FACTORS AFFECTING THE EFFICIENCY OF FOX (VULPES VULPES) BAITING PRACTICES ON THE CENTRAL TABLELANDS OF NEW SOUTH WALES

MATTHEW NIKOLAI GENTLE

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philsophy

School of Biological Sciences University of Sydney July 2005 This thesis is my own original work except where specifically acknowledged,

MATTHEW NIKOLAI GENTLE

July 2005

Of the Foxe

"Raynerd the Foxe am I, a craftie childe well knowne, Yea better known than credited, w^t more than is mine own: A baftard kind of curre, mine eares declare the fame, And yet my wit and pollicie haue purchaft me great fame."

George Turbivile, The booke of Hunting, 1576.

ABSTRACT

The European red fox (*Vulpes vulpes* L.) is a well known predator of native species and domestic stock, and is recognised as one of Australia's most devastating vertebrate pests. Current fox management relies heavily on poisoning using baits impregnated with sodium monofluoroacetate (1080). This reliance on 1080 is likely to continue given the lack of viable alternatives for controlling foxes, so that, in the meanwhile, it is important to improve the efficiency of the current techniques. Factors affecting the susceptibility of individual foxes to bait include their ability to locate it, as well as the bait's palatability and toxicity. The economic costs associated with using different bait types, the pattern and density of their distribution will also affect the efficiency of control programs. It is essential to examine and refine all such issues to ensure efficient use of the 1080 baiting technique.

This thesis focuses generally on problems associated with management of the fox in eastern Australia. More specifically, I investigate the factors affecting the efficiency of fox baiting practices on the central tablelands of New South Wales.

The study was conducted largely on agricultural lands near the town of Molong (33⁰10' 37"S, 148⁰87'15"E) on the central tablelands of New South Wales. This area was chosen as it is broadly representative, in terms of land use, of a large region of eastern Australia. The highly modified, predominantly agricultural landscapes near Molong are well suited to foxes, and conflict with the predominantly pastoral community means that fox management is widely undertaken.

I determined the persistence of 1080 in two commonly used bait types, Foxoff[®] and chicken wingettes, under different climatic and rainfall conditions. The rate of 1080 degradation did not change significantly between the central tablelands and the relatively hotter and drier western slopes. Foxoff[®] baits remained lethal for longer than wingettes under all conditions, although their rate of degradation generally increased with increasing rainfall. I confirmed the presence of defluorinating micro-organisms in the

soils of eastern Australia for the first time, and suggest that, following removal from the bait, 1080 would not persist in the environment for long.

Bait should be attractive and highly palatable to ensure that the target species will find and consume it upon discovery. Caching, where discovered food is removed but not immediately consumed, may potentially reduce the efficacy and cost-effectiveness of baiting campaigns. I quantified the caching of chicken wingette, day-old chick and Foxoff[®] baits by inserting transmitters into bait material and assessing whether it was eaten or cached following removal. The intensity of caching did not change significantly between seasons. Type of bait had the largest influence on caching intensity, with a greater percentage of non-toxic Foxoff[®] baits (66.9%) being cached than either wingettes (5.7%) or day-old chicks (4.5%). The percentage of toxic (1080) baits cached was even greater, suggesting that 1080 bait may be less palatable, and detectable to foxes.

I also investigated the use of conditioned taste aversion to reduce multiple bait uptake by foxes. Levamisole, an illness-inducing chemical, was added to bait and the fate of removed bait was again monitored via radio-telemetry. Following consumption of a levamisole-treated bait, foxes avoided eating treated baits but consumed untreated baits. I concluded that a reduction in bait consumption was achieved through learned aversion to levamisole rather than via conditioned taste aversion to baits. Adding levamisole to baits, especially non-toxic bait such as rabies vaccines, could potentially be used to reduce bait monopolisation by individual foxes.

