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Abstract

Biodiversity is a concept that plays a key role in both scientific theories such as the
species-area law and conservation politics. Currently, however, little agreement exists
on how biodiversity should be defined, let alone measured. This has led to sugges-
tions that biodiversity is not a metaphysically robust concept, with major implications
for its usefulness in formulating scientific theories and making conservation deci-

sions.

A general discussion of biodiversity is presented, highlighting its application both in
scientific and conservation contexts, its relationship with environmental ethics, and
existing approaches to its measurement. To overcome the limitations of existing
biodiversity concepts, a new concept of biocomplexity is proposed. This concept
equates the biodiversity of any biological system with its effective complexity. Biocom-
plexity is shown to be the only feasible measure of biodiversity that captures the
essential features desired of a general biodiversity concept. In particular, it is a well-
defined, measurable and strongly intrinsic property of any biological system. Finally,

the practical application of biocomplexity is discussed.
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1 Biodiversity: introduction to a problem

All animals are equal but some are cetaceans.

— Neils Einarsson

As a rejoinder to the tradition of natural theology that seeks evidence of God’s
benevolence in the natural world, biologists are fond of a famous epigram attributed

to J.B.S. Haldane. According to G. Evelyn Hutchinson,

Haldane ... found himself in the company of a group of theologians. On
being asked what one could conclude as to the nature of the creator
from a study of his creation, Haldane is said to have answered, “An in-

ordinate fondness for beetles.” (Hutchinson, 1959)

A nice line, but why did Haldane single out beetles? Recent estimates of the total
number of formally named species stand at 1.4—1.6 million' (Wilson, 1986; Stork,
1996). Of this total, more than half are insects, and nearly half of this total are
beetles. Hence beetles represent almost 25% of all named species, a total of about
400,000 (Hammond, 1992). This compares with the modest totals of about 4,000
mammal and 9,000 bird species (Wilson, 1986). Moreover, very few mammal or bird
species remain to be discovered, whereas unnamed beetle species probably outnum-
ber named species by at least an order of magnitude. Estimates of total species
numbers are embarrassingly imprecise, ranging from 1.5 million to 300 million
(Stork, 1996), with 30 million being a commonly quoted figure for tropical forest
arthropods (Erwin, 1982). Given that beetles comprise about 40% of all arthropods,

there may be as many as 12 million species of beetle on the planet. If, according to

! The estimated number of names defined by taxonomists is 1.8—2.0 million; however, the level of
synonymy among insects is estimated at about 20% (Stork, 1996).
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Haldane, we should one day meet the almighty face-to-face, he is much more likely

to resemble a beetle than the Archbishop of Canterbury.

From a conservation perspective, this extraordinary abundance of beetle species in
comparison to our favourite furred and feathered creatures raises an obvious but
interesting question. Are some species more worthy of conservation than others? If
we take this question seriously, the answer is an obvious ‘yes’. There are perhaps as
many as 12 million species in the clade Coleoptera and only a few dozen in the clade
Cetacea, and yet, despite the vastly greater extinction rate of the former, we seem far
less concerned about the plight of beetles than of whales. Of course, whales are big,
intelligent and spectacular, all of which contribute to our concern for their welfare,
whereas beetles are small, stupid and non-descript. Moreover, despite the vast
number of beetle species, most of which have never been named, described or even
observed, all of them are just that—beetles. To most of us, one beetle species is not
very different from any other. Even a well-trained entomologist may have difficulty
distinguishing closely related species. Why should we care too much about losing one

beetle species to extinction when there are 12 million others?

There is a well-recognised problem with this argument. It is what Thomas Lovejoy
has called the ‘incrementalist problem’ (Lovejoy, 19806). If we accept the argument,
then loss of one unknown beetle species is acceptable, both from an ethical and
practical perspective. After all, the vast majority of all species that have ever lived are
now extinct, and the evolution of all extant species has relied to some degree on
these past extinctions (May, 1994). By the same reasoning, the loss of two species is
also acceptable. At what point, however, is further species loss unacceptable? As

Norman Myers puts it,

When do species losses shift from being marginal to becoming signifi-

cant, serious, critical, crucial, and catastrophic? (Myers, 1991, p. 20)
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Paul and Anne Ehrlich used a now famous metaphor to describe this problem.
Imagine being on an aeroplane and seeing someone slowly removing rivets from a
wing. The loss of one rivet is not important; the wing will stay on and the plane will
fly regardless. Even with the loss of two, three or a handful of rivets, the plane will
continue to fly. At some point, however, too few rivets will remain to hold the wing
in place and the plane will fall from the sky. To preserve the wing intact, the Ehtlichs

argue, we must fight to save each rivet (Ehrlich & Ehrlich, 1981).

The incrementalist problem has forced environmental campaigners to shift their
focus away from efforts to preserve individual species towards the protection of
whole ecosystems. The single-species approach to conservation works well for large,
easily identified and charismatic species such as giant pandas, but it becomes
hopelessly impractical for protecting organisms that provide a host of essential
biological functions such as producing oxygen, purifying water and recycling soil
nutrients. To protect these organisms required the invention of a new concept with

its own neologism—biodiversity.

The term biodiversity was coined in 1985 by W.G. Rosen as a contraction of the phrase
biological diversity. As Rosen later noted wryly, all he had to do was “take the ‘logical’
out of ‘biological” (Takacs, 1996, p. 37). The exact meaning of biodiversity is
somewhat nebulous. Etymologically, the word refers simply to the diversity of the
biological world. The world has many different kinds of things, and biodiversity
captures some notion of both the number of different kinds of things and the degree
of difference between them. Many biologists define biodiversity as something like
“the variety of life forms, the ecological roles they perform and the genetic diversity
they contain” (Wilcox, 1984, p. 640). Biodiversity therefore captures more than just
the number of species in the world; it also includes the rich variety of forms they
represent, their complex interactions and the many ecological functions they

perform.
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By uniting the world’s millions of small, unloved creatures under the banner of
biodiversity, conservation biologists had suddenly created a new political weapon.
Instead of arguing for the preservation of individual species, with the practical and
logical weaknesses that such a position entails, they could now argue for the
preservation of biodiversity—an all-embracing concept that includes all species from

whales to beetles.

