Efficient methods for predicting soil hydraulic properties

Budiman Minasny

BScAgr – Universitas Sumatera Utara MAgr in Soil Science – The University of Sydney

> A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Agricultural Chemistry and Soil Science The University of Sydney New South Wales Australia

MM

Certificate of originality

I hereby certify that the text of this thesis contains no material which has been accepted as part of the requirements for any degree or diploma in any university nor any material previously published or written unless the reference to this material is made.

Budiman Minasny

Abstract

Both empirical and process-simulation models are useful for evaluating the effects of management practices on environmental quality and crop yield. The use of these models is limited, however, because they need many soil property values as input. The first step towards modelling is the collection of input data. Soil properties can be highly variable spatially and temporally, and measuring them is time-consuming and expensive. Efficient methods, which consider the uncertainty and cost of measurements, for estimating soil hydraulic properties form the main thrust of this study.

Hydraulic properties are affected by other soil physical, and chemical properties, therefore it is possible to develop empirical relations to predict them. This idea quantified is called a pedotransfer function. Such functions may be global or restricted to a country or region. The different classification of particle-size fractions used in Australia compared with other countries presents a problem for the immediate adoption of exotic pedotransfer functions. A database of Australian soil hydraulic properties has been compiled. Pedotransfer functions for estimating water-retention and saturated hydraulic conductivity from particle size and bulk density for Australian soil are presented. Different approaches for deriving hydraulic transfer functions have been presented and compared. Published pedotransfer functions were also evaluated, generally they provide a satisfactory estimation of water retention and saturated hydraulic conductivity depending on the spatial scale and accuracy of prediction. Several pedotransfer functions were developed in this study to predict water retention and hydraulic conductivity. The pedotransfer functions developed here may predict adequately in large areas but for sitespecific applications local calibration is needed.

There is much uncertainty in the input data, and consequently the transfer functions can produce varied outputs. Uncertainty analysis is therefore needed. A general approach to quantifying uncertainty is to use Monte Carlo methods. By sampling repeatedly from the assumed probability distributions of the input variables and evaluating the response of the model the statistical distribution of the outputs can be estimated. A modified Latin hypercube method is presented for sampling joint multivariate probability distributions. This method is applied to quantify the uncertainties in pedotransfer functions of soil hydraulic properties. Hydraulic properties predicted using pedotransfer functions developed in this study are also used in a field soil-water model to analyze the uncertainties in the prediction of dynamic soil-water regimes.

The use of the disc permeameter in the field conventionally requires the placement of a layer of sand in order to provide good contact between the soil surface and disc supply membrane. The effect of sand on water infiltration into the soil and on the estimate of sorptivity was investigated. A numerical study and a field experiment on heavy clay were conducted. Placement of sand significantly increased the cumulative infiltration but showed small differences in the infiltration rate. Estimation of sorptivity based on the Philip's two term algebraic model using different methods was also examined. The field experiment revealed that the error in infiltration measurement was proportional to the cumulative infiltration curve. Infiltration without placement of sand was considerably smaller because of the poor contact between the disc and soil surface.

An inverse method for predicting soil hydraulic parameters from disc permeameter data has been developed. A numerical study showed that the inverse method is quite robust in identifying the hydraulic parameters. However application to field data showed that the estimated water retention curve is generally smaller than the one obtained in laboratory measurements. Nevertheless the estimated near-saturated hydraulic conductivity matched the analytical solution quite well. Th author believes that the inverse method can give a reasonable estimate of soil hydraulic parameters. Some experimental and theoretical problems were identified and discussed.

A formal analysis was carried out to evaluate the efficiency of the different methods in predicting water retention and hydraulic conductivity. The analysis identified the contribution of individual source of measurement errors to the overall uncertainty. For single measurements, the inverse disc-permeameter analysis is economically more efficient than using pedotransfer functions or measuring hydraulic properties in the laboratory. However, given the large amount of spatial variation of soil hydraulic properties it is perhaps not surprising that lots of cheap and imprecise measurements, e.g. by hand texturing, are more efficient than a few expensive precise ones.

Acknowledgements

I'd like to thank Prof. Alex. McBratney for his supervision and advice, his suggestions and constructive criticism greatly improved the quality of this work. I'd like to express my gratitude to my parents and family for their trust and support throughout the years and to whom this work is dedicated.

I'd like to thank Dr. Keith L. Bristow, CSIRO Land and Water Townsville, Dr. Hamish P. Cresswell, CSIRO Land and Water Canberra, for providing the Australian hydraulic data set. I am grateful to all soil scientists who have made the soil physical measurements and provided their data for public-domain use, which became the main source of information for this thesis. I also thank Dr. Art. Warrick, University of Arizona, and Dr. Jirka Simunek, US Salinity Laboratory, for providing the computer code for soil-water simulations, and Dr. Rutger Vervoort for introducing me to the SWAP program. I appreciate all those who had provided source code for public-domain use, which made life easier and programming less painful.

Thanks to Mr. Damien Field, Mr. Mohan Teeluck and Mr. Brendan George and all others who had provided helpful discussion and criticism which improved the readability and quality of the writing.

I acknowledge the Faculty of Agriculture for providing the F.H. Loxton scholarship. Thanks are due to all the staff in Department of Agricultural Chemistry and Soil Science at the University of Sydney for their assistance. The Australian Centre for Precision Agriculture provided some work for me during the years (thanks Brett). Thanks to all my friends in the department, especially Herr Stephen Wagner for sharing his foods, and stories. My gratitude to all the students of Advanced Soil Physics classes in 1998, 1999 and 2000, for helping with the measurements in Narrabri.

