cooling is a change in the topology (spatial distribution) of nearest neighbour

interactions, rather than a change in their relative abundance.
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Orientational Order Parameters

To investigate the orientational correlation between H2 cells, we define a new set of

order parameters. The ‘orientation’ of an H2 cell θH2 is defined as the angle subtended

by the x-axis and the line running through the two small particles in the H2 cell, in

the range 0o ≤ θH2 < 180o. And the ‘location’ of the H2 cell rH2 is defined as the

midpoint of the line joining the two small particles. See Figure 6.3(a) for a graphical

representation of these quantities. Using them, we define an orientational distribution

function for H2 cells as

PH2(θ) =

〈
1

NH2

NH2∑

j

θH2,j δ(θ − θH2,j)

〉

, (6.2)

where NH2 is the total number of H2 cells, θH2,j is the orientation of the jth H2 cell,

and the angular brackets denote an average over different configurations in time.

We also define a pair distribution function for H2 cells as

gH2(r) =

〈
1

NH2ρH2

NH2∑

i

NH2∑

j 6=i

δ[r − rH2,ij ]

〉

, (6.3)

where NH2 is the total number of H2 cells, ρH2 = V/NH2, rH2,ij = |rH2,i − rH2,j| is

the separation between the ith and jth H2 cells, and the angular brackets denote an

average over different configurations in time.

We test for the presence of long-range orientational correlation between H2 do-

mains by defining an orientational correlation function as

CH2(r) =

〈
1

NH2ρH2

NH2∑

j=1

NH2∑

k 6=j

cos[2(θH2,j − θH2,k)] δ(r − |rH2,j − rH2,k|)
〉
, (6.4)

where the angular brackets again indicate an average over time origins. This orien-

tational correlation function is weighted by the translational correlations. To see it

free of this bias we plot the ratio GH2(r) = CH2(r)/gH2(r). If all the H2 cells at a

given separation r lie parallel to each other then GH2(r) = 1, while if they all lie

perpendicular to each other then GH2(r) = −1.

In Figure 6.8 we plot the distribution of H2 cell orientations during the cooling

and heating traverses. Plot (b) shows that during the heating traverse the H2 cells

remain in a parallel alignment perpendicular to the x-axis, as indicated by the peak
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Figure 6.8: The temperature dependence of the distribution of H2 cell orientations during
the (a) cooling and (b) heating traverses. The absolute value of the fraction depends upon
the size of the binning over angles and is therefore unimportant. For clarity, each curve
in (a) below T = 5 has been shifted upwards by 0.01 units above the higher temperature
curve directly preceding it, and each curve in (b) above T = 0.1 has been shifted upwards
by 0.01 units above the lower temperature curve directly preceding it.
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around θH2 = 90o. As the temperature increases the peak broadens, presumably due

to vibrational motion. We find no evidence of herringbone packing in the temperature

range studied. In contrast, during cooling [plot (a)], there is no strong alignment of

H2 cells. Some small undulations appear below T = 0.68, often separated by an angle

around 80o, but it is clear that the majority of H2 cells are not aligned with respect

to each other.

The orientational correlation functions GH2 for the cooling traverse are plotted

in Figure 6.9(a). Also shown for comparison - plot (b) - are the pair distribution

functions gH2(r) at T = 0.6 during both heating and cooling traverses. Note that CH2

for the heating traverse is almost identical to gH2(r) since all H2 cells are parallel to

one another; GH2 for the heating traverse therefore contains no additional information

and has not been plotted. We find that during the heating traverse there is clear long-

range structure in gH2(r) extending the full length of the simulation cell. An example

at T = 0.6 is shown in plot (b). In contrast, there is no long-range orientational order

between H2 cells during cooling. There is, however, increasing structure at small

separations as the temperature is reduced. The maxima in GH2(r) near r = 2.2, 2.8,

3.5 and 4.5 match the expected nearest and next-nearest neighbour separations of H2

cells in perfect parallel packing, and also appear as sharp peaks in gH2(r) during the

heating traverse. We therefore conclude that these are due to the presence of small

clusters of H2 cells packed in parallel. Furthermore, the minima in GH2(r) around r =

2.5 and 4.0 match the expected nearest and next-nearest neighbour separations of H2

cells in herringbone packing, and also appear as additional peaks in gH2(r) during the

cooling traverse that are absent during the heating traverse. The near-perpendicular

alignment of H2 cells in herringbone packing would also explain the negative values of

these minima. We therefore conclude that in the liquid phase below T = 0.7 there are

clusters of aligned H2 cells that are 3–4 H2 units across. The increasing fluctuations

at higher temperature indicate poor statistics, probably due to the increasingly small

number of H2 cells in the sample.

This result, along with the increase in the fraction of particles in H2 order and the

lack of any strong angular preference for H2 cells, suggests that before freezing com-

mences there is a significant amount of H2 order in small domains that are unaligned

with respect to each other.

We also tested for the presence of 4-, 6- and 12-fold orientational order in the

system (see Section 5.3.2 for the definition of the orientational order parameters).
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Figure 6.9: (a) The temperature dependence of the orientational correlation function for
H2 cells GH2(r) during the cooling traverse. (b) The pair distribution function for H2 cells
gH2(r) at T = 0.6 during the cooling and heating traverses. For clarity, functions have been
offset vertically from each other.



6.3 Metastability and Freezing of the Equimolar Mixture 185

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
T

0.0

0.1

0.2

0.3

0.4

0.5

Ψ4

Ψ4,1

Ψ4,2

Ψ4,all

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

Ψ6

Ψ6,1

Ψ6,2

Ψ6,all

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

Ψ12

Ψ12,1

Ψ12,2

Ψ12,all

Figure 6.10: The temperature dependence of the bulk averaged n-fold order parameters
Ψn, where n = 4, 6, 12, and their small (Ψn,1) and large (Ψn,2) particle contributions, for the
cooling and heating traverses. The filled symbols indicate data from the heating traverse.

The bulk averaged n-fold order parameters Ψn are plotted in Figure 6.10 for both

the heating and cooling traverses. The major change upon cooling is a decrease in

6-fold order below T = 1. This is likely caused by the rapid increase in 5-coordinated

S14 environments and 7-coordinated L43 environments (see Figure 6.6), which must

also explain the discontinuity in the bulk 6-fold order between the liquid and solid

phases. The increase in Ψ4,1 below T = 1 must also be related to the increase in S14
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environments, as S04 environments make up less than 2% of the total. The changes

in 12-fold order are likely due to the changes in 4- and 6-fold orientational order.

The n-fold orientational correlation functions Gn(r) test for long-range orienta-

tional correlation of the local n-fold domains. During the cooling traverse, we find

that G4,1(r), G6,1(r) and G6,2(r) develop very weak correlations (out to r = 5σ11).

The peak structure of these functions is very similar to that observed at small r during

the heating traverse (for which G4,1(r), G6,1(r) and G6,2(r) have very weak long-range

correlations). We therefore conclude that the 4- and 6-fold orientational correlations

observed in the liquid phase are simply a reflection of the H2 order in the system,

and do not include these plots.

At low temperatures, the liquid phase contains a very high degree of local crystalline-

like order, with over 50% of particles in H2 unit cells. However, these cells appear

only to form small clusters, usually less than 3 units across, that remain unaligned

with respect to each other.

6.3.3 Dynamics and Structural Relaxation

In this section, we present an analysis of the changes in particle transport and struc-

tural relaxation that occur upon cooling of the equimolar mixture.

Intermediate Scattering Functions and Arrhenius Plot

For the equimolar mixture, we have calculated the incoherent (or self) intermedi-

ate scattering functions Fs,1(k, t) and Fs,2(k, t) for the small and large particles, re-

spectively (see Section 5.3.3 for their definitions). Fs,1(k, t) and Fs,2(k, t) have been

measured at the positions of the first maxima in the static structure factors S11(k)

and S22(k), which are weakly dependent on temperature and are listed in Table C.13.

Log-linear plots of the self intermediate scattering functions are shown in Figure 6.11.

The relaxation curves broaden with decreasing temperature and, below T = 0.7, de-

velop an increasingly prominent shoulder near 10τ . The appearance of a shoulder in

the intermediate scattering function is often a sign of supercooled liquid behaviour.

For example, glass-formers typically develop two-step relaxation functions upon su-

percooling as discussed in Section 1.2. Interestingly, Fs,1(k, t) and Fs,2(k, t) decay at

almost the same rate at a given temperature.

The structural relaxation time τe,1 is defined as the time taken for the incoher-

ent scattering function Fs,1(k, t) to decay to 1/e. The temperature dependence of
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Figure 6.11: The incoherent scattering functions Fs,1(k1, t) and Fs,2(k2, t) for the small
and large particles, respectively. The wave vectors k1 and k2 are the first peak positions
in the respective partial structure factors (listed in Table C.13). From left to right the
temperatures of the curves are T = 5, 3, 2, 1, 0.9, 0.8, 0.7, 0.68, 0.66, 0.64, 0.62, and 0.6.
Note the appearance of a shoulder in the curves below T = 0.7.

this relaxation time, plotted in Figure 6.12, is Arrhenius at high temperatures, but

diverges weakly from Arrhenius behaviour as the temperature drops below T = 0.7.

This deviation from Arrhenius behaviour also resembles the dynamic behaviour of

supercooled fragile glass-formers. Similarly, the diffusion constants - measured in the

region where the mean-squared displacement (MSD) has reached its long-time con-

stant value (R2
a(t) > σ11) - also show a strong deviation from Arrhenius temperature

dependence, with the onset of this deviation occurring just below T = 0.7. The dif-

fusion constants for the small and large particle species remain approximately equal

at all temperatures. For reference, the MSDs are plotted in Figure C.7, and the

structural relaxation times and diffusion constants are listed in Table C.14.
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Non-Gaussian Parameter

As explained in Section 5.3.3, the non-Gaussian parameters Aa(t) can be used as

a measure of the degree of dynamic heterogeneity in a sample. Large values at in-

termediate times can be attributed to a broad distribution of local mobilities. The

non-Gaussian parameters for the present system are plotted in Figure 6.13. A rapid

rise in non-Gaussian behaviour is observed at low temperatures for both the large

and small particle species; the trend is for the maxima to move to longer times as

they increase in height. Given that we found no evidence of crystallisation during

these runs, we attribute the non-Gaussian behaviour to an increasing heterogene-

ity in the liquid dynamics at intermediate times. Furthermore, at all temperatures

the non-Gaussian parameters appear able to decay to zero over the timescale of the

equilibration runs, indicating that the equilibration times were long with respect to

structural relaxation.
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Upon cooling below T = 0.7, the liquid phase increasingly shows dynamic be-

haviour typical of a supercooled liquid; the diffusion constants and structural relax-

ation times deviate from Arrhenius behaviour, the non-Gaussian function develops

an increasingly large peak at intermediate times, and a shoulder appears in the in-

termediate scattering function. The observation that the defected H2 crystal melts

near T = 0.7 also suggests that the thermodynamic melting/freezing temperature

Tf lies somewhere near this temperature. Yet the liquid remains stable to crystalli-

sation over equilibration times that are sufficiently long for the average particle to

travel 5–10σ11, and for all the particles to randomise their initial kinetic state (the

non-Gaussian function decays to approximately zero). We investigate the origin of

this metastability further in the next section, by studying the process by which crys-

tallisation eventually proceeds.

6.3.4 Alignment of Unit Cells During Crystallisation

As discussed in the Section 6.1, the mechanism by which crystallisation proceeds in

substitutionally ordered crystals appears to have received relatively little attention.

In this section we present a brief investigation into the process of crystallisation in

the H2 system. In particular, we wish to uncover the rate-limiting step in order to

gain some insight into the large metastability of this system to supercooling despite

the high degree of crystalline order in the liquid. We also propose a reason for the

relatively slow process by which crystallisation eventually proceeds.

We consider several properties investigated above, as well as a number of new

measures of H2 unit cell aggregation, and study the change in these properties be-

fore, during and after crystallisation over the course of a 50, 000τ run. The starting

configuration for this run was the final configuration of the 10, 000τ equilibration run

at T = 0.6.

In Figure 6.14 we plot the change in several thermodynamic properties as a func-

tion of time. The quantities undergo large fluctuations but some clear trends can be

observed. After about 6, 000τ the fraction of nearest neighbour interactions between

different particle species n12 starts to increase. Soon after, the density ρ starts to

increase. Both n12 and ρ increase fairly continuously until about 28, 000τ after which

time they return to fluctuations about a constant value. In contrast, the potential

energy (PE) shows only a small change relative to the magnitude of its fluctuations.

Therefore, the crystallisation process appears to last from about 6,000–28,000τ , and
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Figure 6.14: The change in volume, density, n12 and potential energy as a function of run
time before, during and after crystallisation at T = 0.6.

does not commence until 16, 000τ after the start of equilibration at T = 0.6.

Figure 6.15 shows the change in H2 cell orientation and the fraction of particles

in H2, S14 and L43 local order during the run; and Figure 6.16 shows the change

in the number of H2 clusters, the mean number of particles per H2 cluster, and the

distribution of cluster sizes over the duration of the run. We define the mean number

of particles per H2 cell as the total number of particles in H2 cells divided by the total

number of H2 cells. When H2 cells pack together they share particles, the result being

that the mean number of particles per H2 cell decreases. This therefore provides a

measure of the degree to which H2 cells cluster together. We also calculate the total

number of H2 clusters and the distribution of cluster sizes. Two H2 cells with indices

i and j are defined as belonging to the same H2 cluster if |rH2,i − rH2,j| ≤ 3.1, where

r = 3.1 is the position of the minimum between nearest and next-nearest neighbour

peaks in gH2(r).