Fox density and den site preferences were assessed by investigating the distribution and density of fox natal dens on one property (9.6 km²) over three consecutive years. A total of 9 natal dens were located in 2000 and 2001, declining to 6 in 2002. No preference was shown for den sites on the basis of habitat, slope or aspect, but more dens were located under, or adjacent to cover. Assuming that each natal den represents a breeding pair and that the population sex ratio did not differ from parity (1:1), the site contained a prebreeding density of 1.9 foxes/km² in 2000 and 2001, and 1.25 foxes/km² in 2002. Given that the mean number of cubs is 4.0, the post-breeding density was estimated at 5.6 and

3.75 foxes/km² in 2000/2001 and 2002, respectively. The results demonstrated that high densities of foxes occur on agricultural lands. The success and likely accuracy of the technique to monitor fox density suggests that it may be used to calibrate more efficient abundance estimates that will be essential for the strategic management of foxes in future.

Pest animal management strategies are traditionally assessed for their effectiveness, with less consideration being given to the efficiency or cost of achieving the desired effect. I used cost-effectiveness analyses to compare between different baiting strategies based on the longevity, palatability and handling/replacement costs associated with each bait type. The results indicated that, when measured on a total cost-per-bait-consumed basis, wingettes and day-old chicks were the most cost-effective baits for campaigns of up to 4 weeks duration. This demonstrates the importance of including the longevity, and particularly the palatability of bait, when assessing cost-effectiveness. However, it is recognised that other factors, including the consistency of dosage and uptake by non-target species, may be equally or more important in deciding the appropriate baiting strategy.

The spatial and temporal application of fox baiting in the region overseen by the Molong Rural Lands Protection Board was examined between January 1998 and December 2002 as a case study to evaluate the apparent effectiveness of cooperative management practices. Most landholders (78.8%) did not bait for foxes during this period. Based on known dispersal distances, the effect of fox immigration into baited areas was determined. The results indicated that no areas baited for foxes were separated by a sufficient buffer distance (>9.58 km) from unbaited areas to be protected from fox immigration. This suggests that, at current levels of coordination, the effectiveness of most baiting operations in eastern Australia is compromised over the long term by fox immigration. However, it is recognised that short-term reductions in fox density may sometimes be all that are required to reduce predation to acceptable levels, especially for seasonally-susceptible prey. Ultimately, the cost-effectiveness of control should be evaluated in terms of the response of the prey rather than that of the predator.

This study has highlighted deficiencies in current 'best-practice' baiting techniques. Specific recommendations for current baiting practices, in addition to future research, are also given. In brief, these include minimising free-feed baiting, increasing the minimum distance between bait stations, and, where possible, presenting the most palatable bait. Continued research into conditioned taste aversion, aerial baiting, and techniques to reduce caching are recommended as potential techniques to improve the efficiency of baiting practices.

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisors, Glen Saunders, NSW Department of Primary Industries and Chris Dickman, University of Sydney for their friendship, guidance and support throughout this project. Many thanks also to Steve McLeod, NSW Department of Primary Industries who acted as a third 'unofficial' supervisor. All were encouraging, and their patience and enthusiasm were inspiring. I am especially indebted to Chris Dickman for his unflagging support during the write-up.

Many former and current members of Agricultural Protection and the Vertebrate Pest Research Unit helped at times either with advice and direct assistance: John Tracey, Suzy Balogh, John Druhan, Brian Lukins, Greg Jones, Sean Brown, Peter West, Peter Fleming, Lynette McLeod, Barry Kay, Eric Davis, David Croft, Heather McKenzie and Vicki Tuck-Lee. Sean Brown and Kate Wall from the University of Queensland assisted with some of the fieldwork and data entry. I'd like to sincerely thank them all for their friendship, good times and lunchtime soccer.

Many other staff at the NSW Department of Primary Industries assisted in some capacity: Rick Cother and Dorothy Noble kindly allowed me to use their laboratory and provided patient supervision and assistance in isolating and identifying soil microorganisms. Michael Priest identified the fungi species. Ron Hacker and staff from Trangie Research Station kindly allowed me access to their facilities during the bait degradation study and Jayne Jenkins and Greg Jones assisted with the setup and sampling. Richard Rodger and Peter Worsley assisted with the monumental task of matching property descriptions to landholder details – what a job it was! Remy Van de Ven and Arthur Gilmour provided very helpful statistical advice and assisted in the use of the statistical package R.