Table of contents

Abstract	i
Acknowledgements	 111
Table of contents	v
List of figures	х
List of tables	xix
List of symbols and abbreviations	xxiii

General Introduction

Problem definition	1
Efficient methods	3
Aims	4

PART A. Review of the Literature

Chapter I. Pedotransfer Functions, particularly hydraulic ones

1.1. Overview of pedotransfer functions	7
1.1.1. An introduction to pedotransfer functions	7
1.1.2. A brief history of the hydraulic pedotransfer functions	14
1.2. Water retention curve PTFs	16
1.2.1. Type of water retention PTFs	16
1.2.2. Methods to fit water-retention PTFs	22
1.3. Hydraulic conductivity PTFs	27
1.3.1. Development of hydraulic conductivity PTFs	27
1.3.2. Empirical models	28
1.3.3. Physico-empirical models	29
1.4. Pedotransfer functions validation	31
1.4.1. Statistical and functional validation	31
1.4.2. The use of PTFs in quantifying spatial variability	34
1.5. Conclusions	35
References	37

Chapter II. The Disc Permeameter

2.1. The disc permeameter and its application	47
2.2. Analysis of disc permeameter data	52
2.2.1. Steady-state infiltration analysis	52
2.2.2. Hydraulic characteristics derived from disc permeameter	54
2.2.3. Some limitations	55
2.3. Multiple tension infiltration measurements	57
2.4. Algebraic models for the disc permeameter	59
2.5. A numerical model for the disc permeameter	62
2.6. Conclusions	65
References	66

Chapter III. Inverse methods predicting soil hydraulic properties

3.1. Introduction	71
3.2. Inverse methods for predicting soil hydraulic properties	75
3.3. Inverse method from disc permeameter measurements	85
3.4. Formulation and solution of inverse problem	87
3.4.1. Mathematical formulation	88
3.4.2. Optimization procedures	91
3.5. Some definitions	92
3.5.1. Response surface of parameter space	92
3.5.2. Ill-posedness	93
3.5.3. Sensitivity analysis	96
3.5.4. Influential observations	98
3.5.5. Parameters correlation	99
3.5.6. Parameter confidence intervals	100
3.5.7. Prediction confidence intervals	101
3.6. Conclusions	101
References	103
Appendix 3.1. Levenberg-Marquardt nonlinear least-squares	112

PART B. New Research

Chapter IV. Development and evaluation of hydraulic pedotransfer functions for Australian soil

4.1. Soil hydraulic database for Australian soil	117
4.1.1. Introduction	117
4.1.2. Particle-size conversion	118
4.1.3. Textural classes conversion	121
4.1.4. The hydraulic database	127
4.1.5. Textural stratification	132
4.2. Water retention curve PTFs	134
4.2.1. Methods	134
4.2.1.1. The data	134
4.2.1.2. Pedotransfer function development	136
4.2.1.3. Evaluation criteria	139
4.2.2. Results and Discussion	140
4.2.2.1. Parametric PTFs	140
4.2.2.2 Point Estimation PTF	146
4.2.2.3. Application to other dataset	149
4.2.2.4. Some afterthoughts	151
4.2.3. Conclusions	156
4.3. Saturated hydraulic conductivity PTFs	157
4.3.1. Theory	157
4.3.2. Methods	159
4.3.2.1. Data	159
4.3.2.2. Pedotransfer function evaluation	160
4.3.2.2.1. Published PTFs	160
4.3.2.2.2. Development of PTFs	161
4.3.2.2.3. Evaluation Criteria	163
4.3.3. Results and discussion	164
4.3.3.1. Published PTFs	164
4.3.3.2. Development of PTFs	167
4.3.3.3. Evaluation of PTFs based on texture	171
4.3.4. Conclusions	173

4.4. Functional examination of PTFs	174
4.4.1. Methods	174
4.4.1.1. Data and PTFs	174
4.4.1.2. Functional examination	175
4.4.1.3. Performance criteria	179
4.4.3. Results and discussion	180
4.4.3.1. Available water content	180
4.4.3.2. Specific water yield	182
4.4.3.3. Cumulative infiltration under ponding	183
4.4.3.4. Dynamic simulation	185
4.4.3.4.1. Tipping bucket	185
4.4.3.4.2. Mechanistic model	186
4.4.4. Conclusions	191
References	192
Appendix 4.1. Textural class PTFs for Australian soil	197

Chapter V. Uncertainty analysis for pedotransfer functions

5.1. Introduction	209
5.2. Sampling methods for uncertainty analysis	211
5.2.1. Simple random sampling	211
5.2.2. The sectioning method	211
5.2.3. Latin hypercube sampling	212
5.2.4. Inducing correlation in Latin hypercube sampling	213
5.2.5. A modified sampling method	215
5.2.5.1. Orthogonal transformation	215
5.2.5.2. Normality transform	217
5.2.5.3. Modified sectioning method	219
5.2.5.4. Modified Latin hypercube sampling	219
5.3. Methods	220
5.3.1. Calculation of the uncertainty in soil hydraulic properties	221
5.3.2. PTF to predict soil strength	221
5.3.3. Uncertainty in hydraulic PTFs	222
5.3.4. PTFs for calculating soil-water storage	223
5.3.5. Soil-water simulation	224

5.4. Results and discussion	225
5.4.1. Calculation of the uncertainty in soil hydraulic properties	225
5.4.2. Performance of the modified Latin hypercube sampling and	
uncertainty in soil strength PTF	227
5.4.3. Uncertainty in hydraulic PTFs	231
5.4.4. PTFs for calculating soil-water storage	234
5.4.5. Soil-water simulation	237
5.5. Conclusions	250
References	251

Chapter VI. Estimation of sorptivity from disc permeameter measurements

6.1. Effect of sand on sorptivity estimates	253
6.1.1. Deriving sorptivity from infiltration data	254
6.1.2. Materials and Methods	257
6.1.2.1. Numerical study	257
6.1.2.2. Field Study	259
6.1.2.3. Laboratory determination of sorptivity	260
6.1.2.4. Data Analysis	260
6.1.3. Results and discussions	261
6.1.3.1. Numerical study	261
6.1.3.2. Field experiment	264
6.1.4. Conclusions	271
6.2. Estimation of sorptivity using disk with small radius	272
6.2.1. Theory	272
6.2.2. Materials and methods	275
6.2.2.1. Numerical study	275
6.2.2.2. Laboratory study	275
6.2.3. Results and discussion	276
6.2.3.1. Numerical study	277
6.2.3.2. Laboratory study	278
6.2.4. Conclusions	280
References	281
Appendix 6.1.	283
Appendix 6.2.	285
**	

permeameter data	
7.1. Introduction	287
7.2. Materials and methods	288
7.2.1. Inverse solution	288
7.2.2. Wooding's solution for multiple tensions	291
7.2.3. Numerical study	292
7.2.3.1. Hypothetical soil	292
7.2.3.2. The HAPEX-Sahel data	293
7.2.4. Actual infiltration data	294
7.2.4.1. Mount Annan Silty loam	294
7.2.4.2. Marinya clay	295
7.2.4.3. Lansdowne clay loam	295
7.3. Results and discussion	296
7.3.1. Numerical example	296
7.3.1.1. Hypothetical soil	296
7.3.1.2. Analysis of HAPEX-Sahel data	305
7.3.2. Real infiltration data	309
7.3.2.1. Mount Annan silty loam	309
7.3.2.2. Marinya clay	312
7.3.2.3. Lansdowne clay loam	315
7.3.3. Overall discussion	319
7.4. Conclusions	324
References	327
Appendix 7.1. Description of the programs used in the inverse solution	330