From 0–10,000τ , the size of the largest H2 cluster undergoes large fluctuations
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between 25 and 105 particles, before jumping to a size of 125 particles from which

growth proceeds. The critical nucleus therefore appears to be around 115 particles in

size. However, simply reaching a critical cluster size cannot be what is responsible for
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initiating crystallisation. The number of particles in H2 order (and in S14 and L43

order) starts to increase around 7, 000τ , i.e. before the largest cluster has exceeded

115 particles, and even after crystallisation has begun the largest cluster size drops

below 115 particles. The angle distribution of H2 cells supplies the answer. At 0τ the

angle distribution is very broad with no clear peaks, but after 5, 000τ two small peaks

near 65o and 140o are now visible. By 10, 000τ more clustering of angles is apparent,

which with time form two peaks separated by an angle of about 80o, consistent with

the development of herringbone packing of H2 cells. There is also a small decrease in

the mean number of particles per H2 cell around 6, 000τ , indicating a small increase

in the clustering of H2 cells at this time. Small drops in the total number of clusters

and in the mean number of particles per H2 cell near 10, 000τ are consistent with a

larger growth event involving the aggregation of two smaller (aligned) clusters. This

scenario is supported by the lack of an equivalent sudden increase in the number of

particles in H2 order near 10, 000τ . We therefore conclude that the rate limiting step



194 The Asymmetric H2 Crystal and a Chemically Ordered Glass

(d)(c)

(b)(a)

Figure 6.17: (a) The hexagonal H2 unit cell is related to two square S1 unit cells via
a simple distortion. (b)-(c) Different crystalline packings of H2 cells can interconvert via
distortions like the one illustrated in (a). (d) H2 cells can also stack together in ‘frustrated’
packings that cannot grow to fill space. The filled and open circles represent small and large
particles, respectively, and the thick line represents the H2 and S1 unit cells.

is the alignment of H2 cells. Once sufficient cells become aligned, the fraction of

crystal-like local environments starts to increase, eventually resulting in aggregation

of two or more existing aligned clusters.

Crystallisation is a slow process, lasting for at least 22, 000τ , and appears to

proceed irregularly. The size of the largest cluster again increases suddenly around

18, 000τ and 24, 000τ . The former appears to be mainly a growth event (the number of

particles in H2 order increases suddenly while the total number of clusters fluctuates

about an approximately constant value), while the latter appears to be a combina-

tion of both growth (fH2 increases) and aggregation (the total number of clusters

decreases). These interpretations are supported by changes in the mean number of

particles per H2 cell: as the cells aggregate, more particles become shared between

H2 cells and the value decreases. Finally, we note that between 28, 000τ and 50, 000τ ,

i.e. after the main crystallisation event appears to be complete, there is a shift from

herringbone packing towards parallel packing of H2 cells; the peak in the H2 angle

distribution function near 40o grows while the peak near 125o shrinks. Therefore,

we conclude that the most stable packing is the parallel one, and suggest that the

herringbone packing provides a kinetically favourable interface for crystal growth.
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Figure 6.18: A configuration after a freezing transition at T = 0.58. Note the presence of
grain boundaries between unaligned crystalline domains.

Figure 6.17 illustrates how different packings of H2 cells might interconvert via

simple distortions. Small changes in particle position can convert an asymmetric H2

unit cell into two symmetric S04 environments, i.e. two S1 unit cells. Different S1 cells

may then recombine resulting in interconversion between different parallel packings

of H2 cells (b) or between parallel and herringbone packings (c). Of course, this

interconversion may proceed in a step-like manner rather than all at once. Frame (d)

illustrates one possible reason for slow crystal growth. H2 cells may pack together in

arrangements that cannot grow to fill space.

Finally, while crystallisation occurs at T = 0.6 given sufficient time, the liquid

phase is stable for long times even at lower temperatures. If, after 10, 000τ equilibra-

tion at T = 0.6, the liquid is cooled to T = 0.58 it is stable for a further 10, 000τ before

crystallisation commences. And if cooled to T = 0.56 at this time it takes a further

12, 000τ before crystallisation starts. At these lower temperatures, crystallisation

appears to proceed simultaneously via several different nucleation events. Following

crystallisation, the final structure, shown in Figure 6.18 for T = 0.58, consists of

several unaligned crystalline domains separated by grain boundaries.

In summary, we conclude that the rate-limiting step for nucleation is the align-

ment of a sufficient number of H2 cells in an arrangement that can grow to fill space,

i.e. either in herringbone or parallel packing of a combination of these. At T = 0.6,
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growth then proceeds via the creation of new crystalline order in the liquid phase and

the occasional attachment of existing crystalline clusters to the growing nucleus. In

addition to the alignment of existing H2 cells, growth may be slowed via the composi-

tional changes needed to create new crystalline local order and by false starts leading

to packing of H2 cells in arrangements that cannot grow to fill space. Additionally, the

growing crystal is quite labile, its structure interconverting between different parallel

and herringbone packings. The interior of the final crystal is dominated by parallel

packing which leads us to believe that this is the energetically preferred arrangement

of H2 cells. At lower temperatures, there appear to be multiple nucleation events,

resulting, at least initially, in a structure with many grain boundaries.

6.4 Glass-Formation in the Non-Equimolar

Mixture (x1 = 0.3167)

6.4.1 Thermodynamic Properties

The isobaric phase diagram is plotted in Figure 6.19. The density increases smoothly

with cooling, showing no sign of a first order phase transition. There is, perhaps,

a small change in slope between T = 0.45 and T = 0.4, which coincides with the
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Figure 6.19: Isobaric (P = 13.5) phase diagram. Error bars represent one standard
deviation. Note that the density increases smoothly with cooling.
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temperature at which the system falls out of equilibrium. For reference, the thermo-

dynamic averages for the potential energy per particle (U), energy per particle (E),

enthalpy per particle (H), and number density per particle (ρ) are summarised in

Table C.15 for the range of temperatures that were investigated.

6.4.2 Development of Short- and Medium-Range Order

Particle Configurations

Representative particle configurations are shown in Figure 6.20. There is little change

in structure with temperature. The local structure becomes more regular upon cool-

ing, but the small particles appear evenly dispersed throughout the sample at all
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Figure 6.20: Representative particle configurations at (a) T = 1, (b) T = 0.6, and (c)
T = 0.2. The small and large particles are represented by filled and open circles respectively.
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temperatures. Rather than forming large crystalline clusters, the large particles re-

main dispersed as the system is cooled.

Pair Distribution Functions

The pair distribution function (PDF) and the partial pair distribution functions

(PPDFs), defined in Section 5.3.2, are shown for the non-equimolar mixture in Figures

6.21 and 6.22. Upon cooling, the PDFs develop structure over increasing lengthscales

(out to about 6σ11), but there is clearly no long-range translational order in the sys-

tem. There are some similarities to the PDFs calculated for the equimolar mixture
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Figure 6.21: The partial pair distribution functions g11(r) and g22(r) as a function of
distance from T = 5 down to T = 0.2. For T ≤ 3, each curve has been shifted upwards by
one unit from the higher temperature curve directly preceding it.
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Figure 6.22: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) as a function of distance from T = 5 down to T = 0.2. For T ≤ 3, each
curve has been shifted upwards by one unit from the higher temperature curve directly
preceding it.

but also some notable differences: g11(r) has a smaller first peak, indicating that there

are less nearest neighbour contacts between small particles; g12(r) has an additional

peak at 3.8σ11; and g22(r) has an additional peak at 2.4σ11 and extra peak intensity at

2.8σ11 that can be explained by the presence of hexagonal packing of large particles.

We used the positions of the first minima in the PPDFs as cutoff distances for

defining nearest particle neighbours when calculating the local coordination environ-

ments and the various orientational order parameters. For reference, these are listed

in Table C.16.



200 The Asymmetric H2 Crystal and a Chemically Ordered Glass

Structure Factors

The partial structure factors were calculated from the PPDFs as explained in Section

5.3.2. They are plotted along with the total structure factor in Figures 6.23 and

C.8. We note that S11(k) has very weak structure, indicating the lack of a strong

characteristic lengthscale for short-range ordering about the small particles. Also,

the second peak in S22(k) does not show the splitting characteristic of crystalline

domains of large particles (see discussion in Section 7.2.3), indicating the absence of

such crystalline domains.

The first peaks in S11(k) and S22(k) are the most intense, and show very little
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Figure 6.23: The partial structure factors S11(k) and S22(k) for temperatures from T = 5
down to T = 0.2. For clarity, each curve below T = 5 has been shifted upwards by 0.2 units
above the higher temperature curve directly preceding it.
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variation with temperature. Their approximate positions are given by the wave vec-

tors k1 = 3.64σ−1
11 and k2 = 5.5σ−1

11 , respectively. We have used these wave vectors to

calculate the incoherent scattering functions presented in Section 6.4.3.

Local Structure

Several quantities were used to characterise the local structure of the non-equimolar

mixture. In Figure 6.24 we present the ‘bond’ fractions nab, defined as the fraction of

all nearest neighbours particle pairs that occur between particles of type a and b (see

Table C.16 for nearest neighbour cutoff lengths). Upon cooling below T = 1, there

is a small increase in n12 and an associated decrease in n11. However, the dominant

interactions in the system are in roughly equal measure large-large and large-small,

at all temperatures.

To investigate the local structure in more detail we consider the local environment

about each particle. In Figure 6.25 the distribution of local packing environments is

plotted as a function of temperature. There is no clearly dominant environment at

low temperature. At T = 0.2, five environments make up 75% of the local structure,

and a further four environments contribute a further 20%. Still, the structure appears
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Figure 6.24: ‘Bond’ fractions as a function of temperature for T ≤ 1. nab is the fraction
of all nearest neighbours particle pairs that occur between particles of type a and b. Error
bars represent one standard deviation.
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Figure 6.25: The distribution of local packing environments as a function of temperature.
We have identified a particular neighbourhood with the following notation: A small particle
with m small neighbours and n large neighbours is designated as Smn and the analogous
large particle is indicated as Lmn. Only the most common environments are shown.

more homogenous, and the distribution of local environments is less diverse, than in

the equimolar additive glass-former studied in Part I. For comparison, the latter has

over 20 different local environments with none contributing more than 10% of the

total.

There is little sign of H2 crystalline order in the system; below T = 0.6 the fraction

of particles in S14 environments decreases sharply and less than 5% of large particles

are in L43 environments. There is also little sign of crystallisation of the large particle

fraction; the L06 environment, corresponding to a hexagonal cluster of large particles,

shows only a small increase upon cooling and never constitutes more than 5.5% of

large particle environments.

That said, there are some significant changes in local structure upon cooling.

Below T = 1, the fractions of S05 and L34 environments rise dramatically and,

intriguingly, become equal. Analysis of a configuration at T = 0.2 [Figure 6.20(c)]

suggests that the reason for this is that the L34 environment is strongly associated
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(d)(c)

(b)(a)

Figure 6.26: (a) Small particle environments in the low-temperature liquid, and (b)-(d)
some common ways in which these pack together to form vertices about large particles. The
filled and open circles indicate small and large particles, respectively. Note that the large
particles at the centre of (b) and (d) both have L34 local environments. Occasionally an H2
cell, consisting of two overlapping S14 environments, replaces the square cell in structure
(d).

with the packing of pentagonal S05 units together with triangular units of three large

particles and, occasionally, square S04 units and pentagonal S14 units. These local

structural units are illustrated in Figure 6.26(a), and some of their more common

packings are illustrated in Figure 6.26(b), (c) and (d). Observe that the large particles

at the centre of (b) and (d) both have L34 local environments. Occasionally an H2 cell,

consisting of two overlapping S14 environments, replaces the square cell in structure

(d).

The preference for the S05 environment over the S14 environment is at first sur-

prising. When all interparticle distances are set equal to σab, the S14 environment has

an angle sum about the small particle of 363◦. In contrast, the S05 environment has

an angle sum of 395◦. We propose that the reason for this preference is that a higher

proportion of S14 environments would force an increase in the number of large-large

particle contacts which, due to the non-additive interparticle potential, would result

in an increase in the system volume. This hypothesis would also explain the very low

number of small particles with more than one small neighbour and the absence of

a larger increase in L06 environments upon cooling. Glass-formation in this system

may therefore be related to the idea of ‘frustration’, i.e. competition between optimal

local and global packings.
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Orientational Order Parameters

In order to quantify the orientational order in the system, we used the n-fold orien-

tational order parameters, defined in Section 5.3.2. The bulk averaged n-fold order

parameters Ψn probe the local orientational order, and are plotted in Figure 6.27.

The major change upon cooling is a large decrease in Ψ6,1 below T = 1. This, to-

gether with a small decrease in Ψ4,1, is consistent with the large increase observed

in S05 environments which are expected to have roughly 5-fold local orientational
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Figure 6.27: The temperature dependence of the bulk averaged n-fold order parameters
Ψn, where n = 4, 6, 12, and their small (Ψn,1) and large (Ψn,2) particle contributions. The
error bars represent one standard deviation about the average.
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Figure 6.28: The partial 4-fold orientational correlation function about small parti-
cles G4,1(r), and the partial 6-fold orientational correlation function about large particles
G6,2(r). For clarify, functions have been offset vertically by 0.4 units above the preceding
curve.

order. Ψ6,2 is quite high but shows only a small increase below T = 1. This, to-

gether with the large decrease in Ψ6,1, indicates that there is no significant growth of

a substitutionally disordered large-particle crystal phase.

We also tested for long-range orientational correlations between the local n-fold

domains (defined in Section 5.3.2). We found no structure in G4,2(r) and only a single

peak in G6,1(r) at all temperatures. Figure 6.28, shows the partial 4-fold orientational

correlation function about small particles G4,1(r) and the partial 6-fold orientational

correlation function about large particles G6,2(r). Some weak local correlations de-

velop upon cooling, however there is clearly no long-range 4-fold orientational order in

the system. There is also no sign of long-range 6-fold order in the system, but G6,2(r)

develops structure out to r = 6–8σ11 upon cooling, with a peak structure similar
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to that observed in systems with substantial hexagonal crystalline domains of large

particles (see, for example, Figure 7.9). Considering the lack of a substantial increase

in Ψ6,2 and in L06 environments upon cooling, this change must be mainly due to

an increase in the orientational order within existing clusters of hexagonally-packed

large particles.

We conclude that the non-equimolar mixture shows no sign of crystallisation or

phase separation upon cooling from the liquid state. The low-temperature struc-

ture appears to be dominated by two types of medium-range order, small domains

of hexagonally-packed large-particles, and larger domains of pentagonal S05 environ-

ments packed together with each other and with some S04 environments, H2 units

and triangular packings of large particles. In the next section, we present an anal-

ysis of the changes in particle transport and structural relaxation that occur during

cooling.