The Water Quality team, Orange City Council kindly allowed me to use their fluoride meter and laboratory for measuring the defluorinating ability of isolates. Laurie Twigg provided advice during the fluoroacetate laboratory work and other aspects (especially bait degradation) of the study. Bob Parker, Martin Hannan-Jones and Gina Paroz,

Queensland Department of Natural Resources and Mines were contracted to undertake the fluoroacetate bait assays.

Colin Somerset, Chris Lane, Ross Trudgett, Glen Walker and other staff (especially Mary Roberson) from the Molong Rural Lands Protection Board assisted in preparing bait, locating potential study sites and matching 'a property with a name' during the baiting coverage case study. Who said that it couldn't be done! They were also a friendly port of call and very forthcoming with a cuppa, especially on frosty mornings.

Jason Neville, NSW Department of Environment and Conservation and Rob Findlay State Forests, kindly supplied data on control practices on conservation lands. Molong Rural Lands Protection Board and the NSW Department of the Valuer-General kindly allowed access to their property description data. Mark Sayer (Countrywide Systems Network Inc.) provided advice on the TFS2 database download. Peter Collet and John Perfect (Land and Property Information) also provided valuable input into the matching process (many thanks chaps!).

Roger Pech and Chris Davey (CSIRO Canberra) provided some interesting discussions in the conditioned taste aversion technique. Many thanks to Giovanna Massei for her advice with the conditioned taste aversion experiments. Giovanna and Roger Quy, Julia Coats and David Cowan (Central Science Laboratory, York) were welcoming and supported my laboratory conditioned aversion experiments in the United Kingdom. The friendly staff at the Central Science Laboratory made me feel welcome during my brief stay and members of the Animal Services Team assisted in caring for the rats.

Thanks to all those who assisted in searching for dens: Brian Lukins, John Tracey, Greg Jones, Peter West, Kate Wall, Emma Hobbs and Sean Brown. Peter Worsley (NSW Department of Primary Industries) and 'Mulga' Daniel Huie assisted with the mapping component.

Sincere thanks to many landholders who were kind enough to allow me access to their properties for various parts of this study - especially Bill and Gina Dunlop (Nandillyan Heights), Peter and Wendy Reid (Fernleigh), Don Bruce (Myrangle), Will Lee (Claremont), Ian Atkinson (Gundabooka), Peter Welsh and family and Steve Brown (Larras Lake North). Special thanks to Peter Welsh for supplying me with comfortable accommodation during my stays on Larras Lake North.

The National Feral Animal Control Program, Bureau of Rural Sciences and NSW Department of Primary Industries funded this study. The University of Sydney and Pest Animal Control Co-operative Research Centre, Canberra (now Australasian Invasive Animal CRC) provided a postgraduate scholarship and some much appreciated travel assistance for the United Kingdom component. Many thanks to current and former members of the Pest Animal Control CRC, including Tony Peacock, Barbara Van Leewen and Anthony Szell for their support.

All animal experimentation within Australia were approved by the Orange Animal Ethics Committee (ORA 00/006; ORA 01/010); The Department of Environment, Food and Rural Affairs Animal (DEFRA) Ethics Committee at the Central Science Laboratory approved the United Kingdom experiments under Home Office licences.

I am indebted to Joe Scanlan and Dave Berman, Queensland Department of Natural Resources and Mines, for their support and encouragement during the final stages of the write-up.

Many thanks and love to my family (Mum, Dad and Penn) and friends who supported me when I needed it most – I couldn't have done it without you. Aunty Rae always made me feel welcome during my stays in Sydney. Joe the 'oldest cat in the world' also gave me great company throughout – especially during the field trials - rest in peace mate. Lastly I would like to thank anyone I may have accidentally omitted who assisted during this study.