Chapter VII. Inverse method for predicting soil hydraulic properties from disc permeameter data

Chapter VIII. Discussion: – The efficiency of various approaches to obtaining estimates of soil hydraulic properties

8.1. Efficiency	333
8.2. Efficiency 1 – The uncertainty and effort of various methods	334
8.3. Efficiency 2 – The cost of various methods	336
8.4. Efficiency 3 – Efficiency evaluated by means of a	
value of information scenario	338

8.4.1. Perfect irrigation, imperfect information scenario	339
8.4.1.1. Methods	339
8.4.1.2. Results and discussion	340
8.4.2. Perfect irrigation, imperfect information scenario	
incorporating spatial variability	343
8.5. Conclusions	346
References	347

Chapter IX. General discussion, conclusions and future research

9.1. General discussion and conclusions	349
9.2. Future work	352

List of Figures

Chapter	I
----------------	---

Figure 1.1.1.	Pedotransfer functions translate soil survey data in other more expensively determined soil properties	8
Figure 1.1.2.	(a) Static vs. (b) dynamic approaches using pedotransfer	10
Figure 112	The level of available information for hydraulia DTEs	11
Figure 1.1.5.	The level of available information for hydraulic PTFS	11
Figure 1.1.4. Γ	Knowledge levels to predict of soil properties	12
Figure 1.1.5.	Wilting coefficient as a function of clay	15
Figure 1.2.1.	Physico-empirical model translates particle-size distribution	21
	data into water retention curve	~ .
Figure 1.2.2.	Structure of a neural network	24
Figure 1.2.3.	Water retention curve derived from limited data	26
Chapter II		
Figure 2.1.1.	Various designs of the field permeameter	48
Figure 2.1.2.	Effect of different land management on sorptivity and steady-	50
	state infiltration rate as measured by the disc permeameter	
Figure 2.2.1.	Different analysis for disc permeameter derived from	54
	Wooding's solution	
Figure 2.3.1.	Different estimate of hydraulic conductivity from	59
	multiple tension flow	
Figure 2.3.2.	Infiltration with multiple tension application in a silt loam	59
	from Mt. Annan	
Figure 2.3.3.	Hysteresis effect of changing supply potential from disc	60
	permeameter	
Figure 2.5.1.	Three-dimensional water flow from disc permeameter (left)	64
	approximated by two-dimensional axisymmetric model (right)	
Chapter III		
Figure 3.1.1.	Transport processes in the soil	71
Figure 3.1.2.	(a) Forward problem, involves determination of soil hydraulic	74
C	properties and prediction of soil-water behaviour under certain	
	boundary conditions (b) Inverse problem, estimation of	
	hydraulic properties from flow response under prescribed	
	boundary conditions	
Figure 3.2.1.	Three assumed $K(\theta)$ curves for the sand and computed outflow	76
0	using the relationships circles represent experimental values	
Figure 3 2 2	Experimental setup for one-step outflow	78
Figure 3 2 3	(a) Cumulative outflow from multi-step experiment and the	80
1 1801 0 0 1210	fitted values using inverse method (b) measured and predicted	00
	water retention curve, and (c) hydraulic conductivity	
Figure 3.2.4	(a) Observed outflow variability (PV= nore volume) from one-	81
1 iguit 5.2. i.	step and multi-step outflow under small pressure steps and (b)	01
	outflow under large pressure sten changes all three pressure	
	changes vield similar outflow responses	
Figure 3 4 1	Comparison of different objective function criteria	90
Figure 3 5 1	Examples of response surface of objective function as a	93
1 15ure 3.3.1.	Enumpres of response surface of objective function us a	,,,

Figure 3.5.2. Figure 3.5.3. Figure 3.5.4. Figure 3.5.5.	function of two parameters (a) stable solution with compact elliptical contours and well-defined minimum (b) a non-stable solution with many local minima and banana shaped contours Identification of β from two type of responses F(β) and G(β) Response surface of the objective function for the Gardner- Russo model for parameters K_s and α_g (a) small error in infiltration data and no prior information on K_s and α_g (b) moderate error and no prior information (c) moderate error and prior information on K_s only (d) moderate error and prior information α_g only Sensitivity of the water content at observation 10 cm beneath the disc to a 1% change in hydraulic parameters α , n , θ_s and K_s Outlier and influence in infiltration rate curve, solid line represents regression with all points, dashed line is regression	94 95 97 98
	without including outlier	
Chapter IV		
Figure 4.1.1. Figure 4.1.2.	Particle-size limits used in different countries (a) The USDA texture classes plotted in the axes of international system. The centroids of the classes are indicated by dark dots. (b) The Australian texture classes plotted in the axes of the USDA/EAO system	119 123
Figure 4.1.3.	The USDA (italics black font) and Marshall's textural classes (red font) plotted on the axes of the International system	124
Figure 4.1.4.	Distribution of particle size data in the (a) USDA/FAO system, and (b) International system. Classes are the USDA/FAO system	126
Figure 4.1.5.	Particle size distribution of soil database plotted in (a) USDA/FAO system, shaded area represents texture range from European database (HYPRES); (b) Australian system (c)	129
Figure 4.1.6.	Stratification of texture into three classes plotted in the International system, the centroid for each class is represented by the star symbol.	133
Figure 4.2.1.	Measured vs. predicted water content by using (a) parametric multiple regression , (b) neural networks, and (c) extended non-linear regression	144
Figure 4.2.2.	Measured and PTFs predicted water retention curve for four different type of soil	145
Figure 4.2.3.	Relationship between clay and water content at -33 and -1500 kPa (b) relationship between sand and water content at -33 and -1500 kPa.	148
Figure 4.2.4.	Relationship between clay and available water content.	149
Figure 4.2.5.	Soil-plant water limits as predicted by PTFs (a) drainage upper limit, (b) lower limit, and (c) plant extractable water.	151
Figure 4.2.6.	Observed and ENR predicted shape factor α and <i>n</i> of the van Genuchten parameters.	152
Figure 4.2.7.	Varying the van Genuchten parameters may produce similar fit to water retention data.	153