6.4.3 Supercooled Liquid Dynamics

Intermediate Scattering Functions and Arrhenius Plot

The timescale of structural relaxation can be probed quite readily by computing den-

sity correlation functions such as the intermediate scattering functions (see Section

5.3.3 for their definitions). Log-linear plots of the self intermediate scattering func-

tions are shown in Figure 6.29, and have been measured at the positions of the first

maxima in the static structure factors S11(k) and S22(k). The positions of these max-

ima are independent of temperature and are listed in the caption to Figure 6.29. The

relaxation curves broaden with decreasing temperature until below T = 0.45 they

are no longer able to decay to zero within the finite time scale of the simulations.

The relaxation functions already span over five decades in time at this temperature.

Below T = 0.6, a step appears in the relaxation curves at intermediate times. This

step broadens into a plateau with an amplitude that increases with decreasing tem-

perature. The height of the plateau also increases with decreasing temperature. Such

two-step relaxation functions have been observed in a wide range of glass-forming

systems as discussed in Section 1.2. Damped oscillations are also observed in the

plateau region similar to what has been observed for the equimolar mixture with

σ12 = 1.2 [44].
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Figure 6.29: The incoherent scattering functions Fs,1(k1, t) and Fs,2(k2, t) for the small
and large particles, respectively. The wave vectors k1 = 3.64σ−1

11 and k2 = 5.5σ−1
11 are

the first peak positions in the respective partial structure factors. From left to right the
temperatures of the curves are T = 5, 3, 2, 1, 0.9, 0.8, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4,
0.35, 0.3, and 0.2. Note the appearance of a two-step relaxation process in the intermediate
scattering functions.

Interestingly, Fs,2(k, t) decays substantially faster than Fs,1(k, t) at a given tem-

perature. The height of the plateau in Fs,2(k, t) is also substantially lower than the

height of the plateau in Fs,1(k, t) at the same temperature. This indicates that the

large particles are able to relax their local structure faster than the small particles,

which is rather unusual.

The temperature dependences of the structural relaxation times, plotted in Figure

6.30, appear to be Arrhenius at high temperatures, but diverge strongly from Arrhe-

nius dependence as the temperature drops below T = 0.65. In contrast, the diffusion

constants - measured in the region where the mean-squared displacement (MSD) has

reached its long-time constant value (R2
a(t) > σ11) - show a weaker deviation from
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Figure 6.30: Arrhenius plot of the structural relaxation times τe,1 and τe,2 and the inverse
diffusion constants D−1

1 and D−1
2 . The dashed lines are linear regressions through the data

for T ≥ 0.65. Note the divergence from Arrhenius behaviour at low temperatures.

Arrhenius temperature dependence, with the onset of this deviation occurring below

T = 0.6. The diffusion constants for the small and large particle species remain ap-

proximately equal at all temperatures. The shorter structural relaxation times for the

large particles, and the similar diffusion constants for the two species, suggest that

although large particles are able to relax their local environments faster, the motion

of both species becomes coupled at longer times and lengthscales.

For reference, the mean-squared displacements (MSDs) are plotted in Figure C.7,

and the structural relaxation times and diffusion constants are listed in Table C.14.

we note that the MSDs also show typical supercooled liquid behaviour.

The Non-Gaussian Parameters

The non-Gaussian parameters are plotted in Figure 6.31. A rapid rise in non-Gaussian

behaviour is observed at low temperature for both the large and small particle species.

The maximum values of the parameters increase rapidly below T = 0.55, with the

peaks being slightly larger for the small particles. The trend is for the maxima to
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Figure 6.31: The non-Gaussian parameter averaged over all particles, A(t), and averaged
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move to longer times as they increase in height. Below T = 0.4 the finite observation

time of the simulations is too short to observe the maxima. A2(t) and A1(t) are

no longer able to decay to zero for T < 0.45. From this, and the behaviour of the

intermediate scattering functions and MSDs, we conclude that the system falls out

of equilibrium somewhere near T = 0.45.

In summary, the non-equimolar mixture shows changes in dynamic behaviour

upon cooling that are typical of fragile glass-forming liquids. This, together with the

lack of any sign of crystallisation or development of long-range order in the liquid,

lead us to conclude that this model is a good glass-former.

6.5 Discussion and Conclusions

The equimolar mixture forms a substitutionally ordered crystal phase when cooled at

a constant pressure of P = 13.5. The crystal can be described as a tiling of the plane

by a unit cell consisting of two small particles surrounded by six large particles in an

elongated hexagonal arrangement. This H2 unit cell has been predicted to form one

of the ground states for binary hard disc mixtures [155]. We find that the unit cells

pack together both in parallel, and in a herringbone arrangement where the cells lie

at approximately 80o to each other. From analysis of rearrangements in the growing

crystal, it appears that the parallel arrangement is the more stable one. However,

the herringbone arrangement is present in high concentration in the crystal nucleus

and at the crystal-liquid interface and we therefore postulate that it is a kinetically

preferred structure, and that it provides a kinetically preferred growth interface. The

parallel arrangement has also been found to be one of the ground states for a 2D binary

Lennard-Jones model studied in the context of quasicrystal stability [161]. This latter

model, however, has significantly different interaction lengths to the present model

and forms a wide variety of other structures that were not observed in the present

system.

Heating of a crystal consisting of a perfect parallel packing of H2 cells revealed a

hysteresis region in the isobaric phase diagram extending from T = 0.6 to T = 0.8.

This is very large compared to the hysteresis regions observed for freezing/melting in

the single-component soft-disc system at the same pressure, extending from T =0.95–

0.98, and for the S1 crystal phase studied in Chapter 5, extending from T = 1.02–

1.06. When a defective crystal was heating from T = 0.6 we found that melting
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occurred at T = 0.7 but not at T = 0.68. The true thermodynamic melting/freezing

temperature is therefore expected to lie somewhere between T = 0.69 and T = 0.8.

We found that the low-temperature liquid exhibited dynamic behaviour typical of

supercooled systems: the structural relaxation times and diffusion constants depart

from an Arrhenius temperature dependence below T = 0.7, the maximum in the

non-Gaussian function at intermediate times increases rapidly in magnitude at low

temperature, and the intermediate scattering function has a clear step in the decay

curve at T = 0.6. Below T = 1, the proportion of local crystalline environments in

the liquid also rises rapidly, and at T = 0.6 over 50% of particles are in H2 cells.

Yet, the supercooled liquid remains stable to crystallisation over timescales that are

at least 2 orders of magnitude longer than the structural relaxation times and over

which the average particle travels 3.5–10 diameters.

The high metastability of the supercooled liquid phase appears to be due to the

slow process by which H2 cells align correctly for crystal growth to proceed. Although

the majority of particles are in local H2 order at T = 0.6, these form only small

clusters, on average 3–4 H2 units across, that remain unaligned with respect to each

other. Only after more than 3,000 structural relaxation times (τe,1) do a sufficient

number of H2 cells align for the fraction of local crystalline environments to start

increasing. Close-packing of H2 clusters in arrangements that cannot grow to fill

space may be a reason for the slow rate of alignment of H2 cells. Crystal growth

then appears to proceed via both aggregation events, involving the joining of several

crystalline domains, and addition events involving the formation of new crystalline

order in the liquid adjacent to the growing crystal. The initial crystal nucleus and

the growing crystal contain a high proportion of herringbone packing of H2 cells, but

the fraction of parallel packing appears to increase once the main growth event is

complete, i.e. the crystal is quite labile to interconversion between different parallel

and herringbone packings. Small distortions in the local coordination environment

about small particles - from the S14 to S04 environment - may form a pathway for

such interconversions to take place.

In contrast, the non-equimolar mixture shows little sign of H2 crystal order or

phase separation into single component crystalline domains. The low-temperature

structure is instead dominated by S05 environments and an equal number of L34

environments. The equal occurrence of these two environments appears to be due to

the specific way in which the pentagonal S05 environments pack together with each
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other and with occasional S14 and S04 environments. This system shows dynamic

behaviour typical of other glass-forming liquids: the structural relaxation times and

diffusion constants depart from an Arrhenius temperature dependence below T = 0.6,

the maximum in the non-Gaussian function at intermediate times increases rapidly

in magnitude around the same temperature, and the intermediate scattering function

develops a clear two-step decay in the low-temperature liquid state. We therefore con-

clude that this model is a good glass-former. In contrast to the equimolar glass-former

studied in Part I, this system has a more homogeneous structure and less diversity of

local environments. It will therefore be interesting to compare the spatial distribution

of dynamic heterogeneity in this system with that found for the structurally different

glass-former in Part I.



Chapter 7

Nanocrystallinity and Phase

Separation

In this chapter we present studies of two further soft-disc mixtures. The non-equimolar

mixture with composition x1 = 0.3164 of the additive system, i.e. with σ12 = 1.2, and

the equimolar mixture of the non-additive system with σ12 = 1.3. We find that the

former undergoes phase separation into an apparently stable crystal-amorphous com-

posite, while the latter undergoes liquid-liquid phase separation before freezing of first

the large-particle and then the small-particle fractions.

7.1 Introduction

As discussed in Section 4.2, amorphous alloys are of great technological interest be-

cause of their exceptional hardness, among other unusual properties. Pure metallic

glasses, however, are also brittle, i.e. once they reach their elastic limit they fracture

easily. To make them more suitable for a variety of applications, people have sought to

improve their toughness by finding ways of forming crystalline domains that remain

distributed within the amorphous matrix. Such nanocrystalline materials fall into

the broader class of multiphase alloys [181,234] that include micro-segregated crystal-

crystal composites such as the famous and beautiful Damascus steel swords [235,236].

The equimolar soft-disc mixture studied in Part I, with additive interparticle po-

tential σ12 = (σ11 + σ22)/2 = 1.2, has previously been characterised as a good glass-

former [44,67]. Here we study a non-equimolar mixture with composition x1 = 0.3164

with the same set of interaction potentials, and find that, upon cooling, it undergoes
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partial phase separation into a stable crystal-amorphous composite. This system may

therefore be a useful model with which to increase our understanding of nanocrys-

talline materials, including both the relationship between their microscopic and me-

chanical properties and how to stabilise them.

We also study the phase behaviour of the equimolar mixture with interparticle po-

tential σ12 = 1.3, which being greater than additive, results in an effective repulsion

between unlike particle species. Not surprisingly, we find that this mixture under-

goes liquid-liquid phase separation before freezing of first the large particle fraction

and then the small particle fraction. In terms of interparticle potential, this places

the glass-forming alloy studied in Part I between the competing extremes of phase

separation, on the one hand, and formation of a substitutionally ordered crystal, on

the other. The latter, of course, refers to the H2 crystal characterised in Chapter 6.

The rest of this chapter is structured as follows. In Section 7.2 we characterise

the changes in structure and dynamics during cooling of the non-equimolar additive

mixture, and in Section 7.3 we present a brief study of the phase behaviour of the

equimolar mixture with σ12 = 1.3. This is followed by a short discussion and summary

of the main results.

7.2 Crystal-Amorphous Coexistence in the

Non-Equimolar Mixture with σ12 = 1.2

7.2.1 Model and Computational Details

We consider a 2D system consisting of a binary mixture of particles interacting via

purely repulsive potentials of the form

uab(r) = ǫ
[σab

r

]12

(7.1)

where σ12 = 1.2 × σ11 and σ22 = 1.4 × σ11. All units quoted will be reduced so that

σ11 = ǫ = m = 1.0 where m is the mass of both types of particle. Specifically, the

reduced unit of time τ = σ1

√
m/ǫ. A total of N = 1024 particles were enclosed in a

square box with periodic boundary conditions.

The molecular dynamics simulations were carried out at constant number of parti-

cles, pressure (P = 13.5) and temperature using the Nosé-Poincaré-Andersen (NPA)
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algorithm developed by Laird et al. [83,84]. The equations of motion were integrated

using a generalised leapfrog algorithm [84], and are provided for 2D simulations in

Appendix A along with further details of the NPA algorithm. The time step em-

ployed was 0.05τ for T > 1, and 0.01τ for T ≤ 1. For argon units of η = 120kB,

m = 6.6 × 10−23g and σ11 = 3.4Å, these time steps correspond to approximately 10

and 20 femtoseconds respectively.

A non-equimolar mixture consisting of N1 = 324 small particles and N2 = 700

large particles (giving a composition of x1 = 0.3164 to 4 d.p.) was studied at 16

different reduced temperatures from T = 5 to T = 0.3. The starting configuration

of the run at T = 5 was an equilibrated configuration at T = 5 for the equimo-

lar mixture described in Chapter 2 with the appropriate number of small particles

changed to large particles. The starting configuration of each lower temperature equi-

libration run came from the final configuration of the preceding higher temperature

run. At all temperatures the equilibration runs were taken out until steady state

was achieved, i.e. until the average thermodynamic properties remained constant in

time. The equilibration run times were longer than the times taken for all the dy-

namic correlation functions investigated to decay to zero for T ≥ 0.7, and were at

least an order of magnitude longer than the structural relaxation times for T ≥ 0.45

/ T ≥ 0.55 for the small/large particles. Table C.18 (in Appendix C.5) lists the

temperatures of each state studied as well as the equilibration and production times.

The final configurations of the equilibration runs were used to start the production

runs. The ‘masses’ of the Anderson piston and Nosé thermostat were Qv = 0.0001

and Qs = 1000, respectively, for all temperatures.

7.2.2 Thermodynamic Properties

The isobaric phase diagram is plotted in Figure 7.1. The density increases smoothly

with cooling showing no sign of a first order phase transition, although there is per-

haps a small change in slope between T = 0.5 and T = 0.6. The thermodynamic

averages for the potential energy per particle (U), energy per particle (E), enthalpy

per particle (H), and number density per particle (ρ) are listed for reference in Table

C.18. An equation of state has previously been calculated for this system [67] using

data obtained for the equimolar mixture. We have verified that this equation of state

is consistent with the thermodynamic results obtained at the current composition.
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Figure 7.1: Isobaric (P = 13.5) phase diagram. Error bars represent one standard devia-
tion. Note that the density increases smoothly with cooling.