Since its invention, the concept of biodiversity has grown enormously in usage, both
within the scientific and lay communities. As a keyword in Biological Abstracts,
biodiversity does not appear at all in 1987, while biological diversity appears only three
times. By 1992, biodiversity appears 87 times and biological diversity 36 times. Since 1997,

biodiversity alone has appeared over 1000 times per annum.

The continuing existence of the biodiversity concept relies on a perception that
biodiversity is an objectively specifiable property of biological systems that is worth
preserving. While biological diversity was never intended to delineate anything precise,
biodiversity includes a degree of scientific respectability, and not without some
justification. After all, it is given a scientific as well as a political role in the reformula-
tion of the species-area law of ecology.” But biodiversity has never been a clearly
defined term. Just what is biodiversity? What is its metaphysical status? Is it an
intrinsic or anthropocentric property? Does it have one or many forms? And why
should we protect it? These questions are not without importance. Without some
firm foundation, the concept of biodiversity may prove unable to sustain the weight
imposed by both its scientific and political roles. How can we develop a science of

ecology if our fundamental concepts are suspect? And why try to preserve something

2 In its simplest form, the species-area law states that larger areas harbour proportionally more species
than smaller ones. It dates back at least as far as the early 19th century work of Alexander von
Humboldt (Rosenzweig, 1999).
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called biodiversity it that term is based on the subjective preferences of some small

groups of scientists?

My intention is to resolve these issues. I address two primary questions, namely:

1. What is the metaphysical status of biodiversity? More specifically, can we

construe the concept of biodiversity in such a way as to make it an intrinsic3

property?

2. Can we measure biodiversity, and if so, how?

These two questions are far from independent. Developing a more metaphysically
secure definition of biodiversity may suggest how we should go about measuring it,
whereas developing a well-defined and independently-specifiable measurement
procedure suggests that biodiversity may be an intrinsic property of any biological

system.

My answers to both questions are affirmative. Biodiversity, propetly interpreted, is an
intrinsic property that can be measured. To demonstrate this, I formulate biodiversity
in terms of biological complexity. Complexity, or at least a particular type of
complexity, is an intrinsic and quantifiable property, and hence so is biodiversity
construed as biological complexity. Moreover, I make an additional and stronger
claim, which is that biological complexity is the only sensible interpretation of

biodiversity that makes it a strongly intrinsic property.

3 There is much debate among philosophers over the exact meaning of zutrinsic, which I do not wish to
rehearse here. An intrinsic property of an object is generally considered to be one that does not
depend on any relationship between that object and something else. It is therefore non-relational. In
particular, it is non-anthropocentric. I include an additional criterion in my definition; that of non-
arbitrariness. Under this definition, the mass of an object is an intrinsic property of that object,
whereas its property of ‘having mass between 0.31 and 0.35 kg’ is not.
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One other important question concerning biodiversity is, why should we care? Why
protect biodiversity? I do not attempt to answer this question here. Foundational
questions in ethics are notoriously intractable, and environmental ethics is no
exception to this rule. However, if we are to have some hope of determining why it is
important to protect biodiversity, we must at least begin with a good understanding
of what we are trying to protect. So my project at least offers a more solid starting

point for ethical enquiry.

In the following chapter, I outline what we want from a biodiversity concept, both
from scientific and conservation perspectives. Whereas addressing the scientific
aspect of this question is easy, the conservation aspect is not. To do so requires a
venture into environmental ethics to look at the types of value we might ascribe to
the natural world and how they relate to biodiversity. Although I make no grand
claims for solving problems of environmental ethics, this discussion will, I hope,
illustrate the interface between environmental ethics and my project. In Chapter 3, I
turn to the issue of measuring biodiversity, including a survey of existing approaches
to measuring biodiversity and a discussion of one attempt to resolve its metaphysical
status. An understanding of such prior art is, of course, essential for placing my
contribution in context. In Chapter 4, I discuss the concept of complexity, along with
its measurement and metaphysics. This discussion is a key input for the following
chapters, where I develop and discuss my own brand of biodiversity based on
complexity. I label this concept, predictably enough, biocomplexity. In Chapter 5, 1
flesh out this concept of biocomplexity in more detail, discussing its metaphysics,
demonstrating that it is a uniquely intrinsic property, and defending it from some
potential criticisms. Finally in Chapter 6, I discuss the application of biocomplexity.
In doing so, I revisit some of the existing measures of biodiversity discussed in

Chapter 3, and illustrate their merits as estimator measures of biocomplexity.
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Before I begin, there are two points I should make clear. The first is that I have
adopted what to a crude approximation can be described as a scientific realist stance.
This is not the place to fight out a realist-antirealist debate, and I will make no
attempt to do so. I will simply assume that there are truths to be discovered and that
it is the aim of science to discover those truths. The second point is that my central
thesis is not normative. As I have already stated, my main goal is to understand what
biodiversity is, not why we ought to save it. Although I sometimes suggest some

answers to the latter question, none are intended to answer it definitively.
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2 Concepts of biodiversity

This capacity of a thing to reveal itself in unexpected ways in the future, I attribute to
the fact that the thing observed is an aspect of reality, possessing a significance that is
not exhausted by onr conception of any single aspect of it. To trust that a thing we
know is real is, in this sense, to feel that it has the independence and power for mani-

festing itself in yet unthought of ways in the future.

— Michael Polanyi

Beauty in things exists in the mind which contemplates them.

