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Summary

In this work, we investigate methods for computing explicitly with homomor-

phisms (and particularly endomorphisms) of Jacobian varieties of algebraic

curves. Our principal tool is the theory of correspondences, in which homo-

morphisms of Jacobians are represented by divisors on products of curves.

We give families of hyperelliptic curves of genus three, five, six, seven, ten

and fifteen whose Jacobians have explicit isogenies (given in terms of corre-

spondences) to other hyperelliptic Jacobians. We describe several families of

hyperelliptic curves whose Jacobians have complex or real multiplication; we

use correspondences to make the complex and real multiplication explicit, in

the form of efficiently computable maps on ideal class representatives. These

explicit endomorphisms may be used for efficient integer multiplication on

hyperelliptic Jacobians, extending Gallant–Lambert–Vanstone fast multipli-

cation techniques from elliptic curves to higher dimensional Jacobians. We

then describe Richelot isogenies for curves of genus two; in contrast to classi-

cal treatments of these isogenies, we consider all the Richelot isogenies from

a given Jacobian simultaneously. The inter-relationship of Richelot isogenies

may be used to deduce information about the endomorphism ring structure

of Jacobian surfaces; we conclude with a brief exploration of these techniques.

Statement

This thesis contains no material which has been accepted for the award of

any other degree or diploma. All work in this thesis, except where duly

attributed to another person, is believed to be original.



Thanks

This work would not have been possible without the support and advice of

David Kohel. His patience, insight, and leadership have been a constant

source of inspiration to me; it has been a privelege to learn mathematics

with him.

Thanks to Sarah Jo Moore, for her patience, inspiration, love, and for

bringing me back to earth; my family, especially Michael and Damien Smith,

for their support; Martin Bright, Claus Fieker, Martine Girard, and Mike

Harrison for answering so many questions; Paul O’Donnell, Dan Lalor, and

all my housemates over the years, for giving me a home; Claire d’Este, Paul

Hunter, and Holly Swisher for their understanding and postgraduate empa-

thy; my friends, and listserv@acl.arts.usyd.edu.au — particularly Tom

Murtagh, Gordon Childs, and Mark Wotton — for their trenchant insights

(it’s true: Richard Touches Creambar Wildly); Lady Jane, Figment, the

Never Ends, and all the other bands I’ve played in over the last four years,

for keeping me in time. Finally, thanks to the countless undergraduates of

Sydney University I have taught over the last few years, for teaching me.

2



Contents

1 Introduction 5

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Notation and conventions . . . . . . . . . . . . . . . . . . . . 8

1.3 Algorithms and pseudocode . . . . . . . . . . . . . . . . . . . 9

2 Geometric preliminaries 11

2.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Abelian varieties and Jacobians . . . . . . . . . . . . . . . . . 18

2.3 Hyperelliptic curves and their Jacobians . . . . . . . . . . . . 23

2.4 Efficient multiplication on Jacobians . . . . . . . . . . . . . . 25

2.5 The Dickson polynomials Dn(x, a) . . . . . . . . . . . . . . . . 27

3 Correspondences 30

3.1 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Coverings and graphs . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Induced homomorphisms . . . . . . . . . . . . . . . . . . . . . 35

3.4 Composition of correspondences . . . . . . . . . . . . . . . . . 42

3.5 Differential matrices . . . . . . . . . . . . . . . . . . . . . . . 45

4 Intersection theory on X × Y 48

4.1 Intersection numbers . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 The adjunction formula . . . . . . . . . . . . . . . . . . . . . . 52

5 The correspondence pairing 55

5.1 The pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



CONTENTS 4

5.2 Composition and the pairing . . . . . . . . . . . . . . . . . . . 57

5.3 Trace formulae . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Hyperelliptic Curves 67

6.1 Correspondences on the underlying lines . . . . . . . . . . . . 68

6.2 Correspondences from fX(u1) − fY (u2) . . . . . . . . . . . . . 70

6.3 Endomorphisms from fX(u1) − fX(u2) . . . . . . . . . . . . . 75

6.4 Cyclotomic CM: the curve v2 = up + 1 . . . . . . . . . . . . . 76

6.5 Isogenies from fX(u1) − fY (u2) . . . . . . . . . . . . . . . . . 81

7 Explicit real multiplication 94

7.1 Deriving RM from coverings . . . . . . . . . . . . . . . . . . . 95

7.2 Explicit induced homomorphisms . . . . . . . . . . . . . . . . 96

7.3 RM from cyclotomic coverings . . . . . . . . . . . . . . . . . . 100

7.4 RM from Artin–Schreier coverings . . . . . . . . . . . . . . . . 103

7.5 RM from elliptic isogeny kernels . . . . . . . . . . . . . . . . . 107

8 Richelot correspondences 112

8.1 (2, 2)-subgroups and (2, 2)-isogenies . . . . . . . . . . . . . . . 113

8.2 Quadratic splittings . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Singular quadratic splittings . . . . . . . . . . . . . . . . . . . 119

8.4 Richelot correspondences . . . . . . . . . . . . . . . . . . . . . 121

8.5 Richelot endomorphisms . . . . . . . . . . . . . . . . . . . . . 128

8.6 Towards generalised Richelot isogenies . . . . . . . . . . . . . 130

9 Richelot isogeny cycle structures 133

9.1 Isogeny cycles and endomorphism rings . . . . . . . . . . . . . 133

9.2 Extensions of Richelot isogenies . . . . . . . . . . . . . . . . . 135

9.3 Explicit isogeny cycles . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 144



Chapter 1

Introduction

In this work, we investigate methods for computing explicitly with homomor-

phisms (and particularly endomorphisms) of Jacobian varieties of algebraic

curves. Our principal tool is the theory of correspondences, in which homo-

morphisms of Jacobians are represented by divisors on products of curves.

We give families of hyperelliptic curves of genus three, five, six, seven, ten

and fifteen whose Jacobians have explicit isogenies (given in terms of corre-

spondences) to other hyperelliptic Jacobians. We describe several families

of hyperelliptic curves whose Jacobians have complex or real multiplication;

we use correspondences to make the real multiplication explicit, in the form

of efficiently computable maps on ideal class representatives. These explicit

endomorphisms may be used for efficient integer multiplication on hyperellip-

tic Jacobians, extending the Gallant–Lambert–Vanstone fast multiplication

from elliptic curves to higher dimensions. We then describe Richelot iso-

genies for curves of genus two; in contrast to classical treatments of these

isogenies, we consider all the Richelot isogenies from a given Jacobian simul-

taneously. The inter-relationship of Richelot isogenies may be used to deduce

information about the endomorphism ring structure of Jacobian surfaces; we

conclude with a brief exploration of these techniques.
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CHAPTER 1. INTRODUCTION 6

1.1 Overview

The remainder of this chapter sets out our basic notation and conventions. In

Chapter 2 we quickly survey the geometry of algebraic curves and their Ja-

cobians. We define divisors and rational equivalence on curves and their prod-

ucts; we then describe abelian varieties and Jacobians, and outline effective

arithmetic for hyperelliptic Jacobians, including a brief sketch of Gallant–

Lambert–Vanstone (GLV) techniques for efficient integer multiplication on

Jacobians. Finally, we describe Dickson polynomials (of the first kind), which

will be needed in later chapters.

In Chapter 3, we describe the basic theory of correspondences of curves.

Given a fixed pair of curves X and Y , a correspondence is defined to be a di-

visor on the surface X × Y . Every correspondence induces a homomorphism

from the Jacobian of X to the Jacobian of Y . The relationship between

homomorphisms and correspondences is entirely analogous to the relation-

ship between a morphism of curves and its graph. We describe these induced

homomorphisms; the central result is Theorem 3.3.12, which gives an isomor-

phism between Hom(JX , JY ) and a certain quotient of the divisor group of

X × Y . We then define a composition operation for correspondences, which

is a geometric realisation of the composition operation on induced homomor-

phisms. The composition induces a ring structure on the divisor group of

X ×X, giving a geometric realisation of the endomorphism ring of JX .

The principal tool for the analysis of the divisor group of a surface is

intersection theory. Chapter 4 surveys basic intersection theory on products

of curves; the principal results are the definition of the intersection number

(Theorem 4.1.1) and the adjunction formula (Theorem 4.2.1). Throughout,

we apply the results to examples from the theory of correspondences.

The intersection number has a serious limitation, however: it is not well-

defined on equivalence classes of correspondences inducing the same homo-

morphism. In Chapter 5, we construct a pairing on divisors on X × Y that

is posititive definite on these equivalence classes (Definition 5.1.1). The key

result is the Adjoint Theorem (Theorem 5.2.2), which implies that the pair-

ing is equivalent to a twisted trace pairing on the space of homomorphisms
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(Theorem 5.3.3). This gives a useful and explicit connection between the

purely geometric intersection theory on X × Y and the arithmetic theory

of Hom(JX , JY ). In the context of endomorphisms, this pairing was used by

Weil as a foundational tool in his proof of the Riemann hypothesis for curves.

We show how to use the pairing to determine when correspondences are Z-

linearly dependent (Proposition 5.4.1), and to express a correspondence in

terms of a known basis (Algorithm 5.4.2).

We then turn our attention to correspondences of hyperelliptic curves, in

Chapter 6. Hyperelliptic curves are double covers of projective lines, so we

consider the relationship between correspondences of hyperelliptic curves and

the induced correspondences of the covered lines. We also consider some cases

of the inverse problem: which correspondences of projective lines lift to in-

teresting correspondences of hyperelliptic curves? As an example, we exhibit

hyperelliptic curves with cyclotomic complex multiplication in §6.3.1, and

show how correspondences on these curves may be used to conduct efficient

integer multiplication in their Jacobians. We also describe correspondences

arising from the work of Cassou–Noguès and Couveignes [12] in §7.4. For

each correspondence, we identify the induced isogeny.

We continue our investigation of hyperelliptic curves in Chapter 7, where

we construct a number of families of hyperelliptic curves whose Jacobians

have real multiplication. We make these real multiplications completely ex-

plicit, by providing correspondences representing the endomorphisms and

constructing efficiently evaluable maps on the ideal class representation of the

Jacobians in §7.2. In §7.3, we consider a class of curves originally described

by Tautz, Top and Verberkmoes in [62], which have real multiplications de-

rived from cyclotomic covers. In §7.4, we describe a family of curves over

finite fields, with real multiplication induced by Artin–Schreier covers. Fi-

nally, in §7.5 we examine families of curves with real multiplication described

by Mestre in [44]. To our knowledge, this work provides the first explicit re-

alisations of the induced homomorphisms. These effective endomorphisms

may be used to give efficient integer multiplications on the Jacobians.

In Chapter 8, we specialise to the case of curves of genus two. In

particular, we consider Richelot isogenies, which split multiplication by two
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on Jacobian surfaces. The explicit construction of these isogenies, due to

Richelot, is classical. We extend the treatments of Flynn and Cassels [11]

and of Bost and Mestre [5] to give a complete description of Richelot isogenies

in terms of quadratic splittings (Definition 8.2.1), a new data structure which

considerably simplifies the treatment of sets of Richelot isogenies and the

correspondences that induce them.

We conclude our investigation in Chapter 9 by examining graphs of

Richelot isogenies, with a view to determining the endomorphism ring struc-

ture of a Jacobian surface. We give an algorithm for detecting certain cycles

in the graph of k-rational Richelot isogenies (Algorithm 9.3.1), and give sev-

eral examples of its application. This generalises the work of Kohel [35] and

others from elliptic curves to Jacobian surfaces.

1.2 Notation and conventions

We fix the following notations and conventions:

• We denote the base field by k, its multiplicative group by k×, and

its algebraic closure by k. Unless otherwise stated, all schemes are

k-schemes.

• Throughout, X, Y and Z will always denote reduced, irreducible, non-

singular projective algebraic curves over k. The (geometric) genus of

X is denoted gX . Note that the properties we assume of the curves X

and Y imply that their geometric and arithmetic genera coincide. The

Jacobian variety (hereafter Jacobian) of X is denoted JX . The ring of

endomorphisms of JX is denoted by End(JX).

• The product of X and Y (over Spec(k)) is a surface, denoted by X × Y .

The projections from X × Y to its first and second factors are denoted
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π1 and π2, respectively:

X × Y

X

π1

¾
Y

π2

-

The restrictions of the projections π1 and π2 to a subscheme C ofX × Y

are denoted by πC
1 := π1|C : C → X and πC

2 := π2|C : C → Y .

• We will often define schemes using affine models, but the scheme in

question should always be taken to be the projective closure (or product

projective closure) of the affine model. The scheme with an affine model

cut out by an ideal I is denoted by V (I).

• If V is a variety, then its arithmetic genus is denoted by pa(V ); its

function field and coordinate ring are denoted by k(V ) and OV , re-

spectively. If f is a nonzero function in k(V ) and P is a subvariety of

V , then we define ordP (f) to be the order of vanishing of f along P

— so ordP (f) = m (resp. −m) if f has a zero (resp. pole) of order m

at P . The module of differential d-forms on V is denoted by Ωd
V . We

denote the set of K-rational points of V by V (K).

• The coordinate functions on an affine plane model of a curve are de-

noted u and v. The corresponding coordinate functions on the product

X × Y are denoted u1 and v1 (for the X factor) and u2 and v2 (for the

Y factor): so π1(u1, v1, u2, v2) = (u1, v1) and π2(u1, v1, u2, v2) = (u2, v2).

1.3 Algorithms and pseudocode

In the course of this investigation, we will present a number of algorithms.

The algorithms will be defined in a pseudocode similar to the language of

the Magma computational algebra system [8], and (hopefully) accessible to

the reader familiar with any procedural programming language. Sequences
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are enclosed in square brackets; comments begin with the string “//”, and

continue to the end of the line. We will presume the existence of the following

functions:

• Coefficient(F , m): Given a polynomial F and a monomial m, re-

turns the coefficient of m in F .

• Roots(F , k): The roots in the field k of the polynomial F .

• XGCD(F1, F2, . . .): The extended Euclidean algorithm. Given a list

of polynomials F1, F2, . . ., returns their greatest common divisor g to-

gether with a list of elements a1, a2, . . . such that g =
∑

i aiFi.

• Curve(F ): Given a polynomial F (u, v), returns the plane curve with

affine model F (u, v) = 0.

• AbsoluteIgusaInvariants(X): Given a genus two curve X, returns

a sequence consisting of the absolute Igusa invariants of X, as defined

by Mestre [43, page 325].



Chapter 2

Geometric preliminaries

In this chapter, we will survey some of the required background from algebraic

geometry. We assume a rough familiarity with the basic geometry of curves.

For detailed results, the reader is encouraged to refer to Hartshorne [29,

Chapters I, IV], Hindry & Silverman [31, Chapter A] and Milne [45, 46].

Among surfaces, X × Y is far from general. It is a product of reduced,

irreducible, nonsingular projective curves, and so we know that it is a re-

duced, irreducible, nonsingular, projective surface. The arithmetic genus of

X × Y is given by [29, Exercise I.7.2(e)]:

pa(X × Y ) = (gX − 1)(gY − 1) + 1 = gXgY − (gX + gY ).

The following proposition is fundamental to the study of curves.

Proposition 2.0.1. Any morphism of projective curves is either a finite

morphism or a constant map.

Proof. See Hartshorne [29, Proposition II.6.8].

A finite morphism of curves is called a cover. We associate an integer

degree to any morphism of curves as follows.

Definition 2.0.2. Let ψ : C → X be a morphism of curves. If ψ is a

finite cover, then we define its degree, denoted degψ, to be the degree of the

11
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corresponding inclusion of function fields:

degψ := [k(C) : k(X)].

Otherwise, ψ is a constant map, and we define degψ := 0.

If X is a curve over the finite field k, then for each positive integer r there

is the rth Frobenius morphism F (r) : X → X. If k has q elements, and if X

has an affine plane model with coordinate functions u and v, then

F (r)(u, v) = (uqr

, vqr

).

2.1 Divisors

Definition 2.1.1. Let V be a nonsingular variety. A prime Weil divisor

on V is a codimension-one subvariety of V . A Weil divisor on V is a finite

formal sum of prime divisors on V :

D =
∑

P⊂V

nP · P.

The support of D is the collection of subvarieties P where nP 6= 0. The

Weil divisors on V form an abelian group under addition, which we denote

Div(V ).

A Weil divisor
∑

P⊂V nP · P on V is K-rational if it is stable under the

action of the Galois group of K/K. Note that this does not require each of

the subvarieties P to be defined over K.

Definition 2.1.2. Let V be a nonsingular variety. A Cartier divisor on V is

an equivalence class of sets of pairs {(Ui, fi)}, where the Ui are open subsets

of V such that
⋃

i Ui = V , and the fi are functions on the Ui such that fi/fj

has no poles or zeroes on Ui ∩ Uj for all i and j. The sets of pairs {(Ui, fi)}
and {(U ′

j, f
′
j)} are equivalent, and thus define the same Cartier divisor, if

fi/f
′
j has no poles or zeroes on Ui ∩ U ′

j for all i and j. The Cartier divisors



CHAPTER 2. GEOMETRIC PRELIMINARIES 13

on V form an abelian group, under the operation

{(Ui, fUi
)} + {(U ′

j, fU ′

j
)} := {(Ui ∩ U ′

j, fUi
fU ′

j
)}.

Suppose C = {Ui, fi} specifies a Cartier divisor. We construct a Weil

divisor D from C as follows: for each subvariety P of V , we let nP be the

order of vanishing of fi along P for any i such that Ui intersects nontrivially

with P , and then set D =
∑

P nPP . It is easily verified that this map from

the group of Cartier divisors on V to the group of Weil divisors on V is well-

defined. In fact, when V is a nonsingular variety, the map is an isomorphism

of groups (see Hartshorne [29, Proposition II.6.11]). We will henceforward

identify Weil divisors with their corresponding Cartier divisors, and use the

term divisor for both.

We say that a divisor D =
∑

P nP · P is effective if nP ≥ 0 for all P .

Effective divisors may be represented by a subscheme of V , which is generally

neither reduced nor irreducible.

Definition 2.1.3. Let φ : V ′ → V be a morphism of nonsingular varieties.

We define the pullback φ∗ : Div(V ) → Div(V ′) in terms of Cartier divisors,

by

φ∗({(Ui, fi)}) := {(φ−1(Ui), fi ◦ φ)}.

In terms of Weil divisors, we have

φ∗(
∑

i

niQi) =
∑

i

ni

∑

P∈φ−1(Qi)

ordP (tQi
)P.

where tQ denotes a local parameter at the subvariety Q of V .

In this investigation, we use divisors on curves and surfaces. Divisors on

a curve are formal sums of (closed) points; divisors on a surface are formal

sums of curves. In either case, the group of divisors on a variety is free

and not finitely generated, and so its group structure carries no information

about the intrinsic geometry of the variety. We use rational equivalence to cut

the divisor group down to size, forming a quotient reflecting the geometric

structure of the variety. Rational equivalence for divisors on curves is often
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called linear equivalence; we will use the more general term.

Definition 2.1.4. Let V be a nonsingular variety. For each nonzero function

f in k(V ), we define a divisor

div(f) :=
∑

P⊂V

ordP (f)P.

We say that a divisor is principal if it is equal to div(f) for some f in k(V ).

We say that divisors are rationally equivalent if they differ by a principal

divisor. We denote the group of principal divisors on V by Prin(V ). Note

that the divisor div(f) is equal to the Cartier divisor {(Ui, f)} for any open

covering {Ui} of V .

It is easily verified that Prin(V ) is in fact a subgroup of Div(V ). For all

nonzero functions f and f ′ in k(V )×, we have div(f) + div(f ′) = div(ff ′);

further, div(α) = 0 for all α in k×. It follows that rational equivalence is

indeed a well-defined equivalence relation on the divisor group.

Definition 2.1.5. Let V be a nonsingular variety. The quotient group

Pic(V ) := Div(V )/Prin(V )

of divisors modulo rational equivalence is called the Picard group of V . We

denote the image in Pic(V ) of a divisor D on V by [D].

Lemma 2.1.6. Suppose φ : V ′ → V is a morphism of nonsingular varieties.

Then the pullback φ∗ : Div(V ) → Div(V ′) induces a well-defined pullback

φ∗ : Pic(V ) → Pic(V ′).

Proof. It is easily checked that φ∗(div(f)) = div(f ◦ φ) for all functions f in

k(V )× . Thus φ∗ sends Prin(V ) into Prin(V ′); the statement follows.

The following lemma is known as the see-saw principle; it is particularly

useful when dealing with divisor classes on products of curves.

Lemma 2.1.7 (The see-saw principle). Let X and Y be varieties; for all

points x of X, define a morphism ix : Y → X × Y by ix(y) = (x, y).
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If [C] is a class in Pic(X × Y ) such that i∗x([C]) = 0 for all points x

of X, then [C] = π1
∗([CX ]) for some class [CX ] in Pic(X). Further, if the

restriction of [C] to X × y is trivial for some point y of Y , then [C] = 0.

Proof. See Hindry & Silverman [31, Lemma A.7.2.3] or Milne [45, §5].

We now turn our attention to the particular case of divisors on curves.

Let X be a nonsingular projective curve.

Definition 2.1.8. The degree map deg : Div(X) → Z is defined by

deg(
∑

i

niPi) :=
∑

i

ni.

Remark 2.1.9. We warn the reader that there is no analogous degree map for

divisors on the surfaces that we are concerned with. In place of the degree

map, we will need intersection numbers, which are defined in Chapter 4.

The degree map is a homomorphism; its kernel is the subgroup of divisors

on X of degree zero, denoted Div0(X). We have a short exact sequence

0 - Div0(X) ⊂ - Div(X)
deg(·)- Z - 0 .

Since X is complete and nonsingular, all principal divisors have degree

zero: Prin(X) is a subset of Div0(X) (see [56, Proposition II.1] or [29, Corol-

lary II.6.10]). It follows that the degree map is well-defined on rational

equivalence classes, and induces a homomorphism deg : Pic(X) → Z. The

kernel of this homomorphism, which we denote Pic0(X), is the subgroup of

Pic(X) generated by Div0(X); hence there is a short exact sequence

0 - Pic0(X) ⊂ - Pic(X)
deg(·)- Z - 0 .

If we assume X has a rational divisor of degree one, say D, then there is

a homomorphism Z → Pic(X) defined by n 7→ [nD]. This homomorphism

splits the exact sequence, and we see that

Pic(X) ∼= Z ⊕ Pic0(X).
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Lemma 2.1.10. If φ : C → X is a morphism of curves, then deg φ∗(D) =

deg φ · degD for all divisors D on X.

Proof. See Hartshorne [29, Proposition II.6.9].

Lemma 2.1.11. Let φ : V ′ → V be a morphism of nonsingular varieties.

The pullback φ∗ : Pic(V ) → Pic0(V ) maps Pic0(V ) into Pic0(V ′), and so

restricts to a well-defined homomorphism

φ∗ : Pic0(V ) - Pic0(V ′).

Proof. Immediate from Lemma 2.1.10.

Every morphism of curves induces a second homomorphism of divisor

groups, in addition to the pullback. This homomorphism is called the push-

forward, and is defined in a straightforward way; it is essentially the Z-linear

extension of the morphism itself.

Definition 2.1.12. Let ψ : C → X be a morphism of curves. We define the

pushforward ψ∗ : Div(C) → Div(X) as follows: If ψ is a finite cover, then we

define

ψ∗(
∑

i

niPi) :=
∑

i

niψ(Pi).

Otherwise, ψ is a constant map, and we define ψ∗ to be zero.

Lemma 2.1.13. Let ψ : C → X be a morphism of curves. The pushforward

φ∗ induces a homomorphism on Picard groups

ψ∗ : Pic(C) - Pic(X),

which restricts to a homomorphism

ψ∗ : Pic0(C) - Pic0(X).

Proof. Let Nk(C)/k(X) denote the norm map from k(C) to k(X). We have

ψ∗(div(g)) = div(Nk(C)/k(X)(g)) for all g in k(C); so ψ∗(Prin(C)) ⊂ Prin(X),
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and we therefore have a well-defined pushforward on Picard groups. Suppose

D =
∑

P nPP is an element of Div0(C): then
∑

P nP = 0. Hence

deg(ψ∗(D)) = deg(
∑

P

nPψ(P )) =
∑

P

nP = 0,

so ψ∗(D) is in Div0(X), and ψ∗([D]) is in Pic0(X).

We recall the definition of the canonical class of a variety, following

Hindry & Silverman [31, Example A.2.2.3]. Suppose V is a nonsingular

d-dimensional variety, and let ω be a differential d-form on V . If U is an

affine patch of V , and u1, . . . , ud are algebraically independent functions on

U , then there is a function fU in k(U) such that ω = fUdu1 ∧ · · · ∧ dud. The

collection {(U, fU)} over all affine patches U of V specifies a Cartier divisor

div(ω) on V associated to the differential ω. Every differential d-form ω ′ on

V is equal to fω for some function f in k(V ), and div(ω ′) = div(ω)+div(f).

Therefore, the divisors associated to the differential d-forms on V form a

single rational equivalence class, called the canonical class on V . We call any

divisor in the canonical class a canonical divisor; by abuse of notation, we

denote any of the canonical divisors on V by KV .

Lemma 2.1.14. If KX is a canonical divisor on a curve X, then the degree

of KX is

degKX = 2gX − 2.

Proof. See Hindry & Silverman [31, Corollary A.4.2.2] or Hartshorne [29,

V.1.3.3].

Given differential 1-forms on curves X and Y , we may construct a differ-

ential 2-form on the product X × Y . It follows that a canonical divisor on

X × Y may be constructed from canonical divisors on X and Y .

Lemma 2.1.15. If KX and KY are canonical divisors on curves X and Y

respectively, then

KX×Y := π1
∗(KX) + π2

∗(KY )

is a canonical divisor on X × Y .
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Proof. See Hartshorne [29, Ex. II.8.3].

2.2 Abelian varieties and Jacobians

A group variety is a variety whose points form a group, and where the group

operations are morphisms of varieties. An abelian variety is a projective

group variety. The group structure of an abelian variety is necessarily com-

mutative, so we write the group law additively.

A homomorphism of abelian varieties is a morphism that is also a homo-

morphism of abelian groups. The image of a homomorphism A → B is an

abelian subvariety of B, and the kernel is a group subscheme of A. In fact,

the kernel of a homomorphism of abelian varieties is the extension of a finite

group scheme by an abelian subvariety of A, which may be zero (see Milne

[45, §8]).
For each point a of an abelian variety A, there is a translation morphism

ta : A → A, defined by ta(P ) = P + a. Every morphism of abelian varieties

is the composition of a homomorphism and a translation (see Milne [45,

Corollary 2.2] or Hindry & Silverman [31, Corollary A.7.1.2]).

Lemma 2.2.1. Let A and B be abelian varieties. Then Hom(A,B) is a free

Z-module of finite rank:

rk Hom(A,B) ≤ (2 dimA)(2 dimB).

Proof. See Milne [45, Theorem 12.5].

An isogeny of abelian varieties is a finite dominant homomorphism of

abelian varieties. If there exists an isogeny between abelian varieties A and

B, then we say that A and B are isogenous. Isogenies φ : A → B and

φ′ : A′ → B′ are isomorphic if there are isomorphisms A ∼= A′ and B ∼= B′
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such that the diagram

A
φ - B

A′

∼=
? φ′

- B′

∼=
?

commutes. In order for abelian varieties A and B to be isogenous, it is

necessary (but not sufficient) that dimA = dimB. Given an isogeny φ :

A → B, the kernel of φ is a finite group subscheme of A, denoted A[φ], of

order deg φ. By the structure theorem for finitely generated modules over

principal ideal domains (see Lang [38, §III.7]), there exists a unique integer r

and a unique sequence of integers n1, . . . , nr with ni+1|ni for 1 ≤ i < r, such

that A[φ] is isomorphic to Z/n1Z × · · · × Z/nrZ. If φ is separable, then we

say that φ is an (n1, . . . , nr)-isogeny.

An endomorphism of an abelian variety A is a homomorphism from A

to itself. The endomorphisms of A form a Z-algebra, denoted End(A); we

denote End(A) ⊗ Q by End0(A). For every abelian variety A and integer n,

we have a multiplication-by-n endomorphism on A, denoted [n]A:

[n]A : P 7→ P + · · · + P (n times).

Thus if A is a nontrivial abelian variety, then there is a subring of End(A)

isomorphic to Z. Multiplication by n is always an isogeny.

We say that an abelian variety is simple if it has no proper nonzero abelian

subvarieties. Every abelian variety A is isogenous to a product
∏

iA
ri

i , with

each of the Ai simple (see Lang [37, Corollary of Theorem II.6]). If A is

simple, then every nonzero endomorphism is an isogeny.

The Q-algebra End0(A) is a finite-dimensional semisimple algebra over Q

(see Milne [45, §12]). If A is simple, then End0(A) is a division algebra. If

A =
∏

iA
ri

i , with each of the Ai simple, then End0(A) =
∏

i End0(Ari

i ), with

End0(Ari

i ) = Mri
(End0(Ai)) (see Milne [45, §12]). If there is an injection of

a subring R of a real extension of Q into End0(A), then we say that A has
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real multiplication (RM) by R. Similarly, if there is an injection of a subring

S of a complex extension of Q into End0(A), then we say A has complex

multiplication (CM) by S.

Let A and B be abelian varieties. For each point a of A, we define a map

ia : B → A×B by ia(b) = (a, b); similarly, for each point b of B we define a

map ib : A→ A×B by ib(a) = (a, b). We say that A and B are dual to one

another if there is a divisor class P in Pic(A×B) (called the Poincaré class)

such that the maps A → Pic0(B) and B → Pic0(A) defined by a 7→ i∗a(P)

and b 7→ i∗b(P) respectively are both isomorphisms. A dual abelian variety

exists for every abelian variety A, and is unique up to isomorphism, together

with the Poincaré class P (see Hindry & Silverman [31, Theorem A.7.3.4]);

we denote the dual of A by Â. An ample divisor L on A defines an isogeny

φL : A → Â into the dual of A, called a polarisation. If a polarisation is an

isomorphism, then we say that it is a principal polarisation, and that A is

principally polarised.

For every homomorphism φ : A → B, there is a dual homomorphism

φ̂ : B̂ → Â induced by the pullback of φ, as in the following diagram.

Pic0(B)
φ∗
- Pic0(A)

B̂

∼=
6

φ̂ - Â

∼=
?

The Jacobian JX of a curve X is a principally polarised abelian variety,

satisfying the following universal property: any map from X into another

abelian variety A factors through JX , as in the diagram below.

X - JX

A
?-

The Jacobian of X is unique up to isomorphism: consider the universal



CHAPTER 2. GEOMETRIC PRELIMINARIES 21

property with JX in place of A. A curve of genus greater than zero may

always be embedded in its own Jacobian (if X is a curve of genus zero, then

JX is trivial by Theorem 2.2.2 below, and so X cannot embed in JX). For

the embedding to be defined over k, it suffices for X to have a k-rational

divisor of degree one; suppose that D is such a divisor. There is a canonical

embedding αD : X ↪→ JX , defined by P 7→ [P −D], which sends D to the

zero element of JX .

Theorem 2.2.2. Let X be a curve, with gX > 0. Let JX be the Jacobian of

X, and α : X ↪→ JX an embedding. For each integer r ≥ 0, let

Wr := α(X) + · · · + α(X)︸ ︷︷ ︸
r times

⊂ JX

and define Θ := W(gX−1). The following properties hold:

1. Extending α linearly to a map on divisors, we have an isomorphism of

groups between Pic0(X) and JX .

2. Wr is a subvariety of JX of dimension dimWr = min(r, gX).

3. WgX
= JX : we say that X generates JX .

4. dim JX = gX .

5. Θ = W(gX−1) is an irreducible ample divisor on JX .

Proof. See Hindry & Silverman [31, Theorem A.8.1.1].

