CLINICAL AND PHARMACOLOGICAL STUDIES OF OROFACIAL PAIN

E.R. Vickers, M.D.Sc., B.D.S. (University of Sydney)

Department of Anaesthesia and Pain Management,

Faculty of Medicine,

University of Sydney.

1999

A thesis submitted for the degree of

Doctor of Philosophy

"The pain in my jaw is like a bad, nagging toothache or migraine pain, which can last up to two or three days. Sometimes I feel like taking my life because of the pain." - a patient diagnosed with atypical odontalgia

ABSTRACT

For pain research, the orofacial region is unique in a number of ways. The region has complex local anatomy, including substantial sensory innervation from neural pathways, and muscles of facial expression that convey important information concerning pain intensity and associated psychological traits. Although chronic orofacial pain conditions appear prevalent, useful documentation on pain intensity ratings using well established instruments is sparse. In particular, two conditions, *atypical facial pain* and *atypical odontalgia*, are poorly understood in aetiology so that definitive treatment modalities are severely limited. The region's local biofluid, saliva, has been used to diagnose various local and systemic disease states, and to quantitate drug concentrations. However, recent studies indicate that saliva also contains some of the same peptides, e.g. bradykinin, that are involved in pain mechanisms. It may be that pharmacological-pharmacokinetic studies of these peptides could shed more information on the significance of their presence in saliva.

This thesis consists of four major sections. Section 1 comprises of three clinical studies investigating orofacial pain. Section 2 deals with clinical laboratory studies of saliva. Section 3 is concerned with the development of chromatographic methods to assay bradykinin and its pharmacokinetics in saliva. Section 4 uses chromatography for the identification of novel salivary peptides. This thesis, then, presents clinical studies of orofacial pain and pharmacological investigations of saliva as the local biofluid.

Section 1

<u>Study 1</u> analysed 120 consecutive patients with chronic orofacial pain who completed a comprehensive questionnaire that included pain intensity scales (McGill Pain Questionnaire and visual analogue scale). The most frequent condition diagnosed was atypical facial pain (n = 40), followed by temporomandibular disorder (n = 32), atypical odontalgia (n = 29) and pain arising from recognised pathology of the orofacial region (n = 19). Results showed a disproportionate female : male ratio (88 : 32) (P < 0.001) in the study group, and in the subgroup of patients diagnosed with atypical facial pain (34 : 6) (P < 0.001). Temporomandibular disorder was present in 65% subjects as the sole pain complaint (n = 32) or as a secondary condition (n = 43). The Pain Rating Index (Total) of chronic orofacial pain conditions was similar to other chronic pain conditions including back pain, cancer pain and arthritis. Patients diagnosed with multiple orofacial pain complaints reported higher Pain Rating Index (Miscellaneous and Total) scores than those patients with a single diagnosis. A significant positive relationship was found between visual analogue scores and the Number of Words Chosen rating (P = 0.002).

<u>Study 2</u> examined patients with a diagnosis of atypical facial pain. The current IASP definition interprets this condition as "psychogenic pain" and specifically excludes an organic basis or component. Results of this study revealed that these patients described pain with sensory qualities, which is highly suggestive of underlying, but undetected, pathophysiology. Furthermore, a majority of patients were diagnosed with an associated temporomandibular disorder. It is proposed that patients with atypical facial pain have an

organic component contributing to pain, but psychological factors can magnify the affective component of 'pain and suffering' on clinical presentation.

Study 3 evaluated 50 patients diagnosed with atypical odontalgia. Patients underwent pharmacological tests including topical anaesthetic application and phentolamine infusion. Therapeutic trials of topical capsaicin were carried out to assess its efficacy for pain reduction. Results showed that 34 females and 16 males, with an age range of 21 - 82 years, were diagnosed with the condition. Dental treatment triggered the pain in 74% of patients. The pain was generally "constant" (80% of patients) and "medium" to "severe" in intensity (78%). A secondary temporomandibular disorder was present in 35 patients. EMLA topical anaesthetic cream applied to the site of intraoral pain for five minutes caused a significant reduction in pain intensity as measured by the visual analogue scale (P < 0.0001). Patient-blinded saline / phentolamine infusions demonstrated that there was a variable contribution to the pain condition from the sympathetic nervous system. A four week trial of topical capsaicin resulted in 19 / 30 patients reporting a significant pain reduction (P < 0.0001), which was maintained at long term review in the majority of patients. The response to these pharmacological procedures and the high occurrence of dental treatment in the aetiology of atypical odontalgia is highly suggestive that this condition is a neuropathic pain of the oral cavity.

Section 2

<u>Study 4</u> assessed whether measurements of concentrations of salivary bradykinin might be useful markers in quantifying pain states. This was a screening study based on preliminary

chromatographic 'fingerprint' profiles obtained from patients with pain. The preliminary work assaying saliva showed that chromatographic profiles of patients with different pain conditions were markedly different compared to patients without pain; further development may result in a 'fingerprint' of different pain states. <u>Study 5</u> investigated bradykinin as a possible marker in these profiles. The results assessing salivary bradykinin concentrations showed that there was wide intersubject variation among healthy controls and several groups of patients with pain (cancer pain, arthritis and post-operative pain). Generally, females and surgical post-operative patients were found to have quantifiable levels of salivary bradykinin.

Section 3

Based on the results of study 5, the pharmacokinetics of salivary bradykinin were investigated. For this study, an alternative bradykinin assay to immunoassay was developed using high-performance liquid chromatography. The purpose of using chromatography is that other peptides potentially involved in pain pathways could be investigated with relative ease using identical or similar (i.e. minor changes in mobile phase chemistry) chromatographic conditions. A chromatographic assay for salivary bradykinin was successfully developed that is rapid and simple in sample preparation and mobile phase chemistry. Study 6 assessed the degradation and stability of salivary bradykinin. Metabolic clearance of bradykinin using an *ex vivo* model showed that its clearance was much slower than its known plasma pharmacokinetics. The method required stabilisation of salivary bradykinin that was achieved at low pH; saliva at pH 2 through the addition of orthophosphoric acid showed excellent stability for five to nine days at 20° C and for 60

days at 4^oC. <u>Study 7</u> determined the salivary bradykinin concentrations in healthy subjects and it showed this peptide to be present in concentrations at several orders of magnitude greater than reported plasma concentrations.

Section 4

Chromatographic assays were optimised to identify a variety of novel salivary peptides. In conjunction with mass spectrometry, novel salivary peptides defensin HNP-1 and HNP-2 have been identified. These peptides have proven antimicrobial, antifungal and antiviral (including anti-HIV) activities. There were high concentrations of these salivary defensin peptides (2-350 μ g/mL) in ten healthy subjects; this may have potentially important therapeutic applications such as the prevention and / or treatment of oral candidiasis and other infections.

PAPERS ARISING FROM THIS THESIS

Publications

Vickers ER and Cousins MJ (1994). Diagnosis and management of temporomandibular disorders. *General Practitioner* 20:24-25.

Vickers ER and Cousins MJ (1994). Management of chronic orofacial pain. Aust Fam Physician 12:2315-2321.

Vickers ER, Cousins MJ, Walker S and Chisholm K (1998). Analysis of 50 patients with atypical odontalgia: a preliminary report on pharmacological procedures for diagnosis and treatment. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 85: 24-32.

Vickers ER, Cousins MJ and Woodhouse A (1998). Pain description and severity of chronic orofacial pain conditions. *Aust Dent J* 43:403-409.

Vickers ER, Cousins MJ (1999). Case study of medical student with neuropathic pain: diagnostic and treatment guidelines. *Medical Observer* Jan:25.

Vickers ER, Cousins M, Nicholas M (2000). Facial pain – a biopsychosocial problem. *Medicine Today 11: 42-48.*

Vickers ER, Goebel C, Mather LE, Mackay L, Wells RJ (2001). High-performance liquid chromatographic determination of bradykinin in saliva: a critical review and a new method. *J Chromatogr B* 755: 101-110.

Vickers ER and Mather LE. Pharmacokinetics of salivary bradykinin. Arch Oral Biol (submitted).

Abstracts

Vickers ER and Punnia-Moorthy A (1993). Chronic dentofacial pain: demographic, social and pain characteristics in 100 patients. *XIVth Australian Pain Society Conference*, Melbourne, February:45.

Vickers ER and Marzbani N (1994). Dentistry without injections: the efficacy of topical anaesthesia. *XVth Australian Pain Society Conference*, Brisbane, April:119.