TABLE OF CONTENTS

ABSTRACT	Ι
ACKNOWLEDGEMENTS	\mathbf{V}
TABLE OF CONTENTS	VIII
LIST OF TABLES	XIV
LIST OF FIGURES	XVII
CHAPTER 1: GENERAL INTRODUCTION	1
1.1 Introduction	1
1.2 Exotic pests	1
1.3 Fox impact	2
1.4 Biology and ecology of the fox	5
1.5 Management practices	9
1.6 Factors influencing the efficiency of baiting campaigns	17
1.7 Study aims	19
1.8 Study area	20
1.9 Structure of the thesis	24
CHAPTER 2: DEGRADATION OF 1080 IN BAIT AND SOIL	26
2.1 Introduction	26
2.2 Methods	29
2.2.1 Study sites	29
2.2.2 Treatments	29
2.2.3 1080 content assays	31
2.2.4 Soil micro-organisms	32
2.2.4.1 Defluorinating activity of soil micro-organisms	32
2.2.4.2 Isolation of micro-organisms	33
2.2.4.3 Defluorinating activity of microbial isolates	34
2.2.5 Statistical analyses	34
2.3 Results	37

	2.3.1 Weather data	37
	2.3.2 Injection calibration and stock solution	41
	2.3.3 1080 content	41
	2.3.4 1080 degradation	41
	2.3.5 Soil micro-organisms	49
2.4	Discussion	52
	2.4.1 Injection calibration and stock solution	52
	2.4.2 1080 content	53
	2.4.3 1080 degradation	56
	2.4.3.1 Loss of 1080 and management implications	59
	2.4.4 Soil micro-organisms	62
2.5	Conclusion	64
CH	IAPTER 3: BAIT CACHING	66
3.1	Introduction	66
3.2	Methods	69
	3.2.1 Study sites and seasons	69
	3.2.2 Bait preparation and laying procedures	70
	3.2.3 Bait uptake	72
	3.2.4 Bait consumption and caching	72
	3.2.5 Statistical analyses	73
3.3	Results	76
	3.3.1 Bait uptake	76
	3.3.2 Bait caching	79
	3.3.2.1 Cache retrieval	85
	3.3.2.2 Caching distances	92
	3.3.2.3 Cache depth	95
	3.3.2.4 Free-feeding and caching	95
3.4	Discussion	95
	3.4.1 Bait uptake	96
	3.4.2 Bait caching	97
	3.4.2.1 Cache retrieval	102
	3.4.2.2 Caching distances	104
	3.4.2.3 Cache depth	104

3.4.2.4 Free-feeding and caching	105
3.4.3 Management implications	106
3.5 Conclusion	108

CHAPTER 4: CONDITIONED TASTE AVERSION	
4.1 Introduction	
4.2 Methods	
4.2.1 Bait aversion	114
4.2.1.1 Study sites	114
4.2.1.2 Baiting	114
4.2.1.3 Bait uptake and consumption	115
4.2.1.4 Fox abundance	116
4.2.1.5 Analyses	116
4.2.2 Diet diversity and CTA	117
4.2.2.1 Study animals	117
4.2.2.2 Conditioning	120
4.2.2.3 Post-treatment testing	120
4.2.2.4 Analyses	121
4.3 Results	
4.3.1 Bait aversion	
4.3.1.1 Bait uptake and consumption	121
4.3.1.2 Fox abundance	122
4.3.2 Diet diversity and CTA	125
4.3.2.1 Study animals	125
4.3.2.2 Conditioning	125
4.3.2.3 Post-treatment testing	127
4.4 Discussion	130
4.4.1 Bait aversion	130
4.4.2 Diet diversity and CTA	133
4.5 Conclusion	137

CHAPTER 5: LANDHOLDER BAITING COORDINATION	
CASE STUDY- MOLONG RURAL LANDS	
PROTECTION BOARD	138
5.1 Introduction	138
5.2 Methods	141
5.2.1 Study area	141
5.2.2 Data collection and collation	141
5.2.3 Spatial coverage and gaps	142
5.2.4 Bait type and baiting frequency	144
5.2.5 Fox immigration into baited areas	144
5.2.6 Built-up area boundaries	145
5.2.7. Type of enterprise undertaking baiting	146
5.3 Results	146
5.3.1 Baiting campaigns	146
5.3.2 Bait type	149
5.3.3 Baiting coverage	150
5.3.3.1 Area baited	156
5.3.3.2 Frequency of baiting	157
5.3.3.3 Baiting cooperation	157
5.3.3.4 Fox immigration	159
5.3.3.5 Built-up area boundaries	160
5.3.3.6 Type of enterprise undertaking baiting	162
5.4 Discussion	163
5.4.1 Missing records	163
5.4.2 "Outfox the Fox"	164
5.4.3 Bait type	165
5.4.4 Type of enterprise undertaking baiting	166
5.4.5 Built-up area boundaries	168
5.4.6 Fox immigration	168
5.5 Conclusion	171