7.2.3 Growth of Crystalline Domains During Cooling

Particle Configurations

Several changes in structure occur as the system is cooled (representative particle

configurations are shown in Figure 7.2). The initially homogeneous liquid (a) appears

to separate into regions of hexagonally packed large particles and an amorphous phase

consisting of both small and large particles but the separation is incomplete and the

two phases remain intermixed. By T = 0.55 crystalline domains of large particles

have formed (b), but do not appear to grow (c) despite the apparent high mobility

of the intermixed amorphous phase. At T = 0.3 (d), the entire structure is rigid and

the phases remain intermixed.



7.2 Crystal-Amorphous Coexistence 217

(a)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

(b)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

(c)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

(d)
−25 −15 −5 5 15 25

−25

−15

−5

5

15

25

Figure 7.2: Representative particle configurations at (a) T = 1, (b) T = 0.55 after 50, 000τ
equilibration, (c) T = 0.55 after 100, 000τ equilibration, and (d) T = 0.3. The small and
large particles are represented by filled and open circles respectively.

Pair Distribution Functions

The pair distribution function (PDF) and the partial pair distribution functions

(PPDFs) have been defined in Section 5.3.2. They are shown for the current sys-

tem in Figures 7.3 and 7.4. Upon cooling, g22(r) develops structure over increasing

lengthscales until by T = 0.55 there is still structure at r = 10σ11, suggesting that

there is some translational correlation between the large particle domains. There is

no evidence of long-range translational order in the other PPDFs. The PDFs are

also sensitive measures of local compositional correlations. For example, integrating
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Figure 7.3: The partial pair distribution functions g11(r) and g22(r) as a function of
distance from T = 5 down to T = 0.3. For T ≤ 3, each curve has been shifted upwards by
one unit from the higher temperature curve directly preceding it. Note the different x-axis
scales.

under the first peak of the distribution functions out to the first minimum provides

the partial coordination numbers, which are calculated in slightly different form in

Section 7.6. We extract the positions of the first minima in the PPDFs (listed in

Table C.19) to use as cutoff distances for defining nearest particle neighbours when

calculating the local coordination environments and the various orientational order

parameters.
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Figure 7.4: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) as a function of distance from T = 5 down to T = 0.3. For T ≤ 3, each
curve has been shifted upwards by one unit from the higher temperature curve directly
preceding it.

Structure Factors

The partial structure factors were calculated from the PPDFs as explained in Section

5.3.2. They are plotted along with the total structure factor in Figures 7.5 and

C.10. The oscillations at small k below the first maxima are artifacts of the Fourier

transformation procedure (due to truncation of the PDFs at non-zero values) and

should be ignored. For S22(k), the second peak is split into two components at all

but the highest temperatures. The components of the bimodal second peak in S22(k)

occur at wave vectors that coincide with the second and third peaks (at k ≈ 9.2σ −1
11

and k ≈ 10.5σ −1
11 , respectively) in the static structure factor of a single component
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Figure 7.5: The partial structure factors S11(k) and S22(k) for temperatures from T = 5
down to T = 0.3. For clarity, each curve below T = 5 has been shifted upwards by 0.2 units
above the higher temperature curve directly preceding it.

crystal of large particles. We conclude that this feature is due to the presence of

crystalline domains of large particles at low temperatures.

Local Structure Parameters

Several quantities were used to characterise the local structure of the non-equimolar

mixture. In Figure 7.6 we present the ‘bond’ fractions nab, defined as the fraction of

all nearest neighbours particle pairs that occur between particles of type a and b (see

Section 7.2.3 for the definition of nearest neighbours). Upon cooling below T = 1,

n12 decreases continuously from 0.4 until a new plateau value of 0.3 is reached. In

contrast, the fraction of nearest neighbour contacts between like particles, given by n11
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Figure 7.6: ‘Bond’ fractions as a function of temperature for T ≤ 1. nab is the fraction
of all nearest neighbours particle pairs that occur between particles of type a and b. Error
bars represent one standard deviation.

and n22, increases with cooling. This is a clear indication that the mixture undergoes

phase separation as it is cooled. It does not, however, appear to be demixing into

two single-component phases. n12 never decreases below a value of 0.3 and, although

large fluctuations are observed in the instantaneous ‘bond’ fractions between T =

0.55–0.4, we observe no systematic change during the extremely long production runs

listed in Table C.18.

The distribution of local packing environments is plotted as a function of tem-

perature in Figure 7.7. Only the most common environments are shown. From this

data it is clear that the fraction of hexagonally packed large particles L06 increases

dramatically below T = 1. At the same time the number of large particles with

small particle neighbours decreases substantially (see L15, L24, L33 and L25). Both

these results are consistent with the appearance of large particle domains at low tem-

perature. The main change in the local environment around small particles is an

increase in the number of small neighbours; S42 increases while S14 decreases. S60

also shows a small increase, but the fraction of small particles with six small neigh-

bours remains quite small, i.e. the small particles do not substantially aggregate into

a single-component phase.
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Figure 7.7: The distribution of local packing environments as a function of temperature.
We have identified a particular neighbourhood with the following notation: A small particle
with m small neighbours and n large neighbours is designated as Smn and the analogous
large particle is indicated as Lmn.

Orientational Order Parameters

In order to quantify the orientational order throughout the system we have introduced

the n-fold orientational order parameters (see Section 5.3.2 for their definitions). The

bulk averaged n-fold order parameters Ψn, plotted in Figure 7.8, probe the local

orientational order. The major change upon cooling is an increase in the hexagonal

order about large particles Ψ6,2, especially between T = 0.65 and T = 0.55. In

contrast, Ψ6,1 shows a smaller increase. What little 4-fold order was present at high

temperatures decreases with cooling. The variation in 12-fold order can be explained

by the presence of 6-fold order in the mixture.

We also tested for the presence of long-range orientational correlations between the

local hexagonal domains. In Figure 7.9, we plot the partial 6-fold orientational corre-

lation functions G6,1(r) andG6,2(r) over a range of temperatures. (These functions are

defined in Section 5.3.2.) As the temperature is reduced, long-range orientational cor-

relations develop between local hexagonal environments around large particles. This,
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Figure 7.8: The temperature dependence of the bulk averaged n-fold order parameters
Ψn, where n = 4, 6, 12, and their small (Ψn,1) and large (Ψn,2) particle contributions. The
error bars represent one standard deviation about the average.
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along with the local coordination analysis described above, provides clear evidence

for the growth of extended crystalline clusters of large particles upon cooling. The

presence of orientational correlation even at a distance of r = 20σ11 (roughly half the

system size) indicates that an extended crystalline domain of large particles spans the

entire system for at least T ≤ 0.55. In contrast, correlations between small-particle

hexatic environments remain short-ranged over the entire temperature range studied.

There is no orientational correlation between local 4-fold order in the system, and

that the 12-fold orientational correlation functions mirror the trends observed in the

6-fold orientational correlation functions and therefore do not appear to contain any

additional information. For this reason, we do not show these here.
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7.2.4 Development of Heterogeneous Dynamics

We have already shown that the non-equimolar mixture undergoes partial phase sepa-

ration into a crystalline large-particle phase and an amorphous two-component phase

when it is cooled. In this section, we present an analysis of the changes in particle

transport and structural relaxation that occur upon cooling.

Intermediate Scattering Functions and Arrhenius Plot

Log-linear plots of the self intermediate scattering functions are shown in Figure 7.10.

Fs,1(k, t) and Fs,2(k, t) (defined in Section 5.3.3) have been measured at the positions

of the first maxima in the static structure factors S11(k) and S22(k). The positions of

these maxima are independent of temperature and are listed in the caption to Figure

7.10. The relaxation curves broaden with decreasing temperature until at T = 0.5

(for the large particles) and T = 0.4 (for the small particles) they are no longer

able to decay to zero within the finite timescale of the simulations. The relaxation

functions already span over five decades in time at these temperatures. At T = 0.65

(for the large particles) and T = 0.55 (for the small particles) a step appears in the

relaxation curves at intermediate times. This step broadens into a plateau with an

amplitude that increases with decreasing temperature. The height of the plateau also

increases with decreasing temperature. Such two-step relaxation functions have been

observed in a wide range of glass-forming systems as discussed in Section 1.2. Note

that Fs,1(k, t) decays substantially faster than Fs,2(k, t).

Structural relaxation times τe,1 and τe,2 are defined as the time taken for the

incoherent scattering functions Fs,1(k, t) and Fs,2(k, t), respectively, to decay to 1/e

of their initial values. The temperature dependences of these relaxation times (shown

in Figure 7.11) appear to be Arrhenius at high temperatures, but diverge strongly

from Arrhenius dependence as the temperature drops below T = 0.7 and T = 0.6 for

the large and small particles, respectively. The onset of non-Arrhenius temperature

scaling occurs at the same temperature at which the step first appears in the relaxation

curves. Diffusion constants were measured in the region where the mean-squared

displacements (MSDs) have reached their long-time constant value (R 2
a (t) > σ 2

11).

They show a weaker deviation from Arrhenius temperature dependence than the

structural relaxation times, with the onset of this deviation occurring around the

same temperature. D1/D2 ≈ 1 above T = 1, but increases steadily upon cooling

below T = 0.7, i.e. the large particles move increasingly slow relative to the small
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Figure 7.10: The incoherent scattering functions Fs,1(k1, t) and Fs,2(k2, t) for the small
and large particles, respectively. The wave vectors k1 = 6.32σ −1

11 and k2 = 5.44σ −1
11 are

the first peak positions in the respective partial structure factors. From left to right the
temperatures of the curves are T = 5, 3, 2, 1, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45,
0.4, 0.35 and 0.3. Note the appearance of a two-step relaxation process in the intermediate
scattering functions.

particles. For reference, the MSDs over all particles R2(t), and averaged over the

two particle species R 2
2 (t) and R 2

1 (t), are plotted in Figure C.11 and the structural

relaxation times and diffusion constants are listed in Table C.20. It is interesting

to note that both the diffusion constants and relaxation times show behaviour that

is typical of glass-forming systems despite the appearance of crystalline domains of

large particles and a significant amount of phase separation in the system.
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Figure 7.11: Arrhenius plot of the structural relaxation times τe,1 and τe,2 and the inverse
diffusion constants D−1

1 and D−1
2 . The dashed lines are linear regressions through the data

for T ≥ 0.7. Note the divergence from Arrhenius behaviour at low temperatures.

Non-Gaussian Parameter

As explained in Section 5.3.3, the non-Gaussian parameters Aa(t) can be used as

a measure of the degree of dynamic heterogeneity in a sample. Large values at

intermediate times can be attributed to a broad distribution of local mobilities. The

non-Gaussian parameters for the present system are plotted in Figure 7.12. A rapid

rise in non-Gaussian behaviour is observed at low temperature for both the large and

small particle species. The maximum value of A2(t) increases rapidly below T = 0.65,

while the maxima in A1(t) show a similar but smaller increase below T = 0.55. The

trend is for the maxima to move to longer times as they increase in height; at the

lowest temperatures the finite observation time of the simulations is too short to

observe the maxima.

A2(t) and A1(t) are no longer able to decay to zero by T = 0.65 and T = 0.45,

respectively. This suggests that the system falls out of equilibrium somewhere near

T = 0.65. However, the average small and large particle is still able to travel 10σ11

within this observation time, indicating that much of the system is still highly mobile.
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over small and large particles, A1(t) and A2(t), respectively. The temperatures of the curves
are as listed in Figure 7.10. Observe the different y-axis scales and the rapid increase in the
peak heights with decreasing temperature.
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There must therefore be a broad distribution of mobilities among the large particles.

We conclude that this is due to the distribution of large particles between crystalline

and amorphous domains. While the average mobility of the large particles is still

high at T = 0.65, some large particles must have low mobility (presumably those in

the crystalline domains) and some must have very high mobility (presumably those

in the amorphous domains). At T = 0.45 the average MSD for a large particle

during equilibration is still greater than σ11, yet the system no longer appears to

be segregating (see Figure 7.6). This suggests that the crystal-amorphous composite

structure is stable to further phase separation.

The dynamic properties clearly show that the equilibration run times were suf-

ficiently long for the non-Gaussian parameters to decay to 0.2 or less for T ≥ 0.7,

and at least an order of magnitude longer than the structural relaxation times for

T ≥ 0.55. We therefore conclude that the non-equimolar mixture is very stable

to complete phase separation, despite the presence of crystalline domains of large

particles that span the simulation cell. Below T = 0.7 the non-equimolar mixture

displays dynamic properties typical of supercooled liquids including: non-Gaussian

dynamics; the appearance of a plateau in the MSD and scattering functions at inter-

mediate times; and strong non-Arrhenius temperature dependence of the structural

relaxation times, and to a lesser extent of the diffusion constants. We conclude that

this behaviour is due to glass-formation in the substantial amorphous fraction of the

system. The stronger non-Gaussian dynamics of the large particles is likely due to

their distribution between the less mobile crystalline domains and the more mobile

amorphous regions. We discuss this system further in Section 7.4.

7.3 Phase Separation in the Equimolar Mixture

with σ12 = 1.3

Only a minimal set of cooling runs were studied for this system in order to identify the

nature of the liquid to solid phase transition. Upon cooling, the liquid segregates into

small and large particle fractions before freezing, initially of the large particle phase,

and then of the small particle phase at a lower temperature. The freezing tempera-

tures of both phases are substantially reduced relative to the freezing temperatures

of the respective single component systems.
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7.3.1 Model and Computational Details

We consider a 2D system consisting of a binary mixture of particles interacting via

purely repulsive potentials of the form

uab(r) = ǫ
[σab

r

]12

(7.2)

where σ12 = 1.3×σ11 and σ22 = 1.4×σ11. All units quoted have been reduced so that

σ11 = ǫ = m = 1.0 where m is the mass of both types of particle. Specifically, the

reduced unit of time τ = σ1

√
m/ǫ. An equimolar mixture of N = 1440 particles were

enclosed in a square box with periodic boundary conditions. The molecular dynamics

simulations were carried out at constant number of particles, pressure (P = 13.5)

and temperature using the Nosé-Poincaré-Andersen (NPA) algorithm as described in

Appendix A. The ‘masses’ of the Anderson piston and Nosé thermostat were set to

Qv = 0.0002 and Qs = 1000, respectively, at all temperatures.