Vickers ER and Cousins MJ (1995). Diagnosis and treatment of atypical odontalgia. 16th Biennial Conference of the Australian and New Zealand Association of Oral and Maxillofacial Surgeons, Sydney, March:37.

Vickers ER and Cousins MJ (1996). Clinical features of oral neuropathic pain. *Proceedings of the XIth World Congress of Anaesthesiologists*, Sydney, April:297, # D348.

Vickers ER and Cousins MJ (1996). Atypical facial pain: social and pathophysiological factors. *Proceedings of the 8th World Congress on Pain*, Vancouver, August:157, #156.

Vickers ER and Mather LE (1996). Potential roles of salivary peptides: focus on bradykinin. 2nd Australian Peptide Conference, Fraser Island, October:#51.

Vickers ER and Cousins MJ (1997). Atypical facial pain and temporomandibular disorder. 17th Biennial Conference of the Australian and New Zealand Association of Oral and Maxillofacial Surgeons, Perth, April.

Vickers ER and Cousins MJ (1997). McGill Pain Questionnaire analysis of chronic orofacial pain: pain severity, inter-instrument relationships and multiple conditions. *XVIIIth Australian Pain Society Conference*, Uluru, April:33.

Goebel C, Vickers ER, Mackay L, Wells R and Mather LE (1997). Analysis of saliva by high-performance liquid chromatography-mass spectrometry. *14th Australian Symposium on Analytical Chemistry*, Adelaide, July:347.

Vickers ER, Goebel C, Mackay L, Wells R and Mather LE (1997). Analysis of substance P by high-performance liquid chromatography-mass spectrometry. *International Conference on Tachykinins in Health and Disease*, Cairns, September:62.

Vickers ER, Goebel C and Mather LE (1997). Defensins - salivary antimicrobial peptides. *Australian Society of Maxillofacial Surgeons Conference*, Surfers Paradise, November.

Vickers ER and Mather LE (1998). Pharmacokinetics of salivary bradykinin. XIXth Australian Pain Society Conference, Hobart, April:55.

Ward ME and Vickers ER (1998). Analysis of opioid and non-opioid drugs, and oxytocin by high-performance liquid chromatography. *30th Annual Meeting of the Society for Obstetric Anesthesia and Perinatology*, Vancouver, May:100, #91.

Vickers ER and White D (1998). Neuropathic pain as a complication of temporomandibular joint surgery. *Combined Meeting of Canadian Association of Oral and Maxillofacial Surgeons and Australian and New Zealand Association of Oral and Maxillofacial Surgeons*, Vancouver, July.

Vickers ER and Cousins MJ (1998). Oral neuropathic pain - a complication of dental procedures? *38th Annual Scientific Meeting of the International Association for Dental Research, Australian and New Zealand Division, Brisbane, September:43.*

Vickers ER, Gelgor L, Benrimoj SI and Mather LE (1998). Application of HPLC to study inflammatory mediators in pharyngitis. *Combined Meeting of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists and the Australian Pharmaceutical Science Association*, Hobart, December:92, #1-23.

Letters to the Editor

Reply to Dr Greenberg, re: "Atypical odontalgia" (1998). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:628-629.

ACKNOWLEDGMENTS

I would first like to acknowledge Professor L. Mather and Professor M. Cousins, my supervisors, for their long term guidance and advice throughout the studies. I thank also my colleagues from the Department of Anaesthesia and Pain Management, including those actively engaged in clinical duties in the Pain Management and Research Centre, in particular, Drs Allan Molloy, Suellen Walker, Michael Nicholas, Philip Siddall and Ms Lois Tonkin. The continued support from the secretarial and nursing staff from the respective areas is appreciated.

I am also indebted to several members of the Department's research laboratories, particularly Dr Li Huang, Dr Debra White, Miss Bronwyn Fryirs and Mrs Sonia Gu for their invaluable advice on chromatography and laboratory procedures. In the area of mass spectrometry, I also thank Miss Catrin Goebel and Dr Lindsey Mackay from the Australian Government Analytical Laboratories for their expert collaboration.

The necessary funds that enabled this study to be carried out included a research scholarship (Balthasar scholarship), and I sincerely thank family members of this foundation for much needed financial assistance.

I wish to thank my friends and colleagues throughout the Department who constantly volunteered to partake in the studies, and with only minimal persuasion. Finally, I am grateful to the patients participating in the study, who keenly supported the clinical trials and

screening studies, and for whom I hope the results of these studies may provide future benefit.

This thesis is dedicated to my parents, (the late) E. Russell Vickers (Snr) and Barbara

M. Vickers, who instilled in my youth the essential quality of perseverance.

Statement by the Author Pertaining to Original Work

The Human Research and Ethics Committee of the Royal North Shore Hospital gave approval for the studies, where appropriate, in this thesis. All patients and subjects assessed in the studies in this thesis were personally consulted and treated by the author. The method development utilising high-performance liquid chromatography and all analyses using saliva as the investigating matrix was the original work of the author and, in addition, the development of the sample preparation prior to mass spectrometry. The concept of using high-performance liquid chromatography-mass spectrometry for salivary peptide analysis was the original idea of the author. The operation of the mass spectrometer and tentative identification of defensin HNP-1 and HNP-2 peptides and other salivary constituents were carried out in collaboration with Miss Catrin Goebel and Dr Lindsey Mackay and is acknowledged in the appropriate sections of this thesis.

TABLE OF CONTENTS

	page
Title	Ι
Abstract	III
Publications	VIII
Acknowledgments	XI
Dedication	XII
Statement by Author	XIII
Table of Contents	XIV
List of Tables	XIX
List of Figures	XX
Appendices	XXII
Glossary of Terms	XXIII

Introduction and aims of this thesis

Definition of pain	1
Historical aspects of pain	2
Scope of the problem	4
Prevalence of pain	4
Ethno-cultural reinforcers of pain	6
Psychological aspects of pain	7
Neurophysiological and biochemical factors in the	
mechanism of pain	9
Toward a standard for pain measurement	9
Aims of this thesis	11

SECTION 1 - CLINICAL STUDIES

CHAPTER 1

Study 1: Pain intensity and pain description of chronic

	orofacial pain conditions	
1.1	Introduction	14
1.2	Aims	17
1.3	Patients and methods	17
1.4	Results	19
1.5	Discussion	21
1.5.1	Gender differences	21
1.5.2	Severity of chronic orofacial pain	28
1.5.3	Clinical aspects and parameters of using VAS / MPQ and	
	inter-instrument relationships	36
1.5.4	Complexity of diagnosis: the prevalence of two or more	
	concurrent chronic orofacial pain conditions	38
1.6	Conclusion	42

XVIII

CHAPTER 2

Study 2: Atypical facial pain: a contentious definition, and guidelines for diagnosis and treatment

2.1	Introduction	44
2.2	Aims	48
2.3	Patients and methods	48
2.4	Results	49
2.5	Discussion	55
2.5.1	AFP case studies - diagnostic and treatment guidelines	58
2.6	Conclusion	62

CHAPTER 3

Study 3: An evaluation of pharmacological procedures for the diagnosis and treatment of atypical odontalgia

3.1	Introduction	66
3.2	Aims	70
3.3	Patients and methods	71
3.3.1	Pain questionnaire and multidisciplinary pain centre	
	assessment	71
3.3.2	Topical application of EMLA	71
3.3.3	Sympathetic blockade	72
3.3.4	Treatment efficacy of topical capsaicin	72
3.4	Results	73
3.5	Discussion	78
3.5.1	General findings	78
3.5.2	Aetiological factors	80
3.5.3	Efficacy of capsaicin	84
3.5.4	TMD considerations	86
3.5.5	Sympathetic nervous system contributions	87
3.6	Conclusion	89

SECTION 2 - CLINICAL LABORATORY STUDIES

CHAPTER 4

Study 4: Saliva as a potential matrix

	for objective pain measurement	
4.1	Introduction	94
4.1.1	Historical perspectives of saliva	94
4.1.2	Saliva as a matrix and diagnostic fluid	95
4.1.3	Advantages in the analysis of saliva	97
4.2	Aim	97
4.3	Patients and methods	98
4.4	Results	99

