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Abstract

Service-level-agreement (SLA) monitoring measures network Quality-of-Service (QoS)

parameters to evaluate whether the service performance complies with the SLAs. It is

becoming increasingly important for both Internet service providers (ISPs) and their

customers. However, the rapid expansion of the Internet makes SLA monitoring a

challenging task. As an efficient method to reduce both complexity and overheads

for QoS measurements, sampling techniques have been used in SLA monitoring sys-

tems.

In this thesis, I conduct a comprehensive study of sampling methods for network QoS

measurements. I develop an efficient sampling strategy, which makes the measure-

ments less intrusive and more efficient, and I design a network performance monitor-

ing software, which monitors such QoS parameters as packet delay, packet loss and

jitter for SLA monitoring and verification.

The thesis starts with a discussion on the characteristics of QoS metrics related to

the design of the monitoring system and the challenges in monitoring these metrics.

Major measurement methodologies for monitoring these metrics are introduced. Ex-

isting monitoring systems can be broadly classified into two categories: active and

passive measurements. The advantages and disadvantages of both methodologies are

discussed and an active measurement methodology is chosen to realise the monitor-

ing system.

Secondly, the thesis describes the most common sampling techniques, such as sys-

tematic sampling, Poisson sampling and stratified random sampling. Theoretical

analysis is performed on the fundamental limits of sampling accuracy. Theoretical
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Abstract iii

analysis is also conducted on the performance of the sampling techniques, which

is validated using simulation with real traffic. Both theoretical analysis and sim-

ulation results show that the stratified random sampling with optimum allocation

achieves the best performance, compared with the other sampling methods. How-

ever, stratified sampling with optimum allocation requires extra statistics from the

parent traffic traces, which cannot be obtained in real applications. In order to over-

come this shortcoming, a novel adaptive stratified sampling strategy is proposed,

based on stratified sampling with optimum allocation. A least-mean-square (LMS)

linear prediction algorithm is employed to predict the required statistics from the past

observations. Simulation results show that the proposed adaptive stratified sampling

method closely approaches the performance of the stratified sampling with optimum

allocation.

Finally, a detailed introduction to the SLA monitoring software design is presented.

Measurement results are displayed which calibrate systematic error in the measure-

ments. Measurements between various remote sites have demonstrated impressively

good QoS provided by Australian ISPs for premium services.
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Chapter 1

Introduction

1.1 Background

Internet Service Providers (ISPs) now offer service level agreements (SLAs) rou-

tinely to their customers. Management needs contractual guarantees that business

objectives are met, and end-users demand assurance that their critical network ap-

plications and services are available when needed. The availability of SLAs and

a means to validate them gives management the confidence to move ahead. The

wide adoption of the E-business model has made it essential that service-providers

deliver on SLAs in a quantitative and qualitative manner. This has driven the service-

providers to seek consistent testing and measurement methods that make real sense

of customer network performance.

An SLA is defined by the International Telecommunications Union (ITU) as “a ne-

gotiated agreement between a customer and the service provider on levels of service

characteristics and the associated set of metrics. The content of SLAs varies depend-

ing on the service offering and includes the attributes required for the negotiated

agreement” [1]. The Internet Engineering Task Force (IETF) defines SLAs in a sim-

ilar way [2]. Figure 1.1 shows the main features of the SLAs.

Generally speaking, a good SLA should include these three key aspects:

• Service level objectives: encompass Quality-of-Service (QoS) parameters or

1



Introduction 2

class of service provided, service availability and reliability, authentication is-

sues, SLA expiry date, and so on.

• Service measuring components: specify the way of measuring service quality

and other parameters used to assess whether the service complies with the

SLA.

• Financial compensation components: include billing options, penalties for

breaking the contract, and so forth.

ISP SLAs Customer

Service level

objectives

Performance

monitoring

Financial

compensation

Delay Jitter Loss

Figure 1.1Structure of service-level-agreements

SLA monitoring is an important part of SLA management. It is useful for both net-

work operators and individual customers, who want to check whether the service per-

formance indeed complies with the SLAs. Moreover, the ability to measure against

key performance indicators facilitates the continuous quality improvement process.

It helps the ISPs to locate the bottleneck in their networks. A service performance

problem becomes an opportunity to structurally improve overall service quality and

customer satisfaction.
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1.2 Research Motivation and Contribution

SLA monitoring is about collecting statistical metrics about network performance to

evaluate whether the provider complies with the level of QoS that the customer ex-

pects [3]. Therefore, accurate measurement and estimation of network performance

becomes a key challenge in SLA monitoring. However, the implementation of mea-

surement becomes increasingly difficult and complex due to the rapid expansion of

the Internet. Traditional measurement tools, such as “ping”, cannot satisfy the mea-

surement requirements nowadays. Moreover, the dramatic increase in the speed of

wide area backbones presents obstacles to complete statistics collection. The enor-

mous amount of measurement data may significantly increase the cost and resource

usage [4].

In order to solve these problems, sampling techniques are employed in SLA monitor-

ing systems to reduce the quantity of control data and resources required to process

it, and finally to reduce the measurement complexity and cost. Systematic sampling

and random sampling are two widely used methods in existing monitoring systems,

but both of them have severe limitations. Stratified random sampling can achieve

higher estimation accuracy, but its high complexity may compromise its advantages.

The aim of this research project, which has been funded by Optus through the re-

search contract “BLO No. 7260”, is to develop an efficient sampling strategy to

make the measurement less intrusive and more efficient. Then a network perfor-

mance monitoring software, which monitors such QoS parameters as packet delay,

packet loss and jitter for SLA monitoring and verification, and which uses the pro-

posed sampling strategy, needs to be designed. These objectives have been fully

achieved. Firstly, a theoretical analysis of the performance of different sampling

techniques (both count-based and timer-based) is presented. Secondly, a novel adap-

tive stratified sampling strategy is developed and validated. Finally, QoS monitoring

software is delivered at the end of the project, which has been highly rated by Optus.

This thesis provides a comprehensive summary of the outcome of the project.
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1.3 Thesis Outline

This thesis consists of seven chapters, the rest of which are organised as follows:

Chapter 2 presents a comprehensive review of related work. Firstly, I describe the

main usages of Internet measurement, and the standard metrics for measurement as

defined by the IETF’s IP Performance Metrics Working Group (IPPM). Secondly, I

discuss in detail the characteristics of QoS metrics related to the design of the moni-

toring system in this project, i.e., packet delay, packet loss and jitter, and challenges

in monitoring these metrics. Thirdly, I introduce the major methodologies of network

performance measurement, including both passive measurement and active measure-

ment, as well as their advantages and disadvantages.

Chapter 3 describes major sampling techniques that can be used in the sampling-

based monitoring system, such as systematic sampling, random sampling, stratified

random sampling and adaptive sampling. Discussion of the fundamental limit (i.e.,

minimum sample size required for a given confidence level and an error bound) of

the accuracy of sampling techniques is then presented.

Chapter 4 presents a theoretical analysis of the performance of two fundamental

sampling techniques, i.e., systematic sampling and random sampling, and compares

their performance. Autocorrelationρ of packet delay of the parent delay trace is

used as a factor in the performance comparison between time-based systematic sam-

pling and time-based Poisson sampling.ρ is also used to determine the stratification

boundaries for stratified sampling. Simulation results using real traffic trace provided

by the WAND group is presented to validate the theoretical analysis.

Chapter 5 proposes an adaptive stratified sampling strategy for SLA monitoring,

which is based on the stratified sampling with optimum allocation discussed in Chap-

ter 4.4.2. Although stratified sampling with optimum allocation can achieve a satis-

factory accuracy of estimation, it has severe imitations. The stratified sampling with

optimum allocation requires extra statistics (e.g., standard deviation of packet delay,

total number of packets) of the parent trace to determine the stratum sample size. In

real applications, these statistics are not knowna priori. To address the challenge,
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a novel adaptive sampling method is proposed, which employs a least-mean-square

(LMS) algorithm to predict the standard deviation of packet delay from past observa-

tions. The sample size for the next stratum is calculated from the predicted standard

deviation. Sampling results that show good performance are presented.

Chapter 6 provides a detailed introduction to the monitoring software design. I start

with an introduction to the software environment and functionality. A description of

the procedure of the TCP measurement, UDP measurement and ICMP measurement

is then presented. The systematic error of the software is calibrated. Finally, I intro-

duce the software’s graphic-user-interface (GUI) design and demonstrate several test

results in real networks.

Chapter 7 concludes this thesis by providing a summary of my major contributions.

The direction for future study is also discussed.



Chapter 2

Literature Review

Before entering into detailed discussion of sampling techniques and their perfor-

mance comparison, a review of the relevant work on QoS measurements is presented.

2.1 Characteristics of QoS Metrics

In this section, characteristics of packet delay, packet loss and jitter, which are related

to the design of the monitoring system and the challenges in monitoring these metrics

are discussed. Firstly, an overview of the main usages of Internet measurements is

provided, followed by a brief list of standard metrics, as defined by IETF.

2.1.1 Main Usages of Internet Measurements

As described in [5], the main usages of Internet measurements are Internet topology

measurement, workload measurement, performance monitoring and routing mea-

surement.

• Topology measurement: collects information on the network connectivity and

graphical locations of network devices. With the rapid development of Internet,

it becomes a challenge to track and visualise the complex Internet topology [5].

• Workload measurement: focuses on the collection of information on the re-

source usage of routers or switches and the link utilisation [5], [6].

6



Literature Review 7

• Performance measurement: is used by network users or researchers in analysing

traffic behaviour on specific paths or the performance (e.g., packet delay, jit-

ter, packet loss) associated with individual ISPs. A recent development in the

industry is the monitoring of SLAs [5].

• Routing measurement: measures the dynamics of routing protocols and routing

updates [6].

2.1.2 Standard Metrics

The IETF’s IPPM has developed series of standards called Requests For Comments

(RFC) on network performance measurements. The standard metrics for measure-

ments are defined in RFC 2330, which are listed below:

• Metric for Measuring Connectivity (RFC2678) [7];

• A One-way Delay Metric (RFC2679) [8];

• A One-way Packet Loss Metric (RFC2680) [9];

• A Round-trip Delay Metric (RFC2681) [10];

• One-way Loss Pattern Sample Metric (RFC 3357) [11];

• IP Packet Delay Variation Metric (RFC 3393) [12].

2.1.3 Packet Delay

Packet delay is the delay experienced by packets when passing through the network.

It may be considered either in an end-to-end relation or with regard to a particular

network element. SLAs for network delay are generally defined in terms of one-way

end-to-end delay for nonadaptive time critical applications (such as VoIP and video)

or in terms of round-trip time (RTT) for adaptive applications (such as those using

TCP). Figure 2.1 and Figure 2.2 show the principle of the one-way delay measure-

ment and the RTT delay measurement respectively. A discussion on the usefulness

and weakness of the one-way delay metric and the RTT metric can be found in [8]

and [10].
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Figure 2.1An illustration of one-way delay measurement

Figure 2.2An illustration of round-trip delay measurement

2.1.3.1 One-way Delay Measurement

The biggest challenge in one-way delay measurements is clock synchronisation.

Simply speaking, host A and host B at both ends of the network path must use the

same clock when measuring one-way delay (see Figure 2.3). Assume that the local

time at host A isTA and the local time at host B isTB. Without proper synchronisa-

tion, an error termTB − TA will be present in one-way delay measurements, which

cannot be easily removed. For one-way delay measurements, it is usually required

that|TB − TA| ≤ 1 ms in order to achieve a reasonably accurate measurement.

There are two basic methods for achieving synchronisations: one uses GPS and the

other uses network protocols such as Network Time Protocol (NTP) [13].

The use of GPS devices in the monitoring system can dramatically increase cost.
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Host A
Clock TA

Host B
Clock TB

WAN

Figure 2.3Clock Synchronisation

More importantly, since GPS requires line-of-sight between the equipment and the

GPS satellites, it may not work indoors, underground, or in the presence of obstruc-

tions such as buildings or mountains blocking the direct view to these satellites. Due

to the aforementioned reasons, despite the widespread use of GPS in some large-

scale performance monitoring projects, we do not consider GPS to be a viable option

in this project.

On the other hand, two important concerns arise if the hosts at both ends of the

network path derive their time using a network synchronisation protocol such as NTP

[13]:

• First, NTP’s accuracy depends in part on the properties (particularly delay) of

the Internet paths used by the NTP peers, and these are exactly the properties

that we wish to measure, so it would be unsound to use NTP to calibrate such

measurements.

• Second, NTP focuses on clock accuracy, which can come at the expense of

short-term clock skew and drift [13]. For example, when a host’s clock is syn-

chronized to a time source (e.g., network time server), if the synchronisation

occurs infrequently, then the host will sometimes be faced with the problem

of how to adjust its current, incorrect time,Ti, with a considerably different,

more accurate time that it has just learned,Ta. Two general ways in which this

is carried out are to either immediately set the current time toTa, or to adjust

the local clock’s update frequency (hence, its skew) so that at some point in

the future the local timeT ′
i will agree with the more accurate timeT ′

a. The

first mechanism introduces discontinuities and can also violate common as-

sumptions that timestamps are monotone increasing. If the host’s clock is set
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backward in time, sometimes this can be easily detected. If the clock is set

forward in time, this can be harder to detect. The skew induced by the second

mechanism can lead to considerable inaccuracies when computing one-way

delay.

2.1.3.2 Round-trip Delay Measurement

In comparison with one-way delay measurements, measurement of round-trip delay

has two advantages.

• Ease of deployment. Unlike one way delay measurements, RTT is measured

by using the clock at the same host, so there is no synchronisation problem in

RTT measurements.

• Ease of interpretation. As discussed in the previous paragraph, in some cir-

cumstances, the round-trip time is in fact the quantity of interest.

The major problem that needs to be taken care of in RTT measurements is the time

spent by the destination host in receiving and recognising the packet from the source,

and then producing and sending the corresponding response, which adds an addi-

tional error and uncertainty to the RTT measurements. This systematic error needs

to be calibrated in the RTT measurements [10].

In this project, we measure RTT instead of one-way delay because Optus specifies

in [14] that RTT is the quantity of interest. RTT is also the metric currently used in

most SLAs.

2.1.4 Jitter

Jitter, sometimes called delay variation, is the difference between the one-way de-

lay of the selected packets [12]. Generally, jitter is specified as the absolute value

of delay difference between selected packets [12], [15]. Despite the fact that jitter

is derived from one-way delay measurements, time synchronisation is not a major

problem in jitter measurements. Letai represent the departure epoch of packeti at
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the source host andbi represent the corresponding arrival epoch at the destination

host. LetDi be the delay experienced by thei-th packet when travelling from the

source to the destination, i.e.,Di = bi−ai. Denote the jitter between thei-th and the

(i− 1)-th packets byji, then

ji ≡ Di −Di−1 = (bi − ai)− (bi−1 − ai−1) = (bi − bi−1)− (ai − ai−1). (2.1)

The first termbi − bi−1 on the right-hand side of Equation 2.1 is the difference in

the arrival epochs of packeti and packeti − 1 at the destination host, which only

needs the local time at the destination host for computation. The second termai −
ai−1 is the difference in the departure epochs of packeti and packeti − 1 at the

source host, which only needs the local time at the source host for computation.

The difference operation easily removes any constant error between the source clock

and the destination clock when measuring jitter. Provided that the sampling interval

between packeti and packeti− 1 is small, which is generally true, any higher order

clock error (e.g., skew) can also be ignored. As such, synchronisation does not affect

jitter measurements.

2.1.5 Packet Loss

In certain real-time applications (such as VoIP and mobile video), the loss pattern

or loss distribution is a key parameter that determines the performance observed by

the users. For the same long-term packet loss rate, different loss patterns lead to

different application-level QoS perceived by the users [9], [16], [17], [18], [19]. Also,

many forward error recovery approaches become less efficient as the loss burstiness

(i.e., number of consecutive packet losses) increases. Thus it is important to not

only measure the mean loss rate but also to measure the loss distribution. The loss

distribution is customarily parameterised by such metrics as loss burstiness and the

distances between loss bursts.

Several models have been proposed in the literature. Before describing these mod-

els, we first present an introduction to the key technological components. The loss

indicator functionY for a stream of packets is defined as:

Y (i) =





0 : i-th packet is successfully received

1 : i-th packet is lost
(2.2)
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Loss period length [11] is the number of consecutive packet losses, which is bounded

by packets that have been successfully delivered. It is also referred to as “loss run

length” in the literature. The inter-loss period length is the distance between the last

packet considered lost in “loss period”i−1 and the first packet considered lost in the

“loss period”i, i.e., the number of consecutive packets that have been successfully

delivered. It is also referred to as “no-loss run length” or “good run length” in the lit-

erature. There are four popular packet loss models in the literature, i.e., the Bernoulli

loss model, the two-state Markov chain model, the n-th order Markov chain model

and the extended Gilbert model.

2.1.5.1 Bernoulli Loss Model

In the Bernoulli loss model [20], the packet loss is assumed to be independent. That

is, the probability ofY (i) being either 0 or 1 is independent of all other values ofY

and the probabilities are the same irrespective ofi. This model is characterised by

a single parameter,r, the probability ofY (i) being 1 (corresponds to a packet loss).

Parameterr can be obtained from the measurement as the average packet loss ratio.