— David Hume

2.1 Scientific versus political concepts of biodiversity

What do we want from a concept such as biodiversity? As I have outlined in the
Introduction, there are at least two distinct applications of the biodiversity concept.
One is scientific, and the other political. A scientific concept of biodiversity is one
that plays some useful role in scientific theories, just as the concept of mass plays a
useful role in Newtonian mechanics. Moreover, if biodiversity were something we
could measure, perhaps we could discover or at least refine our understanding of the
relationships between some attributes of ecosystems and their biodiversity; relation-
ships such as the species-area law. A political concept of biodiversity is one that can
be used for conservation purposes. Under this formulation, biodiversity is, or at least

is an indicator of, something of value that we wish to preserve.

The key attributes we want from any scientific concept are that it is:

1. well-defined
2. based on some natural properties of the world

3. useful in some scientific theory.

Biodiversity: its measurement and metaphysics 9



The first criterion ensures we know what we are talking about, the second ensures
long term stability in our attempts to agree on how to understand and manipulate the
concept, while the third ensures that the concept actually does some scientific work.
Mass, for example, meets all three criteria. It is well-defined (the amount of matter in
a body"), is a natural property of physical objects that we can measure with precision,
and is useful in several scientific theories such as Newtonian mechanics. Fear as a
concept in psychology also meets the above criteria, even though, unlike ass, it

cannot be measured precisely.

Species richness, defined simply as the number of species in a given area or population,
at least partially matches all three criteria. Although there is as yet no agreement on
what constitutes a species,’ there is at least some hope that such agreement can
eventually be reached. The first and second criteria would then be at least partially
satisfied. The third criterion is more problematic. Limited versions of the species
richness concept do play useful roles in scientific theories such as the species-area law.
For example, there are often weak but definite mathematical relationships between
the number of mammal species on each of a group of islands and the areas of each

of those islands.

Mathematical relationships involving a more general notion of species richness tend to
be less precise. This is partly explained by the fact that different species are not
directly commensurate. The set of factors that unites red kangaroos together as a

single species is not identical to the set of factors that unites E. co/i bacteria. We can

4 Matter is sometimes defined as that which has mass. As with many quantities in physics, thete is a
degree of circularity in attempts to definite mass. In Newtonian physics, we can define (inertial) mass
as the constant of proportionality between force and acceleration. The fact that there is such a
constant, and that it obeys superposition, strengthens our conviction in the existence of mass as a
measurable quantity. This two-way exchange between theory and experiment ensures the circularity in
the definition of mass is not vicious.
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combine counts of kangaroo and bacteria species together, but there is little reason
to think that the resulting measure will be highly predictive because the underlying
units are not, at the level of interest, the same sorts of things. Measuring biodiversity
by simply counting species is like measuring the productivity of Queensland fruit-
growers by counting individual pieces of fruit. At one level, grapes and watermelons
are the same sort of thing (pieces of fruit), but they are not commensurate as units of
productivity. Nevertheless, we might still expect the fruit-count measure to go up
and down in response to good and bad years, just as we might expect to see striking
but imperfect correlations between species richness and land area. Both concepts are

at least somewhat useful.

As well as the species-area law, biodiversity as a scientific concept also arises in
several questions posed by ecology. For example, are biodiverse ecosystems more or
less stable than simple ecosystems?® Does biodiversity reflect sustainability? Does
biodiversity reflect the evolutionary time elapsed without major disturbance, or does
it reflect the frequency of major disturbance in ecological or evolutionary history?
(Harper & Hawksworth, 1994). There is a recognition in such debates that bzodzversity
expresses something more sophisticated than mere species richness. It includes
diversity at several levels, from genes to species to ecosystems. Scientific biodiversity
recognises that species are not commensurate—that some species count for more
diversity than others. Just as fruit-count is an indicator of a more meaningful measure
of productivity such as fruit biomass, species richness is at most an indicator of some

more meaningful but yet-to-be-determined measure of biodiversity.

If a more meaningful scientific definition of biodiversity than species richness is

possible, then our failure yet to devise one simply reflects our present ignorance. Just

5 See, for example, Sterelny and Griffiths (1999, chapter 9) for a recent review.
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as the concept of weight is a slightly vague but useful approximation to the more
precise concept of wuass, species richness is potentially an indicator of some deeper
concept of biodiversity. Ecology is, after all, an imprecise science. Generalities are
often swamped by particulars, blurring and distorting mathematical relationships.
Organisms are not as interchangeable with one another as are electrons. Different
concepts of biodiversity may also be required for different applications. The
biodiversity that underlies the species-area law may not be the same as the biodiver-

sity that determines ecosystem stability.

Most existing attempts to better define and measure biodiversity do not address the
question of whether or not biodiversity is a scientifically useful concept. Their
primary motivation is to develop a concept of biodiversity that is useful for making
conservation decisions. This is an approach I intend to emulate. Nevertheless, the
concept of biodiversity I will develop may prove scientifically useful. It satisfies
criteria 1 and 2 above and also overcomes the species commensurability problem. In
addressing predominantly philosophical questions, this is as much as I can hope to
do. Whether the concept does prove to be scientifically useful is an empirical

question. It is not mine to answer.

As a concept in conservation biology, biodiversity is used as a tool for measuring
some sort of ‘conservation value’. If, for example, a government wished to divide an
area of land currently used for logging, and conserve one half by creating a new
national park, a rational strategy would be to conserve that portion of land with the
highest conservation value. In recent years, this conservation value has become more
frequently measured in terms of biodiversity. So if, all other known factors being

equal, one part of the area in question contains a relatively large number of endan-

¢ See, for example, Nacem & Li (1997).
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gered mammal species, it would make sense to include that area in the new national
park. In this case, a larger number of mammal species is seen as more valuable than a
smaller number of mammal species. Mammals may also be an indicator of diversity
among species from other groups not surveyed, in which case selecting the area with
more mammals automatically increases the probability of selecting the area with
more species from these other groups. This sort of application of the biodiversity
concept in conservation efforts is now quite common, despite the lack of agreement

on what biodiversity is.