CHAPTER 5

Bradykinin literature review and study 5

Introduction	103
Biochemistry of bradykinin	104
Biological actions and receptor sites of bradykinin	106
Cardiovascular effects	106
Algogenic actions	107
Receptor sites	109
Kallikrein content in exocrine glands	110
Biofluid concentrations of bradykinin	111
Aims	112
Patients and methods	113
Results	113
Discussion	115
	 Biochemistry of bradykinin Biological actions and receptor sites of bradykinin Cardiovascular effects Algogenic actions Receptor sites Kallikrein content in exocrine glands Biofluid concentrations of bradykinin Aims Patients and methods Results

SECTION 3 - LABORATORY METHODOLOGY STUDIES

CHAPTER 6

Methods for the determination of

bradykinin concentrations

6.1	Introduction	118
6.2	Immunoassay versus chromatography	118
6.3	UV detection of bradykinin in saliva	120
6.4	HPLC - fluorescence detection	122
6.4.1	o -Phthalaldehyde (OPA)	122
6.4.2	Benzoin	126
6.4.3	N-methylisatoic anhydride	131
6.5	Summary of the review of published methods	136

CHAPTER 7

Development of an improved chromatographic method for salivary bradykinin

7.1	Introduction	137
7.2	Materials and equipment	138
7.3	HPLC - separation of peptides	138
7.4	UV absorbance spectra	141
7.4.1	UV absorbance spectra of peptides	141
7.4.2	Determination of UV wavelength	141
7.4.3	Effect of pH on UV absorbance	141
7.5	Bradykinin validation curve	150

7.6	Saliva mass / volume ratio	153
7.7	Saliva collection and sample preparation	153
7.7.1	Method 1	153
7.7.2	Method 2	154
7.8	Summary of HPLC method	156

CHAPTER 8

Confirmation of the identity of salivary bradykinin

8.1	Introduction	157
8.2	Stopped flow UV scanning	158
8.3	Retention time / co-chromatography	158
8.4	Multiple chromatographic methods	161
8.5	HPLC-MS	166

CHAPTER 9

Study 6: Ex vivo kinetics of salivary bradykinin

	1. Metabolic Clearance of Bradykinin at pH 7	
9.1	Introduction	171
9.2	Subjects and methods	171
9.3	Results	172
	2. Stabilisation of Bradykinin at Low pH	
9.4	Introduction	182
9.5	Subjects and methods	182
9.6	Results	182

CHAPTER 10

Study 7: Salivary bradykinin

concentrations	in	healthy	subjects
----------------	----	---------	----------

10.1	Introduction	189
10.2	Daily variations	189
10.2.1	Subjects and methods	189
10.2.2	Results	190
10.3	pH effects	190
10.3.1	Subjects and methods	190
10.3.2	Results	190
10.4	Discussion	191
10.4.1	Salivary bradykinin concentrations in healthy controls	191
10.4.2	Ex vivo kinetics of salivary bradykinin	192
10.4.3	Possible functions and mechanisms of salivary bradykinin	194
10.5	Conclusion	197

SECTION 4 - NOVEL APPLICATIONS AND FUTURE DIRECTIONS

CHAPTER 11

Novel applications of the developed HPLC methodology

	Specific Application 1 : HPLC-MS analysis of salivary	
	constituents	
11.1	Introduction	206
11.2	Methods	206
11.3	Results	207
11.4	Discussion	207
	Specific Application 2 : Defensin peptides HNP-1 and HNP-2	
11.5	Introduction	216
11.6	Background	216
11.7	Methods, confirmation of assignment of defensins and results	
		219
11.8	Discussion	220

CHAPTER 12

Summary of findings and future directions

	BIBLIOGRAPHY	234
12.5	Concluding comments	231
12.4	Section 4 - Novel applications	230
12.3	Section 3 - Laboratory methodology studies	229
12.2	Section 2 - Clinical laboratory studies	228
12.1	Section 1 - Clinical studies	226

APPENDICES	253
------------	-----

LIST OF TABLES

Table 1.1	Primary diagnosis of chronic orofacial pain conditions	23
Table 1.2	Diagnosis of pathological conditions	24
Table 1.3	Relative pain intensity of various pain conditions	33
Table 1.4	Mean pain intensity scores	34
Table 1.5	Temporal qualities of pain conditions	35
Table 1.6	Frequency of MPQ pain descriptors	41
Table 2.1	Frequency of TMD signs and symptoms in AFP-TMD patients	
		65
Table 3.1	Frequency of MPQ descriptors used by patients	82
Table 3.2	Aetiology of atypical odontalgia	83
Table 3.3	Frequency of TMD signs and symptoms in AO-TMD patients	
		93
Table 4.1	Subject data and pain variables for study 4	101
Table 5.1	Summary of salivary bradykinin concentrations in healthy controls	
	and patient groups	114
Table 7.1	Effects of pH on UV absorbance of bradykinin	149
Table 7.2	Units of peak area for bradykinin concentration range 1-20 ng at	
	pH 2	151
Table 7.3	Saliva mass / volume ratio in healthy controls	155
Table 9.1	Degradation of bradykinin spiked into saliva at 50 ng per injection	
		176
Table 9.2	Degradation of bradykinin spiked into saliva at 500 ng per	
	injection	179
Table 9.3	Rate of degradation for each subject	180
Table 9.4	Bradykinin concentration in spiked saliva, at 20°C or 4°C for 9	
	days and 60 days respectively	184
Table 10.1	Daily variations of salivary bradykinin concentrations in healthy	
	subjects	200
Table 10.2	Salivary bradykinin concentrations in healthy subjects following	
	oral sucrose rinse	202
Table 10.3	Comparison of mean bradykinin concentrations in biofluids	204
Table 11.1	HPLC-MS of saliva	210