The inter-loss period length distribution for this model is

f(k) = r(1− r)k−1 for k = 1, 2, ...,∞, (2.3)

and the loss period length distribution is

f(k) = (1− r)rk−1 for k = 1, 2, ...,∞. (2.4)

2.1.5.2 Two-state Markov Chain Model

This is also known as the Gilbert model [19]. In the Gilbert model, the current state,

Y (i) (i.e., whether the current packet is lost) of the stochastic process depends only

on the previous valueY (i − 1). Unlike the Bernoulli model, this model is able to

capture the dependence between consecutive losses. Figure 2.4 illustrates the Gilbert

model. The Gilbert model is characterised by two parameters,p andq, which are the

transition probabilities between the two states:

p = Pr[Y (i) = 1|Y (i− 1) = 0], q = Pr[Y (i) = 0|Y (i− 1) = 1]. (2.5)
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(no loss)
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q

Figure 2.4The Gilbert Model

The loss period distribution is

f(k) = q(1− q)k−1 for k = 1, 2, ...,∞. (2.6)

2.1.5.3 n-th order Markov Chain Model

The Bernoulli model and the Gilbert model are special cases of this class of models.

Different from the Bernoulli model, which assumes that packet losses are entirely

independent, and the Gilbert model, which assumes that the current packet loss de-

pends only on the previous one-packet event, in the n-th order Markov chain model

[20], the current state of the process depends on a certain number of previous packet

events which is the order of the process. Such a process is characterised by its order

n and by ann× n conditional probability matrix.

A process{Y (i)} is a Markov chain of ordern if the value ofY (i) is independent of

Y (m),m < i− n and is dependent onY (I), i− n < I ≤ i− 1. In reality the value

of n can be determined by examining the autocorrelation of{Y (i)}.

Yajnik et al. [20] show that their packet traces typically haven ≤ 6, and some

requiren to be20 to 40. They did not quantify how much precision is gained by

using an n-th order Markov model as compared to other simple models such as the

2-state Gilbert model.
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2.1.5.4 Extended Gilbert Model

Sannecket al.[19] propose a different model that leads to fewer states, which is often

referred to as the extended Gilbert model. Their key distinction is that a general n-th

order Markov chain model assumes all past n events can affect the current state (i.e.,

whether the current packet is lost); whereas in an extended Gilbert mode only the past

(up to) n consecutive loss events will affect the current state. Figure 2.5 illustrates the

extended Gilbert model. Sannecket al.[19] also provide the equations for computing

the parameters of the extended Gilbert model. Theoretically, loss period length can

have an infinite value, which implies that the extended Gilbert model may have an

infinite number of states. However, in reality, the maximum number of states in the

extended Gilbert model is limited by both the maximum loss period length in real

measurements and by the applications being considered. A number of packet loss
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Figure 2.5The Extended Gilbert Model

measurement studies have shown that the maximum number of consecutive packet

losses is typically less than four [20], [21], [22]. Occasionally, this value may exceed

10 for some traffic traces. The analysis in [19] reveals that only a few burst losses

larger than10 packets take place, and thus models with a higher number of states do

not provide much additional information.

Moreover, the number of states in the extended Gilbert model is dependent on the

network utilisation. In light network utilisation, packet losses are more likely to

be independent, whereas in heavy network utilisation, burst losses are more likely

to occur [23]. This implies that a greater number of states are required in heavy

network utilisation. Whether the end-to-end path contains wireless links may also
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affect the model parameters, as burst losses are more likely to occur in the wireless

environment.

The extended Gilbert model can be further enhanced by factoring the inter-loss pe-

riod length into the states of the extended Gilbert model [19]. Although this may

bring some improvements, it makes the model very complex. As such, no real im-

plementation of this enhancement has been reported.

Other noteworthy work in the area includes the definition of the noticeable loss rate

(NLR) metric by the IETF IPPM working group [11], [18]. Given a threshold dis-

tanced, the number of noticeable losses is losses with an inter-loss distance less than

or equal tod. Since some applications may be embedded with a forward error control

algorithm or loss concealment algorithm, some sporadic packet losses with a large

inter-loss distance can be easily corrected and do not affect the user-perceived QoS.

The NLR is proposed to reflect the characteristics of these applications. However,

this project is intended to be a general QoS measurement project which does not tar-

get specific applications. Therefore we do not consider this definition. In [21], a sine

model is proposed to model the diurnal behaviour of packet loss. However, the pro-

posed model is too simplistic. Based on the exponential on-off source model, Hasib

et al. [24] present some analysis of the average time required for probing packets to

obtain a valid observation of packet loss. Although their result is not in the form that

can be used in real applications, it is an interesting development in the area.

In this project, we shall stay with IETF standards [9], [11] when measuring packet

loss and presenting measurement results.

2.2 Network Measurement Methodology

Existing QoS measurement systems can be broadly classified into two categories:

passive and active measurements.
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2.2.1 Passive Measurement

Passive measurements are used to observe actual traffic without injecting extra traffic

into the network. There are two basic methods for obtaining end-to-end QoS param-

eters in passive measurements. In the first method, equipment similar to a network

analyser is used. Two pieces of measurement equipment are deployed at both ends

of the network path/segment to be measured. The two measurement equipments are

often synchronised by using GPS or NTP [25]. The measurement equipment cap-

tures and measures packets passing by it. The equipment keeps a record of both the

measurement (e.g., time of arrival) and the packet information (e.g., packet header

or a scrambled version of the packet header, which allows unique identification of

the packet). End-to-end QoS metrics can then be obtained in offline conditions by

comparing measurement information of the same packet captured by both pieces of

equipment. Papagiannakiet al. use this method to obtain the single-hop delay of

a router [26], [27]. In the second method, each network element keeps the statisti-

cal information of QoS parameters (e.g., distribution); the end-to-end QoS statistics

can be obtained by correlating the statistics of the QoS parameters in each network

segment along the path. Data collection in the second method can be achieved by

piggybacking data onto existing network protocols (e.g., SNMP). Some papers have

reported using this method to obtain end-to-end packet loss from packet loss mea-

surements in each network element along the path. However, this method relies on

the assumption that the statistical characteristics of QoS parameters in different net-

work elements along the path are independent, which may not be true. Therefore,

the validity of the second method is doubtful.

Typical passive measurement equipments measure such metrics: throughput, utili-

sation, availability, one-way delay. These metrics only present an overall view of

network performance. For more detailed analysis, some other statistics are required,

e.g., the packet size distribution, length of packet trains, etc [6].

2.2.2 Active Measurement

Active measurements inject synthetic traffic into the network based on scheduled

sampling (by sending probing packets) in order to observe network performance.
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The principle is that the structure (packet size distribution and inter-departure time

distribution) of the synthetic traffic is known, and so by measuring how it is affected

by the network it traverses, network performance can be obtained.

Compared with passive measurements, active measurements have their own advan-

tages and disadvantages. Active measurements are easy to implement. They do

not need the cooperation of intermediate nodes along the path. Hence no hardware

change is required, which can significantly reduce the cost of measurements. This

makes active measurements an attractive option for small-scale performance moni-

toring. Currently most performance measurement systems are designed on the basis

of active measurements. In addition, active measurements are much easier to con-

duct, repeat and vary as often as desired. The volume of active measurement data is

also markedly reduced compared to the passive monitoring of high bandwidth links.

However, active measurements are not scalable. Synthetic traffic injected into the

network for monitoring a large number of SLA flows may degrade the performance

of the network and cause traffic congestions, and the capability of active measure-

ments is often limited by constraints on network capacity consumed by synthetic

traffic. Due to their intrusive nature, the accuracy of measurements greatly depends

on the sampling frequency and the sampling method and this is a drawback. Obvi-

ously, insufficient probing packets make the measurement results unreliable. On the

other hand, too many probing packets may cause an extra burden on the network and

change the statistical characteristics of the QoS parameters to be observed. The per-

formance of using active packet probing is also highly dependent on the variability

of the traffic characteristics. Therefore, a key challenge in designing an active mea-

surement system is to design a statistical sampling strategy matching the statistical

characteristics of network traffic in order to obtain the most accurate measurements.

Details of the sampling strategy will be discussed in Chapter 5.

Typical active measurement equipments measure such metrics: RTT delay, one-way

delay, one-way packet loss, availability, TCP performance, topology discovery, rout-

ing dynamics [6].
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2.3 Summary

This chapter reviewed related work in the area. Firstly, a brief introduction of the

main usages of Internet measurements and standard metrics in network measure-

ments was presented. A detailed discussion of characteristics of QoS metrics related

to the monitoring system design was presented. Secondly, two main network mea-

surement methodologies (active and passive measurements) were introduced, includ-

ing their advantages and disadvantages. We chose an active measurement method-

ology to monitor the RTT delay, one-way jitter and one-way loss in the monitoring

system.



Chapter 3

Sampling Techniques

3.1 Introduction

There are two basic approaches for generating synthetic traffic in active measure-

ments. One is traffic modelling and the other is sampling. Traffic modelling attempts

to model the behaviour of a specific network application (e.g., VoIP) by generating

traffic with similar statistical characteristics to those generated by the application.

Since different network applications have different traffic characteristics, the traffic

modelling approach is often used to obtain an estimate of QoS experienced by a spe-

cific application in the network. For different applications, different traffic models

need to be used. In comparison, sampling aims to obtain the characteristics of the

parent population (e.g., all packets generated by a source network) at a lower cost

by observing only a small subset of the parent population [28] rather than the entire

population. In this project, sampling techniques are employed into the performance

monitoring system to reduce the amount of control data, and the resources required

to process it.

In this chapter, three conventional sampling techniques, i.e., systematic sampling,

random sampling and stratified sampling, and their characteristics are introduced.

Then a new sampling technique called “adaptive sampling” is presented. The trig-

gering mechanism of the sampling process is also discussed. Finally, the limitation,

i.e., the minimum sample size required for a specific accuracy with a given confi-

19
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dence level and an error bound is presented.

3.2 Sampling Techniques

Existing sampling techniques can be classified into three categories: systematic sam-

pling, random sampling and stratified sampling [4], [28], [29]. Figure 3.1 illustrates

these three sampling techniques.

(a) Systematic sampling (c) Stratified random sampling(b) Random sampling

Figure 3.1Sampling techniques

3.2.1 Systematic Sampling

Systematic sampling generates sampling traffic according to a deterministic function.

Generation of the sampling traffic is triggered by either time (i.e., at fixed intervals)

or packet count (i.e., everyN -th packet). Figure 3.1.(a) shows periodic sampling

with a period ofT seconds.

The use of systematic sampling always involves the risk of biasing the results. If the

systematics (e.g., periodic repetition of an event) in the sampling process resemble

the systematics in the observed stochastic process (e.g., occurrence of event of in-

terest in the network), there is a high probability that the estimation will be biased.

In this context it also has to be considered that there might be systematics in the

observed process that one might not be aware of in advance [28]. Typical examples

of the systematics in the network are the periodic update of the routing table by a

router, which has been shown in the literature to contribute to the periodic surge in

packet delay, and the periodic exchange of information between routers due to SNMP

protocol.
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3.2.2 Random Sampling

Random sampling employs a random distribution function to determine when a sam-

ple should be generated. Typically the samples are generated according to a Poisson

process. As shown in Figure 3.1.(b), random sampling may produce a varying num-

ber of samples in a given time interval. With random sampling, an unbiased estimate

of the QoS metric can be achieved [30, p. 21]. However, the entirely random nature

of the sampling process may also cause the undesirable effect that sampling intervals

are not uniformly distributed, and therefore the network may not be sampled for a

rather long time.

3.2.3 Stratified Sampling

Stratified random sampling combines the fixed time interval used in systematic sam-

pling with random sampling [31]. Figure 3.1.(c) shows stratified random sampling

with a period ofT and a random sample is generated in each period.

Stratified sampling divides the sampling process into multiple steps. Firstly the ele-

ments of the parent population are grouped into subsets (i.e., strata) according to a

given characteristic. This grouping can be undertaken in multiple steps. Then sam-

ples are taken from each subset. Because the selections in different strata are made

independently, the variances of estimators for individual strata can be added together

to obtain the variance of the estimator for the whole population. A smaller variance

indicates a more accurate estimator. Since only the within-stratum variances enter

into the variance of the estimator, the principle of stratification is to partition the

population in such a way that the units within a stratum are as similar as possible.

The stronger the correlation between units within a stratum, the more accurate the

estimator will be. Then, even though strata may differ markedly from one another,

a stratified sample with the desired number of units from each stratum in the pop-

ulation will tend to be “representative” of the population as a whole [32, pp. 117].

A typical example of stratified sampling is dividing time into fixed intervals accord-

ing to the correlation of the elements (e.g., delay) to be measured, then generating

sampling packets according to a random process during each interval. The stronger

the correlation between packet delays in an interval is, the more accurate the mean
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delay estimate will be. In [29], Zseby divides the parent population into different

strata according to packet size. His method may provide a more accurate mean delay

estimate provided that the packet delay has a strong correlation with packet size.

Stratified sampling may reduce the sample size ifa priori knowledge (e.g., corre-

lation in packet delay) is taken into account for building strata [28]. Depending on

how the sample size is distributed among strata, stratified sampling can be further

classified into proportional allocation and optimum allocation [32].Proportional

allocation means that the sample size in each stratum is proportional to the size of

parent population in that stratum, whileoptimum allocation means that the sam-

ple size in each stratum is proportional to the standard deviation of the variable of

interest in that stratum.

3.2.4 Adaptive Sampling

Another kind of sampling method is adaptive sampling. In conventional sampling

techniques (e.g., the three sampling techniques in the earlier paragraphs), the sample

selection procedure does not depend on the observations made during the sampling,

so that the entire samples may be selected prior to the start of the sampling process.

In adaptive sampling, the procedure for selecting samples may depend on the values

of the variable of interest observed during the sampling process. The primary pur-

pose of adaptive sampling design is to take advantage of population characteristics to

obtain more precise estimates, for a given sample size or cost, than is possible with

conventional designs. For example, the dynamic nature of network traffic determines

that sometimes the variable of interest (e.g., packet delay, packet loss, traffic quantity)

may be smooth, while an other time, the variable of interest may present dramatic

variations. Intuitively, given a fixed total sample size, a more accurate estimate can

be obtained by changing the sampling rate adaptively such that the algorithm sam-

ples less during periods in which the variable of interest is smooth and samples more

during periods in which the variable of interest varies dramatically. Figure 3.2 shows

the adaptive sampling in two measurement intervals. In the measurement of interval

i, the variable of interest presents dramatic fluctuation, so we select comparatively

more samples; while in the measurement of intervali + j, the variable of interest
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changes smoothly, so we select comparatively fewer samples.

Measurement interval i Measurement interval i+j

sampling sampling

Figure 3.2Adaptive Sampling

Despite its advantages, the real implementation of adaptive sampling may be diffi-

cult, which may compromise its advantages. For example, it is stated in the literature

[32, pp. 123] that for stratified sampling, the most accurate estimate is obtained by

allocating the number of samples in each stratum so that the number of samples in

each stratum is proportional to the standard deviation of the variable of interest in

the stratum. Then, to implement adaptive stratified sampling for packet delay mea-

surements, the optimum sampling design should allocate the number of samples in

each stratum to be proportional to the standard deviation of packet delay in that stra-

tum. Therefore, to determine the optimum number of samples for the next stratum,

the standard deviation of packet delay in the next stratum has to be predicted. In

reality, the uncertainty and complexity involved in standard deviation prediction may

compromise the advantage of using the adaptive stratified sampling technique.

3.2.5 Sampling Trigger

The sampling process can be triggered by packet count, timer or packet-content [33],

[28]. In count-based sampling methods, the start and the finish of a sampling is

triggered by packet count. For example, a count-based systematic sampling deter-

ministically selects everyk-th element (e.g., packet) out of the data set. Timer-based

sampling methods use a timer instead of a packet count to trigger sampling. When
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the timer expires, we capture (in passive measurement) the next packet to arrive or in-

ject (in active measurement) a synthetic probe packet into networks. Packet-content-

based sampling methods trigger the sampling process according to the contents of a

packet (e.g., TCP SYN packet, the value of specified fields in the packet header, the

type of packet, etc.).

With count-based sampling, the time interval between sampling packets is variable,

while with timer-base sampling, the time interval is constant, but the number of pack-

ets between adjacent sampling is variable [33]. Claffyet al. prove in [4] that the

performance difference between count-based sampling techniques and timer-based

sampling techniques is very small. In this project, timer-based sampling methods are

employed in the monitoring software.

3.3 Accuracy of Sampling

A fundamental problem that needs to be addressed in sampling design is the accuracy

of the estimate obtained through sampling. To motivate the problem, let us consider

two simple cases. In case A, a packet loss is observed among ten sampling packets.

Therefore, a mean packet loss ratio of10% is obtained. In case B, ten packet losses

are observed among one hundred sampling packets. The same mean packet loss ratio

of 10% is obtained. An observer will naturally conclude that the mean packet loss

ratio obtained in case B is more accurate than that obtained in case A. According to

theCentral Limit Theorem , given a large sample size, regardless of the statistical

characteristics of the parent distribution, the distribution of the mean of samples ap-

proaches a Gaussian distribution with a mean equal to the parent population’s mean,

and a standard deviation equal to the standard deviation of the parent population di-

vided by the square root of the sample size. Therefore, the sample size needs to be

larger if a higher confidence level is required. Then a problem arises as to what is

the minimum sample size required in order to obtain an estimate satisfying a given

accuracy criterion.

In order to model this problem we make the following assumptions and simplifica-

tions [32]:
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• We assume that the injected packets (samples) do not disturb the network char-

acteristics (e.g., packet loss) which are to be observed;

• The metric of interest is the proportion of packets,p, having a common at-

tribute (e.g., being lost);

• In the sequence of packets, a packet with the attribute of interest is considered

as a hit (y = 1) and a packet without the attribute is considered as a no-hit

(y = 0);

• Packets with the attribute of interest occur independently in the sequence;

• The sample size is small compared to the parent population (e.g. total number

of packets from a source network) and satisfies the condition:

n

N
≤ 0.05. (3.1)

Condition (3.1) is required in order for thefinite population correctionfactor (i.e.