CHAPTER 6: FOX DENSITY AND DEN PREFERENCES	173
6.1 Introduction	173
6.2 Methods	175
6.2.1 Study site	175
6.2.2 Den searches	176
6.2.3 Data collation and analyses	177
6.2.4 Den distribution	178
6.2.5 Fox density	179
6.2.6 Potential for persistence of rabies	180
6.3 Results	181
6.3.1 Den locations	181
6.3.2 Den persistence	182
6.3.3 Den microhabitat and form	187
6.3.4 Den dispersion	193
6.3.5 Fox density	193
6.3.6 Potential for persistence of rabies	195
6.4 Discussion	196
6.4.1 Caveat	196
6.4.2 Den location and habit	196
6.4.3 Den microhabitat and form	198
6.4.4 Fox density	198
6.4.5 Den dispersion	200
6.4.6 Management implications	201
6.5 Conclusion	203
CHAPTER 7: COST-EFFECTIVENESS OF BAITING OPERATIONS	204
7.1 Introduction	204
7.2 Methods	206
7.2.1 Bait types - Description	206
7.2.2 Bait preparation	207
7.2.3 Costs	207
7.2.3.1 Bait type	207
7.2.3.2 Bait longevity - cost per day	208
7.2.3.3 Baiting campaigns – bait uptake and bait replacement	209

7.2.3.4. Bait consumption – relative cost per bait consumed	210
7.2.3.5 Bait procurement and distribution costs	211
7.2.3.6 Total campaign costs and cost per bait consumed	212
7.2.4 Decision tree analyses	213
7.3 Results	213
7.3.1 Bait longevity - cost per day	213
7.3.2 Baiting campaigns – bait uptake and bait replacement	216
7.3.3 Bait consumption – relative cost per bait consumed	219
7.3.4 Baiting campaigns - cost of bait consumed	220
7.3.5 Bait procurement and distribution costs	222
7.3.6 Total campaign costs and cost per bait consumed	225
7.3.7 Decision tree analyses	227
7.4 Discussion	231
7.4.1 Bait longevity - cost per day	234
7.4.2 Baiting campaigns – bait uptake and replacement	235
7.4.3 Bait consumption – relative cost per bait consumed	236
7.4.4 Bait procurement and distribution costs	238
7.4.5 Total campaign costs and cost per bait consumed	238
7.4.6 Other considerations	239
7.4.7 Decision tree analyses	240
7.5 Conclusion	240
	0.40
CHAPTER 8: GENERAL DISCUSSION	242
8.1 Key findings	242
8.2 Discussion of key findings	244
8.3 Other factors that may affect the efficiency of baiting	255
8.4 Management and research implications	258
8.5 Specific recommendations for current baiting practices	262
8.6 Specific recommendations for future research	264