LIST OF FIGURES

Figure 1.2Scatterplots of PRI(T) scores26Figure 1.3Scatterplots of PRI(M) scores27Figure 2.1VAS of the AFP and the AFP-TMD groups50Figure 2.2Actiology of pain as reported by subjects51Figure 3.3Dercentage pain reduction from diagnostic procedures76Figure 3.4Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of excitation and emission spectra of benzoin129Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.4UV saborbance spectra of bradykinin and mobile phase146Figure 7.5Effect of PH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.7Validation curve for bradykinin standard163Figure 7.8Comfirmation of bradykinin in saliva by co-chromatography160Figure 7.4UV absorbance of petides143Figure 7.5Effect of PH on UV absorbance of bradykinin164Figure 7.6pH effects on chromatograms164 <tr< th=""><th>Figure 1.1</th><th>Correlation between VAS and NWC</th><th>25</th></tr<>	Figure 1.1	Correlation between VAS and NWC	25
Figure 2.1VAS of the AFP and the AFP-TMD groups50Figure 2.2Actiology of pain as reported by subjects51Figure 2.3Subjects' expectation of "pain being cured" from treatment51Figure 3.1Percentage pain reduction from topical capsaicin treatment77Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard163Figure 8.5Direct infusion of bradykinin standard163Figure 7.5Effect of PH on UV absorbance of bradykinin standard and effluent165Figure 7.6pH effects on chromatograms148Figure 7.6pH effects on chro	Figure 1.2	Scatterplots of PRI(T) scores	26
Figure 2.2Aetiology of pain as reported by subjects51Figure 2.3Subjects' expectation of "pain being cured" from treatment51Figure 3.1Percentage pain reduction from topical capsaicin treatment76Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1HPLC separation of four peptides143Figure 7.2Comparison of UV spectra of four peptides143Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard163Figure 8.5Direct infusion of bradykinin standard163Figure 8.6Direct infusion of bradykinin standard164Figure 7.7Validation curve for bradykinin standard163Figure 8.8Chorimatogram of	Figure 1.3	Scatterplots of PRI(M) scores	27
Figure 2.3Subjects' expectation of "pain being cured" from treatment51Figure 3.1Percentage pain reduction from topical capsaicin treatment76Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction133Figure 7.1UV detection of mantyl-bradykinin derivitisation133Figure 7.2Comparison of UV spectra of four peptides140Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 8.6Confirmation of bradykinin is saliva by co-chromatography159Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of saliva164Figure 8.6Direct infusion of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard164Figure 8.8Comparison of chromatograms of bradykinin standard164 </td <td>Figure 2.1</td> <td>VAS of the AFP and the AFP-TMD groups</td> <td>50</td>	Figure 2.1	VAS of the AFP and the AFP-TMD groups	50
Figure 3.1Percentage pain reduction from diagnostic procedures76Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of benzoin-bradykinin derivitisation132Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1UV detection of mantyl-bradykinin derivitisation133Figure 7.2Comparison of four peptides140Figure 7.3UV spectral differences of peptides143Figure 7.4UV absorbance of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Direct infusion of bradykinin standard164Figure 8.6Direct infusion of bradykinin standard165Figure 8.6Direct infusion of bradykinin standard169Figure 8.6Direct infusion of bradykinin standard169 <td>Figure 2.2</td> <td>Aetiology of pain as reported by subjects</td> <td>51</td>	Figure 2.2	Aetiology of pain as reported by subjects	51
Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori <i>et al.</i> , (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.7UV detection of mantyl-bradykinin reaction133Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of petides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramy159Figure 8.2Confirmation of bradykinin is andard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard163Figure 8.6Direct infusion of bradykinin standard163Figure 8.6Direct infusion of bradykinin standard164Figure 8.7HPLC-MS of bradykinin standard164 <td>Figure 2.3</td> <td>Subjects' expectation of "pain being cured" from treatment</td> <td>51</td>	Figure 2.3	Subjects' expectation of "pain being cured" from treatment	51
Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin reaction133Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of brur peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1Confirmation of bradykinin standard163Figure 8.2Confirmation of bradykinin standard164Figure 8.3Chromatogram of saliva164Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard16	Figure 3.1	Percentage pain reduction from diagnostic procedures	76
Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction133Figure 6.7UV detection of mantyl-bradykinin reaction133Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin147Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.2Confirmation of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin in saliva by co-chromatography160Figure 8.7HPLC-MS of bradykinin standard163Figure 8.8Identification and confirmation of salivary bradykinin by HPL	Figure 3.2	Percentage pain reduction from topical capsaicin treatment	77
Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.3UV spectral differences of peptides143Figure 7.4UV absorbance of bradykinin and mobile phase146Figure 7.5Effect of PH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.2Confirmation of bradykinin standard163Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of bradykinin in saliva174 <td>Figure 4.1</td> <td>Chromatograms of controls and patients with pain states</td> <td>102</td>	Figure 4.1	Chromatograms of controls and patients with pain states	102
Figure 6.3Analysis of OPA-bradykinin reaction described by Omori <i>et al.</i> , (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin in saliva170Figure 9.1Degradatio	Figure 6.1	Percentage recovery of bradykinin standard using filters	121
(1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of PH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramphy159Figure 8.2Confirmation of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradatio	Figure 6.2	UV and fluorescence detection of bradykinin standard	124
Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramph163Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole un	Figure 6.3	Analysis of OPA-bradykinin reaction described by Omori et al.,	
(1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50		(1986b)	125
Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.4	Analysis of benzoin-bradykinin reaction described by Kai et al.,	
Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramphy159Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of saliva164Figure 8.4Chromatogram of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174		(1987)	127
Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.5	Analysis of excitation and emission spectra of benzoin	129
Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.6	Mantyl-bradykinin derivatisation reaction	132
Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of saliva163Figure 8.4Chromatogram of saliva165Figure 8.5Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.7	UV detection of mantyl-bradykinin derivitisation	133
Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Direct infusion of bradykinin standard into MS168Figure 8.6Direct infusion of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.8	Fluorescence detection of mantyl-bradykinin reaction	134
Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.1	HPLC separation of four peptides	140
Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 7.2	Comparison of UV spectra of four peptides	143
Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.3	UV spectral differences of peptides	145
Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.4	UV absorbance spectra of bradykinin and mobile phase	146
Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.5	Effect of pH on UV absorbance of bradykinin	147
Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.6	pH effects on chromatograms	148
co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50169	Figure 7.7	Validation curve for bradykinin 1-20 ng at pH 2	152
Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50170	Figure 8.1		159
Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 8.2		
Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U		
Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	C	C I	
Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U	6	165
Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Eiguro 96	Direct infusion of brodukinin standard into MS	
Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U	•	
MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	0		107
Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 0.0		170
Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 9.1		
Figure 9.3 Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U		
	U		1 / T
	1 19010 7.5		175
Figure 9.4 Degradation of 500 ng bradykinin in saliva 177	Figure 94	• • • •	
Figure 9.5 Degradation of brodykinin in whole untreated saliva (pH 7) at 500	U		1,1

ng bradykinin per injection

Figure 9.6	Approximation of the rate of degradation by a first-order rate of	
	bradykinin	181
Figure 9.7	Stability of bradykinin with addition of $0.1 \text{ M H}_3\text{PO}_4$	186
Figure 9.8	Chromatograms of saliva (pH 2) spiked with bradykinin (50 and	
	500 ng per HPLC injection)	187
Figure 9.9	Stability of bradykinin with addition of $0.1 \text{ M H}_3\text{PO}_4$	188
Figure 10.1	Daily variations of salivary bradykinin concentrations	199
Figure 10.2	pH of saliva in subjects over 40 minute sampling time	201
Figure 10.3	Salivary bradykinin concentration for each subject throughout	
	sampling period	203
Figure 11.1	Structure of defensin peptides	218
Figure 11.2	Chromatograms of defensin HNP-1 and HNP-2 standards,	
	HPLC method using C8 column	222
Figure 11.3	Chromatogram of saliva, HPLC method using C8 column	223
Figure 11.4	Chromatograms of defensin HNP-1 and HNP-2 standards,	
	HPLC method using WCX column	224
Figure 11.5	Chromatogram of collected effluent, HPLC method using WCX	
	column	225

APPENDICES

Appendix 1	Study 1, Pain data for each subject	253
Appendix 2	Study 1, VAS and MPQ data for each subject	256
Appendix 3	Study 3, Socio-economic data of atypical odontalgia group	259
Appendix 4	Study 3, Psychological variables of atypical odontalgia group	
		261
Appendix 5	Study 3, Diagnosis and pain variables in atypical odontalgia	
	group	263
Appendix 6	Study 3, Patient response to pharmacological procedures	265
Appendix 7	Study 5, Post-operative (0-2 hours) group data	267
Appendix 8	Study 5, Post-operative (1-10 days) group data	269
Appendix 9	Study 5, Cancer group data	271
Appendix 10	Study 5, Arthritis group data	273

GLOSSARY OF TERMS

ACTH	adrenocorticotrophic hormone
AFP	atypical facial pain
AFP-TMD	atypical facial pain with secondary temporomandibular disorder
ANOVA	analysis of variance
AO	atypical odontalgia
AO-TMD	atypical odontalgia with secondary temporomandibular disorder
BK	bradykinin
CGRP	calcitonin gene-related peptide
CRPS	complex regional pain syndrome
CSF	cerebrospinal fluid
EEG	electroencephalogram
EMLA	eutectic mixture of local anaesthetics
GIT	gastrointestinal tract
GRS	Graphic Rating Scale
HF	Hageman factor
HMW	high molecular weight
HPLC	high-performance liquid chromatography
HPLC-MS	high-performance liquid chromatography-mass spectrometry
IASP	International Association for the Study of Pain
LMW	low molecular weight
MMPI	Minnesota Multiphasic Personality Inventory
MPQ	McGill Pain Questionnaire
MS	mass spectrometer
NWC	Number of Words Chosen
OPA	o-Phthalaldehyde
PG	prostaglandin
PRI(A)	Pain Rating Index (Affective)
PRI(E)	Pain Rating Index (Evaluative)
PRI(M)	Pain Rating Index (Miscellaneous)
PRI(S)	Pain Rating Index (Sensory)
PRI(T)	Pain Rating Index (Total)
S.D.	standard deviation
SMP	sympathetically maintained pain
TMD	temporomandibular disorder
VAS	visual analogue scale

CLINICAL AND PHARMACOLOGICAL STUDIES OF OROFACIAL PAIN

E.R. Vickers, M.D.Sc., B.D.S. (University of Sydney)

Department of Anaesthesia and Pain Management,

Faculty of Medicine,

University of Sydney.

1999

A thesis submitted for the degree of

Doctor of Philosophy

"The pain in my jaw is like a bad, nagging toothache or migraine pain, which can last up to two or three days. Sometimes I feel like taking my life because of the pain." - a patient diagnosed with atypical odontalgia

ABSTRACT

For pain research, the orofacial region is unique in a number of ways. The region has complex local anatomy, including substantial sensory innervation from neural pathways, and muscles of facial expression that convey important information concerning pain intensity and associated psychological traits. Although chronic orofacial pain conditions appear prevalent, useful documentation on pain intensity ratings using well established instruments is sparse. In particular, two conditions, *atypical facial pain* and *atypical odontalgia*, are poorly understood in aetiology so that definitive treatment modalities are severely limited. The region's local biofluid, saliva, has been used to diagnose various local and systemic disease states, and to quantitate drug concentrations. However, recent studies indicate that saliva also contains some of the same peptides, e.g. bradykinin, that are involved in pain mechanisms. It may be that pharmacological-pharmacokinetic studies of these peptides could shed more information on the significance of their presence in saliva.

