Dynamic Designs of Virtual Worlds Using Generative Design Agents

Ning Gu M.Des.Sc. (Hons.) B.Arch.

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

2006

Faculty of Architecture University of Sydney

© Ning Gu 2006

Acknowledgements

On many social occasions I tend to receive the same question from friends and other people I meet: "so, what are you doing in Sydney?" "I am doing a PhD", I replied. My answer almost guaranteed another question that would follow: "oh 'wow', what is it about?" Initially, I was excited by having the opportunity to introduce my work to people outside the field. I immediately told them my thesis topic, and was willing to discuss my research interest about virtual worlds, my agent model and design grammar, using terms that had been carefully chosen, which I considered appealing to the general public. In fact, I had variations of answers for different occasions and audiences. However, it is rather strange, I discovered for most of the time that those variations seemed to have absolutely the same effect: people said "cool" and that concluded the conversation of my PhD, and we changed topics! I suppose I should have learnt that it is not a good idea to talk about agents and grammars over drinks and nibbles, but for quite a while I still persistently refined my answers, always hoping they would be better received next time. One day, I decided to give up. I finally came to realise that perhaps people are not interested... which I still consider highly unlikely, of course they care about ME and MY work. I think... mostly likely, that they encounter difficulty in understanding my work, which is not a bad indication after all, reflecting the level of seriousness of the research. This is a good reason and I like that.

Following the completion of this thesis, I find myself now sitting in front of my laptop writing acknowledgements, and I think of two groups of people, two groups of people who all care about my work. I am delighted! Unfortunately, I know one group must have some difficulties understanding it. If you think you are one of this group, never mind and just keep reading. As some people say, the acknowledgements may be the only part of the thesis that everyone will look at. Therefore, firstly I wish to use the next few paragraphs to thank the people from the other group, the ones who take time to understand my research and perhaps also have an interest in it, especially those who have helped and inspired the formation of this thesis. I feel that in a way we are very connected. The connection has drawn me closer to you, closer than ever. For the rest, who care so much about what I am doing, but may not have much of a clue about what I am really doing, like my parents, you may stop reading now, and you know I love you!

First of all, my greatest gratitude goes to my supervisor Prof. Mary Lou Maher. Thank you for your invaluable guidance and support towards my professional and personal development. This thesis and other achievements would not be possible without you.

I would also like to thank two of my mentors, Prof. John Gero and Dr. Greg Smith in the Key Centre of Design Computing and Cognition at the University of Sydney. Every time I need advice, you are always there for me, always patient and generous.

My appreciation extends to all the scholars I have encountered and communicated with during my PhD candidature, in particular Prof. Thomas Kvan, Prof. Terry Knight, Prof. George Stiny, Dr. Scott Chase and Prof. William Mitchell, who have provided valuable comments or helped with my specific enquires regarding this thesis.

Finally, I wish to dedicate my thesis to everyone who is in quest of knowledge. Our shared passion and courage for challenges make the process such a rewarding experience.

Abstract

This research aims at developing a different kind of virtual world that is dynamically designed and implemented as needed. Currently, most virtual world designs are considered static. Similar to the physical world, these worlds are pre-defined prior to their use. The resultant environments serve certain purposes but do not take into consideration possible changes to the purposes during their use, changes which often occur when the occupants interact with the environments and with each other. Virtual worlds as networked environments can be flexibly configured and programmed. This flexibility makes it possible to consider virtual world designs in terms of dynamics and autonomy, reflecting the changing needs of different moments.

To achieve dynamic designs of virtual worlds, this study applies a computational approach using rational design agents. A Generative Design Agent (GDA) model is developed that specifies computational processes for reasoning and designing in virtual worlds. The GDAs serve as personal design agents to the virtual world occupants. Design formalisms for virtual worlds are also addressed. The design component of a GDA is supported by the application of a generative design grammar. On one hand, generative design grammars serve as the generative force to be applied by the GDAs for virtual world design automation. On the other hand, each grammar defines coherent stylistic characterisations shared by the virtual world designs it generates.

The technical outcomes of the research consist of the GDA model and a generative design grammar framework. The framework provides guidelines and strategies to designers for developing generative design grammars that produce different design languages for virtual worlds, rather than predefine every detail of all possible virtual world designs. GDAs monitor the virtual worlds and the various activities that occur in the worlds, interpret the occupants' needs in the virtual worlds and the state of the worlds based on these observations, hypothesise design goals in order to satisfy these needs, and finally apply generative design grammars to provide virtual world designs for the moment, or initiate other actions in the worlds, according to the current design goals, on behalf of the occupants.

The development of the GDA model and the generative design grammar framework provides new perspectives for understanding and developing virtual worlds. The GDA model challenges the conventional way that virtual worlds are designed and implemented, and this leads to dynamic designs of virtual worlds. The generative design grammar framework provides a computational approach to formally defining design languages for virtual worlds.