The divisor Θ on JX of Theorem 2.2.2 is particularly important; we call

it a theta divisor. The isomorphism between JX and Pic0(X) provided by

Theorem 2.2.2 is particularly useful: in the sequel, we will use Pic0(X) and

JX interchangeably. Note that under this isomorphism, the embedding αx :

X → JX sends P to [P − x].

Corollary 2.2.3. Let ψ : C → X be a morphism of curves. The pullback ψ∗

and the pushforward ψ∗ induce well-defined homomorphisms of Jacobians

ψ∗ : JX → JC and ψ∗ : JC → JX .
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Proof. Theorem 2.2.2 gives isomorphisms Pic0(X) ∼= JX and Pic0(C) ∼= JC .

The statement then follows immediately from Lemmas 2.1.11 and 2.1.13.

Corollary 2.2.4. Let X and Y be curves; then Hom(JX , JY ) is a free Z-

module of rank at most 4gXgY .

Proof. Statement (4) of Theorem 2.2.2 gives us dim JX = gX ; the result then

follows from Lemma 2.2.1.

Example 2.2.5. Let X be a curve of genus one. By Theorem 2.2.2, JX is one-

dimensional, so it is a curve. Given a rational point x of X, the embedding

αx : X → JX is an isomorphism. Hence JX is isomorphic to a curve of genus

one with a rational point; we call such Jacobians elliptic curves.

Theorem 2.2.2 proves our earlier assertion that if X is a curve of genus

zero, then JX is a point. If X is a curve of genus two, then JX is a surface;

thus we call Jacobians of curves of genus two Jacobian surfaces.

Suppose Θ is a theta divisor on JX . One nice property of Θ is that it gives

us a principal polarisation λΘ : JX → ĴX , defined by λΘ(P ) = t∗P (Θ)−Θ. If

we use λΘ to identify JX with ĴX , let pi : JX × JX → JX be the projection

to the ith factor and µ : JX × JX → JX be the addition map, then

P = µ∗(Θ) − (p∗1(Θ) + p∗2(Θ))

is a Poincaré divisor on JX ×JX . If we fix a rational degree-one divisor D on

X and let Θ be the theta divisor corresponding to the embedding αD, then

we denote the principal polarisation λΘ by λX .

Definition 2.2.6. Fix principal polarisations λX for JX and λY for JY . For

each homomorphism φ : JX → JY , we set φ† := λ−1
X ◦ φ̂ ◦ λY :

ĴY

φ̂ - ĴX

JY

λY

6

φ†
- JX

λ−1
X

?
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The map Hom(JX , JY ) - Hom(JY , JX) defined by φ 7→ φ† is called the

Rosati involution, and φ† is called the Rosati dual of φ.

If an endomorphism φ is defined over k, then so is φ†. It is clear from the

definition that (φ†)
†

= φ, so the Rosati involution is indeed an involution.

It is well-known that the Rosati involution is positive, in the sense of the

following lemma.

Lemma 2.2.7. The map End(JX)2 → Z defined by (φ, ψ) 7→ Tr(φ ◦ ψ†) is a

positive definite bilinear form.

Proof. See Milne [45, Theorem 17.3] or Lang [37, §V.3].

2.3 Hyperelliptic curves and their Jacobians

Definition 2.3.1. We say that a curve X is hyperelliptic1 if gX > 0 and

there is a covering hX : X → P1 of degree two. (The map hX is called a

hyperelliptic cover.)

Any curve of genus one with a rational point is hyperelliptic. All curves

of genus two are hyperelliptic (see Hartshorne [29, Ex. IV.1.7]); for curves

of genus greater than two, hyperellipticity is quite special. The geometry of

hyperelliptic curves is quite different from that of generic curves.

Suppose X is a hyperelliptic curve. Since the covering hX : X → P1 has

degree two, it induces a quadratic extension of function fields k(X)/k(P1).

If the characteristic of k is not two, we may take an affine plane model for

X in the form

X : v2 = fX(u)

where fX(u) is a squarefree polynomial in k[u]. We call fX the hyperelliptic

polynomial of X. There is an involution ιX on X called the hyperelliptic

involution such that hX is the quotient by 〈ιX〉. On the affine plane model

above, ιX acts as (u, v) 7→ (u,−v) and hX is (u, v) 7→ u. The roots of

1The reader should note that some authors reserve the term hyperelliptic for curves of
genus strictly greater than one; we will not make this restriction.
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fX are precisely the branch points of hX ; the Riemann–Hurwitz formula

(Hartshorne [29, §IV.2], Hindry & Silverman [31, Theorem A.4.2.5]) implies

that deg fX = 2gX +1 or 2gX +2 (if the degree of fX is odd, then there is an

additional ramification at infinity.) The hyperelliptic involution ιX induces

an involution of JX equal to [−1]JX
. The following lemma shows that any

cover of hyperelliptic curves commuting with the hyperelliptic involutions is

essentially induced by a map on the underlying projective lines.

Lemma 2.3.2. Let X and Y be hyperelliptic curves, and let π : X → Y be

a covering such that π ◦ ιX = ιY ◦ π. Then π is a map of the form

π : (u, v) 7→ (P (u), v)

for some rational function P .

We will now describe the standard methods for computing explicitly in

hyperelliptic Jacobians, following Cantor [9] and Mumford [48]. Suppose X

is a hyperelliptic curve of genus g, with an (affine) model

v2 = fX(u) = u2g+1 + c2gu
2g + · · · + c0,

with each ci in k. Let ∞ denote the point at infinity of this model. A point

P in JX(k) may be represented as a divisor (class)

P =

[
m∑

i=1

Pi −m · ∞
]

=

[
m∑

i=1

(ui, vi) −m · ∞
]
,

for some m points Pi = (ui, vi) in X(k). In fact, this representation is unique

if we also require that m ≤ g and ιY (Pi) 6= Pj for any i 6= j; we call such

a representative reduced. Note that while P is k-rational, the points Pi in

the support of the divisor need not be: the coordinates (ui, vi) of Pi may lie

in some finite extension K of k. Thus, for computations, we use instead the

Mumford representation for divisors [48], identifying P with the ideal class

P = [(a(u), v − b(u))],
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where a and b are polynomials over k such that a(u) =
∏

i(u − ui) and

vi = b(ui) (with correct multiplicity) for all i. Note that the polynomial a(u)

should be monic. Cantor [9] provides algorithms to implement the group

law for points in this representation: addition of points P and Q is an ideal

product, followed by application of a reduction algorithm to produce the

unique “reduced” ideal class representing P +Q.

Algorithm 2.3.3. Computes the reduced representative of a point on the

Jacobian JX of the hyperelliptic curve X : v2 = fX(u).

function CantorReduction((a(u), v − b(u)))

while deg(a) > gX do

a := (fX − b2)/a;

b := −b (mod a);

end while

a := a/LeadingCoefficient(a);

return (a(u), v − b(u));

end function

Algorithm 2.3.4. Computes the reduced representative of the sum of two

points on a Jacobian.

function CantorComposition((a1(u), v − b1(u)), (a2(u), v − b2(u)))

d, c1, c2, c3 := XGCD(a1, a2, b1 + b2);

// that is, d = gcd(a1, a2, b1 + b2) = c1a1 + c2a2 + c3(b1 + b2)

a3 := a1a2/d
2;

b3 := (c1a1b2 + c2a2b1 + c3b1b2)/d;

return CantorReduction((a3(u), v − b3(u)));

end function

2.4 Efficient multiplication on Jacobians

In this section, we give a brief description of Gallant–Lambert–Vanstone

(GLV) fast scalar multiplication. The key idea is to use integer eigenvalues of

non-integer endomorphisms to improve the efficiency of integer multiplication

on (subgroups of) Jacobians. We will sketch this technique here; the reader
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is encouraged to refer to Gallant, Lambert, and Vanstone [23], Lange [40],

and Sica, Ciet, and Quisquater [58] for a thorough treatment of the methods,

and to Solinas [59] and Ciet, Lange, Sica, and Quisquater [13] for discussions

of related φ-adic multiplication techniques.

Suppose that φ is an efficiently computable k-rational endomorphism of

JX that does not equal [m]JX
for any integer m. Let χφ be the minimal

polynomial of φ; and let d be the degree of χφ. Suppose G is a cyclic subgroup

of JX(k) of prime order n. The endomorphism φ must act as an integer

multiplication on G: in fact, φ acts as [cφ]G for some root cφ of χφ modulo

n. We may use this fact to speed up the evaluation of integer multiplication

endomorphisms on G.

Suppose we wish to evaluate [m]JX
P , where P is an element of G and |m|

is relatively large. First, we choose integers mi for 0 ≤ i < d such that

m ≡ m0 +m1cφ +m2c
2
φ + · · · +md−1c

d−1
φ (mod n);

then we evaluate

[m]P = [m0]P + φ([m1](P )) + φ2([m2](P )) + · · · + φd−1([md−1](P )).

Sica, Ciet and Quisquater [58] show that

max |mi| ≤ Bd−12d(d−1)/4n1/d,

where B is a polynomial expression in the coefficients of χφ (see [58, Lemma

4, Theorem 5]). Thus multiplication by a large integer on G has been re-

duced to a sum of multiplications by smaller integers, which may be effi-

ciently co-computed (ie, computed simultaneously) using joint scalar multi-

plication techniques. Methods for joint scalar multiplication are discussed in

[4]. Techniques for finding optimal decompositions of [m] with respect to φ

are discussed in [23], [33], [49], and [13].

GLV techniques for elliptic curves are described in [23], and [13]. Günter,

Lange and Stein [28] describe the use of Frobenius endomorphisms for fast

scalar multiplication on Jacobians of genus two Koblitz curves [34]; Lange
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[40] gives methods for Koblitz curves of higher genus. Park, Jeong, and Lim

[49] have extended GLV techniques to the Jacobians of a class of curves of

genus two and three. Recently, Takashima [61] has extended GLV multipli-

cation techniques to a three-parameter family of Jacobian surfaces with real

multiplication described by Hashimoto in [30]. In this work, we extend GLV

techniques to higher-dimensional Jacobians with real multiplication.

2.5 The Dickson polynomials Dn(x, a)

In this section, we quickly survey the properties of the Dickson polynomials

(of the first kind). For a full treatment of the theory of Dickson polynomials,

the reader should refer to the book of Lidl, Mullen & Turnwald [42].

Definition 2.5.1. The nth Dickson polynomial with parameter a in the in-

determinate x is defined by

Dn(x, a) :=

bn/2c∑

i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i

for n > 0; we define D0(x, a) = 2. Observe that D1(x, a) = x. The polyno-

mial Dn(x, a) is of degree n in x, with coefficients in the ring Z[a].

The following properties of Dickson polynomials are stated without proof.

See Lidl et. al. [42, Chapter 2] for full proofs and derivations.

Lemma 2.5.2. The polynomials Dn(x, a) have the following properties:

1. Dn(u1 + u2, u1u2) = un
1 + un

2 ;

2. Dn(u+ a/u, a) = un + (a/u)n;

3. Dn(x, a) = ((x+
√
x2 − 4a)/2)n + ((x−

√
x2 − 4a)/2)n;

4. Dn+2(x, a) = xDn+1(x, a) − aDn(x, a) for all n ≥ 0;

5. Dmn(x, a) = Dm(Dn(x, a), an); in particular, if a = 0 or a = 1, then

Dmn(x, a) = Dm(Dn(x, a), a) = Dn(Dm(x, a), a);
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6. bnDn(x, a) = Dn(bx, b2a);

7. If p := char k is not zero, then Dnp(x, a) = Dn(x, a)p;

8. Dn(x, 0) = xn.

Remark 2.5.3. If Tn(x) denotes the nth Tchebyshev polynomial of the first

kind (see [52]), then Tn(x) = Dn(2x, 1)/2 for all n.

The next lemma describes the factorizations of differences of Dickson

polynomials in distinct indeterminates. This will be vital in our analysis of

correspondences on hyperelliptic curves in Chapters 6 and 7.

Lemma 2.5.4. Let αi = ζ i
n + ζ−i

n and βi = ζ i
n − ζ−i

n , where ζn is a primitive

nth root of unity over k. If n is odd, then for all parameters a we have

Dn(u1, a) −Dn(u2, a) = (u1 − u2)

(n−1)/2∏

i=1

(u2
1 + u2

2 − αiu1u2 + β2
i a);

if n is even, then for all parameters a we have

Dn(u1, a) −Dn(u2, a) = (u2
1 − u2

2)

(n−2)/2∏

i=1

(u2
1 + u2

2 − αiu1u2 + β2
i a).

Further, if a 6= 0, then the factors (u2
1 + u2

2 − αiu1u2 + β2
i a) in the above

factorizations are all distinct and irreducible.

Proof. See Lidl et. al. [42, Theorem 3.12].

Lemma 2.5.4 immediately implies the following lemma, which describes

the factorization of Dickson polynomials.

Lemma 2.5.5. Let βi = ζ i
n − ζ−i

n , where ζn is a primitive nth root of unity

over k. If n is odd, then for all parameters a we have

Dn(x, a) = x

(n−1)/2∏

i=1

(x2 + β2
i a);
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if n is even, then for all parameters a we have

Dn(x, a) = x2

(n−2)/2∏

i=1

(x2 + β2
i a) +Dn(0, a).

Remark 2.5.6. The Dickson polynomials Dn(x, 1) have a geometric inter-

pretation. Let Gm denote the multiplicative group over k, considered as a

commutative group scheme. Note that Gm is isomorphic to A1 \ {0}, with

the group law defined by (u1, u2) 7→ u1u2. If u denotes the coordinate on

A1, then the exponentiation map [n]Gm
is realised by u 7→ un. The map

q : A1 \ {0} → A1 defined by q(u) = u + u−1 gives a double cover from

Gm to its Kummer variety Gm/〈±1〉, considered as a subvariety of A1. The

second property in Lemma 2.5.2 shows that [n]Gm
induces the endomorphism

u 7→ Dn(u, 1) on Gm/〈±1〉, making the following diagram commute:

Gm

[n]Gm

u 7→ un
- Gm

Gm/〈±1〉

u 7→ u+ u−1 q

?

u 7→ Dn(u, 1)
- Gm/〈±1〉.

q u 7→ u+ u−1

?

Remark 2.5.7. The reader should note that we use the symbol a in this work

to denote both the Dickson polynomial parameter and one of the polynomials

in the Mumford representation of points on a hyperelliptic Jacobian. While

this is a potential source of confusion — especially in Chapters six and seven,

where we consider hyperelliptic curves whose hyperelliptic polynomial is a

Dickson polynomial — the ambiguity is always resolved by the context.
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Correspondences

Given a pair of curvesX and Y , the theory of correspondences relates divisors

on the product X × Y to homomorphisms between the Jacobians JX and JY .

The relationship between a correspondence and its associated homomorphism

is analogous to that between the graph of a morphism of curves and the

morphism itself.

In this chapter, we describe the basic theory of correspondences. In §3.1,
we define correspondences as divisors on X × Y , and distinguish fibral and

nonfibral correspondences. We then discuss the connection between corre-

spondences and coverings of curves in §3.2, which leads to the definition of

the homomorphisms induced by correspondences on divisor groups, Picard

groups and Jacobians of curves in §3.3. We show that every homomorphism

of Jacobians is induced by some correspondence. After describing the cor-

respondences that induce trivial homomorphisms, we have an isomorphism

between a certain quotient of the group of correspondences on X × Y and

the module of homomorphisms from JX to JY . Finally, in §3.4 we describe

a composition operation for correspondences, and discuss the resulting ring

structure on Div(X ×X).

The reader is encouraged to refer to Lange & Birkenhake [39, §11.5] and

Griffiths & Harris [27, §2.5] for accessible, classical treatments of correspon-

dences over the complex numbers. Fulton [22, Chapter 16] gives a treatment

of the geometry of correspondences over an arbitrary field. Lang [37, Ap-

30
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pendix] treats correspondences with a view to applications in the theory of

abelian varieties. Deuring [15, 16] expresses the theory of correspondences

in terms of extensions of function fields; Kux gives an overview of Deuring’s

theory in English in his PhD thesis [36].

3.1 Correspondences

Recall that X and Y denote nonsingular, irreducible projective curves; their

product is denoted X × Y , and πi denotes the projection to the ith factor:

X × Y

X

π1

¾
Y

π2

-

Definition 3.1.1. A correspondence on X × Y is a divisor on X × Y .

A correspondence is prime if it is a prime divisor: that is, a reduced,

irreducible curve on the surface X × Y . A correspondence is effective if it is

an effective divisor. We may associate each effective correspondence with a

subscheme of X × Y , which is generally neither reduced nor irreducible. A

correspondence is principal if it is the divisor of a function in k(X × Y ).

Our first examples of correspondences are fibres of the projection maps.

If P is a point of X and F = π1
−1(P ) is the fibre of π1 over P , then F is

an irreducible, reduced curve, and therefore a prime correspondence. The

restricted projection πF
2 : F → Y is an isomorphism, so as a curve, the arith-

metic genus of F is gY . Similarly, the fibres of π2 are prime correspondences

isomorphic to X, of arithmetic genus gX .

Definition 3.1.2. Correspondences supported entirely on fibres of the pro-

jection maps π1 and π2 are called fibral. The fibral correspondences form

a subgroup of Div(X × Y ), which we denote Fib(X × Y ). We say that a

correspondence is nonfibral if no component of its support is a fibre of one of

the projections.
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Only the zero correspondence is both fibral and nonfibral. It follows

that every correspondence may be written in a unique way as the sum of

a fibral correspondence and a nonfibral correspondence. Further, the group

Fib(X × Y ) decomposes naturally into a summand supported on fibres of π1

and a summand supported on fibres of π2. There is thus a natural isomor-

phism

Fib(X × Y ) ∼= Div(X) × Div(Y ),

given by the product of pushforwards π1∗ × π2∗.

Lemma 3.1.3. Let C be a correspondence on X × Y . Then there are unique

divisors CX on X and CY on Y , and a unique nonfibral correspondence C ′

on X × Y such that

C = C ′ + π∗
1(CX) + π∗

2(CY ).

Proof. The set S of reduced, irreducible curves on X × Y may be naturally

partitioned into the set S1 of fibres of π1, the set S2 of fibres of π2, and the set

S ′ := S\(S1∪S2) of all the other curves. We take C ′ to be the part of C with

support in S ′, CX to be the pushforward under π1 of the part supported on

S1, and CY to be the pushforward under π2 of the part supported on S2.

Lemma 3.1.3 is made effective by the following simple algorithm.

Algorithm 3.1.4. Given a correspondence C =
∑

i niCi onX × Y with each

of the Ci prime, returns a nonfibral correspondence C ′ on X × Y , together

with divisors CX on X and CY on Y such that C = C ′ + π1
∗(CX) + π2

∗(CY )

(cf. Lemma 3.1.3.)

function StandardDecomposition(
∑r

i=1 niCi)

C ′ := 0Div(X×Y );

CX := 0Div(X);

CY := 0Div(Y );

for i in [1, . . . , r] do

if dimπ1(Ci) = 0 then

CX := CX + niπ1(Ci);
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else if dim π2(Ci) = 0 then

CY := CY + niπ2(Ci);

else

C ′ := C ′ + niCi;

end if ;

end for;

return C ′, CX , CY ;

end function;

There is a natural isomorphism X × Y ∼= Y ×X, exchanging the factors

of the product. The image of a correspondence C on X × Y under this iso-

morphism is called the transpose of C, denoted C t. We say a correspondence

C on X ×X is symmetric if C = C t. The transpose of a fibral correspon-

dence is fibral, and the transpose of a nonfibral correspondence is nonfibral.

The transpose of a principal correspondence is principal, so transposition is

well-defined on rational equivalence classes of correspondences.

3.2 Coverings and graphs

If C is a prime correspondence on X × Y , then the projections π1 and π2

restrict to morphisms of curves πC
1 : C → X and πC

2 : C → Y . Thus

correspondences on X × Y may be viewed as formal sums of curves C with

a morphism to both X and Y .

Conversely, given a curve C̃ together with morphisms φ : C̃ → X and

φ′ : C̃ → Y , we may form a correspondence

C := (φ× φ′)(C̃) ⊂ X × Y .

(If both of the morphisms φ and φ′ are constant, then we define C to be the

zero correspondence.) If either φ or φ′ is constant, then C is fibral. Other-

wise, both morphisms are coverings, and C is nonfibral. The degrees of the

restricted projection morphisms are the degrees of the original morphisms:

deg πC
1 = deg φ, and deg πC

2 = deg φ′. We extend these degrees to general

correspondences.
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Definition 3.2.1. If C be a prime correspondence on X × Y , then we define

d1(C) := deg πC
1 and d2(C) := deg πC

2 ,

and call d1(C) and d2(C) the degrees of C. Extending Z-linearly, we obtain

homomorphisms d1 : Div(X × Y ) → Z and d2 : Div(X × Y ) → Z, called the

degree functions on X × Y . We say C is an (a, b)-correspondence if d1(C) = a

and d2(C) = b.

For any correspondence C, transposition exchanges the projection maps

πC
1 and πC

2 . Therefore, we have d1(C
t) = d2(C) and d2(C

t) = d1(C).

Example 3.2.2. For every morphism of curves f : X → Y , we have a prime

correspondence

Γf := (IdX × f)(X) ⊂ X × Y ,

called the graph of f . The projection π
Γf

1 is an isomorphism from Γf to X,

so Γf has arithmetic genus pa(Γf ) = pa(X) = gX . Further,

d1(Γf ) = 1 and d2(Γf ) = deg f.

Definition 3.2.3. We call the graph of the identity morphism IdX : X → X

the diagonal correspondence, denoted ∆X :

∆X := ΓIdX
= (IdX × IdX)(X) ⊂ X ×X.

Clearly d1(∆X) = d2(∆X) = 1, and ∆X
t = ∆X : the diagonal correspon-

dence is therefore our first nontrivial example of a symmetric correspondence.

Note that ∆X has an affine model V (u2 − u1, v2 − v1).

If k is a finite field, then for each positive integer r we have a Frobenius

morphism F (r) : X → X. The graphs of these morphisms are another source

of nontrivial correspondences.

Definition 3.2.4. If k is a finite field and r > 1 is an integer, then we define

the rth Frobenius correspondence on X ×X, denoted Fr
X , to be

Fr
X := ΓF(r) = (IdX ×F (r))(X).
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For notational convenience, we define F0
X := ∆X .

If k = Fq, then d1(F
r
X) = 1 and d2(F

r
X) = qr. In affine coordinates, Fr

X

has a model V
(
u2 − uqr

1 , v2 − vqr

1

)
.

Example 3.2.5. Let F be a fibral correspondence on X × Y . By Lemma 3.1.3,

there are divisors FX on X and FY on Y such that F = π1
∗(FX) + π2

∗(FY ).

We have d1(F ) = degFY and d2(F ) = degFX .

Example 3.2.6. Let KX and KY be canonical divisors on X and Y , respec-

tively. The fibral correspondence KX×Y = π1
∗(KX)+π2

∗(KY ) is a canonical

divisor on X × Y by Lemma 2.1.15. As in Example 3.2.5, d1(KX×Y ) =

degKY and d2(KX×Y ) = degKX ; it then follows from Lemma 2.1.14 that

d1(KX×Y ) = 2gY − 2 and d2(KX×Y ) = 2gX − 2.

Proposition 3.2.7. The degree functions di : Div(X × Y ) → Z are well-

defined on rational equivalence classes of correspondences, and hence factor

through the Picard group Pic(X × Y ):

Div(X × Y ) - Pic(X × Y )

Z .

di

?

di
-

Proof. We will show that if C is a principal correspondence on X × Y , then

d1(C) = 0. A similar argument shows that d2(C) = 0, and the claim follows.

Suppose C = div(f) for some f in k(X × Y ). Now, d1(C) is equal to the

degree of the divisor forming each fibre of πC
1 . For each point P of X,

the function f restricts to a function fP on the prime fibral correspondence

π1
∗(P ). Thus πC

1
∗
(P ) is div(fP ), which has degree zero.

3.3 Induced homomorphisms

We now come to the central idea of the theory of correspondences: each

correspondence on X × Y induces a homomorphism of the divisor groups of
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X and Y . These homomorphisms in turn induce homomorphisms of Picard

groups and Jacobians.

Suppose C is a prime correspondence onX × Y . Viewing C as a curve, we

have coverings πC
1 : C → X and πC

2 : C → Y . We may compose the pullback

πC
1
∗

and the pushforward πC
2 ∗ to obtain a homomorphism from Div(X) to

Div(Y ):

Div(C)

Div(X) -

πC
1
∗

-

Div(Y )

πC
2 ∗

-

Lemma 2.1.6, Lemma 2.1.13 and Corollary 2.2.3 give us well-defined pull-

backs πC
1
∗

: Pic(X) → Pic(C) and πC
1
∗

: JX → JC , and well-defined pushfor-

wards πC
2 ∗ : Pic(C) → Pic(Y ) and πC

2 ∗ : JC → JY . Therefore, we also have

induced homomorphisms

Pic(C) JC

and

Pic(X) -

πC
1
∗

-

Pic(Y )

πC
2 ∗

-

JX
-

πC
1
∗

-

JY .

πC
2 ∗

-

We extend this construction Z-linearly to construct induced homomorphisms

for every correspondence on X × Y .

Definition 3.3.1. If C =
∑

i niCi is a correspondence on X × Y , with each

of the Ci prime, then we define the induced homomorphism of C to be

φC :=
∑

i

ni(π
Ci

2 ∗) ◦ (πCi

1

∗
).

Unless otherwise noted, we take φC to indicate the induced homomorphism

of Jacobians.
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By definition, the map C 7→ φC is a homomorphism, which we denote

Φ : Div(X × Y ) - Hom(JX , JY ).

In particular, φ0 = 0.

Example 3.3.2. The diagonal correspondence ∆X induces the identity endo-

morphism. By Z-linearity, we have φn∆X
= [n] for all integers n.

Example 3.3.3. Let f : X → Y be a morphism, and let Γf be its graph. The

induced homomorphism of Γf is simply the pushforward f∗. Similarly, the

transpose Γf
t induces the pullback f ∗.

Example 3.3.4. Fibral correspondences induce the zero homomorphism. Let

F =
∑

i Fi be a fibral correspondence, with each of the Fi prime. For each

fibre Fi, either (πFi

1 )∗ = 0 or (πFi

2 )∗ = 0; so φF =
∑

i 0 = 0.

Definition 3.3.5. If correspondences C and D induce the same homomor-

phisms of Jacobians (that is, φC = φD), then we say that C and D are

homomorphically equivalent, and write C ≈ D. If C ≈ 0, then we say C is

homomorphically trivial.

Example 3.3.4 demonstrates that correspondences differing by a fibral

correspondence are homomorphically equivalent. We will now show that

rationally equivalent correspondences are homomorphically equivalent. This

gives us a well-defined induced homomorphism for each rational equivalence

class of correspondences.

Proposition 3.3.6. If C and D are rationally equivalent correspondences,

then C and D are homomorphically equivalent. In particular, if C is princi-

pal, then C ≈ 0.

Proof. The second statement implies the first. Suppose C = div(f) for some

f in k(X × Y ). For any point P of X, the pullback πC
1
∗
(P ) = (πC

1 )−1(P ) may

be viewed as the divisor CP = div(f |π1
−1(P )), which is a principal divisor on

the fibre π1
−1(P ). Since CP is principal, πC

2 ∗(CP ) is principal; but πC
2 ∗(CP ) =

φC(P ). It follows that the image of φC is contained in Prin(Y ), and hence that

the induced homomorphisms of Picard groups and Jacobians are trivial.
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Corollary 3.3.7. The homomorphism Φ : Div(X × Y ) → Hom(JX , JY )

factors through Pic(X × Y ):

Div(X × Y )
C 7→ [C]- Pic(X × Y )

Hom(JX , JY )

[C] 7→ φ[C]

?

C 7→
φ
C -

That is, there is a well-defined homomorphism φ[C] of Jacobians (and Picard

groups) for every rational equivalence class of correspondences [C].

The kernel of the homomorphism Φ : Div(X × Y ) → Hom(JX , JY ) is the

subgroup of correspondences on X × Y that are homomorphically equivalent

to zero. By Example 3.3.4, the kernel contains Fib(X × Y ); so by Proposi-

tion 3.3.6, it contains the rational equivalence class of every fibral correspon-

dence. The following proposition shows that the kernel is precisely the set of

correspondences that are rationally equivalent to a fibral correspondence.

Proposition 3.3.8. A correspondence is homomorphically trivial if and only

if it is rationally equivalent to a fibral correspondence.

Proof. Suppose C is a correspondence on X × Y , and let x be a point of X.

Let α : X → JX be the embedding defined by α(P ) = [P − x]. If C ≈ 0,

then we have φC(α(P )) = [φC(P ) − φC(x)] = 0 for all P in X. The see-saw

principle (Lemma 2.1.7 then implies [C] = π1
∗([CX ]) + π2

∗([φC(x)]): that is,

[C] is a sum of fibral classes. The converse follows from Example 3.3.4 and

Proposition 3.3.6.

The simplest correspondences on X × Y are those subschemes of X × Y

defined by a single equation. The following useful lemma shows that such

correspondences are in fact homomorphically trivial.

Lemma 3.3.9. Let H be an effective correspondence on X × Y . If H is a

hypersurface — that is, if H = V (F ) for some polynomial F in the functions

u1, v1, u2 and v2 — then H is homomorphically trivial.
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Proof. The statement follows from Proposition 3.3.8. Let a be the total de-

gree of F in u1 and v1, and let b the total degree of F in u2 and v2. Let

V = aV (u1) + bV (u2) = V
(
ua

1u
b
2

)
. Observe that V is a fibral correspon-

dence, so V ≈ 0. Now, H − V = div(F/(ua
1u

b
2)), which is principal and thus

homomorphically trivial, so H ≈ V ≈ 0.

Lemma 3.3.9 may be viewed in an entirely affine way. Let curves X and Y

have the respective affine plane models X : FX(u, v) = 0 and Y : FY (u, v) =

0. Let SX and SY be the sets of points “at infinity” of X and Y , respectively

— that is, the points which are not represented by the affine models. Note

that any prime correspondence supported on SX ×Y or X×SY is fibral, and

so homomorphically trivial. Therefore, we may reasonably ignore any such

components, and consider only correspondences supported on the affine patch

that is the product of the affine models for X and Y ; that is, the spectrum of

the ring AX×Y := k[u1, v1, u2, v2]/(FX(u1, v1), FY (u2, v2)). Lemma 3.3.9 then

becomes the following principle:

Any effective correspondence H on X × Y with an affine model

cut out by a principal ideal is homomorphically trivial.

Example 3.3.10. Let X be the curve defined by X : v3 = fX(u) for some

polynomial fX , and consider the correspondence C = V (u2 − u1) on X ×X.

Now C is homomorphically trivial by Lemma 3.3.9, and

C = V (u2 − u1) = V (u2 − u1, v
3
2 − v3

1)

= V (u2 − u1, v2 − v1) + V (u2 − u1, v
2
2 + v2v1 + v2

1)

= ∆X + V (u2 − u1, v
2
2 + v2v1 + v2

1) ;

so V (u2 − u1, v
2
2 + v2v1 + v2

1) induces [−1]JX
.

Proposition 3.3.8 shows that the kernel of Φ is the group of correspon-

dences that are rationally equivalent to fibral correspondences. The remain-

der of this section will be devoted to showing that Φ is surjective, and hence

that the module Hom(JX , JY ) is isomorphic to the Picard group of X × Y

modulo fibral correspondences. Given a homomorphism of Jacobians, the

following lemma constructs a correspondence inducing the homomorphism,

generalising the graph correspondences introduced in Example 3.2.2.
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Lemma 3.3.11. Let φ : JX → JY be a homomorphism of Jacobians. Then

there exists a correspondence Γφ on X × Y such that φΓφ
= φ.