As discussed in the Introduction, there is a strong political motivation for question-
ing the metaphysical status of biodiversity. If biodiversity is an anthropocentric
concept—one defined only in terms of what some group of individuals wishes to
protect—the motivations of those defining biodiversity and calling for its protection
may be called into question. Of course, there are plenty of reasons to protect various
aspects of the natural world. The pollination of food crops by wild bees is one simple
example. As a workable concept, however, an anthropocentric definition of biodiver-
sity poses problem. A naive account defining biodiversity simply as ‘that which we
wish to protect’ is vacuous. It tells us nothing we do not already know. Such a
concept of biodiversity is simply a banner under which we can list some gerryman-
dered collection of things. We could develop a more sophisticated anthropocentric
concept of biodiversity in terms of the responses of ideal agents acting under certain
circumstances with certain information. However, even such a sophisticated concept
of biodiversity is unwieldy and brings us little closer in practical terms to defining

what we mean by biodiversity.

If biodiversity is to be useful as a tool in conservation, it must not only correspond
to something worthy of protection; we must also be able to agree, more or less, what
it is. And we should ideally be able to measure it, at least in relative terms. In other

words, if we have two biologically rich areas, A and B, and we want to decide which
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one to give greater priority in terms of conservation using biodiversity as the
criterion, we should be able to say either A has more biodiversity than B, B has more
biodiversity than A, or A and B have the same amount of biodiversity. An intrinsic

concept of biodiversity offers a possible solution to such problems.

In the remainder of this Chapter, I outline the sort of criteria that can be used for
determining whether something is worth protecting, and hence that might form part
of this conservation-based biodiversity concept. Before doing so, however, I want to

discuss a useful tool for analysing comparative measures of conservation value.

2.2 Biological triage

Triage is a procedure for determining the order in which wounded soldiers are given
medical treatment based on their condition. Priorities are assigned to each soldier in
order to maximise the probable number of survivors, given the constraints on the
rate at which medical treatment can be given. This strategy means giving high priority
to those soldiers who will probably die unless treated urgently, moderate priority to
those who will probably survive without immediate treatment and low priority to
those who will probably die even with urgent treatment. Triage is similarly applied in
the casualty wards of major hospitals, although more with a view to minimising some
notion of the net total of patient suffering rather than simply the number of

casualties.

The analogous concept of biological triage is useful for thinking through difficult
conservation issues.” Given the rapid rate at which species are becoming extinct and

the limited resources available with which to help conserve them, how should such

7 Further discussions of biological triage can be found in Mann & Plummer (1995), Takacs (1996) and
Maclaurin (19980).
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limited resources best be spent? As with conventional triage, arriving at the best
possible outcome requires that resources be focussed on the more urgent cases, with
the possible exception of some ‘lost causes’. However, we should also focus on
maximising conservation value. For example, if species A and B are equally likely to
become extinct and we can only afford to spend money on protecting one of them, it
makes sense to pick the one we value most highly. Most of us value giant pandas
more highly than smallpox virus, so we sensibly focus more effort on protecting the

formet.

Biological triage is a useful tool for working out what we value and by how much (at
least in relative terms) by asking what we are willing to sacrifice to protect it. If we
were given the choice of protecting humpback whales or 2.5 million Amazon
rainforest beetle species, and chose the former, then that tells us humpback whales
have at least as much conservation value as those 2.5 million beetles. Of course, not
everyone would agree about the number of beetle species that are equivalent in
conservation value to the single species of humpback whale, but in most cases we
can at least derive some rough estimate. I suspect nearly everyone would at least

value humpback whales more than one beetle species.

The concept of biological triage is not without controversy, even though many
biologists reluctantly accept the need for devising some means of prioritising

conservation efforts. As Robert May puts it,

As more and more species face extinction in the wild over the next few
decades, how do we go about making choices for the ineluctably limited

number of places on the ark? (May, 1990)

Many other biologists, however, reject triage outright. Takacs (1996) provides an

illuminating survey of various biologists opinions on the matter. Edward Wilson
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asserts, “I think we ought to save it all, as a basic principle” (p. 60), while Reed Noss

unequivocally states

I reject triage ... It’s ethically pernicious to me ... I think that the argu-
ment that there isn’t enough money, there aren’t enough resources in
general to protect all species and some of them we’re just going to have

to let go, is disingenuous. (p. 60)

Donald Falk is even more adamant.

You cannot persuade me that we are in a triage situation with respect to
the resources to save life on earth. I do not accept it. I think it’s a com-
pletely fallacious argument. Just as medicine tries to save every patient

they can, that has absolutely got to be our mission. If we fail, we fail. (p.
60)

Such views are difficult to reconcile with the present disparity between extinction
rates and conservation efforts. Rejecting even the concept of triage does not answer
difficult ethical questions; it simply avoids them. The unease of medical professionals
when making decisions that preserve the lives of some over the lives of others does
not prevent them from carrying out medical triage. Such decisions are simply forced
upon them by the impossibility of saving everyone. Regardless of whether or not we
think biological triage is an appropriate conservation policy, the concept of biological
triage is a useful tool for thinking through difficult conservation issues. Even if we
lived in an ideal world where we could protect everything, supposing that we are
forced to make a choice about what to protect helps us understand what we value
and how we value it. If we want to protect the biological world, it must have some
value. And, if forced to make a choice, we prefer to protect some elements of it over

others, then those elements must have more value than othets.

