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Abstract 

Both empirical and process-simulation models are useful for evaluating the effects of 

management practices on environmental quality and crop yield. The use of these models 

is limited, however, because they need many soil property values as input. The first step 

towards modelling is the collection of input data. Soil properties can be highly variable 

spatially and temporally, and measuring them is time-consuming and expensive. Efficient 

methods, which consider the uncertainty and cost of measurements, for estimating soil 

hydraulic properties form the main thrust of this study.  

 Hydraulic properties are affected by other soil physical, and chemical properties, 

therefore it is possible to develop empirical relations to predict them. This idea quantified 

is called a pedotransfer function. Such functions may be global or restricted to a country 

or region. The different classification of particle-size fractions used in Australia 

compared with other countries presents a problem for the immediate adoption of  exotic 

pedotransfer functions. A database of Australian soil hydraulic properties has been 

compiled. Pedotransfer functions for estimating water-retention and saturated hydraulic 

conductivity from particle size and bulk density for Australian soil are presented. 

Different approaches for deriving hydraulic transfer functions have been presented and 

compared. Published pedotransfer functions were also evaluated, generally they provide a 

satisfactory estimation of water retention and saturated hydraulic conductivity depending 

on the spatial scale and accuracy of prediction. Several pedotransfer functions were 

developed in this study to predict water retention and hydraulic conductivity. The 

pedotransfer functions developed here may predict adequately in large areas but for site-

specific applications local calibration is needed. 

 There is much uncertainty in the input data, and consequently the transfer functions 

can produce varied outputs. Uncertainty analysis is therefore needed. A general approach 

to quantifying uncertainty is to use Monte Carlo methods. By sampling repeatedly from 

the assumed probability distributions of the input variables and evaluating the response 

of the model the statistical distribution of the outputs can be estimated. A modified Latin 

hypercube method is presented for sampling joint multivariate probability distributions. 

This method is applied to quantify the uncertainties in pedotransfer functions of soil 

hydraulic properties. Hydraulic properties predicted using pedotransfer functions 
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developed in this study are also used in a field soil-water model to analyze the 

uncertainties in the prediction of dynamic soil-water regimes.  

 The use of the disc permeameter in the field conventionally requires the placement 

of a layer of sand in order to provide good contact between the soil surface and disc 

supply membrane. The effect of sand on water infiltration into the soil and on the 

estimate of sorptivity was investigated. A numerical study and a field experiment on 

heavy clay were conducted. Placement of sand significantly increased the cumulative 

infiltration but showed small differences in the infiltration rate. Estimation of sorptivity 

based on the Philip's two term algebraic model using different methods was also 

examined. The field experiment revealed that the error in infiltration measurement was 

proportional to the cumulative infiltration curve. Infiltration without placement of sand 

was considerably smaller because of the poor contact between the disc and soil surface. 

 An inverse method for predicting soil hydraulic parameters from disc permeameter 

data has been developed. A numerical study showed that the inverse method is quite 

robust in identifying the hydraulic parameters. However application to field data showed 

that the estimated water retention curve is generally smaller than the one obtained in 

laboratory measurements. Nevertheless the estimated near-saturated hydraulic 

conductivity matched the analytical solution quite well. Th author believes that the 

inverse method can give a reasonable estimate of soil hydraulic parameters. Some 

experimental and theoretical problems were identified and discussed. 

 A formal analysis was carried out to evaluate the efficiency of the different methods 

in predicting water retention and hydraulic conductivity. The analysis identified the 

contribution of individual source of measurement errors to the overall uncertainty. For 

single measurements, the inverse disc-permeameter analysis is economically more 

efficient than using pedotransfer functions or measuring hydraulic properties in the 

laboratory. However, given the large amount of spatial variation of soil hydraulic 

properties it is perhaps not surprising that lots of cheap and imprecise measurements, e.g. 

by hand texturing, are more efficient than a few expensive precise ones. 
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