Proof. Suppose that X and Y each have a rational divisor of degree one, and

use these divisors to fix embeddings αX : X ↪→ JX and αY : Y ↪→ JY . Each

point of JY is equal to a sum
∑

i αY (yi) for some gY points y1, . . . , ygY
of Y .

Let ΘY = αY (Y )+ · · ·+αY (Y ) be the theta divisor on JY determined by αY

(the sum is taken gY −1 times); the points of ΘY are precisely those that are

equal to the sum
∑gY −1

i=1 αY (yi) for some gY − 1 points y1, . . . , ygY −1 of Y .

Let Γφ := ((φ ◦ αX) × αY )∗µ∗(ΘY ), where µ : JY × JY → JY is the

subtraction map, which maps (a, b) to a− b. Then

Γφ = {(x, y) ∈ X × Y : φ(αX(x)) − αY (y) ∈ ΘY }
= {(x, y1), . . . , (x, ygY

) ∈ X × Y : φ(αX(x)) =
∑

i αY (yi)}.

The homomorphism of divisors induced by Γφ maps the prime divisor x on X

to a divisor
∑gY

i=1 yi on Y such that φ(αX(x)) =
∑gY

i=1 αY (yi); clearly, then,

the induced homomorphism of Jacobians is φ, as required.

Theorem 3.3.12. There is an isomorphism

Pic(X × Y )/Fib(X × Y )
∼=- Hom(JX , JY ).

Proof. The homomorphism Φ is surjective by Lemma 3.3.11, and thus in-

duces a surjective homomorphism Pic(X × Y ) → Hom(JX , JY ). By Propo-

sition 3.3.8, the kernel of this homomorphism is generated by Fib(X × Y );

the result follows.

Theorem 3.3.12 gives us an interesting insight into the structure of the

Picard group of X × Y . We may identify the image of Fib(X × Y ) in

Pic(X × Y ) with Pic(X) × Pic(Y ), so as Z-modules

Pic(X × Y ) ∼= Pic(X) × Pic(Y ) × Hom(JX , JY ).

Thus Pic(X × Y ) is larger than the product of Pic(X) and Pic(Y ) precisely

when there exists a nontrivial homomorphism between JX and JY .
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Example 3.3.13. Let X and Y be curves of genus zero. Both JX and JY

are trivial, so Hom(JX , JY ) = 0 and Pic(X) ∼= Pic(Y ) ∼= Z. By Theorem

3.3.12, then, Pic(X × Y ) is isomorphic to Z2. In fact, the isomorphism from

Pic(X × Y ) to Z2 is the product of the degree functions, d1 × d2; so the

Picard group of a product of genus zero curves is completely described by

the degree functions.

Example 3.3.14. Let X and Y be curves of genus one: JX and JY are elliptic

curves. Generically, JX and JY are non-isogenous; so Hom(JX , JY ) = 0, and

Pic(X × Y ) is isomorphic to Pic(X)×Pic(Y ). On the other hand, if JX and

JY are in the same isogeny class, then Hom(JX , JY ) 6= 0, and Pic(X × Y )

strictly contains Pic(X) × Pic(Y ).

Example 3.3.15. For any curve X, the group Pic(X ×X) is isomorphic to

Pic(X)2 × End(JX). If the genus of X is at least one, then End(JX) has

a subring isomorphic to Z; thus Pic(X ×X) has a subgroup isomorphic to

Pic(X)2 × Z, where the factor of Z is generated by ∆X .

Recall that the transpose of a fibral correspondence is fibral, and that

the transpose of a principal correspondence is principal, so the transpose

induces an involution Pic(X × Y )/Fib(X × Y ) → Pic(Y ×X)/Fib(Y ×X),

and therefore induces an involution Hom(JX , JY ) → Hom(JY , JX) by Theo-

rem 3.3.12. The following proposition shows that the induced involution on

homomorphisms is in fact the Rosati involution.

Proposition 3.3.16. The following diagram commutes:

Div(X × Y )
Φ- Hom(JX , JY )

Div(Y ×X)

(·)t

? Φ- Hom(JY , JX).

(·)†

?

That is, φCt = φ†
C for all correspondences C.

Proof. See [39, Proposition 11.5.3] (the proof is stated for curves X and Y

over the complex numbers, but holds without modification for general k).
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Remark 3.3.17. It follows immediately from Proposition 3.3.16 that homo-

morphisms induced by symmetric correspondences are fixed by the Rosati

involution.

3.4 Composition of correspondences

Suppose we have correspondences C1 on X × Y and C2 on Y × Z, with

induced homomorphisms φC1 : JX → JY and φC2 : JY → JZ respectively.

These homomorphisms may be composed, yielding a homomorphism φ :

JX → JZ . A correspondence C inducing the homomorphism φ is guaranteed

to exist by Lemma 3.3.11. This C is not unique, because any correspondence

homomorphically equivalent to C will also induce φ. The following algorithm

defines a composition operation for correspondences such that the degree

functions are multiplicative over the composition.

Algorithm 3.4.1. Given correspondences A on X × Y and B on Y × Z,

returns a correspondence C on X × Z such that φC = φB ◦ φA and di(C) =

di(A)di(B) for i = 1, 2.

function Composition(B, A)

A′, AX , AY := StandardDecomposition(A);

B′, BY , BZ := StandardDecomposition(B);

C ′ := A′ ×Y B
′;

CX := (d2(B) + degBY )AX + φAt(BY );

CZ := (d1(A) + degAY )BZ + φB(AY );

C := C ′ + π∗
1(CX) + π∗

2(CZ); // π1 : X × Z → X and π2 : X × Z → Z.

return C;

end function;

Definition 3.4.2. We call the correspondence produced by Algorithm 3.4.1

with input B and A the composition of B with A, denoted B ◦ A.

Theorem 3.4.3. If A and B are correspondences on X × Y and Y × Z

respectively, then

φB◦A = φB ◦ φA.
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Further, if A′ and C are correspondences on X × Y and Z ×W respectively,

and if f : X → Y and g : Y → Z are morphisms of curves, then

1. C ◦ (B ◦ A) = (C ◦B) ◦ A,

2. B ◦ (A+ A′) = B ◦ A+B ◦ A′,

3. (B ◦ A)t = At ◦Bt,

4. B ◦ Γf = (f × IdZ)∗(B) and Γg ◦ A = (IdX × g)∗(A),

5. d1(B ◦ A) = d1(B)d1(A) and d2(B ◦ A) = d2(B)d2(A).

Proof. Let B ◦ A := C ′ + π∗
1(CX) + π∗

2(CZ) be the composition of A and

B, as constructed in Algorithm 3.4.1. Both π∗
1(CX) and π∗

2(CZ) are fibral,

and hence are homomorphically trivial. Therefore, it suffices to check that

φC′ = φB ◦ φA. By definition C ′ = A ×Y B, and the following diagram

commutes:

A×Y B

A

p1

¾
B

p2

-

X

πA
1

¾
Y

πB
1

¾

πA
2

-

Z

πB
2

-

Now, πA×Y B
1 = πA

1 ◦ p1 and πA×Y B
2 = πB

2 ◦ p2; so

φA×Y B = (πA×Y B
2 ∗) ◦ (πA×Y B

1

∗
)

= πB
2 ∗ ◦ p2∗ ◦ p∗1 ◦ πA

1
∗

= πB
2 ∗ ◦ πB

1
∗ ◦ πA

2 ∗ ◦ πA
1
∗

= φB ◦ φA.

For the first five of the algebraic properties, see Fulton [22, Proposition

16.1.1]. For property (6), observe that p1 lifts πB
1 ; therefore A ×Y B forms
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a cover of degree d1(B) of A, which is in turn a degree-d1(A) cover of X.

Hence d1(B ◦ A) = d1(A)d1(B). The proof for d2 is the same.

Example 3.4.4. Property (4) of Theorem 3.4.3 implies that when k is a finite

field, the r-th Frobenius correspondence Fr
X is the r-fold composition of the

Frobenius correspondence FX with itself.

Example 3.4.5. Suppose Y is a hyperelliptic curve, ιY its hyperelliptic in-

volution, and let C be a correspondence on X × Y . Now, φC ◦ ιY = −φC ,

so C ◦ ΓιY ≈ −C. Thus if C is effective, then composition with ΓιY gives

us an effective correspondence in the homomorphic equivalence class of −C.

Property (4) of Theorem 3.4.3 tells us that (IdX × ιY )∗(C) = C ◦ ΓιY , which

is homomorphically equivalent to −C. Therefore, we may conclude that any

correspondence fixed by the involution (IdX × ιY )∗ on Div(X × Y ) induces

the zero homorphism.

If we restrict our attention to correspondences on X ×X, Theorem 3.4.3

allows us to view composition of correspondences as a product, giving us a

ring structure on Div(X ×X). This ring is traditionally called the ring of

correspondences on X.

Corollary 3.4.6. The group of correspondences Div(X ×X), together with

the product

(C,C ′) 7→ C ◦ C ′,

forms a Z-algebra with identity element ∆X and involution (·)t.

The composition product is generally not commutative, so in general

Div(X ×X) is not a commutative ring. However, composition of symmetric

correspondences is commutative by property (3) of Theorem 3.4.3.

Correspondences E onX ×X act on Div(X × Y ) by C 7→ C◦E. This ac-

tion extends Z-linearly, so if we view Div(X ×X) as a ring then Div(X × Y )

has a right Div(X ×X)-module structure. Similarly, correspondences E ′ on

Y × Y act on Div(X × Y ) by C 7→ E ′ ◦ C, so Div(X × Y ) also has a left

Div(Y × Y )-module structure.
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Theorem 3.4.7. The homomorphism Φ : Div(X ×X) → End(JX) of Z-

modules extends naturally to a homomorphism of Z-algebras. In particular,

there is an isomorphism of Z-algebras

End(JX) ∼= Pic(X ×X)/Fib(X ×X).

Proof. Corollary 3.4.6 gives us a Z-algebra structure on Div(X ×X). Theo-

rem 3.4.3 shows that Φ takes compositions to compositions, and so extends

to a Z-algebra homomorphism. To establish the isomorphism, it remains to

check that Fib(X ×X) is a two-sided ideal of Div(X ×X), since Φ factors

through Pic(X ×X). Indeed, each fibral correspondence is a sum of graphs

of constant morphisms, so this follows from properties (2) and (4) of Theorem

3.4.3.

Remark 3.4.8. For each endomorphism φ of JX , Lemma 3.3.11 constructs a

correspondence Γφ onX ×X inducing φ, depending on a choice of embedding

of X into JX . If we fix an embedding of X into JX , then we may define

a distinguished graph Γφ for each endomorphism φ, and composition with

Γφ therefore gives an action of End(JX) on Div(X × Y ): in fact, we have

endowed Div(X × Y ) with the structure of a left End(JX)-module. In a

similar way, we may (simultaneously) view Div(X × Y ) as a right End(JY )-

module.

3.5 Differential matrices

Given an arbitrary correspondence, it may not be immediately obvious what

the induced homomorphism is. The traditional approach for identifying the

induced homomorphism is to examine the action of the correspondence on

spaces of differentials.

Suppose C is a correspondence on X × Y . We have the natural tangent

map T0(φC) : T0(JX) → T0(JY ), which gives us a representation

Hom(JX , JY ) → Hom(T0(JX), T0(JY )).
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The tangent space T0(JX) has a natural isomorphism with the cohomology1

group H0(X,Ω1
X), which is isomorphic to the gX-dimensional k-vector space

Ω1
X . Fixing bases for Ω1

X and Ω1
Y , we have a representation

Hom(JX , JY ) → Hom(Ω1
X ,Ω

1
Y ) ∼= MatgX×gY

(k).

To calculate the image under this representation of a correspondence C

on X × Y , we must compute the action of the induced homomorphism of C

on the spaces of differentials of X and Y . If C is prime, then we may consider

it as a curve; the tangent map induces the homomorphism TC : Ω1
X → Ω1

Y

defined by pulling back a differential from Ω1
X to Ω1

C , then taking the trace

from Ω1
C to Ω1

Y , as in the following diagram.

Ω1
C

Ω1
X

TC -

(πC
1 )∗

-

Ω1
Y

Tr
Ω1

C

Ω1
Y

-

The definition extends Z-linearly to give a homomorphism TC : Ω1
X → Ω1

Y

for every correspondence C on X × Y . If we fix bases {ω1, . . . , ωgX
} for Ω1

X

and {ω′
1, . . . , ω

′
gY
} for Ω1

Y , then we may write TC(ωi) =
∑

j mijω
′
j for some

mij in k. We define the differential matrix of C (with respect to the bases)

by

MC := (mij).

We have a diagram

Div(X × Y )
C 7→ φC- Hom(JX , JY )

φC 7→ T0(φC)- Hom(T0(JX), T0(JY ))

MatgX×gY
(k)

C 7→MC

?
¾

∼=
Hom(Ω1

X ,Ω
1
Y )

T0(φC) 7→ TC

?

1The reader not versed in cohomology theory need not panic; cohomology groups in
this document are conveniently camouflaged as more concrete groups.
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General functoriality arguments show that the map C 7→ MC is in fact a

representation. The representation C 7→ MC respects composition (again,

by functoriality); that is, MC◦D = MDMC . If the characteristic of k is zero,

then the representation is faithful. On the other hand, if k is a field of

positive characteristic p, then the representation cannot be faithful, because

pC 7→ pMC = 0 for all correspondences C on X × Y .



Chapter 4

Intersection theory on X × Y

In this chapter, we give a brief account of intersection theory on the surface

X × Y . Intersection numbers provide the most basic tool for analysis of

correspondences, much as the degree map is the most basic tool for analysis

of plane curves — in fact, the degree of a plane curve is its intersection number

with a hyperplane. We will survey the most useful results for intersection

theory on general surfaces, specialising to the special case of a product of

curves. The reader may refer to Hartshorne [29, §V.1] for an overview of

intersection theory on general surfaces; Fulton [22] is the definitive reference.

4.1 Intersection numbers

Correspondences on X × Y are supported on curves on X × Y . A proper

understanding of correspondences therefore requires an understanding of the

geometry of curves on X × Y . Curves on a surface with no common compo-

nent intersect in a finite set of points (with some multiplicities); the cardi-

nality of this intersection gives us information about the relative geometry of

the curves. Extending the intersection of curves Z-linearly to intersections

of correspondences, we obtain the intersection number. Our definition of the

intersection number follows that of Hartshorne [29].

48
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Theorem 4.1.1. There is a unique bilinear, symmetric pairing

Div(X × Y )2 - Z,

denoted by (C,D) 7→ C.D, satisfying the following properties:

• if C and D are nonsingular prime correspondences on X × Y meeting

transversally, then C.D = #(C ∩ D), the number of points (counting

multiplicity) of C ∩D, and

• if C is rationally equivalent to C ′, then C.D = C ′
.D for all correspon-

dences D. In particular, this pairing induces a well-defined bilinear

symmetric pairing Pic(X × Y )2 - Z.

The integer C.D is called the intersection number of C and D.

Proof. The pairing is defined on any nonsingular projective surface. See

Hartshorne [29, Theorem V.1.1] for a concise description.

Definition 4.1.2. If C and C ′ are correspondences on X × Y such that

C.D = C ′.D for all correspondences D on X × Y , then we say C and C ′

are numerically equivalent. The group of correspondences on X × Y modulo

numerical equivalence is called the Neron–Severi group of X × Y , denoted

NS(X × Y ).

Since the intersection number is constant on rational equivalence classes,

rationally equivalent correspondences are numerically equivalent. However,

numerically equivalent correspondences need not be rationally equivalent.

If Pic0(X) is nontrivial, then we may choose a divisor D on X such that

[D] is a nonzero element of Pic0(X). The divisor D pulls back to a fibral

correspondence F = π∗
1(D) onX ×X, which is numerically equivalent to zero

(because deg(D) = 0) but not rationally equivalent to zero (because [D] 6=
0). We will see in the next chapter that the difference between numerical

and rational equivalence on X × Y is completely determined by the groups

Pic0(X) and Pic0(Y ).

Given correspondences C and D, Theorem 4.1.1 allows us to choose di-

visors C ′ in [C] and D′ in [D] with transversally intersecting support; we
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may then use C.D = [C].[D] = C ′.D′ to compute the intersection number

of C and D. The following lemma gives a sheaf-theoretic expression for the

intersection number.

Lemma 4.1.3. Let C and D be correspondences on X × Y , with C prime

and D effective. If the supports of C and D meet transversally, then

C.D = degC(L(D) ⊗OC).

Proof. See Hartshorne [29, Lemma V.1.3] or Fulton [22, Example 2.4.9].

Remark 4.1.4. Lemma 4.1.3 may be used to show that if C is a prime corre-

spondence on X × Y and NC/X×Y is the normal sheaf of C in X × Y , then

C.C = degC NC/X×Y (see Hartshorne [29, Example V.1.4.1]).

We call C.C the self-intersection number of C. It is important to note

that the self-intersection of a correspondence is in general not positive, even

if the correspondence is effective (see Example 4.2.8 below). The classical

Castelnuovo–Severi inequality gives an effective upper bound for the self-

intersection number of a correspondence in terms of its degrees.

Lemma 4.1.5 (Castelnuovo–Severi inequality). For all correspondences

C,

C.C ≤ 2d1(C)d2(C).

Further, C.C = 2d1(C)d2(C) if and only if C is numerically equivalent to a

fibral correspondence.

Proof. See Hartshorne [29, Theorem V.1.9, Exercise V.1.9] or Fulton [22,

Example 16.1.10].

The degree functions for correspondences may be expressed as intersection

numbers, as shown by the following lemma.

Lemma 4.1.6. If P and Q are points of X and Y respectively, then d1(C) =

C.π∗
1(P ) and d2(C) = C.π∗

2(Q) for all correspondences C on X × Y .
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Proof. It is enough to prove the statement in the case where C is prime. The

degree d1(C) is equal to the number of points in the fibre πC
1
∗
(P ), which is

equal to C.π∗
1(P ); similarly, d2(C) = C.π∗

2(Q).

In particular, we see that the intersection number of fibres of the same

projection is zero, and that the intersection number of fibres of distinct pro-

jections is one. Using rational equivalence, we may extend Lemma 4.1.6 to

the following useful proposition.

Proposition 4.1.7. Let C and V be correspondences on X × Y . If V is

homomorphically trivial, then

C.V = d1(C)d2(V ) + d2(C)d1(V ).

Proof. By Proposition 3.3.8, V is rationally equivalent to a fibral correspon-

dence F , and C.V = C.F . By Lemma 3.1.3, there are divisors
∑

i niPi on

X and
∑

j mjQj on Y such that F = π∗
1(
∑

i niPi) + π∗
2(
∑

j mjQj). Then

C.F = C.
(∑

i niπ
∗
1(Pi) +

∑
j mjπ

∗
2(Qj)

)

= (
∑

i ni)(C.π∗
1(Pi)) + (

∑
j mj)(C.π∗

2(Qj))

Applying Lemma 4.1.6, we have C.π∗
1(Pi) = d1(C) and C.π∗

2(Qj) = d2(C)

for all i and j; Lemma 4.1.6 also gives d1(F ) =
∑

j mj and d2(F ) =
∑

i ni,

so we conclude that C.V = C.F = d1(C)d2(F ) + d2(C)d1(F ) .

Example 4.1.8. If V is a homomorphically trivial correspondence on X ×X,

then Proposition 4.1.7 implies V .∆X = d1(V ) + d2(V ), since d1(∆) = 1 and

d2(∆) = 1.

Proposition 4.1.7 implies that homomorphically trivial correspondences

with the same degrees are numerically equivalent; this makes computation

of intersection numbers involving homomorphically trivial correspondences

particularly easy. Things are not so simple for intersection numbers of ho-

momorphically nontrivial correspondences: homomorphically nontrivial cor-

respondences with the same degrees are generally not numerically equivalent.

We demonstrate this with an example where two correspondences with the

same degrees have different intersection numbers with the diagonal.
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Example 4.1.9. Suppose k is a field of characteristic not two or three, and

let X be the curve of genus one defined by X : v2 = u3 − u. The curve

X has an automorphism i : (u, v) 7→ (−u,
√
−1v) of order four, defined

over k(
√
−1). Observe that i2 is the hyperelliptic involution ιX of X. Let

Γi be the graph of i, and Γi2 the graph of i2; note that both are (1, 1)-

correspondences. The intersection of the diagonal correspondence ∆X with

the graph of an automorphism counts the number of fixed points of the

automorphism. Now, i has two fixed points, namely (0, 0) and the point at

infinity; so ∆X.Γi = 2. On the other hand, i2 has four fixed points: (0, 0),

(1, 0), (−1, 0) and the point at infinity, so ∆X.Γi2 = 4. Thus Γi and Γi2 are

not numerically equivalent, and the intersection number pairing on X ×X

is not completely described by the degree functions.

4.2 The adjunction formula

In this section we state the adjunction formula for X × Y , which expresses

the arithmetic genus of a prime correspondences in terms of intersection

numbers. We may apply this to compute some useful intersection numbers.

Theorem 4.2.1 (Adjunction formula). If C is a prime correspondence

on X × Y , then the arithmetic genus of C is given by

pa(C) =
1

2
C.C + (gX − 1)d1(C) + (gY − 1)d2(C) + 1.

Proof. The classical adjunction formula for curves C on a surface S states

2pa(C) − 2 = C.(C +KS),

where KS is a canonical divisor on S (see Serre [56, IV.8, Proposition 5] or

Hartshorne [29, §V.1.5]). The usual proof is to compute the degree of the

canonical sheaf L(C +KX×Y ) ⊗ OC on C, which is 2pa(C) − 2 by Lemma

2.1.14, and C.(C +KX×Y ) by Lemma 4.1.3. Specialising to S = X × Y ,

we have C.KX×Y = (2gX − 2)d1(C) + (2gY − 2)d2(C) by Lemma 2.1.15 and

Proposition 4.1.7; the result follows after some elementary algebra.
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Remark 4.2.2. The arithmetic genus is (by definition) an integer. It therefore

follows from Theorem 4.2.1 that the self-intersection of a correspondence is

always an even integer.

The arithmetic genus is defined only for effective correspondences, but the

right-hand-side of the adjunction formula is well-defined for any correspon-

dence. We therefore define the virtual arithmetic genus of any correspondence

to be this quantity. If a correspondence is effective, then its arithmetic and

virtual arithmetic genera coincide.

Definition 4.2.3. Let C be a correspondence on X × Y . We define the

virtual arithmetic genus of C, denoted pa(C), to be

pa(C) :=
1

2
C.C + (gX − 1)d1(C) + (gY − 1)d2(C) + 1.

By definition, every correspondence numerically equivalent to zero has

virtual arithmetic genus one. In particular, pa(0) = 1; so the virtual arith-

metic genus is not additive.

Example 4.2.4. Suppose that F is a homomorphically trivial correspondence

on X × Y . By Proposition 4.1.7, F .F = 2d1(F )d2(F ); substituting into the

adjunction formula (Theorem 4.2.1), we have

pa(F ) = (d1(F ) − 1)(d2(F ) − 1) + gXd1(F ) + gY d2(F ).

In particular, if H ⊂ X × Y is a hypersurface — that is, a correspondence

defined by a principal ideal — thenH ≈ 0 by Lemma 3.3.9, and thus pa(H) =

(d1(H)−1)(d2(H)−1)+gXd1(H)+gY d2(H). This is the analogue for X × Y

of the well-known formula for the arithmetic genus of a projective curve: if

X is a curve of degree d, then pa(X) = (d− 1)(d− 2)/2.

Remark 4.2.5. We will see in the next chapter that if we fix integers a and

b, then the virtual arithmetic genus of an (a, b)-correspondence is bounded

from above. The bound is sharp: in fact, an (a, b)-correspondence has the

highest possible virtual genus if and only if it is homomorphically trivial.

Expressing intersection numbers purely in terms of virtual arithmetic

genera can be quite useful. If an efficient method is available for computing
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arithmetic genera of correspondences, then the following result provides an

efficient method for computing intersection numbers1.

Corollary 4.2.6. If C and D are correspondences on X × Y , then

C.D = pa(C +D) − (pa(C) + pa(D)) + 1.

Proof. Note that (C +D).(C +D) = C.C + D.D + 2C.D. We apply The-

orem 4.2.1 to express the self-intersections in terms of virtual arithmetic

genera and degrees; the formula follows after some elementary algebra.

Remark 4.2.7. The formula of Corollary 4.2.6 may be written as

C.D =
(
pa(C +D) + pa(0)

)
−
(
pa(C) + pa(D)

)
.

Hence the intersection number measures the failure of the (virtual) arithmetic

genus to be additive on Div(X × Y ).

Example 4.2.8. Let α be an automorphism of X, and let Γα be its graph.

The restricted projections πΓα

1 and πΓα

2 are isomorphisms, so pa(Γα) = gX

and d1(∆X) = d2(∆X) = 1. Applying the adjunction formula (Theorem

4.2.1), we see that Γα.Γα = 2 − 2gX . In particular, when α = IdX , we have

∆X .∆X = 2 − 2gX .

We may use this result in combination with Corollary 4.2.6 to see that

pa(2Γα) = 1 — a value completely independent of α (and of X!).

Example 4.2.9. Suppose X is a curve over a finite field k. The intersection

number Fr
X.∆X counts the fixed points of the rth Frobenius map F (r) : X →

X, which are precisely the k-rational points of X; hence

Fr
X.∆X = #X(k).

1The author has found that in practice, intersection numbers of arbitrary correspon-
dences are often more rapidly computed by computing arithmetic genera via multivariate
Hilbert series and applying Corollary 4.2.6 than by using Gröbner basis methods.
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The correspondence pairing

Traditionally, intersection theory is the primary tool in the analysis of divisors

on surfaces. When applied to the theory of correspondences, however, the

intersection number has a significant shortcoming: it is not well-defined on

homomorphic equivalence classes. For example, Proposition 3.3.8 tells us

that all fibral correspondences are homomorphically trivial; but it is clear

that not all fibral correspondences are numerically equivalent to zero.

In this chapter, we construct a symmetric, bilinear, positive semi-definite

pairing on correspondences that is well-defined and positive-definite on ho-

momorphic equivalence classes. The pairing is defined geometrically, in terms

of intersection numbers; but since the pairing is well-defined on homomorphic

equivalence classes, it also has an interpretation in terms of induced homo-

morphisms of Jacobians. The main theorem of the chapter shows that the

pairing induces a twisted trace form on homomorphisms. This allows us to

make precise the relationship between rational, homomorphic, and numerical

equivalence on correspondences.

The pairing has appeared in the work of Weil [65]; in [64], Weil proved

the positive-definiteness of the pairing on X ×X, and used this to give the

first complete proof of the Riemann hypothesis for algebraic curves of ar-

bitrary genus. We will extend the pairing to products of possibly distinct

curves X × Y , and prove that this more general pairing is positive-definite.

Our interest in the pairing is in its application as a computational tool for

55
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identification of correspondences, and detection of Z-linear dependence.

5.1 The pairing

Recall Proposition 4.1.7: if C and F are correspondences on X × Y , and F

is homomorphically trivial, then C.F = d1(C)d2(F ) + d2(C)d1(F ) . This

equality does not hold if F is not homomorphically trivial; but it turns out

that the difference between C.F and d1(C)d2(F )+d2(C)d1(F ) depends only

upon the homomorphic equivalence classes of C and F . This observation

forms the basis of our new pairing.

Definition 5.1.1. We define a pairing 〈 · , · 〉 : Div(X × Y )2 → Z, called

the correspondence pairing (or simply the pairing), by

〈C,D〉 := (d1(C)d2(D) + d2(C)d1(D)) − C.D.

Theorem 5.1.2. The pairing of Definition 5.1.1 is symmetric, bilinear,

and well-defined on homomorphic equivalence classes. Further, it induces a

positive-definite pairing on numerical equivalence classes of correspondences.

Proof. The pairing inherits symmetry, bilinearity and invariance on ratio-

nal equivalence classes from the corresponding properties of the intersection

number in Theorem 4.1.1. To extend the invariance from rational equivalence

classes to homomorphic equivalence classes, we need only that the pairing be

trivial on fibral correspondences; this is immediate from Proposition 4.1.7.

The positive definiteness on numerical equivalence classes is directly implied

by the Castelnuovo–Severi inequality (Lemma 4.1.5).

Example 5.1.3. In Example 4.2.8, we noted that ∆X.∆X = 2 − 2gX ; hence

〈∆X ,∆X〉 = 1 · 1 + 1 · 1 − (2 − 2gX) = 2gX .

We may adapt the adjunction formula (Theorem 4.2.1) to express the

self-pairing of a correspondence in terms of its virtual arithmetic genus.
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Proposition 5.1.4. For all correspondences C on X × Y , we have

〈C,C〉 = 2
(
(d1(C) − 1)(d2(C) − 1) + gXd1(C) + gY d2(C) − pa(C)

)
.

Proof. We have C.C = 2pa(C) − 2 − (2gX − 2)d1(C) + (2gY − 2)d2(C) by

Theorem 4.2.1; the formula follows after some elementary algebra.

Example 5.1.5. Let X and Y be curves of genus zero, and suppose C is a

correspondence on X × Y . The Jacobians JX and JY are both trivial, so

Hom(JX , JY ) = 0, and thus C ≈ 0. The self-pairing of C is therefore zero,

and so Proposition 5.1.4 implies that

pa(C) = (d1(C) − 1)(d2(C) − 1).

5.2 Composition and the pairing

Next, we investigate the behaviour of the pairing with respect to composition

of correspondences. We will see that the transpose of a correspondence is

its adjoint with respect to the pairing, and thus that the pairing of any two

correspondences may be expressed as a pairing with a diagonal. This is both

a useful calculational device and an essential ingredient in our arithmetic

interpretation of the pairing.

Let A be a correspondence on X × Y . We say that a correspondence A∗

on Y ×X is an adjoint1 for A if for all curves Z and all correspondences B

on Z ×X and C on Z × Y we have

〈A ◦B,C〉 = 〈B,A∗ ◦ C〉.

It follows from the symmetry of the pairing that A∗ is an adjoint for A if

and only if A is an adjoint for A∗. Since the pairing is defined in terms

of intersection numbers, the adjoint of a correspondence is unique up to

numerical equivalence. The following theorem shows that the transpose of a

1Our definition of adjoints follows that of Lang [38, Chapter XV] for linear maps of
modules with a bilinear symmetric form.
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correspondence is its adjoint; thus every correspondence has an adjoint.

Before proving the theorem, we prove a lemma demonstrating a surpris-

ing connection between intersection numbers on X × Y , on X ×X and on

Y × Y . We will see that every intersection number of correspondences on

X × Y may be transformed to an intersection number on X ×X or Y × Y .

This flexibility is inherited by the pairing.

Lemma 5.2.1. Let C1 and C2 be correspondences on X × Y . Then

C1.C2 = (C2
t ◦ C1).∆X = (C1

t ◦ C2).∆Y .

Proof. See Fulton [22, Example 16.1.3] for a complete proof. Naively, take

representatives for C1 and C2 intersecting transversally. Then C1.C2 counts

the points (P,Q) on X × Y that lie on both C1 and C2. If (P,Q) appears in

the intersection of C1 and C2, then the point P on X is mapped to (a divisor

containing) Q by φC1 , which is then mapped back to (a divisor containing)

P by φC2
t , and so (P,Q) corresponds to (P, P ) on C2

t ◦C1. The point (P, P )

clearly lies on ∆X , and is thus counted by (C2
t ◦ C1).∆X . Conversely, if

(P, P ) lies on C2
t ◦ C1, then it is counted by (C2

t ◦ C1).∆X . The point P is

mapped to some divisor
∑

i niQi on Y by φC1 . The image of at least one of

the Qi under φC2
t must contain P ; these pairs (P,Qi) lie on both C1 and C2,

and thus are counted by C1.C2.