Other biologists reject triage for practical rather than conceptual reasons. David

Woodruff, for example, states
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Pragmatically, we cannot save each and every species. If you force me—
so then I think you have to rank or prioritize your species. I’d rather not
use the word #iage, because that means that you consciously have every-
thing set out. You go past each stretcher and you put one of three colors
on it. We don’t know where the stretchers are, let alone who’s on the
stretchers. So instead, my attitude is to prioritize from what you do
know. And then pick the key species through—by working, by concen-
trating on those key species, you will be able to save ecosystems and lar-
ger units. (Takacs, 1996, pp. 60-61)

In a similar vein, Lovejoy finds triage

... inadequate to the situation ... Conceptually, it’s an easy way out. To
actually do it intelligently would be a bitch. (Takacs, 1996, pp. 61-62)

There are good reasons for taking this practical objection to triage more seriously.
Woodruff’s argument is simply that triage could only work in a world where more
information is available than in ours. Of course we would prefer to prioritise species
and protect those with the highest priority first, but the act of trying to prioritise
species distracts us from the main task at hand, which is to protect whatever we can.
At the end of the day, most of our conservation decisions will be based on far more
practical considerations than whether species A has more conservation value than
species B. Moreover, a whole-ecosystem approach to conservation is likely to save

far more species than a piecemeal species-by-species approach.

This objection to triage is well taken. However, it is not my task to discover the most
effective means of achieving conservation aims. My goal is to determine what
biodiversity is and how we can measure it. If I can answer that question, and show
that biodiversity is intrinsic and measurable, then I can at least provide some insight
into how we might define and measure biodiversity, and in doing so perhaps
contribute to the goal of understanding what it is that we should be protecting,
regardless of whether measuring biodiversity is part of the most efficacious proce-

dure for doing so. Biological triage is one tool for assisting me in this effort.
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2.3 Conservation value

If we want to protect the natural world, then it must have some value. And if, as the
concept of biological triage shows us, we want to protect some aspects of it more
than others, then that value can, at least in a crude and relative sense, be quantified.
What is the nature of this value and how can we measure it? Moreover, what is the
relationship between conservation value and biodiversity? Does biodiversity
correspond closely with one or more types of value, or is biodiversity some inde-
pendent property of which some types of natural value are manifestations? In the
discussion that follows, I examine some types of natural value to assess whether any

of these correspond closely with some sensible concept of biodiversity.

Questions about the value of natural objects suggest a role for environmental ethics.
This relatively new discipline arose in the 1970s to address ethical questions applied
to the natural world. Since its foundation, one of the central concerns of environ-
mental ethics has been to determine the nature of environmental value. More
specifically, can nature possess intrinsic value, value that exists independently of
human valuers? Richard Routley devised a now famous thought experiment to
highlight this central issue, involving a lone survivor of some human apocalypse who

sets about a redwood grove with an axe (Routley, 1973).

Much of the early debate concerning this question has focussed on a two-way split
between intrinsic value and non-intrinsic value. Whereas intrinsic value exists
independently of human valuers, non-intrinsic value does not; it is inherently

anthropocentric. In more recent years, the so-called Callicott-Norton debate has
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injected some much-needed clarity into the dispute by suggesting the following three-

way split:®

1. Intrinsic value, which can exist in the absence of any conscious valuers.
2. Instrumental value, which in some way benefits a valuer.

3. Inherent value, which requires but does not benefit a valuer.

Sentient creatures are considered by many people to have intrinsic value. They are
valuable in themselves, regardless of what we think of them. My bicycle has instru-
mental value, but no intrinsic value. It has value only because it does something for
me which I find useful. A painting is something that has inherent (as well as
instrumental) value. The value of a painting is not intrinsic. It depends for its
existence on a valuer. But neither is the value of a painting exclusively instrumental.
Although a painting provides aesthetic pleasure (an instrumental value), we can also
value a painting for itself (but not z itself). If the Uffizi gallery in Florence were
burnt to the ground, most of us would mourn such a loss, even if we had never
visited and never intended to visit the gallery. We therefore consider the contents of
the Uffizi to be valuable, even though they provide us with no benefit. This value is
clearly not instrumental (it does not confer a benefit on the user) but neither is it
intrinsic, because it depends on valuers for its existence. In other words, it is inherent

value.

8 Callicott (19906) is a response predominantly to Norton (1991). This three-way split does not
correspond exactly with the views of either. In particular, Callicott makes no distinction between
intrinsic and inberent value, and appears to use the term zntrinsic when referring to what Norton calls
inberent. While Norton makes a three-way split, his boundaries and terminology do not fully
correspond with those used here, which are adapted from McQuillan (1998).
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2.3.1 Intrinsic value

Whether the non-human world has intrinsic value is somewhat controversial. Each
of us lives a life that depends for its continued existence on the death of numerous
organisms to provide us with a steady supply of food, clothing and various materials.
We clearly consider such organisms to be of lesser value than a single human life.
However, there are very sensible arguments as to why we should treat certain
sentient creatures such as dogs, chimpanzees and dolphins with a respect akin to our
respect for fellow humans. If humans have intrinsic value, then, according to these
arguments, so must such sentient creatures (although perhaps in some lesser

quantity).

I am very sympathetic to the idea that humans have intrinsic value and that, by
extension, some sentient creatures also have intrinsic value. However, I will not
attempt to defend this position, because doing so would not assist me in clarifying
the relationship between environmental ethics and biodiversity. Even if we accept
that certain sentient creatures have intrinsic value, it is difficult to see how this can be
used to develop a rational conservation strategy. Protecting Australia’s arid-zone
ecosystems relies more on culling large numbers of feral rabbits, cats and foxes than
it does on preserving individual bilbies, parrots and geckos. Any intrinsic value of
individual organisms, even highly sentient ones, is swept aside in a bid to prevent

whole species of endangered animals from becoming extinct.

If we are to argue for the protection of a species on the basis of intrinsic value, then
we require that the species possess some intrinsic value that is more than just the

sum of the intrinsic value of its individual members (O’Neil, 1997). If we captured
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the last remaining kakapos’ and distributed them individually to zoos around the
wortld, we would extinguish their species as surely as if we had shot each one dead.
Yet each individual kakapo might live its remaining days in splendour. Without

devaluing each individual kakapo, we can devalue the kakapo species.

Many people, myself included, consider intrinsic value to be rooted in sentience.
Humans, and presumably dogs, chimpanzees and dolphins, are sentient and hence
have intrinsic value. Species, however, are not sentient. They might consist of
sentient individuals, but they are not in themselves a sentient being. Moreover, most
species, such as Wollemi pines, for example, do not even consist of sentient
individuals. Hence it is difficult to see how a species could possess the same sort of

intrinsic value that a human or chimpanzee possesses.