Figure 4.2.8.	Scaled water content and water potential for (a) original data (b) predicted by ENR (c) ANP and (d) ROS6	155
Figure 4.2.9.	Median of water retention curve RMSD based on texture for (a) ENR2 and (b) ROS6. The error bar represent 10 and 90 percentiles	156
Figure 4.3.1. Figure 4.3.2.	Relationship between fractal dimension D_1 and D_2 . Performance of pedotransfer functions on prediction and validation data (a) geometric mean error ratio, (b) Geometric standard deviation of error ratio, and (c) Geometric root mean squared residuals.	158 166
Figure 4.3.3.	Relation between effective porosity (ϕ_e) and K_s (a) prediction using a single power model, (b) model stratified based on texture class.	168
Figure 4.3.4.	Saturated hydraulic conductivity as a function of effective porosity calibrated using different data sets: (a) Forrest, (b) Bristow (c) Bridge and (d) other data	169
Figure 4.3.5.	Comparison of the measured and predicted K_s using fractal model	170
Figure 4.3.6.	Performance of pedotransfer functions based on texture class (a) geometric mean error ratio, (b) Geometric standard deviation of error ratio, and (c) Geometric root mean squared residuals	172
Figure 4.4.1.	The empirical tipping-bucket model for soil-water flow.	177
Figure 4.4.2.	Precipitation (bar chart) and evaporation (dotted lines) for 1998 at Bourke, NSW, used for simulation of water movement in the field	178
Figure 4.4.3.	Inaccuracy of predicted available water content based on (a) data sets, and (b) texture class	181
Figure 4.4.4.	Inaccuracy of predicted specific water-yield based on (a) data sets and (b) texture class	183
Figure 4.4.5.	Inaccuracy of predicted cumulative infiltration based on texture class	184
Figure 4.4.6.	Predicted versus true cumulative infiltration after one hour of ponding	184
Figure 4.4.7.	(a) Inaccuracy and (b) relative inaccuracy of predicted cumulative infiltration as a function of time	185
Figure 4.4.8.	Relative error of prediction of water storage and soil moisture deficit as a function of time for the Bridge data set	189
Figure 4.4.9.	Bias and relative error in prediction of water storage and soil water content as a function of time for the Forrest data set	190
Figure 4.4.10.	(a) Comparison of 'true' water storage and predicted using empirical model Burns, (b) example of the prediction with time	191
Chapter V		
Figure 5.2.1.	(a) Random sampling from each probability interval as in Latin hypercube sampling (dark circles) and sampling from the median of each interval as in sectioning method (white triangle), (b) Latin hypercube sampling for two variables (dark dots) and simple random sampling (white rectangular).	213

Figure 5.2.2.	(a) Sampling from the probability distribution, dark dots represent equal probability intervals and white dots represent the intervals transformed back from equiprobable orthogonal space, (b) sampling bivariate correlated variables in the original space, dark dots represent values sampled from the middle of each probability intervals in the orthogonal space and white dots represent values sampled randomly from each interval in the orthogonal space	217
Figure 5.3.1.	Flow chart for the analysis of the uncertainties in PTFs and modelling.	220
Figure 5.4.1.	(a) Water-retention curves of 24 sites within a field, (b) water- retention, and (b) hydraulic conductivity curve. Dark lines represent the median of prediction and the outer bands	226
Figure 5.4.2.	Sampling from bivariate normal distribution of clay and organic carbon. Crosses represent 100 observations from joint distribution. (a) The sectioning method applied on the principal components, and (b) after transformation onto the original scale; (c) LHS from principal components, and (d) after transformation onto original scale	228
Figure 5.4.3.	 (a) Efficiency of the modified Latin hypercube sampling compared to simple random sampling, (b) percentage of the intervals correctly sampled by the modified Latin hypecube sampling 	229
Figure 5.4.4.	 (a) Distribution of predicted soil mechanical resistance, (b) Distribution of the median of soil resistance predicted from 100 runs of the three sampling methods 	230
Figure 5.4.5.	Uncertainty in (a) water retention and (b) hydraulic	232
Figure 5.4.6.	(a) Prediction range (90 minus 10 percentiles) and (b) relative	233
Figure 5.4.7.	(a) Distribution of predicted soil-water storage, (b) Distribution of the mean of soil-water storage predicted from	236
Figure 5.4.8.	The relations between sample size and the Root Mean Square	237
Figure 5.4.9.	Median of simulated soil-water regimes: water storage, soil	239
Figure 5.4.10.	(a) Water-retention, and (b) hydraulic conductivity curves predicted from PTEs	240
Figure 5.4.11.	Results of the soil-water simulation over time on a loam for (a) water storage, and (b) soil moisture deficit (c) θ at 30mm, (d) θ at 300 mm	242
Figure 5.4.12.	Probability density of simulated parameters during a dry period (Julian day 105)	244
Figure 5.4.13.	Probability density of simulated parameters during a wet period (Julian day 203)	245
Figure 5.4.14.	Probability density of simulated parameters during water redristribution period (Julian day 205)	246
Figure 5.4.15.	Results of the soil-water simulation over time on a clay for (a)	248