The system was studied at 12 reduced temperatures: T = 5, 3, 2.5, 2, 1.8, 1.6,

1.4, 1.2, 1, 0.8, 0.6, and 0.4. The initial configuration at T = 5 was an equilibrated

configuration at T = 5 for the equimolar system described in Chapter 6, i.e. with

σ12 = 1.1. The starting configuration for each lower temperature run was the final

configuration of the equilibration run at the preceding higher temperature. The

length of the equilibration runs was 1000τ for T ≥ 2 and 2000τ for T ≤ 1. At all

temperatures the equilibration runs were taken out until steady state was achieved,

i.e. until the average thermodynamic properties remained constant in time. Except

for at T = 1.8, this took less than one quarter of the total equilibration runtime.

Densities were calculated using the latter part of the equilibration runs, i.e. after

steady state had been achieved. No additional production runs were studied.

7.3.2 Changes in Configuration and Density

Representative configurations are plotted in Figure 7.13. At T = 3 [plot (a)] the liquid

is more or less homogeneous, although small one-component domains are already

present. By T = 2 [plot (b)] it is obvious that the liquid has begun to separate into

separate small- and large-particle phases. The degree of phase separation gradually

increases as the temperature is reduced until at T = 1.2 [plot (d)] the two phases

are almost completely demixed. At this point the large-particle phase crystallises

into a hexagonal lattice with some small particles imbedded, i.e. a substitutionally
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Figure 7.13: Representative particle configurations at (a) T = 3, (b) T = 2, (c) T = 1.6,
(d) T = 1.2, and (e) T = 0.4. The small and large particles are represented by filled and
open circles respectively.
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Figure 7.14: Isobaric (P = 13.5) phase diagram. The dashed vertical lines indicate ap-
proximate temperature ranges for the different structural regimes: (a) homogeneous liquid,
(b) inhomogeneous liquid, (c) crystal-liquid coexistence, and (d) crystal-crystal coexistence.
Errors bars represent one standard deviation.

disordered single-component crystal. The small particle phase remains fluid until

T = 0.4 at which point it also freezes into a hexagonal lattice. Thus the liquid

appears to demix before crystallisation, first of the large particle phase and then, at

a lower temperature, of the small particle phase.

The different structural regimes are roughly indicated on the phase diagram shown

in Figure 7.14. Within the different regions, the density variation can be well approxi-

mated by linear fits with different slopes. It is interesting to see that the freezing tem-

peratures of the large- and small-particle liquid phases in this system (Tf,2 ≈ 1.3 and

Tf,1 ≈ 0.5) are substantially reduced relative to the freezing temperatures obtained

for the respectively one-component systems (Tf,2 = 1.7 and Tf,1 = 0.95) [67, 85, 171].

Some longer runs in the inhomogeneous liquid region would be useful in order to

check whether further phase separation occurs given sufficient time for larger-scale

compositional fluctuations to take place. This may affect Tf,2, but seems unlikely to

affect Tf,1.
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7.4 Discussion and Conclusions

The non-equimolar mixture undergoes partial phase separation into a crystalline

large-particle phase and an amorphous two-component phase when it is cooled. The

dynamic properties clearly show that the equilibration run times are sufficiently long

for the non-Gaussian parameters to decay less than 0.2 above T = 0.65, and are

at least an order of magnitude longer than the structural relaxation times above

T = 0.5. We therefore conclude that the non-equimolar mixture is very stable to

complete phase separation, despite the presence of crystalline domains of large parti-

cles that span the simulation cell. Below T = 0.7 the non-equimolar mixture displays

dynamic properties typical of supercooled liquids, including non-Gaussian dynamics,

non-Arrhenius temperature dependence of the diffusion constants and structural re-

laxation times, and the appearance of a plateau in the mean squared displacement

and incoherent scattering functions at intermediate times. We conclude that this

behaviour is due to glass-formation in the substantial amorphous fraction in the sys-

tem. The stronger non-Gaussian dynamics of the large particles is likely due to their

distribution between less mobile crystalline domains and more mobile amorphous

regions.

One possible reason for the stability of the non-equimolar mixture to phase separa-

tion is that the use of a square simulation cell artificially stabilises the mixed structure

with respect to the phase separated structure. The amorphous phase may act as filler

between the crystalline domains which have the wrong dimensions to join up across

the periodic boundaries. If the phase separated system does not pack efficiently into

a square cell with periodic boundary conditions then it may not form despite being

the thermodynamically more stable structure. The possibility of this occurring will

be increased if the free energy difference between the mixed and separated structures

is very small. One way to test this hypothesis would be to use a simulation cell with

independent variation of the x and y dimensions to allow for a better fit of the cell

dimensions to the preferred dimensions of the phase separated system. This artifi-

cal stabilisation of the mixed phase should also be system size dependent, becoming

weaker with increasing size. In any case, the absence of greater phase separation

in the non-equimolar mixture suggests that the free energy difference between the

mixed and separated structures is not great. It may therefore still be a useful model

in which to study the formation and properties of nanocrystalline materials.

We note that the mixture with x1 = 0.75 has previously been investigated [237].
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Despite the presence of large crystalline domains of small particles, the large par-

ticle fraction does not appear to cluster substantially and remains in the form of

extended chain-like structures that separate crystalline domains of small particles.

Thus structurally, this mixture appears similar to the mixture studied in this chapter

with x1 = 0.3164, except that the role of large and small particles is reversed.

Upon cooling, the equimolar mixture with σ12 = 1.3 separates almost completely

into two single-component liquid phases. In terms of interparticle potential, this

places the glass-forming alloy studied in Part I between the competing extremes

of phase separation, on the one hand, and formation of a substitutionally ordered

crystal, on the other. The latter, of course, refers to the H2 crystal characterised in

Chapter 6. The large particle fraction in the phase separated system freezes around

T = 1.3, but the small particle fraction remains fluid until about T = 0.5. Therefore

the freezing temperatures of both phases are substantially reduced relative to their

one-component systems (Tf,2 = 1.7 and Tf,1 = 0.95) [67, 85, 171].



Chapter 8

Final Discussion

In this thesis we have sought to provide a clearer picture of the relationship between

structure and dynamics in supercooled liquids and glasses. We have developed new

methods for investigating this relationship at a microscopic spatial level, and have

applied these to the study of a two-dimensional glass-forming alloy. We have also

characterised the phase behaviour, and structural and dynamic properties, of several

related model alloys, thereby laying the foundations for a rich extension of the former

work. Our results fimly portray the glass transition as a continuous transition from

structure-independent dynamics to structure-dependent dynamics.

In Part I, we investigated the role of structure in the development of spatially

heterogeneous dynamics in a supercooled random alloy. Specifically, a binary soft-disc

mixture with additive interparticle potential was studied. New tools were conceived -

the isoconfigurational ensemble, dynamic propensity, the single particle non-Gaussian

function, and the single-particle Debye-Waller factor - and used to obtain the clearest

picture yet of the relationship between structure and dynamics in a glass-forming

liquid.

By considering the set of N -particle trajectories through a configuration, i.e. an

isoconfigurational ensemble, we were able to study the effect of structure on dynamics

at a microscopic level without the additional noise of momenta fluctuations. We found

that over the isoconfigurational ensemble, some particles are on average more mobile

than others, i.e. some particles have a higher susceptibility to motion than others. We

studied this susceptibility on both the structural relaxation time - using the dynamic

propensity, and on the timescale of the secondary β-relaxation - using the single

particle Debye-Waller factor (DW factor).
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As the random alloy is supercooled, structural variations become increasingly

important for dynamics and ultimately cause relaxation times to vary by orders of

magnitude from one region of the supercooled liquid to another. This was evidenced

by the rapid increase in the variance and range of the propensity distribution upon

supercooling, and the increasing clustering of particles with similar mobility. It also

strongly suggests that the various properties of supercooled liquids that have been

attributed to the appearance of spatially heterogeneous dynamics - such as the break-

down of scaling between translational and rotational diffusion, the appearance of

non-Fickian transport, and the dependence of Tg on film thickness in polymer films

- depend upon fluctuations in the structure of the liquid. If this is true, it places in-

creased importance on understanding the structure of supercooled liquids and glasses,

and in particular the spatial variation in structure, not just for understanding the sta-

bility of glass-formers to crystallisation, but also for understanding their macroscopic

properties.

Upon supercooling, the variability of the individual particle motion also increases

rapidly. Even the most susceptible regions become capable of ‘sticking’ in a given run,

and when they do ‘slip’ the mobile particles move far from their initial positions. The

individual particle displacements become increasingly non-Gaussian and the system

dynamics becomes increasingly intermittent in character. This suggests a hierarchy

of structural domains, from marginally jammed to overconstrained.

In Chapter 3 we demonstrated that the spatial heterogeneity of the single particle

DW factor - a dynamic measure of structural ‘looseness’ - was able to predict the

coarse-grained spatial variation in dynamic propensity. This provides a link - via the

initial configuration - between dynamics occurring before and during the α-relaxation

over timescales separated by two orders of magnitude. Given the subtlety of the

collective mechanical constraints probed by the short-time dynamics, the DW factor

should provide an upper bound on what one can hope to predict from any measure

of the initial configuration.

While the present work has not looked at the effect of structure on dynamics

below Tg, the results just described suggest that previous observations of spatial

heterogeneity in vibrational motion below Tg are also likely to be due to spatial

variations in structure. This therefore suggests a continuous relationship between

spatial variations in structure and dynamics extending from below Tg up to the normal

liquid regime.
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We also found that the spatial distribution of DW factors changes substantially

on the timescale of the β process. This implies that the susceptibility of the ‘loosest’

particles changes rapidly. It also makes the spatial correlation between the DW factor

and the propensity all the more surprising. The answer is that although parts of the

initial configuration change susceptibility very rapidly, other parts relax much slower

and still influence the dynamics on much longer timescales. Thus, although the DW

distribution changes rapidly the hot spots for short-time motion are mostly confined

to the larger high propensity region(s) over much longer timescales. This appears to

be supported by a comparison of the time series of DW maps with the propensity

distribution for the configuration used as a starting point of the time series (in Chapter

3).

The local free volume, local potential energy and local coordination environment

all fail to predict the spatial variation in dynamic propensity or the DW factor, even

upon coarse-graining of the free volume and potential energy. This indicates that

simple isotropic measures of structure are unable to capture the microscopic details

of how structure affects dynamics. It appears that some more complicated - perhaps

anisotropic - aspect of the particle packing is responsible for determining the dynamic

susceptibility of different domains. The best defined regions - in terms of their effect

on mobility - are the clusters of L06 environments which almost universally have low

propensity and DW factors. We conclude that the heterogeneous effect of structure

on dynamics, as characterised by the spatial variation in propensity, is due to a

combination of overconstrained regions which consist mainly of distinct structural

entities (large particle crystallites), and marginally constrained regions which have

less well-defined structures. The latter are sufficiently constrained to prevent motion

but are easily made mobile with an appropriate momenta fluctuation.

These results have a number of implications for various conceptual pictures of

supercooled liquid dynamics. The failure of geometric free volume to predict the

spatial variation in both the propensity and the DW factor, even after coarse-graining,

casts doubt on the microscopic basis of theories of the glass transition based purely on

free volume, and highlights the importance of testing whether correlations between

macroscopic quantities persist at a microscopic level. The rapid changes that occur

in the spatial distribution of the DW factor also demonstrate that a simple picture

of defect diffusion is unable to account for the effect of structure on dynamics in

this glass-former. Whatever property of the structure that causes one region of the
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sample to be more mobile than another is able to be transferred from one region to

another with little movement of the intervening particles. Finally, we note that the

spatial distribution of propensity is essentially the starting point for several models

of glass relaxation such as the facilitated spin models and the cooperative lattice gas

models. The failure of simple structural measures to predict the spatial distribution

of propensity bears a mixed message for programs in which atomic models of glass-

formers are mapped onto spin models through an appropriate spatial coarse-graining

of the former. Our results suggest that finding this appropriate spatial averaging

to capture the subtle nonlocal character of particle constraints is a highly nontrivial

task. On the other hand, our results certainly support the proposition that the initial

pattern of local facilitation, as measured be the short-time dynamics, governs much

of the subsequent heterogeneous dynamics.

In Part II, we investigated the effect of varying the interparticle potential on the

phase behaviour of this glass-former. The structural and dynamic properties of six

new systems were characterised, thus substantially adding to previous knowledge of

crystallisation and glass-formation in binary soft-disc mixtures. The results provide a

sense of the generality of the picture described above, and have laid the foundations

for a rich extension of the former work.

When the interparticle potential σ12 is made greater than additive, there is an

effective repulsion between unlike particle species and phase separation occurs upon

cooling. On the other hand, when σ12 is decreased from additive there is an effective

attraction between unlike particle species and the asymmetric H2 and symmetric S1

substitutionally ordered crystals are stabilised at equimolar composition. Interest-

ingly, at non-equimolar compositions amorphous solids are formed on cooling. To-

gether with the mixture studied in Part I, these form a complete structural range of

alloy glasses, from random alloy to chemically ordered. As the degree of chemical

ordering increases, the number of dominant local environments decreases, the struc-

ture becomes more homogeneous, and the medium-range order becomes more defined.

Thus, we find that small changes to the interparticle potential stabilise amorphous

solids with substantially different structures. The structures of the glass-formers also

differ with respect to the amount of crystalline order that they have. The random

alloy has substantial regions of large particle crystallites (the XL phase), while the

glass-former with σ12 = 1.1 shows very little sign of XL or H2 crystalline environ-

ments. The glass-former with σ12 = 1.0, studied in Chapter 5, is also intriguing,
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Figure 8.1: Contour plots of the spatial distribution of particle Debye-Waller factors for
configurations at T = 0.4 for the system with (a) σ12 = 1.1, x1 = 0.3167 and (b) σ12 = 1.2,
x1 = 0.5. The DW factors were calculated using 100 runs of 10τ duration each. Note the
substantial difference in the spatial distribution of mobility. Different colour scales were
used to enhance this difference.

because it appears to be as close to an ideal glass as one could hope to get. It is

a particulate model, in which glass-formation arises naturally, without the need for

ad-hoc model building; its low-temperature structure can be concisely described as

a random tiling with defects, with most particles finding themselves in just five dis-

tinct environments; and videos of its low-temperature dynamics suggest that it is

dominated by defect motion. (So perhaps defect diffusion models are appropriate for

some glasses, namely those with strong chemical ordering.) The potentially soluble

nature of the 1.0 glass-former also raises an interesting question: given a complete

theoretical model of the glass transition, what next?