Table of Contents

Acknowledgements	ii
Abstract	iii
Table of Contents	iv
Chapter 1 Introduction	1
1.1 Motivations	2
1.2 Aims and Objectives	3
1.3 Contributions and Significance	3
1.4 Thesis Overview	5
1.4.1 Background	5
1.4.2 Computational Model of a Generative Design Agent	5
1.4.3 A Generative Design Grammar Framework	5
1.4.4 An Example Grammar for Dynamic Design of a Virtual Gallery	5
1.4.5 Design Demonstration: a Virtual Gallery Scenario	5
1.4.6 Discussion and Future Research	6
Chapter 2 Background	7
2.1 Designing Virtual Worlds	7
2.1.1 Concepts of Virtual Worlds	7
2.1.2 History of Virtual Worlds	8
2.1.3 Design Metaphors	9
2.1.4 Place Making in Virtual Worlds	11
2.1.5 Virtual World Design Platforms and Examples	12
2.2 Stylistic Characterisations of Virtual World Designs	15
2.2.1 Four Design Phases of Virtual Worlds	16
2.2.2 Visualisation	16
2.2.3 Navigation	18
2.2.4 Interaction	19
2.3 Agent Models	20
2.3.1 Rational Agents	20
2.3.2 An Agent Model for 3D Virtual Worlds	21
2.4 Shape Grammars	23
2.4.1 Notions of Shape Grammars	23
2.4.2 Shape Grammars and Design Styles	24
2.4.3 Design Constraints and Shape Grammar Application	24
2.5 Summary	25

Chapter 3 Computational Model of a Generative Design Agent	26
3.1 Generative Design Agent Model	26
3.2 Representations of a Virtual World	28
3.2.1 Three Views of a Virtual World	29
3.2.2 Virtual World Objects	30
3.3 Computational Processes of the Generative Design Agent Model	31
3.3.1 Interpretation	33
3.3.2 Hypothesising	35
3.3.3 Designing and Action	37
3.4 The Generative Design Agent Model as a Design Model	38
3.5 Discussion	40
3.5.1 The GDA Approach to Designing Virtual Worlds	41
3.5.2 Designing Virtual Worlds as Individual and Collaborative Acts	41
Chapter 4 A Generative Design Grammar Framework	42
4.1 Generative Design Grammars for Formalising Virtual World Designs	42
4.1.1 A Virtual World Design as "Objects in Relations"	43
4.1.2 Design Problems of Virtual Worlds	43
4.1.3 Stylistic Characterisations of Virtual World Designs	44
4.2 A Generative Design Grammar Framework	45
4.3 General Structure of Design Rules	46
4.3.1 Layout Rules	47
4.3.2 Object Placement Rules	47
4.3.3 Navigation Rules	48
4.3.4 Interaction Rules	50
4.4 Characteristics of Generative Design Grammars	51
4.5 Application Issues of the Generative Design Grammar Framework	53
Chapter 5 An Example Grammar for Dynamic Design of a Virtual Gallery	54
5.1 Dynamic Design of a Virtual Gallery	54
5.1.1 Galleries: From Physical to Virtual	54
5.1.2 A Virtual Gallery Dynamically Designed for an Artist	55
5.2 The Example Grammar Overview	56
5.2.1 Design Composition of a Virtual Gallery	57
5.2.2 Meeting Design Goals	58
5.3 Layout Rules	58
5.3.1 State Labels	59
5.3.2 Additive Layout Rules	60
5.3.3 Subtractive Layout Rules	62
5.4 Object Placement Rules	63
5.4.1 State Labels	66
5.4.2 Additive Placement Rules	67
5.4.3 Subtractive Placement Rules	73
5.5 Navigation Rules	74
5.5.1 State Labels	75
5.5.2 Additive Navigation Rules	75
5.5.3 Subtractive Navigation Rules	77
5.6 Interaction Rules	78
5.6.1 State Labels	78
5.6.2 Additive Interaction Rules	79
5.6.3 Subtractive Interaction Rules	80

5.7 Summary	80
5.7.1 Purposes of the Example Grammar	80
5.7.2 Limitations	80
Chapter 6 Design Demonstration: a Virtual Gallery Scenario	82
6.1 Design Scenario Overview	82
6.1.1 Limitations of the Design Scenario	83
6.1.2 Generative Design Grammar Application Controls	83
6.1.3 Static and Dynamic Designs of the Virtual Gallery	84
6.2 Stage 1: The Artist Enters the Virtual Gallery	84
6.2.1 Layout Rule Application	84
6.2.2 Object Placement Rule Application	86
6.2.3 Navigation Rule Application	88
6.2.4 Interaction Rule Application	89
6.3 Stage 2: Exhibition 1 Attracts More Visitors	91
6.3.1 Execution of the Design Scenario	91
6.3.2 An Alterative Design of the Virtual Gallery for Stage 2	93
6.4 Stage 3: An Invited Guest Enters the Virtual Gallery	93
6.5 Stage 4: The Artist Decides to Give a Public Talk	94
6.6 Stage 5: Exhibition 2 Attracts More Visitors	96
6.6.1 Execution of the Design Scenario	96
6.6.2 Alternative Designs of the Virtual Gallery for Stage 5	97
6.7 Stage 6: The Artist Changes Exhibition 2	98
6.8 Stage 7: Some Visitors Leave the Virtual Gallery	100
6.9 Stage 8: The Artist Leaves the Virtual Gallery	102
6.10 Discussion	103
6.10.1 Purposes of the Design Scenario	104
6.10.2 Stylistic Characterisations of the Virtual Gallery Designs	104
6.10.3 Technical Implementation	106
	107
7 1 Descussion and Future Research	10/ 107
7.1 Dynamic Designs of Virtual Worlds Using Generative Design Agents	100
7.2 Formatising virtual world Designs Using Generative Design Grammars	108
7.3 Discussion and Refinement	108
7.3.1 Dynamic Virtual World Designs vs. Static Virtual World Design	108
7.3.2 Architecture of the Moment or Architecture of Confusion	109
7.3.4 D Signs vs. Surprising Designs	109
7.3.4 Refinement of the Current Research	110
7.4 Future Research	110
7.4.1 Quality Control of Virtual World Designs	110
7.4.2 Agent Communication in Designing Virtual Worlds	111
7.4.3 Design Styles of Virtual Worlds	111
References	112
Appendix 1 An Example Grammar for Dynamic Design of a Virtual Gallery	116
Appendix 2 Design Demonstration: a Virtual Gallery Scenario	147
Appendix 3 Selected Publications Arising from this Research	182