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Abstract

This dissertation aims to advance the field of structural optimization by
creating and demonstrating new methodologies for the explicit inclusion of
manufacturing issues. The case of composite aerospace structures was a main focus of
thiswork asthat field provides some of the greatest complexitiesin manufacturing yet

also provides the greatest incentives to optimize structural performance.

Firstly, the possibilities for modifying existing FEA based structural
optimization methods to better capture manufacturing constraints are investigated.
Examples of brick-based topology optimization, shell-based topology optimization,
parametric sizing optimization and manufacturing process optimization are given.
From these examples, a number of fundamental limitations to these methods were
observed and are discussed. The key limitation that was uncovered related to a
dichotomy between analytical methods (such as FEA) and CAD-type methods.

Based on these observations, a new Knowledge-Based framework for
structural optimization was suggested whereby manufacturing issues are integrally
linked to the more conventional structural issues. A prototype system to implement
this new framework was developed and is discussed. Finally, the validity of the
framework was demonstrated by application to a generic composite rib design

problem.
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