Now we can prove the adjoint theorem, which shows that the transpose of

a correspondence is its adjoint. Since every correspondence has a transpose,

the theorem implies that every correspodence has an adjoint.

Theorem 5.2.2 (Adjoint theorem). If A is a correspondence on Y × Z,

then At is an adjoint for A with respect to the pairing: that is, for all corre-

spondences B on X × Y and C on X × Z, we have

〈A ◦B,C〉 =
〈
B,At ◦ C

〉
.

Proof. The pairing is bilinear, and composition is distributive, so we may

assume without loss of generality that A, B and C are prime. Further, the
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pairing is trivial on fibral correspondences, and transposition and composi-

tion both send fibral correspondences to fibral correspondences; so we may

assume that A, B and C are nonfibral. By Theorem 3.4.3,

d1(A ◦B)d2(C) = d1(A)d1(B)d2(C)

= d1(B)d2(A
t)d2(C)

= d1(B)d2(A
t ◦ C),

and similarly d2(A ◦ B)d1(C) = d2(B)d1(A
t ◦ C). It remains to show that

(A ◦B).C = B.(At ◦ C). This is achieved by twice applying Lemma 5.2.1:

(A ◦B).C = ∆X.(Bt ◦ At ◦ C)

= B.(At ◦ C),

proving the theorem.

Example 5.2.3. Let X be a curve over the finite field Fq. We will use the

adjoint theorem to compute the pairing on the Frobenius correspondences

on X ×X. Suppose s and r are positive integers, with s ≥ r. By Theorem

5.2.2, 〈Fs
X ,F

r
X〉 =

〈
(Fr

X)t ◦ Fs
X ,∆X

〉
; but (Fr

X)t ◦ Fs
X = [qr]JX

◦ F
(s−r)
X , so

〈Fs
X ,F

r
X〉 = qr

〈
F

(s−r)
X ,∆X

〉
. If s = r, then

〈
F

(s−r)
X ,∆X

〉
= 〈∆X ,∆X〉, and

from Example 5.1.3, 〈∆X ,∆X〉 = 2gX ; hence

〈Fr
X ,F

r
X〉 = 2gXq

r.

If s > r, then
〈
F

(s−r)
X ,∆X

〉
= 1+q(s−r)−F

(s−r)
X .∆X , and from Example 4.2.9

we have F
(s−r)
X .∆X = #X(Fq(s−r)), so

〈Fs
X ,F

r
X〉 = qr + qs − qr#X(Fq(s−r)),

and in particular

〈Fr
X ,∆X〉 = 1 + qr − #X(Fqr).
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5.3 Trace formulae

The reader with some knowledge of curves over finite fields may have observed

that the value computed for 〈Fr
X ,∆X〉 in Example 5.2.3 coincides with the

trace of the rth Frobenius endomorphism F (r) on JX . The following lemma

shows that this is no coincidence: the pairing of any correspondence with a

diagonal correspondence is the trace of its induced endomorphism.

Lemma 5.3.1. Let C be a correspondence on X ×X. The pairing of C with

the diagonal ∆X is equal to the trace of (the rational representation2 of) the

induced endomorphism φC of JX :

〈C,∆X〉 = Tr(φC).

Proof. The statement follows immediately from a classical formula, which

states Tr(φC) = d1(C)+d2(C)−C.∆X : see Lange & Birkenhake [39, Propo-

sition 11.5.2].

Example 5.3.2. The trace formula gives an alternative method of calculating

pairings. For example, ∆X induces the identity [1]JX
, so by Lemma 5.3.1

〈∆X ,∆X〉 = Tr([1]JX
) = 2gX ;

this agrees the value for 〈∆X ,∆X〉 that we derived in Example 5.1.3.

The adjoint theorem (Theorem 5.2.2) extends the trace formula (Lemma

5.3.1) to express the pairing of any two correspondences as a twisted trace.

This gives us a purely arithmetic interpretation of the pairing on the induced

homomorphisms.

Theorem 5.3.3. Let C and D be correspondences on X × Y . Then

〈C,D〉 = TrEnd(JX)/Z(φ†
D ◦ φC) = TrEnd(JY )/Z(φD ◦ φ†

C).

Proof. Theorem 5.2.2 gives 〈C,D〉 = 〈Dt ◦ C,∆X〉, which equals Tr(φDt◦C)

2we will simply use the word “trace” in the sequel.
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by Lemma 5.3.1; but φDt◦C = φ†
D ◦ φC , so 〈C,D〉 = Tr(φ†

D ◦ φC). Clearly

〈C,D〉 = 〈Ct, Dt〉, and so 〈C,D〉 = 〈C t, Dt〉 = Tr(φD ◦ φ†
C).

Example 5.3.4. We may simplify Example 5.2.3 using Theorem 5.3.3: if X is

a curve over Fq then 〈Fs
X ,F

r
X〉 = qmin(r,s) ·Tr(F (|s−r|)) for all positive integers

r and s.

Corollary 5.3.5. A correspondence C on X × Y is homomorphically trivial

if and only if 〈C,D〉 = 0 for all correspondences D on X × Y .

Proof. Let Cr denote the r-fold composition of C ◦C t with itself. Note that

〈C,C ◦ Cr〉 = Tr((φC ◦ φ†
C)r) by Theorem 5.3.3. If 〈C,D〉 = 0 for all D,

then for all r ≥ 0 we have 〈C,C ◦ Cr〉 = 0 and thus Tr((φC ◦ φ†
C)r) = 0.

Therefore, the characteristic polynomial of φC ◦ φ†
C is zero, which implies

φC ◦ φ†
C = 0; but this is only possible if φC = 0. The converse follows from

Theorem 5.1.2.

Corollary 5.3.6. A correspondence is homomorphically trivial if and only

if it is numerically equivalent to a fibral correspondence.

Proof. Let C be a correspondence on X × Y . If FX is a fibre of π1, and

FY a fibre of π2, then 〈C,D〉 = (d1(C)FY + d2(C)FX − C).D by Lemma

4.1.6. We have C ≈ 0 if and only if (d1(C)FY + d2(C)FX − C).D = 0 for

all correspondences D on X × Y , if and only if (d1(C)FY + d2(C)FX − C)

is numerically equivalent to 0, if and only if C is numerically equivalent to

(d1(C)FY + d2(C)FX), which is fibral.

Corollary 5.3.7. The pairing is positive definite on homomorphic equiva-

lence classes.

Proof. Follows immediately from Theorem 5.1.2 and Corollary 5.3.5.

Remark 5.3.8. Note that in the case Y = X, Corollary 5.3.7 immediately

implies Lemma 2.2.7.

Corollary 5.3.9. Hom(JX , JY ) ∼= NS(X × Y )/(Z2).
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Proof. By Corollary 5.3.6, a correspondence is homomorphically trivial if

and only if it is numerically equivalent to a fibral correspondence; therefore,

Hom(JX , JY ) is isomorphic to the quotient of NS(X × Y ) by the submod-

ule of NS(X × Y ) generated by the fibral correspondences. All fibres of π1

are numerically equivalent, as are all fibres of π2; thus the submodule of

NS(X × Y ) generated by the fibral correspondences is isomorphic to Z2.

Corollary 5.3.10. If X and Y are curves of genus one, then 〈C,C〉 =

2 deg(φC) for all correspondences C on X × Y .

Proof. By Theorem 5.3.3, we have 〈C,C〉 = Tr(φC ◦ φ†
C); but it is well-

known that if JX and JY are elliptic curves, then φC ◦ φ†
C = [deg φC ]. Thus

〈C,C〉 = Tr([deg φC ]) = 2 deg φC .

5.4 Linear algebra

The pairing is positive-definite on homomorphic equivalence classes, and it is

a straightforward exercise to show that it is a quadratic form on Div(X × Y ).

Therefore, we may derive an analogue of the Cauchy–Schwartz inequality for

correspondences. In the context of vector spaces, equality is attained in the

Cauchy–Schwartz inequality precisely when the vectors involved are linearly

dependent. The analogous inequality for correspondences provides a useful

criterion for Z-linear dependence of induced homomorphisms.

Proposition 5.4.1 (Cauchy–Schwartz inequality for the pairing). Let

C and D be correspondences on X × Y . Then

〈C,D〉2 ≤ 〈C,C〉〈D,D〉.

Further, equality is attained if and only if the induced homomorphisms φC

and φD are Z-linearly dependent in Hom(JX , JY ).

Proof. First, we prove the inequality. Since the pairing is positive semi-

definite on correspondences,

〈〈D,D〉C − 〈C,D〉D, 〈D,D〉C − 〈C,D〉D〉 ≥ 0;
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expanding, we have 〈D,D〉2〈C,C〉 − 2〈C,D〉2〈D,D〉 + 〈C,D〉2〈D,D〉 ≥ 0,

which reduces to 〈D,D〉(〈C,C〉〈D,D〉 − 〈C,D〉2) ≥ 0. The factor of 〈D,D〉
is non-negative, so 〈C,C〉〈D,D〉 ≥ 〈C,D〉2, as required. For the second

assertion, note that

〈C,C〉〈D,D〉 − 〈C,D〉2 = det

(
〈C,C〉 〈C,D〉
〈D,C〉 〈D,D〉

)
,

which is zero if and only if (〈C,C〉, 〈C,D〉) and (〈D,C〉, 〈D,D〉) are Z-linearly

dependent: that is, when there exist nonzero integers m and n such that

(m〈C,C〉,m〈C,D〉)−(n〈D,C〉, n〈D,D〉) = (0, 0). This holds precisely when

(〈mC − nD,C〉, 〈mC − nD,D〉) = (0, 0), using the bilinearity of the pairing.

Now 〈mC − nD,mC − nD〉 = m〈mC − nD,C〉 − n〈mC − nD,D〉, which is

m0 − n0 = 0 by the above; but 〈mC − nD,mC − nD〉 = 0 precisely when

mC − nD ≈ 0, by Corollary 5.3.7. Therefore mφC = nφD.

Suppose that we have a set of correspondences {Ei}i on X × Y such

that {φEi
}i is a Q-basis for Hom(JX , JY ). We may use the pairing to com-

pute a representative for any correspondence C on X × Y as a linear com-

bination of the Ei. The method is as follows: first, we form the trans-

fer matrix M := (〈Ei, Ej〉)(i,j). Note that M is an invertible matrix, be-

cause the ei = φEi
are linearly independent by assumption. Next, we set

sC := (〈C,E1〉, 〈C,E2〉, . . . , 〈C,En〉). Finally, let (a1, . . . , an) := sCM
−1; we

have C ≈∑i aiEi.

The transfer matrix may be precomputed and stored for re-use, since

it depends only upon the choice of basis. Once the transfer matrix is de-

termined, the induced homomorphism of any correspondence C on X × Y

may be identified with a linear combination of the Q-basis by computing the

pairing of C with each of the basis elements. We have derived the following

simple algorithm.

Algorithm 5.4.2. Given a correspondence C on X × Y and a sequence

[Ei : 1 ≤ i ≤ b] of correspondences on X × Y such that [φEi
: 1 ≤ i ≤ b] is a

Q-basis of Hom(JX , JY ), returns a sequence of coefficients [ci ∈ Q : 1 ≤ i ≤ b]

such that
∑

i ciEi is homomorphically equivalent to C.
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procedure PairingIdentification(C, [Ei : 1 ≤ i ≤ b])

for 1 ≤ i, j ≤ b do

mi,j := 〈Ei, Ej〉;
end for

M := (mi,j); // Store M for re-use.

for 0 ≤ i ≤ b do

si := 〈C,Ei〉;
end for

(c1, . . . , cb) := (s1, . . . , sb)M
−1;

return [c1, . . . , cb];

end procedure

Algorithm 5.4.2 (PairingIdentification) is straight-forward in theory,

but presents some computational challenges in practice. Suppose Y = X, so

Hom(JX , JY ) = End(JX). In order to apply Algorithm 5.4.2 we require not

only a known Q-basis for End(JX), but also a set of representative correspon-

dences for the basis. In many common situations, this is not an obstacle: for

example, it may be known that End(JX) ∼= Z, in which case the diagonal

suffices for a Q-basis of End(JX). Indeed, this is the case for a generic curve

X when the ground field has characteristic zero. In this situation, Algorithm

5.4.2 reduces to

φC = [
1

2gX

〈C,∆X〉].

It may be known that the endomorphism ring End(JX) is generated by

some automorphisms of X. Computation of the transfer matrix is equivalent

to counting fixed points of automorphisms. For example, consider the well-

worn example of an elliptic curve with multiplication by
√
−1: take X : v2 =

u3 + u, say. Let α be the automorphism inducing the endomorphism [
√
−1];

then End(JX) has a Q-basis (1, α), and we may take E1 = ∆X and E2 = Γα.

If X is a hyperelliptic curve over a finite field, and if JX is of ordinary

type, then the Frobenius powers {F (r) : 0 ≤ r ≤ 2gX − 1} form a Q-basis

of End0(JX). In this case, Example 5.3.4 reduces the computation of the

transfer matrix M to the computation of traces of Frobenius powers. The

traces of the powers of the Frobenius endomorphism of JX may be derived
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from the zeta function of X; efficient algorithms for computing zeta functions

are available when the characteristic of k is small (see [32], [24], and [53]).

In such cases, we may assume that the transfer matrix can be calculated

efficiently with respect to a Frobenius-power basis.

Example 5.4.3. Let k = F5, and let X be the curve of genus one defined by

the Weierstrass equation X : v2 = u3 + u. We fix a Q-basis (1,F (1)) for

End(JX); the associated sequence of correspondences is (∆X ,FX). The trace

of the Frobenius map F (1) is 2, so the transfer matrix is

M =

(
2gX Tr(F (1))

Tr(F (1)) 2gX · 5

)
=

(
2 2

2 10

)
.

Let C be the (1, 1)-correspondence on X ×X defined by

C = V (u2 + u1, v2 − 3v1) .

To identify φC , we must compute sC , for which we require the pairings

〈C,∆X〉 and 〈C,FX〉. Now, 〈C,∆X〉 = 2 − C.∆X , and direct calculation

shows that C.∆X = 2; so 〈C,∆X〉 = 0. The intersection number C.FX may

also be computed by direct calculation: it is the number of solutions to the

system of equations

u2 = −u1, v2 = −2v1,

u2 = u5
1, v2 = v5

1,

v2
1 = u3

1 + u1, v2
2 = u3

2 + u2,

plus one (to account for the point at infinity). Thus C.FX = 10, and

〈C,FX〉 = 1 + 5 − 10 = −4. Thus sC = (0,−4), and sCM
−1 = (1/2,−1/2).

We may conclude that 2C ≈ 1 − FX , and hence that φ = 1
2
(1 − F (1)). In

particular, the subring Z[φ] of End(JX) strictly contains Z[F].

Remark 5.4.4. Generally, the Frobenius correspondences are not a good

choice of basis for the application of this technique. Even if the zeta func-

tion of X is known (so the transfer matrix for a Frobenius correspondence

basis may be easily computed), computing the pairings for the vector sC can
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be prohibitively difficult. If we compute the intersection numbers by direct

calculation, the degree of the equations to be solved grows with the 2gX
th

power of the size of the field. This is impractical when k is a small field, and

infeasible when k is only moderate in size.



Chapter 6

Correspondences on

hyperelliptic curves

For the remainder of this document, we will turn our attention to correspon-

dences on products of hyperelliptic curves. There are several motivations for

studying these correspondences in greater detail. First, the theory of explicit

and efficient computation with hyperelliptic Jacobians is very well-developed,

in contrast to the theory for general Jacobians. We can use these compu-

tational methods to construct efficient and explicit induced homomorphisms

of Jacobians for some correspondences, in the form of maps on Mumford

ideal class representatives. Second, many examples of hyperelliptic Jaco-

bians known to have nontrivial real and complex multiplication exist in the

literature. Finally, in recent times hyperelliptic Jacobians over finite fields

have become the subject of great interest in cryptographical research; thus

explicit methods for homomorphisms of hyperelliptic Jacobians have poten-

tial applications to cryptological problems.

In this chapter, we assume that k is a field of characteristic not two. Recall

from Section 2.3 that a curve X of genus at least one is called hyperelliptic

if there exists a covering hX : X → P1 of degree two; hX is called the

hyperelliptic cover. Every hyperelliptic curve X over k has an affine plane

model of the form

X : v2 = fX(u),

67



CHAPTER 6. HYPERELLIPTIC CURVES 68

where fX is a squarefree polynomial of degree 2gX + 1 or 2gX + 2. We call

fX the hyperelliptic polynomial of X.

Throughout this chapter, let X : v2 = fX(u) and Y : v2 = fY (u) be

a pair of hyperelliptic curves, with hyperelliptic involutions ιX and ιY and

hyperelliptic covers hX and hY , respectively. Our aim in this chapter is to

completely describe the correspondences on X × Y that arise from factors of

fX(u1) − fY (u2) .

6.1 Correspondences on the underlying lines

The product X × Y of hyperelliptic curves X and Y inherits the hyperelliptic

involutions of the curves, in the form of the involutions IdX×ιY and ιX×IdY .

These involutions have the obvious action on correspondences: if C is a

correspondence on X × Y , then by Theorem 3.4.3 (IdX × ιY )∗(C) = ΓιY ◦C,

which is homomorphically equivalent to −C. Similarly, (ιX×IdY )∗(C) ≈ −C.

Definition 6.1.1. If X and Y are hyperelliptic curves, then we define a map

hX×Y by

hX×Y := (hX × hY ) : X × Y - P1 × P1.

Note that hX×Y is the quotient of X × Y by 〈(IdX × ιY ), (ιX × IdY )〉. If C is

a correspondence on X × Y , then we denote the correspondence (hX×Y )∗(C)

on P1 × P1 by C.

If C is a prime correspondence on X × Y , then C is a prime correspon-

dence on P1 × P1. We have the following diagram of covers of curves:

C

X

πC
1

¾
C

(hX×Y )|C
?

Y

πC
2

-

P1

hX

?

πC
1

¾
P1

hY

?

πC
2

-
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Observe that d1(C) = d1(C) and d2(C) = d2(C); so by the argument of

Example 5.1.5 we have pa(C) = (d1(C) − 1)(d2(C) − 1). Therefore, we may

restate the adjunction formula (Proposition 5.1.4) for hyperelliptic curves as

〈C,C〉 = 2
(
gXd1(C) + gY d2(C) − (pa(C) − pa(C))

)
.

Suppose C and D are correspondences on X × Y . Both C and D are

homomorphically trivial, because Hom(JP1 , JP1) = 0. By Proposition 4.1.7,

C.D = d1(C)d2(D) + d2(C)d1(D) = d1(C)d2(D) + d2(C)d1(D); so

〈C,D〉 = C.D − C.D,

where the first intersection number is on P1 × P1 and the second is on X × Y .

Conversely, we may take a prime correspondence C on P1 × P1 and at-

tempt to lift it to an interesting correspondence C on X × Y . The most

obvious correspondence on X × Y above C is the pullback L = (hX×Y )∗(C).

Now L is (by definition) fixed by the involution ιX×IdY , so L = L◦ΓιX ≈ −L;

but Hom(JX , JY ) is a torsion-free Z-module, so L ≈ 0. However, if L is re-

ducible, then it may have components that are not homomorphically trivial.

Example 6.1.2. Let X be a hyperelliptic curve, with an affine plane model

X : v2 = fX(u). We have

(hX × hX)∗(∆P1) = V (u2 − u1)

= V (u2 − u1, v
2
2 − v2

1)

= V (u2 − u1, v2 − v1) + V (u2 − u1, v2 + v1)

= ∆X + V (u2 − u1, v2 + v1) .

Observe that V (u2 − u1, v2 + v1) = (ΓιY ◦ ∆X) ≈ −∆X .

Of course, not all prime correspondences on P1 × P1 pull back to reducible

correspondences on X × Y .

Example 6.1.3. LetX be the hyperelliptic curve defined byX : v2 = u3+u+1.

The correspondence C = V (u1 + u2) on P1 × P1 pulls back via hX×X to a

correspondence C = V (u1 + u2) on X ×X. Explicit computation shows that

C is prime; further, C ≈ 0 by Lemma 3.3.9.



CHAPTER 6. HYPERELLIPTIC CURVES 70

6.2 Correspondences from fX(u1) − fY (u2)

Consider the correspondence C on P1 × P1 defined by

C = V (fX(u1) − fY (u2)) .

We have
h∗X×Y (C) = V (v2

2 − v2
1)

= V (v2 − v1) + V (v2 + v1) .

Both V (v2 − v1) and V (v2 + v1) are hypersurfaces, and thus homomorphi-

cally trivial by Lemma 3.3.9. However, if fX(u1) − fY (u2) is a reducible

polynomial, then V (v2 − v1) and V (v2 + v1) are not prime correspondences,

and may have components that are not homomorphically trivial. For exam-

ple, if F (u1, u2) is a factor of fX(u1) − fY (u2), then

C = V (v2 − v1, F (u1, u2))

is a component of V (v2 − v1).

In the remainder of this chapter, we will investigate correspondences in

the form V (v2 − v1, F (u1, u2)), where F is a factor of fX(u1) − fY (u2). We

begin by recalling some elementary facts concerning the factors of fX(u1) −
fY (u2) (cf. Cassou–Noguès & Couveignes [12, §1]), describing the correspon-

dences on X × Y that arise in each case.

First, suppose Y = X. The polynomial fX(u1)−fX(u2) is always divisible

by u1 − u2. In terms of correspondences on X ×X, we have

V (v2 − v1)

= V (v2 − v1, u2 − u1) + V (v2 − v1, (fX(u2) − fX(u1))/(u2 − u1))

= ∆X + V (v2 − v1, (fX(u2) − fX(u1))/(u2 − u1)) ;

but V (v2 − v1) ≈ 0, so V (v2 − v1, (fX(u1) − fX(u2))/(u2 − u1)) ≈ −∆X .

Next, suppose U1 and U2 are polynomials over k of degree at least two.

Let X ′ be the curve defined by X ′ : v2 = fX′(u) = fX(U1(u)), and Y ′ the

curve defined by Y ′ : v2 = fY ′(u) = fY (U2(u)). As in Lemma 2.3.2, there
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are coverings πX : X ′ → X and πY : Y ′ → Y defined by (u, v) 7→ (U1(u), v)

and (u, v) 7→ (U2(u), v), respectively. Now, if a polynomial F (u1, u2) divides

fX(u1) − fY (u2), then F (U1(u), U2(u)) divides fX′(u1) − fY ′(u2). Therefore,

the correspondence C = V (v2 − v1, F (u1, u2)) on X × Y automatically lifts

to a correspondence C ′ = V (v2 − v1, F (U1(u), U2(u))) on X ′ × Y ′. We have

the following diagram:

C ′

(u, v) X ′

πC′

1

¾
C

πX × πY

?
Y ′

πC′

2

-

(u, v)

(U1(u), v)
?

X

πX

?

πC
1

¾
Y

πY

?

πC
2

-

(U2(u), v).
?

The induced homomorphism φC′ is the lift of the homomorphism φC to the

isogeny factors of JX′ and JY ′ associated to JX and JY , respectively.

Finally, let k(t) be a rational function field over k, and suppose that Xt

and Yt are the curves over k(t) defined by Xt : v2 = fXt
(u) := fX(u) + t

and Yt : v2 = fYt
(u) := fY (u) + t, respectively. We may regard Xt and Yt

as families of curves over k with parameter t, with X0 = X and Y0 = Y .

Observe that fXt
(u1)− fYt

(u2) = fX(u1)− fY (u2); so a polynomial F (u1, u2)

divides fX(u1) − fY (u2) if and only if it divides fXt
(u1) − fYt

(u2). Hence

the correspondence V (v2 − v1, F (u1, u2)) on X × Y lifts automatically to the

constant family of correspondences V (v2 − v1, F (u1, u2)) on Xt × Yt.

Definition 6.2.1. We say that a polynomial f is decomposable if there exist

polynomials g and h of degree greater than one such that f = g◦h. Otherwise,

we say f is indecomposable.

By Lemma 2.3.2, if the hyperelliptic polynomial fX of a hyperelliptic

curve X is decomposable, then X covers a hyperelliptic curve of lower genus.

In this case, JX is certainly not simple, because it has factor isogenous to
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the Jacobian of the covered curve.

Example 6.2.2. The curve X : v2 = u6 + u2 − 1 has a decomposable hyperel-

liptic polynomial: fX = (u3 + u− 1) ◦ u2. Hence there is a cover π : X → E

defined by (u, v) 7→ (u2, v), where E is the curve of genus one defined by

E : v2 = u3 + u − 1. The pullback π∗ induces an isogeny from the elliptic

curve JE to a one-dimensional factor of JX ; so JX is not simple.

The problem of determining when fX(u1) − fY (u2) is reducible is com-

pletely resolved in the case where both fX and fY are indecomposable. If

fX or fY is decomposable, then the problem is unresolved. The following

example shows that we cannot simply reduce to the indecomposable case:

there may be factors of f1(g1(u1))− f2(g2(u2)) that do not arise from factors

of f1(u1) − f2(u2) (or from factors of g1(u1) − g2(u2)).

Example 6.2.3. Let F1 = f1 ◦ g1 and F2 = f2 ◦ g2, where

f1 = u2 + u+ 1, f2 = u2 + 3u+ 3,

g1 = u2 − u+ 2, g2 = u2 − u+ 1.

Observe that F1 = F2, so u1−u2 divides F1(u1)−F2(u2); but u1−u2 divides

neither f1(u1) − f2(u2) nor g1(u1) − g2(u2).

Definition 6.2.4. We say that polynomials f and g over k are linearly related

if f(u) = g(au+ b) for some a and b in k. We say f and g are weakly linearly

related if f(u) = cg(au+ b) + d for some a, b, c and d in k.

If fX and fY are linearly related, thenX and Y are isomorphic: if fX(u) =

fY (au + b), then the isomorphism from Y to X is given by (u, v) 7→ (au +

b). If fX and fY are weakly linearly related, then they are not necessarily

isomorphic.

Example 6.2.5. Consider the curves of genus one defined byX : v2 = u3+u+1

and Y v2 = u3+u+2. We have fY = fX +1, so fX and fY are weakly linearly

related; but the curves X and Y have different j-invariants, so they cannot

be isomorphic.

In fact, if X and Y are hyperelliptic curves such that their hyperelliptic

polynomials fX and fY are weakly linearly related, then X and Y are each
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isomorphic over a quadratic extension of k to elements of the same rationally

parametrised family of curves.

Example 6.2.6. Suppose X : v2 = fX(u) and Y : v2 = fX(u) are hyperelliptic

curves, with fX(u) = cfY (au+ b) + d. Let Xt be the curve over k(t) defined

by Xt : v2 = fX(u) + t, considered as a family of curves over k, rationally

parametrised by t. Clearly X = X0; further, there is an isomorphism i : Y →
Xd/c, defined over k(

√
c) by i(u, v) = (au+ b, (1/

√
c)v).

If X and Y are not isomorphic, then the work of Cassou–Noguès and

Couveignes [12] shows that the pairs of indecomposable polynomials fX and

fY such that fX(u1)− fY (u2) is reducible form a finite set (up to weak linear

relation). We will investigate the correspondences arising from factors of

these polynomials below. First, in order to identify the homomorphisms

induced by these correspondences, we will derive an algorithm for computing

their differential matrices.

Suppose that we are given a correspondence C = V (v2 − v1, F (u1, u2))

on X × Y ; without loss of generality, we may assume C is prime. For each

1 ≤ i ≤ gX , let ti be the image of ui
1 under the trace map from OC to

OY . Note that if e1, . . . , ed2(C) are the solutions to the equation F (x, u) = 0

in x, then tn =
∑

j e
n
j , the nth power-sum symmetric polynomial in the ei.

If sm denotes the mth elementary symmetric polynomial in the ei (which,

up to sign, is the coefficient of um
1 in F ), then we may invert the standard

recurrence

nsn =
n∑

i=1

(−1)i+1sn−iti

to compute each of the required traces ti.

Fix bases {ωi : 1 ≤ i ≤ gX} for Ω1
X and {ω′

j : 1 ≤ i ≤ gY } for Ω1
Y ,

with ωi = (ui−1/v)du on X and ω′
j = (uj−1/v)du on Y . To determine MC

with respect to these bases, we must express TrΩ1
C

/Ω1
Y
((πC

1 )∗(ωi)) in terms of

the ω′
j for each of the ωi. Now, (πC

1 )∗(ωi) = (ui−1
1 /v1)du1, which is equal to

1/(iv2)d(u
i
1); the trace of this differential to Ω1

Y is 1/(iv′)dti.

Now, if ti =
∑i

j=0 aju
′j then dti =

∑i
j=1 jajω

′
j, and the homomorphism
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on differentials induced by C is

Ω1
C

Ω1
X

ωi 7→
∑i

j=1(jaj/i)ω
′
j

-

(πC
1 )∗

-

Ω1
Y .

TrΩ1
C

/Ω1
Y

-

Hence the (i, j)-th entry of MC is (j/i)aj. We have thus derived the following

algorithm for computing the differential matrix of C.

Algorithm 6.2.7. Computes the differential matrix MC of a prime corre-

spondence C = V (v2 − v1, F (u1, u2)) on X × Y .

function DifferentialMatrix(C)

d := degF ;

l := Coefficient(F, ud
1); // l is the leading coefficient.

s0 := 1;

for i in [1, . . . , gX ] do

if i ≤ d then

si := (−1)iCoefficient(F, ud−i
1 )/l;

else

si := 0;

end if

ti := (−1)i+1(isi +
∑i−1

k=1(−1)ksi−ktk);

for j in [1, . . . , gY ] do

mi,j := (j/i)Coefficient(ti, u
j
2);

end for

end for

MC := (mi,j);

return MC ;

end function
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6.3 Endomorphisms from fX(u1) − fX(u2)

Suppose X : v2 = fX(u) is a hyperelliptic curve. In the previous section, we

saw that the correspondence V (v2 − v1) on X ×X is reducible:

V (v2 − v1) = ∆X + V (v2 − v1, (fX(u1) − fX(u2))/(u1 − u2)) .

The correspondence V (v2 − v1, (fX(u1) − fX(u2))/(u1 − u2)) is reducible if

(fX(u1) − fX(u2))/(u1 − u2) is reducible. The conditions required of fX for

this to happen are well-known (see Fried [21] and in Lidl et. al. [42, §6.4]);
we will interpret these results in terms of correspondences.

Definition 6.3.1. We say a nonconstant polynomial f over k is tame if the

ramification of the covering P1 → P1 defined by u 7→ f(u) is tame.

A polynomial f is tame if the characteristic of k divides neither the degree

of f nor the multiplicity of any zero of f(x) − c in k for all c in k. If the

characteristic of k is zero, then every polynomial over k is tame. If k is a

field of positive characteristic p, then we may be sure that a polynomial is

tame if its degree is less than p.

The following lemma completely describes the indecomposable tame poly-

nomials f such that f(u1) − f(u2) has nontrivial factors other than u1 − u2

and (f(u1) − f(u2))/(u1 − u2). It turns out that every such polynomial is

weakly linearly related to a Dickson polynomial (see Definition 2.5.1).

Lemma 6.3.2. Let f be a tame, indecomposable polynomial over k of degree

n > 1, such that (f(u1)−f(u2))/(u1−u2) is not absolutely irreducible. Then

n is an odd prime, and f is weakly linearly related to the Dickson polynomial

Dn(u, a) for some a in k. Further, if n = 3, then a = 0.

Proof. See Lidl et. al. [42, Corollary 6.18].

Theorem 6.3.3. Let X be a hyperelliptic curve over k such that fX is in-

decomposable and tame. If V (v2 − v1) − ∆X is not a prime correspondence,

then deg fX is prime, and X has a model

X : v2 = cDn(u+ b, a) + d,
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for some a, b, c and d in k, with c and d not zero. Further, if gX = 1, then

n = 3 and a = 0.