I reject the idea that a species, or indeed any natural collective, could have intrinsic
value beyond the intrinsic value of individual sentient creatures within that collective.
Again, I will not attempt to defend this position any further, since doing so would
not contribute to my central thesis. However, adopting such a position has some
significant consequences for my concept of biodiversity. Biodiversity is not a value
measure of individual organisms. A concept of biodiversity that is useful for making
conservation decisions must incorporate natural collectives such as species and
ecosystems. If I accept that the value of these natural collectives is non-intrinsic, then

I'am forced to accept that the value of biodiversity is at least partially non-intrinsic.

By adopting this position, I might be justified in relaxing the metaphysical require-
ments of a conservation-based biodiversity concept. If the value of biodiversity is

non-intrinsic, then biodiversity itself may also be a non-intrinsic property of

? A highly endangered flightless patrot that survives on a few small New Zealand islands.
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biological systems. In other words, biodiversity need only reflect whatever anthropo-
centric values we wish it to include. However, the concept of biodiversity I will
develop is metaphysically much stronger than this. It is an intrinsic property of any
biological system. This more robust formulation of biodiversity offers several
advantages. First, it corresponds with our intuitions. Its seems that there should be
some independently specifiable property of biological systems that at least roughly
correlates with the common notion of biodiversity. Secondly, it makes the concept of
biodiversity meaningful. As I have already said, a concept of biodiversity defined only
as “that which we wish to protect” tells us nothing we do not already know. Thirdly,
an intrinsic definition of biodiversity offers hope that we can agree on what biodiver-
sity is and how we should measure it. If biodiversity were not some well-defined
intrinsic feature of the world, attempts to define and measure it are prone to
disagreement. By defining biodiversity in terms of some intrinsic property, we can
avoid such arguments. Fourthly, such a concept of biodiversity has more political
weight than an exclusively anthropocentric concept. Those calling for the protection
of some socially-constructed concept of biodiversity would forever be liable to
accusations of reinventing the concept to suit their particular political interests.
Finally, a metaphysically strong form of biodiversity can accommodate those who do
not wish to reject the intrinsic value of natural collectives. Indeed, for those who
maintain that natural collectives have intrinsic value, and that biodiversity should
correspond in some way to this value, a realist concept of biodiversity is a necessary

prerequisite.

2.3.2 Instrumental value

The natural world clearly has instrumental value. It provides us with a host of
economic benefits, in the form of foods, building materials, medicines, recreational
activities and aesthetic pleasure. Wheat, for example, is a cash crop with significant

economic value, as well as a foodstuff with direct utility. Trout provide a recreational

22 Biodiversity: its measurement and metaphysics



pursuit and echidnas aesthetic pleasure. Non-human instrumental value undoubtedly

exists.

If there were a clear link between biodiversity and one or more types of instrumental
value, then quantifying biodiversity might simply require us to quantify the types of
instrumental value we wish to protect. Some types of instrumental value are, at least
in principle, very easy to quantify. A good approximation of the annual commodity
value of wheat could be made by summing the total monetary value of wheat traded
over a year. This value could then be easily compared with the commodity value of,
say, tobacco, to determine which is more worthy of conservation. This is, however, a
rather bizarre way of assessing biodiversity. Biodiversity is not simply about com-
modity value, but about diversity. Wheat has lots of commodity value, but few would
suggest it constitutes significantly more biodiversity than any other species of grass.

It is just a particularly valuable aspect of biodiversity.

Another type of instrumental value that we could try to quantify is what we might
loosely call aesthetic pleasure. We want to protect giant pandas, humpback whales
and eastern bilbies because we think they are beautiful, lovable, interesting, awe-
inspiring or in some other way endearing. Exactly how we would quantify this form
of value is far from clear. Is a naked mole rat more endearing than a yellow-footed
rock wallaby? Not only does the answer depend on who you ask; for many individu-
als there simply is no meaningful answer. One possible solution is to measure the
aesthetic value of any species by counting the total monetary value that the public
would be willing to pay to prevent its extinction, or else that it would be willing to
accept in compensation for its loss (Randall, 1986). For many people, there is
something fundamentally hollow about this reduction of aesthetic value into a purely
economic form. However, there is a more fundamental objection to counting
biodiversity in terms of aesthetic value. The whole point of biodiversity as a political

concept is that it transcends the species-by-species approach to conservation. By
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focusing our attention exclusively on charismatic megafanna, such as giant pandas,
highland gorillas and Sumatran tigers, we risk losing the millions of far less charis-
matic species. Most of these species have never been observed, let alone appreciated
for their aesthetic qualities. Focussing exclusively on aesthetic value largely misses the

point of why biodiversity is such a potentially useful concept.

One of the central arguments for the protection of biodiversity is that it plays some

function in maintaining healthy ecosystems. In the words of Paul Ehtlich,

Other organisms have provided humanity with the very basis of civiliza-
tion in the form of crops, domestic animals, a wide variety of industrial
products, and many important medicines. Nonetheless, the most impor-
tant anthropocentric reason for preserving diversity is the role that mi-
croorganisms, plants, and animals play in providing free ecosystem set-
vices, without which society in its present form could not persist. (Ehr-
lich, 1980)

According to Ehrlich and many other biologists, these unglamorous species of
microorganisms, plants and animals—what Edward Wilson calls “the little things
that run the world” (Takacs, 1996, p. 57)—provide a host of functions such as
producing oxygen, purifying water, maintaining healthy soils and controlling pests.
These functions are essential both to human agriculture and the maintenance of
habitats on which humans depend. To maintain these essential functions, we must
maintain biodiversity. Losing one spider species may not have much effect on aphid
numbers, for example, since other spider species are available to fulfil the same
function, but losing lots of spider species may result in insufficient aphid predation

to keep their numbers in check.