APPENDIX 1: PESTICIDE CONTROL (1080 FOX BAIT) ORDER 2002

REFERENCES

286

266

LIST OF TABLES

Table 2.1:	The amount of rainfall (mm) that fell prior and during the	
	trial period at OAI and TRS in 2001.	39
Table 2.2:	ANOVA of 1080 concentration per bait for wingettes at OAI,	
	2002.	42
Table 2.3:	ANOVA of 1080 concentration per bait for wingettes at OAI	
	and TRS for Treatment "mean weekly rainfall".	43
Table 2.4:	ANOVA of 1080 concentration per bait for wingettes and	
	Foxoff [®] at TRS, 2002.	43
Table 2.5:	ANOVA of 1080 concentration per bait for wingettes and	
	Foxoff [®] , "mean weekly rainfall" and "prevailing rainfall" at	
	OAI.	44
Table 2.6:	ANOVA of 1080 concentration per bait for wingettes and	
	Foxoff [®] "no rain" at OAI.	44
Table 2.7:	ANOVA of 1080 concentration per bait for $Foxoff^{\ensuremath{\mathbb{R}}}$ at OAI	
	and TRS "mean weekly rainfall".	44
Table 2.8:	Regression coefficients from the random regression models.	45
Table 2.9:	The mean percentage of 1080 defluorinated (n=2) by fungi	
	isolated from OAI and TRS soil.	50
Table 2.10	: The mean percentage of 1080 defluorinated (n=2) by	
	bacteria and actinomycetes isolated from OAI and TRS soil.	51
Table 2.11	: The amount of 1080 required for a LD_{50} and mean time	
	(weeks) wingettes and Foxoff [®] remain lethal to foxes,	
	sheep and cattle dogs.	60
Table 3.1:	Description of variables used in the GLM to identify the main	
	determinants of caching.	75
Table 3.2:	The number of baits initially laid, number taken by foxes and	
	percentage removed by foxes during the first five days of the	
	free-feed period at each non-toxic site.	77

Table 3.3:	The number of Foxoff [®] , day-old chick and wingette baits	
	eaten from those that were cached in the trials at Larras,	
	Fernleigh, Myrangle and Nandillyan.	86
Table 3.4:	The mean number of days that baits were cached before	
	consumption by foxes on Larras and Fernleigh.	87
Table 3.5:	Number of baits cached, number subsequently eaten, and mean	
	number of days that baits are cached until eaten.	89
Table 3.6:	Summary of distances for non-toxic baits cached or eaten.	93
Table 3.7:	Summary of distances that toxic baits were cached or eaten.	93
Table 5.1:	The number of landholders baiting, number of baits issued to	
	landholders, area baited and number of baits used per baiting	
	campaign for the Molong RLPB between 1998 – 2002.	148
Table 6.1:	The number of Inactive, Natal and Active fox dens located	
	on Larras Lake North.	182
Table 6.2:	The numbers of active or natal dens in 2001 and 2002 that were	
	active or natal in the previous year or two years prior.	182
Table 6.3:	Availability of habitat strata within the search area and the	
	number of Inactive, Natal and Active fox dens in each stratum.	188
Table 6.4:	Availability of slope strata within the search area and the	
	number of Inactive, Natal and Active fox dens in each stratum.	190
Table 6.5:	Availability of aspect strata within the search area and the	
	number of Inactive, Natal and Active fox dens in each stratum.	192
Table 6.6:	The mean nearest neighbour distance, expected nearest neighbour	
	distance, index of aggregation, deviation from randomness, test	
	used and significance for active and natal dens located during	
	each search period.	194
Table 6.7:	The number and density of active and natal fox dens during	
	2000, 2001 and 2002 and resultant estimates of pre and post	
	whelping fox density (foxes/km ²).	194
Table 6.8:	Estimates of the critical proportion (P) of the fox population	
	to prevent persistence of rabies both pre (K_{pr}) and	
	post-breeding (K_{po}) densities for each year of the study period.	195

Table 7.1:	The cost per day for the period that Foxoff [®] , wingettes and	
	day-old chicks remain lethal to foxes.	215
Table 7.2:	The cumulative number of baits required during an average	
	baiting campaign (43 bait stations) lasting 7, 14, 21 and 28 days.	216
Table 7.3:	The cumulative number of baits required to undertake baiting	
	and replace degraded or removed baits during a baiting	
	campaign (43 bait stations) lasting 7, 14, 21 and 28 days	
	at 10, 25 and 50% bait uptake rates.	217
Table 7.4:	The mean percentage of Foxoff [®] , wingette and day-old	
	chick baits consumed in the toxic bait trials and the cost of each	
	relative to those that are taken.	219
Table 7.5:	The cumulative number of baits consumed during a baiting	
	campaign (43 baits) lasting 7, 14, 21 and 28 days at 10, 25 and	
	50% bait uptake rates.	221
Table 7.6:	Cost of parameters associated with one trip for either	
	procurement (off-site) or use (on-site) of baits for a baiting	
	program (43 baits).	223
Table 7.7:	The cumulative number of trips to undertake baiting and replace	
	degraded or removed baits and to purchase fresh bait for a	
	baiting campaign (43 bait stations) lasting 7, 14, 21 and 28 days.	224
Table 7.8:	The cumulative total cost for an average baiting campaign	
	(43 baits) lasting 7, 14, 21 and 28 days at 10, 25 and 50% bait	
	uptake rates.	226
Table 7.9:	The cumulative total cost per bait consumed for an average	
	baiting campaign (43 baits) lasting 7, 14, 21 and 28 days at	
	10, 25 and 50% bait uptake rates.	227
Table 7.10	: Description and notation for factors important in	
	decision-making for baiting campaigns for foxes on the	
	central tablelands of New South Wales.	228