(N − n)/N ) [32, pp. 15] to be approximated by1.

With these assumptions the network process can be modelled as a discrete time

{0, 1}-valued stochastic processY . The estimation ofp can then be treated as the

estimation of the population mean of the stochastic processY . Table 3.1 shows the

parameters used in the subsequent analysis.

Table 3.1Parameters used in the analysis

Denotation Meaning
N Total number of packets in the parent population
n Number of sampling packets
V Number of hits in the parent population
v Number of hits in the sample
p Real proportion of packets with a given attribute
p̂ Estimated proportion of packets with a given attribute through sampling
ε Absolute estimation error

1− α Confidence level

The objective of sampling is to produce an estimator

p̂ =
v

n
(3.2)
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that is withinε around the true value

p =
V

N
, (3.3)

with a probability greater than or equal to1− α:

Pr(|p̂− p| ≤ ε) ≥ 1− α. (3.4)

The population meanµ is the average of they-values in the whole population:

µ =
1

N

N∑

i=1

yi =
V

N
= p. (3.5)

The sample meany is the average of they-values in the sample:

y =
1

n

n∑

i=1

yi = p̂. (3.6)

Also, with simple random sampling, the sample variances2 is an unbiased estimator

of thefinite population varianceσ2. The finite population variance is:

σ2 =
1

N − 1

N∑

i=1

(yi − µ)2 =
1

N − 1

N∑

i=1

(y2
i − µ2). (3.7)

SinceY is a{0,1}-valued stochastic process,y2
i = yi. Thus

σ2 =
1

N − 1

N∑

i=1

(yi − µ2) =
N

N − 1
(µ− µ2) =

N

N − 1
p(1− p). (3.8)

Similarly, the sampling variance is:

s2 =
1

n− 1

n∑

i=1

(yi − y)2 =
n

n− 1
(y − y2) =

n

n− 1
p̂(1− p̂). (3.9)

The variance of the estimatory with simple random sampling is [32, pp. 15]:

var(y) =
N − n

N
× σ2

n
. (3.10)

An unbiased estimator of this variance is:

v̂ar(y) =
N − n

N
× s2

n
. (3.11)
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The quantity(N − n)/N is called thefinite population correction(fpc) factor. Its

value is very close to1 under condition (3.1). Therefore it can be ignored and

v̂ar(y) ≈ s2

n
=

p̂(1− p̂)

n− 1
. (3.12)

The estimatory is a random variable with meanµ = p and having a binomial dis-

tribution. When the sample size is large enough, this binomial distribution can be

approximated by a Gaussian distribution. Therefore, from the sampling requirement

(3.4), it can be obtained that:

ε = zα
2

√
v̂ar(y) = zα

2
×

√
p̂(1− p̂)

n− 1
, (3.13)

wherezα
2

is the upperα
2

quantile of the normal distribution. From Equation 3.13, the

minimum sample size required to satisfy condition (3.4) can be obtained:

n ≥
z2

α
2
× p̂(1− p̂)

ε2
+ 1. (3.14)

Fewer samples will be required for a smaller value ofp̂ in order to maintain the

absolute error. The maximum value of
z2

α
2
×p̂(1−p̂)

ε2 is obtained whenp = 0.5.

Based on the earlier analysis, given a specific performance target (e.g., the system

needs to observe a packet loss ratio as small asp with an accuracy ofε), the minimum

number of samples required can be computed. Alternatively, given the number of

samples, the accuracy of the estimate can be obtained.

For the estimation of the mean packet delay, letµ denote the true mean packet delay

of the parent population, and̂µ denote an estimate of the true mean packet delayµ.

In the same way, we can obtain the minimum sample sizen for estimating the mean

packet delay with a given confidence level1− α:

n ≥
z2

α
2
σ2

r2µ2
, (3.15)

or with s2 substitutingσ2 andµ̂ substitutingµ,

n ≥
z2

α
2
s2

r2µ̂2
. (3.16)

Herer represents the bounds of the relative error between the actual value and its

estimate.
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3.4 Summary

In this chapter, I described major sampling techniques that can be used in the sampling-

based monitoring system, which include three conventional sampling techniques and

a new sampling technique called “adaptive sampling”. Then I presented a theoretical

analysis of the minimum sample size required in order to obtain an estimate satisfy-

ing a given accuracy criterion.



Chapter 4

Performance Comparison of Different
Sampling Techniques

4.1 Introduction

In this chapter, I compare the performance of different sampling techniques. As

variance of the sample mean has been widely used as a performance measure [30, pp.

15], [34], the performance of these sampling techniques is compared by comparing

the variance of the sample mean of different sampling schemes under the constraint

that the sample sizes of different sampling methods are the same. The smaller the

variance is, the better performance the sampling technique has. The sampling gain∆

is defined as the difference between the variance of the sample mean of two different

sampling techniques [29].

I start with a comparison between systematic sampling and random sampling. With

count-based sampling, systematic sampling is theoretically more accurate than sim-

ple random sampling if the average value of the variances among all possible system-

atic samples is larger than the variance of the parent population. With timer-based

sampling, the performance difference between these two sampling methods is pre-

sented in the form of the autocorrelationρ of the parent population. Comparisons

between simple random sampling and stratified sampling with proportional alloca-

tion and stratified sampling with optimum allocation are then presented. Simulation

results are also displayed to validate the theoretical analysis.

29
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The following notations listed in Table 4.1 are used in our analysis:

Table 4.1Notations used in the analysis

Denotation Meaning
N Total number of packets in the parent population (i.e. parent size)
n Total number of sampling packets (i.e. sample size)
Nl Size of the parent population in thel-th stratum
nl Sample size in thel-th stratum
L Total number of strata
K Maximum number of samples by systematic sampling (n out ofN )
µ Parent population mean
ȳ Sample mean
µl Parent population mean in thel-th stratum
ȳl Sample mean in thel-th stratum
σ2

l Variance of the variable of interest in thel-th stratum
y Variable of interest (e.g. packet delay)

The parent population mean in thel-th stratum, the sample mean in thel-th stratum

and the variance of the parent population in thel-th stratum are given by Equation

4.1, 4.2 and 4.3 respectively:

µl =
1

Nl

Nl∑

i=1

yli, (4.1)

ȳl =
1

nl

nl∑

i=1

yli, (4.2)

σ2
l =

1

Nl − 1

Nl∑

i=1

(yli − µl)
2. (4.3)

The following assumptions are used in the analysis. First, it is assumed that the

parent population size in each stratum is large enough so that:

Nl − 1 ≈ Nl. (4.4)

It is also assumed that sample size is small in relation to the parent population size,

i.e.,
n

N
< 0.05. (4.5)

Equations 4.4 and 4.5 are widely used assumptions in the area [28], [29].
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4.2 Delay Traffic Trace

In order to establish the performance of sampling techniques, experiments are nec-

essary. In this thesis, all experiments are performed using a one-way delay trace

as the parent traffic trace. This delay trace is generated by importing a real traffic

trace into Opnet Modeler. This real traffic trace (“20010613-060000-e1.gz”) was

collected by the WAND research group at the University of Waikato Computer Sci-

ence Department. It was captured between 6.00 a.m. and 8.54 a.m. on June 13th,

2001 on a100Mbps Ethernet link. IP headers in the traffic trace are GPS synchro-

nised and have a time accuracy of1 µs. More information on the traffic trace and the

measurement infrastructure can be found on the research group’s website [35].

The network topology used in the Opnet Modeler is shown in Figure 4.1. The selec-

tion of network nodes (e.g., switch, router, link) and background traffic utilisations of

the links are shown in Table 4.2. The background traffic utilisations of the links are

chosen as shown in Table 4.2 in order to cause the mean packet delay output by the

Opnet Modeler to approach the value [36] measured by the WAND research group.

link-1
link-2

link-6link-5link-4link-3 link-7 link-8

link-9
link-10

Figure 4.1Network topology used in Opnet Modeler.

Because a very long time is required to run the simulation, only the first2600-second

part of the entire trace is imported into the Opnet Modeler. After this simulation, I

obtain a one-way delay traffic trace with a duration of2600 seconds. For the purpose

of my study, I treat the2600-second delay traffic trace as the parent population traffic

trace. Table 4.3 shows the summary statistics for the packet delay, packet size and
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Table 4.2Selection of network nodes and background traffic utilisations of links

Nodes Description Background traffic
utilisation

Switch-1,2 3Com′s SuperStack II Switch 3800 N/A
Router-1,2,..,7 CISCO 12008 N/A

Link-1,10 100Mbps Link 0%
Link-2,3,8,9 100Mbps Link 50%

Link-4,7 100Mbps Link 70%
Link-5,6 100Mbps Link 55%

inter-arrival time of the parent traffic trace. Figure 4.2 shows the packet inter-arrival

time and packet delay of this parent traffic trace.

Table 4.3
Summary statistics for packet delay, packet size and inter-arrival time of the parent delay
trace

Property Min. Max. Mean Median Var.
Packet delay (ms) 41.092 141.305 86.024 45.2 8529
Packet size (bytes) 24 1478 400.5 34 302080

Inter-arrival Time (ms) 0.006 203.3280 4.5181 0.9880 74.4127

If an accuracy ofr = ±5% and a confidence level of100(1 − α)% = 95% are

required in estimating the mean packet delay, thenzα
2

= 1.96 in Equation 3.15.

Based on this parent delay trace (total packet number: 577718, mean packet de-

lay: µ = 86.024 ms and the variance of packet delay:σ2 = 8529), the minimum

sample size is obtained:1739. Since the parent trace duration is2600 seconds and

the sampling frequency is chosen to be1 packet/second, the actual sample size is

approximately2600, which satisfies the accuracy requirement. Moveover, the ratio

between the sample size (2600) and the parent population size (577718) is 0.45%,

which complies with the assumption in Equation 4.5. If an accuracy ofr = ±1%

and a confidence level of100(1 − α)% = 95% are used, the minimum sample size

would be43464, which means that a much higher sampling rate would be required.

It has been shown that packet size has a significant impact on delay measurements

[29], [37], [38] and this impact is to a very large extent independent of the sampling

techniques. The focus of this chapter is to evaluate the performance of different
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Figure 4.2 Inter-arrival time and packet delay of Parent population traffic trace. Duration:
2600 seconds, packet number: 577718.

sampling techniques. Therefore, to remove the effect of packet size on sampling

accuracy, I select the sample delay trace directly from the parent delay trace instead

of obtaining it using active sampling by Opnet simulation. The impact of packet size

will be discussed in Chapter 4.5.

4.3 Systematic SamplingvsRandom Sampling

The performance of systematic sampling in relation to that of simple random sam-

pling is greatly dependent on the statistical characteristics (e.g., autocorrelation) of

the parent population. There are some parent populations for which systematic sam-

pling is more accurate and others for which it is less accurate than simple random

sampling [30, pp. 213]. Therefore, understanding the statistical characteristics of

network traffic is critical in order to appropriately estimate network performance.

Using the one-way delay traffic trace, I discuss the performance of count-based

systematic sampling, count-based simple random sampling, timer-based systematic

sampling and timer-based Poisson sampling in the following two subsections.
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4.3.1 Comparison between Count-based Systematic Sampling and
Count-based Simple Random Sampling

Supposing that the parent population sizeN is an integer multiple of the sample size

n, the maximum number of systematic samplesK is computed byK = N/n. Then

the variance of the sample mean for systematic sampling is:

V arsys(ȳ) = E(ȳ − µ)2 =
1

K

K∑

k=1

(ȳk − µ)2, (4.6)

whereȳk is the mean value of thek-th sample in the totalK systematic samples:

ȳk =
1

n

n∑

i=1

yki. (4.7)

According to the characteristics of systematic sampling and the assumptionN =

nK, we can obtain that the totalK samples are nonoverlapping, and together com-

prise the entire parent population. Figure 4.3 shows theK systematic samples in

the entire parent population. Therefore, the variance of parent populationσ2 can be

1-st Sample
with n

elements

1 2 KK+1K+2 2K N-K+1N-K+2 N

2-nd Sample
with n

elements

K-th Sample
with n

elements

Figure 4.3K systematic samples in the whole parent population.

written as:

σ2 =
1

N − 1

N∑

j=1

(yj − µ)2 =
1

N − 1

K∑

k=1

n∑

i=1

(yki − µ)2, (4.8)

=
1

N − 1

K∑

k=1

n∑

i=1

(yki − ȳk + ȳk − µ)2 (4.9)

=
1

N − 1

K∑

k=1

n∑

i=1

(ȳk − µ)2 +
1

N − 1

K∑

k=1

n∑

i=1

(yki − ȳk)
2, (4.10)
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=
nK

N − 1

1

K

K∑

k=1

(ȳk − µ)2 +
K(n− 1)

N − 1

1

K

K∑

k=1

1

n− 1

n∑

i=1

(yki − ȳk)
2,(4.11)

=
nK

N − 1
V arsys(ȳ) +

K(n− 1)

N − 1
S̄2. (4.12)

where

S̄2 =
1

K

K∑

k=1

1

n− 1

n∑

i=1

(yki − ȳk)
2, (4.13)

is the mean value of the sample variances of allK systematic samples. Hence,

V arsys(ȳ) =
N − 1

N
σ2 − N −K

N
S̄2 =

N − 1

N
σ2 − n− 1

n
S̄2. (4.14)

From Equation 3.10,

V arran(ȳ) = (1− n

N
)
σ2

n
. (4.15)

From Equation 4.14 and 4.15, the sampling gain of count-based simple random sam-

pling in comparison with count-based systematic sampling is:

∆ran = V arsys(ȳ)− V arran(ȳ), (4.16)

=
N − 1

N
σ2 − n− 1

n
S̄2 − (1− n

N
)
σ2

n
, (4.17)

= (
N − 1

N
− N − n

nN
)σ2 − n− 1

n
S̄2, (4.18)

=
n− 1

n
(σ2 − S̄2). (4.19)

The sampling gain∆ran is positive ifσ2 > S̄2, and the converse.

4.3.1.1 Simulation Results

Before I discuss the simulation result, an introduction to the simulation setup and the

metrics used for performance comparison in this thesis is presented. As discussed

earlier, the sample delay traces are selected directly from the parent delay trace. The

sampling goal is to estimate the mean packet delayµ and the variance of packet de-

lay σ2 of the parent delay trace. Several C programs were developed for sampling

the sample delay traces and calculating the estimated mean packet delayµ̂ and the

estimated variance of packet delayσ̂2 = s2 from the sample delay traces, whereµ̂

is the mean packet delay of the sample delay trace ands2 is the variance of packet
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delay of the sample delay trace. The C programs were also used to obtain other

results (e.g., absolute error of the estimated mean) required for performance compar-

ison. For simulation, each kind of sampling (e.g., count-based systematic sampling,

timer-based systematic sampling, stratified sampling with optimum allocation, etc.)

is repeated a number of times, and the random seed in the C programs is updated

every repetition. LetM denote the number of repetitions (i.e., sampling rounds). So

afterM sampling rounds, we obtainM different sample delay traces. The estimated

mean delaŷµ and estimated variance of delays2 are calculated for each sample delay

trace in theM sampling rounds. Then we can obtainM estimated mean delay, i.e.,

µ̂1, µ̂2, ..., µ̂M andM estimated variance of delay, i.e.,s2
1, s

2
2, ..., s

2
M . The absolute

error of the estimated mean, i.e.,|µ̂ − µ|, and the absolute error of the estimated

variance, i.e.,|s2−σ2| are also calculated for theM sampling rounds, where the true

valuesµ andσ2 are obtained in Section 4.2 and shown in Table 4.3.

To compare the performance of different sampling methods, several metrics are used,

which are:

• Average value of sample mean (AMean): the average value of the sample

mean of theM sample delay traces.AMean = 1
M

∑M
i=1 µ̂i, whereM is the

sampling rounds,̂µi is the mean value of thei-th sample delay trace in theM

sample delay traces. The smaller the difference betweenAMean andµ is, the

better the performance is.

• Average sample variance (AV ar): the average value of the sample variance

among the wholeM sample delay traces.AV ar = 1
M

∑M
i=1 s2

i , wheres2
i is

the variance of thei-th sample delay trace. The smaller the difference between

AV ar andσ2 is, the better the performance is.

• Mean square error (MSE): MSE = 1
M

∑M
i=1(µ̂i−µ)2. The smaller theMSE

is, the higher the accuracy is.

• Absolute error of estimated mean (AEMean): |µ̂− µ|, the smaller|µ̂− µ| is,

the lower the variance of the sample meanV ar(µ̂) is.

• Absolute error of estimated variance (AEV ar): |s2−σ2|, the smaller|s2−σ2|
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is, the better cans2 estimate the true varianceσ2.

For count-based systematic sampling, the sample sizen = 2600 and the parent

size N = 577718, so the maximum number of systematic sample delay traces

K = N/n = 222. Simulation for count-based systematic sampling is performed

for 222 sampling rounds, and the related statistics (e.g.,µ̂i, s2
i ) are calculated for

each sampling round. The mean valueS̄2 of the sample variances for the entire222

samples is also calculated from Equation 4.13:S̄2 = 8613. Since the true variance of

delayσ2 of the parent delay trace shown in Table 4.3 is8529, we haveσ2 < S̄2. From

the theoretical analysis in Equation 4.19, the sampling gain∆ran < 0, which means

that the count-based systematic sampling should perform better than the count-based

random sampling, and the difference of the variance of the sample mean should be

V arran(ȳ)− V arsys(ȳ) = n−1
n

(S̄2 − σ2) ≈ 83.