Proof. The assertions follow directly from Lemma 6.3.2.

Example 6.3.4. Suppose X is a curve of genus one such that the correspon-

dence V (v2 − v1) − ∆X on X ×X is not prime. By Theorem 6.3.3, fX is

weakly linearly related to D3(u, 0); but D3(u, 0) = u3 by Lemma 2.5.2, so X

has a model

X : v2 = fX(u) = c(u+ b)3 + d.

If ζ3 is a cube root of unity over k, then V (v2 − v1) = C0 + C1 + C2, where

Ci = V
(
v2 − v1, u2 + b− ζ i

3(u1 + b)
)

(note that C0 = ∆X). Observe that while C1 and C2 are defined only over

k(ζ3), the correspondence C1 + C2 is k-rational. It is easily verified that

C1 ◦C1 = C2 and C1 ◦ C1 ◦C1 = C0 = ∆X ; therefore End(JX) has a subring

Z[φC1 ] isomorphic to Z[ω], where ω is a primitive cube root of unity over Q.

We will completely describe the endomorphism rings of the Jacobians of

the curves v2 = cDn(u + b, a) + d of Theorem 6.3.3. For each curve, we

construct correspondences inducing generators of the endomorphism rings,

and give explicit realisations of the induced endomorphisms in terms of maps

on Mumford ideal class representatives. We will treat the case a = 0 in the

following section; we will return to the case a 6= 0 in the next chapter.

6.4 Cyclotomic CM: the curve v2 = up + 1

Let us consider the curves arising in Theorem 6.3.3 where the parameter of

the Dickson polynomial is zero: that is, the curves defined by models

v2 = cDp(au+ b, 0) + d

where p is a prime and a, b, c and d are elements of k (if the characteristic

of k is not zero, then we assume that p > char k). We will see that every
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such curve has complex multiplication by the ring of integers of a cyclotomic

field; further, we will give an explicit construction of correspondences whose

induced homomorphisms are generators for the endomorphism ring.

Suppose X is a hyperelliptic curve with a model

X : v2 = fX(u) = cDp(au+ b, 0) + d.

Property (8) of Lemma 2.5.2 tells us that Dp(x, 0) = xp, so in fact fX(u) =

c(au + b)p + d, and the map (u, v) 7→ ((d/c)1/p(au + b), d−1/2v) therefore

defines an isomorphism from X to the curve

Yp : v2 = fYp
(u) = up + 1.

For simplicity, we restrict our investigation to Yp; the isomorphism above

renders the application of our results to X an exercise in elementary algebra.

The issue of point counting on the curves Yp is addressed by Buhler and

Koblitz in [7].

Let ζp be a pth root of unity over k. The curve Yp has an automorphism

ζ of order p, defined over k(ζp) by

ζ(u, v) := (ζpu, v).

The minimal polynomial of ζ is the pth cyclotomic polynomial, Φp(x) =

(xp−1)/(x−1) , so the subring Z[ζ] of End(JYp
) is isomorphic to Z[x]/(Φp(x)).

However, Z[x]/(Φp(x)) is the ring of integers of the pth cyclotomic field, so

Z[ζ] is a maximal subring of End(JYp
) — that is, End(JYp

) ∼= Z[ζ].

Over k(ζp), the polynomial fYp
(u1) − fYp

(u2) splits completely:

fYp
(u1) − fYp

(u2) = up
1 − up

2

=
∏p−1

i=0 (u2 − ζ i
pu1).

Therefore, the correspondence V (v2 − v1) on Yp × Yp decomposes into a sum
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V (v2 − v1) =
∑p−1

i=0 Cp,i, where

Cp,i = V
(
v2 − v1, u2 − ζ i

pu1

)
.

It is easy to see that Cp,i = Γζi ; hence Cp,0 = ∆Yp
, and Cp,i is the i-fold

composition of Cp,1 = Γζ with itself. The correspondences Cp,i therefore

induce a Z-basis {ζ i : 0 ≤ i < p} of End(JX), and so every endomorphism of

JYp
is induced by a Z-linear combination of the Cp,i.

It is straightforward to give an effective realisation of the endomorphism

φCp,i
as a map on Mumford ideal class representatives: we have

φCp,i
([(a(u), v − b(u))]) =

[
(ζ i deg aa(ζ−iu), v − b(ζ−iu))

]
.

Evaluation of this map on ideals is highly efficient — after all, it is nothing

more than a direct linear substitution in k[u]. These effective endomorphisms

φCp,i
may not appear very interesting at first; however, they do have a useful

application when k is a finite field.

Suppose k is a finite field, and that the group structure of JYp
(k) is cyclic

of prime order n. The endomorphism φCp,1 must act as multiplication by some

integer c on JYp
(k); the integer c will be a pth root of unity modulo n. Further,

the endomorphism φCp,i
acts as [ci (mod n)] on JYp

(k) for each 1 ≤ i ≤ p.

Therefore our effective endomorphisms actually give highly efficient means

of evaluating the integer multiplications [ci (mod n)] on JYp
(k), which may

be used to greatly speed up arithmetic on the group of rational points of

JYp
. The genus of Yp is (p − 1)/2, so each point P of JYp

has a reduced

representative

P =

[(
ud +

d−1∑

j=0

aju
j, v −

d−1∑

j=0

bju
j

)]
,

with 0 ≤ d ≤ (p− 1)/2. The image of P under φCi
is

φCi
(P ) =

[(
ud +

d−1∑

j=0

ζ i(d−j)
p aju

j, v −
d−1∑

j=0

ζ i(d−j)
p bju

j

)]
;

note that this representative is already reduced, so no further reduction is
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required. Thus if we precompute the values ζ ij
p for 0 ≤ j < (p − 1)/2, then

we may evaluate φCi
(P ) at a cost of at most 2(((p − 1)/2) − 1) = p − 3

field multiplications in k. This makes φCi
particularly suited for use in GLV

techniques (see §2.4).
Example 6.4.1. Suppose k is a finite field of characteristic 29, and let t be

a free parameter. Let Xt be the hyperelliptic curve of genus three over k(t)

defined by the affine plane model

Xt : v2 = u7 + t.

Observe that 20 is a seventh root of unity in k, and that the inverse of 20 is

16. As in the above discussion, the correspondence V (v2 − v1) decomposes

over k(t) into a sum V (v2 − v1) =
∑6

i=0 Ci, where

Ci = V
(
v2 − v1, u2 − 20iu1

)
.

We may identify the endomorphism φCi
with multiplication-by-ζ i

7, where ζ7

is a seventh root of unity over Q. In particular, the correspondence

C1 = V (v2 − v1, u2 − 20u1)

induces multiplication-by-ζ7 on JY ; the map

[(a(u), v − b(u))] -
[(

20deg aa(16u), v − b(16u)
)]

gives an explicit realisation of φC1 on Mumford ideal class representatives.

Example 6.4.2. We may use the explicit map on Mumford ideal class repre-

sentatives of Example 6.4.1 to give an example of an efficient integer multi-

plication. Let k = F2911 , and consider the curve

X10 : v2 = u7 + 10
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over k. As in Example 6.4.1, for each 0 ≤ i ≤ 6 we have a correspondence

Ci = V
(
v2 − v1, u2 − 16iu1

)

on X10 ×X10, inducing an explicit endomorphism

φCi
: [(a(u), v − b(u))] -

[(
20i deg aa(16iu), v − b(16iu)

)]
.

Each endomorphism φCi
acts as multiplication-by-ζ i

7 on JX10 , where ζ7 is a

seventh root of unity over Q. Now, #J(k) = 25243 ·N , where

N = 71943732797984772333979215054479116158556553

is prime. Let G = [25243]JX10
JX10 ; then G is a cyclic subgroup of JX10 of

prime order N . The roots of u7 − 1 in Z/NZ are

1,

23519305668795492023698995177489738656048400,

26168451107185642403155464096384433792544313,

31794316175824031036315847293785691884863803,

67085897870801989693884158740970392233786916,

67957780198888565596300220736534264730743643, and

71249180170443368582562174172751943336239136.

Each φCi
must act as multiplication by one of these roots on G. Explicit

calculation shows that

φC0|G = [1]G,

φC1|G = [71249180170443368582562174172751943336239136]G,

φC2|G = [67957780198888565596300220736534264730743643]G,

φC3|G = [26168451107185642403155464096384433792544313]G,

φC4|G = [23519305668795492023698995177489738656048400]G,

φC5|G = [67085897870801989693884158740970392233786916]G, and

φC6|G = [31794316175824031036315847293785691884863803]G.
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Each endomorphism φCi
may be evaluated at any point of JX10 at a cost

of at most five multiplications in k. This is essentially negligible, and is

clearly much faster than the many point doublings required in the equivalent

traditional integer multiplication.

6.5 Isogenies from fX(u1) − fY (u2)

In [12], Cassou–Noguès and Couveignes describe the pairs of polynomials

fX and fY that are not linearly related, such that fX(u1) − fY (u2) has a

nontrivial factor (if fX and fY are linearly related, then we may transform to

the case fX = fY and apply the results of the previous section). Their work

completes that of Cassels [10], who showed that the problem is essentially

determined by the monodromy group of the surface defined by the equations

z = fX(x), z = fY (y). Using the classification of finite simple groups1,

Cassou–Noguès and Couveignes prove the following theorem.

Theorem 6.5.1 (Cassou–Noguès & Couveignes). Let fX and fY be a

pair of non-constant, indecomposable polynomials over C that are not linearly

related, such that fX(u1) − fY (u2) is reducible. Then deg fX = deg fY , and

deg fX is 7, 11, 13, 15, 21, or 31. Further, fX is weakly linearly related

to a polynomial g defined over a quadratic imaginary extension K of a real

number field k′, and fY is weakly linearly related to the Galois conjugate of

g over K0. If deg fX is 11, 21 or 31, then g is unique; if deg fX is 7, 13 or

15, then g is an element of a one-dimensional family of polynomials.

Proof. See [12, Théorème 1].

Theorem 6.5.1 holds over the field of complex numbers, and thus for

polynomials over any number field k, although we must then allow the co-

efficients in the weak linear relations to be taken from a finite extension of

k. The polynomials for degrees seven and eleven were originally discovered

by Birch (see [10]); Kux [36, §4.1] interprets these polynomials in terms of

1Sometimes called the “enormous theorem”, the classification of finite simple groups is
well beyond the scope of this discussion. See [25, 26, 60] for an introduction to the theory.
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correspondences of curves over C. We will describe each of the polynomials

listed in [12, §5], retaining as much generality as possible with respect to the

ground field k. In each case, we give an interpretation of the results in terms

of correspondences, and describe the induced homomorphisms. We may com-

pletely describe all correspondences arising from factors of fX(u1) − fY (u2),

where X is not isomorphic to Y , when k embeds in the complex field (in

particular, when k is a number field). The resulting curves also reduce to

interesting correspondences over the finite fields where fX and fY have good

reduction.

Genus three

Suppose X and Y are curves of genus three, with deg fX = deg fY = 7, such

that the correspondence V (v2 − v1) on X × Y is reducible. Let K = k(a),

where a is a root of the polynomial u2 + u+ 2 over k; let σ be the nontrivial

element of the Galois group of K/k, and let ā = aσ. Let t be a free parameter.

According to [12, §5.1], fX is weakly linearly related to a polynomial in the

rationally parametrised family

g =
1

7
u7 + (1 + a)tu5 + (1 + a)tu4 − (3 − 2a)t2u3

−2(1 − 2a)t2u2 − 1

28
(5 + 3a)(28t− 2 − 11a)t2u− (1 + a)t3

defined over K(t), and fY is weakly linearly related to the Galois conjugate

gσ.

Suppose fX = g and fY = gσ. The polynomial fX(u1) − fY (u2) has an

absolutely irreducible factor

F3 = u3
1 − u3

2 − āu2
1u2 + au1u

2
2 + (5 + 3a)tu1 − (5 + 3ā)tu2 + (a− ā)t;

the cofactor of F3 is also absolutely irreducible. We therefore have a (3, 3)-

correspondence C3 = V (v2 − v1, F3) on X × Y . Computing differential ma-
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trices with Algorithm 6.2.7 (DifferentialMatrix), we see that

MC3 =




ā 0 0

0 ā 0

(1 + 2a)t 0 a




and MC3
t = Mσ

C3
; hence MC3MC3

t = 2I3. Thus T0(φ
†
C3

◦ φC3) = 2, and we

may conclude that φ†
C3

◦ φC3 = [2]JX
— that is, φC3 splits multiplication by

two on JX .

Genus five

Suppose X and Y are curves of genus five, with deg fX = deg fY = 11, such

that the correspondence V (v2 − v1) on X × Y is reducible. Let K = k(a),

where a is a root of the polynomial u2 + u+ 3 over k; let σ be the nontrivial

element of the Galois group of K/k, and let ā = aσ. According to [12, §5.2],
fX is weakly linearly related to the polynomial

g5 =
1

11
u11 + āu9 + 2u8 + 3(a− 3)u7 + 16āu6 + 3(7a+ 12)u5

+ 30(a− 3)u4 − 63au3 + 20(5a+ 6)u2 + 3(8a− 39)u+ 18ā

over K, and fY is weakly linearly related to the Galois conjugate gσ
5 of g5.

We find that the irreducible polynomial

F5 = u5
1 − u5

2 − āu4
1u2 + au1u

4
2

− u3
1u

2
2 + u2

1u
3
2 − 2(2a+ 1)u3

1 + 2(2ā+ 1)u3
2

− (a− 5)u2
1u2 + (ā− 5)u1u

2
2 + 2(a+ 6)u2

1 − 2(ā+ 6)u2
2

+ 6(2a+ 1)u1u2 − (8a+ 15)u1 + (8ā+ 15)u2 − 6(2a+ 1)

divides g5(u1) − gσ
5 (u2). If we suppose fX = g5 and fY = gσ

5 , then we have a

nontrivial (5, 5)-correspondence C5 = V (v2 − v1, F5) on X × Y . Computing

differential matrices using Algorithm 6.2.7 (DifferentialMatrix), we see
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that

MC5 =




ā 0 0 0 0

0 a 0 0 0

ā+ 6 0 ā 0 0

0 0 0 ā 0

15a+ 24 8ā+ 4 3ā+ 18 0 ā




and MC5
t = Mσ

C5
, so MC5

tMC5 = 3I5. We conclude that φ†
C5

◦ φC5 = [3]JX
—

that is, that φC5 splits [3]JX
.

Remark 6.5.2. In the remaining examples, we will not give all the entries of

the differential matrices. The reader may readily recompute the matrices if

required, using Algorithm 6.2.7.

Genus six

Suppose X and Y are curves of genus six, with deg fX = deg fY = 13, such

that the correspondence V (v2 − v1) on X × Y is reducible. Let k′ = k(b),

where b is a root of the polynomial u2 − 5u + 3 over k, and let K = k′(a),

where a is a root of the polynomial u2 + (b − 2)u + b over k′. Let σ be the

nontrivial element of the Galois group of K/k′, and let ā = aσ. Let t be a

free parameter. By [12, §5.3], fX is weakly linearly related to a polynomial

in the rationally parametrised family g6 over K(t), described by Table 6.1

below, and fY is weakly linearly related to the Galois conjugate gσ
6 .

Suppose fX = g6 and fY = gσ
6 . The polynomial fX(u1) − fY (u2) has an

absolutely irreducible factor

F6 = u4
1 + u4

2

− ((b− 4)a+ 2)u3
1u2 − ((b− 4)ā+ 2)u1u

3
2

+ (b− 3)u2
1u

2
2

+ 3((17b− 73)a− 2(6b− 25))tu2
1 + 3((17b− 73)ā− 2(6b− 25))tu2

2

− 9(3b− 14)tu1u2

+ 3((5b− 22)a− 9b+ 38)tu1 + 3((5b− 22)ā− 9b+ 38)tu2

+ 12(47b− 202)t2;

the cofactor of F6 is also absolutely irreducible. Hence we have a nontrivial
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Table 6.1: The polynomial g6 for genus six
d Coefficient of ud in g6(u)

13 1
12 0
11 39((3b− 13)a− 2b+ 8))t
10 39((3b− 13)a− 4b+ 17)t
9 39((−58b+ 251)a+ 173b− 739)t2

8 234((90b− 387)a− 2b+ 9)t2

7 117

(
((−3309b+ 14235)a+ 1332b− 5739)t
+ ((182b− 783)a− 145b+ 624)

)
t2

6 351((−5479b+ 23574)a+ 5037b− 21674)t3

5 351

(
((18653b− 80257)a− 21681b+ 93294)t
+ ((−668b+ 2874)a+ 4442b− 19113)

)
t3

4 351

(
((−41886b+ 180228)a− 61944b+ 266532)t
+ ((2652b− 11411)a− 1397b+ 6011)

)
t3

3 1053

(
((22561b− 97076)a+ 32325b− 139089)t
+ ((−98835b+ 425265)a+ 42632b− 183436)

)
t4

2 1053

(
((619226b− 2664391)a− 390378b+ 1679709)t
+ ((−41278b+ 177610)a+ 46232b− 198926)

)
t4

1 351




((−1006352b+ 4330108)a+ 412548b− 1775100)t2

+ ((2726523b− 11731617)a− 3587121b+ 15434577)t
+ ((28536b− 122784)a− 11256b+ 48432)


 t4

0 4212

(
((−149259b+ 642228)a− 149259b)t
+ ((−40928b+ 176104)a− 40928b)

)
t5
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(4, 4)-correspondence C6 = V (v2 − v1, F6) on X × Y . Computing differential

matrices using Algorithm 6.2.7 (DifferentialMatrix), we see that MC6

is a lower-triangular matrix, with diagonal entries

(b− 4)a+ 2, a+ 1, (b− 4)a+ 2, (−b+ 4)a+ b− 3, a+ 1, a+ 1.

The differential matrix of the transpose is MC6
t = Mσ

C6
, and we find that

MC6
tMC6 = 3I6. We conclude that φ†

C6
◦ φC6 = [3]JX

— that is, that φC6

splits [3]JX
.

Genus seven

Suppose X and Y are curves of genus seven, with deg fX = deg fY = 15, such

that the correspondence V (v2 − v1) on X × Y is reducible. Let K = k(a),

where a is a root of the polynomial u2−u+4; let σ be the nontrivial element

of the Galois group of K/k, and let ā = aσ. According to [12, §5.4], fX is

weakly linearly related to a polynomial in the rationally parametrised family

g7 over K (with parameter t) described in Table 6.2 below, and fY is weakly

linearly related to the Galois conjugate gσ of g7.

Suppose fX = g7 and fY = gσ
7 . The polynomial fX(u1) − fY (u2) has an

absolutely irreducible factor

F7 = u7
1 + u7

2 + āu6
1u2 + au1u

6
2 − 2u5

1u
2
2 − 2u2

1u
5
2

+ (a+ 1)u4
1u

3
2 + (ā+ 1)u3

1u
4
2 + (7a− 3)tu5

1 + (7ā− 3)tu5
2

+ 22t(u4
1u2 + u1u

4
2) − (10a+ 2)tu3

1u
2
2 − (10ā+ 2)tu2

1u
3
2

+ 5((a+ 13)tu4
1 + (ā+ 13)tu4

2)

+ 10((5ā+ 2)tu3
1u2 + (5a+ 2)tu1u

3
2) − 90tu2

1u
2
2

+ 3((3a− 23)t2u3
1 + (3ā− 23)t2u3

2)

+ 3((13a+ 11)t2u2
1u2 + (13ā+ 11)t2u1u

2
2)

+ 30((7a− 5)t2u2
1 + (7ā− 5)t2u2

2) + 450t2u1u2

− 9(((7a+ 5)t3 − 25(a+ 4)t2)u1 + ((7ā+ 5)t3 − 25(ā+ 4)t2)u2)

− 375t3;

the cofactor of F7 is also absolutely irreducible. Hence, there is a nontrivial
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Table 6.2: The polynomial g7 for genus seven

d Coefficient of ud in g7(u)

15 1
14 0
13 15āt
12 15(a+ 7)t
11 −15(5a+ 21)t2

10 30(37a− 71)t2

9 −5(261a− 349)

(
t+

45(3135a− 2428)

151598

)
t2

8 −(649a+ 703)t3

7 45(46a+ 239)

(
t+

20(9913a− 23128)

76579

)
t3

6 −60(548a− 1939)

(
t+

5(21273a− 5284)

259891

)
t3

5 9(1945a− 1581)

(
t+

25(587433a− 4548020)

7278308

)
t4

4 45(3233a+ 2051)

(
t+

25(53589a− 86500)

877444

)
t4

3 405(9a− 133)

(
t2 − 5(4051a+ 31524)

6306
t− 125(2563a− 188)

50448

)
t4

2 270(403a− 1559)

(
t+

(9165a− 39620)

5108

)
t5

1 −2025(7a+ 5)

(
t+

25

4
(a+ 4ā)

)(
t− 1

4
(a− 4ā)

)
t5

0 10125(a− 8)(t− 16)t6
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(7, 7)-correspondence C7 = V (v2 − v1, F7) on X × Y . Computing differential

matrices with Algorithm 6.2.7 (DifferentialMatrix), we see that MC7 is

a lower-triangular matrix, with diagonal entries

−4

a
,

4

a
, −2,

4

a
, 2, 2, −a.

The differential matrix of the transpose is MC7
t = Mσ

C7
, and we find that

MC7
tMC7 = 4I7. We conclude that φ†

C7
◦ φC7 = [4]JX

— that is, that φC7

splits [4]JX
.

Genus ten

Suppose X and Y are curves of genus ten, with deg fX = deg fY = 21, such

that the correspondence V (v2 − v1) on X × Y is reducible. Let K = k(a),

where a is a root of the polynomial u2−u+2. Let σ be the nontrivial element

of the Galois group of K/k, and let ā = aσ. According to [12, §5.5], fX is

weakly linearly related to the polynomial g10 over K described by Table 6.3

below, and fY is weakly linearly related to the Galois conjugate gσ
10 of g10.

Suppose fX = g10 and fY = gσ
10. The polynomial fX(u1) − fX(u2) is

divisible by the absolutely irreducible polynomial

F10 = (u5
1 − u5

2) + (a+ 1)u4
1u2 − (ā+ 1)u1u

4
2 + 2au3

1u
2
2 − 2āu2

1u
3
2

+ (7a+ 9/2ā)u3
1 − (9/2a+ 7ā)u3

2 + (6a− 2ā)u2
1u2 + (2a− 6ā)u1u

2
2

+ (3a+ 1/2ā)u2
1 − (1/2a+ 3ā)u2

2 + (2a− 2ā)u1u2

+ (81/8a+ 55/16ā)u1 − (55/16a+ 81/8ā)u2

+ 17/8(a− ā);

the cofactor of F10 is also absolutely irreducible. Hence, there is a nontrivial

(5, 5)-correspondence C10 = V (v2 − v1, F10) on X × Y . Computing differen-

tial matrices using Algorithm 6.2.7, we see that MC10 is a lower-triangular

matrix, with diagonal entries

−a−1, −(a+1), a+1, −(a+1), a−2, a+1, 2, −(a+1), −(a−2), a−2.

The differential matrix of the transpose is MC10
t = Mσ

C10
, and we find that
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Table 6.3: The polynomial g10 for genus ten
d Coefficient of ud in g10(u)

21 1
20 0
19 21/2(2a+ ā)
18 21/2(2a+ ā)
17 21/24(70a− 41ā)
16 21/23(74a− 31ā)
15 −7/23(317a+ 1153ā)
14 −7/23(707a+ 2735ā)
13 −105/27(4921a+ 6907ā)
12 −273/25(1267a+ 1553ā)
11 −7/28(714488a+ 655555ā)
10 −231/28(43352a+ 29639ā)
9 −7/211(14566036a+ 7465459ā)
8 −7/210(7968980a+ 572663ā)
7 −27/211(3818747a− 1232159ā)
6 −7/211(2437813a− 17913025ā)
5 7/216(197210623a+ 817410915ā)
4 21/213(19063495a+ 31958147ā)
3 7/217(1127341210a+ 1303007163ā)
2 7/217(651148938a+ 590134531ā)
1 21/220(849646746a+ 438356795ā)
0 1174191921/219a
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MC10
tMC10 = 4I10. We conclude that φ†

C10
◦ φC10 = [4]JX

— that is, φC10

splits [4]JX
.

Genus fifteen

SupposeX and Y are curves of genus fifteen, with deg fX = deg fY = 31, such

that the correspondence V (v2 − v1) on X × Y is reducible. Let k′ = k(b),

where b is a root of the polynomial u2 − 13u2 + 46u − 32 over k, and let

K = k′(a), where a is a root of the polynomial u2−1/2(b2−7b+4)u+ b over

k. Let σ be the nontrivial element of the Galois group of K/k ′. According to

[12, §5.6], fX is weakly linearly related to the polynomial g over K described

by Tables 6.4, 6.5 and 6.4 below, and fY is weakly linearly related to the

Galois conjugate gσ
15 of g15 over k′.

Suppose fX = g15 and fY = gσ
15. The polynomial fX(u1) − fY (u2) has

an absolutely irreducible factor F15 of degree 15; the cofactor of F15 is also

absolutely irreducible. Hence there is a nontrivial (15, 15)-correspondence

C15 = V (v2 − v1, F15) on X × Y . Computing differential matrices using Al-

gorithm 6.2.7, we see that MC15 is a lower-triangular matrix, with diagonal

entries

−(a+ 1), −(a+ 1), a+ 1, −(a+ 1), a− 2, a+ 1, 2, −(a+ 1),

−(a− 2) a− 2, −(a+ 1), a+ 1, a− 2, 2, −(a− 2).

The differential matrix of the transpose is MC15
t = Mσ

C15
, and we find that

MC15
tMC15 = 8I15. We conclude that φ†

C15
◦ φC15 = [8]JX

— that is, φC15

splits [8]JX
.
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Table 6.4: The polynomial g15 for genus fifteen
d Coefficient of ud in g15(u)

31 1
30 0

29
31

24

(
(−b2 + 5b+ 10)a
+ 22(b2 − 7b+ 12)

)

28
31

24

(
(−b2 + 5b+ 10)a
+ 22(b2 − 7b+ 12)

)

27
31

26

(
(43b2 − 1011b+ 2854)a
+ 2(453b2 − 3055b+ 3248)

)

26
31

25

(
(41b2 − 977b+ 2802)a
+ 2(443b2 − 2993b+ 3248)

)

25
31

28

(
(−17521b2 + 74509b+ 60450)a
+ 24(3523b2 − 19318b+ 17095)

)

24
31

28

(
(−48519b2 + 204491b+ 184718)a
+ 24 · 13(771b2 − 4256b+ 3877)

)

23
31

210

(
(−1776161b2 + 9373621b− 3292454)a
+ 2(2041603b2 − 11554557b+ 8612300)

)

22
31

210

(
(−1471159b2 + 7727523b− 2737610)a
+ 23(1759337b2 − 10050935b+ 7513220)

)

21
31

212

(
(−109481293b2 + 596329857b− 368885054)a
+ 22 · 11(4234205b2 − 24114867b+ 17025124)

)

20
31

212

(
(−384855193b2 + 2112196605b− 1408837958)a
+ 22 · 77(1995919b2 − 11313121b+ 7849292)

)
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Table 6.5: The polynomial g15 for genus fifteen (continued)
d Coefficient of ud in g15(u)

19
31

214

(
(−5290184805b2 + 29820077413b− 21851209042)a
+ 2 · 7(360226879b2 − 1996954813b+ 1324931952)

)

18
31

213

(
(−8697236749b2 + 49763738685b− 38332116082)a
+ 2(2955570637b2 − 16017539527b+ 10063185520)

)

17
31

216

(
(−186111470445b2 + 1067698578649b− 833400031142)a
+ 23(4742390675b2 − 23773118387b+ 8368459966)

)

16
31

216

(
(−494148938071b2 + 2839948380571b− 2256232777618)a
+ 23(−15288672515b2 + 92070460731b− 91551968486)

)

15
31

217




(−2214031635615b2 + 12716268790027b
− 10156041792602)a+ 2(−960101407852b2

+ 5535136704359b− 4581193619353)




14
31

214




(−560557994899b2 + 3218369818879b
− 2580185154146)a+ 2(−526496086692b2

+ 3014302384861b− 2383956611299)




13
31

220




(−63813876335979b2 + 367007052549207b
− 296370094708306)a+ 22(−52401417590341b2

+ 299616088960507b− 233801230247956)




12
31

220




(−84595067837587b2 + 488413358269471b
− 399412816680130)a+ 22 · 13(−11150360649073b2

+ 63701009207311b− 49349331671940)




11
31

222




(−276978123366339b2 + 1621224937178539b
− 1399602523915382)a+ 2 · 13(−212034170543241b2

+ 1210431089174019b− 934256824364744)




10
31

221




(164996225556971b2 − 911562557305603b
+ 591654846604694)a+ 2 · 11(−262520127322101b2

+ 1497803824970631b− 1154022167812424)



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Table 6.6: The polynomial g15 for genus fifteen (continued)
d Coefficient of ud in g15(u)

9
31

224




(8153525016709589b2 − 46226784686942241b
+ 34465661136373590)a+ 24(−5441429387111027b2

+ 31035465825224200b− 23885784348462829)




8
31

224




(21507787300535771b2 − 122360462847124879b
+ 92829028744745354)a+ 24(−8984909831498167b2

+ 51240081924362918b− 39413833154124867)




7
31

226




(172549107727779319b2 − 982848727924637571b
+ 750639722104375338)a+ 2(−418768591310359209b2

+ 2388174561757656643b− 1836495177429186664)




6
31

224




(69182745118413131b2 − 394265847737496263b
+ 302027911629477314)a+ 2 · 3(−44226346571675883b2

+ 252216588414697081b− 193920457022904536)




5
31

228




(1461494193805567097b2 − 8330939217188411741b
+ 6391346186593069190)a+ 22(−1132691540565214443b2

+ 6459518768862357533b− 4965998974814592772)




4
31

228




(1590470411372385357b2 − 9067705413825934465b
+ 6962808016837221182)a+ 22(−999415050811064455b2

+ 5699354134504008865b− 4381372565564213972)




3
31

230




(5458654735992646373b2 − 31124897594589327589b
+ 23912314632422881618)a+ 2(−5512701081507844017b2

+ 31436273506520022779b− 24164866978481400776)




2
31

229




(1756872157897042025b2 − 10018233805014343961b
+ 7698964739179717386)a+ 2(−1315750730205968433b2

+ 7502830502507295195b− 5766576375747149288)




1
31

232




(6099047880687359369b2 − 34780055276291665989b
+ 26734049819113493038)a+ 23(−744852583736866739b2

+ 4247268108629460783b− 3263765943271992018)




0
31

232




(1290343630884751523b2 − 7358426308111535607b
+ 5657092118674073402)a+ 22(−1063666592462807025b
+ 836989554040862527)






Chapter 7

Explicit real multiplication

In this chapter, we describe several families of hyperelliptic curves whose Ja-

cobians have real multiplication. For each family, we give a correspondence

inducing a nontrivial real multiplication, and derive an explicit, efficiently

computable form for the induced endomorphism. Some of the families have

been described by Mestre [44], Hashimoto [30], and by Tautz, Top and Ver-

berkmoes [62]. Takashima [61] provides explicit formulae for the induced

endomorphism of Mestre’s curve in the genus two case. To our knowledge,

the explicit forms for the induced endomorphisms of every other family are

new in this work.

All of the families share the following construction. We find a curve C̃,

with automorphisms α and σ such that 〈σ〉 is not stabilised under conjugation

by α. We then define X to be the quotient of C̃ by 〈σ〉. Since conjugation

by α does not stabilise 〈σ〉, the automorphism α does not induce an auto-

morphism of X. However, we will see below that the endomorphism α∗ of

JC̃ does induce an endomorphism of JX .

For each of these families, we will give a correspondence inducing a non-

trivial real multiplication and an explicit form for the induced endomorphism.