	water storage, (b) soil moisture deficit, (c) θ at 30mm, (d) θ at 300 mm	
Chapter VI		
Figure 6.1.1.	The finite-element discretisation for simulation of infiltration from the disc permeameter.	258
Figure 6.1.2.	The randomized complete-block experimental setup in the field.	259
Figure 6.1.3.	Results of water infiltration from the numerical study: (a) cumulative infiltration, and (b) infiltration rate for loam and clay.	262
Figure 6.1.4.	The nonlinear behaviour of the first data points as a result of the square-root transformation of infiltration curves from the numerical study.	264
Figure 6.1.5.	The cumulative infiltration for treatments with, and without sand, and associated standard deviation (σ) from the field experiment.	265
Figure 6.1.6.	The infiltration rate for treatments with, and without sand, and associated standard deviation (σ) from the field experiment	266
Figure 6.1.7.	The square-root transformation of cumulative infiltration for treatments with, and without sand, and associated standard deviation (σ) from the field experiment.	267
Figure 6.1.8.	The differentiation of infiltration with respect to the square- root of time for treatments with, and without sand, and associated standard deviation (σ) from the field experiment	268
Figure 6.1.9.	Analysis of variance for S_0 estimate from field experiment using different methods for treatments (a) without sand and (b) with sand	269
Figure 6.2.1	The Mini Disk [®] infiltrometer	272
Figure 6.2.2.	Relationship between dimensionless radius r^* and steady-state rate q^* according to Wooding's solution.	274
Figure 6.2.3.	Distribution of normalized flux density on the radial and vertical axis with varying disk size (Wooding, 1968).	274
Figure 6.2.4.	Two-dimensional axis for water flow under a disc. The edge of the disc is at 0, z_1 is the vertical wetting front and r_1 is the lateral wetting front	275
Figure 6.2.5.	Distribution of normalized water content θ/θ_0 after 1 hour of infiltration over the radial and vertical axis on a loam with different size disk radii. Numbers beside the curve represents the normalized water content θ/θ_0	276
Figure 6.2.6.	Cumulative infiltration of the hypothetical loam under -20 mm tension with different disc radii	277
Figure 6.2.7.	Relationship between steady-state rate and disk radius under different applied tensions h_0	278
Figure 6.2.8.	Cumulative infiltration of Lansdowne clay loam measured by the mini disk	279
Figure 6.2.9.	Histogram of the sorptivity estimated using the mini disk	279
Figure 6.2.10.	Lateral movement of wetting front as a function of time	280
Chapter VII Figure 7.2.1	Response surface of the objective function as a function of	289

	parameter α and <i>n</i> produced by the disc permeameter solution	
	of WARRICK.	
Figure 7.3.1.	Cumulative infiltration for (a) loam and (b) clay. Smooth	297
	curves along the data points represent the fitted data from the	
Figure 732	Infiltration rate for (a) loam and (b) clay	298
Figure 7.3.3	(a) Sensitivity of cumulative infiltration with the change in 1%	299
1 1801 0 10101	of hydraulic parameters for the loam, and (b) sensitivity of the	_//
	infiltration rate for the clay.	
Figure 7.3.4.	Cook's <i>D</i> identifying influential observation in (a) cumulative	300
	infiltration for the loam, and (b) infiltration rate for the clay	
Figure 7.3.5.	True water retention and hydraulic curve along with inverse	303
	solution predictions for the loam	• • •
Figure 7.3.6.	True water retention and hydraulic curve along with inverse	303
Eigung 7.2.7	solution predictions for the clay	204
Figure 7.5.7.	loam	304
Figure 738	Cumulative infiltration from the HAPEX-Sahel data set 1	306
Figure 7.3.9.	Near-saturation hydraulic conductivity analysed from the	307
	infiltration data set 1	
Figure 7.3.10.	Cumulative infiltration from the HAPEX-Sahel data set 2	308
Figure 7.3.11.	Near-saturation hydraulic conductivity analysed from the	309
	infiltration data set 2	
Figure 7.3.12.	Cumulative infiltration of Mount Annan silty loam	310
Figure 7.3.13.	Water retention curve for Mount Annan silty loam	311
Figure 7.3.14.	Near-saturation hydraulic conductivity analysed for Mount	311
	Annah silty loam. Dots represent calculation with wooding s	
Figure 7315	Cumulative infiltration of Marinya clay	312
1 iguie 7.5.15.	Cumulative initiation of Marinya etay	512
Figure 7.3.16.	Water retention curve for Marinya clay. Dots represent	314
-	laboratory measurements and solid line is the prediction using	
	inverse analysis	
Figure 7.3.17.	Near-saturation hydraulic conductivity analysed for Marinya	314
F: 7.2 10	clay	215
Figure $7.3.18$.	Cumulative infiltration of Lansdowne clay loam	315
Figure 7.3.19.	Infiltration rate for Lansdowne clay loam run I Water content, 20 mm hereoth the dise for Lansdowne clay	310
Figure 7.5.20.	loam	517
Figure 7 3 21	Water retention curve for Lansdowne clay loam	318
Figure 7.3.22.	Near saturated hydraulic conductivity for Lansdowne clay	318
U	loam	
Figure 7.3.23.	(a) Cumulative infiltration, (b) infiltration rate, and (c) the	322
	standard deviation of Lansdowne clay loam	
Figure 7.3.24.	Cumulative infiltration of Lansdawne clay loam as measured	323
D. 2225	by mini disk at -20 mm tension	222
Figure 7.3.25.	Field infiltration of Narrabri clay at -20 mm tension using the	323
	USIKU disc permeameter	

Chapter VIII		
Figure 8.2.1.	Efficiency of different methods predicting hydraulic properties	336
Figure 8.3.1.	Relationship between cost of information and the uncertainty in prediction of (a) water retention, and (b) hydraulic	337
	conductivity curve	
Figure 8.3.2.	Efficiency of different methods predicting hydraulic properties	341
	in terms of cost	
Figure 8.4.1.	(a) Value-of-information and its (b) uncertainty as a function	342
	of certainty in predicted hydraulic conductivity	
Figure 8.4.2.	Value - cost as a function of the certainty in predicted	342
	hydraulic conductivity	
Figure 8.4.3.	Value - cost as a function of number of measurements	345