We could feasibly develop a concept of biodiversity based solely on a valuation of
ecological functions—ecological-function biodiversity. Much of the value associated with
ecological function biodiversity is what we might call /udirect value. An indirect value

depends on some other direct value for its existence. If a commercially valuable
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timber species, for example, can only survive in the presence of some symbiotic
fungus, then that fungus has indirect value. If we lose the fungus, we lose the

valuable timber species.

There are several problems with ecological-function biodiversity, both on practical
and conceptual levels. Its main practical limitation is that we have no idea what the
tull range of essential ecological functions is, let alone which organisms provide these
functions. Such practical difficulties, however, are not my main concern. They need
not bar us from developing a robust concept of biodiversity, regardless of how
impractical it would be to apply such a concept. The main conceptual difficulty with
ecological-function biodiversity is that it does not capture much of what we want a
biodiversity concept to capture. The charismatic megafauna on which many conser-
vationists focus, for example, provide virtually no essential ecological functions. Such
species often occupy high trophic levels, and their numbers are, in most cases, simply
too low to have much ecological impact. We, and the biological systems on which we
depend, would comfortably get by without giant pandas, spotted owls and white
rhinos. Furthermore, there are many whole ecosystems on which humans clearly do
not depend. It is simply not true that destroying an isolated coral reef, say, would
necessarily have a major impact on ecological functions essential to human life. Such
an ecological system is largely autonomous from systems of human food production,

which would therefore be largely unaffected.

Both charismatic megafauna and isolated ecosystems should, it seems, form an
integral part of any sensible biodiversity concept. Defining biodiversity solely in
terms of ecological functions is therefore problematic. The maintenance of ecological
functions might be a reason for protecting biodiversity, but it is not the only reason.
Biodiversity, it seems, is a property too fundamental to be encompassed by ecological

functions alone.
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Consider another popular argument for protecting biodiversity. According to

Edward Wilson,

Biological diversity must be treated more seriously as a global resource,

to be indexed, used, and above all, preserved. (Wilson, 1986, p. 3)

This view sees biodiversity not as just a provider of ecological functions, but as a
resonrce—something valuable that we should protect now so we can exploit its
usefulness both now and in the future. The value associated with this ‘future
usefulness’ aspect of biodiversity is what we might call ‘option value’. An option
value derives from the values that something ight possess in future. Maclaurin calls
this the value associated with ‘hedging our bets’ (Maclaurin, 19984, p. 174). A wild
strain of wheat, for example, may prove to be uniquely resistant to some wheat virus
that will emerge some time in the future. If we can exploit the beneficial properties
of this strain, it will have enormous commercial value. At present, there is some non-
zero probability that this will happen." The present option value of the wheat strain
can be thought of as the product of this probability and the value the wheat strain
would have if the future scenario were to come true. Like indirect value, option value

is auxiliary; it depends on other values for its existence.

A jar full of old screws, nails and other assorted bits of hardware is an example of
something with option value. Chances are, most of the items inside the jar will
eventually be lost, discarded, rust away or otherwise end their lives without perform-
ing any useful function. The reason we keep them is that some of them might come
in handy. One day we might just need that single 10 mm M3 Philips head screw, so

we keep it just in case this situation arises. If we were somehow required to discard

10 There are numerous historical examples of wild strains or close relatives of domesticated crops
being used to improve their commercial counterparts. Iltis (1986), for example, discusses cases
involving tomatoes and maize.
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half the jar’s contents, we would be forced into carrying out a form of hardware
triage. How should we go about deciding which items to keep? One sensible rule
would be to discard those items that have very little chance of ever being useful. A
bent nail might fall into this category. A second rule might be to keep those items
that would be of great value should they eventually be required, even if the probabil-
ity of this happening is relatively small. The irreplaceable spare screw for fastening
the arms on your sunglasses might fall into this category. A third rule would be to
cull predominantly from those items of which there are many identical or similar
examples. If there are 27 one-inch flat head nails and you suspect you will only ever
need three at the most, then you can safely throw away the other 24. This last rule is
telling us to preserve the most diverse set of items, where diversity is measured with

respect to some set of functionally useful attributes."

Carrying out triage with the constraint of maximising biological option value would
mean choosing that set of biological elements that maximises the sum total of all the
probabilistically-weighted future values of all the potentially useful resources of the
biological world. Since in most cases we do not know which elements of the
biological world are potentially useful resources, it makes sense to select a diversity of
elements to increase our chances of picking the right ones. In other words, we
should hedge our bets by picking a biodiverse set. Maximising option value means

maximising biodiversity.

11 Defining future functionally useful attributes can be problematic. For example, on the basis of
present knowledge, we might discard all black nails because we predict that the otherwise identical
silver ones will be functionally identical. We might eventually find, however, that the black nails match
a particular piece of furniture better or that their blackness was due to a nitride coating that makes
them more corrosion resistant and therefore more suitable for certain applications. Nevertheless, it
seems we have no choice other than to make a best guess at what we suspect are the future functional
attributes based on our limited existing knowledge.
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Consider a simple example. Suppose we have a set of three endangered species and
we can only afford to spend money on conserving two of them. With all other
considerations being equal, we should focus our efforts on those two species that
maximise option value. Suppose two of the species are wild tomatoes and the other
is a wild potato. In the absence of any other knowledge, our only rational strategy
would be to select the two most dissimilar species—presumably the potato and one

of the tomatoes.