This thesis consists of four major sections. Section 1 comprises of three clinical studies investigating orofacial pain. Section 2 deals with clinical laboratory studies of saliva. Section 3 is concerned with the development of chromatographic methods to assay bradykinin and its pharmacokinetics in saliva. Section 4 uses chromatography for the identification of novel salivary peptides. This thesis, then, presents clinical studies of orofacial pain and pharmacological investigations of saliva as the local biofluid.

Section 1

<u>Study 1</u> analysed 120 consecutive patients with chronic orofacial pain who completed a comprehensive questionnaire that included pain intensity scales (McGill Pain Questionnaire and visual analogue scale). The most frequent condition diagnosed was atypical facial pain (n = 40), followed by temporomandibular disorder (n = 32), atypical odontalgia (n = 29) and pain arising from recognised pathology of the orofacial region (n = 19). Results showed a disproportionate female : male ratio (88 : 32) (P < 0.001) in the study group, and in the subgroup of patients diagnosed with atypical facial pain (34 : 6) (P < 0.001). Temporomandibular disorder was present in 65% subjects as the sole pain complaint (n = 32) or as a secondary condition (n = 43). The Pain Rating Index (Total) of chronic orofacial pain conditions was similar to other chronic pain conditions including back pain, cancer pain and arthritis. Patients diagnosed with multiple orofacial pain complaints reported higher Pain Rating Index (Miscellaneous and Total) scores than those patients with a single diagnosis. A significant positive relationship was found between visual analogue scores and the Number of Words Chosen rating (P = 0.002).

<u>Study 2</u> examined patients with a diagnosis of atypical facial pain. The current IASP definition interprets this condition as "psychogenic pain" and specifically excludes an organic basis or component. Results of this study revealed that these patients described pain with sensory qualities, which is highly suggestive of underlying, but undetected, pathophysiology. Furthermore, a majority of patients were diagnosed with an associated temporomandibular disorder. It is proposed that patients with atypical facial pain have an

organic component contributing to pain, but psychological factors can magnify the affective component of 'pain and suffering' on clinical presentation.

Study 3 evaluated 50 patients diagnosed with atypical odontalgia. Patients underwent pharmacological tests including topical anaesthetic application and phentolamine infusion. Therapeutic trials of topical capsaicin were carried out to assess its efficacy for pain reduction. Results showed that 34 females and 16 males, with an age range of 21 - 82 years, were diagnosed with the condition. Dental treatment triggered the pain in 74% of patients. The pain was generally "constant" (80% of patients) and "medium" to "severe" in intensity (78%). A secondary temporomandibular disorder was present in 35 patients. EMLA topical anaesthetic cream applied to the site of intraoral pain for five minutes caused a significant reduction in pain intensity as measured by the visual analogue scale (P < 0.0001). Patient-blinded saline / phentolamine infusions demonstrated that there was a variable contribution to the pain condition from the sympathetic nervous system. A four week trial of topical capsaicin resulted in 19 / 30 patients reporting a significant pain reduction (P < 0.0001), which was maintained at long term review in the majority of patients. The response to these pharmacological procedures and the high occurrence of dental treatment in the aetiology of atypical odontalgia is highly suggestive that this condition is a neuropathic pain of the oral cavity.

Section 2

<u>Study 4</u> assessed whether measurements of concentrations of salivary bradykinin might be useful markers in quantifying pain states. This was a screening study based on preliminary

chromatographic 'fingerprint' profiles obtained from patients with pain. The preliminary work assaying saliva showed that chromatographic profiles of patients with different pain conditions were markedly different compared to patients without pain; further development may result in a 'fingerprint' of different pain states. <u>Study 5</u> investigated bradykinin as a possible marker in these profiles. The results assessing salivary bradykinin concentrations showed that there was wide intersubject variation among healthy controls and several groups of patients with pain (cancer pain, arthritis and post-operative pain). Generally, females and surgical post-operative patients were found to have quantifiable levels of salivary bradykinin.

Section 3

Based on the results of study 5, the pharmacokinetics of salivary bradykinin were investigated. For this study, an alternative bradykinin assay to immunoassay was developed using high-performance liquid chromatography. The purpose of using chromatography is that other peptides potentially involved in pain pathways could be investigated with relative ease using identical or similar (i.e. minor changes in mobile phase chemistry) chromatographic conditions. A chromatographic assay for salivary bradykinin was successfully developed that is rapid and simple in sample preparation and mobile phase chemistry. Study 6 assessed the degradation and stability of salivary bradykinin. Metabolic clearance of bradykinin using an *ex vivo* model showed that its clearance was much slower than its known plasma pharmacokinetics. The method required stabilisation of salivary bradykinin that was achieved at low pH; saliva at pH 2 through the addition of orthophosphoric acid showed excellent stability for five to nine days at 20° C and for 60

days at 4^oC. <u>Study 7</u> determined the salivary bradykinin concentrations in healthy subjects and it showed this peptide to be present in concentrations at several orders of magnitude greater than reported plasma concentrations.

Section 4

Chromatographic assays were optimised to identify a variety of novel salivary peptides. In conjunction with mass spectrometry, novel salivary peptides defensin HNP-1 and HNP-2 have been identified. These peptides have proven antimicrobial, antifungal and antiviral (including anti-HIV) activities. There were high concentrations of these salivary defensin peptides (2-350 μ g/mL) in ten healthy subjects; this may have potentially important therapeutic applications such as the prevention and / or treatment of oral candidiasis and other infections.

PAPERS ARISING FROM THIS THESIS

Publications

Vickers ER and Cousins MJ (1994). Diagnosis and management of temporomandibular disorders. *General Practitioner* 20:24-25.

Vickers ER and Cousins MJ (1994). Management of chronic orofacial pain. Aust Fam Physician 12:2315-2321.

Vickers ER, Cousins MJ, Walker S and Chisholm K (1998). Analysis of 50 patients with atypical odontalgia: a preliminary report on pharmacological procedures for diagnosis and treatment. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 85: 24-32.

Vickers ER, Cousins MJ and Woodhouse A (1998). Pain description and severity of chronic orofacial pain conditions. *Aust Dent J* 43:403-409.

Vickers ER, Cousins MJ (1999). Case study of medical student with neuropathic pain: diagnostic and treatment guidelines. *Medical Observer* Jan:25.

Vickers ER, Cousins M, Nicholas M (2000). Facial pain – a biopsychosocial problem. *Medicine Today 11: 42-48.*

Vickers ER, Goebel C, Mather LE, Mackay L, Wells RJ (2001). High-performance liquid chromatographic determination of bradykinin in saliva: a critical review and a new method. *J Chromatogr B* 755: 101-110.

Vickers ER and Mather LE. Pharmacokinetics of salivary bradykinin. Arch Oral Biol (submitted).

Abstracts

Vickers ER and Punnia-Moorthy A (1993). Chronic dentofacial pain: demographic, social and pain characteristics in 100 patients. *XIVth Australian Pain Society Conference*, Melbourne, February:45.

Vickers ER and Marzbani N (1994). Dentistry without injections: the efficacy of topical anaesthesia. *XVth Australian Pain Society Conference*, Brisbane, April:119.

Vickers ER and Cousins MJ (1995). Diagnosis and treatment of atypical odontalgia. 16th Biennial Conference of the Australian and New Zealand Association of Oral and Maxillofacial Surgeons, Sydney, March:37.

Vickers ER and Cousins MJ (1996). Clinical features of oral neuropathic pain. *Proceedings of the XIth World Congress of Anaesthesiologists*, Sydney, April:297, # D348.

Vickers ER and Cousins MJ (1996). Atypical facial pain: social and pathophysiological factors. *Proceedings of the 8th World Congress on Pain*, Vancouver, August:157, #156.

Vickers ER and Mather LE (1996). Potential roles of salivary peptides: focus on bradykinin. 2nd Australian Peptide Conference, Fraser Island, October:#51.

Vickers ER and Cousins MJ (1997). Atypical facial pain and temporomandibular disorder. 17th Biennial Conference of the Australian and New Zealand Association of Oral and Maxillofacial Surgeons, Perth, April.