As we have already described, the presence of large particle crystallites in the

random alloy glass-former has a significant impact on its dynamic properties. It

should therefore be insightful to repeat the isoconfigurational analysis for these new

glass-formers and compare the results to those obtained for the random alloy. As an

example, in Figure 8.1 we compare the spatial distribution of structural ‘looseness’ for

the non-additive system with σ12 = 1.1, and for the additive glass-former studied in

Part I. Both plots are for configurations at T = 0.4, at which temperature the struc-

tural relaxation times for the two systems are similar. Note that the non-additive

glass-former, which has the more homogeneous structure, also has a more homoge-

neous distribution of mobility, in the sense that particles with similar mobility are
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less clustered. The range between high and low mobility is roughly the same for both

systems.

The results just described raise a number of questions. Does the effect of structure

on particle motion vary significantly between different glass-formers, as the plots in

Figure 8.1 suggest? To what extent does the type and quantity of higher-symmetry

local and medium-range order affect the properties - such as strength, conductivity

and stability to crystallisation - of the glass-former? And how does the relationship

between structure and dynamics differ in strong liquids, in non-alloy glasses, and in

3D glass-formers?

In conclusion, our results describe the increasing influence of structure on dynam-

ics during the glass transition. In particular, the development of heterogeneity in

the spatial distribution of dynamic propensity for a fragile glass-former demonstrates

that structural variations can have a significant impact on relaxation in supercooled

liquids. The isoconfigurational ensemble method provides a real-space picture of this

transition from structure-independent to structure-dependent dynamics, that is com-

plementary to the configuration-space perspective of the energy landscape view of

glass-formation. It also has the additional benefit of providing the means to test for

the presence of spatial correlations between structural and dynamic quantities on a

microscopic spatial level. As the work in this thesis has demonstrated, this is an

important test for distinguishing between those correlations that exist only at the

bulk level and those that also operate at the microscopic level. Only the latter can

provide insight into the detailed structural dependence of material properties.



Appendix A

The Nosé-Poincaré-Andersen

Molecular Dynamics Algorithm

The Nosé-Poincaré-Andersen (NPA) method [84] is a real-time Hamiltonian formula-

tion of isothermal-isobaric molecular dynamics simulation based on a Poincaré time

transformation of the Nosé-Andersen Hamiltonian (see below). It belongs to the

so-called ‘extended’ Hamiltonians - in which extra degrees of freedom have been

added to the system in order to ensure that the trajectory samples from the statisti-

cal distribution corresponding to the desired thermodynamic conditions. Unlike the

Nosé-Hoover-Anderson method [238], the Hamiltonian structure of the NPA allows

for the use of symplectic integrators, which have been shown to have superior stability

over non-symplectic methods [239]. For integrating the equations of motion we use

the generalised leapfrog algorithm (GLA), which is time-reversible, second-order, and

symplectic.

The Nosé-Poincaré-Andersen (NPA) Hamiltonian is given by

HNPA = [HNA −HNA(t = 0)]s, (A.1)

where HNA is the Nosé-Andersen Hamiltonian. For a d-dimensional system with

uniform scaling (such as a square simulation cell) this is given by

HNA = V −2/d
∑

i

p2
i

2mis2
+ U(V 1/dq) +

π2
V

2Qv

+
π2

s

2Qs

+ gkT ln s+ PextV, (A.2)

where pi is the conjugate momentum of the scaled position qi = V −1/dri, Pext is the
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external pressure and g = Nf +1 where Nf is the number of degrees of freedom of the

original system (note that in the NPA Hamiltonian the correct value of g is Nf). Qv

and Qs are the masses of the Anderson ‘piston’ and the Nosé thermostat, respectively.

In order to properly sample the isothermal-isobaric distribution, these masses

need to be chosen with some care [84]. If they are too large or too small, the natural

vibrational frequency of the extended variables will lie outside the density of states

of vibrational frequencies of the system, thus decoupling the extended variables from

the motions of the system and destroying ergodicity. A useful method to monitor this

is to examine the distribution of kinetic energy (for the thermostat mass) and density

(for the pressure piston). For a decoupled system, the resulting distribution will be

decidedly non-Gaussian. We found that masses near Qs = 1000 and Qv = 0.0002

worked well for most runs. The exceptions were at low temperatures (typically T ≤
0.2), when Qs usually had to be reduced, and in the vicinity of melting transitions,

when Qv needed to be reduced.

The six equations of motion for the NPA algorithm of Laird et al. [84] are given

by:

ṗi = −V −1/d∇iU(V 1/dq), (A.3)

q̇i =
pi

s2miV 2/d
, (A.4)

π̇V = P − Pext, (A.5)

V̇ = πV /Qv, (A.6)

π̇s = V −2/d
∑

i

p2
i

mis2
− gkT − ∆H, (A.7)

ṡ = πs/Qs, (A.8)

where ∆H ≡ HNA −HNA(t = 0), and the instantaneous pressure P is given by

P =
2

dV

∑

i

p2
i

2miV 2/ds2
− 1

dV

∑

i

∂U

∂qi
qi. (A.9)
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It can be shown that the NPA dynamics generates trajectories that sample from

an isothermal-isobaric (NPT) statistical distribution (assuming ergodicity), and that

the NPA equations of motion for πV , s, and V generate the appropriate virial relations

for the NPT distribution.

For simulations using non-uniform scaling, such as a rectangular cell, the equations

of motion must be modified slightly. Only the expressions for the particle kinetic and

potential energies are dependent on non-uniform scaling. We define mx = x0/V
1/2

0

and yx = y0/V
1/2

0 where V0 is the initial volume and x0 and y0 are the initial x and y

dimensions. Then for a 2D system we have

HNA = V −1
∑

i

1

2mis2

(
p 2

ix

m2
x

+
p 2

iy

m2
y

)
+ U(V 1/2q) +

π2
V

2QV

+

π2
s

2Qs

+ gkT ln s+ PextV, (A.10)

where the scaled positions are now given by qix = V −1/2rix and qiy = V −1/2yiy, and

pix and piy are the conjugate momenta to these. The equations of motion need to be

modified accordingly.
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Appendix B

Supplementary Data for Part I

In this appendix we provide additional data on the spatial relationship between dy-

namics and structure. In particular, for each of the ten configurations studied at

T = 0.4, we plot (in the order shown in Figure B.1) the spatial distribution of

propensity, DW factors, local potential energy, local free volume and the inherent

structure of each configuration. The potential energy and relative free volume were

calculated for the inherent structures, and the propensity and DW factors were av-

eraged over iso-configurational ensembles of 100 runs. The configurations have been

listed in temporal sequence and each is separated from the previous one by 75τe.

energy
potential
Local

structure
Inherent

DW factorsPropensity

volume
free
Local

Figure B.1: Layout of plots.
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Figure B.2: Plots for configuration 1.
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Figure B.3: Plots for configuration 2.
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Figure B.4: Plots for configuration 3.
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Figure B.5: Plots for configuration 4.



250 Supplementary Data for Part I

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
3.500
4.125
4.750
5.375
6.000
6.625
7.250
7.875
8.500

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15
0.014
0.026
0.038
0.050
0.062
0.074
0.086
0.098
0.110

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

 

 

 

Figure B.6: Plots for configuration 5.
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Figure B.7: Plots for configuration 6.
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Figure B.8: Plots for configuration 7.
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Figure B.9: Plots for configuration 8.
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Figure B.10: Plots for configuration 9.
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Figure B.11: Plots for configuration 10.
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Appendix C

Supplementary Data for Part II

This appendix contains additional data for the soft-disc mixtures characterised in

Part II.



258 Supplementary Data for Part II

C.1 σ12 = 1.0, x1 = 0.5

Table C.1: The thermodynamic averages and their root mean square (rms) deviations for
the cooling traverse for the equimolar binary mixture with σ12 = 1.0. Also shown are the
effective coupling constant Γ, the compressibility factor Z, the equilibration time teqlb, and
the production time trun for each of these states.

T teqlb/τ trun/τ U E H ρ

5 1000 1000 2.6122 7.5990 28.149 0.6529
3 1000 1000 2.5684 5.5637 24.019 0.7332
2 1000 1000 2.5261 4.5313 21.684 0.7867
1.5 2000 2000 2.4942 3.9711 20.372 0.8196
1.2 2000 2000 2.4674 3.6492 19.593 0.8433
1.15 2000 2000 2.4613 3.6073 19.525 0.8479
1.1 2000 2000 2.4543 3.5491 19.374 0.8528
1.08 2000 2000 2.4503 3.5222 19.293 0.8552
1.06 4000 2000 2.4459 3.5031 19.244 0.8577
1.04 10000 2000 2.4408 3.4768 19.154 0.8605
1.02 10000 20000 2.3689 3.3864 18.630 0.8860
1 10000 20000 2.3672 3.3620 18.558 0.8878
0.98 10000 20000 2.3654 3.3400 18.508 0.8896
0.96 10000 20000 2.3648 3.3223 18.471 0.8910
0.94 10000 20000 2.3630 3.2992 18.414 0.8928
0.92 10000 20000 2.3622 3.2776 18.356 0.8943
0.9 10000 20000 2.3607 3.2603 18.329 0.8960
0.8 10000 20000 2.3559 3.1514 18.080 0.9037
0.7 10000 20000 2.3528 3.0524 17.888 0.9110

continued on next page
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Table C.1 continued

T Γ Z rms(U) rms(E) rms(H) rms(ρ)

5 0.4993 4.1355 0.0862 0.1626 0.7263 0.0051
3 0.6105 6.1379 0.0642 0.0794 0.3574 0.0042
2 0.7009 8.5800 0.0536 0.0665 0.3793 0.0040
1.5 0.7660 10.981 0.0460 0.0505 0.2736 0.0034
1.2 0.8181 13.340 0.0398 0.0439 0.2287 0.0027
1.15 0.8284 13.845 0.0400 0.0506 0.2862 0.0029
1.1 0.8394 14.391 0.0397 0.0474 0.2779 0.0030
1.08 0.8443 14.616 0.0369 0.0453 0.2611 0.0027
1.06 0.8494 14.849 0.0415 0.0484 0.2995 0.0034
1.04 0.8549 15.086 0.0386 0.0463 0.2792 0.0032
1.02 0.8831 14.938 0.0375 0.0465 0.2718 0.0028
1 0.8878 15.206 0.0360 0.0450 0.2610 0.0026
0.98 0.8926 15.486 0.0371 0.0425 0.2481 0.0028
0.96 0.8970 15.784 0.0371 0.0451 0.2625 0.0028
0.94 0.9020 16.087 0.0365 0.0411 0.2497 0.0027
0.92 0.9068 16.409 0.0360 0.0438 0.2579 0.0027
0.9 0.9119 16.741 0.0354 0.0405 0.2481 0.0026
0.8 0.9380 18.673 0.0337 0.0384 0.2313 0.0025
0.7 0.9668 21.171 0.0313 0.0371 0.2240 0.0023
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Table C.2: The thermodynamic averages and their root mean square (rms) deviations for
the heating traverse for the equimolar binary mixture with σ12 = 1.0. Also shown are the
effective coupling constant Γ, the compressibility factor Z, the equilibration time teqlb, and
the production time trun for each of these states.

T teqlb/τ trun/τ U E H ρ

0.1 2000 20000 2.3351 2.4336 16.538 0.9567
0.2 2000 20000 2.3358 2.5345 16.746 0.9497
0.3 2000 20000 2.3369 2.6360 16.957 0.9426
0.4 2000 20000 2.3385 2.7371 17.166 0.9354
0.5 2000 20000 2.3405 2.8386 17.383 0.9282
0.6 2000 20000 2.3429 2.9407 17.591 0.9209
0.7 2000 20000 2.3457 3.0432 17.816 0.9136
0.8 2000 20000 2.3489 3.1491 18.056 0.9063
0.9 2000 20000 2.3526 3.2501 18.269 0.8989
0.95 2000 20000 2.3564 3.3017 18.387 0.8945
1 2000 20000 2.3602 3.3552 18.507 0.8902
1.02 2000 20000 2.3611 3.3764 18.559 0.8887
1.04 6000 20000 2.3640 3.4007 18.626 0.8866
1.06 6000 20000 2.3651 3.4210 18.671 0.8850
1.08 12000 2000 2.4485 3.5236 19.292 0.8558
1.1 6000 2000 2.4543 3.5497 19.370 0.8528
1.12 2000 2000 2.4577 3.5732 19.419 0.8507
1.14 2000 2000 2.4600 3.5941 19.480 0.8488
1.16 2000 2000 2.4621 3.6158 19.531 0.8471
1.18 2000 2000 2.4651 3.6386 19.608 0.8451
1.2 2000 2000 2.4667 3.6605 19.662 0.8435

continued on next page
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Table C.2 continued

T Γ Z rms(U) rms(E) rms(H) rms(ρ)

0.1 1.4042 141.11 0.0114 0.0192 0.0914 0.0013
0.2 1.2418 71.077 0.0168 0.0193 0.1193 0.0013
0.3 1.1520 47.741 0.0201 0.0218 0.1400 0.0014
0.4 1.0897 36.080 0.0253 0.0276 0.1768 0.0018
0.5 1.0419 29.089 0.0263 0.0296 0.1935 0.0019
0.6 1.0028 24.432 0.0277 0.0306 0.1955 0.0020
0.7 0.9696 21.109 0.0328 0.0391 0.2545 0.0023
0.8 0.9406 18.620 0.0350 0.0410 0.2508 0.0026
0.9 0.9148 16.687 0.0319 0.0370 0.2303 0.0022
0.95 0.9022 15.886 0.0356 0.0418 0.2528 0.0026
1 0.8902 15.165 0.0382 0.0440 0.2585 0.0028
1.02 0.8858 14.892 0.0392 0.0476 0.2790 0.0030
1.04 0.8808 14.642 0.0345 0.0408 0.2407 0.0027
1.06 0.8765 14.391 0.0408 0.0515 0.2965 0.0030
1.08 0.8449 14.607 0.0365 0.0417 0.2400 0.0031
1.1 0.8394 14.391 0.0371 0.0439 0.2518 0.0029
1.12 0.8347 14.170 0.0448 0.0579 0.3441 0.0032
1.14 0.8305 13.951 0.0398 0.0488 0.2784 0.0030
1.16 0.8264 13.739 0.0365 0.0322 0.2070 0.0028
1.18 0.8221 13.538 0.0381 0.0455 0.2785 0.0028
1.2 0.8182 13.338 0.0366 0.0411 0.2577 0.0028
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Table C.3: Cutoff distances for the cooling traverse used to define nearest neighbour
interactions for the calculation of local structural properties and the definition of ‘bonds’.
These correspond to the positions of the first minima in the respective pair distribution
functions, except for cut11 at T ≤ 1.02 where we have used the position of the first minimum
in g11(r) at T = 1.04 for reasons that are explained in the text.