List of Tables

Chapter I		
Table 1.1.1.	Example of pedotransfer functions	9
Table 1.1.2.	Calibration of measurement techniques	14
Table 1.2.1.	Properties that affect water retention in soil	17
Table 1.2.2.	Hydraulic properties models	19
Table 1.2.3.	Average van Genuchten parameters according to US	20
	textural classes	
Table 1.3.1.	Average K_s values according to US textural classes	29
Table 1.3.2.	Parameters of Kozeny-Carman model for different soil	30
Chapter II		
Table 2.1.1.	Some applications of the disc permeameter	51
Chapter III		
Table 3.2.1.	Studies involving inverse methods for predicting hydraulic	82
	properties from transient flow experiments	
Chapter IV		
Table 4.1.1.	Parameters for conversion between particle-size classes.	121
Table 4.1.2.	Statistics of the error in particle size classes conversion.	121
Table 4.1.3.	Centroid of the USDA textural classes on the International system	124
Table 4.1.4.	Contingency table showing the distribution of the USDA	125
	texture classes with the international system, numbers are in	
	percentage of the number of data.	
Table 4.1.5.	Number of soil profiles and samples from the Australian data	127
Table 4.1.6	Description of Australian hydraulic data sets	128
Table 4.1.7	Distribution of texture classes in the database	130
Table 4.1.7.	Statistics of the soil properties from Australian database	132
Table 4.2.1	Data sets used in this study	134
Table 4.2.1.	Means and standard deviations of soil properties for the	135
1 able 4.2.2.	prediction and validation sets	155
Table 4.2.3.	Extended nonlinear regression models for parametric PTFs	137
Table 4.2.4.	Comparison of parametric PTFs performance.	142
Table 4.2.5.	The average of mean deviations, root mean squared deviations	142
	and relative residuals of water retention.	
Table 4.2.6.	Parametric PTFs developed in this study.	143
Table 4.2.7.	Comparison of PTFs performance in predicting θ at -10, -33, -	147
	1500 kPa and AWC on the validation set	
Table 4.2.8.	Comparison of MLR and ANN performance on the prediction	147
	set	
Table 4.2.9.	Mean residuals and root mean squared residuals for water	150
	retention PTFs on the GRIZZLY and UNSODA database.	
Table 4.2.10.	Mean residuals and root mean squared residuals for soil-water	151

	limits.	
Table 4.2.11.	Distribution of the van Genuchten parameters predicted by PTFs	153
Table 4.2.12.	Distribution of the van Genuchten parameters predicted by ENR2.	154
Table 4.3.1.	Description of data set used for predicting K_s	159
Table 4.3.2.	Summary of physical properties of the soil used in this study	160
Table 4.3.3.	Description of pedotransfer functions used for	162
	predicting saturated hydraulic conductivity.	
Table 4.3.4.	Evaluation of fit criteria for the prediction of K_s using different PTFs	165
Table 4 3 5	Comparison of geometric root mean squared residuals using	165
14010 1.0.0.	different predicting fractal dimension D	100
Table 4.4.1	Prediction of AWC $(m^3 m^3)$	180
Table 4.4.2	Relative error in prediction of AWC $(m^3 m^{-3})$	180
Table 4.4.3	Inaccuracy and covariance between FC and PWP as evaluated	181
10010 4.4.5.	by PTFs	101
Table 4 4 4	Prediction of specific water-yield Q (mm)	182
Table 4 4 5	Relative error in prediction of specific water-yield Q (mm)	182
Table 4 4 6	Prediction of cumulative infiltration (1) after 1 hour of ponding	184
Table 4 4 7	Prediction of water storage in 0.5 m soil profile using Burns'	186
	model	100
Table 4.4.8.	Prediction of soil moisture storage and soil moisture deficit in	187
	0.5 m soil profile (mm).	10,
Table 4.4.9.	Prediction of water content at 3 depth ($\theta_1 = 50 \text{ mm}$, $\theta_2 = 200$	187
	mm $\theta_2 = 300 \text{ mm}$ below soil surface)	
Table 4 4 10	Difference between water storage (mm) calculated by	188
	empirical model and the 'true' value calculated from	100
	mechanistic model	

Chapter V

Table 5.3.1.	Parameter for hydraulic PTFs along with standard error and correlation among the parameters	222
Table 5.3.2.	Statistics of the input variables for water retention PTFs	223
Table 5.3.3.	Mean and standard deviation of input variables into hydraulic PTFs.	225
Table 5.4.1.	Statistics of variables for predicting soil mechanical resistance.	227
Table 5.4.2.	Standard deviation of the mean variables from 100 replicates using simple random sampling and modified Latin hypercube sampling.	229
Table 5.4.3.	Statistics of input properties of PTFs and subsequent prediction of soil-water storage.	234
Table 5.4.4.	Root Mean Squared Error between the predicted and true parameters from soil-water simulations	238
Table 5.4.5.	Predicted hydraulic parameters from uncertainties in input to PTFs	241

Chapter VI

Table 6.1.1. Table 6.1.2.	Hydraulic properties of the soil used for the numerical study Estimates of sorptivity using different methods, from the numerical study	259 263
Table 6.1.3.	Estimates of sorptivity using different methods, from the field	269
Table 6.2.1.	The effect of different disc radii on the estimation on sorptivity and steady-state infiltration rate	277
Chapter VII		
Table 7.2.1.	Hydraulic properties of the hypothetical soil used for the numerical study	292
Table 7.3.1.	Parameter estimates from the inverse solution of disc permeameter measurement for the loam	302
Table 7.3.2.	Parameter estimates from the inverse solution of disc permeameter measurement for the clay	302
Table 7.3.3. Table 7.3.4.	Experimental state and Wooding's analysis for data set 1 Predicted hydraulic parameters using program DISC and	305 306
Table 7.3.5.	Experimental state and Wooding's analysis for data set 2.	307
1 able 7.3.6.	Predicted hydraulic parameters using program DISC and \bigcirc for data set 2	308
Table 7.3.7.	Predicted hydraulic parameters for Mount Annan silty loam.	310
Table 7.3.8.	Experimental state for Marinya clay.	312
Table 7.3.9.	Predicted hydraulic parameters for Marinya clay.	313
Chapter VIII		
Table 8.2.1.	Various information on soil physical measurements predicting hydraulic properties and the associate effort and cost	335
Table 8.4.1.	The gain per ha from using different information in water management	340
Table 8.4.2.	Average uncertainty of a point in the field for different methods predicting soil hydraulic properties	344
Table 8.4.3.	Efficiency (value-cost) of different methods for a field. Numbers in the brackets represent the standard deviation of the efficiency	344
Table 8.5.1.	The rank of efficiency as measured by different approaches	346