The explicit endomorphisms may be used to extend GLV efficient multipli-

cation techniques (see §2.4) to these families of hyperelliptic curves.

Throughout this chapter, k denotes a field of characteristic not two, and

ζn denotes a primitive nth root of unity over Q.

94
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7.1 Deriving RM from coverings

Let C̃ be a curve, and S a subgroup of Aut(C̃). Let X be the quotient of

C̃ by S, with π : C̃ → X the quotient map; observe that π is a covering

of degree #S. Recall from §3.2 that for every cover π′ : C̃ → X, there is a

correspondence (π × π′)(C̃) on X ×X; therefore, for each automorphism α

of C̃, we set

Cα := (π × (π ◦ α))(C̃).

The endomorphism of JX induced by Cα is φCα
= π∗α∗π

∗.

Now, if P is a prime divisor on X, then π∗(P ) is the sum of an S-orbit

on C̃ — that is, π∗(P ) =
∑

σ∈S σ(Q) for some prime divisor Q on C̃. Hence

φCα
(P ) = π∗(

∑

σ∈S

ασ(Q)).

If α is an element of S, then
∑

σ∈S ασ =
∑

σ∈S σ, so φC = π∗π
∗ = [#S]JX

.

In fact, if α is an element of S, then Cα = #S∆X .

Following the work of Mestre [44], Brumer, and Tautz, Top and Ver-

berkmoes [62], Ellenberg [19] describes the derivation of Jacobians with real

multiplication from curves with a dihedral automorphism (sub-)group. This

is the special case of the situation above where S is generated by an involution

σ, and α is an element of Aut(C̃) \ S such that σασ = α−1.

Proposition 7.1.1. Suppose C̃ is a curve such that Aut(C̃) contains a di-

hedral group 〈σ, α | σ2 = 1, αn = 1, ασ = σα−1〉 for some odd prime n. Let

X be the quotient of C̃ by 〈σ〉, and let π : C̃ → X be the quotient projec-

tion. Then the subring Z[π∗α∗π
∗] of End(JX) is isomorphic to the subring

Z[α∗ + α−1
∗ ] of End(JC̃). In particular, there is a subring

Z[ζn + ζ−1
n ] ⊂ End(JX)

— that is, JX has real multiplication by Z[ζn + ζ−1
n ].

Proof. See Ellenberg [19, §3].
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Corollary 7.1.2. If C̃, X, π, and α are as in Proposition 7.1.1, then

Cα = (π × π ◦ α)(C̃)

is a (2, 2)-correspondence on X ×X, and the subring Z[φCα
] of End(JX) is

isomorphic to Z[ζn + ζ−1
n ].

Proof. We know d1(Cα) = deg π and d2(Cα) = deg(π ◦ α) – but both π

and π ◦ α are coverings of degree two, so Cα is a (2, 2)-correspondence. The

endomorphism of JX induced by Cα is π∗ ◦ (π ◦ α)∗ = π∗ ◦ α∗ ◦ π∗, so the

second assertion follows from Proposition 7.1.1.

In the next section, we derive an algorithm for computing explicit forms

for the endomorphisms induced by some (2, 2)-correspondences, allowing us

to make some of the real multiplications described by Proposition 7.1.1 com-

pletely effective. Our explicit endomorphisms will be in the form of maps

of Mumford ideal class representatives. We have seen a particularly simple

example of this kind of construction, for the (1, 1)-correspondences Cp,i on

the curves Yp : v2 = up + 1 constructed in §6.4.

7.2 Explicit induced homomorphisms

Suppose C = V (v1 − v2, E(u1, u2)) is a (2, 2)-correspondence on X × Y ,

where E(u1, u2) is a factor of fX(u1) − fY (u2). Note that E(u1, u2) must

be a polynomial of degree two in both u1 and u2. Consider E to be a polyno-

mial in u2 over k[u1], and suppose that e1 and e2 are its roots in k(C). The

image of the generic point (u, v) of X under the homomorphism φC is

φC((u, v)) = (e1, v) + (e2, v).

Hence, given an ideal class representative [(a(u), v − b(u))] we have

φC([(a(u), v − b(u))]) = [(a(e1), v − b(e1))] + [(a(e2), v − b(e2))]

= [(a(e1), v − b(e1))(a(e2), v − b(e2))].
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The image is an ideal of OC , and may be expressed in terms of symmetric

polynomials in the ei and the coefficients of the polynomials a(u) and b(u).

The following proposition makes this precise.

Proposition 7.2.1. If C = V (v2 − v1, E(u1, u2)) is a (2, 2)-correspondence

on X × Y , then there exist maps TC : k[u] → k(u) and NC : k[u] → k(u),

depending only upon C, such that for any point [(a(u), v − b(u))] of JX ,

φC([(a(u), v − b(u))]) =

[(
NC(a)

g
, v −

(
(fY +NC(b))/g

TC(b)/g
mod

NC(a)

g

))]

where g = gcd(NC(a), TC(b)), scaled if necessary so that g and NC(a) have

the same leading coefficient.

Proof. Suppose that α and α are the solutions to the quadratic equation

E(u, x) = E2(u)x
2+E1(u)x+E0(u) = 0 over k(u). Note that α+α = −E1/E2

and αα = E0/E2; both are rational functions of u. For i ≥ 0, we define

ti := αi + αi, ni := (αα)i, and ni,j := αiαj + αjαi.

The elements ti, ni and ni,j satisfy the following recurrences:

1. ni+1 = (αα)ni for i ≥ 0, with n0 := 1;

2. ti+1 = (α+ α)ti − (αα)ti−1 for i ≥ 1, with t0 = 2 and t1 = (α + α);

3. ni,i = ni and ni,j = nitj−i for i ≥ 0 and j > i.

Each of the ti, ni and ni,j may thus be written as a polynomial expression

in α + α = −E1/E2 and αα = E0/E2; so the ti, ni and ni,j are rational

functions of u. Now, define NC : k[u] - k(u) by

NC(
∑

i

aiu
i) :=

∑

i,j

aiajni,j

and TC : k[u] - k(u) by

TC(
∑

i

aiu
i) :=

∑

i

aiti.
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Observe that NC(a) = a(α)a(α) and TC(a) = a(α) + a(α) for all polynomi-

als a over k. Therefore, if a point P of JX represented by the ideal class

[(a(u), v − b(u))], then

φC([(a, v − b)]) = [(a(α), v − b(α))] + [(a(α), v − b(α))]

= [(a(α), v − b(α)) · (a(α), v − b(α))]

= [(a(α)a(α), v2 − (b(α) + b(α))v + b(α)b(α))]

= [(NC(a), TC(b)v − (v2 +NC(b)))].

Let g = gcd(NC(a), TC(b)), scaling g if necessary so that g and NC(a) have

the same leading coefficients. We have

TC(b) = b(e1) + b(e2) ≡ 0 (mod g),

so b(e1) ≡ −b(e2) (mod g); thus

b(e1)
2 ≡ b(e2)

2 ≡ −NC(b) (mod g).

Now, b(e1)
2 ≡ v2 (mod a(e1)) and b(e2)

2 ≡ v2 (mod a(e2)), so

(v2 − b(e1)
2)(v2 − b(e2)

2) ≡ 0 (mod NC(a))

≡ 0 (mod g),

and so (v2 + NC(b))2 ≡ 0 (mod g). Hence g divides v2 + NC(b), which is

equal to fY (u) +NC(b), and

φC([(a, v − b)]) = [(NC(a), TC(b)v − (fY +NC(b)))]

= [(g) ((TC(b)/g)v − (fY +NC(b))/g)]

= [(NC(a)/g, (TC(b)/g)v − (fY +NC(b))/g)]

=

[(
NC(a)

g
, v −

(
(fY +NC(b))/g

TC(b)/g
mod

NC(a)

g

))]
,

proving the claim.

The recurrences in the proof of Proposition 7.2.1 show that the functions

ti, ni and ni,j are dependent only upon t1 and n1, which may be read off from
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the coefficients of E(u1, u2) when considered as a polynomial in u2. Thus,

given t1 = −E1/E2 and n1 = n1,1 = E0/E2, the recurrences give us a simple

and efficient algorithm for computing all of the functions ti and ni,j , and

thus for computing the maps TC and NC . We need only ever evaluate our

explicit map for φC on reduced Mumford ideal class representatives — that

is, classes [(a, v − b)] where deg(a) ≤ gX and deg b < deg a — so we need

only compute the ti and ni,j for 0 ≤ i ≤ gX . The ti and ni,j may of course be

precomputed, reducing the maps TC and NC to functions of the coefficients of

their arguments. The following algorithm makes Proposition 7.2.1 effective.

Algorithm 7.2.2. Given a (2, 2)-correspondence C = V (v2 − v1, E(u1, u2))

on X × Y , computes the polynomial maps TC and NC of Proposition 7.2.1.

function ExplicitMappings(C)

// Consider E(u1, u2) to be a polynomial in u2.

t0 := 2;

n0 := 1;

n0,0 := n0;

t1 := −Coefficient(E, u2)/Coefficient(E, u2
2);

n1 := Coefficient(E, u0
2)/Coefficient(E, u2

2);

for i in [2, . . . , gX ] do

ni := n1ni−1;

ti := t1ti−1 − n1ti−2; // Store for re-use.

ni,i := ni; // Store for re-use.

for i < j ≤ gX do

ni,j := nitj−i; // Store for re-use.

end for

end for

TC := (
∑gX

i=0 aiu
i 7−→∑g

i=0 aiti) ;

NC :=
(∑gX

i=0 aiu
i 7−→∑

0≤i≤j≤g aiajni,j

)
;

return TC , NC ;

end function

In the next chapter, we will apply this method to a number of families

of correspondences of hyperelliptic curves, in each case constructing explicit
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representations for the homomorphisms induced by the correspondences.

7.3 RM from cyclotomic coverings

We now return to the curves Xn : v2 = Dn(u, a) + t over k(t) of Theorem

6.3.3 where a is not zero. Theorem 6.3.3 implies that the correspondence

V (v2 − v1) on Xn × Xn is reducible. We will show that Xn has a covering

such that JX has real multiplication as in Proposition 7.1.1, and that this

real multiplication is induced by the components of V (v2 − v1) other than

the diagonal.

Let n > 2 be an integer not divisible by the characteristic of k, and set

m = b(n+ 1)/2c. Let Xn be the curve over k(t) defined by

Xn : v2 = fXn
(u) = Dn(u, a) + t,

where a is a nonzero element of k and Dn(u, a) is the nth Dickson polynomial

with parameter a. Let C̃n be the curve defined by

C̃n : v2 = fC̃n
(u) = u2mfXn

(u+ a/u).

Recall that Dn(u+ a/u, a) = un +(a/u)n by Lemma 2.5.2, so fC̃n
is in fact a

polynomial in u. If n is even, then fC̃n
(u) = u2n + tun + an; if n is odd, then

fC̃n
(u) = u(u2n + tun + an).

In addition to its hyperelliptic involution, the curve C̃n has an involution

σ defined by

σ : (u, v) 7→ (a/u, v(a/u)m).

It is easy to see that Xn is the quotient of C̃n by 〈σ〉; the quotient map

π : C̃n → Xn is defined by π(u, v) = (u+ a/u, vu−m).

The families C̃n and Xn coincide with curves described by Tautz et. al.

in [62] when a = 1. When n is odd, our curves are the families Dn and Cn

of [62]; when n is even, C̃n and Xn are not the curves Dn and Cn, but rather

the curves mentioned in a remark of [62, page 1058].

Suppose λ2n is a primitive 2nth root of unity over k; let λn = λ2
2n and
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ηn = λn + λ−1
n . The curve C̃n has an automorphism ζ defined by

ζ : (u, v) - (λnu, λ2nv).

The order of ζ is clearly 2n; further, ζn = ιC̃n
.

Observe that ζσ = σζ−1, so 〈σ, ζ〉 is a dihedral subgroup of Aut(C̃n),

and π ◦ ζ 6= π. We have a correspondence Cn := Cζ = (π × (π ◦ ζ))(C̃n) on

Xn ×Xn, with a model

Cn = V
(
v2 − v1, u

2
1 − ηnu1u2 + u2

2 + (η2
n − 4)a

)
.

Note that while the automorphism ζ is defined over k(λ2n), the correspon-

dence Cn is defined over the subfield k(λn). Applying Proposition 7.1.1, we

see that JXn
has real multiplication by Z[ζn + ζ−1

n ]. Further, Cn satisfies the

hypotheses of Proposition 7.2.1, so we may compute an explicit form for its

induced endomorphism. Applying Algorithm 7.2.2 (ExplicitMappings)

with t1 = ηnu and n1 = u2 + (η2
n − 4)a, we compute maps TCn

and NCn
such

that φCn
is realised by

[(a(u), v − b(u))] -
[(

NCn
(a)

g
, v −

(
(fXn

+NCn
(b))/g

TCn
(b)/g

mod
NCn

(a)

g

))]
,

where g is the greatest common divisor of NCn
(a) and TCn

(b), scaled to have

the same leading coefficient as NCn
(a).

Example 7.3.1 (Real Multiplication by (−1+
√

5)/2). Consider the genus two

curve X5, where a = 1:

X5 : v2 = fX5 = u5 − 5u3 + 5u+ t.

The curve X5 is covered by the curve C̃5 of genus five defined by

C̃5 : y2 = x(x10 + tx5 + 1);

the covering map π : C̃5 → X5 maps (x, y) to (u, v) = (x+ x−1, yx−3).

Let η5 = λ5 +λ−1
5 , where λ is a fifth root of unity over k. By Proposition
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7.1.1, the correspondence C5 := (π × π ◦ ζ)(C̃5) induces an endomorphism

of JXn
, defined over k(η5), with minimal polynomial that of ζ5 over Q. Note

that one embedding of Q(ζ5) into C sends ζ5 + ζ−1
5 to (−1 +

√
5)/2.

A generic point on JX5 has a reduced representative [(a(u), v − b(u))],

with deg a = 2 and deg b = 1. Therefore, write a(u) = u2 + a1u + a0 and

b(u) = b1u + b0. By Proposition 7.2.1, there are polynomial maps NC5 and

TC5 such that φC5 is realised by

[(a(u), v − b(u))] -
[(

NC5(a)

g
, v −

((fX5 −NC5(b))/g

TC5(b)/g
mod

NC5(a)

g

))]
,

where g = gcd(NC5(a), TC5(b)), scaled so that g and NC5(a) have the same

leading coefficient. To compute NC5 and TC5 , we apply Algorithm 7.2.2

(ExplicitMappings) to C5. We derive

NC5(a) = n2,2 + a1n1,2 + a2
1n1,1 + a0n0,2 + a1a0n0,1 + a2

0n0,0,

NC5(b) = b21n1,1 + b1b0n0,1 + b20n0,0,

TC5(b) = η5ub1 + 2b0,

with the polynomials ni,j given in the table below:

n0,0 1

n0,1 η5u

n0,2 (η2
5 − 2)u2 − 2η2

5 + 8

n1,1 u2 − η2
5 − 4

n1,2 η5u
3 − η3

5u− 4η5u

n2,2 u4 − 2(η2
5 − 4)u2 + 8(η2

5 + 2)

One iteration of Algorithm 2.3.3 (CantorReduction) will produce a re-

duced representative for the image.

Example 7.3.2. Let k = Fp where p = 100019, and let X be the curve X5

with a = 1 and t = 38:

X : v2 = u5 − 5u3 + 5u+ 38.

By construction, JX has an efficiently computable endomorphism [η5] = φC5 ,

where [η5]
2 + [η5] − [1]JX

= 0. In fact, we may take a 10th root of unity λ10

over k such that λ10 +λ−1
10 = 96937 in k, so the endomorphism [η5] is defined

over k. We have #JX = 19 · N , where N = 524594129. The polynomial
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u2 + u − 1 has roots 56956504 and 467637324 modulo N . We find that

[η5] ≡ [56956504] on 19JX .

7.4 RM from Artin–Schreier coverings

Our next families of Jacobians with real multiplication are derived from cover-

ings by Artin–Schreier curves. For each odd prime characteristic p, we define

a one-parameter rational family of hyperelliptic curves of genus (p−1)/2, to-

gether with a correspondence inducing a real multiplication on the Jacobian

of any curve in the family. The family and the correspondence are defined

over Fp (and hence over every field of characteristic p).

Suppose k is a field of characteristic p, where p is odd. Let

Sp := { n2 mod p : 1 ≤ n ≤ p− 1}

be the set of (nonzero) quadratic residues modulo p; setm := #S = (p−1)/2.

Let t be a free parameter, and Ãp the Artin–Schreier curve over k(t) defined

by

Ãp : yp − y = x− t

x
.

(We may consider Ãp to be a rational family of Artin–Schreier curves over k,

parametrised by t). The curve Ãp has an involution σ, defined by

σ : (x, y) 7−→ (t/x,−y),

and an automorphism ζ of order p, defined by

ζ : (x, y) 7−→ (x, y + 1).

It is easily verified that ζσ = σζ−1; thus 〈σ, ζ〉 is a dihedral subgroup of

Aut(Ãp), and we may apply Proposition 7.1.1 to construct a Jacobian with

multiplication by ζp + ζ−1
p .

Let Xp := Ãp/〈σ〉 be the quotient of Ãp by the action of σ. We have an
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affine plane model

Xp : v2 = fXp
(u) = u(um − 1)2 − 4t;

it is clear from this model that Xp is hyperelliptic. The hyperelliptic polyno-

mial fXp
has degree 2m+ 1 = p, so Xp is a curve of genus m. Note that fXp

is not tame, since char k = deg fXp
, so Theorem 6.3.3 does not apply here.

The covering map π : Ãp → Xp is of degree two, and is defined by

π : (x, y) 7→ (u, v) = (y2, x+ t/x).

Since 〈σ〉 is not stable under conjugation by ζ, the covers π ◦ ζ and π are

distinct: in fact, (π ◦ ζ) maps (x, y) to (u, v) = ((y + 1)2, x+ t/x).

The polynomial fXp
(u1) − fXp

(u2) factors into a product of m + 1 irre-

ducible polynomials

fXp
(u1) − fXp

(u2) = (u1 − u2)
∏

τ∈Sp

(
(u1 − u2)

2 − 2τ(u1 + u2) + τ 2
)

over k; in terms of correspondences on Xp ×Xp, we have

V (v2 − v1) = ∆X +
∑

τ∈Sp

Ap,τ ,

where each correspondence Ap,τ is defined by

Ap,τ = V
(
v2 − v1, (u1 − u2)

2 − 2τ(u1 + u2) + τ 2
)
.

Observe that Ap,τ = (π × (π ◦ ζ
√

τ ))(Ãp) for each quadratic residue τ in

Sp, where
√
τ is any integer whose square has residue τ modulo p. The

correspondence Ap,τ induces the endomorphism φAp,τ
= π∗ ◦ (ζτ )∗ ◦ π∗ on

JXp
, which we may identify with ζτ

p + ζ−τ
p by Proposition 7.1.1.

The correspondence Ap,τ satisfies the hypotheses of Proposition 7.2.1, so

we may apply Algorithm 7.2.2 ExplicitMappings with t1 := 2(u+ τ) and

n1 := (u − τ)2 to construct maps TAp,τ
and NAp,τ

such that the image of
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[(a(u), v − b(u))] under φAp,τ
is given by

[(
NAp,τ

(a)

g
, v −

(
(fXp

+NAp,τ
(b))/g

TAp,τ
(b)/g

mod
NAp,τ

(a)

g

))]
,

where g = gcd(NAp,τ
(a), TAp,τ

(b)) (scaled appropriately). A reduced repre-

sentative for this image is produced after one iteration of Algorithm 2.3.3

(CantorReduction).

Example 7.4.1. Consider p = 3. There is only one quadratic residue modulo 3

— namely, 1 — so S3 = {1}. The curveX3 is of genus one, so JX3 is an elliptic

curve, and the real multiplication φA3,1 is therefore multiplication by some

integer. By Proposition 7.1.1, there is an isomorphism Z[φA3,1 ]
∼= Z[ζ3 + ζ−1

3 ]

sending φA3,1 to ζ3+ζ
−1
3 ; but ζ3+ζ

−1
3 = −1, so φA3,1 = [−1]JX3

. Alternatively,

note that A3,1 = V (v2 − v1) − ∆X3 ≈ −∆X3 , so φA3,1 = −φ∆X3
= [−1]JX3

.

Example 7.4.2. For p = 5, we have two quadratic residues: S5 = {1,−1}.
We derive the one-parameter family of genus two hyperelliptic curves defined

over F5 by

X5 : v2 = fX5(u) = u(u2 − 1)2 + t.

By Proposition 7.1.1, we may explicitly construct a subring of End(JX5)

isomorphic to Z[ζ5 + ζ−1
5 ]. We have V (v2 − v1) = ∆X5 +A5,−1 +A5,1, where

A5,1 = V
(
v2 − v1, (u1 − u2)

2 − 2(u1 + u2) + 1
)

and

A5,−1 = V
(
v2 − v1, (u1 − u2)

2 + 2(u1 + u2) + 1
)

We (arbitrarily) identify φA5,1 with ζ5 + ζ−1
5 = 1

2
(−1 +

√
5), using Propo-

sition 7.1.1; we must then identify φA5,−1 with −1 − η5 = 1
2
(−1 −

√
5).

A generic point of JX5 may be represented by a reduced Mumford ideal

[(a(u), v − b(u))], where a is a monic polynomial of degree two, and b is lin-

ear. Suppose a(u) = u2 + a1u+ a0 and b(u) = b1u+ b0. Applying Algorithm

7.2.2 (ExplicitMappings), we find that the image of [(a(u), v − b(u))] un-
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der the endomorphism φA5,τ
is given explicitly by

[(
NA5,τ

(a)

g
, v −

((fX5 +NA5,τ
(b))/g

TA5,τ
(b)/g

mod
NA5,τ

(a)

g

))]
,

where g = gcd(NA5,τ
(a), TA5,τ

(b)) (scaled appropriately), and

TA5,τ
(b) = 2(u+ τ)b1 + 2b0,

NA5,τ
(a) =n2,2 + a1n1,2 + a2

1n1,1 + a0n0,2 + a1a0n0,1 + a2
0n0,0,

NA5,τ
(b) = b21n1,1 + b1b0n0,1 + b20n0,0,

with the ni,j precomputed in the table below.

n0,0 1

n0,1 2(u+ τ)

n0,2 2(u2 + 6τu+ 1)

n1,1 (u− τ)2

n1,2 2(u2 − 1)(u− τ)

n2,2 (u− τ)4

Note that φA5,1 −φA5,−1 is identified with 1
2
(−1+

√
5)− 1

2
(−1−

√
5) =

√
5,

so we may use our explicit endomorphisms to further construct an explicit

square root of [5] in End(JX).

Example 7.4.3. For p = 7, we derive a family of hyperelliptic curves of genus

three defined by

X7 : v2 = u(u3 − 1)2 + 3t

over any field of characteristic 7. There is an explicitly constructible subring

End(JX7) isomorphic to the totally real ring Z[ζ7 + ζ−1
7 ] ∼= Z[x]/(x3 + x2 −

2x− 1).

Example 7.4.4. Let us consider an example of fast scalar multiplication de-

rived from the Artin–Schreier family for p = 5. Let k = F5[ξ], where

ξ37 + 4ξ2 + 3ξ + 3 = 0, and let t = 3ξ5 + ξ4 + 3ξ3 + ξ2 + 2ξ + 3. The

element t is a square in k; let y be a square root of t. Now, let X be the

curve defined by

X : v2 = u(u2 − 1)2 + t,

By construction, there is an explicit real multiplication η5 in End(JX), which

satisfies η2
5 + η5 − [1] ≡ [0]. We have #JX(k) = 5n, where

n = 1058791184067701689674637025340531565456011790341311.



CHAPTER 7. EXPLICIT REAL MULTIPLICATION 107

If P is the image in JX(k) of the point (0, y) in X(k), then [5]P generates

a cyclic subgroup of JX of order n; η acts as a solution to η2
5 + η5 − 1 ≡ 0

(mod n) on this subgroup. We find that η5(5P ) = [m](5P ), where

m = 336894053941004885519266617028956898972619907667301.

7.5 RM from elliptic isogeny kernels

Finally, we consider families of hyperelliptic Jacobians with explicit real mul-

tiplications introduced by Mestre in [44]. These families form subfamilies of

the families described by Brumer in the unpublished work [6] and recon-

structed by Hashimoto in [30].

Suppose E and E ′ are curves of genus one, each with a rational point,

such that there exists an isogeny φ : JE → JE′ with cyclic kernel of order

n > 2. The injections αE : E → JE and αE′ : E ′ → JE′ are isomorphisms, so

φ induces a covering α−1
E′ ◦ φ ◦ αE : E → E ′. Let fφ be the rational function

over k such that the induced morphism fφ : P1 → P1 makes the diagram

E
αE - JE

φ - JE′

α−1
E′ - E ′

P1

hE

? fφ - P1

hE′

?

commute. The degree of fφ is n.

Now, let t be a free parameter, and let Xφ be the hyperelliptic curve over

k(t) defined by the affine plane model Xφ : v2 = fφ(u) + t (we may regard

Xφ as a family of curves over k, parametrised by t). Let the curve C̃φ be the
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product of Xφ and E over P1, as in the diagram below.

C̃φ

π - Xφ

E
?

hE

- P1

hXφ

?

The hyperelliptic involution ιE of E lifts to an involution σ of C̃φ. Since hE

is the quotient by 〈ιE〉, the projection π : C̃φ → Xφ in the diagram above is

the quotient by 〈σ〉.
Let R be an element of kerφ. It is easily verified that the translation map

tR : P 7→ α−1
E (αE(P ) +R)

is an automorphism of E of order n with inverse t−R, and that tR ◦ ιE =

ιE ◦ t−R. We have fφ(hE(tR(P ))) = fφ(hE(P )) for all points P of E. The

automorphism tR of E lifts to an automorphism αR of C̃φ. In fact, the au-

tomorphisms αR and σ anticommute: αRσ = σα−1
R . Therefore, Aut(C̃φ)

contains a dihedral subgroup 〈σ, αR〉. By Proposition 7.1.1, the endomor-

phism ring End(JX) contains a subring isomorphic to Z[ζn + ζ−1
n ].

It remains to construct a suitable n-isogeny φ; but these are parametrised

by the modular curves X0(n). In particular, if X0(n) is a curve of genus zero,

then it is rationally parametrised — by a free parameter s, say — and so

we have a rationally parametrised family of isogenies φs : JEs
→ JE′

s
. Using

φs in the above construction, we obtain a family of coverings π : C̃n → Xn

over k parametrised by s and t. The Jacobian JXn
has real multiplication

by Z[ζn + ζ−1
n ], where the correspondence Cn := (π × (π ◦ ζ))(C̃n) induces

[ζn + ζ−1
n ]JXn

.

Example 7.5.1. Let s and t be free parameters, and k(s, t)/k a rational func-

tion field. Let X5 be the curve of genus two over k(s, t) defined by

X5 : v2 = fX5(u) = u4(u− s) − s(u+ 1)(u− s)3 + s3u3 − tu2(u− s)2,
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and let C5 be the correspondence on X5 ×X5 defined by

C5 = V
(
v2 − v1, u

2
1u

2
2 + s(s− 1)u1u2 − s2(u1 − u2) + s3

)
.

The subring Z[φC5 ] of End(JX5) is isomorphic to Z[ζ5+ζ
−1
5 ] = Z[(−1+

√
5)/2],

and the isomorphism sends φC5 to ζ5 + ζ−1
5 .

Generically, points on JX5 may be represented by Mumford ideal class

representatives [(a(u), v − b(u))] with a = u2 + a1u + a0 and b = b1u +

b0, since X5 is a curve of genus two. By Proposition 7.2.1, the image of

[(a(u), v − b(u))] φC5 is given by

[(
NC5(a)

g
, v −

((fX5 +NC5(b))/g

TC5(b)/g
mod

NC5(a)

g

))]
,

where g = gcd(NC5(a), TC5(b)) (scaled appropriately), and where the maps

TC5 and NC5 are computed using Algorithm 7.2.2 (ExplicitMappings). We

derive

TC5(b) =−s((s− 1)u− s)b1/u
2 + 2b0,

NC5(a) =n2,2 + a1n1,2 + a2
1n1,1 + a0a2n0,2 + a1a0n0,1 + a2

0n0,0,

NC5(b) = b21n1,1 + b1b0n0,1 + b20n0,0,

where the ni,j are listed in the table below:

n0,0 1

n0,1 −s((s− 1)u− s)/u2

n0,2 s2(((s− 1)u− s)2 − 2u2(u+ s))/u4

n1,1 s2(u+ s)/u2

n1,2 −s3(u+ s)((s− 1)u− s)/u4

n2,2 s4(u+ s)2/u4

Note that the denominators in this representative should be cleared before

applying Algorithm 2.3.3 (CantorReduction) to obtain the reduced rep-

resentative of φC5([(a, v − b)]).

Remark 7.5.2. Takashima [61] provides an alternative construction of the

explicit real multiplication in Example 7.5.1, based on Hashimoto’s recon-
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struction of this family of curves [30].

Example 7.5.3. Let s and t be free parameters, and X7 the hyperelliptic curve

of genus three over k(s, t) defined by

X7 : v2 = f7(u) = φ7(u) − t ψ7(u)
2,

where ψ7(u) := u(u− s3 + s2)(u− s2 + s) and

φ7(u) := uψ7(u)
2 + s(s− 1)(s2 − s+ 1)(s3 + 2s2 − 5s+ 1)u5

− s3(s− 1)2(6s4 − 11s3 + 12s2 − 11s− 1)u4

+ s4(s− 1)3(s2 − s− 1)(s3 + 2s2 + 6s+ 1)u3

− s6(s− 1)4(s+ 1)(3s2 − 5s− 3)u2

+ s8(s− 1)5(s2 − 3s− 3)u+ s10(s− 1)6.

We may regard X7 as a family of curves over k parametrised by s and t. Let

C7 be the correspondence on X7 ×X7 defined by

C7 = V
(
v2 − v1, u

2
1u

2
2 − w(s2 − s− 1)u1u2 − w2(u1 + u2) + w3

)
.

We have an explicitly constructible subring Z[φC7 ] of End(JX7), isomorphic

to Z[ζ7 + ζ−1
7 ]; the isomorphism sends φC7 to ζ7 + ζ−1

7 . Let w = s2(s − 1).

Applying Algorithm 7.2.2 (ExplicitMappings) to C7, we obtain maps NC7

and TC7 such that φC7 is realised by

[(a, v − b)] 7→
[(

NC7(a)

g
, v −

((fX7 +NC7(b))/g

TC7(b)/g
mod

NC7(a)

g

))]
,

where g = gcd(NC7(a), TC7(b)) (scaled appropriately).

The constructions for Mestre’s curves are considerably more complicated

than those for the cyclotomic and Artin–Schreier families, because the func-

tion fφ is not a polynomial. However, Mestre’s curves are the most general

of the families. The cyclotomic families result when the curve E in Mestre’s

construction degenerates to a singular cubic: that is, when the elliptic curve

JE is replaced by the multiplicative group Gn. Indeed, in this situation

fφ may be taken to be Dn(u, 1) (see Remark 2.5.6), yielding our families
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of cyclotomic coverings. The Artin–Schreier families extend the cyclotomic

families to the case where the characteristic of k is equal to n. Here, the hy-

perelliptic polynomial of Xn is not tame, and Theorem 6.3.3 does not apply.

Similarly, the CM-curves of §6.4 complete the cyclotomic families where the

Dickson parameter a is zero. In particular, the the endomorphism rings of

the CM-curve family Jacobians have real multiplication by Z[ζn + ζ−1
n ].