Table 4.4 shows the average value of sample meanAMean, average value of sample

varianceAV ar and theMSE. We can see that theAMean of the count-based

systematic sampling (i.e., 85.879 ms) is closer to the true mean delayµ = 86.824ms

than that of the count-based simple random sampling (i.e., 87.720 ms); and theAV ar

of the count-based systematic sampling (i.e., 8613) is closer to the true variance of

delayσ2 = 8529 than that of the count-based simple random sampling (i.e., 8648).

We can also see that theMSE of the count-based systematic sampling (i.e., 45) is

smaller than that of the count-based simple random sampling (i.e., 92). Therefore,

the count-based systematic sampling indeed performs better than the count-based

simple random sampling. The difference between theirMSE is 92 − 45 = 47.

Figure 4.4 displays the absolute error of the estimated mean and Figure 4.5 displays

the absolute error of the estimated variance for the222 sampling rounds. We can

see that the absolute error of the estimated meanAEMean and the absolute error

of the estimated varianceAEV ar between the count-based systematic sampling and

the count-based simple random sampling are approximately the same.

Based on the simulation results, a conclusion can be obtained that the count-based

systematic sampling achieves better performance than the count-based simple ran-

dom sampling, but the performance improvement is marginal.
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Table 4.4
Main simulation results of count-based systematic sampling and count-based simple random
sampling (true values are:µ = 86.824 ms,σ2 = 8529).

Sampling method M AMean AV ar MSE
= 1

M

∑
µ̂i = 1

M

∑
s2

i = 1
M

∑
(µ̂i − µ)2

Systematic 222 85.879 ms 8613 45
Simple Random 222 87.720 ms 8648 92
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Figure 4.4 Comparison of Absolute Error of Estimated Mean between count-based sys-
tematic sampling and count-based simple random sampling. Sample size: 2600, sampling
rounds: 222.

4.3.2 Comparison between Timer-based Systematic Sampling and
Timer-based Poisson Sampling

For timer-based systematic sampling, the inter-arrival time follows a deterministic

function; for timer-based Poisson sampling, the inter-arrival time follows an expo-

nential distribution. In order to compare the performance of the two sampling meth-

ods, their variances of the sample mean should be expressed in the same form. The

variance of the sample mean of packet delay can be expressed in the form of the

autocorrelation of packet delayρ of the parent delay trace:
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Figure 4.5 Comparison of Absolute Error of Estimated Variance between count-based sys-
tematic sampling and count-based simple random sampling. Sample size: 2600, sampling
rounds: 222.

V ar(ȳ) = E(ȳ − µ)2 = E(
1

n

n∑

i=1

yi − µ)2, (4.20)

= E(
1

n2

n∑

i=1

(yi − µ)2 +
1

n2

n∑

i=1

n∑

j=1,j 6=i

(yi − µ)(yj − µ)), (4.21)

=
1

n2

n∑

i=1

E(yi − µ)2 +
1

n2
E(

n∑

i=1

n∑

j=1,j 6=i

(yi − µ)(yj − µ)), (4.22)

=
1

n2

n∑

i=1

σ2 +
1

n2
E(

n∑

i=1

n∑

j=1,j 6=i

(yi − µ)(yj − µ)), (4.23)

=
σ2

n
[1 +

1

nσ2
2

n−1∑

h=1

n−h∑

i=1

E((yi − µ)(yi+h − µ))], (4.24)

=
σ2

n
[1 + 2

n−1∑

h=1

1

n

n−h∑

i=1

E((yi − µ)(yi+h − µ))

E(yi − µ)2
], (4.25)

=
σ2

n
(1 + 2

n−1∑

h=1

n− h

n
ρ(h)), (4.26)

whereρ(h) is the autocorrelation between thei-th and(i + h)-th elements in the

sample delay trace [39, pp. 16]:

ρ(h) =
E((yi − µ)(yi+h − µ))

E(yi − µ)2
. (4.27)
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Hence,

V arsys(ȳ)− V arpoi(ȳ) =
2σ2

n

n−1∑

h=1

n− h

n
(ρsys(h)− ρpoi(h)), (4.28)

whereρsys(h) is the autocorrelation of delay of the systematic sample trace at lagh,

ρpoi(h) is the autocorrelation of delay of the Poisson sample trace at lagh.

Based on Equation 4.28, the comparison betweenV arsys(ȳ) andV arpoi(ȳ) becomes

the comparison betweenρsys(h) andρpoi(h). An analytic expression ofρ is therefore

desirable for the comparison.

In this thesis, I use an exponential function to approximate the autocorrelationρ:

ρ(t) ≈ ae−bt t > 0. (4.29)

wherea andb are constants.

From Equation 4.29, we have

ln ρ(t) = ln a + (−b)t. (4.30)

Then, the single variable linear regression algorithm can be used to estimate the coef-

ficientsa andb. For two groups of random variables(x1, x2,...,xn) and(y1, y2, ..., yn)

related through the linear equationyi = kxi + c + εi, wherek andc are constant

coefficients andεi is a random variable having a Gaussian distribution with a zero

mean, the estimators for the coefficients are [40, pp. 282]:

k̂ =
n

∑n
i=1 xiyi − (

∑n
i=1 xi)(

∑n
i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

, (4.31)

ĉ = ȳ − k̂x̄, (4.32)

where

ȳ =
n∑

i=1

yi, (4.33)

x̄ =
n∑

i=1

xi. (4.34)

Hence, letln ρ(t) representy and t representx, the estimated coefficients areb̂ =

−k̂ = 0.086743 and â = eĉ = 0.369142. Figure 4.6 shows the autocorrelation of
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Figure 4.6Autocorrelation of packet delay and the corresponding exponential approximation
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packet delay of the parent delay trace and the corresponding exponential approxima-

tion. We can see that the approximation is appropriate.

For systematic sampling:The adjacent elements in the sample trace are separated

by a uniform distance in time, letT0 denote the uniform distance. Therefore, the

autocorrelation between thei-th and the(i+h)-th elements in the systematic sample

trace is:

ρsys(h) = ae−bhT0 . (4.35)

For Poisson sampling:The adjacent elements in the sample trace are separated by

a non-uniform distance in time and the inter-arrival time between adjacent elements

has a exponential distribution. Hence, the probability density function (PDF) of the

inter-arrival time is:

p(t) = λe−λt t ≥ 0, λ ≥ 0. (4.36)
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The mean distance between adjacent elements of the Poisson sample trace is specified

asT0 so that the sampling rate of the Poisson sampling is the same as the sampling

rate of the systematic sampling. Hence, the mean inter-arrival time is:

E(t) =
1

λ
= T0. (4.37)

Therefore,ρpoi(1), the autocorrelation between adjacent two elements in the Poisson

sample trace can be computed as:

ρpoi(1) =
∫ ∞

0
ae−btλe−λtdt = aλ

∫ ∞

0
e−(b+λ)tdt =

aλ

b + λ
. (4.38)

In order to calculateρpoi(2),ρpoi(3),..., we need to know the PDF of the sum of two

consecutive inter-arrival time slots (e.g.,p2(t)), PDF of the sum of three consecutive

inter-arrival time slots (e.g.,p3(t)), and so on. LetX andY denote the two consecu-

tive inter-arrival time slots respectively; letT denote the sum of the two consecutive

inter-arrival time slots (i.e.,X + Y ); and letF2(t) denote the distribution function

(DF) of T . According to the characteristics of the Poisson process, the two consec-

utive inter-arrival time slots (i.e.,X andY ) are independently identically distributed

(i.i.d). Then,

F2(t) = P{T ≤ t} = P{X + Y ≤ t} =
∫ t

0

∫ t−x

0
p(x, y)dxdy, (4.39)

where

p(x, y) = p(x)p(y) = λe−λxλe−λy. (4.40)

Hence,

F2(t) =
∫ t

0

∫ t−x

0
λe−λxλe−λydxdy, (4.41)

=
∫ t

0
λe−λxdx

∫ t−x

0
λe−λydy, (4.42)

= 1− e−λt − λte−λt. (4.43)

The PDF is the derivative of its DF;p2(t) can be obtained:

p2(t) = F ′
2(t) = λ2te−λt. (4.44)
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Therefore, the autocorrelationρpoi(2) can be calculated as:

ρpoi(2) =
∫ ∞

0
ae−btλ2te−λtdt =

aλ2

(b + λ)2
. (4.45)

In the same way, we can obtainp3(t), p4(t), p4(t):

p3(t) =
1

2
λ3t2e−λt, (4.46)

p4(t) =
1

6
λ4t3e−λt, (4.47)

p5(t) =
1

24
λ5t4e−λt. (4.48)

By mathematical induction we can obtain the expression ofpm(t), the details of the

derivation are provided in Appendix A.1.

pm(t) =
1

(m− 1)!
λmtm−1e−λt. (4.49)

Finally, the autocorrelation between thei-th and the(i+h)-th elements in the Poisson

sample trace is obtained from Equation 4.49:

ρpoi(h) =
∫ ∞

0
ae−bt 1

(h− 1)!
λhth−1e−λtdt, (4.50)

=
aλh

(h− 1)!

∫ ∞

0
th−1e−(b+λ)tdt, (4.51)

=
aλh

(h− 1)!

(h− 1)!

(b + λ)h−1

∫ ∞

0
e−(b+λ)td =

aλh

(b + λ)h
. (4.52)

From Equation 4.28, 4.35 and 4.52, we can prove the following relationships between

V arsys(ȳ) andV arpoi(ȳ). The details of the derivation are provided in Appendix A.2.

bT0 < ln(1 + bT0) ⇔ V arsys(ȳ) > V arpoi(ȳ) (4.53)

bT0 > ln(1 + bT0) ⇔ V arsys(ȳ) < V arpoi(ȳ) (4.54)

In this thesis, the sampling periodT0 is specified as1 second, thenbT0 ≈ b̂T0 =

0.086743, ln(1 + bT0) ≈ ln(1 + b̂T0) = 0.0832, so we havebT0 > ln(1 + bT0).

Based on the theoretical analysis in Equation 4.54, we can obtain thatV arsys(ȳ) <

V arpoi(ȳ), i.e., the timer-based systematic sampling should perform better than the

timer-based Poisson sampling.
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4.3.2.1 Simulation Results

Simulations for the two timer-based sampling methods are performed respectively.

Each simulation is performed for222 sampling rounds (i.e., each simulation is re-

peated222 times). Then the mean packet delay and the variance of packet delay of

the sample trace from the222 systematic sampling rounds and the222 Poisson sam-

pling rounds are calculated. The main results are shown in Table 4.5. We can see

that the timer-based systematic sampling indeed produces better performance than

the timer-based Poisson sampling. Figure 4.7 shows the absolute error of the esti-

mated mean and Figure 4.8 shows the absolute error of the estimated variance for

the222 sampling rounds, which demonstrates that the timer-based systematic sam-

pling has both a lower absolute error of the estimated mean and a lower absolute

error of the estimated variance. In conclusion, the timer-based systematic sampling

has higher accuracy than the timer-based Poisson sampling, which agrees with the

theoretical analysis.

Table 4.5
Main simulation results of timer-based systematic sampling and timer-based Poisson sam-
pling (true values are:µ = 86.824 ms,σ2 = 8529).

Sampling method M AMean AV ar MSE
= 1

M

∑
µ̂i = 1

M

∑
s2

i = 1
M

∑
(µ̂i − µ)2

Systematic 222 74.803 ms 5996 145
Poisson 222 64.998 ms 4710 478

4.4 Stratified SamplingvsSimple Random Sampling

In this section, theoretical comparisons of the variance of the sample mean are per-

formed between simple random sampling, stratified sampling with proportional allo-

cation and stratified sampling with optimum allocation. The variances of the sample

mean for the three schemes are denoted byV arran(ȳ), V arprop(ȳ) andV aropt(ȳ)

respectively.

For stratified sampling, it can be shown that the variance of the parent population
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Figure 4.7 Comparison of Absolute Error of Estimated Mean between timer-based system-
atic sampling and timer-based Poisson sampling. Sampling interval: 1 second, parent traffic
duration: 2600 seconds, sampling rounds: 222.

(i.e., the true variance) is related to the variances in each stratum by:

σ2 =
1

N − 1

N∑

i=1

(yi − µ)2 =
1

N − 1

L∑

l=1

Nl∑

i=1

(yli − µ)2, (4.55)

=
1

N − 1

L∑

l=1

Nl∑

i=1

[(yli − µl) + (µl − µ)]2, (4.56)

=
1

N − 1

L∑

l=1

(Nl − 1)σ2
l +

1

N − 1

L∑

l=1

Nl(µl − µ)2, (4.57)

whereσ2
l is defined in Equation 4.3. The details of the derivation are provided in

Appendix A.3.

Multiplying both sides of Equation 4.57 by a common factor1
n
(1− n

N
), where(1− n

N
)

is the finite population correction (fpc) factor, it can be obtained that:

1

n
(1− n

N
)σ2 =

1

n
(1− n

N
)

1

N − 1

L∑

l=1

(Nl−1)σ2
l +

1

n
(1− n

N
)

1

N − 1

L∑

l=1

Nl(µl−µ)2.

(4.58)

Applying the approximation in Equation 4.4, it can be obtained that:

1

n
(1− n

N
)σ2 =

1

n
(1− n

N
)

L∑

l=1

Nl

N
σ2

l +
1

nN
(1− n

N
)

L∑

l=1

Nl(µl − µ)2. (4.59)
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Figure 4.8 Comparison of Absolute Error of Estimated Variance between timer-based sys-
tematic sampling and timer-based Poisson sampling. Sampling interval: 1 second, parent
traffic duration: 2600 seconds, sampling rounds: 222.

It should be noticed that the approximation in Equation 4.4 naturally leads to the

approximationN − 1 ≈ N .

4.4.1 Stratified Sampling with Proportional Allocation

For simple random sampling, it has been shown in Chapter 3 that the variance of the

sample mean is

V arran(ȳ) =
1

n
(1− n

N
)σ2. (4.60)

For stratified random sampling, the variance of the sample mean is given by [30, pp.

91]

V arst(ȳ) =
L∑

l=1

(
Nl

N
)2(

Nl − nl

Nl

)
σ2

l

nl

. (4.61)

If proportional allocation (i.e., the sample size in each stratum is proportional to the

parent size in that stratum [30, pp. 91]) is used, then

nl = n
Nl

N
. (4.62)
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The variance of the sample mean becomes:

V arprop(ȳ) =
1

n
(1− n

N
)

L∑

l=1

Nl

N
σ2

l . (4.63)

To compare the performance of different sampling techniques, I fix the total sample

size and compare the variance of the sample mean under different sampling tech-

niques. Comparing Equation 4.59 and 4.60 with Equation 4.63, it can be seen that

the variance of the sample mean for simple random sampling is related to the vari-

ance of the sample mean for stratified sampling with proportional allocation by:

V arran(ȳ) = V arprop(ȳ) +
1

n
(1− n

N
)

1

N

L∑

l=1

Nl(µl − µ)2. (4.64)

Applying the approximationNl−1 ≈ Nl, the sampling gain of the stratified sampling

with proportional allocation is given by:

∆prop = varran(ȳ)− varprop(ȳ) =
1

nN
(1− n

N
)

L∑

l=1

Nl(µl − µ)2 ≥ 0. (4.65)

The sampling gain∆prop is positive, which indicates that performance improvement

(i.e., better sampling accuracy) can be achieved when moving from simple random

sampling to stratified sampling with proportional allocation.

4.4.2 Stratified Sampling with Optimum Allocation

If stratified sampling with optimum allocation is used, the sample size in thel-th

stratum is given by [30, pp. 97]:

nl =
nNlσl∑L
k=1 Nkσk

. (4.66)

The variance of the sample mean can be obtained by Equation 4.61 and 4.66:

V aropt(ȳ) =
1

nN2
(

L∑

l=1

Nlσl)(
L∑

l=1

Nlσl)− 1

N

L∑

l=1

Nl

N
σ2

l , (4.67)

=
1

n
(

L∑

l=1

Nl

N
σl)

2 − 1

N

L∑

l=1

Nl

N
σ2

l . (4.68)
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The sampling gain of the stratified sampling with optimum allocation in comparison

with the stratified sampling with proportional allocation is given by Equation 4.69.

The details of the derivation are provided in Appendix A.4:

V arprop(ȳ)− V aropt(ȳ) =
1

nN

L∑

l=1

Nl(σl − σ̄l)
2 ≥ 0, (4.69)

whereσ̄l is:

σ̄l =
L∑

l=1

Nl

N
σl. (4.70)

As the sampling gain is always positive, stratified sampling with optimum allocation

achieves better performance than stratified sampling with proportional allocation.

Therefore with the same sample sizen, ignoring thefpc, the sampling gain of the

stratified sampling with optimum allocation in comparison with simple random sam-

pling is:

∆opt = V arran(ȳ)− V aropt(ȳ) =
1

nN
[

L∑

l=1

Nl(µl − µ)2 +
L∑

l=1

Nl(σl − σ̄l)
2] ≥ 0.

(4.71)

Equation 4.71 demonstrates that stratified sampling with optimum allocation per-

forms better than simple random sampling.

Finally, I conduct simulations for stratified sampling with optimum allocation for

222 sampling rounds. The parameters used to calculate the stratum sample sizenl

are all true values from the parent delay trace, and the stratum size is specified as

50 seconds. Simulation results are shown in Table 4.6, Figure 4.9 and 4.10. The

results indicate that the stratified sampling with optimum allocation achieves the best

estimation accuracy, which agrees with our theoretical analysis.