LIST OF FIGURES

Figure 1.1:	Location of the central tablelands area in New South Wales and	
	Australia.	21
Figure 1.2:	Mean daily minimum and maximum temperatures (^{0}C) for	
	Molong from Bureau of Meteorology records (1884-2001).	22
Figure 1.3:	Mean monthly rainfall (mm) and the observed monthly rainfall	
	prior to and during the study period (2000, 2001, 2002) for the	
	town of Molong.	22
Figure 2.1:	The recorded daily rainfall for TRS during the study period,	
	10th October to 21st December 2001.	37
Figure 2.2:	The recorded daily rainfall for OAI during the study period,	
	5th October to 14th December 2001.	38
Figure 2.3:	Daily ambient and soil temperature for TRS.	40
Figure 2.4:	Daily ambient and soil temperature for OAI.	40
Figure 2.5:	Fitted curves for the mean loss of 1080 for wingettes at TRS	
	exposed to 'mean weekly rainfall'.	46
Figure 2.6:	Fitted curves for the mean loss of 1080 for $Foxoff^{ mathbb{B}}$ at TRS	
	exposed to 'mean weekly rainfall'.	47
Figure 2.7:	Fitted curves for the mean loss of 1080 for wingettes at OAI	
	exposed to 'mean weekly rainfall', 'prevailing rainfall' and	
	'no rain'.	48
Figure 3.1:	Cumulative rainfall deficiency (mm) for Molong weather station.	71
Figure 3.2:	Survivorship of the initial baits laid at each Season Year for the	
	non-toxic bait trials.	78
Figure 3.3:	Survivorship of the initial baits laid at each site for the	
	non-toxic bait trials.	78
Figure 3.4:	The proportion of Foxoff [®] , day-old chick and wingette baits	
	cached on Larras.	79

Figure 3.5:	The proportion of Foxoff [®] , day-old chick and wingette baits	
	cached on Fernleigh.	80
Figure 3.6:	The proportion of Foxoff [®] , day-old chick and wingette baits	
	cached on Fernleigh and Larras.	80
Figure 3.7:	The proportion of Foxoff [®] , day-old chick and wingette baits	
	cached during winter 2001 and winter 2002 on Myrangle.	83
Figure 3.8:	The proportion of Foxoff [®] , day-old chick and wingette baits	
	cached during winter 2001 and winter 2002 on Nandillyan.	84
Figure 3.9:	The proportion of Foxoff [®] , day-old chick and wingette baits	
	cached during winter 2001 and winter 2002 on Myrangle and	
	Nandillyan.	84
Figure 3.10:	Cumulative survival of cached non-toxic baits for the	
	Season Year of the trial.	88
Figure 3.11:	Survivorship of cached baits at Larras for the Season Year.	90
Figure 3.12:	Survivorship of cached baits at Fernleigh for the Season Year.	90
Figure 3.13:	Survival of non-toxic and toxic cached baits during winter 2002.	91
Figure 3.14:	The distance from the bait stations that non-toxic baits were	
	eaten (n = 869) or cached (n = 124).	94
Figure 3.15:	The distance from the bait stations that toxic baits were eaten	
	(n = 65) or cached $(n = 59)$.	94
Figure 4.1:	The order of procedures undertaken on the varied and single	
	diet groups in the CTA diet diversity experiment.	119
Figure 4.2:	Logistic functions showing the probability of a fox visiting a	
	station (Treatment or Control) and the probability of a fox	
	consuming a bait from each group (treated and untreated bait)	
	on each site (Treatment or Control).	123
Figure 4.3:	The cumulative number of baits eaten on the treatment and	
	control sites during the pre-treatment, treatment and	
	post-treatment trial periods.	124