Chapter 8

Richelot correspondences

Throughout this chapter, X denotes a hyperelliptic curve of genus two, over

a field k of characteristic not two. Let X have an affine plane model

X : v2 = fX(u) = Π6
i=1(u− αi),

where the elements αi may lie in some extension of k. The hyperelliptic cover

hX : X → P1 ramifies at six points ωi := (αi, 0) of X(k); these ramification

points are Weierstrass points of the curve X.

In this chapter we will describe the theory of Richelot isogenies, which

split multiplication by two on Jacobians of genus two curves. A beautiful

exposition of the classical theory over the real numbers may be found in

Bost & Mestre [5]. See Cassels & Flynn [11, Chapter 9] for a treatment over

an arbitrary base field. For our treatment, we introduce quadratic splittings,

a data structure relating Richelot isogenies to factorizations of hyperelliptic

polynomials. Quadratic splittings allow us to work easily with the full set of

Richelot isogenies from JX , rather than restricting our attention to a single

Richelot isogeny as in [5] and [11]; we will make use of this in the next

chapter, where we study part of the graph of Richelot isogenies.

112
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8.1 (2, 2)-subgroups and (2, 2)-isogenies

In this section, we will describe the isogenies whose kernel are contained in

the two-torsion subgroup JX [2].

Lemma 8.1.1. Let R be a proper, nontrivial subgroup of JX [2]. If R is

the kernel of an isogeny of principally polarised abelian surfaces, then R is

a maximal 2-Weil-isotropic subgroup of JX [2] (that is, the 2-Weil pairing

restricts trivially to R, and R is not properly contained in any other such

subgroup).

Proof. The statement follows from Milne [45, Proposition 16.8]; see the foot-

note on page 88 of Cassels & Flynn [11].

It follows from the nondegeneracy of the Weil pairing that the maximal

2-Weil isotropic subgroups of JX [2] are isomorphic to (Z/2Z)2. Lemma 8.1.1

therefore implies that if A is a principally polarised abelian surface, and if

φ : JX → A is an isogeny respecting the polarisations such that the kernel

of φ is a proper, nontrivial subgroup of JX [2], then φ is a (2, 2)-isogeny. We

call the kernels of (2, 2)-isogenies (2, 2)-subgroups.

Remark 8.1.2. The homomorphism induced by a (2, 2)-correspondence may

not be a (2, 2)-isogeny. For example, 2∆X is a (2, 2)-correspondence, but

φ2∆X
= [2]JX

, which is a (2, 2, 2, 2)-isogeny.

Lemma 8.1.3. Each nonzero element of JX [2] may be uniquely represented

by a pair of distinct Weierstrass points of X.

Proof. (Cf. Cassels & Flynn [11, §1.2, §8.1].) Let Pi,j = (αi, 0) − (αj, 0).

Now, Pi,j is not the divisor of a function on X, so its image in JX is nonzero;

but 2Pi,j = div((u−αi)/(u−αj)), so [2Pi,j ] = 2[Pi,j ] = 0, and thus the image

of Pi,j in JX is a nonzero element of JX [2]. Now Pi,j = −Pi,j by definition,

and by the above −[Pi,j ] = [Pj,i]; so [Pi,j ] is determined by the unordered

pair {i, j}. It is easily verified that Pi,j + Pk,l is principal if and only if

{i, j} = {k, l}; so each pair {i, j} uniquely specifies an element of JX [2].

Indeed, there are 22gX − 1 = 15 nonzero elements of JX [2], and there are
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(
6
2

)
= 15 pairs of distinct Weierstrass points of X; so every nonzero element

of JX [2] is specified by a pair {i, j}.

Every rational linear factor a(u−αi) of fX specifies a rational Weierstrass

point ωi of X. Each rational quadratic factor a(u− αi)(u− αj) of fX spec-

ifies a rational pair1 of Weierstrass points, ωi and ωj, and hence a rational

element [Pi,j ] of JX [2]. Therefore, subsets of JX [2] may be represented by

sets of quadratic factors of fX . To determine which sets of quadratic fac-

tors correspond to (2, 2)-subgroups of JX [2], we must first express the 2-Weil

pairing of points of JX [2] in terms of their quadratic representatives.

Lemma 8.1.4. Let P and Q be distinct nonzero elements of JX [2], repre-

sented by quadratic factors GP and GQ of fX , respectively. Then the 2-Weil

pairing e2(P,Q) of P and Q is trivial if and only if GP and GQ are coprime.

Proof. Suppose P = (αi, 0) − (αj, 0) and Q = (αk, 0) − (αl, 0), with i 6= j

and k 6= l. Then GP = (u − αi)(u − αj) and GQ = (u − αk)(u − αl).

Now, 2P = div(fP ) and 2Q = div(fQ), where fP = (u − αi)/(u − αj) and

fQ = (u− αk)/(u− αl). We have

e2(P,Q) = fP (Q)/fQ(P ) =
(αk − αi)

(αk − αj)

(αl − αj)

(αl − αi)

(αi − αl)

(αi − αk)

(αj − αk)

(αj − αl)
.

If GP and GQ are coprime, then i, j, k and l are all distinct, and the expres-

sion above reduces to e2(P,Q) = 1. On the other hand, if GP and GQ are

not coprime, then without loss of generality we may take l = j; we assumed

P 6= Q, so we also take i 6= k. The expression above then becomes

e2(P,Q) =
(αk − αi)(αi − αj)(αj − αk)

(αj − αi)(αi − αk)(αk − αj)
= −1.

Lemma 8.1.4 implies that the (2, 2)-subgroups of JX [2] may be repre-

1Recall that a rational pair of points is a Galois-stable pair of points; the points need
not be rational themselves. Similarly, αi and αj need not elements of k for the quadratic
polynomial a(u − αi)(u − αj) to be k-rational.
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sented by sets of three pairwise coprime quadratic factors of fX . We intro-

duce quadratic splittings to formalise this connection.

8.2 Quadratic splittings

Let k[u]2 denote the k-vector space of polynomials of degree at most two,

with a Lie algebra structure given by the bracket

[f, g] :=
df

du
· g − dg

du
· f.

Observe that [f, g] = −[g, f ], and [αf + βg, h] = α[f, h] + β[g, h] for all f , g

and h in k[u]2 and all α and β in k.

We define a map det : k[u]32 - k as follows: if G = (G1, G2, G3) is an

element of k[u]32, with Gi = gi,3u
2 + gi,2u+ gi,1 for 1 ≤ i ≤ 3, then we set

det(G) := det(gi,j).

We also define a map Π : k[u]32 - k[u] by

Π(G1, G2, G3) := G1G2G3.

If fX is the hyperelliptic polynomial of a curve X of genus two, then Π−1(fX)

is the set of ordered factorizations of fX into three polynomials of degree at

most two. Note that every such factorization is comprised of either three

quadratics or two quadratics and one linear polynomial. Henceforward, we

adopt the convention that linear polynomials are viewed as quadratics with

one root “at infinity”. Each element of Π−1(fX) therefore represents a par-

tition of the Weierstrass points of X into pairs, and hence specifies a (2, 2)-

subgroup of JX [2].

Definition 8.2.1. Let H denote the set of all hyperelliptic polynomials of

genus two curves over k:

H := {f ∈ k[u] : deg f ∈ {5, 6}, f is squarefree }.
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We define the set of quadratic splittings to be

S := (Π−1(H))/ ∼,

where ∼ is the equivalence relation defined by

(G1, G2, G3) ∼ (G2, G3, G1) ∼ (G3, G1, G2)

and

(G1, G2, G3) ∼ (αG1, βG2, γG3)

for all α, β and γ in k× such that αβγ = 1. We denote the image of an

element G in S by [G].

Proposition 8.2.2. The maps Π : k[u]32 → k[u] and det : k[u]32 → k induce

well-defined maps

Π : S - H

and

det : S - k.

Proof. Checking the compatibility of Π and det with the equivalence relations

for quadratic splittings is an exercise in elementary algebra.

For each polynomial f in H, we define the set of quadratic splittings of f

to be Sf := Π−1(f). Each quadratic splitting G is an element of SΠ(G); thus

the set S of all quadratic splittings may be viewed as a family of disjoint sets

Sf parametrised by H.

We define an involution ν : S → S called negation by

ν([(G1, G2, G3)]) = [(G1, G3, G2)];

we call ν(G) the negative of G. Clearly Π(ν(G)) = Π(G), so negation sta-

bilises each subset Sf of S. The quotient of Sf by 〈ν〉 is denoted |Sf |. If G

is a quadratic splitting of f , then we denote its image in |Sf | by |G|, and

call |G| an unsigned quadratic splitting of f . No quadratic splitting is its own
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negative, so every unsigned quadratic splitting corresponds to precisely two

quadratic splittings.

Quadratic splittings, signed and unsigned, are the fundamental data

structures of the remainder of this document. We will see that the unsigned

quadratic splittings of fX are in bijection with the rational (2, 2)-subgroups

of JX [2], while the quadratic splittings of fX specify rational (2, 2)-isogenies

from JX to principally polarised abelian surfaces.

Proposition 8.2.3. Let X : v2 = fX(u) be a curve of genus two. The

rational (2, 2)-subgroups of JX [2] are in bijection with the unsigned quadratic

splittings of fX .

Proof. Each (2, 2)-subgroup R of JX [2] has three nonzero elements P1, P2 and

P3; each element Pi corresponds to a quadratic factor GPi
of fX , which is

unique up to scalar multiples. Lemma 8.1.4 implies R is 2-Weil isotropic

if and only if the polynomials GPi
are pairwise coprime, if and only if

GP1GP2GP3 = cfX for some c in k×; taking c = 1 (or dividing GP3 by

c), we have a uniquely determined pair [(GP1 , GP2 , GP3)], [(GP1 , GP3 , GP2)] of

quadratic splittings of fX , which are each other’s negatives; that is, we have

a uniquely determined unsigned quadratic splitting |[(GP1 , GP2 , GP3)]|.

Each quadratic splitting therefore specifies the kernel of an isogeny to a

principally polarised abelian surface, which may be either the Jacobian of a

genus two curve or the product of two elliptic curves. In fact, the type of

the codomain of the isogeny may be deduced from the determinant of the

quadratic splitting.

Definition 8.2.4. Suppose G is a quadratic splitting. If det(G) = 0, then we

say G is singular; otherwise, we say G is nonsingular. We denote the set of

nonsingular quadratic splittings by Sns, and the set of nonsingular quadratic

splittings of f by Sns
f .

We will see in §8.3 that singular quadratic splittings specify isogenies

to products of elliptic curves. In §8.4, we show that nonsingular quadratic

splittings specify (2, 2)-isogenies to Jacobians.



CHAPTER 8. RICHELOT CORRESPONDENCES 118

It is easily verified that Sns is closed under negation: for all quadratic

splittings G we have det(ν(G)) = −(det(G)), so det(G) 6= 0 if and only if

det(ν(G)) 6= 0. Further, Π(ν(G)) = Π(G), so Sns
f is closed under negation

for each f in H.

Example 8.2.5. Let k = F83, and let X be the curve of genus two over k

defined by

X : v2 = fX(u) = 24u6 + 61u5 + 48u4 + 64u3 + 14u2 + 65u+ 21.

Let
g1 = 24u2 + 52u+ 74

g2 = u2 + 6u+ 5 = (u+ 1)(u+ 5)

g3 = u2 + 23u+ 22 = (u+ 1)(u+ 22)

g4 = u2 + 46u+ 45 = (u+ 1)(u+ 45)

g5 = u2 + 27u+ 27 = (u+ 5)(u+ 22)

g6 = u2 + 50u+ 59 = (u+ 5)(u+ 45), and

g7 = u2 + 67u+ 77 = (u+ 22)(u+ 45).

The set of quadratic splittings of fX is

SfX
=





[(g1, g2, g7)], [(g1, g7, g2)],

[(g1, g3, g6)], [(g1, g6, g3)],

[(g1, g4, g5)], [(g1, g5, g4)]




.

Computing determinants, we find

det([(g1, g2, g7)]) = 0, det([(g1, g7, g2)]) = 0,

det([(g1, g3, g6)]) = 66, det([(g1, g6, g3)]) = −66,

det([(g1, g4, g5)]) = 71, det([(g1, g5, g4)]) = −71.

Therefore [(g1, g2, g7)] and [(g1, g7, g2)] are singular, and

Sns
fX

= {[(g1, g3, g6)], [(g1, g6, g3)], [(g1, g4, g5)], [(g1, g5, g4)]} .
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8.3 Singular quadratic splittings

By definition, the determinant of a quadratic splitting G = [(G1, G2, G3)]

vanishes precisely when the polynomials G1, G2 and G3 are k-linearly depen-

dent. As this is a rather special situation, it is natural to ask is what this

implies for the (2, 2)-subgroup specified by G. We will see that G is singular

precisely when G specifies the kernel of a (2, 2)-isogeny to a product of ellip-

tic curves. Further, a linear dependency between G1, G2 and G3 allows us

to explicitly construct the elliptic curves (cf. Flynn and Cassels [11, §14.1]).
Let X be a curve of genus two with an affine plane model X : v2 = fX(u),

and suppose G = [(G1, G2, G3)] is a singular quadratic splitting of fX . Since

det(G) = 0, the polynomials G1, G2 and G3 are k-linearly dependent.

Since G1 and G2 are elements of k[u]2, we may construct a pair of linear

polynomials x1 = (u − s1) and x2 = (u − s2), together with elements a1,1,

a1,2, a2,1 and a2,2 of k such that G1 = a1,1x
2
1 +a1,2x

2
2 and G2 = a2,1x

2
1 +a2,2x

2
2.

To see that x1 and x2 exist, consider the polynomial gα = G1 +αG2, for α in

k: the discriminant of gα is a quadratic in α, with two distinct roots α1 and

α2. Up to units, we have x2
1 = G1 + α1G2 and x2

2 = G1 + α2G2. Now G3 is

a linear combination of G1 and G2, hence a linear combination of x2
1 and x2

2;

so there exist a3,1 and a3,2 in k such that G3 = a3,1x
2
1 + a3,2x

2
2.

Given these expressions for G1, G2 and G3 in terms of x1 and x2, we may

write our model of X in the form

X : v2 = G1G2G3 =
3∏

i=1

(ai,1x
2
1 + ai,2x

2
2).

If E1 and E2 are the two (possibly identical) curves of genus one defined by

E1 : v2 =
3∏

i=1

(ai,1u+ ai,2) and E2 : v2 =
3∏

i=1

(ai,1 + ai,2u),

then there are distinct coverings ψ1 : X → E1 and ψ2 : X → E2 of degree

two, defined by

ψ:(u, v) 7→ ((x1/x2)
2, v/x3

2) and ψ2 : (u, v) 7→ ((x2/x1)
2, v/x3

1),
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respectively. The following proposition shows that JX is isogenous to the

product JE1 × JE2 .

Proposition 8.3.1. Let X be a curve of genus two. If there exists a singular

quadratic splitting G of fX , then JX is (2, 2)-isogenous to a product of elliptic

curves.

Proof. Given X and G, construct the curves E1 and E2 and covers ψ1 : X →
E1 and ψ2 : X → E2 as in the discussion above. The abelian surface JX

has one-dimensional abelian subvarieties ψ∗
1(JE1) and ψ∗

2(JE2), so JX is not

simple; therefore, JX is a product of elliptic curves.

We have homomorphisms (ψ1)∗ : JX → JE1 and (ψ2)∗ : JX → JE2 , so the

elliptic curves JE1 and JE2 are isogeny factors of JX . The two-torsion sub-

group JE1 [2] of E1 is generated by differences of the points Pi = (−ai,2/ai,1, 0)

for 1 ≤ i ≤ 3. Now, ψ−1
1 (Pi) = {(ri, 0), (r

′
i, 0)}, where ri and r′i are the roots

of the polynomial Gi. Therefore, the element [(ri, 0) − (rj, 0)] of JX [2] maps

to [Pi − Pj] in JE1 [2]; this image is zero if and only if i = j. The same argu-

ment holds for (ψ2)∗; so the kernel of the map (ψ1)∗ × (ψ2)∗ : JX → E1 ×E2

is precisely the subgroup specified by |G|.

The (2, 2)-subgroup of JX [2] specified by |G| is the image in JX of both

JE1 [2] and JE2 [2]. Therefore, JX is the product of JE1 and JE2 , glued along

their two-torsion subgroups — which are necessarily isomorphic.

Example 8.3.2. Let k and X be as in Example 8.2.5: that is, k = F83, and

X : v2 = fX(u) = 24u6 + 61u5 + 48u4 + 64u3 + 14u2 + 65u+ 21.

Recall that the splitting

G := [(g1, g2, g7)] =
[
(24u2 + 52u+ 74, u2 + 6u+ 5, u2 + 67u+ 77)

]

of fX is singular; we find g1 = −33g6 − 26g7. Let x1 := (u − 1) and x2 :=

(u + 2); then g2 = 55x2
1 + 29x2

2 and g7 = 31x2
1 + 53x2

2, so g1 = 35x2
1 + 72x2

2.
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Therefore, let E1 and E2 be the curves of genus one defined by

E1 : v2 = (72 + 35u)(29 + 55u)(53 + 31u)

= 81u3 + 29u2 + 55u+ 25

and
E2 : v2 = (35 + 72u)(55 + 29u)(31 + 53u)

= 25u3 + 55u2 + 29u+ 81;

we have covers ψ1 : X → E1 and ψ2 : X → E2 defined by

ψ1(u, v) = (((u− 1)/(u+ 2))2, v/(u+ 2))

and

ψ2(u, v) = (((u+ 2)/(u− 1))2, v/(u− 1)),

and hence an isogeny (ψ1 × ψ2)∗ : JX → JE1 × JE2 .

8.4 Richelot correspondences

We now turn our attention to nonsingular quadratic splittings. For every

nonsingular quadratic splitting, we construct a (2, 2)-isogeny of Jacobians

of genus two curves. The construction of the isogenous Jacobian is due to

Richelot [51, 50]. To express Richelot’s construction in terms of quadratic

splittings, we define the Richelot operator.

Definition 8.4.1. We define the Richelot operator

R : {G ∈ k[u]32 : det(G) 6= 0} - k[u]32

by

R((G1, G2, G3)) := (δ[G2, G3], δ[G3, G1], δ[G1, G2]),

where δ = (det(G1, G2, G3))
−1.

The following series of results shows that our Richelot operator induces

an involution on nonsingular quadratic splittings.
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Lemma 8.4.2. Suppose G1, G2, and G3 are polynomials in k[u]2, such that

det(G1, G2, G3) 6= 0 and Π(G1, G2, G3) is a polynomial of degree five or six.

Then Π(R((G1, G2, G3))) is a squarefree polynomial of degree five or six.

Proof. Let (H1, H2, H3) = R((G1, G2, G3)). Comparing the discriminant of

H1 with the resultant of G2 and G3, we find that H1 is squarefree; similarly,

H2 and H3 are squarefree. Comparing the resultant of H1 and H2 with the

discriminant of G3, we find that H1 and H2 are coprime; similarly, H3 is

coprime to H2 and H1. Hence Π(R((G1, G2, G3))) = H1H2H3 is squarefree.

It remains to check that the degree of H1H2H3 is five or six — that is, that at

most one of the Hi has degree less than two. It is easy to see that [G1, G2] is

constant if and only if G1 = G2, which contradicts det(G1, G2, G3) 6= 0. Thus

we must show that at most one of the Hi is linear. The bracket is k-bilinear,

so it is enough to check the case where G1, G2 and G3 are monic. If one

of the Gi is linear, then two of the Hj are brackets of linear and quadratic

polynomials, which must be quadratic: [u+c, u2+au+b] = u2+2cu+(ac−b).
Therefore, we may suppose that G1, G2 and G3 are monic quadratics. If ai

denotes the coefficient of u in Gi, then the coefficients of u2 in H1 and H2

are a3 − a2 and a1 − a3 respectively. Therefore, if H1 and H2 are both linear,

then a1 = a2 = a3; but this contradicts det(G1, G2, G3) 6= 0. Hence H1H2H3

is a squarefree polynomial of degree five or six.

Lemma 8.4.3. Suppose G1, G2, and G3 are polynomials in k[u]2, such that

det(G1, G2, G3) 6= 0 and Π(G1, G2, G3) is a polynomial of degree five or six.

Let (H1, H2, H3) = R((G1, G2, G3)). The following identities hold:

1. R((αG1, βG2, γG3)) = (α−1H1, β
−1H2, γ

−1H3) for all α, β, γ ∈ k×;

2. R((G2, G3, G1)) = (H2, H3, H1) and R((G3, G1, G2)) = (H3, H1, H2);

3. R((H1, H2, H3)) = (G1, G2, G3);

4. det(H1, H2, H3) = 2/ det(G1, G2, G3); and

5.
∑3

i=1Gi(u1)Hi(u2) + (u1 − u2)
2 = 0.

Proof. Each identity is readily verified by explicit computation.
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We are now ready to prove that the Richelot operator induces an involu-

tion on the set of nonsingular quadratic splittings.

Proposition 8.4.4. The Richelot operator induces a well-defined involution

R(·) : Sns - Sns

on nonsingular quadratic splittings.

Proof. Suppose G is a nonsingular quadratic splitting; choose a representa-

tive (G1, G2, G3) in k[u]32 for G. By Lemma 8.4.2, Π(R((G1, G2, G3))) is in H,

so [R((G1, G2, G3))] is a quadratic splitting. We check that [R((G1, G2, G3))]

is independent of the choice of representative (G1, G2, G3) for G. For no-

tational convenience, set (H1, H2, H3) = R((G1, G2, G3)). Identity (1) of

Lemma 8.4.3 imples that for all α, β and γ in k such that αβγ = 1, we have

[R((αG1, βG2, γG3))] = [(α−1H1, β
−1H2, γ

−1H3)]

= [(H1, H2, H3)]

= [R((G1, G2, G3))],

since det(α−1H1, β
−1H2, γ

−1H3) = det(H1, H2, H3); identity (2) of Lemma

8.4.3 implies [R((G2, G3, G1))] = [R((G1, G2, G3))]. Hence the Richelot op-

erator takes representatives of the same splitting to representatives of the

same splitting. Identity (4) of Lemma 8.4.3 shows that [R((G1, G2, G3))] is

nonsingular, so we have a well-defined map R(·) : Sns - Sns; identity (3)

of Lemma 8.4.3 shows that R(R(G)) = G, so R(·) is in fact an involution

on Sns.

Remark 8.4.5. The Richelot operator does not induce a well-defined map on

singular quadratic splittings, since it is not defined for their representatives

in k[u]32.

Definition 8.4.6. Let X : v2 = fX(u) be a curve of genus two. For each

nonsingular quadratic splitting G of fX , we define XG to be the curve given

by

XG : v2 = fXG
(u) := Π(R(G)).
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Lemma 8.4.2 implies that XG is a curve of genus two. Observe that R(G)

is a nonsingular quadratic splitting of fXG
, and that (XG)R(G) = X.

We may combine Lemma 8.4.2 with the fifth identity of Lemma 8.4.3

to produce a correspondence on X ×XG. Let (G1, G2, G3) be a repre-

sentative in k[u]32 for G, let (H1, H2, H3) = R((G1, G2, G3)), and let F =

G1(u1)H1(u2) +G2(u1)H2(u2). The last identity of Lemma 8.4.3 implies

fX(u1)fXG
(u2) ≡ G1(u1)

2H1(u2)
2(u1 − u2)

2 (mod F ).

Thus on X ×XG we have

V (F ) = V (F, v2
1v

2
2 − fX(u1)fXG

(u2))

= V (F, v2
1v

2
2 −G1(u1)

2H1(u2)
2(u1 − u2)

2)

= C + C−,

where

C = V (F, v1v2 −G1(u1)H1(u2)(u1 − u2))

and

C− = V (F, v1v2 +G1(u1)H1(u2)(u1 − u2)) .

Note that V (F ) ≈ 0, since it is the pullback via hX×XG
of the correspondence

V (F ) on P1 × P1; so C− ≈ −C.

Now, let us compute the correspondence pairing on C and C−. First,

〈C,C−〉 = 8 − C.C−, and direct calculation shows that C.C− = 16, so

〈
C,C−〉 = −8.

Now 〈C,C〉 = −〈C,C−〉 = 〈C−, C−〉, so

〈C,C〉 =
〈
C−, C−〉 = 8.

These pairing values will be useful in distinguishing the homomorphic equiv-

alence classes of correspondences on X ×XG constructed in such a way.

Definition 8.4.7. Let X be a curve of genus two, and let G be a nonsingular
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quadratic splitting of fX . For each representative (G1, G2, G3) in k[u]32 for G,

we define a correspondence C(G1,G2,G3) on X ×XG by

C(G1,G2,G3) := V

(
G1(u1)H1(u2) +G2(u1)H2(u2),

v1v2 −G1(u1)H1(u2)(u1 − u2)

)
,

where (H1, H2, H3) = R((G1, G2, G3)). We say that C(G1,G2,G3) is a Richelot

correspondence for G.

Suppose G = [(G1, G2, G3)] is a nonsingular quadratic splitting. Now

C(G1,G2,G3) 6= C(G2,G3,G1), so we cannot associate a unique Richelot corre-

spondence to G. The following proposition shows that all of the Richelot

correspondences for G are in the same homomorphic equivalence class; hence

we may associate to G a unique homomorphism from JX to JXG
.

Proposition 8.4.8. If G is a nonsingular quadratic splitting, then all of the

Richelot correspondences for G are homomorphically equivalent.

Proof. Let (G1, G2, G3) be a representative in k[u]32 for G. The Richelot

correspondence C(G1,G2,G3) is defined by

C(G1,G2,G3) = V

(
G1(u1)H1(u2) +G2(u1)H2(u2),

v1v2 −G1(u1)H1(u2)(u1 − u2)

)
.

Take α, β and γ in k such that αβγ = 1; then [(αG1, βG2, γG3)] = G.

Now R((αG1, βG2, γG3)) = (α−1H1, β
−1H2, γ

−1H3), by the first identity of

Lemma 8.4.3, so

C(αG1,βG2,γG3) = V

(
αG1(u1)α

−1H1(u2) + βG2(u1)β
−1H2(u2),

v1v2 − αG1(u1)α
−1H1(u2)(u1 − u2)

)

= V

(
G1(u1)H1(u2) +G2(u1)H2(u2),

v1v2 −G1(u1)H1(u2)(u1 − u2)

)

= C(G1,G2,G3).

It remains to show that C(G1,G2,G3) = C(G2,G3,G1) = C(G3,G1,G2). Recall that
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〈
C(G1,G2,G3), C(G1,G2,G3)

〉
= 8. Direct calculation shows that

〈
C(G1,G2,G3), C(G2,G3,G1)

〉
= −8;

hence
〈
C(G1,G2,G3) − C(G2,G3,G1), C(G1,G2,G3) − C(G2,G3,G1)

〉
= 0, and therefore

C(G1,G2,G3) ≈ C(G2,G3,G1). Similarly, C(G1,G2,G3) ≈ C(G3,G1,G2).

Corollary 8.4.9. There is a well-defined homomorphism ρG : JX → JXG
for

every nonsingular quadratic splitting G of fX . If G = [(G1, G2, G3)], then

ρG = φC(G1,G2,G3)
.

Definition 8.4.10. If G is a nonsingular quadratic splitting, then we call

the homomorphism ρG of Corollary 8.4.9 the Richelot isogeny of G.

Of course, we must show that Richelot isogenies are indeed isogenies. The

following theorem shows that the kernel of a Richelot isogeny ρG is in fact

the (2, 2)-subgroup specified by the unsigned quadratic splitting |G|.

Theorem 8.4.11. Let X : v2 = fX(u) be a curve of genus two. If G is a

nonsingular quadratic splitting of fX , then ρG : JX → JXG
is a (2, 2)-isogeny,

and the kernel of ρG is the (2, 2)-subgroup specified by |G|. Further, ρG(JX [2])

is the (2, 2)-subgroup of JXG
specified by |R(G)|.

Proof. Fix a representative (G1, G2, G3) for G in k[u]32, and let i : XG → X ′
G

be the isomorphism defined by i(u, v) = (u, det(G)v). The homomorphism

i∗ ◦ ρG is identical to the classical Richelot isogeny of [11, §9.1, §9.2], and the

Richelot correspondence C(G1,G2,G3) is that of [11, §9.2] and [5, §3.3].

Proposition 8.4.12. If G is a nonsingular quadratic splitting, then ρG
† =

ρR(G) and ρν(G) = −ρG.

Proof. Suppose G = [(G1, G2, G3)], and set (H1, H2, H3) = R((G1, G2, G3)).

Now R((H1, H2, H3)) = (G1, G2, G3) by the third identity of Lemma 8.4.3,

so the Richelot correspondence for (H1, H2, H3) is defined by

C(H1,H2,H3) = V

(
H1(u1)G1(u2) +H2(u1)G2(u1),

v1v2 −H1(u1)G1(u2)(u1 − u2)

)
,
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which is clearly the transpose of C(G1,G2,G3); so ρH = ρG
† by Proposition

3.3.16. For the second assertion, note that ν(G) = [(G2, G1, G3)]. Direct

calculation shows that
〈
C(G1,G2,G3), C(G2,G1,G3)

〉
= −8, which implies

〈
C(G1,G2,G3) + C(G2,G1,G3), C(G1,G2,G3) + C(G2,G1,G3)

〉
= 0,

and thus C(G2,G1,G3) ≈ −C(G1,G2,G3); therefore ρν(G) = −ρG. Alternatively:

C(G1,G2,G3) + C(G2,G1,G3) = V (G1(u1)H1(u2) +G2(u1)H2(u2)), which is a ho-

morphically trivial correspondence, hence ρν(G) = −ρG.

Example 8.4.13. As in Examples 8.2.5 and 8.3.2, let k = F83, and X the

curve of genus two over k defined by

X : v2 = fX(u) = 24u6 + 61u5 + 48u4 + 64u3 + 14u2 + 65u+ 21.

Let

G = (24u2 + 52u+ 74, u2 + 23u+ 22, u2 + 50u+ 59);

we saw in Example 8.2.5 that [G] is a nonsingular quadratic splitting of fX .

Set (H1, H2, H3) = R((G1, G2, G3)); then

(H1, H2, H3) = (26u2 + 19u+ 20, 35u2 + 13u+ 3, 5u2 + 29u+ 16).

If X[G] is the curve is defined by

X[G] : v2 = Π(R(G)) = 68u6 + 31u5 + 51u4 + 48u3 + 80u2 + 6u+ 47,

then there is a Richelot isogeny ρG : JX → JX[G]
induced by the Richelot

correspondence C(G1,G2,G3) on X ×XG. Note that C(G1,G2,G3) is equal to

V

(
u2

1u
2
2 + 39u2

1u2 + 3u2
1 + 50u1u

2
2 + 58u1u2 + 77u1 + 9u2

2 + 60u2 + 56,

v1v2 − 43(u2
1 + 16u+ 10)(u2

2 + 55u+ 71)(u1 − u2)

)
.

A particularly interesting feature of Richelot isogenies is that multipli-

cation by two on Jacobians of genus two curves splits into a composition of

Richelot isogenies. The following corollary makes this precise.
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Corollary 8.4.14. Let ρG : JX → JXG
be a Richelot isogeny. The isogenies

ρG and ρG
† : JXG

→ JX factor multiplication-by-two:

ρG
† ◦ ρG = [2]JX

and ρG ◦ ρG
† = [2]JXG

.

Proof. The kernel of ρ†G is the image of the 2-torsion of JX under ρG, by

Theorem 8.4.11; so the kernel of ρG
† ◦ ρG contains JX [2]. On the other hand,

ρG and ρG
† are both isogenies of degree four, so their composition is an

isogeny of degree sixteen. But JX [2] is a group of order sixteen, so it must be

the whole kernel; thus ρG
† ◦ ρG = [2]JX

◦ α, for some automorphism α of X.

