An Investigation Of Mathematical Models For Animal Group Movement, Using Classical And Statistical Approaches

Alistair Merrifield

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

The University of Sydney

August 2006

Abstract

Collective actions of large animal groups result in elaborate behaviour, whose nature can be breathtaking in their complexity. Social organisation is the key to the origin of this behaviour and the mechanisms by which this organisation occurs are of particular interest. In this thesis, these mechanisms of social interactions and their consequences for group-level behaviour are explored. Social interactions amongst individuals are based on simple rules of attraction, alignment and orientation amongst neighbouring individuals.

As part of this study, we will be interested in data that takes the form of a set of directions in space. In Chapter 2, we discuss relevant statistical measures and theory which will allow us to analyse directional data. These statistical tools will be employed on the results of the simulations of the mathematical models formulated in the course of the thesis.

The first mathematical model for collective group behaviour is a Lagrangian self-organising model, which is formulated in Chapter 3. This model is based on basic social interactions between group members. Resulting collective behaviours and other related issues are examined during this chapter.

Once we have an understanding of the model in Chapter 3, we use this model in Chapter 4 to investigate the idea of guidance of large groups by a select number of individuals. These individuals are privy to information regarding the location of a specific goal. This is used to explore a mechanism proposed for honeybee (*Apis mellifera*) swarm

Abstract

migrations. The spherical theory introduced in Chapter 2 will prove to be particularly useful in analysing the results of the modelling.

In Chapter 5, we introduce a second mathematical model for aggregative behaviour. The model uses ideas from electromagnetic forces and particle physics, reinterpreting them in the context of social forces. While attraction and repulsion terms have been included in similar models in past literature, we introduce an orientation force to our model and show the requirement of a dissipative force to prevent individuals from escaping from the confines of the group.

Declaration of originality

I declare this thesis to be wholly my own work, unless stated otherwise. No part of this thesis has been used in the fulfilment of any other degree.

October 11, 2006 Alistair Merrifield University of Sydney

Acknowledgements

I specifically want to acknowledge the input of my two supervisors, Mary Myerscough and Neville Weber. Without the encouragement and guidance from these two people, I would never have been able to complete this thesis. I would also like to thank Madeleine Beekman and Leon Poladian for many useful discussions. The members of the School of Mathematics and Statistics at The University of Sydney have proved to be invaluable, as have the members of the Department of Mathematics and Statistics at The University of Melbourne during my time making the appropriate emendments to this thesis.

I must thank my dear family and friends. I left behind plenty of good friendships in New Zealand and have gained many wonderful friendships during my travels in Australia. No matter where my wanderings take me in this world, I shall not forget you. This thesis is dedicated to all of you.

Me mihi maioha ki te hunga i tautoko, i awhi, i poipoia e au, ko korua nga pou tikanga e Mary Myerscough raua ko Neville Weber, ki a Madeleine Beekman me Leon Poladian mo nga korero hohonu, ki a koutou o te Kura o te Mathematics me Statistics i te Whare Wananga o Poihakena, tena koutou.

Ki oku whanau tata i Aotearoa, ki oku hoa tata i Ahitereiria, ki a koutou hoki i mau, nau e te whakaaro rangatira, na reira tena koutou, tena koutou, tena koutou katoa.

I gratefully acknowledge a University Postgraduate Award (UPA) from The University of Sydney.

Contents

Abstra	act	i
Declaration of originality iii		
Ackno	wledgements	iv
List of	Figures	vii
List of	Tables	xvi
Chapt	er 1. Introduction	1
1.1.	General animal behaviour and movement	2
1.2.	Mathematical modelling of biological systems	7
1.3.	The how, where and why of self-organisation	15
1.4.	Overview of thesis	20
Chapt	er 2. Spherical statistics and related directional	
Chapt	er 2. Spherical statistics and related directional issues	22
Chapt 2.1.	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues	22 23
Chapt 2.1. 2.2.	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data	22 23 25
2.1. 2.2. 2.3.	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data Randomisation tests	22 23 25 30
2.1. 2.2. 2.3. 2.4.	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data Randomisation tests Inference tests for directional data	 22 23 25 30 33
 Chapt 2.1. 2.2. 2.3. 2.4. 2.5. 	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data Randomisation tests Inference tests for directional data Summary	 22 23 25 30 33 44
2.1. 2.2. 2.3. 2.4. 2.5. Chapt	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data Randomisation tests Inference tests for directional data Summary	 22 23 25 30 33 44 47
2.1. 2.2. 2.3. 2.4. 2.5. Chapt 3.1.	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data Randomisation tests Inference tests for directional data Summary er 3. General model for animal movement Introduction	 22 23 25 30 33 44 47 48
Chapt 2.1. 2.2. 2.3. 2.4. 2.5. Chapt 3.1. 3.2.	er 2. Spherical statistics and related directional issues Introduction to directional data and related issues Descriptive statistics to aid analysing directional data Randomisation tests Inference tests for directional data Summary er 3. General model for animal movement Introduction Formulation of model for aggregative behaviour	 22 23 25 30 33 44 47 48 50

vi

3.4.	Summary	
Chapt	er 4. An application to honeybee swarm movement 88	
4.1.	Introduction	
4.2.	Modifications to the model of directed movement of naive	
	groups	
4.3.	Results and analysis of the directed motion model	
4.4.	Summary	
Chapt	er 5. Potential model for collective group	
	$behaviour \dots 138$	
5.1.	Introduction	
5.2.	Framework of the social potential model of collective	
	behaviour	
5.3.	Results and discussion of model simulations 150 $$	
5.4.	Summary	
Chapter 6. Conclusions		
Appendix A. Definitions195		
Appendix B. Proofs for selected results198		
Appen	dix. Bibliography209	