4.5 Impact of Packet Size on Delay Measurements

In the earlier sections, I have investigated the performance of different sampling tech-

niques without considering the effect of packet size. In order to find out the effects

of packet size on the sampling accuracy, I deploy active sampling tests using Opnet

simulation with two different sample traces. One sample trace has a constant packet
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Table 4.6
Main simulation results of stratified sampling with optimum allocation (true values are:µ =
86.824 ms,σ2 = 8529)

Sampling method M AMean AV ar MSE
= 1

M

∑
µ̂i = 1

M

∑
s2

i = 1
M

∑
(µ̂i − µ)2

Systematic 222 74.803 ms 5996 145
Poisson 222 64.998 ms 4710 478

Stratified with 222 88.023 ms 8959 5
optimum allocation

size of128 bytes and the other has approximately the same packet size distribution

as the parent traffic trace. Figure 4.11 shows the cumulative distribution function

(CDF) of the packet size from real traffic traces on different dates and times. We

can see that the packet size distribution is approximately the same. We can also see

that there are several typical values of packet size in the real traffic trace, e.g.,24

bytes,550 bytes,750 bytes and1472 bytes. The probabilities of other packet sizes

are comparatively small. Therefore, I use these typical values to build up the sample

trace. LetZ denote a uniform distribution random variable, then the packet size that

has the same CDF as the parent traffic trace can be obtained by:

• if 0 ≤ z < 0.5: packet size is24 bytes;

• if 0.5 ≤ z < 0.65: packet size is550 bytes;

• if 0.65 ≤ z < 0.78: packet size is572 bytes;

• if 0.78 ≤ z < 0.80: packet size is750 bytes;

• if 0.80 ≤ z ≤ 1.0: packet size is1472 bytes.

Where the values0.5, 0.65, 0.78 and0.80 are obtained from empirical observation

using Figure 4.11. Figure 4.12 shows the CDFs of the constructed sample packet size

and the parent packet size. They are approximately the same.

Then I perform active sampling tests using this constructed sample trace and the

constant packet size sample trace respectively. The sampling goal is to estimate the

mean packet delay and the variance of packet delay. Table 4.7 shows the results of
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Figure 4.9 Comparison of Absolute Error of Estimated Mean between timer-based system-
atic sampling, timer-based Poisson sampling and stratified sampling with optimum alloca-
tion. Sampling interval: 1 second, parent traffic duration: 2600 seconds, stratum size: 50
seconds, sampling rounds: 222.

the two sampling tests. The sampling results indicate that the estimation of sample

Table 4.7
Main simulation results of active sampling by Opnet simulation. Sample A is the sample
with constant packet size distribution and sample B is the sample with approximately the
same packet size distribution as the parent trace.

Property Min. Max. Mean Median Var. StdDev
Delay Delay Delay Delay of Delay of Delay

Parent 41.092 ms 1413.05 ms 86.024 ms 45.2 ms 8529 92.354
Sample A 50.7 ms 51.6 ms 50.9 ms 50.9 ms 0.0085 0.092
Sample B 40.2 ms 310.4 ms 94.7 ms 40.7 ms 11600 107.8

A is significantly biased, and sampleB gives high accuracy for estimating the mean

packet delay and the variance of packet delay. Since the packet size distribution of

the real traffic trace are approximately the same, we can use the constructed sample

trace to estimate the mean packet delay and the variance of packet delay, which can

improve the accuracy of estimation.
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Figure 4.10Comparison of Absolute Error of Estimated Variance between timer-based sys-
tematic sampling, timer-based Poisson sampling and stratified sampling with optimum allo-
cation. Sampling interval: 1 second, parent traffic duration: 2600 seconds, stratum size: 50
seconds, sampling rounds: 222.

4.6 Summary

In this chapter, I compared the performance of different sampling techniques. Per-

formance comparison was conducted by comparing the variance of the sample mean

of different sampling techniques under the constraint that the total sample sizes were

the same. In addition, several other metrics were employed for the performance com-

parison, such as the absolute error of the estimated mean and the absolute error of

the estimated variance.

I first compared the performance of the count-based systematic sampling and the

count-based simple random sampling. Based on the parent delay trace, the count-

based systematic sampling achieved approximately the same performance as the

count-based simple random sampling, with a marginal improvement. Secondly, I

compared the performance of timer-based systematic sampling and timer-based Pois-

son sampling. The theoretical analysis showed that the difference between their per-

formance was related to the autocorrelation of packet delayρ of the parent delay trace
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Figure 4.11CDF of packet size of different time and date

and the sampling intervalT0. From the autocorrelation of delayρ and the sampling

interval in our study (i.e.,1 second), the timer-based systematic sampling should

achieve better performance than the timer-based Poisson sampling. Simulation re-

sults demonstrated that the timer-based sampling indeed produced a better accuracy

of estimate than the timer-based Poisson sampling. Therefore, the simulation re-

sults complied with the theoretical analysis. Thirdly, I compared the performance

between simple random sampling and stratified random sampling with proportional

allocation and stratified random sampling with optimum allocation. The conclusion

was obtained that stratified sampling with proportional allocation achieved better

performance than simple random sampling, and stratified sampling with optimum

allocation achieved the best performance. However, the better performance of the

stratified sampling was achieved at the expense of the greater complexity of the sys-

tem. As pointed out in Chapter 3.2.3, this higher complexity might compromise the
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Figure 4.12CDF of sample packet size and parent packet size.

advantage of the stratified sampling technique.



Chapter 5

Adaptive Stratified Sampling

5.1 Introduction

It has been shown in Chapter 4.4.2 that the stratified sampling with optimum alloca-

tion produces higher accuracy for estimating the mean value of packet delay and the

variance of packet delay. However, the stratified sampling with optimum allocation

requires extra information (e.g., standard deviation of packet delay within a stratum)

from the parent delay trace in order to determine the sample size within each stra-

tum. This has been shown in Equation 4.66. In real applications, these statistics are

not knowna priori. To address the challenge, I propose a novel adaptive stratified

sampling scheme which can closely approach the performance of stratified sampling

with optimum allocation.

As discussed in Chapter 3.2.4, adaptive sampling methods select samples adaptively

according to values of the variable of interest observed during the sampling process.

The key element of adaptive sampling is the prediction of future behaviour based on

the observed behaviour [41]. Hernandezet al. employe a linear prediction (LP) al-

gorithm in their adaptive sampling method to measure the network throughput [31].

Choi et al. use an autoregressive model for network load change detection [42]. Ma

et al. employe a sample size estimation algorithm in their sampling scheme for net-

work performance measurement [41]. In this chapter, I propose an adaptive stratified

sampling scheme, which employs a least-mean-square (LMS) linear prediction algo-

54
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rithm to predict the standard deviation of packet delay from past observations. Then

the sample size for the next stratum is calculated from the predicted value of the

standard deviation.

Firstly, a brief introduction to the LMS algorithm is presented. Secondly, a detailed

description of the adaptive stratified sampling algorithm is presented. Finally, a per-

formance comparison between the proposed sampling strategy and two timer-based

sampling methods (e.g., timer-based systematic sampling) is made.

5.2 Least-mean-square Algorithm

The LMS algorithm is one of the most widely used adaptive linear algorithms. A sig-

nificant feature of the LMS algorithm is its simplicity. It does not require measure-

ments of the correlation function, nor does it require matrix inversion. The adaptive

mechanism enables it to approximate the steepest descent algorithm automatically

from sample to sample. Figure 5.1 shows the architecture of the LMS algorithm.

Adaptive
algorithm

0w

1w

mw

0x

1x

mx

ke

Error
Signal

(desired
output)

ky

knˆ
(output)

Input
signal
vector

Figure 5.1Architecture of LMS algorithm
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The computational procedure for the LMS algorithm is listed below: [43, pp. 655]:

• Compute filter output

ŷk =
m−1∑

i=0

wk(i)yk−1−i = WT
k Y(k). (5.1)

wherem is the order of the predictor,Y(k) is the input vector andWk is the

prediction coefficient vector.

Y(k) = [yk−1, yk−2, ..., yk−m]T , (5.2)

Wk = [wk(0), wk(1), ..., wk(m− 1)]T . (5.3)

Initially, each weightwk(i) is set to an arbitrary fixed value.

• Compute the prediction error

ek = yk − ŷk. (5.4)

• Update the coefficient vector

Wk+1 = Wk + 2υekY(k), (5.5)

whereυ is the step size.

The LMS algorithm does not require knowledge ofP andR, but instead uses their

instantaneous estimates, whereP = E[ykY(k)] is the cross-correlation vector be-

tween the input vectorY(k) and the desired outputyk, andR = E[Y(k)YT (k)] is

them × m correlation matrix. The weight vectorWk is only an estimate, but it is

updated and improved from sample to sample. Eventually, the weights converge; the

condition for convergence is:

0 < υ <
1

λmax

, (5.6)

whereλmax is the maximum eigenvalue of the input data covariance matrixR. In

practice,Wk never reaches the theoretical optimums, but fluctuates about it. A con-

servative estimation forλmax is the input vector energy‖Y(k)‖2 [44, pp. 303].

0 < υ <
1

‖Y(k)‖2
. (5.7)
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The MSE of prediction will decrease to its minimum value (denoted asJmin) if the

weight vectorWk reaches the optimum weightsWopt = R−1P. However, in real ap-

plications,Wk is only an estimate and cannot reachWopt. So the MSE of prediction

cannot exactly reachJmin. The actual MSE of prediction by LMS algorithm consists

of three components [44, pp. 267]:

J(k) = E[|ek|2] = Jmin + Jtr(k) + Jex(∞), (5.8)

whereJtr(k) is transient component of the MSE andJex(∞) is steady-state excess

MSE.

The transient componentJtr(k) dies out if and only if the step sizeυ satisfies Equa-

tion 5.7.

The excess MSEJex(k) can be approximated as:

Jex(k) ≈ υJmin

m∑

i=1

λi. (5.9)

whereλi are the eigenvalues ofR.

Hence, given step sizeυ satisfying Equation 5.7, the MSE of LMS algorithm can be

simplified as:

J(k) ≈ Jmin + υJmin

m∑

i=1

λi = Jmin(1 + υ
m∑

i=1

λi). (5.10)

5.3 Adaptive Stratified Sampling Algorithm

5.3.1 Prediction of Sample Size within Strata

Obtaining the sample sizenl within each stratum is the key phase in stratified sam-

pling with optimum allocation.nl is calculated by Equation 4.66 as:

nl =
nNlσl∑L
k=1 Nkσk

. (5.11)

In order to estimatenl, an assumption is made that the parent population sizeNl is
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approximately the same in each stratum, i.e.,

Nl

Nk

≈ 1, l 6= k. (5.12)

This assumption is valid when the parent population sizeNl is very large and the

time duration of the stratum is a constant. This assumption has been validated using

the real traffic trace. Figure 5.2 shows the ratioNk/N1 of the real traffic trace with

stratum size= 50, 100, 130 and200 seconds respectively, whereNk, k = 1, 2, ..., L

is the total number of packets within thek-th stratum of the real traffic trace andN1

is the total number of packets within the1-st stratum of the real traffic trace. We can

see that the ratioNk/N1 is bounded in the interval[0.8, 1.2].
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Then Equation 5.11 can be simplified as:

nl ≈ nσl∑L
k=1 σk

=
nσl

Lσ̄s

= ϕσl, (5.13)

ϕ =
n

∑L
k=1 σk

=
n

Lσ̄s

, (5.14)

whereσ̄s = 1
L

∑L
k=1 σk is the mean value of the standard deviation of delay among

all the strata. In real applications,ϕ is a proportionality constant which determines

the sampling rate.ϕ can be chosen empirically and a largerϕ will produce s a higher

sampling rate.

The next step is to find a way to predictσl. The LMS algorithm is employed to

predictσl from the past observations (e.g.,σl−1,σl−2). From the LMS algorithm, the

l-th standard deviationσl is given by:

σ̂l =
m−1∑

i=0

wl(i)σl−1−i. (5.15)

The prediction errorel is:

el = σl − σ̂l, (5.16)

and the weights are updated by:

wl+1(i) = wl(i) + 2υelσl−1−i i = 0, 1, ...,m− 1. (5.17)

Since the standard deviation of delayσl is the true value of the parent delay trace,

which we cannot obtain in practice, it must be replaced by its estimated valuesl,

wheresl is the standard deviation of packet delay of the sample delay trace. Although

s2
l (variance of packet delay of sample delay trace) is an unbiased estimate ofσ2

l ,

the estimate of the standard deviation of parent traceσl by the standard deviation

of sample tracesl is slightly biased. Fortunately, in most applications the bias is

marginal [30, pp. 25]. For the proposed adaptive sampling scheme, I use the standard

deviation of packet delaysl of sample trace to estimate the standard deviation of

packet delayσk of parent trace.

Hence, the estimator̂nl of sample size for thel-th stratum can be computed by:

n̂l = ϕŝl, (5.18)
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ŝl =
m−1∑

i=0

wl(i)sl−1−i, (5.19)

el = sl − ŝl, (5.20)

wl+1(i) = wl(i) + 2υelsl−1−i i = 0, 1, ..., m− 1. (5.21)

The next step is to determine the predictor orderm and the initial value of weight

vector.m can be determined based on the autocorrelation of the standard deviation of

packet delay. The best performance is obtained when the initial weights are specified

as the stable values of weights when the weights approximately converges. To es-

tablish the validity of prediction, we separate the sampling procedure into two parts.

In the first part, we use the required statistics (i.e., autocorrelation of the standard

deviation of packet delay) obtained from sampling to determine the predictor order

m, and train the weights at the same time of sampling. The main objective in the first

part is to train the weight values. Then in the second part, we use the chosen predic-

tor orderm and the stable weights obtained in the first part to perform sampling. In

this thesis, the parent delay trace is not long enough to be separated into two parts.

To address this problem, I choose another real traffic trace provided by the WAND

research group to determine the predictor orderm and the initial weights. This trace

(“20010612-060000-e1.gz”) was captured on June 12th, 2001, one day before the

day when the trace discussed in Chapter 4.2 was captured. A new delay trace is

generated by importing the first2600-second part of this trace into Opnet Modeler.

Figure 5.3 shows the autocorrelation of the standard deviation of packet delay of the

new delay trace. For the stratum size of100 seconds, the autocorrelation is signifi-

cant at lags of1, 3, 4 and5, so an order of5 must be chosen. For the stratum size of

50 seconds, the autocorrelation is significant at lags of1, 2, 3 and4, and it declines

to approximately zero at a lag of5. Therefore, an order of4 is an appropriate choice.

There is a simple way to diagnose whether the orderm selected is appropriate. After

setting the orderm to a certain value (e.g.,m = 4 for stratum size of50 seconds),

we check the autocorrelation of the residual errorel. If the autocorrelation of errorel

is significant, then the order is inappropriate, and it must be modified and improved.

Take a stratum size of50 seconds as an example, the new delay trace is separated

into 2600/50 = 52 strata, then we can obtain52 standard deviations of packet delay.
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Figure 5.3Autocorrelation of the standard deviation of delay

I first set the weights towl(0) = wl(1) = wl(2) = wl(3) = 0.25, then perform the

prediction on the52 standard deviations of packet delay. The 52 values of standard

deviation is used repeatedly until the weight vector approximately converges. After

each repetition, the initial weight vector for the next repetition is replaced by the

weight vector at the end of the current cycle. Figure 5.4 shows the variations and

convergence of the weights. The presence of the periodic peak is due to the prediction

being repeatedly performed on the same data series (i.e., the52 standard deviations

of packet delay). When the weight vector approximately converges, the stable weight

vector is selected as the initial weight vector for prediction in the future. As shown

in Figure 5.4, the stable weights are:wl(0) = 0.256643, wl(1) = 0.210456, wl(2) =

0.209488 andwl(3) = 0.260129. The step sizeυ is 0.02. Then I use this initial

weights to perform prediction on the delay trace discussed in Chapter 4.2. Figure

5.5 shows the variations of the weights. The autocorrelation of prediction errorel
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is also computed and shown in Figure 5.6. We can see that the prediction errorel

is approximately independent, which indicates a good performance of the prediction

algorithm.
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Figure 5.4 Variations and convergence of the weights. Initial value:wl(0) = wl(1) =
wl(2) = wl(3) = 0.25.

5.3.2 Prediction Error

From Equation 5.18, 5.19 and 5.20, we can conclude that there are mainly two parts

that contribute to the prediction errors when estimatingnl by n̂l; they are:

• estimation error in usingsl as an approximation ofσl;

• prediction error in using LMS algorithm to predictsl.

For the first item: we know that for a sample withω elements the statisticη =
(ω−1)s2

σ2 has aχ2 distribution with(ω − 1) degrees of freedom [40, pp. 216]. Letλ1

andλ2 denote the two critical values of theχ2 distribution, which are determined by

the confidence level1− α, then the confidence interval of the variance of the parent
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Figure 5.5 Variations of the weights. Initial value:wl(0) = 0.256643, wl(1) = 0.210456,
wl(2) = 0.209488 andwl(3) = 0.260129.

populationσ2 is [40, pp. 216]:

(ω − 1)s2

λ2

≤ σ2 ≤ (ω − 1)s2

λ1

, (5.22)

wheres2 is the variance of the sample.

From Equation 5.22, we can obtain the confidence interval of the standard deviation

of the parent populationσ,

s

√
(ω − 1)

λ2

≤ σ ≤ s

√
(ω − 1)

λ1

, (5.23)

wheres is the standard deviation of the sample.