Figure. 4.4:	The mean consumption of biscuits at the initial presentation vs.	
	the number of post-conditioning tests before rats consumed	
	>0.2 g of the biscuits.	126
Figure 4.5:	The proportion of rats in the varied and single diet groups	
	consuming >0.2 g of biscuits or wheat in each post-test.	128
Figure 4.6:	The mean percentage (\pm SE) of biscuit eaten by rats from total	
	food consumed in the varied and single diet groups in each	
	post-treatments.	129
Figure 5.1:	Location of the Molong Rural Lands Protection Board within	
	New South Wales.	143
Figure 5.2:	Number of landholders baiting and number of baits distributed	
	to ratepayers between January 1998 and December 2002.	147
Figure 5.3:	The number of landholders undertaking fox baiting in each	
	month within the Molong RLPB pooled for the period.	149
Figure 5.4:	Number of $Foxoff^{ onumbers}$, chicken head and meat baits distributed	
	by Molong RLPB between January 1998 and December 2002.	150
Figure 5.5:	The total area of the Molong RLPB baited during 1998.	151
Figure 5.6:	The total area of the Molong RLPB baited during 1999.	152
Figure 5.7:	The total area of the Molong RLPB baited during 2000.	153
Figure 5.8:	The total area of the Molong RLPB baited during 2001.	154
Figure 5.9:	The total area of the Molong RLPB baited during 2002.	155
Figure 5.10:	Number of hectares baited by ratepayers and government	
	agencies in the Molong RLPB.	156
Figure 5.11:	The proportion of landholders that completed one, two or	
	greater than two baiting campaigns per annum in the	
	Molong RLPB.	157
Figure 5.12:	The number of ratepayers undertaking baiting in the Molong	
	RLPB and the proportion of these with neighbours baiting.	158
Figure 5.13:	The mean number of neighbouring landholders undertaking	
	fox baiting in coordinated baiting campaigns in the Molong	
	RLPB.	159

: The built-up area boundaries, areas within a 2.0 km and 4.0 km	
radius of these boundaries, and baited areas within the Molong	
RLPB.	161
: The proportion of Molong RLPB ratepayers in each enterprise	
and the proportion who undertook fox baiting from 1998-2002.	162
The locations of all active, inactive and natal fox dens.	183
The locations of natal, active and inactive fox dens found	
during 2000.	184
The locations of natal, active and inactive fox dens found	
during 2001.	185
The locations of natal, active and inactive fox dens found	
during 2002.	186
The proportion of all fox dens located in each habitat and the	
proportion of each habitat available ($n = 231$).	188
The proportion of all fox dens located in each slope class and	
the proportion of each slope class available $(n = 231)$.	189
The proportion of all fox dens located in each aspect class and	
the proportion of each habitat class available (n=231).	191
The cumulative number of baits to be retrieved during a	
replacement baiting program (43 baits laid and checked/replaced	
every 3-4 days) at bait uptake rates of 10, 25 and 50%.	218
Decision tree illustrating the issues and sequence of decisions	
to be made in choosing the appropriate bait type for a fox baiting	
campaign.	229
	 The built-up area boundaries, areas within a 2.0 km and 4.0 km radius of these boundaries, and baited areas within the Molong RLPB. The proportion of Molong RLPB ratepayers in each enterprise and the proportion who undertook fox baiting from 1998-2002. The locations of all active, inactive and natal fox dens. The locations of natal, active and inactive fox dens found during 2000. The locations of natal, active and inactive fox dens found during 2001. The locations of natal, active and inactive fox dens found during 2002. The proportion of all fox dens located in each habitat and the proportion of all fox dens located in each slope class and the proportion of each habitat available (n = 231). The proportion of all fox dens located in each aspect class and the proportion of each habitat class available (n=231). The cumulative number of baits to be retrieved during a replacement baiting program (43 baits laid and checked/replaced every 3-4 days) at bait uptake rates of 10, 25 and 50%. Decision tree illustrating the issues and sequence of decisions to be made in choosing the appropriate bait type for a fox baiting campaign.