Vickers ER and Cousins MJ (1997). McGill Pain Questionnaire analysis of chronic orofacial pain: pain severity, inter-instrument relationships and multiple conditions. *XVIIIth Australian Pain Society Conference*, Uluru, April:33.

Goebel C, Vickers ER, Mackay L, Wells R and Mather LE (1997). Analysis of saliva by high-performance liquid chromatography-mass spectrometry. *14th Australian Symposium on Analytical Chemistry*, Adelaide, July:347.

Vickers ER, Goebel C, Mackay L, Wells R and Mather LE (1997). Analysis of substance P by high-performance liquid chromatography-mass spectrometry. *International Conference on Tachykinins in Health and Disease*, Cairns, September:62.

Vickers ER, Goebel C and Mather LE (1997). Defensins - salivary antimicrobial peptides. *Australian Society of Maxillofacial Surgeons Conference*, Surfers Paradise, November.

Vickers ER and Mather LE (1998). Pharmacokinetics of salivary bradykinin. XIXth Australian Pain Society Conference, Hobart, April:55.

Ward ME and Vickers ER (1998). Analysis of opioid and non-opioid drugs, and oxytocin by high-performance liquid chromatography. *30th Annual Meeting of the Society for Obstetric Anesthesia and Perinatology*, Vancouver, May:100, #91.

Vickers ER and White D (1998). Neuropathic pain as a complication of temporomandibular joint surgery. *Combined Meeting of Canadian Association of Oral and Maxillofacial Surgeons and Australian and New Zealand Association of Oral and Maxillofacial Surgeons*, Vancouver, July.

Vickers ER and Cousins MJ (1998). Oral neuropathic pain - a complication of dental procedures? *38th Annual Scientific Meeting of the International Association for Dental Research, Australian and New Zealand Division, Brisbane, September:43.*

Vickers ER, Gelgor L, Benrimoj SI and Mather LE (1998). Application of HPLC to study inflammatory mediators in pharyngitis. *Combined Meeting of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists and the Australian Pharmaceutical Science Association*, Hobart, December:92, #1-23.

Letters to the Editor

Reply to Dr Greenberg, re: "Atypical odontalgia" (1998). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:628-629.

ACKNOWLEDGMENTS

I would first like to acknowledge Professor L. Mather and Professor M. Cousins, my supervisors, for their long term guidance and advice throughout the studies. I thank also my colleagues from the Department of Anaesthesia and Pain Management, including those actively engaged in clinical duties in the Pain Management and Research Centre, in particular, Drs Allan Molloy, Suellen Walker, Michael Nicholas, Philip Siddall and Ms Lois Tonkin. The continued support from the secretarial and nursing staff from the respective areas is appreciated.

I am also indebted to several members of the Department's research laboratories, particularly Dr Li Huang, Dr Debra White, Miss Bronwyn Fryirs and Mrs Sonia Gu for their invaluable advice on chromatography and laboratory procedures. In the area of mass spectrometry, I also thank Miss Catrin Goebel and Dr Lindsey Mackay from the Australian Government Analytical Laboratories for their expert collaboration.

The necessary funds that enabled this study to be carried out included a research scholarship (Balthasar scholarship), and I sincerely thank family members of this foundation for much needed financial assistance.

I wish to thank my friends and colleagues throughout the Department who constantly volunteered to partake in the studies, and with only minimal persuasion. Finally, I am grateful to the patients participating in the study, who keenly supported the clinical trials and

screening studies, and for whom I hope the results of these studies may provide future benefit.

This thesis is dedicated to my parents, (the late) E. Russell Vickers (Snr) and Barbara

M. Vickers, who instilled in my youth the essential quality of perseverance.

Statement by the Author Pertaining to Original Work

The Human Research and Ethics Committee of the Royal North Shore Hospital gave approval for the studies, where appropriate, in this thesis. All patients and subjects assessed in the studies in this thesis were personally consulted and treated by the author. The method development utilising high-performance liquid chromatography and all analyses using saliva as the investigating matrix was the original work of the author and, in addition, the development of the sample preparation prior to mass spectrometry. The concept of using high-performance liquid chromatography-mass spectrometry for salivary peptide analysis was the original idea of the author. The operation of the mass spectrometer and tentative identification of defensin HNP-1 and HNP-2 peptides and other salivary constituents were carried out in collaboration with Miss Catrin Goebel and Dr Lindsey Mackay and is acknowledged in the appropriate sections of this thesis.

TABLE OF CONTENTS

	page
Title	Ι
Abstract	III
Publications	VIII
Acknowledgments	XI
Dedication	XII
Statement by Author	XIII
Table of Contents	XIV
List of Tables	XIX
List of Figures	XX
Appendices	XXII
Glossary of Terms	XXIII

Introduction and aims of this thesis

Definition of pain	1
Historical aspects of pain	2
Scope of the problem	4
Prevalence of pain	4
Ethno-cultural reinforcers of pain	6
Psychological aspects of pain	7
Neurophysiological and biochemical factors in the	
mechanism of pain	9
Toward a standard for pain measurement	9
Aims of this thesis	11

SECTION 1 - CLINICAL STUDIES

CHAPTER 1

Study 1: Pain intensity and pain description of chronic

	orofacial pain conditions	
1.1	Introduction	14
1.2	Aims	17
1.3	Patients and methods	17
1.4	Results	19
1.5	Discussion	21
1.5.1	Gender differences	21
1.5.2	Severity of chronic orofacial pain	28
1.5.3	Clinical aspects and parameters of using VAS / MPQ and	
	inter-instrument relationships	36
1.5.4	Complexity of diagnosis: the prevalence of two or more	
	concurrent chronic orofacial pain conditions	38
1.6	Conclusion	42

XVIII

CHAPTER 2

Study 2: Atypical facial pain: a contentious definition, and guidelines for diagnosis and treatment

2.1	Introduction	44
2.2	Aims	48
2.3	Patients and methods	48
2.4	Results	49
2.5	Discussion	55
2.5.1	AFP case studies - diagnostic and treatment guidelines	58
2.6	Conclusion	62

CHAPTER 3

Study 3: An evaluation of pharmacological procedures for the diagnosis and treatment of atypical odontalgia

3.1	Introduction	66
3.2	Aims	70
3.3	Patients and methods	71
3.3.1	Pain questionnaire and multidisciplinary pain centre	
	assessment	71
3.3.2	Topical application of EMLA	71
3.3.3	Sympathetic blockade	72
3.3.4	Treatment efficacy of topical capsaicin	72
3.4	Results	73
3.5	Discussion	78
3.5.1	General findings	78
3.5.2	Aetiological factors	80
3.5.3	Efficacy of capsaicin	84
3.5.4	TMD considerations	86
3.5.5	Sympathetic nervous system contributions	87
3.6	Conclusion	89

SECTION 2 - CLINICAL LABORATORY STUDIES

CHAPTER 4

Study 4: Saliva as a potential matrix

	for objective pain measurement	
4.1	Introduction	94
4.1.1	Historical perspectives of saliva	94
4.1.2	Saliva as a matrix and diagnostic fluid	95
4.1.3	Advantages in the analysis of saliva	97
4.2	Aim	97
4.3	Patients and methods	98
4.4	Results	99

CHAPTER 5

Bradykinin literature review and study 5

5.1	Introduction	103
5.2	Biochemistry of bradykinin	104
5.3	Biological actions and receptor sites of bradykinin	106
5.3.1	Cardiovascular effects	106
5.3.2	Algogenic actions	107
5.3.3	Receptor sites	109
5.3.4	Kallikrein content in exocrine glands	110
5.3.5	Biofluid concentrations of bradykinin	111
5.4	Aims	112
5.5	Patients and methods	113
5.6	Results	113
5.7	Discussion	115

SECTION 3 - LABORATORY METHODOLOGY STUDIES

CHAPTER 6

Methods for the determination of

bradykinin concentrations

6.1	Introduction	118
6.2	Immunoassay versus chromatography	118
6.3	UV detection of bradykinin in saliva	120
6.4	HPLC - fluorescence detection	122
6.4.1	o -Phthalaldehyde (OPA)	122
6.4.2	Benzoin	126
6.4.3	N-methylisatoic anhydride	131
6.5	Summary of the review of published methods	136