For the second item:the prediction error isel in Equation 5.20. Letemax denote the

maximum absolute value ofel, then:

sl − emax ≤ ŝl ≤ sl + emax. (5.24)

In practice,emax can be estimated as:

emax ≈ zα
2

√
E[|el|2]

L
= zα

2

√
J(l)

L
, (5.25)
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Figure 5.6Autocorrelation of prediction errorel

wherezα
2

is the upperα
2

quantile of the Gaussian distribution,L is the number of

strata andJ(l) is defined in Section 5.2.

For thel-th stratum, the sample size within the stratum isnl, which is estimated by

n̂l. From Equation 5.23, we have:
√

λ1

n̂l − 1
≤ sl

σl

≤
√

λ2

n̂l − 1
. (5.26)

The ratio between the sample sizenl and its estimatênl is simplified by:

n̂l

nl

=
ϕŝl

ϕσl

=
ŝl

σl

. (5.27)

Hence, from Equation 5.24, 5.26 and 5.27, we can obtain the confidence bounds of

the ratio n̂l

nl
with a given confidence level1− α:

√
λ1

n̂l − 1
− emax

ŝl

≤ n̂l

nl

≤
√

λ2

n̂l − 1
+

emax

ŝl

, (5.28)

whereλ1 andλ2 is determined by1− α.

The prediction errors may increase the expected variance of the sample mean, i.e.,

decrease the expected measurement accuracy of the adaptive sampling method. From
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Equation 4.61, the actual variance of the sample mean using the predicted stratum

sample sizênl is:

V aract(ȳ) =
L∑

l=1

(
Nl

N
)2σ2

l

n̂l

−
L∑

l=1

(
Nl

N
)2 σ2

l

Nl

. (5.29)

The variance of the sample mean of stratified sampling with optimum allocation is

given by Equation 4.68 in Chapter 4.4.2:

V aropt(ȳ) =
1

n
(

L∑

l=1

Nl

N
σl)

2 − 1

N

L∑

l=1

Nl

N
σ2

l . (5.30)

Then we can derive the relative error betweenV aract(ȳ) andV aropt(ȳ). The details

of the derivation are provided in Appendix A.5.

V aract(ȳ)− V aropt(ȳ)

V aropt(ȳ)
=

1

n

L∑

l=1

(n̂l − nl)
2

n̂l

=
1

n

L∑

l=1

nl
(φl − 1)2

φl

, (5.31)

whereφl = n̂l/nl, which is bounded by Equation 5.28.

Therefore, the relative error ofV aract(ȳ) is related to the prediction error of the

sample size. LetΛ denote the functionΛ(φ) = (φ−1)2

φ
= φ + 1/φ − 2, Figure 5.7

shows the graphics ofΛ(φ). We can see thatΛ can reach its maximum value at the

lower bound or the upper bound ofφ. Let φmax denote the value at whichΛ reaches

its maximum value.

Then Equation 5.31 can be simplified as:

V aract(ȳ)− V aropt(ȳ)

V aropt(ȳ)
=

1

n

L∑

l=1

nl
(φl − 1)2

φl

, (5.32)

≤ 1

n

L∑

l=1

nl
(φmax − 1)2

φmax

, (5.33)

=
(φmax − 1)2

φmax

1

n

L∑

l=1

nl, (5.34)

=
(φmax − 1)2

φmax

. (5.35)

If φmax = 0.9, then the relative error betweenV aract(ȳ) andV aropt(ȳ) is bounded

up to:0.0111; if φmax = 1.2, then the relative error betweenV aract(ȳ) andV aropt(ȳ)

is bounded up to:0.0333.
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5.3.3 Stratification Boundaries

The construction of strata is another key phase in stratified sampling methods. The

aim in finding appropriate stratification boundaries is to make the variances of the

interested variables (e.g., packet delay) within strata as small as possible.

The simplest way to decide the stratification boundaries is to divide the scale of the

stratification variable into equal-sized intervals [45]. Usually, the stronger the cor-

relation between the stratification variable and the survey variable is, the higher the

measurement accuracy can be [29]. In [28], Zseby divides the parent population into

different strata according to packet size. In the proposed adaptive sampling scheme,

the sampling process is divided into fixed time intervals according to the autocorrela-

tion of the survey variable (e.g., packet delay). The stronger the correlation between

packet delays in an interval is, the more accurate the estimated mean delay will be.

Under a given sampling rate, the stratum sizeTstrata (i.e., time interval) should have

an lower bound. Because if the stratum size is too small, the sample size within a
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stratum may be not enough for estimation. A commonly used rule says that for a

non-normal distributed parent population the sample size should be at least50 [29].

Therefore, the mean sample size within stratumn̄l needs to be greater than50. In

this thesis, the sampling rate is1 packet/second, hence, the minimum stratum size

is 50÷ 1 = 50 seconds, i.e.,

Tstrata ≥ 50. (5.36)

The number of strataL needs to satisfy the following equation:

L =
Twhole

Tstrata

≤ Twhole

50
, (5.37)

whereTwhole is the whole sampling duration.

In this thesis, the sampling duration isTwhole = 2600 seconds. Then the maximum

number of strata is52.
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Figure 5.8Autocorrelation of packet delay without the pointρ0 = 1.

I determine the stratum size based on the autocorrelation of the packet delay such

that packet delays classified into the same stratum have strong correlation. Figure

5.8 shows the autocorrelation of the packet delay of the parent delay trace. We can

see that the delay correlation decreases significantly to the value0.2 and it decreases
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slowly after a lag of20 seconds. A stratum size of20 seconds is therefore a good

choice for stratification. However, the previous discussion proves that the stratum

size should be no less than50 seconds. To determine an appropriate stratum size, I

select three typical stratum sizes, i.e.,20 seconds,50 seconds (minimum stratum size)

and90 seconds, and perform simulations respectively. Each simulation is performed

for 222 sampling rounds. The simulation results are shown in Table 5.1, Figure 5.9

and 5.10. The results indicate that the stratum size of50 seconds produces the best

performance. Therefore, I select50 seconds as the stratum size.

Table 5.1
Main simulation results of adaptive stratified sampling with different stratum size (true values
are:µ = 86.824 ms,σ2 = 8529)

Stratum size M AMean AV ar MSE
= 1

M

∑
µ̂i = 1

M

∑
s2

i = 1
M

∑
(µ̂i − µ)2

20 sec 222 83.834 ms 7808 19
50 sec 222 84.895 ms 8081 10
90 sec 222 84.470 ms 7953 18
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Figure 5.9 Absolute Error of Estimated Mean of adaptive stratified sampling with stratum
size = 20, 50 and 90 seconds.
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Figure 5.10Absolute Error of Estimated Variance of adaptive stratified sampling with stra-
tum size = 20, 50 and 90 seconds.

5.4 Simulation Results

The simulation results of the proposed adaptive sampling with the stratum size of

50 seconds are compared with the simulation results of the timer-based systematic

sampling, timer-based Poisson sampling and stratified sampling with optimum allo-

cation. The comparisons are shown in Table 5.2, Figure 5.11 and 5.12.

Table 5.2
Main simulation results of sampling tests with different sampling methods. Stratum size: 50
seconds (true values are:µ = 86.824 ms,σ2 = 8529)

Sampling method M AMean AV ar MSE
= 1

M

∑
µ̂i = 1

M

∑
s2

i = 1
M

∑
(µ̂i − µ)2

Systematic 222 74.803 ms 5996 145
Poisson 222 64.998 ms 4710 478

Stratified with 222 88.023 ms 8959 5
optimum allocation
Adaptive stratified 222 84.895 ms 8081 10

From the simulation results, we can reach two conclusions. Firstly, the proposed

adaptive stratified sampling scheme produces a better performance than the timer-
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Figure 5.11Comparison of Absolute Error of Estimated Mean for different sampling meth-
ods. Stratum size: 50 seconds, sampling rounds: 222.

based systematic sampling and the timer-based Poisson sampling. Secondly, the

proposed adaptive stratified sampling achieves approximately the same performance

as the stratified sampling with optimum allocation.

5.5 Summary

In this chapter, a novel adaptive stratified sampling method was proposed in order

to address the challenges of implementing the stratified sampling with optimum al-

location and to obtain a higher accuracy of estimate. Firstly, a brief introduction

to the LMS algorithm was provided. Secondly, a detailed description of the adap-

tive stratified sampling algorithm was presented. A fourth-order LMS algorithm was

employed to predict the standard deviation of packet delay, which was used to com-

pute the sample sizênl. Thirdly, a theoretical analysis on the prediction error was

presented. The relative error between the variance of the sample mean of adaptive

stratified sampling and the variance of the sample mean of stratified sampling with

optimum allocation was related to the ratio ofn̂l/nl. Fourthly, a discussion of the
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Figure 5.12 Comparison of Absolute Error of Estimated Variance for different sampling
methods. Stratum size: 50 seconds, sampling rounds: 222.

construction of strata was presented. The stratum size was determined using the

autocorrelation of packet delay. Simulations with a stratum size of20 seconds,50

seconds and90 seconds were deployed respectively, among which the stratum size

of 50 seconds produced the best performance. Finally, performance comparisons of

different sampling methods were presented. The adaptive stratified sampling pro-

duced approximately the same performance as the stratified sampling with optimum

allocation.



Chapter 6

Monitoring Software Design

6.1 Introduction

In this chapter, I introduce the software design. Firstly, I introduce the software en-

vironment and the functionality of the software. Secondly, the software designs on

measurements using ICMP (Internet Control Message Protocol), UDP (User Data-

gram Protocol) and TCP (Transmission Control Protocol) protocols are presented.

ICMP measurement provides a simple idea of network performance and does not

require the server program; UDP measurement can be used to obtain the QoS of

those applications running on the top of UDP (e.g., VoIP); TCP measurement can be

used to obtain the QoS of those applications running on the top of TCP (e.g., HTTP,

FTP, web service). Thirdly, the discussion on how to obtain an accurate time in the

Windows operating system for delay measurements is presented. Systematic error

in delay measurements, which is caused by packet processing in both the client and

server, is calibrated and measurement results in different network environments are

presented. The thread structure used on both the client side and the server side of the

software is also presented. The software is provided in the attached CD.

6.2 Software Environment

The QoS monitoring software is written in C++ language and is developed with Mi-

crosoft Visual Studio 6.0. The measurements can be taken using the TCP, UDP or

72
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ICMP protocol. The software uses a client-server architecture. The client initiates

the measurement request, the server responds to the client’s request, performs some

simple computations and returns the results to the client. Figure 6.1 illustrates the

client-server architecture. The server can support measurements of up to 60 TCP

clients and up to 60 UDP clients at the same time. The maximum number of ICMP

clients is determined by the limit imposed by the operating system of the server.

However, too many client connections to the same server may create a “bottleneck”

effect at the server, which may significantly slow down the response speed of the

server and increase traffic congestion in the server network. A rule of thumb is that

the bandwidth consumed by the measurement traffic should be smaller than 5% of

the total bandwidth of the server.

WAN

Compute
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Compute
r
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client

Server

server

Laptop

Minicomputer
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client

ADSL


Dial-up

LAN

Figure 6.1Client-server architecture

6.2.1 IP Precedence Setting

The software is designed to support measurements of the QoS of different traffic

classes. Network traffic is classified into multiple classes using the “IP Precedence”

field in the IP packet header. The “IP Precedence” field is a subfield of the “Type of
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Service” field in the IP packet header. Figure 6.2 shows the structure of the IP packet

header [46]. The “Type of Service” field is one octet long and consists of three

subfields, as shown in Figure 6.3. The first subfield, labelled “PRECEDENCE”, is

intended to denote the importance or priority of the IP packet. The second subfield,

labelled “TOS”, denotes how the network should make tradeoffs between throughput,

delay, reliability, and cost. The last subfield, labelled “MBZ” (must be zero), is

currently unused [47] (RFC 1349).

 

Version  IHL  TYPE OF SERVICE   TOTAL LENGTH 

Identification   Flags  Fragment Offset  

Time to Live  Protocol  Header Checksum  

Source Address  

Destination Address  
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Payload<=64kB -size of IP header  
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Figure 6.2 IP header

Bits 0 3 7

PRECEDENCE TOS MBZ

Figure 6.3ToS field in IP header

Optus classifies traffic into four classes based on the “IP Precedence” field. The

value of the “IP Precedence” is between0 and 7. The mapping between the “IP

Precedence” field and traffic classes is shown in the following.

• gold-rt: IP-Precedence=5;

• gold-nrt: IP-Precedence=4;

• silver: IP-Precedence=3;

• bronze: IP-Precedence=0,1,2.
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In the software, I specify the traffic class to be measured by changing the value of

the “IP Precedence” field of the IP packets generated by the measurement program.

It should be noted that the “IP Precedence” field is meaningful only when the user

has indeed subscribed to the service corresponding to the value indicated in the “IP

Precedence” field and the field is not changed by other user software and/or by the

ISP.

6.2.2 Software Platform

The software is designed to operate in most versions of the Windows operating sys-

tem. These include Windows 98, ME, 2000 and XP. However, due to incompatibility

in the network programming interface, the program cannot run under Windows 95

and CE. The software has passed the tests under Windows 98, 2000 and XP. In ad-

dition, the program only supports IPv4 due to the reason that most Win32 platforms

including Win2000 do not support the IPv6 network stack [48].

6.2.3 Network Programming Interface

The software communicates with the network transport layer using Windows Socket.

Windows Socket is a network programming interface and supports multiple network

protocols. It was developed from the Berkeley Sockets Interface and further en-

hanced with a group of extended functions for Windows [49]. Because of its appli-

cation in Windows platforms, Windows Socket has become more and more popular.

Now it is the most important network programming interface in Windows platforms.

There are two main versions of Windows Socket: Winsock 1.1 and Winsock 2.2.

Winsock 1.1 has better compatibility with Windows operating systems. Winsock

2.2 is a recent version and has been enhanced with new and more efficient network

functions [50]. We have chosen Winsock 2.2 as the programming interface for our

program.
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6.3 Software Functionality

This software uses active sampling to perform QoS measurements and it supports

measurements using TCP, UDP and ICMP protocols. The following shows the met-

rics measured under the three protocols:

• TCP: RTT, one-way jitter (i.e., from client to server) and packet loss. As TCP is

a reliable and connection-oriented transport layer protocol, it may hide packet

loss from the upper layers. TCP packet loss is measured indirectly using Karn’s

algorithm and Jacobson’s algorithm [51] (RFC 2581), [52] (RFC 2988). Karn’s

algorithm and Jacobson’s algorithm will be introduced later in Section 6.4.3.

• UDP: RTT delay, one-way jitter, one-way loss (i.e., from client to server);

• ICMP: RTT delay, round-trip jitter and round-trip loss. This is similar as the

conventional “ping” program. As determined by the ICMP protocol, ICMP

based measurements can only measure round-trip metric.

• network availability: the software also provides a simple idea about the net-

work availability based on the TCP, UDP or ICMP measurement. It diagnoses

and records the time when the network is available and when the network is

unreachable.

Users can specify the sampling method (i.e., periodic, Poisson or stratified sampling),

sampling frequency, packet size and packet size distribution (i.e., constant or random

size). Sampling is timer-based rather than count-based. That is, the generation of

sampling packets is triggered by a timer. The support of many sampling techniques

is due to the concern that the user may want to compare our program with some

legacy softwares, which typically use periodic sampling or Poisson sampling. It is

expected that in different environments (e.g., dial-up internet, ADSL, LAN), differ-

ent sampling parameters should be used for the most accurate measurements. The

flexibility in choosing sampling parameters allows the program to be used in different

environments.
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6.4 Measurement Using ICMP, UDP and TCP Proto-
cols

In the following paragraphs, the software design for ICMP, UDP and TCP measure-

ments are presented.

6.4.1 ICMP Measurement

ICMP is defined in [53] (RFC1256) and is part of the TCP/IP protocol suite. It is

used by hosts, routers and gateways for a variety of functions, especially for network

management. The network performance measurement is one of the applications of

ICMP [46, pp. 386]. ICMP-based measurement tools (e.g., ping) are easy to use and

they have been used to measure the RTT delay and packet loss. But the results they

produce are limited and inaccurate [54]. For example, common ICMP-based tools

send probing packets to a host and measure loss by observing whether or not response

packets arrive within a specified time interval. Thereby we obtain the round-trip loss,

not the one-way loss. Furthermore, there are two problems with this approach:

• Asymmetric loss: If the forward path (i.e., from client to server) and the re-

verse path are symmetric, we can obtain an estimate of the loss rate using the

following equations, assuming packet losses in the forward path and in the

reverse path are independent:

lossround−trip = 1−numberreceived

numbersent

= 1−((1−lossforward)·(1−lossreverse)),

(6.1)

lossforward = lossreverse. (6.2)

Then we can calculate the packet loss ratio in the forward path (reverse path),

lossforward (lossreverse), through Equation 6.1 and Equation 6.2. Unfortu-

nately, in most case the forward path and the reverse path are asymmetric,

i.e., lossforward 6= lossreverse. So we can only obtain the round-trip loss, not

the one-way loss.



Monitoring Software Design 78

• ICMP filtering: ICMP-based tools rely on the deployment of ICMP echo or

ICMP time-exceeded messages to coerce response packets from the destination

host [54]. However, this function of ICMP is sometimes used for malicious

purpose, e.g., denial of service attack. For security reasons, many networks

(e.g., microsoft.com) filter out ICMP packets. Therefore, this has limited the

use of ICMP as a measurement protocol.