List of Figures

2.1	Simplified diagram of ψ (the angle between the	
	spherical mean of the sample and the x -axis)	33
2.2	Diagram of Equation (2.15) in three-dimensional	
	space $(q = 3)$. The space $\{\mathbf{x} : \mathbf{x} \in \mathbb{R}^3, \mathbf{x} =$	
	1, $\mathbf{x} \perp \boldsymbol{\mu}$ is indicated by the ellipse and c	
	represents the length of the projection of \mathbf{x} onto	
	μ	35
3.1	Diagram of zones of interaction and the blind	
	volume associated with individual i	51
3.2	Schematic diagram of the algorithm used in the	
	simulation of the collective motion model	54
3.3	System of spherical polar coordinates used in	
	thesis	55
3.4	Effect of concentration parameter κ on the	
	colatitudes (ϕ) , drawn from a Fisher distribution	
	with $\alpha = 0$ and $\beta = 0$	57
3.5	Types of collective group behaviour	57
3.6	Effects on group polarisation (p_{group}) from	
	altering the width of the zones of attraction and	
	orientation	60
3.7	Effects on group angular momenta (m_{group}) from	
	altering the width of the zones of attraction and	
	orientation	60

3.8	Self-organised group exhibiting swarm behaviour.	61
3.9	Statistics associated with the swarm group in Figure 3.8.	61
3.10	Self-organised group exhibiting highly parallel behaviour	63
3.11	Statistics associated with the highly parallel group in Figure 3.10.	63
3.12	Self-organised group exhibiting dynamic parallel behaviour	65
3.13	Statistics associated with the dynamic parallel group in Figure 3.12.	65
3.14	Self-organised group exhibiting repulsion behaviour	67
3.15	Statistics associated with the repulsive group in Figure 3.14.	67
3.16	Effects of maximum turning angle $(\gamma \tau)$ in degrees, on organisation of collective model	69
3.17	Effects of the size of the repulsion zone (ZOR) on organisation of collective model	71
3.18	Effects of the size of the repulsion zone (ZOR) on size of the group	71
3.19	Effects of the field of perception (δ) (and blind zone) on the organisation of the collective model.	72
3.20	Self-organised group with stochastic effects included in the model.	74
3.21	Descriptive statistics associated with the group in Figure 3.20	74

3.22	Effect of increased stochasticity (concentration	
	parameter κ) on group polarisation and	
	momentum	75
3.23	Effect of increased stochasticity (κ) on group	
	size	75
3.24	Polarisations from simulations with various	
-	values of κ	77
3.25	Group size (expanse) from simulations with	
	various values of κ	77
3.26	First component of the spherical mean from	
	simulations with various values of κ	78
3.27	Euclidean distance between the centres of the	
	two groups of fast and slow individuals, over the	
	time period of the simulation.	81
3.28	Expanses for the group of fast individuals, over	
	the time period of the simulation	81
3.29	Expanses for the group of slow individuals, over	
	the time period of the simulation	82
3.30	Test statistics for equality of group directions for	
	different ratios of fast and slow individuals	82
3.31	Final positions of the simulation with 4 fast and	
	96 slow individuals	83
3.32	Final positions of the simulation with 95 fast and	
	5 slow individuals	83
4.1	Measures of accuracy used to assess the quality	
	of guidance	93

LIST	\mathbf{OF}	FIGURES
------	---------------	---------

x

4.2	'Normalised' angular deviation (denoted <i>NAD</i>) and p-values of a random Fisher sample, as a function of the log concentration parameter
	$(\log_{10} \kappa).$ 94
4.3	Diagram of model for investigating the scout hypothesis
4.4	Configurations for the informed individual's paths within the self-organising group
4.5	Final results of the direction model 102
4.6	Movements of the centre of mass of the group over time (simulations from Figure 4.5) 106
4.7	Movements of the estimated average direction of the group over time (simulations from Figure 4.5)
4.8	Group polarisations and angular momenta over time (simulations from Figure 4.5)
4.9	Results of simulations where knowledgeable individuals are introduced to the model after a delay. The knowledgeable individuals are distributed according to configuration 1 110
4.10	Results of simulations where knowledgeable individuals are introduced to the model after a delay. The knowledgeable individuals are distributed according to configuration 2 111
4.11	Histograms of randomised test statistics
4.12	Movement of the centre of the group, for selected simulations with differing knowledgeable individual relative speeds