On the other hand, we know that ρG is the induced homomorphism of some

Richelot correspondence C for G, and the self-pairing of C is 8. Therefore

Tr(ρG
† ◦ ρG) = 8 by Theorem 5.3.3; but Tr(2α) = 2Tr(α), so Tr(α) = 4. The

norm NEnd(JX)/Z(α) of α is one, since α is an automorphism; we conclude

that α = 1. Therefore ρG
† ◦ ρG = [2]JX

. Similarly, ρG ◦ ρ† = [2]JXG
.

The number of quadratic splittings of the hyperelliptic polynomial fX of

some curve X of genus two is determined by the number and the degree of the

k-irreducible factors of fX . If fX has any irreducible factors of degree greater

than two, then (by definition) there can be no quadratic splittings of fX de-

fined over k. Assume, then, that fX is a product of linear and quadratic

factors, with 2r linear factors over k. Then there are (2r)!/(r!2r) distinct

factorizations of fX into quadratics (up to units) over k, and so there are

(2r)!/(r!2r) unsigned quadratic splittings. Every unsigned quadratic split-

ting corresponds to two quadratic splittings, so there must be (2r)!/(r!2r−1)

quadratic splittings of fX . Table 8.1 describes the possible numbers of split-

tings.

8.5 Richelot endomorphisms

Suppose that we have a hyperelliptic curve X of genus two and a nonsingular

quadratic splitting G of fX such that there is an isomorphism i : XG → X.

Corollary 8.4.14 tells us that the endomorphism i∗ ◦ ρG splits multiplication-

by-two on JX ; thus the subring Z[i∗ ◦ρG] of End(JX) is isomorphic to Z[
√

2].
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Table 8.1: The number of quadratic splittings of fX

Degrees of irreducible #SfX
#|SfX

| #(2, 2)-subgroups
factors of fX over k of JX [2]

2, 2, 2 2 1 1
2, 2, 1, 1 2 1 1

2, 1, 1, 1, 1 6 3 3
1, 1, 1, 1, 1, 1 30 15 15

(other) 0 0 0

The theory of Richelot endomorphisms has been thoroughly treated by

Bending in his PhD thesis [3]. Bending constructs a family of curves of

genus two such that the Jacobian of every member of the family has real

multiplication by Z[
√

2]. Further, he proves that every curve defined over

the complex numbers whose Jacobian has real multiplication by Z[
√

2] is

isomorphic to a member of this family. We state Bending’s theorem below;

see [3] for proof and applications.

Theorem 8.5.1 (Bending [3, Theorem 4.1]). Let X be a curve of genus

two over a subfield k of the complex numbers. Suppose that there exists an

endomorphism ρ of JX such that ρ† = ρ and ρ2 − [2] = 0. Then there exists

some A and Q in k and P and ∆ in k×, such that X is isomorphic over k

to the curve XP,Q,A,∆ defined by

v2 = ∆
3∏

i=1

Gi(u)

with

Gi(u) := (u2 − αiu+ Pα2
i +Qαi + 4P ),

where α1, α2 and α3 are defined by

3∏

i=1

(u− αi) = u3 + Au2 +
Q(PA−Q) + 4P 2 + 1

P 2
u+ 4(A− Q

P
).

Further, if ψ : X → XP,Q,A,∆ is the isomorphism and G = [(G1, G2, G3)],
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then ψρψ−1 = ±ι−1ρG, where ι : XP,Q,A,∆ → (XP,Q,A,∆)G is the isomorphism

defined by

ι(u, v) =

(
2

u
,
4 det(G)v

u3

)
.

Conversely, if k is a field of characteristic not two, then for any A and

Q in k and P and ∆ in k× the curve XP,Q,A,∆ has an endomorphism acting

as
√

2, given by ι−1 ◦ ρG.

Cassels and Flynn give a brief construction of Richelot endomorphisms

in [11]. If G = [(G1, G2, G3)] is a nonsingular quadratic splitting of fX fixed

by the Richelot operator (that is, R(G) = G), then XG = X, so ρG is

an endomorphism of JX splitting [2]JX
; thus JX has real multiplication by

Z[
√

2]. Cassels & Flynn derive conditions on the coefficients of G1, G2 and

G3 sufficient for this to occur: see [11, §15.1] for details.

Finally, Mestre gives a two-dimensional family of curves of genus two

whose Jacobians have real multiplication by Z[
√

2] in [44, page 204]. These

endomorphisms are not constructed as Richelot isogenies, but rather using

the construction of §7.5 with an elliptic curve isogeny of degree 8.

8.6 Towards generalised Richelot isogenies

In his PhD thesis [36, §4.3], Kux describes a generalisation of the Richelot

correspondence to hyperelliptic curves of higher genus. As in Richelot’s con-

struction, the starting point is a hyperelliptic curve X, defined by an affine

plane model v2 = fX(u), together with a factorization fX = G1G2G3 of the

hyperelliptic polynomial of X, where the Gi are poloynomials of equal de-

gree. For such a factorization to exist, we must have deg fX ≡ 0 (mod 3);

thus we immediately see that this construction only exists for curves X of

genus gX ≡ 2 (mod 3). In particular, the first genus higher than two for

which this construction might yield a generalised Richelot isogeny is five.

Kux derives a condition for the existence of a hyperelliptic curve XG

with an affine plane model v2 = fXG
(u) = H1H2H3(u) (where the Hi are

polynomials of the same degree as the Gj), such that the correspondence
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defined by

C = V (G1(u1)H1(u2) +G2(u1)H2(u2))

on P1 × P1 lifts to a correspondence on X × XG that has components that

are not homomorphically trivial. Briefly, the condition is that there exist a

polynomial P in k[u1, u2] such that

G1(u1)H1(u2) +G2(u1)H2(u2) +G3(u1)H3(u2) + P (u1, u2)
2 = 0;

this is an analogue of the final identity of Lemma 8.4.3. As in §8.4, we have

h∗X×XG
(C) = C +C−, where C is the correspondence on X ×XG defined by

C = V

(
G1(u1)H1(u2) +G2(u1)H2(u2),

v1v2 −G1(u1)H1(u2)P1(u1, u2),

)

and C− ≈ −C.

On first inspection Kux’s construction seems a natural generalisation of

Richelot’s. However, there is a crucial difference from the genus two case:

the kernel of φC is not 2-Weil-isotropic, so φC is not an isogeny of principally

polarised abelian varieties. The subgroup JX [2]∩ kerφC is generated by two

elements (represented by the divisors cut out by G1 and G2, say.) If the

genus of X is greater than two, then this subgroup cannot be maximally

isotropic with respect to the 2-Weil pairing: it is simply not large enough. It

follows that the homomorphism φC cannot split the multiplication-by-2 map

on End(JX) or End(JXG
). In fact, in the cases where Kux’s criterion applies,

JX is reducible, with a factor isomorphic to the Jacobian JX of some curve X

of genus two. Kux’s correspondence C on X ×XG induces a Richelot isogeny

from JX to JX
G
, for some quadratic splitting G of fX ; the homomorphism

φC extends this Richelot isogeny trivially to the rest of JX .

As a first source of examples for this generalisation, Kux considers curves

X : v2 = G1G2G3(u) where the Gi are palindromic polynomials. These

curves have an involution ι : X → X defined by

iota : (u, v) 7→ (1/u, v/ugX+1).
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The Jacobian of any such X is reducible. The endomorphism ι∗ is clearly

not the identity, so ι∗ − [1] 6= 0; further, ι is not the hyperelliptic involution

on X, so ι∗ + [1] 6= 0. However, ι2∗ = [1], so (ι + [1])(ι∗ − [1]) = 0. This

implies that neither (ι + [1]) nor (ι∗ − [1]) is an isogeny, so the connected

components of their kernels are positive-dimensional abelian subvarieties of

JX ; hence JX is reducible.

A proper generalisation of Richelot correspondences to curves of higher

genus should require the kernel of the induced homomorphism to be a max-

imal 2-Weil isotropic subgroup of the 2-torsion: then the induced homomor-

phism will split multiplication-by-two. In order to construct such homomor-

phisms from a hyperelliptic Jacobian JX , one should consider factorizations

fX =

gX+1∏

i=1

Gi,

where each polynomial Gi is quadratic. Such a factorization specifies a maxi-

mal 2-Weil isotropic subgroup of JX [2], and hence the kernel of an isogeny to

a principally polarised abelian variety of dimension gX . However, when the

genus of X is greater than three, there is no reason to expect the codomain

of such an isogeny to be the Jacobian of a curve (see the footnote on page

104 of [11]); thus the isogeny may not be induced by any correspondence.

For generic curves of genus three, recent work of Lehavi and Ritzenthaler

[41] provides an algorithm which, given a curve X and a maximal 2-Weil

isotropic subgroup R of JX [2], constructs a curve Y such that there exists

an isogeny ρ : JX → JY with kernel R. However, the geometric arguments

involved in the construction of [41] require a smooth plane quartic model of

X, and so do not appear to carry over to hyperelliptic curves of genus three.



Chapter 9

Richelot isogeny cycle

structures

In this chapter, we will use the theory of Richelot correspondences developed

in Chapter 8 to construct explicit isogeny cycles of Jacobian surfaces. These

generalise isogeny cycles of elliptic curves, which have a wide variety of appli-

cations. Satoh [53] and others have used them to compute canonical lifts of

curves over finite fields. Kohel [35] uses isogeny cycles to determine elliptic

curve endomorphism ring structure; Fouquet and Morain [20] use Kohel’s

techniques to improve the Schoof–Elkies–Atkin point counting algorithm de-

scribed in [55], [54], [1], [2], [47], and [18].

9.1 Isogeny cycles and endomorphism rings

Consider a sequence of n+ 1 Jacobians, connected by a sequence of n isoge-

nies, such that the last Jacobian is equal to the first:

J0
ϕ1→ J1

ϕ2→ J2
ϕ3→ · · · ϕn−1→ Jn−1

ϕn→ Jn = J0.

We call such a sequence an isogeny cycle of length n. Composing the isogenies

in the cycle yields an endomorphism φ = ϕn ◦ · · · ◦ ϕ1 of J0. Similarly, we

may compose the isogenies to obtain an endomorphism of each Jacobian in

the cycle: ϕi+1 ◦ · · · ◦ϕn ◦ϕ1 ◦ · · ·ϕi is an endomorphism of Ji for 1 ≤ i ≤ n.

133
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For the remainder of this section, we fix a prime l. If each isogeny ϕi

splits [l]Ji
, in the sense that ϕi

† ◦ ϕi = [l]Ji−1
, and if the kernel of ϕi+1 ◦ ϕi is

a maximal l2-Weil isotropic subgroup of Ji−1 for each i, then the kernel of φ

is a maximal ln-Weil isotropic subgroup of J0, and φ splits [ln]J0 .

Each isogeny ϕi corresponds to an ideal L over (l) in End(Ji−1). If the

image of Ji[l] under ϕi intersects trivially with the kernel of ϕi+1 for all i,

then the endomorphism φ corresponds to the ideal Ln. On the other hand,

endomorphisms correspond to principal ideals: thus Ln is principal, and the

order of L in the ideal class group of End(J0) divides n, where n is the

length of the cycle. If n is minimal — that is, if the cycle does not contain

a subsequence that is an isogeny cycle — then we may conclude that L has

order n in the ideal class group of End(J0), and that End(J0) contains the

ideal Ln. We may use n, together with the splitting behaviour of (l) in

End(J0), to identify the identify the ideal Ln.

More generally, we may have a sequence of isogenous Jacobians Ji such

that a cycle of length n appears, starting at Jd:

· · · → Jd+n−1
ϕd+n−→ Jd

ϕd+1−→ Jd+1
ϕd+2−→ · · · ϕd+n−→ Jd+n = Jd → · · ·

↗
J0

ϕ1→ · · · ϕd−1−→ Jd−1

Composing the isogenies in the cycle, we obtain an endomorphism φ =

ϕd+n ◦ · · · ◦ ϕd+1 dividing [ln]Jd
in End(Jd). We also have an endomorphism

φ′ = (ϕd ◦ · · · ◦ ϕ1)
† ◦φ◦ (ϕd ◦ · · · ◦ϕ1) of End(J0) such that the subring Z[φ′]

of End(J0) is isomorphic to the subring Z[mφ] of End(Jd), and thus the index

of End(J0) in End(Jd) is divisible by m, where m is Πd
i=1 deg(ϕi) deg(ϕi

†). In

particular, if each Ji is a Jacobian surface, and each ϕi is a Richelot isogeny,

then End(J0) has index 16d in End(Jd). In this way, we may compute the

local structure of End(Ji) at l for 1 ≤ i ≤ d+n. Combining this information

over all primes l, we may determine the integral closure of Z[F] in End(J0),

where F is the Frobenius endomorphism of J0. In fact, it suffices examine the

local structure at the (finite) set of primes dividing the conductor of Z[F,F†]

in the maximal order of End0(JX).
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Suppose that we are given a Jacobian J , and that we wish to determine

the endomorphism ring structure of J . First, we must compute End0(J); if

J = JX for some hyperelliptic curve X over a finite field, then this is done by

computing the zeta function of X. Next, we must compute the factorization

of the conductor of Z[F,F†] in the maximal order of End0(JX), to obtain

the set of primes l to be checked.1 For each l, we must then construct the

directed graph whose vertices are Jacobians J , with an edge from J to J ′ if

there is an isogeny ϕ : J → J ′ that splits [l]J . Finally, we search for cycles

in the graph, and deduce information about the l-structure of End(J) from

the cycles.

Constructing this isogeny graph requires that we be able to construct

the full set of isogenies splitting [l]J for any Jacobian J . For isogeny graphs

of elliptic curves, we may use the modular l-division polynomials Φl(j, j
′)

to construct l-isogenous elliptic curves — see [17] for a discussion of these

polynomials and their construction. The l-isogenies themselves may be con-

structed using the formulae of Vélu [63]; see also [18]. These methods are

generally not available for Jacobians of higher genus curves. However, for

Jacobians of curves of genus two, the theory of Richelot correspondences al-

lows us to compute the local information at the prime 2, giving a partial

determination of endomorphism ring structure.

9.2 Extensions of Richelot isogenies

Let ρG : JX → JXG
be a Richelot isogeny. The dual isogeny ρG

† : JXG
→ JX

of ρG is also a Richelot isogeny: by Proposition 8.4.12, we have ρG
† = ρR(G).

We also know that ρG
† ◦ ρR(G) = [2]JX

, a (2, 2, 2, 2)-isogeny. Now, R(G)

may not be the only nonsingular splitting of fXG
over k: according to Table

8.1, there are up to thirty distinct quadratic splittings of fXG
over k, each

corresponding to a distict Richelot isogeny from JXG
to another Jacobian

surface. We classify the Richelot isogenies from JXG
according to the abelian

invariants of the kernels of their compositions with ρG.

1Depending on the sizes of the discriminants of Z[F,F†] and OEnd0(JX), this step may
be a nontrivial exercise.
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Definition 9.2.1. Let ρ : JX1 → JX2 and φ : JX2 → JX3 be Richelot

isogenies, where X1, X2 and X3 are curves of genus two. Then φ ◦ ρ is either

a (4, 4)-isogeny, a (4, 2, 2)-isogeny or a (2, 2, 2, 2)-isogeny.

• If φ ◦ ρ is a (2, 2, 2, 2)-isogeny, then we say φ is a dual extension of ρ.

• If φ ◦ ρ is a (4, 2, 2)-isogeny, then we say φ is an acyclic extension of ρ.

• If φ ◦ ρ is a (4, 4)-isogeny, then we say φ is a cyclic extension of ρ.

It is instructive to compare composition of Richelot isogenies with com-

position of 2-isogenies of elliptic curves. Suppose φ1 : E0 → E1 and φ2 :

E1 → E2 are 2-isogenies of elliptic curves: φ2 ◦ φ1 is either a (2, 2)-isogeny

or a 4-isogeny. If φ2 ◦ φ1 is a (2, 2)-isogeny, then its kernel is the whole

of E0[2]; thus φ2 ◦ φ1 is isomorphic to [2]E0 , and φ2 is isomorphic to φ1
†.

Hence φ2 is a “dual” extension of φ1. If, on the other hand, φ2 ◦ φ1 is a

4-isogeny, then its kernel is a cyclic subgroup of E0[4]. The isogeny φ2 ◦ φ1

splits multiplication-by-4, since (φ2 ◦ φ1)
† ◦ (φ2 ◦ φ1) = [4]E0 .

If φ is a cylic extension of ρ, then the kernel of φ◦ρ is a (4, 4)-subgroup of

JX [4] — that is, a maximal 4-Weil isotropic subgroup. Similarly, composing

a cyclic extension of φ with φ ◦ ρ gives an (8, 8)-isogeny, and a chain of n

cyclic extensions gives a (2n, 2n)-isogeny.

We can describe the extension types for Richelot isogenies in terms of

quadratic splittings. Suppose that we have Richelot isogenies

JX
ρG- JXG

ρE- JY ,

where G = [(G1, G2, G3)] and and E = [(E1, E2, E3)] are nonsingular split-

tings of fX and fXG
, respectively. Suppose also that R(G) = [(H1, H2, H3)].

If ρE is a dual extension of ρG, then kerφ = ρ(JX [2]), so |E| = |R(G)|;
hence Π(R(E)) = Π(G) = fX , so Y = X. Therefore, either E = R(G)

and ρE = ρG
† (so ρE ◦ ρG = [2]JX

) or E = ν(R(G)) and ρE = −ρG
† (so

ρE ◦ ρG = [−2]JX
).

If ρE is an acyclic extension of ρG, then (ker ρE)∩ρG(JX [2]) ∼= Z/2Z. The

intersection is generated by a single element of JXG
[2], which is specified by
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Ei and Hj for some pair of indices i and j; therefore Ei = αHj for precisely

one pair of indices i and j, and some α in k×. Note that there are six (2, 2)-

subgroups of JXG
[2] that intersect with ρG(JX [2]) in this way, though they

may not be k-rational.

If ρE is a cyclic extension of ρG, then (ker ρE)∩ρG(JX [2]) = 0JX
. There are

eight (2, 2)-subgroups of JXG
[2] that intersect trivially with ker ρE, though

they may not be k-rational. In terms of the splittings E and R(G), we have

Ei 6= αHj for all pairs of indices i and j, and all α in k×.

Note that given a Richelot isogeny ρG : JX → JXG
defined over k, the

dual extensions φ = ±ρ† are always defined over k, since they correspond to

the splittings R(G) and ν(R(G)). According to Table 8.1, if there are any

fewer than four linear factors of fXG
over k then only the dual extensions

of ρG are defined over k. If fXG
has four linear factors, then we have six

extensions of ρG over k: two are dual and four are acyclic. If fXG
has six

linear factors, then all thirty extensions are defined over k: two dual, twelve

acyclic, and sixteen cyclic. In particular, k-rational cyclic extensions of ρG

exist only when fXG
is completely reducible over k.

Let ρG : JX → JXG
be the Richelot isogeny of some nonsingular splitting

G of fX ; we will construct the set of cyclic extensions of ρG. Assume that

fXG
= ΠR(G) splits completely over k — otherwise, there are no cyclic

extensions of ρG over k. There is a factorization fXG
=
∏6

i=1 Li of fXG
over

k, with each of the Li linear2, such that

R(G) = [(L1L2, L3L4, L5L6)].

The symmetric group Sym6 acts on the set {Li : 1 ≤ i ≤ 6} by σ(Li) := Lσ(i).

Now, the polynomials in any quadratic splitting of fXG
must must be formed

from products of the Li; therefore, if we set σ(αLiLj) = αLσ(i)Lσ(j) for all

i 6= j and α in k×, then set σ([(H1, H2, H3)]) := [(σ(H1), σ(H2), σ(H3))],

then the action extends naturally to SfXG
. Clearly every quadratic splitting

of fXG
may be obtained by the action of some element of Sym6 on R(G).

2If fXG
is a quintic, then we let one of the Li be a constant polynomial. By abuse of

a notion, we say that the root of the constant Li is ∞.
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The stabiliser of R(G) = [(L1L2, L3L4, L5L6)] is generated by the per-

mutations (1, 2), (3, 4) and (5, 6) (whose actions fix the polynomials L1L2,

L3L4 and L5L6, respectively), together with (1, 3, 5)(2, 4, 6) (which permutes

L1L2, L3L4 and L5L6, but does not change the splitting R(G)). Therefore,

we let S denote the stabiliser of R(G):3

S = 〈(1, 2), (3, 4), (5, 6), (1, 3, 5)(2, 4, 6)〉.

The quotient set Sym6/S acts on SfXG
, and therefore acts on the set

of Richelot isogenies from JXG
. The stabiliser S has order 24, so Sym6/S

is a set of 30 S-cosets. The extension type of ρσ(R(G)) as an extension of

ρG is completely determined by the S-coset of σ in Sym6. Table 9.1 lists

a representative σ of each S-coset, together with the type of ρσ(R(G)) as

an extension of ρG for any nonsingular quadratic splitting G. The coset

representatives are arranged in rows of two: if σ and τ are in the same row

of Table 9.1, then τ(R(G)) = ν(σ(R(G))) and ρσ(R(G)) = −ρτ(R(G)).

We use Table 9.1 to construct an algorithm which, given a quadratic split-

ting representing some (2, 2)-isogeny, constructs a set of quadratic splittings

representing the cyclic extensions of that isogeny. For our applications, we

need only one extension JXG
→ JY for each kernel (2, 2)-subgroup of JXG

; so

if we have constructed an extension ρH , we may omit the construction of its

negative −ρH = ρν(H). Therefore, we let

C :=

{
(1,2,3,4,5,6) , (2,3,4,5,6) , (1,3,6,4)(2,5) , (1,3,6,4,2,5) ,

(1,5,4,3,2) , (1,4,3)(2,6,5) , (1,5,3,2) , (1,5,3)

}
.

The set C contains coset representatives to construct one of each positive-

negative pair of cyclic extensions from R(G) — that is,

{σ(R(G)) : σ ∈ C} ∪ {ν(σ(R(G))) : σ ∈ C} = SfXG
,

and the union is disjoint.

3The reader familiar with wreath products may note that S = 〈(1, 2)〉o〈(1, 3, 5)(2, 4, 6)〉.
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Table 9.1: S-cosets and extension types

Coset representative (negative) Extension type

Id (3, 5)(4, 6) Dual
(1, 2, 4, 6, 3, 5) (2, 3, 5)(4, 6) Acyclic
(2, 4, 6, 3, 5) (1, 2, 3, 5)(4, 6) Acyclic
(1, 4, 2, 6, 5, 3) (1, 3)(2, 5, 4) Acyclic
(1, 6, 2) (1, 5, 6) Acyclic
(1, 3)(2, 6, 5, 4) (1, 6, 2, 3, 4, 5) Acyclic
(1, 6) (1, 5, 6, 2) Acyclic
(1, 2, 3, 4, 5, 6) (1, 6, 3, 4, 5, 2) Cyclic
(2, 3, 4, 5, 6) (1, 6, 3, 4, 5) Cyclic
(1, 3, 6, 4)(2, 5) (1, 4)(3, 6, 5) Cyclic
(1, 3, 6, 4, 2, 5) (1, 4, 2)(3, 6, 5) Cyclic
(1, 5, 4, 3, 2) (1, 4, 3, 2, 6, 5) Cyclic
(1, 4, 3)(2, 6, 5) (1, 5, 4, 3) Cyclic
(1, 5, 3, 2) (1, 2, 4)(3, 5, 6) Cyclic
(1, 5, 3) (2, 4)(3, 5, 6) Cyclic

Algorithm 9.2.2. Given a nonsingular quadratic splitting G, computes a

representative for each of the cyclic extensions of ρG, up to sign.

procedure CyclicExtensions(G)

[(H1, H2, H3)] := R(G);

if H1, H2 or H3 is irreducible then

return {};
end if ;

α1, α2 := Roots(H1, k);

α3, α4 := Roots(H2, k);

α5, α6 := Roots(H3, k);

c :=
∏3

i=1 LeadingCoefficient(Hi);

E := {};
for σ in C do

H ′
1 := (u− ασ(1))(u− ασ(2));

H ′
2 := (u− ασ(3))(u− ασ(4));

H ′
3 := (u− ασ(5))(u− ασ(6));
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E := E ∪ {[(cH ′
1, H

′
2, H

′
3)]};

end for;

return E;

end procedure;

Example 9.2.3. As in Examples 8.2.5, 8.3.2, and 8.4.13, suppose k = F83, and

let X be the curve of genus two over k defined by

X : v2 = fX(u) = 24u6 + 61u5 + 48u4 + 64u3 + 14u2 + 65u+ 21.

In Example 8.2.5, we noted that the splittings

G = [(24u2 + 52u+ 74, u2 + 23u+ 22, u2 + 50u+ 59)] and

G′ = [(24u2 + 52u+ 74, u2 + 46u+ 45, u2 + 27u+ 27)],

together with ν(G) and ν(G′), are nonsingular. Now, Π(R(G)) = fXG
is not

completely reducible over k, so ρG has no rational cyclic extensions over k.

On the other hand, the polynomials of

R(G′) =
[
(33u2 + 80u+ 23, 61u2 + 15u+ 8, 60u2 + 57u+ 22)

]

are all completely reducible over k, so ρG′ has cyclic extensions defined over

k. Applying Algorithm 9.2.2 (CyclicExtensions) to G′, we find that the

quadratic splittings

[(15u2 + 9u+ 29, u2 + 49u+ 24, u2 + 2)],

[(15u2 + 58u+ 31, u2 + 7u+ 76, u2 + 2)],

[(15u2 + 56u+ 36, u2 + 61u+ 34, u2 + 7u+ 76)],

[(15u2 + 9u+ 29, u2 + 79u+ 49, u2 + 53u+ 23)],

[(15u2 + 48u+ 13, u2 + 37u+ 3, u2 + 26u+ 74)],

[(15u2 + 23u+ 71, u2 + 18u+ 11, u2 + 19u+ 80)],

[(15u2 + 57u+ 45, u2 + 18u+ 11, u2 + 61u+ 34)], and

[(15u2 + 56u+ 36, u2 + 19u+ 80, u2 + 49u+ 24)],

together with their negatives, specify all of the cyclic extensions of ρG′ .
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9.3 Explicit isogeny cycles

Let X be a curve of genus two and JX its Jacobian. We will apply the

theory of Richelot isogenies and isogeny cycles to determine the structure

of End(JX) at the prime 2, by looking for cycles in its (2, 2)-isogeny graph.

For each Richelot isogeny ρ from JX , we conduct a breadth-first search [14,

§22.2] in the graph of cyclic extensions originating from ρ. We generate cyclic

extensions by recursively applying Algorithm 9.2.2 (CyclicExtensions);

as we traverse the graph, we keep a list of the absolute Igusa invariants [43,

page 325] of all of the Jacobians that we encounter. If we ever construct a

codomain Jacobian with invariants already in our list, then we have detected

a cycle.

Algorithm 9.3.1. Given a curveX of genus two over k, computes a sequence

L of sets of absolute Igusa invariants corresponding to Jacobians connected

by Richelot isogenies over k, with each isogeny a cyclic extension of its prede-

cessor, such that the sequence begins with the invariants of X and contains a

cycle (if no such sequence exists, then an empty sequence is returned). The

algorithm returns L, together with integers n and d, where n is the length of

the cycle and d is the index in the sequence (counting from zero) at which

the cycle begins.

procedure RichelotIsogenyCycles(X)

for G ∈ Sns
fX

do

Q := [ ( G, [AbsoluteIgusaInvariants(X)] ) ];

while Q 6= [ ] do

Let (G,L) be the first item of Q, and remove this item from Q;

I := AbsoluteIgusaInvariants(Curve(v2 − Π(R(G))));

if I ∈ L then // we have detected a cycle.

d := index of I in L (counting from zero);

n := #L− d;

return L, n, d;

end if ;

append I to L;

for H in CyclicExtensions(G) do
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if det(H) 6= 0 then // if H is nonsingular

append [(H,L)] to Q;

end if ;

end for;

end while;

end for;

return [ ], 0, 0; // No rational cycle exists.

end procedure;

Example 9.3.2. As in Examples 8.2.5, 8.3.2, 8.4.13 and 9.2.3, let k = F83,

and let X be the curve of genus two over k defined by

X : v2 = fX(u) = 24u6 + 61u5 + 48u4 + 64u3 + 14u2 + 65u+ 21.

Applied to X, Algorithm 9.3.1 (RichelotIsogenyCycles) detects a cycle

of length five, one Richelot isogeny away from JX . The Richelot isogeny

leading us to the cycle is ρG′ : JX → JXG′
, where G′ is defined in Example

9.2.3.

Example 9.3.3. Let k := F54 , and let w be a primitive element of k with

minimal polynomial x4−x2−x+2. Let X be the curve of genus two defined

by

X : v2 = fX(u) = u6 + w524u5 + w258u4 + w28u3 + w611u2 + w507u+ w505.

Computing the zeta function of X, we deduce that the characteristic poly-

nomial of the Frobenius endomorphism is χ(x) = x4 + 32x3 + 1166x2 +

20000x + 390625. The discriminant of Z[F,F†] is 216 · 3 · 52 · 173 · 251. Let

K = End0(JX) ∼= Q[x]/(χ(x)), and let K0 be the real subfield of K. Let

OK and OK0 denote the maximal orders of K and K0, respectively. The

discriminant of OK is 3 · 52 · 173 · 251, so the conductor of Z[F,F†] in OK

is 256 = 216: we need only check the prime 2, so the Richelot isogeny cycle

graph will completely determine the endomorphism ring of JX . The ideal

(2) remains prime in OK0 ; however, in OK we have (2) = P1P2, where

each prime Pi has order 40 in the class group of OK . Applied to X, Algo-
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rithm 9.3.1 (RichelotIsogenyCycles) detects a Richelot isogeny cycle of

length 40, two Richelot isogenies away from JX . The Richelot isogeny from

JX leading to the cycle is ρG, where

G =
[
(u2 + w586u+ w91, u2 + w586u+ w499, u2 + w2u+ w539)

]
.

The endomorphism ring of the Jacobians in the cycle is isomorphic to OK ,

and JX is two Richelot isogenies away from the cycle; therefore the index of

End(JX) in OK is 162 = 256. Hence End(JX) = Z[F,F†]: the endomorphism

ring of JX is minimal.

Example 9.3.4. Let k = F54 , and suppose w is a primitive element of k. Let

X be the curve of genus two over k defined by

X : v2 = fX(u) = u6 + w233u5 + w470u4 + w173u3 + w200u2 + w379u+ w383.

Computing the zeta function of X, we deduce that the characteristic poly-

nomial of the Frobenius endomorphism is χ(x) = x4 − 32x3 + 718x2 −
20000x + 390625. The discriminant of Z[F,F†] is 216 · 23 · 1972 · 223. Let

K = End0(JX) ∼= Q[x]/(χ(x)), and let K0 be the real subfield of K. Let

OK and OK0 denote the maximal orders of K and K0, respectively. The

discriminant of OK is 23 · 1972 · 223, so the conductor of Z[F,F†] in OK is

256 = 216: we need only check the prime 2, so the Richelot isogeny cycle

graph will completely determine the endomorphism ring of JX . The prime

(2) is inert in K0, and splits in K: we have (2) = P1P2 in OK , where the

order of P1 and P2 in the class group of K is 26. Applied to X, Algorithm

9.3.1 (RichelotIsogenyCycles) detects a Richelot isogeny cycle of length

26, one Richelot isogeny away from JX . The Richelot isogeny leading us to

the cycle is ρG, where

G =
[
(u2 + w393u+ w367, u2 + w393u+ w459, u2 + w115u+ w181)

]

The endomorphism ring of the Jacobians in the cycle is isomorphic to OK ,

and JX is one Richelot isogeny away from the cycle; therefore the index of

End(JX) in OK is 16, and the index of Z[F,F†] in End(JX) is also 16.
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Hermann & Cie., Paris, 1948.



BIBLIOGRAPHY 150
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