Still another feature impeding the use of ICMP for measurement is that ICMP packets

are often considered by the network as control packets and treated differently from

the user traffic. Therefore, they may not be able to accurately measure the QoS of

ordinary user traffic. This program measures ICMP RTT, round-trip loss and round-

trip delay variation.

6.4.2 UDP Measurement

UDP is a connectionless and unreliable transport layer protocol: each output opera-

tion by a process produces exactly one UDP datagram, which causes one IP packet

to be sent [55].

Based on UDP, our program provides RTT delay, one-way jitter and one-way loss

measurements. As an unreliable protocol, UDP allow us to measure the one-way

packet loss much easier and more accurately than the reliable protocols (i.e., TCP)

do. The client sends a group of probing packets and UDP will not retransmit a

packet if the packet is lost. Meanwhile, the server counts the number of probing

packets received and echoes the received packets with some test information (e.g.,

total number of packets received by the server). Thus we can obtain three parameters:

Numsent (number of packets sent),Numrecv (number of packets received by the

server) andNumecho (number of packets received by the client from the server), and

then we can calculate the one-way loss:lossforward, lossreverse. Figure 6.4 shows

their relationship.

lossforward = 1− Numrecv

Numsent

, (6.3)
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lossreverse = 1− Numecho

Numrecv

. (6.4)

Figure 6.5 shows the design of the UDP service data unit (SDU). The same SDU is

used by both the server and the client for simplicity. The UDP SDU contains the

following fields:

IP
header

UDP
header

UDP
service data unit

IP datagram

UDP datagram

20 8

packet
type

bytes

Service Data Unit

Service Data Unit:

sequence
no.

precedence
received
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server
timestamp

variable length
padding

variable length

badordered
packets

Figure 6.5UDP encapsulation

• Field “packet type”: represents the type of UDP packet that being sent, e.g.,

“initial-test” packet, probing packet, or “end-test” packet;

• Field “sequence number”: represents the sequence number of the packet from

the client side;

• Field “server timestamp”: represents the time when this packet is received by

the server;
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• Field “precedence”: represents the IP Precedence specified by the user;

• Field “received packets”: represents the total number of packets received by

the server;

• Field “bad-ordered packets”: is a 32-bit number, the high 8-bit represents the

status of this packet (whether it is bad-ordered or not), the low 24-bit represents

the total number of bad-ordered packets.

• Field “padding”: is a variable length field and is used to pad the packet length

to that specified by the user.

Figure 6.6 shows the flowchart of the UDP measurement program. Firstly, the client

sends an “initial-test” packet to request the server to initialise parameters for a new

test. When the client receives the “OK” packet from the server, it starts sending a

group of probing packets to the server with specified packet size and time interval.

On reception of a probing packet from the client, the server sets the related test

information (e.g., receiving time, total number of received packets, total number of

bad-ordered packets and status of the packet) into the corresponding fields of the

packet SDU and returns the packet as soon as possible. The client records the time

when the packet is sent, denoted bysending time. Every time the client receives

the response packet from the server, it records the time when the response packet is

received, denoted byechoing time, the time when the server receives the probing

packet, denoted byserver timestamp, the total number of packets received by the

server, which is counted by the server and the total number of bad-ordered packets

counted by the server. The RTT delay, one-way jitter and one-way loss metrics are

calculated with everyN packets being sent. During the test, data files are locked for

data integrity and the user will be able to observe measurement results after the test.

At the end of the test, the client sends a “test-end” packet to the server to complete the

session, saves all useful information to hard disk and cleans up buffers and memories.
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Figure 6.6Flowchart of UDP measurement program

On the server side, the server cleans up data related to the test of this client when it

receives the “test-end” packet.

Because UDP is connectionless, there is no connection establishment phase when us-

ing UDP. However, this characteristic causes some problems. As we have discussed,

the server needs to count the number of packets it receives and record the receiving

time of every received packet for measuring the one-way loss and one-way jitter. So
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we must maintain state information for each test session. In normal situation, the

client sends a “test-end” packet to inform the server that the test is over. But if some

unexpected errors occur (e.g., client computer shuts down unexpectedly or the “test-

end” packet is not received successfully), the server has no way of knowing this.

Consequently, the server will maintain the state information indefinitely, which may

consume server resources. To solve this problem, the server only maintains a “soft”

state for each test session. If there is no packet coming within a pre-determined

amount of time, the server will consider that the client has left and clean up the state

information and release resources reserved for the test session.

6.4.3 TCP Measurement

TCP provides a different service to the application layer from UDP, even though

TCP and UDP use the same network layer (IP). TCP provides a connection-oriented,

reliable and byte stream service. The term “connection-oriented” means two appli-

cations using TCP must establish a TCP connection with each other before they can

exchange data [56].

For a byte stream service, there are no record markers automatically inserted by TCP

[56]. For example, if the application on one end sends 32 bytes, followed by a packet

of 64 bytes, then followed by a packet of 128 bytes, the application at the other end

of the connection cannot tell the size of the individual packet. The other end may

read the total 224 bytes at one time. Figure 6.7 shows the UDP receiving buffer and

TCP receiving buffer when transmission occurs.

Therefore, the properties of the byte stream service may cause problems when there

are consecutive packets in the receiving buffer of server or client. If the server reads

two or more packets together, it would only respond one packet back to the client

and the others are lost by mistake. The same thing occurs on the client side. To solve

the problem, I add a data-field storing packet size into the TCP SUD. Figure 6.8

shows the design of the TCP service data unit (SDU). The data fields have the same

meaning as the UDP SDU. Now, each TCP packet carries its own size (in bytes).

When receiving a packet, the server or client compares the buffer length1 and packet

1Here the buffer is defined in the program and is used to store received data from the TCP buffer.
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size it has just read from the buffer. If the buffer length is greater than the packet size,

it means that there are more than one packets in the buffer. In this case, the server or

client moves the buffer pointer2 from the current position of the buffer by that packet

size and starts reading another packet in the buffer, and so forth. Figure 6.9 displays

the data-reading procedure in the TCP measurements.
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packet
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Figure 6.8TCP encapsulation

Based on TCP, our program provides RTT delay and one-way jitter measurements

and an estimated value for packet loss. The calculation of RTT and jitter is the

same as that used in UDP measurements, except that TCP retransmission must be

2Here the buffer pointer is defined in the program, representing the position where the host should
start to read data in the buffer.
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Figure 6.9Data-reading procedure in the TCP measurement

considered in calculating TCP RTT. The test procedure is listed in the following:

• Establish a TCP connection between the client and the server;

• The client sends an “initial-test” packet to the server and waits for a response;

• After receiving a response from the server, the client sends probing packets

with specified packet size and interval;

• At the end of the test, the client sends an “end-test” packet to the server, saves

the test information to hard disk and cleans up the buffers and memories of the

systems. On the server side, the server cleans up resources reserved for the test

of this client when it receives the “end-test” packet.

Figure 6.10 shows the flowchart of the TCP measurement program.

The major challenge in the TCP measurements is that TCP is a reliable protocol and

TCP packet retransmission may hide packet loss from the application layer. This

creates difficulty for packet loss measurements using TCP. To solve the problem,

we implement the Karn’s algorithm and the Jacobson’s algorithm [51] (RFC 2581),

[52] (RFC 2988) in our program to infer TCP packet loss from the RTT measure-

ments. According to the IETF standard [51] (RFC 2581), [52] (RFC 2988), a TCP

host must implement Karn’s algorithm and Jacobson’s algorithm for computing the

retransmission timeout (RTO).
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Figure 6.10Flowchart of TCP measurement program

• Jacobson’s algorithm is used for computing the smoothed round-trip time, in-

cluding a simple measure of the variance;

• Karn’s algorithm is used for selecting RTT measurements to ensure that am-

biguous round-trip time will not corrupt calculation of the smoothed round-trip

time.
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Packets whose RTT exceeds RTO will be deemed as packet loss by TCP protocol

and will be retransmitted.

Jacobson’s algorithm defines a smoothed RTT (SRTT), which is updated with each

RTT sample through the equation:

SRTTi = SRTTi−1 + (α× Errori), (6.5)

whereErrori is defined as the difference between theith RTT sample and the earlier

estimated SRTT:

Errori = RTTi − SRTTi−1, (6.6)

andα is a constant, which is chosen to be0.125. The RTT deviation is estimated by:

Devi = Devi−1 + δ(|Errori| −Devi−1), (6.7)

whereδ is a constant and is equal to0.25.

Finally, theRTOi+1 for the(i + 1)th packet is calculated as:

RTOi+1 = SRTTi + (β ×Devi), (6.8)

whereβ is a constant, which is equal to4.0. The initial values of these parameters

are: RTO1 = 3, SRTT1 = RTT1, Dev1 = RTT1/2, RTO2 = SRTT1. Karn’s

algorithm specifies that when computing the RTT estimate (i.e., SRTT), samples

corresponding to retransmitted segments are ignored, and RTO is doubled with each

retransmission.

Using the two algorithms, I have emulated the TCP congestion control process in our

program. If a packet’s RTT exceeds the corresponding RTO, that packet is considered

as a packet that has been lost and retransmitted.

6.5 Accuracy of Time Measurement

Measurements of RTT and one-way jitter rely on accurate value of the sending time

of the packet at the client end and the receiving time of the packet at both the client

and the server ends. Moreover, specification of packet inter-arrival time also needs
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accurate time. Consequently, obtaining an accurate time is important for the mea-

surement software. It is well known that the Windows operating system is based

on a “message mechanism”. If CPU is taken up by a high-priority process, or the

system resource is insufficient, the message in the queue will be temporarily locked

and delayed. Therefore, it is very difficult to obtain an accurate time by using the

conventional Message Triggering Timer (e.g., WMTIMER) or Timers derived from

Message Triggering Timer.

Through the literature review, we learned that there are at least seven methods for

obtaining time with different accuracy [57]:

• WM TIMER message mapping: low resolution (≥ 30ms) with a low priority

in multi-thread operating systems;

• Sleep() function: low resolution (≥ 30ms) and the thread can not process other

tasks when it is in the “Sleep” state;

• COleDateTime and COleDateTimeSpan: low resolution;

• GetTickCount(): short period timing resolution≥ 15ms, long period timing

resolution≥ 50ms;

• Multimedia Timer timeGetTime(): a timer provided by Microsoft for multime-

dia application. Resolution is in the order ofms;

• Multimedia Timer timeSetEvent(): a timer provided by Microsoft for multi-

media application. Resolution is in the order ofms;

• QueryPerformanceCounter and QueryPerformanceFrequency: the highest res-

olution timer in Windows Platforms (Win 95 and later versions) can be ac-

cessed by Windows API functions supported by Microsoft Visual C++ . Reso-

lution is dependent on the hardware and the CPU clock and is typically in the

order ofµs.

As our software requires accurate time measurements, we have chosen “QueryPer-

formanceCounter” and “QueryPerformanceFrequency” for delay and jitter measure-

ments.
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Another major error source in measuring RTT is the time spent by the server in re-

ceiving and recognising the packet from the client, and then producing and sending

the corresponding response, and the time required at the client end to generate the

sampling packets and to process the response packet from the server. This error de-

pends on the hardware of both the client and the server, the number of concurrent

test sessions at the server end and other software running on the client and the server.

To calibrate the magnitude of this error, several one-hour test sessions are conducted

between two Pentium IV computers connected to the same 100-Mbps LAN. During

the test, there are other users using the LAN. A TCP test session, a UDP test ses-

sion and an ICMP test session were conducted at the same time between the two

computers. The test parameters are: sampling interval 1 s, random sampling, packet

size constant, 100 bytes. Figure 6.11, 6.12 and 6.13 show the cumulative distribution

function of RTT using TCP, UDP and ICMP respectively. The average RTTs are

0.333 ms, 0.345 ms and 0.133 ms. This indicates that the aforementioned systemic

error is upper bounded by 0.35 ms, which is considered to be trivial and can be ig-

nored. The average RTT of TCP measurements and UDP measurements is higher

than the average RTT of ICMP measurements by 0.2 ms. This may be caused by the

fact that ICMP protocol has been embedded into the operating system. Therefore the

server can respond more quickely to the ICMP packets. For TCP and UDP pack-

ets, additional handling is required by the server program. It is worth noting that no

packet loss has been observed in TCP and UDP measurements, however, in ICMP

measurements, a packet loss ratio of0.0281% (corresponding to one packet loss) has

been observed. The same pattern (i.e., TCP and UDP measurements have no loss

and UDP measurements sometimes have significant loss even when measurements

are conducted in exactly the same environment) is also observed in the other net-

work environments. It is considered that in this case, ICMP loss is unlikely to have

been caused by the network and it may be attributed to problem, in the NIC (network

interface card) or operating system of the computer.

As a reference, Figure 6.14, 6.15 and 6.16 show RTT measurements performed in

a number of different environments. In particular, the RTT measurement results

shown in Figure 6.16 between a computer located at the University of Sydney and a

computer located at NICTA in Canberra are impressively good. NICTA in Canberra
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Figure 6.11RTT measurements using TCP protocol between two computers connected to
the same LAN at the University of Sydney. The average RTT is 0.333 ms.

subscribed to a premium Internet service and has transited to VoIP services.

6.6 Multi-thread and File Management

The software is written using multi-thread. The multi-thread server program can

achieve better performance in a high-speed computer, especially on a multi-CPU

computer.

In the Windows operating system, there are two types of thread: the UI (User Inter-

face) thread and the Assistant thread (or working thread) [57], [58]. On the server

side, the primary thread is the UI thread and processes most jobs (e.g., Packet trans-

mission, GUI). In addition, there is a working thread which is used to synchronously

save test information. This working thread is started together with the main server

program and is terminated when the server program is stopped by the user.

On the client side, the primary thread is the UI thread and mainly process GUI. In

addition, there are four more working threads:
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Figure 6.12RTT measurements using UDP protocol between two computers connected to
the same LAN at the University of Sydney. The average RTT is 0.345 ms.

• TCP thread: processes TCP measurements;

• UDP thread: processes UDP measurements;

• ICMP thread: processes ICMP measurements;

• Saving thread: periodically saves measurement information and error mes-

sages to the hard disk.

The first three working threads are independent from each other, so the user can run

TCP measurements, UDP measurements and ICMP measurements independently at

the same time. The last thread periodically saves measurement information and error

messages to the hard disk.

Memory leak is a major problem in designing multi-thread programs [58]. If memory

leak occurs in the program, especially in the server program, it will continuously

consume system resources until the computer is stopped due to lack of resources.

We have carried out a lot of debugging tests and macro diagnosis to ensure that our

program has no memory leak.

Another challenge in designing the software is file management. Both the server
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Figure 6.13RTT measurements using ICMP protocol between two computers connected to
the same LAN at the University of Sydney. The average RTT is 0.133 ms.

and the client programs have functions that save useful data to hard disk (e.g., client

information, test results, error messages, etc.). A user can observe these data at any

time except when the saving thread performs the file I/O operation, during which

files are locked to ensure integrity of data. At the end of the test, the user can save

these files to other directories for later use.

6.7 GUI Design

In this section, I shall briefly introduce major components in the server GUI and the

client GUI.

There are five major components in the server GUI; each is responsible for one func-

tion:

• configuration. It is responsible for configuring server parameters, e.g., port

number to listen on;

• server operation, e.g., starts and stops the server;
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Figure 6.14RTT measurements using UDP protocol between a server located at the Univer-
sity of Sydney and a client located at NICTA at ATP, Sydney. Both the client and the server
are connected to a high-speed LAN, then to a WAN. The average RTT measured is 1.154 ms.

• online client information display, including display of online clients’ IP ad-

dress, Port, protocol, test start date and time;

• test records display, including clients’ IP address, protocol, test start date, test

start time, test end date and test end time;

• error messages and help information display. This includes error date, error

time, error reasons and help documentation.

There are six major components in the client GUI:

• configuration, e.g., server IP address, server port, packet size, packet size dis-

tribution, sampling methods, sampling frequency, IP Precedence, test time;
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Figure 6.15RTT measurements using UDP protocol between a server located at the Univer-
sity of Sydney and a client located at Carlton, Sydney. The server is connected to a WAN
through a high-speed LAN. The client is connected to a WAN through a wireless LAN, then
ADSL. The average RTT measured is 25.601 ms.

• test operation: starts TCP test, stops TCP test, starts UDP test, stops UDP test,

starts ICMP test, stops ICMP test;

• test progress display;

• test result display. This includes display of overall test results and individual

test packet information.

– overall result display: numsent, numloss, numecho, maxdelay, mindelay,

meandelay, maxjitter, min jitter, meanjitter, test start date, test start

time, test end date, test end time, operating system information, protocol;

– packet information display: display of individual packet information,

e.g., packet sequence number, sending date, sending time, RTT delay,

jitter, packet size.



Monitoring Software Design 94

Figure 6.16RTT measurements using TCP protocol between a server located at the Univer-
sity of Sydney and a client located at NICTA in Canberra. Both the client and the server are
connected to a high-speed LAN, then to a WAN. The average RTT measured is 5.940 ms.

• graphical display of test result;

• error messages and help information display.

More detailed information about the software can be found through the help menu in

the software.

6.8 Summary

This chapter described the software design. Firstly, an introduction to the software

environment and the software functionality was presented. Secondly, the designs of

the ICMP measurement, UDP measurement and TCP measurement in this software

were presented. Thirdly, a discussion on how to obtain an accurate time measure-
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ments in the Windows operating systems was provided. Fourthly, systematic error in

delay measurements was calibrated, and the systematic error was bounded by 0.35

ms, which was trivial and could be ignored. Finally, measurement results in real

network, as well as the GUI design of the software, were presented.