CHAPTER 7

Development of an improved chromatographic method for salivary bradykinin

7.1	Introduction	137
7.2	Materials and equipment	138
7.3	HPLC - separation of peptides	138
7.4	UV absorbance spectra	141
7.4.1	UV absorbance spectra of peptides	141
7.4.2	Determination of UV wavelength	141
7.4.3	Effect of pH on UV absorbance	141
7.5	Bradykinin validation curve	150

7.6	Saliva mass / volume ratio	153
7.7	Saliva collection and sample preparation	153
7.7.1	Method 1	153
7.7.2	Method 2	154
7.8	Summary of HPLC method	156

CHAPTER 8

Confirmation of the identity of salivary bradykinin

8.1	Introduction	157
8.2	Stopped flow UV scanning	158
8.3	Retention time / co-chromatography	158
8.4	Multiple chromatographic methods	161
8.5	HPLC-MS	166

CHAPTER 9

Study 6: Ex vivo kinetics of salivary bradykinin

	1. Metabolic Clearance of Bradykinin at pH 7	
9.1	Introduction	171
9.2	Subjects and methods	171
9.3	Results	172
	2. Stabilisation of Bradykinin at Low pH	
9.4	Introduction	182
9.5	Subjects and methods	182
9.6	Results	182

CHAPTER 10

Study 7: Salivary bradykinin

concentrations in healthy subjects

10.1	Introduction	189
10.2	Daily variations	189
10.2.1	Subjects and methods	189
10.2.2	Results	190
10.3	pH effects	190
10.3.1	Subjects and methods	190
10.3.2	Results	190
10.4	Discussion	191
10.4.1	Salivary bradykinin concentrations in healthy controls	191
10.4.2	Ex vivo kinetics of salivary bradykinin	192
10.4.3	Possible functions and mechanisms of salivary bradykinin	194
10.5	Conclusion	197

SECTION 4 - NOVEL APPLICATIONS AND FUTURE DIRECTIONS

CHAPTER 11

Novel applications of the developed HPLC methodology

	Specific Application 1 : HPLC-MS analysis of salivary	
	constituents	
11.1	Introduction	206
11.2	Methods	206
11.3	Results	207
11.4	Discussion	207
	Specific Application 2 : Defensin peptides HNP-1 and HNP-2	
11.5	Introduction	216
11.6	Background	216
11.7	Methods, confirmation of assignment of defensins and results	
		219
11.8	Discussion	220

CHAPTER 12

Summary of findings and future directions

	BIBLIOGRAPHY	234
12.5	Concluding comments	231
12.4	Section 4 - Novel applications	230
12.3	Section 3 - Laboratory methodology studies	229
12.2	Section 2 - Clinical laboratory studies	228
12.1	Section 1 - Clinical studies	226

APPENDICES	253
------------	-----

LIST OF TABLES

Table 1.1	Primary diagnosis of chronic orofacial pain conditions	23
Table 1.2	Diagnosis of pathological conditions	24
Table 1.3	Relative pain intensity of various pain conditions	33
Table 1.4	Mean pain intensity scores	34
Table 1.5	Temporal qualities of pain conditions	35
Table 1.6	Frequency of MPQ pain descriptors	41
Table 2.1	Frequency of TMD signs and symptoms in AFP-TMD patients	
		65
Table 3.1	Frequency of MPQ descriptors used by patients	82
Table 3.2	Aetiology of atypical odontalgia	83
Table 3.3	Frequency of TMD signs and symptoms in AO-TMD patients	
		93
Table 4.1	Subject data and pain variables for study 4	101
Table 5.1	Summary of salivary bradykinin concentrations in healthy controls	
	and patient groups	114
Table 7.1	Effects of pH on UV absorbance of bradykinin	149
Table 7.2	Units of peak area for bradykinin concentration range 1-20 ng at	
	pH 2	151
Table 7.3	Saliva mass / volume ratio in healthy controls	155
Table 9.1	Degradation of bradykinin spiked into saliva at 50 ng per injection	
		176
Table 9.2	Degradation of bradykinin spiked into saliva at 500 ng per	
	injection	179
Table 9.3	Rate of degradation for each subject	180
Table 9.4	Bradykinin concentration in spiked saliva, at 20°C or 4°C for 9	
	days and 60 days respectively	184
Table 10.1	Daily variations of salivary bradykinin concentrations in healthy	
	subjects	200
Table 10.2	Salivary bradykinin concentrations in healthy subjects following	
	oral sucrose rinse	202
Table 10.3	Comparison of mean bradykinin concentrations in biofluids	204
Table 11.1	HPLC-MS of saliva	210