List of symbols and abbreviations

Greek symbols

Symbol	Description	Dimension	Applied
			unit
	cooling peremeter of your Convention	т -1	m ⁻¹
α	scaling parameter of van Genuchten equation	L I -1	111 ⁻¹
$lpha_{ m g}$	sorprive number, Gardner's scaling parameter	L	III
α	probability level	-	-
β	parameter vector	variable	
β	Box-Cox transformation parameter	-	-
δ	parameter correction vector	-	-
	(Levenberg-Marquardt procedure)		
Δ	small change of difference		
ε	error		3 -3
ϕ_{i}	porosity	$L^{2}L^{3}$	$m^{2}m^{2}$
$\phi_{\rm e}$	effective porosity	$L^2 L^2$	$m^{2}m^{2}$
ϕ_0	matrix flux potential	$L^2 T^{-1}$	$m^2 s^{-1}$
γ	proportionality constant (Haverkamp's equation),	-	-
γ	dimensionless parameter (Barry <i>et al</i> 's equation),	-	-
γ	semivariance	variable	
η	step-size for correction vector	-	-
	(Levenberg-Marquardt procedure)		
$\eta_{ m w}$	viscocity of water	MLTT	Pa s
φ	angle between correction & gradient vector	-	-
	(Levenberg-Marquardt procedure)		
K	shape factor (Haverkamp's equation)	-	-
λ	exponent in Brooks-Corey equation,	-	-
λ	eigenvalue	-	-
λ	Levenberg-Marquardt damping factor	-	-
$\lambda_{ m c}$	macroscopic capillary length	L	mm
$\lambda_{_{ m m}}$	microscopic mean pore size	L	mm
μ	mean	variable	
V	empirical lateral wetting front coefficient, related	L^{-1}	mm
	to disc size	2 2	2 2
heta	volumetric water content	$L^{3} L^{-3}$	$m^{2} m^{-2}$
$ heta_{ m r}$	residual water content	$L^{3}L^{-3}$	$m^{2}m^{-2}$
$ heta_{ m s}$	saturated water content	$L^{3}L^{-3}$	$m^3 m^{-3}$
$\theta_{\scriptscriptstyle 0}$	water content at applied potential h_0	$L^{3}L^{-3}$	$m^{3} m^{-3}$
$ heta_{n}$	initial water content	$L^{3}L^{-3}$	$m^{3} m^{-3}$
θ_{-10}	water content at -10 kPa	$L^{3} L^{-3}$	$m^{3} m^{-3}$
θ_{33}	water content at -33 kPa	$L^{3} L^{-3}$	$m^{3} m^{-3}$
θ_{1500}	water content at -1500 kPa	$L^{3} L^{-3}$	$m^{3} m^{-3}$
$ ho_{ m b}$	bulk density	M L ⁻³	Mg m ⁻³

$ ho_{s}$	particle density	M L ⁻³	Mg m ⁻³
$ ho_{ m w}$	density of water	M L ⁻³	$Mg m^{-3}$
σ	standard deviation	variable	
$\sigma_{\!\scriptscriptstyle \mathrm{W}}$	surface tension of water	MT ⁻²	Pa
$\sigma_{\!\scriptscriptstyle \mathrm{g}}$	geometric standard deviation of mean particle-	L	mm
	size diameter		
τ	pore tortuosity factor,	-	-
υ	dimensionless scaling parameter for lateral wetting front	-	-

Roman alphabet

Symbol	Description	Dimension	Applied unit
а	dimensionless length (Wooding's equation)	-	
A	Philip's parameter relating to steady-state	L T ⁻¹	$m s^{-1}$
	infiltration rate (one-dimensional infiltration)	1	1
A'	Philip's parameter relating to steady-state	L T ⁻¹	$m s^{-1}$
	infiltration rate (two-dimensional infiltration)		
b	Campbell's water retention fractal coefficient,	-	-
b	constant relating shape factor for the soil-water	-	-
ת	diffusivity function = 0.55	r m-l	1-1
В	coefficient in Kozeny-Carman equation	LI	mm n
с С	differential water capacity	т -1	m ⁻¹
C	organic carbon content (% by weight)	L II ⁻¹	III dag kg ⁻¹
C_0 CP	cumulative amount of particle-size	$M M^{-1}$	uag Kg
d_{z}	geometric mean of particle size diameter	L	mm
dI/dt	derivation of cumulative infiltration with respect	$L^{T^{-1}}$	$m s^{-1}$
	to time (infiltration rate)	21	111 5
D	soil water diffusivity.	$L^2 T^{-1}$	$m^{2} s^{-1}$
D	fractal dimension of particle size distribution	-	-
D_1	fractal dimension by Tyler & Wheatcraft (1989)	-	-
D_2	fractal dimension by Chang & Uehara	-	-
D_3	fractal dimension by Kravchenko & Zhang	-	-
Ε	mathematical expectation	-	-
e	eigenvector	-	-
f	grain size distribution index (Bloemen's PTF)	-	-
f	a function of	-	-
g	gradient vector	-	-
F	transfer function	-	-
F^{+}	inverse function	- T	-
n L	pressure head of soil moisture	L	m
n_0	applied pressure head	L	m
$h_{\rm n}$	depth of water ponded at soil surface	L	III mm
$h_{\rm surf}$	minimum soil water pressure at which there is a	L I	mm
nstr	continuous gas phase	Ľ	111111
Н	hydraulic head of soil moisture	L	m
Н	Hessian matrix	-	-
i	infiltration rate	L T ⁻¹	m s ⁻¹
Ι	identity matrix	-	-
Ι	cumulative infiltration	L	m
$I_{\rm s}$	amount of water needed to wet up a layer of	L	mm
	contact sand		
J	Jacobian matrix	- ,	-
Κ	hydraulic conductivity	$L T^{-1}$	$m s^{-1}$
$K_{ m s}$	saturated hydraulic conductivity	L T ⁻¹	$m s^{-1}$