T cut11 cut12 cut22

5 1.53 1.72 1.75
3 1.53 1.67 1.75
2 1.5 1.66 1.75
1.5 1.48 1.64 1.76
1.2 1.34 1.62 1.76
1.15 1.32 1.62 1.78
1.08–1.1 1.3 1.62 1.8
0.7–1.06 1.28 1.62 1.8

Table C.4: The locations of the first peak positions k1 and k2 in the respective partial
structure factors S11(k) and S22(k). These wave vectors have been used to calculate the
incoherent scattering functions.

T k1 k2

5 3.83 4.45
3 3.83 4.35
2 3.85 4.22
1.5 3.95 4.22
1.2 4.02 4.22
1.15 4.05 4.22
1.1 4.08 4.22
1.08 4.11 4.18
1.06 4.11 4.18
1.04 4.12 4.19
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Table C.5: The temperature dependence of the structural relaxation times τe,1 and τe,2,
and the self-diffusion coefficients of the small and large particles, D1 and D2, respectively,
for the cooling traverse of the equimolar mixture. The diffusion constants with the subscript
h were obtained for the heating traverse.

T τe,1/τ τe,2/τ D1/σ
2
11τ

−1 D2/σ
2
11τ

−1 Dh,1/σ
2
11τ

−1 Dh,2/σ
2
11τ

−1

5 0.216 0.190 0.65597 0.55069
3 0.338 0.327 0.33396 0.29077
2 0.535 0.552 0.16490 0.14607
1.5 0.757 0.826 0.08573 0.07474
1.2 1.13 1.26 0.04544 0.04027 0.04102 0.03463
1.18 0.03992 0.03613
1.16 0.03489 0.03023
1.15 1.25 1.38 0.03661 0.03142
1.14 0.03462 0.02954
1.12 0.03318 0.02981
1.1 1.42 1.62 0.02948 0.02665 0.02702 0.02309
1.08 1.47 1.77 0.02632 0.02286 0.02210 0.01902
1.06 1.57 1.86 0.02237 0.01871 0.00043 0.00005
1.04 1.71 2.07 0.01997 0.01742 0.00031
1.02 0.00047 0.00018 0.00028
1 0.00044 0.00017 0.00019
0.98 0.00036 0.00015
0.96 0.00024 0.00011
0.95 0.00010
0.94 0.00023 0.00013
0.92 0.00019 0.00011
0.9 0.00020 0.00010
0.8 0.00018 0.00010
0.7 0.00008 0.00004
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C.2 σ12 = 1.0, x1 = 0.3167

Table C.6: The thermodynamic averages and their root mean square (rms) deviations for
the binary mixture with σ12 = 1.0 and x1 = 0.3167. Also shown are the effective coupling
constant Γ, the compressibility factor Z, the equilibration time teqlb, and the production
time trun for each of these states.

T teqlb/τ trun/τ U E H ρ

5 1000 1000 3.0312 8.0207 31.146 0.5821
4.5 1000 1000 3.0253 7.5201 30.158 0.5958
4 1000 1000 3.0187 7.0105 29.102 0.6104
3.5 1000 1000 3.0094 6.5015 28.057 0.6262
3 1000 1000 2.9982 5.9934 26.996 0.6431
2.8 1000 1000 2.9932 5.7883 26.545 0.6502
2.6 1000 1000 2.9874 5.5820 26.104 0.6577
2.4 1000 1000 2.9813 5.3783 25.646 0.6654
2.2 1000 1000 2.9745 5.1716 25.219 0.6734
2 1000 1000 2.9667 4.9586 24.740 0.6818
1.9 2000 2000 2.9627 4.8553 24.509 0.6858
1.8 2000 2000 2.9586 4.7461 24.257 0.6902
1.7 2000 2000 2.9538 4.6457 24.077 0.6948
1.6 2000 2000 2.9492 4.5392 23.803 0.6994
1.5 2000 2000 2.9441 4.4326 23.556 0.7042
1.4 2000 2000 2.9387 4.3297 23.346 0.7091
1.3 2000 2000 2.9334 4.2280 23.126 0.7141
1.2 2000 2000 2.9270 4.1223 22.871 0.7194
1.1 2000 2000 2.9211 4.0121 22.617 0.7246
1 2000 2000 2.9145 3.9024 22.337 0.7301
0.9 2000 2000 2.9078 3.8068 22.164 0.7357
0.8 2000 2000 2.9010 3.6986 21.898 0.7414
0.7 2000 2000 2.8936 3.5888 21.633 0.7473
0.6 2000 2000 2.8851 3.4850 21.400 0.7537
0.55 4000 20000 2.8800 3.4262 21.245 0.7571
0.5 10000 20000 2.8757 3.3730 21.115 0.7603
0.45 10000 20000 2.8700 3.3185 20.988 0.7639
0.4 10000 20000 2.8684 3.2647 20.861 0.7665
0.35 10000 20000 2.8656 3.2142 20.755 0.7695
0.3 10000 20000 2.8649 3.1638 20.653 0.7718
0.2 10000 20000 2.8639 3.0647 20.458 0.7766

continued on next page
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Table C.6 continued

T Γ Z rms(U) rms(E) rms(H) rms(ρ)

5 0.4452 4.6383 0.0956 0.1664 0.7619 0.0042
4.5 0.4637 5.0350 0.0925 0.1529 0.6700 0.0043
4 0.4845 5.5288 0.0854 0.1434 0.6415 0.0036
3.5 0.5082 6.1599 0.0804 0.1299 0.6343 0.0036
3 0.5355 6.9975 0.0699 0.0991 0.4880 0.0033
2.8 0.5477 7.4155 0.0567 0.0560 0.3768 0.0029
2.6 0.5609 7.8949 0.0655 0.0840 0.4529 0.0031
2.4 0.5750 8.4541 0.0592 0.0760 0.4281 0.0028
2.2 0.5904 9.1131 0.0673 0.0945 0.4911 0.0031
2 0.6074 9.9009 0.0599 0.0752 0.4315 0.0029
1.9 0.6162 10.361 0.0581 0.0789 0.4299 0.0028
1.8 0.6258 10.866 0.0568 0.0745 0.4188 0.0027
1.7 0.6360 11.429 0.0561 0.0694 0.3998 0.0027
1.6 0.6467 12.063 0.0530 0.0678 0.3690 0.0026
1.5 0.6582 12.781 0.0512 0.0704 0.3716 0.0025
1.4 0.6705 13.598 0.0491 0.0616 0.3551 0.0024
1.3 0.6835 14.542 0.0484 0.0564 0.3299 0.0024
1.2 0.6978 15.639 0.0463 0.0543 0.3142 0.0023
1.1 0.7132 16.937 0.0441 0.0526 0.2958 0.0022
1 0.7301 18.491 0.0416 0.0521 0.3192 0.0020
0.9 0.7487 20.389 0.0399 0.0501 0.3058 0.0019
0.8 0.7695 22.761 0.0365 0.0379 0.2384 0.0018
0.7 0.7931 25.806 0.0353 0.0386 0.2318 0.0017
0.6 0.8206 29.854 0.0325 0.0384 0.2438 0.0016
0.55 0.8364 32.422 0.0309 0.0316 0.2014 0.0015
0.5 0.8534 35.511 0.0294 0.0322 0.2094 0.0014
0.45 0.8727 39.271 0.0278 0.0314 0.1993 0.0013
0.4 0.8930 44.029 0.0263 0.0281 0.1860 0.0013
0.35 0.9166 50.128 0.0247 0.0273 0.1803 0.0012
0.3 0.9434 58.302 0.0228 0.0236 0.1556 0.0011
0.2 1.0155 86.922 0.0203 0.0213 0.1464 0.0009
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Figure C.1: The partial structure factors S11(k) and S22(k) for temperatures from T = 5
down to T = 0.2. For clarity, each curve below T = 5 has been shifted upwards by 0.2 units
above the higher temperature curve directly preceding it.

Table C.7: The locations of the first peak positions k1 and k2 in the respective partial
structure factors S11(k) and S22(k) for the non-equimolar mixture. These wave vectors were
used to calculate the incoherent scattering functions.

T k1 k2

5 3.76 4.91
4 3.92 4.91
3 4.07 4.91
0.2–2 4.34 4.91
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Figure C.2: The partial structure factor S12(k) and the total structure factor Sall(k) as
a function of wave vector from T = 5 down to T = 0.2. For clarity, each curve below
T = 5 has been shifted upwards by 0.2 units above the higher temperature curve directly
preceding it.
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Table C.8: The temperature dependence of the structural relaxation times τe,1 and τe,2,
and the self-diffusion coefficients of the small and large particles, D1 and D2, respectively.

T τe,1/τ τe,2/τ D1/σ
2

11τ
−1 D2/σ

2
11τ

−1

5 0.214 0.167 0.69039 0.56054
3 0.293 0.267 0.34212 0.28468
2 0.391 0.419 0.18103 0.15102
1 1.23 1.28 0.03225 0.02704
0.9 1.61 1.64 0.02110 0.01668
0.8 2.3 2.3 0.01449 0.01187
0.7 3.85 3.76 0.00706 0.00589
0.6 14.8 14.1 0.00230 0.00156
0.55 47.3 47.3 0.00086 0.00055
0.5 202 207 0.00033 0.00018
0.45 2610 2790 0.00005
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C.3 σ12 = 1.1, x1 = 0.5

Table C.9: The thermodynamic averages and their root mean square (rms) deviations for
the cooling traverse for the equimolar binary mixture with σ12 = 1.1. Also shown are the
effective coupling constant Γ, the compressibility factor Z, the equilibration time teqlb, and
the production time trun for each of these states. An asterisk (*) following the production
runtime indicates that the thermodynamic averages at this temperature were calculated
during the latter part of the equilibration run.

T teqlb/τ trun/τ U E H ρ

5 2000 2500 2.8501 7.8350 29.911 0.6107
3 2000 2500 2.8200 5.8146 25.736 0.6777
2 2000 2500 2.7879 4.7828 23.501 0.7208
1 5000 5000 2.7283 3.7206 21.073 0.7770
0.9 5000 5000 2.7193 3.6162 20.833 0.7840
0.8 5000 5000 2.7094 3.5063 20.556 0.7913
0.7 5000 5000 2.6972 3.3940 20.280 0.7995
0.68 10000 5000 2.6947 3.3705 20.206 0.8011
0.66 10000 5000 2.6907 3.3459 20.142 0.8033
0.64 10000 5000 2.6859 3.3227 20.068 0.8056
0.62 10000 5000 2.6836 3.3009 20.019 0.8072
0.6 10000 5000 2.6774 3.2749 19.939 0.8100
0.58 10000 9000* 2.6740 3.2484 19.869 0.8121
0.56 10000 9000* 2.6701 3.2236 19.795 0.8143

T Γe Z rms(U) rms(E) rms(H) rms(ρ)

5 0.4670 4.4211 0.0919 0.1624 0.6991 0.0044
3 0.5643 6.6404 0.0808 0.1366 0.6336 0.0039
2 0.6422 9.3645 0.0579 0.0762 0.4149 0.0032
1 0.7770 17.374 0.0404 0.0478 0.2847 0.0023
0.9 0.7979 19.133 0.0390 0.0467 0.2768 0.0022
0.8 0.8213 21.325 0.0356 0.0418 0.2592 0.0021
0.7 0.8485 24.122 0.0329 0.0378 0.2367 0.0019
0.68 0.8543 24.781 0.0361 0.0413 0.2571 0.0021
0.66 0.8609 25.464 0.0373 0.0429 0.2653 0.0021
0.64 0.8678 26.184 0.0325 0.0365 0.2215 0.0019
0.62 0.8742 26.973 0.0328 0.0359 0.2278 0.0020
0.6 0.8819 27.779 0.0352 0.0380 0.2452 0.0021
0.58 0.8893 28.660 0.0315 0.0405 0.2176 0.0017
0.56 0.8969 29.606 0.0329 0.0416 0.2298 0.0018
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Table C.10: The thermodynamic averages and their root mean square (rms) deviations for
the heating traverse for the equimolar binary mixture with σ12 = 1.1. Also shown are the
effective coupling constant Γ, the compressibility factor Z, the equilibration time teqlb, and
the production time trun for each of these states. An asterisk (*) following the production
runtime indicates that the thermodynamic averages at this temperature were calculated
during the latter part of the equilibration run.