Chapter 7

Conclusion

In this chapter, I summarize my work on the project “A Quality of Service Monitor-

ing System for Service Level Agreement Verification”, which is supported by Optus

through the contract BLO No: 7260. My contributions in this project consisted of

three components. Firstly, I compared the performance of different sampling meth-

ods for network measurement based on a real traffic trace provided by the WAND

group; secondly, I proposed and validated a new adaptive stratified sampling strategy

for SLA monitoring; thirdly, I developed a QoS monitoring software, which moni-

tors such QoS parameters as packet delay, packet loss and jitter for SLA monitoring

and verification. This software has undergone extensive tests and it has also been

evaluated by Optus staff. A discussion for future research is presented at the end of

this chapter.

Firstly, I reviewed major publications in the area. A brief introduction to the stan-

dard metrics for network measurements was presented, and a detailed discussion of

the characteristics of QoS metrics related to the design of the monitoring system

in this project (i.e., packet delay, packet loss and jitter) and the challenges in mon-

itoring these metrics was presented. An introduction to active measurements and

passive measurements was provided next. An active measurement was employed in

the monitoring software to measure RTT delay, one-way loss and jitter.

Secondly, I discussed the most common sampling techniques that are used in sampling-

based monitoring systems, such as systematic sampling, random sampling, stratified

96
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random sampling and adaptive sampling. Then a discussion of fundamental limit

(e.g., minimum sample size for a given confidence level and an error bound) on the

accuracy of sampling techniques was presented.

Thirdly, I compared the performance of different sampling methods by comparing

the variance of the sample mean. Several other commonly used metrics such as ab-

solute error of estimated mean and absolute error of estimated variance were also

used for comparison. Simulations were performed to validate the theoretical analy-

sis. I used a delay traffic trace as the parent trace, which was generated by the Opnet

modeler using a real traffic trace provided by the WAND group. The sample delay

trace was selected directly from the parent delay trace instead of obtaining it using

active sampling in order to remove the impact of packet size on the delay measure-

ments. Simulation results showed that the count-based systematic sampling produced

approximately the same performance as count-based random sampling with only a

marginal improvement. The variances of the sample mean of the two timer-based

sampling techniques (i.e., timer-based systematic and timer-based Poisson) were ex-

pressed in terms of autocorrelation of packet delay of the parent delay trace, and the

relationship between the timer-based systematic sampling and the timer-based Pois-

son sampling was related to the autocorrelation of packet delay and the sampling in-

terval. Simulation results showed that the timer-based systematic sampling achieved

better performance than the timer-based Poisson sampling does. The stratified sam-

pling with optimum allocation produces the most accurate estimate, however, it re-

quiresa priori information (e.g., the standard deviation of packet delay within each

stratum of the parent delay trace) which cannot be obtained in a real application.

To address the challenge of implementing stratified sampling with optimum allo-

cation, I proposed an adaptive stratified sampling scheme. The proposed adaptive

sampling method does not requirea priori knowledge of the standard deviations of

packet delay. Instead, an LMS algorithm was employed to predict the standard devi-

ation of packet delay from the past observations. A theoretical analysis on the effects

of prediction error on the variance of the sample mean was presented. The stratifi-

cation boundaries were determined based on the autocorrelation of packet delay of

the parent delay trace. Simulation results showed that the proposed adaptive strati-
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fied sampling method achieved approximately the same performance as the stratified

sampling with optimum allocation.

Finally, a detailed introduction to the SLA monitoring software design was presented.

The software employs TCP, UDP and ICMP protocols for network measurements

and implements several aforementioned sampling schemes. A description of the pro-

cedure of the TCP measurement, UDP measurement and ICMP measurement was

presented, and the systematic error of the software was calibrated. Finally, an intro-

duction to the software’s GUI design, with several test results, was provided.

The software is provided in the attached CD.

7.1 Future Study

In this thesis, I compared the performance of the count-based simple random sam-

pling and the stratified sampling with proportional allocation and the stratified sam-

pling with optimum allocation. But there is no theoretical analysis on the perfor-

mance comparison between the timer-based sampling (i.e., timer-based systematic

sampling and timer-based Poisson sampling) and the stratified sampling. This is a

direction for our future research.

As timer-based sampling is easier to implement than the count-based sampling, it

is desirable to perform a theoretical analysis to compare the performance of count-

based sampling and timer-based sampling. This is another direction for our future

study.

Moveover, active measurement methodology is well known to be not scalable be-

cause of the intrusive nature of sampling. When the number of clients is large, the

large volume of sampling traffic going into a single server may create traffic conges-

tion in the server network and deteriorate the measurement accuracy. This problem

can be partly solved by investigating a distributed architecture in which clients send

sampling traffic to local servers only and local servers collect the local network per-

formance information. The local information is then sent to a central server, in which

the global network performance information is derived. It is our future research di-
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rection to investigate and design this architecture for scalable and efficient network

performance monitoring.
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Appendix A

Mathematical Derivation

A.1 Derivation of PDF of the sum of m consecutive
inter-arrival time slots of the Poisson process

We have obtained the PDF for the2-th,3-th,4-th,5-th consecutive inter-arrival times

of the Poisson process in Chapter 4.2. They are:

p2(t) = λ2te−λt, (A.1)

p3(t) =
1

2
λ3t2e−λt, (A.2)

p4(t) =
1

6
λ4t3e−λt, (A.3)

p5(t) =
1

24
λ5t4e−λt. (A.4)

From Equation A.1, A.2, A.3 and A.4, we can find that their expressions have the

same form. Therefore, by mathematical induction, we suppose that whenm ≤ k,

pm(t) = 1
(m−1)!

λmtm−1e−λt. Then whenk = k+1, letFk+1(t) denote the distribution

function of(k + 1)-th consecutive inter-arrival times:

Fk+1(t) = P{T ≤ t} = P{X + Y ≤ t}. (A.5)

where the PDF ofX is pk(t) and the PDF ofY is p1(t). Then,

Fk+1(t) =
∫ t

0

∫ t−x

0
pk(x)p1(y)dxdy, (A.6)
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=
∫ t

0

1

(k − 1)!
λkxk−1e−λxdx

∫ t−x

0
λe−λydy, (A.7)

=
∫ t

0

1

(k − 1)!
λkxk−1e−λxdx(1− e−λ(t−x)), (A.8)

=
∫ t

0

1

(k − 1)!
λkxk−1e−λxdx−

∫ t

0

1

(k − 1)!
λkxk−1e−λtdx, (A.9)

=
∫ t

0

1

(k − 1)!
λkxk−1e−λxdx− λk

k!
tke−λt. (A.10)

Then,

pk+1(t) = F ′
k+1(t), (A.11)

=
1

(k − 1)!
λktk−1e−λt − λk

k!
ktk−1e−λt +

λk

k!
tkλe−λt, (A.12)

=
λk+1

k!
tke−λt. (A.13)

Hence, whenk = k + 1, the hypothesis is also valid.
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A.2 Derivation of comparison between the variance of
the systematic sample mean and the variance of
the Poisson sample mean

We have obtained the variance of the systematic sample mean and the variance of the

Poisson sample mean in Chapter 4.2. They are:

V ars(ȳ) =
σ2

n
(1 + 2

n−1∑

h=1

n− h

n
ae−bhT0), (A.14)

V arp(ȳ) =
σ2

n
(1 + 2

n−1∑

h=1

n− h

n

aλh

(b + λ)h
), (A.15)

Because1/λ = T0, the Equation A.15 can be simplified as:

V arp(ȳ) =
σ2

n
(1 + 2

n−1∑

h=1

n− h

n

a

(1 + bT0)h
). (A.16)

If

n− h

n
ae−bhT0 <

n− h

n

a

(1 + bT0)h
, (A.17)

⇒ −bhT0 < ln
1

(1 + bT0)h
, (A.18)

⇒ −bhT0 < −h ln(1 + bT0), (A.19)

⇒ bT0 > ln(1 + bT0). (A.20)

Vice versa. Therefore

n− h

n
ae−bhT0 <

n− h

n

a

(1 + bT0)h
⇔ bT0 > ln(1 + bT0). (A.21)

In the same way, we can obtain:

n− h

n
ae−bhT0 >

n− h

n

a

(1 + bT0)h
⇔ bT0 < ln(1 + bT0), (A.22)

n− h

n
ae−bhT0 =

n− h

n

a

(1 + bT0)h
⇔ bT0 = ln(1 + bT0). (A.23)
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A.2.1 Sufficient condition

If bT0 < ln(1 + bT0), then, for allh = 1, 2, ..., n− 1,

n− h

n
ae−bhT0 >

n− h

n

a

(1 + bT0)h
, (A.24)

⇒
n−1∑

h=1

n− h

n
ae−bhT0 >

n−1∑

h=1

n− h

n

a

(1 + bT0)h
, (A.25)

⇒ σ2

n
(1 + 2

n−1∑

h=1

n− h

n
ae−bhT0) >

σ2

n
(1 + 2

n−1∑

h=1

n− h

n

a

(1 + bT0)h
), (A.26)

⇒ V ars(ȳ) > V arp(ȳ). (A.27)

A.2.2 Necessary condition

If V ars(ȳ) > V arp(ȳ), then

σ2

n
(1 + 2

n−1∑

h=1

n− h

n
ae−bhT0) >

σ2

n
(1 + 2

n−1∑

h=1

n− h

n

a

(1 + bT0)h
). (A.28)

We can obtain:

⇒
n−1∑

h=1

n− h

n
ae−bhT0 >

n−1∑

h=1

n− h

n

a

(1 + bT0)h
. (A.29)

Assuming there existsiε[1, n − 1] that satisfiesn−i
n

ae−biT0 < n−i
n

a
(1+bT0)i , then we

can obtainbT0 > ln(1 + bT0):

⇒ V ars(ȳ) < V arp(ȳ). (A.30)

This is incompatible with the original conditionV ars(ȳ) > V arp(ȳ), so there is no

suchi existing.

Assuming there existsiε[1, n − 1] that satisfiesn−i
n

ae−biT0 = n−i
n

a
(1+bT0)i , then we

can obtainbT0 = ln(1 + bT0):

⇒ V ars(ȳ) = V arp(ȳ). (A.31)

This is incompatible with the original conditionV ars(ȳ) > V arp(ȳ), so there is no

suchi existing. So for allh = 1, 2, ...n − 1, n−h
n

ae−bhT0 < n−h
n

a
(1+bT0)h , ⇒ bT0 <

ln(1 + bT0).
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We therefore proved that:

bT0 < ln(1 + bT0) ⇔ V ars(ȳ) > V arp(ȳ). (A.32)

In the same way, we can prove that:

bT0 > ln(1 + bT0) ⇔ V ars(ȳ) < V arp(ȳ), (A.33)

bT0 = ln(1 + bT0) ⇔ V ars(ȳ) = V arp(ȳ). (A.34)
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A.3 Derivation of the transformation of σ2 in terms of
the autocorrelation function

For stratified sampling, it can be shown that the variance of the parent population

(i.e. the true variance) is related to values in each stratum by:

σ2 =
1

N − 1

N∑

i=1

(yi − µ)2, (A.35)

=
1

N − 1

L∑

l=1

Nl∑

i=1

(yli − µ)2, (A.36)

=
1

N − 1

L∑

l=1

Nl∑

i=1

(yli − µl + µl − µ)2, (A.37)

=
1

N − 1

L∑

l=1

Nl∑

i=1

[(yli − µl) + (µl − µ)]2, (A.38)

=
1

N − 1

L∑

l=1

Nl∑

i=1

(yli − µl)
2 +

1

N − 1

L∑

l=1

Nl∑

i=1

2(yli − µl)(µl − µ), (A.39)

+
1

N − 1

L∑

l=1

Nl∑

i=1

(µl − µ)2. (A.40)

Consider the second term in Equation A.39. It can be shown that:

Nl∑

i=1

2(yli − µl)(µl − µ) = 2(µl − µ)
Nl∑

i=1

(yli − µl), (A.41)

= 2(µl − µ)(
Nl∑

i=1

yli −Nlµl), (A.42)

= 2(µl − µ)(Nlµl −Nlµl), (A.43)

= 0. (A.44)

From the earlier derivation, the second term in Equation A.39 should be zero, i.e.,

1

N − 1

L∑

l=1

Nl∑

i=1

2(yli − µl)(µl − µ) = 0. (A.45)

Therefore the earlier equation onσ2 can be simplified as:

σ2 =
1

N − 1

L∑

l=1

Nl∑

i=1

(yli − µl)
2 +

1

N − 1

L∑

l=1

Nl∑

i=1

(µl − µ)2, (A.46)
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=
1

N − 1

L∑

l=1

(Nl − 1)
1

Nl − 1

Nl∑

i=1

(yli − µl)
2 +

1

N − 1

L∑

l=1

Nl(µl − µ)2,(A.47)

=
1

N − 1

L∑

l=1

(Nl − 1)σ2
l +

1

N − 1

L∑

l=1

Nl(µl − µ)2. (A.48)
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A.4 Derivation of the difference of the variance of the
sample mean between optimum allocation and pro-
portional allocation

V arprop(ȳ)− V aropt(ȳ) (A.49)

=
1

n
(1− n

N
)

L∑

l=1

Nl

N
σ2

l − [
1

n
(

L∑

l=1

Nl

N
σl)

2 − 1

N

L∑

l=1

Nl

N
σ2

l ], (A.50)

=
1

n

L∑

l=1

Nl

N
σ2

l −
1

n
(

L∑

l=1

Nl

N
σl)

2, (A.51)

=
1

nN
[

L∑

l=1

Nlσ
2
l −

1

N
(

L∑

l=1

Nlσl)(
L∑

l=1

Nlσl)], (A.52)

=
1

nN
[

L∑

l=1

Nlσ
2
l − (

L∑

l=1

Nlσl)(
L∑

l=1

Nl

N
σl)], (A.53)

=
1

nN
[

L∑

l=1

Nlσ
2
l − (2

L∑

l=1

Nlσl −
L∑

l=1

Nlσl)(
L∑

l=1

Nl

N
σl)], (A.54)

=
1

nN
[

L∑

l=1

Nlσ
2
l − 2

L∑

l=1

Nlσl(
L∑

l=1

Nl

N
σl) +

L∑

l=1

Nlσl(
L∑

l=1

Nl

N
σl)], (A.55)

=
1

nN
[

L∑

l=1

Nlσ
2
l − 2

L∑

l=1

Nlσl(
L∑

l=1

Nl

N
σl) +

∑L
l=1 Nl

N

L∑

l=1

Nlσl(
L∑

l=1

Nl

N
σl)],(A.56)

=
1

nN
[

L∑

l=1

Nlσ
2
l − 2

L∑

l=1

Nlσl(
L∑

l=1

Nl

N
σl) +

L∑

l=1

Nl(
L∑

l=1

Nl

N
σl)(

L∑

l=1

Nl

N
σl)],(A.57)

=
1

nN

L∑

l=1

Nl[σ
2
l − 2σl(

L∑

l=1

Nl

N
σl) + (

L∑

l=1

Nl

N
σl)

2], (A.58)

=
1

nN

L∑

l=1

Nl(σl − σ̄l)
2. (A.59)
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A.5 Derivation of the relative error betweenV aropt(ȳ)

and V aract(ȳ)

In Chapter 5.3.3, we obtained that:

V aract(ȳ) =
L∑

l=1

(
Nl

N
)2σ2

l

n̂l

−
L∑

l=1

(
Nl

N
)2 σ2

l

Nl

, (A.60)

V aropt(ȳ) =
1

n
(

L∑

l=1

Nl

N
σl)

2 − 1

N

L∑

l=1

Nl

N
σ2

l . (A.61)

Then,

V aract(ȳ)− V aropt =
L∑

l=1

(
Nl

N
)2σ2

l

n̂l

− 1

n
(

L∑

l=1

Nl

N
σl)

2, (A.62)

=
L∑

l=1

(
Nl

N
)2σ2

l

n2
l

n2
l

n̂l

− 1

n
(

L∑

l=1

Nl

N
σl)

2. (A.63)

Substitutingn2
l in the denominator of the first term of the Equation A.63 by Equation

4.66:

V aract(ȳ)− V aropt =
L∑

l=1

N2
l

N2

σ2
l (

∑L
k=1 Nkσk)

2

N2
l σ2

l n
2

n2
l

n̂l

− 1

n
(

L∑

l=1

Nl

N
σl)

2, (A.64)

=
1

n2
(

L∑

l=1

Nl

N
σl)

2
L∑

l=1

n2
l

n̂l

− 1

n
(

L∑

l=1

Nl

N
σl)

2, (A.65)

=
1

n2
(

L∑

l=1

Nl

N
σl)

2(
L∑

l=1

n2
l

n̂l

− n). (A.66)

Based on the theoretical analysis in Chapter 5.3.1, we haveE(
∑L

l=1 n̂l) = E(
∑L

l=1 nl) =

n.

Therefore, Equation A.66 can be further simplified as:

V aract(ȳ)− V aropt(ȳ) =
1

n2
(

L∑

l=1

Nl

N
σl)

2
L∑

l=1

(
n2

l

n̂l

− 2nl + n̂l), (A.67)

=
1

n2
(

L∑

l=1

Nl

N
σl)

2
L∑

l=1

(n̂l − nl)
2

n̂l

. (A.68)

Ignoring thefpc, the relative error of actual variance of the sample mean is:

V aract(ȳ)− V aropt(ȳ)

V arOPT (ȳ)
=

1

n

L∑

l=1

(n̂l − nl)
2

n̂l

. (A.69)