LIST OF FIGURES

Figure 1.2Scatterplots of PRI(T) scores26Figure 1.3Scatterplots of PRI(M) scores27Figure 2.1VAS of the AFP and the AFP-TMD groups50Figure 2.2Actiology of pain as reported by subjects51Figure 3.3Dercentage pain reduction from diagnostic procedures76Figure 3.4Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of excitation and emission spectra of benzoin129Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.4UV saborbance spectra of bradykinin and mobile phase146Figure 7.5Effect of PH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.7Validation curve for bradykinin standard163Figure 7.8Comfirmation of bradykinin in saliva by co-chromatography160Figure 7.4UV absorbance of petides143Figure 7.5Effect of PH on UV absorbance of bradykinin164Figure 8.6Direct infusion of bradykinin in saliva by co-chroma	Figure 1.1	Correlation between VAS and NWC	25
Figure 2.1VAS of the AFP and the AFP-TMD groups50Figure 2.2Actiology of pain as reported by subjects51Figure 2.3Subjects' expectation of "pain being cured" from treatment51Figure 3.1Percentage pain reduction from topical capsaicin treatment77Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard163Figure 8.5Direct infusion of bradykinin standard163Figure 7.5Effect of PH on UV absorbance of bradykinin standard and effluent165Figure 7.6pH effects on chromatograms148Figure 7.6pH effects on chro	Figure 1.2	Scatterplots of PRI(T) scores	26
Figure 2.2Aetiology of pain as reported by subjects51Figure 2.3Subjects' expectation of "pain being cured" from treatment51Figure 3.1Percentage pain reduction from topical capsaicin treatment76Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1HPLC separation of four peptides143Figure 7.2Comparison of UV spectra of four peptides143Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard163Figure 8.5Direct infusion of bradykinin standard163Figure 8.6Direct infusion of bradykinin standard164Figure 7.7Validation curve for bradykinin standard163Figure 8.8Chorimatogram of	Figure 1.3	Scatterplots of PRI(M) scores	27
Figure 2.3Subjects' expectation of "pain being cured" from treatment51Figure 3.1Percentage pain reduction from topical capsaicin treatment76Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction133Figure 7.1UV detection of mantyl-bradykinin derivitisation133Figure 7.2Comparison of UV spectra of four peptides140Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 8.6Confirmation of bradykinin is saliva by co-chromatography159Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of saliva164Figure 8.6Direct infusion of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard164Figure 8.8Comparison of chromatograms of bradykinin standard164 </td <td>Figure 2.1</td> <td>VAS of the AFP and the AFP-TMD groups</td> <td>50</td>	Figure 2.1	VAS of the AFP and the AFP-TMD groups	50
Figure 3.1Percentage pain reduction from diagnostic procedures76Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of benzoin-bradykinin derivitisation132Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.1UV detection of mantyl-bradykinin derivitisation133Figure 7.2Comparison of four peptides140Figure 7.3UV spectral differences of peptides143Figure 7.4UV absorbance of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Direct infusion of bradykinin standard164Figure 8.6Direct infusion of bradykinin standard165Figure 8.6Direct infusion of bradykinin standard169Figure 8.6Direct infusion of bradykinin standard169 <td>Figure 2.2</td> <td>Aetiology of pain as reported by subjects</td> <td>51</td>	Figure 2.2	Aetiology of pain as reported by subjects	51
Figure 3.2Percentage pain reduction from topical capsaicin treatment77Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori <i>et al.</i> , (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 7.7UV detection of mantyl-bradykinin reaction133Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of petides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramy159Figure 8.2Confirmation of bradykinin is andard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard163Figure 8.6Direct infusion of bradykinin standard163Figure 8.6Direct infusion of bradykinin standard164Figure 8.7HPLC-MS of bradykinin standard164 <td>Figure 2.3</td> <td>Subjects' expectation of "pain being cured" from treatment</td> <td>51</td>	Figure 2.3	Subjects' expectation of "pain being cured" from treatment	51
Figure 4.1Chromatograms of controls and patients with pain states102Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin reaction133Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of brur peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of saliva164Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard into MS168Figure 8.8Identification a	Figure 3.1	Percentage pain reduction from diagnostic procedures	76
Figure 6.1Percentage recovery of bradykinin standard using filters121Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction133Figure 6.7UV detection of mantyl-bradykinin reaction133Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin147Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.2Confirmation of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin in saliva by co-chromatography160Figure 8.7HPLC-MS of bradykinin standard163Figure 8.8Identification and confirmation of salivary bradykinin by HPL	Figure 3.2	Percentage pain reduction from topical capsaicin treatment	77
Figure 6.2UV and fluorescence detection of bradykinin standard124Figure 6.3Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.3UV spectral differences of peptides143Figure 7.4UV absorbance of bradykinin and mobile phase146Figure 7.5Effect of PH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogram of bradykinin standard163Figure 8.2Confirmation of bradykinin standard163Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of bradykinin in saliva174 <td>Figure 4.1</td> <td>Chromatograms of controls and patients with pain states</td> <td>102</td>	Figure 4.1	Chromatograms of controls and patients with pain states	102
Figure 6.3Analysis of OPA-bradykinin reaction described by Omori <i>et al.</i> , (1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin in saliva170Figure 9.2Degradation of bra	Figure 6.1	Percentage recovery of bradykinin standard using filters	121
(1986b)125Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of PH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramphy159Figure 8.2Confirmation of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradatio	Figure 6.2	UV and fluorescence detection of bradykinin standard	124
Figure 6.4Analysis of benzoin-bradykinin reaction described by Kai <i>et al.</i> , (1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 8.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramph163Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard163Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole un	Figure 6.3	Analysis of OPA-bradykinin reaction described by Omori et al.,	
(1987)127Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50		(1986b)	125
Figure 6.5Analysis of excitation and emission spectra of benzoin129Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.4	Analysis of benzoin-bradykinin reaction described by Kai et al.,	
Figure 6.6Mantyl-bradykinin derivatisation reaction132Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatogramphy159Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of saliva164Figure 8.4Chromatogram of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174		(1987)	127
Figure 6.7UV detection of mantyl-bradykinin derivitisation133Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.5	Analysis of excitation and emission spectra of benzoin	129
Figure 6.8Fluorescence detection of mantyl-bradykinin reaction134Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of bradykinin standard165Figure 8.7HPLC-MS of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.6	Mantyl-bradykinin derivatisation reaction	132
Figure 7.1HPLC separation of four peptides140Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin is saliva by co-chromatography160Figure 8.3Chromatogram of saliva163Figure 8.4Chromatogram of saliva165Figure 8.5Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.7	UV detection of mantyl-bradykinin derivitisation	133
Figure 7.2Comparison of UV spectra of four peptides143Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Direct infusion of bradykinin standard into MS168Figure 8.6Direct infusion of bradykinin standard169Figure 8.7HPLC-MS of bradykinin standard at pH 7 (MilliQ)173Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 6.8	Fluorescence detection of mantyl-bradykinin reaction	134
Figure 7.3UV spectral differences of peptides145Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.1	HPLC separation of four peptides	140
Figure 7.4UV absorbance spectra of bradykinin and mobile phase146Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 7.2	Comparison of UV spectra of four peptides	143
Figure 7.5Effect of pH on UV absorbance of bradykinin147Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.3	UV spectral differences of peptides	145
Figure 7.6pH effects on chromatograms148Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.4	UV absorbance spectra of bradykinin and mobile phase	146
Figure 7.7Validation curve for bradykinin 1-20 ng at pH 2152Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.5	Effect of pH on UV absorbance of bradykinin	147
Figure 8.1UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in whole untreated saliva (pH 7) at 50174	Figure 7.6	pH effects on chromatograms	148
co-chromatography159Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50170	Figure 7.7	Validation curve for bradykinin 1-20 ng at pH 2	152
Figure 8.2Confirmation of bradykinin in saliva by co-chromatography160Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50170	Figure 8.1		159
Figure 8.3Chromatogram of bradykinin standard163Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 8.2		
Figure 8.4Chromatogram of saliva164Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U		
Figure 8.5Comparison of chromatograms of bradykinin standard and effluent165Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	C	C I	
Figure 8.6Direct infusion of bradykinin standard into MS168Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U	6	165
Figure 8.7HPLC-MS of bradykinin standard169Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Eiguro 96	Direct infusion of brodukinin standard into MS	
Figure 8.8Identification and confirmation of salivary bradykinin by HPLC- MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U	•	
MS170Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	0		107
Figure 9.1Degradation of bradykinin standard at pH 7 (MilliQ)173Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 0.0		170
Figure 9.2Degradation of 50 ng bradykinin in saliva174Figure 9.3Degradation of bradykinin in whole untreated saliva (pH 7) at 50	Figure 9.1		
Figure 9.3 Degradation of bradykinin in whole untreated saliva (pH 7) at 50	U		
	U		1 / T
	1 19010 7.5		175
Figure 9.4 Degradation of 500 ng bradykinin in saliva 177	Figure 94	• • • •	
Figure 9.5 Degradation of brodykinin in whole untreated saliva (pH 7) at 500	U		1,1

ng bradykinin per injection

Figure 9.6	Approximation of the rate of degradation by a first-order rate of	
	bradykinin	181
Figure 9.7	Stability of bradykinin with addition of $0.1 \text{ M H}_3\text{PO}_4$	186
Figure 9.8	Chromatograms of saliva (pH 2) spiked with bradykinin (50 and	
	500 ng per HPLC injection)	187
Figure 9.9	Stability of bradykinin with addition of $0.1 \text{ M H}_3\text{PO}_4$	188
Figure 10.1	Daily variations of salivary bradykinin concentrations	199
Figure 10.2	pH of saliva in subjects over 40 minute sampling time	201
Figure 10.3	Salivary bradykinin concentration for each subject throughout	
	sampling period	203
Figure 11.1	Structure of defensin peptides	218
Figure 11.2	Chromatograms of defensin HNP-1 and HNP-2 standards,	
	HPLC method using C8 column	222
Figure 11.3	Chromatogram of saliva, HPLC method using C8 column	223
Figure 11.4	Chromatograms of defensin HNP-1 and HNP-2 standards,	
	HPLC method using WCX column	224
Figure 11.5	Chromatogram of collected effluent, HPLC method using WCX	
	column	225

APPENDICES

Appendix 1	Study 1, Pain data for each subject	253
Appendix 2	Study 1, VAS and MPQ data for each subject	256
Appendix 3	Study 3, Socio-economic data of atypical odontalgia group	259
Appendix 4	Study 3, Psychological variables of atypical odontalgia group	
		261
Appendix 5	Study 3, Diagnosis and pain variables in atypical odontalgia	
	group	263
Appendix 6	Study 3, Patient response to pharmacological procedures	265
Appendix 7	Study 5, Post-operative (0-2 hours) group data	267
Appendix 8	Study 5, Post-operative (1-10 days) group data	269
Appendix 9	Study 5, Cancer group data	271
Appendix 10	Study 5, Arthritis group data	273

GLOSSARY OF TERMS

ACTH	adrenocorticotrophic hormone
AFP	atypical facial pain
AFP-TMD	atypical facial pain with secondary temporomandibular disorder
ANOVA	analysis of variance
AO	atypical odontalgia
AO-TMD	atypical odontalgia with secondary temporomandibular disorder
BK	bradykinin
CGRP	calcitonin gene-related peptide
CRPS	complex regional pain syndrome
CSF	cerebrospinal fluid
EEG	electroencephalogram
EMLA	eutectic mixture of local anaesthetics
GIT	gastrointestinal tract
GRS	Graphic Rating Scale
HF	Hageman factor
HMW	high molecular weight
HPLC	high-performance liquid chromatography
HPLC-MS	high-performance liquid chromatography-mass spectrometry
IASP	International Association for the Study of Pain
LMW	low molecular weight
MMPI	Minnesota Multiphasic Personality Inventory
MPQ	McGill Pain Questionnaire
MS	mass spectrometer
NWC	Number of Words Chosen
OPA	o-Phthalaldehyde
PG	prostaglandin
PRI(A)	Pain Rating Index (Affective)
PRI(E)	Pain Rating Index (Evaluative)
PRI(M)	Pain Rating Index (Miscellaneous)
PRI(S)	Pain Rating Index (Sensory)
PRI(T)	Pain Rating Index (Total)
S.D.	standard deviation
SMP	sympathetically maintained pain
TMD	temporomandibular disorder
VAS	visual analogue scale