T teqlb/τ trun/τ U E H ρ

0.1 5000 5000 2.6220 2.7216 18.554 0.8527
0.2 5000 5000 2.6225 2.8213 18.754 0.8471
0.3 5000 5000 2.6234 2.9221 18.961 0.8416
0.4 5000 5000 2.6247 3.0228 19.169 0.8359
0.5 5000 5000 2.6264 3.1240 19.379 0.8302
0.6 10000 5000 2.6288 3.2259 19.593 0.8245
0.62 10000 5000 2.6290 3.2462 19.636 0.8233
0.64 10000 5000 2.6297 3.2659 19.673 0.8221
0.66 10000 5000 2.6308 3.2871 19.727 0.8208
0.68 10000 5000 2.6309 3.3082 19.770 0.8198
0.7 10000 5000 2.6321 3.3182 19.752 0.8184
0.72 10000 9000* 2.6328 3.3491 19.862 0.8173
0.74 10000 9000* 2.6327 3.3698 19.904 0.8162
0.76 10000 9000* 2.6351 3.3921 19.959 0.8146
0.78 10000 9000* 2.6352 3.4117 19.999 0.8135
0.8 10000 9000* 2.6361 3.4327 20.047 0.8123
0.82 10000 5000* 2.7168 3.5352 20.654 0.7900

T Γe Z rms(U) rms(E) rms(H) rms(ρ)

0.1 1.2516 158.32 0.0145 0.0147 0.1004 0.0008
0.2 1.1078 79.679 0.0181 0.0179 0.1207 0.0010
0.3 1.0286 53.472 0.0214 0.0228 0.1551 0.0012
0.4 0.9738 40.374 0.0260 0.0273 0.1817 0.0015
0.5 0.9319 32.521 0.0291 0.0323 0.2099 0.0017
0.6 0.8977 27.290 0.0337 0.0396 0.2443 0.0018
0.62 0.8916 26.448 0.0386 0.0405 0.2692 0.0024
0.64 0.8856 25.657 0.0325 0.0371 0.2312 0.0019
0.66 0.8797 24.920 0.0318 0.0355 0.2282 0.0018
0.68 0.8742 24.217 0.0334 0.0379 0.2336 0.0019
0.7 0.8685 23.565 0.0274 0.0274 0.1726 0.0017
0.72 0.8633 22.941 0.0267 0.0290 0.1824 0.0016
0.74 0.8582 22.350 0.0240 0.0249 0.1608 0.0015
0.76 0.8527 21.807 0.0395 0.0467 0.2824 0.0022
0.78 0.8479 21.275 0.0355 0.0409 0.2511 0.0021
0.8 0.8430 20.775 0.0225 0.0208 0.1386 0.0015
0.82 0.8165 20.841 0.0342 0.0375 0.2362 0.0020
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Figure C.3: The partial pair distribution functions g11(r) and g22(r) for the heating
traverse as a function of distance from T = 0.1 up to T = 0.7. For T ≤ 0.7, each curve has
been shifted upwards by one unit from the lower temperature curve directly preceding it.

Table C.11: Cutoff distances for the cooling traverse used to define nearest neighbour
interactions for the calculation of local structural properties. These correspond to the
positions of the first minima in the respective pair distribution functions.

T cut11 cut12 cut22

0.6–0.7 1.41 1.64 1.77
0.8–1 1.44 1.66 1.79
2 1.54 1.69 1.84
3 1.60 1.74 1.84
5 1.64 1.77 1.92
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Figure C.4: The partial pair distribution function g12(r) and the total pair distribution
function gall(r) for the heating traverse as a function of distance from T = 0.1 up to T = 0.7.
For T ≤ 0.7, each curve has been shifted upwards by one unit from the lower temperature
curve directly preceding it.

Table C.12: Cutoff distances for the heating traverse used to define nearest neighbour
interactions for the calculation of local structural properties. These correspond to the
positions of the first minima in the respective pair distribution functions.

T cut11 cut12 cut22

5 1.53 1.72 1.75
0.7–1.06 1.28 1.62 1.8
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Figure C.5: The partial structure factors S11(k) and S22(k) for temperatures from T = 5
down to T = 0.7. For clarity, each curve below T = 5 has been shifted upwards by 0.2 units
above the higher temperature curve directly preceding it.
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Figure C.6: The partial structure factor S12(k) and the total structure factor Sall(k) as
a function of wave vector from T = 5 down to T = 0.7. For clarity, each curve below
T = 5 has been shifted upwards by 0.2 units above the higher temperature curve directly
preceding it.
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Table C.13: The locations of the first peak positions k1 and k2 in the respective partial
structure factors S11(k) and S22(k). These wave vectors have been used to calculate the
incoherent scattering functions.

T k1 k2

0.6 5.87 5.80
0.62–0.64 5.93 5.80
0.66–0.7 5.99 5.80
0.8–0.9 6.04 5.75
1 6.04 5.71
2 6.04 5.34
3 6.10 5.06
5 6.10 4.92

Table C.14: The temperature dependence of the structural relaxation time τe,1, and the
self-diffusion coefficients of the small and large particles, D1 and D2, respectively.

T τe,1/τ D1/σ
2
11τ

−1 D2/σ
2
11τ

−1

5 0.118 0.65143 0.55817
3 0.170 0.33354 0.28988
2 0.243 0.17869 0.15712
1 0.603 0.03363 0.02966
0.9 0.733 0.02144 0.01906
0.8 0.945 0.01180 0.01045
0.7 1.45 0.00484 0.00413
0.68 1.64 0.00369 0.00349
0.66 1.88 0.00260 0.00207
0.64 2.51 0.00199 0.00166
0.62 2.77 0.00129 0.00102
0.6 5.02 0.00069 0.00054
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Figure C.7: The time dependence of the MSD averaged over all particles R2(t), and
averaged over the two particle species, R2

2(t) and R2
1(t). The temperature of the curves

from left to right is the same as in Figure 6.11.
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C.4 σ12 = 1.1, x1 = 0.3167
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Figure C.8: The partial structure factor S12(k) and the total structure factor Sall(k) as
a function of wave vector from T = 5 down to T = 0.2. For clarity, each curve below
T = 5 has been shifted upwards by 0.2 units above the higher temperature curve directly
preceding it.
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Table C.15: The thermodynamic averages and their root mean square (rms) deviations
for the cooling traverse for the non-equimolar mixture with σ12 = 1.1. Also shown are the
effective coupling constant Γ, the compressibility factor Z, the equilibration time teqlb, and
the production time trun for each of these states.

T teqlb/τ trun/τ U E H ρ

5 500 1000 3.2077 8.1965 32.439 0.5567
3 500 1000 3.1764 6.1730 28.241 0.6120
2 500 1000 3.1455 5.1431 26.025 0.6467
1 500 2000 3.0932 4.0876 23.635 0.6901
0.9 1000 2000 3.0864 3.9868 23.425 0.6951
0.8 1000 2000 3.0790 3.8731 23.125 0.7003
0.7 1000 2000 3.0715 3.7664 22.881 0.7056
0.65 4000 2000 3.0678 3.7129 22.763 0.7083
0.6 4000 2000 3.0637 3.6589 22.624 0.7111
0.55 4000 2000 3.0599 3.6070 22.506 0.7138
0.5 6000 2000 3.0569 3.5574 22.408 0.7164
0.45 10000 20000 3.0535 3.5003 22.264 0.7191
0.4 10000 20000 3.0489 3.4487 22.148 0.7221
0.35 10000 20000 3.0479 3.3963 22.031 0.7243
0.3 10000 20000 3.0472 3.3476 21.938 0.7264
0.2 10000 20000 3.0463 3.2431 21.705 0.7306

T Γ Z rms(U) rms(E) rms(H) rms(ρ)

5 0.42573 4.8499 0.0971 0.1619 0.7132 0.0036
3 0.50960 7.3530 0.0782 0.1177 0.5780 0.0032
2 0.57612 10.438 0.0608 0.0770 0.4281 0.0027
1 0.69006 19.563 0.0433 0.0547 0.3094 0.0019
0.9 0.70740 21.580 0.0408 0.0493 0.3024 0.0018
0.8 0.72685 24.096 0.0396 0.0474 0.2858 0.0017
0.7 0.74887 27.331 0.0361 0.0391 0.2386 0.0015
0.65 0.76103 29.322 0.0358 0.0369 0.2414 0.0016
0.6 0.77431 31.641 0.0333 0.0363 0.2291 0.0014
0.55 0.78864 34.385 0.0328 0.0362 0.2395 0.0014
0.5 0.80418 37.686 0.0306 0.0323 0.2077 0.0013
0.45 0.82151 41.717 0.0294 0.0333 0.2177 0.0012
0.4 0.84127 46.737 0.0272 0.0287 0.1905 0.0011
0.35 0.86279 53.254 0.0255 0.0288 0.1881 0.0011
0.3 0.88785 61.947 0.0237 0.0239 0.1619 0.0010
0.2 0.95533 92.394 0.0191 0.0191 0.1297 0.0008
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Table C.16: Cutoff distances for the cooling traverse used to define nearest neighbour
interactions for the calculation of local structural properties and the definition of ‘bonds’.
These correspond to the positions of the first minima in the respective pair distribution
functions.

T cut11 cut12 cut22

5 1.52 1.78 2.00
3 1.52 1.75 1.94
2 1.52 1.71 1.90
0.2–1 1.37 1.64 1.80

Table C.17: The temperature dependence of the structural relaxation times τe,1 and τe,2,
and the self-diffusion coefficients of the small and large particles, D1 and D2, respectively.

T τe,1/τ τe,2/τ D1/σ
2
11τ

−1 D2/σ
2
11τ

−1

5 0.234 0.143 0.67173 0.55700
3 0.374 0.219 0.33209 0.28625
2 0.613 0.342 0.17204 0.15034
1 2.01 0.959 0.03352 0.02753
0.9 2.75 1.2 0.02130 0.01746
0.8 4.02 1.61 0.01412 0.01208
0.7 6.89 2.46 0.00819 0.00666
0.65 10.8 3.29 0.00447 0.00368
0.6 20.2 5.03 0.00225 0.00184
0.55 48.4 12.1 0.00136 0.00109
0.5 130 37.8 0.00046 0.00036
0.45 665 237 0.00012 0.00009
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Figure C.9: The time dependence of the MSD averaged over all particles R2(t), and
averaged over the two particle species, R 2

2 (t) and R 2
1 (t). The temperature of the curves

from left to right is the same as in Figure 6.29.
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Figure C.10: The partial structure factor S12(k) and the total structure factor Sall(k)
as a function of wave vector from T = 5 down to T = 0.3. For clarity, each curve below
T = 5 has been shifted upwards by 0.2 units above the higher temperature curve directly
preceding it.
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Table C.18: The thermodynamic averages and their root mean square (rms) deviations for
the binary mixture with σ12 = 1.2 and x1 = 0.3164. Also shown are the effective coupling
constant Γ, the compressibility factor Z, the equilibration time teqlb, and the production
time trun for each of these states.

T teqlb/τ trun/τ U E H ρ

5 2000 2000 3.3864 8.3646 33.663 0.5331
3 2000 2000 3.3569 6.3560 29.552 0.5833
2 2000 2000 3.3280 5.3297 27.304 0.6146
1 2000 2000 3.2805 4.2768 24.969 0.6526
0.9 2000 4000 3.2742 4.1704 24.726 0.6570
0.8 4000 4000 3.2644 4.0605 24.434 0.6621
0.75 6000 4000 3.2587 4.0042 24.298 0.6649
0.7 8000 4000 3.2553 3.9510 24.173 0.6672
0.65 20000 20000 3.2491 3.8958 24.041 0.6701
0.6 50000 20000 3.2423 3.8370 23.879 0.6731
0.55 50000 20000 3.2346 3.7850 23.752 0.6764
0.5 50000 20000 3.2308 3.7287 23.616 0.6788
0.45 50000 20000 3.2283 3.6767 23.498 0.6811
0.4 50000 20000 3.2260 3.6242 23.375 0.6833
0.35 50000 20000 3.2244 3.5760 23.287 0.6854
0.3 50000 20000 3.2235 3.5210 23.153 0.6873

T Γ Z rms(U) rms(E) rms(H) rms(ρ)

5 0.4077 5.0648 0.1404 0.1922 0.9684 0.0060
3 0.4857 7.7143 0.0885 0.1297 0.6359 0.0030
2 0.5475 10.983 0.0650 0.0880 0.4614 0.0021
1 0.6526 20.686 0.0556 0.0615 0.3616 0.0021
0.9 0.6686 22.832 0.0489 0.0560 0.3417 0.0019
0.8 0.6872 25.487 0.0462 0.0519 0.3355 0.0018
0.75 0.6976 27.071 0.0696 0.0793 0.4829 0.0025
0.7 0.7081 28.905 0.0654 0.0755 0.4728 0.0024
0.65 0.7200 30.995 0.0433 0.0475 0.2996 0.0017
0.6 0.7329 33.427 0.0343 0.0367 0.2400 0.0013
0.55 0.7472 36.290 0.0363 0.0396 0.2580 0.0014
0.5 0.7620 39.773 0.0359 0.0396 0.2632 0.0014
0.45 0.7780 44.048 0.0339 0.0371 0.2440 0.0013
0.4 0.7960 49.393 0.0312 0.0325 0.2141 0.0012
0.35 0.8164 56.279 0.0288 0.0287 0.1922 0.0011
0.3 0.8400 65.475 0.0276 0.0285 0.1929 0.0010
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Table C.19: Cutoff distances for the cooling traverse used to define nearest neighbour
interactions for the calculation of local structural properties and the definition of ‘bonds’.
These correspond to the positions of the first minima in the respective pair distribution
functions.

T cut11 cut12 cut22

5 1.71 1.85 2
3 1.65 1.8 1.98
2 1.61 1.77 1.96
1 1.54 1.74 1.92
0.75–0.9 1.5 1.72 1.9
0.5–0.7 1.46 1.7 1.88
0.3–0.45 1.43 1.68 1.86

Table C.20: The temperature dependence of the structural relaxation times τe,1 and τe,2,
and the self-diffusion coefficients of the small and large particles, D1 and D2, respectively.

T τe,1/τ τe,2/τ D1/σ
2

11τ
−1 D2/σ

2
11τ

−1

5 0.114 0.143 0.65793 0.57051
3 0.160 0.224 0.31750 0.27779
2 0.229 0.345 0.16750 0.14510
1 0.524 1.07 0.03136 0.02381
0.9 0.641 1.37 0.02106 0.01468
0.8 0.838 2.25 0.01242 0.00741
0.75 0.917 3.07 0.01022 0.00543
0.7 1.20 3.93 0.00683 0.00380
0.65 1.44 9.42 0.00418 0.00197
0.6 1.96 33.8 0.00241 0.00082
0.55 4.30 310 0.00096 0.00024
0.5 26.4 2550 0.00043 0.00007
0.45 185 0.00016 0.00003
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