K_0	hydraulic conductivity at supply potential h_0	$L T^{-1}$	m s ⁻¹
K _n	initial soil hydraulic conductivity	$L T^{-1}$	$m s^{-1}$
l	tortuosity factor in van Genuchten equation	-	-
L	logarithm of maximum likelihood	variable	
L_{s}	thickness of a layer of contact sand	L	mm
Ľ	lower triangular matrix	-	-
т	exponent in the Kozeny-Carman equation	-	-
т	the exponent parameter in the van Genuchten	-	-
	equation $m = 1 - 1/n$		
т	number of equiprobable sections in the sectioning	-	-
	method		
N	number of data	-	-
NZ	number of water retention curves	-	-
n	curve shape parameter in van Genuchten equation	-	-
nf	number of fractions in particle size distribution	-	-
ns	number of samples	-	-
пр	number of parameters	-	-
0	objective function	variable	
pF	$\log_{10} (-h/cm)$	-	-
p_{samp}	percentage of distribution correctly sampled from	-	-
	the prescribed intervals		
Р	principal component	variable	1
$P_{<2}$	mass of particles $< 2\mu m$	$M M^{-1}$	dag kg ⁻¹
P ₂₋₂₀	mass of particles $2 - 20 \ \mu m$	$M M^{-1}$	dag kg ⁻¹
P ₂₋₅₀	mass of particles $2 - 50 \ \mu m$	$M M^{-1}$	dag kg ⁻¹
P ₂₀₋₂₀₀₀	mass of particles $20 - 2000 \ \mu m$	$M M^{-1}$	dag kg ⁻¹
P50-2000	mass of particles $50 - 2000 \ \mu m$	$M M^{-1}$	dag kg ⁻¹
PS	particle size limit	L	μm
Q	cumulative water outflow	L^3	m ³
	specific water-yield	L	mm
Q_{∞}	steady state cumulative water outflow	L^3	m^3
\tilde{Q}^*	dimensionless flux (Wooding's equation)	-	-
q	steady-state infiltration rate	$L T^{-1}$	$m s^{-1}$
q	flow response	variable	
\hat{q}	predicted flow response	variable	
q^{*}	dimensionless steady-state rate (Wooding's	-	-
	equation)		
q_∞	steady-state infiltration rate	L T ⁻¹	m s ⁻¹
R	correlation coefficient	-	-
R^2	coefficient of determination	-	-
r	residual vector	variable	
R _s	soil mechanical resistance	$M L^{-1} T^{-2}$	MPa
r	radial coordinate	L	m
r	particle size radius	L	μm
r	dimensionless disk radius (Wooding's equation)	-	-
r_0	disk radius	L	mm
r_1	lateral wetting front	L	mm
r _n	normally distributed random numbers	-	-
r _u	uniformly distributed random numbers	-	-

S	sensitivity coefficient	variable	
S_0	sorptivity	$L T^{-1/2}$	$mm s^{-1/2}$
Se	effective saturation, or normalized water content	-	-
t	time	Т	S
t _c	time when capillary absorption dominates	Т	S
ts	time needed to wet-up a layer of contact sand	Т	S
t _{exp}	experimental time limit for the disc permeameter	Т	S
	to wet up certain depth		
t _{geom}	time after which geometric effect of the disc	Т	S
	dominates over the capillary sorption		
$t_{\rm grav}$	time needed to reach steady-state in infiltration	Т	S
t_{α}	Student's <i>t</i> at probability level α	-	-
и	fuzzy membership	-	-
u_c	fuzzy membership at class c	-	-
v	weight set for different data set	-	-
V	variance-covariance matrix	-	-
W	weighting factor for individual data	-	-
W	weighting factor	-	-
W_L	water storage to a depth L	L	m
x	input or independent variables	variable	
Х	sample variables	variable	
у	output or dependent variables	variable	
ŷ	predicted output	variable	
Z	vertical coordinate	L	m
z_1	wetting front on the vertical axis	L	mm
Ζ	number of data points on a water retention curve	-	-

Abbreviations

Abbreviation	Description
AIC	Akaike Information Criterion
ANP	parametric PTF using neural networks
AWC	available water content
CEC	cation exchange capacity
Corr	correlation
Cov	covariance
GMER	geometric mean error ratio
GSDER	geometric standard deviation of error ratio
GRMSR	geometric root mean squared residuals
LHS	Latin hypercube sampling
MAE	mean absolute error
MD	mean deviations (for water retention curve)
ME	mean error
MLH	modified latin hypercube sampling
MSM	modified sectioning method
MLR	multiple linear regression
MLP	multilayer perceptron
MRP	parametric PTF using multiple linear regression
PSD	particle-size distribution
PTF	pedotransfer function
PWP	permanent wilting point
QCV	cross-validation prediction error
RMSE	root mean squared error
RMSR	root mean squared of residuals
RMSD	root mean squared deviations
	(for water retention curve)
RR	relative residuals
SE	standard error
SRS	simple random sampling
SMD	soil moisture deficit
SSE	sum of squared error
SSR	sum of squared residuals
Var	variance
WS	water storage

Part of this thesis have been submitted and/or published in

scientific journals:

Chapter IV -

- Minasny, B., M^cBratney, A.B., Bristow, K.L., 1999. Comparison of different approaches to the development of pedotransfer functions for water retention curves. *Geoderma* 93, 225-253.
- Minasny, B., and McBratney, A.B., 2000. Hydraulic conductivity pedotransfer functions for Australian soil. *Australian Journal of Soil Research* 38, 905-926.
- Minasny, B., McBratney, A.B., 2001. The Australian soil texture boomerang: a comparison of the Australian and USDA/FAO soil particle-size classification systems. *Australian Journal of Soil Research* 39, 1443-1451.

Chapter V –

Minasny, B., M^cBratney, A.B., 2002. Uncertainty analysis for pedotransfer functions. *European Journal of Soil Science* 53, 417-430.

Chapter VI –

Minasny, B., M^cBratney, A.B., 2000. Estimation of sorptivity from disc-permeameter measurements. *Geoderma* 95, 305-324.

Chapter VIII -

Minasny, B., and McBratney, A. B. (2002). The efficiency of various approaches to obtaining estimates of soil hydraulic properties. *Geoderma* 107, 55-70.