4.13	Histograms of <i>NGDR</i> 's, for select simulations with differing knowledgeable individual relative speeds (to naive members)
4.14	Test statistics from the test (Lemma 7) of alignment with a particular direction (the <i>x</i> -axis) for differing knowledgeable individual relative speeds
4.15	Speed of scout components (relative to ignorant members) compared to the median angle between the worker groups (spherical) mean direction of travel and the knowledgeable individuals' flight paths
4.16	Movement of the centre of the group, for selected simulations with different numbers of knowledgeable individuals
4.17	Histograms of <i>NGDR</i> 's of ignorant members, for selected simulations with different numbers of knowledgeable individuals
4.18	Test statistics from the directional hypothesis test of particular common direction (Lemma 7), for selected simulations with different numbers of knowledgeable individuals
4.19	Polarisations and p-values (Lemma 7) for various values of the concentration parameter (κ) in the directed motion model
4.20	Simulation of the stochastic version of directed motion model

4.21	Simulation of the stochastic version of directed motion model. Group centre and spherical mean
	are snown132
4.22	Polarisations and angular momenta resulting
	from the model in Figure 4.21
4.23	Net to gross displacement ratios resulting from
	the model in Figure 4.21 133
5.1	Example of the social cohesion potential function
	(Equation 5.2)145
5.2	Simplified diagram of the attraction and
	repulsion forces acting on individual i , due to
	individual <i>j</i>
5.3	Simplified diagram of the alignment forces acting
	on individual i , due to individual j
5.4	Simulation of the potential model, with cohesive
	terms only $(A = 2, B = 0.5, C = 0, D = 1,$
	E = 0.25, F = 0, N = 50)
5.5	The simulation in Figure 5.4, with a dissipative
	term $(G = 0.01)$
5.6	Effect of G (friction coefficient) on the average
	nearest-neighbour distance of the group from the
	cohesive model
5.7	Effect of G (friction coefficient) on the expanse
	of the group from the cohesive model 154
5.8	Effect of the friction coefficient (G) on the
	alignment model
5.9	Effect of the friction coefficient (G) on group
	polarisations and momenta (alignment model)156

xii

5.10	Effect of A on the expanse of the group from the cohesive potential model 158
F 11	Effect of A on the compare according inhome
5.11	Effect of A on the average hearest-heighbour
	distance of the group from the cohesive model160
5.12	Effect of D on the average nearest-neighbour
	distance of the group from the cohesive model160
5.13	Effect of D on the expanse of the group from the
	cohesive model
5.14	Expanse and average NND as functions of the
	ratio $\omega_1 (A/D)$
5.15	Effect of B on the average nearest-neighbour
	distance of the group from the cohesive model 163
5.16	Effect of B on the expanse of the group from the
	cohesive model
5.17	Effect of E on the average nearest-neighbour
	distance of the group from the cohesive model164
5.18	Effect of E on the expanse of the group from the
	cohesive model164
5.19	Expanse and average NND as a function of the
	ratio $\omega_2 \ (E/B)$
5.20	An example of clustered, dense group behaviour
	resulting from lower attraction range
5.21	An example of swarm group behaviour resulting
	from the cohesive model 166
5.22	An example of separate, distinct groups forming
	with medium attraction ranges
5.23	Example of a coherent group from the alignment
	potential model, resulting from relatively weak
	cohesion forces

xiii

5.24	Example of a coherent group from the alignment model, resulting from stronger cohesion forces 169
5.25	Effect of increased cohesion forces on the size of
	the group from the alignment model 171
5.26	Effect of alignment magnitude (F) on group
	polarisations and momenta (other parameters as
	in Figure 5.24)
5.27	Effect of alignment magnitude (F) on group
	expanse and average NND (other parameters as
	in Figure 5.24)
5.28	Effect of increased repulsion range (B) on the
	size of the group in the alignment model. $\dots 172$
5.29	Effect of increased repulsion range (B) on the
	size of the group in the alignment model 173
5.30	Effect of increased attraction range (E) on the
	size of the group in the alignment model 173
5.31	Effect of increased attraction range (E) on the
	size of the group in the alignment model 174
5.32	Polarisation as a function of the magnitude ratio
	$\omega_1 \ (A/D)175$
5.33	Polarisation and alignment force proportion as a
	function of the range ratio $\omega_2 \ (E/B)$
5.34	Final movements of the group with alignment
	forces (corresponding to Figure 5.24) 177
5.35	Final movements of the group without alignment
	forces (corresponding to Figure 5.20)177
5.36	Average speed (velocity magnitude) of individuals
	in models, during the period of the simulations. $.178$

5.37	Boxplots of the net to gross displacement ratio
	(NGDR) for the five models
5.38	Polarisations resulting from the five models 180
5.39	Expanse as a function of the ratio $\omega_1 (A/D)$ 181
5.40	Expanse as a function of the ratio $\omega_2 \ (B/E)$ 181

 $\mathbf{x}\mathbf{v}$

List of Tables

3.1	Final polarisations and expanses for select values
	of κ
4.1	Summary statistics for hypothesis tests of
	different configurations of informed individuals. 104
A.1	Notations and definitions