The main failing of option-value as way of defining or even understanding biodiver-
sity is that, like ecological-function biodiversity, it is not robust enough to capture every-
thing we want from a biodiversity concept. Option value may provide a strong
reason for preserving biodiversity, but biodiversity does not in itself capture every
aspect of option value. Recall that with the jar-of-hardware example, there were two
rules other than maximising diversity. One was to discard obviously useless things
and the other was to keep obviously useful things. Rather than rely solely on diversity
as the criterion for selection, we should use whatever knowledge we have at our
disposal to assist us in maximising option value. Similarly, in maximising biological
option value, we should use present knowledge to help us assess which species will
be useful in future. All domesticated crops, for example, are extremely useful now
and will almost certainly remain so in future. They should therefore figure promi-
nently in any option value measure. However, wheat or any other domesticated crop
does not appear to represent significantly more biodiversity than a host of wild
counterparts. Hence there is an incongruity between measuring option value and

measuring biodiversity.

We might concede this point but argue that the lack of congruence between option
value and biodiversity only applies to specific species such as domestic crops. Since
we are vastly ignorant of the potential uses of most species, biodiversity remains the

only sensible criterion for assessing the option value of such species. This is not an
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unreasonable argument. However, it leaves us no closer to spelling out what
biodiversity is. All we are left with is some sense of congruence between biodiversity
and a limited form of option value without any criterion for independently determin-
ing either. If we are to formulate option value in terms of biodiversity, we need first
to determine what biodiversity is. Alternatively, if we are to use option value to
define biodiversity, we need to spell out ‘likely future usefulness’ in more concrete
terms. In Chapter 3, I will discuss this issue in more detail when examining Maclau-

rin’s concept of ‘raw biodiversity’.

Whatever the concept of biodiversity is supposed to mean, its relationship with the
many types of instrumental value is not straightforward. Biodiversity is fundamentally
about djversity, not instrumental value. Lineages with high instrumental value such as
domestic wheat do not constitute significantly more biodiversity than many other
species with low instrumental value. Conversely, taxonomically and morphologically
distinct species such as echidnas are often thought to represent more biodiversity
than less distinct species such as bottlenose dolphins, but do not necessarily have
more instrumental value. Whatever our concept of biodiversity might come to
represent, there are many forms of instrumental value that the concept will be unable

to encompass.

2.3.3 Inherent value

Formulating biodiversity in terms of intrinsic value proved difficult because there is
no straightforward way of assigning intrinsic value to the sorts of units that biodiver-
sity deals which, such as species. There is simply too much doubt over the very
existence of such collective intrinsic value. The existence of collective instrumental
value, on the other hand, is uncontroversial, but there is a lack of congruence

between the various forms of instrumental value and the sort of thing we want a
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biodiversity concept to capture. Inherent value offers a possible solution to this

impasse.

All of the types of instrumental value discussed above can be used to generate
persuasive arguments for protecting the biological world. Together, however, they
fail to capture all of our reasons for wanting to protect biodiversity. Suppose we were
able to strip the biological world of all its instrumental value. So we might have
machines that performed various functions such as making food, creating oxygen
and so on, as well as artificially satisfying all recreational and aesthetic desires. We
would also have to satisfy all option value by, for example, curing all diseases. Having
thus satisfied all instrumental value, would it matter if we destroyed all remaining
rainforests, coral reefs and other zones of high biodiversity? Nearly all of us, I
suspect, regardless of whether we think the biological world can have intrinsic value,
would unhesitatingly answer “yes”. This shows us that the biological world has some

value that is neither intrinsic nor instrtumental; in other words inherent value.

We have a duty regarding but not necessarily 7 something with inherent value. A
valued painting, for example, ought to be protected from destruction, not because we
owe it to the painting, but because we owe it to those who value the painting.
Similarly, we may have a duty to cull individual African elephants if that will help
protect the species, not because we owe it to the elephants (or the species), but
because we owe it to those who value African elephants, including ourselves if we are

one of those people.

The inherent value of the biological world can be expressed simply as a love of
nature—what Edward Wilson calls bigphilia; an “innate affinity for the natural world”
(Wilson, 1984). Whether or not we possess biophilia ourselves, the existence of it
cannot be disputed. It is empirically observable. People love nature. The sort of value

on which biophilia is based is explicitly non-intrinsic. Without a human valuer it
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would not exist. However, neither is it instrumental. Inherent and instrumental value
are quite different. Instrumental value can be reduced to basic human desires, such as
the desire to be alive rather than dead, warm rather than cold, nourished rather than
hungry. The desire to protect that which has instrumental value can always be given a
rational justification in terms of these more basic human desires. However, we are at
a loss when it comes to mounting a rational argument for preserving the natural
world once stripped of instrumental value. The residual value—inherent value—

seems to spring directly from a desire without any intermediate rational justification.

McQuillan uses the moral philosophy of David Hume to make some sense of this

situation. For Hume,

Reason is and ought to be the slave of the passions and can never pre-
tend to any other office than to serve and obey them. (Hume, 1978, p.
415)

In other words, passions such as desire are primary, while reason is secondary. Hence
there is no justification for protecting nature’s inherent value other than our desire to

do so. McQuillan states this position quite plainly.

... in keeping with Hume’s privileging of passion over reason, the source
of nature’s inherent ... value lies not in its instrumentality but in the pas-
sion that we have for it. (McQuillan, 1998, p. 322)

The sort of biodiversity concept commonly employed in environmental debates is, I
think, deeply connected to the inherent value of nature. Citing ecosystem functions
and cures for cancer as justifications for protecting biodiversity are weak rationalisa-
tions of a deeper passion. Hence inherent value is likely to be the best starting point
for a conservation-based concept of biodiversity. However, this leaves me with some
problems. I am trying to construct a metaphysically strong concept of biodiversity. I
want biodiversity to be an intrinsic property; something that exists outside the human

mind. Yet, the type of value that we want our biodiversity concept to best represent
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is explicitly anthropocentric. It exists only in the human mind. Although there is no
contradiction involved in our anthropocentric valuing of some non-anthropocentric
property, inherent value leaves me no closer to specifying what an intrinsic concept
of biodiversity looks like. Moreover, decomposing inherent value into simpler
elements is problematic. Nature’s inherent value, it seems, springs forth 7z #ofo from

some collective passion.

Despite these problems, the type of biodiversity concept I have in mind is a good
candidate for capturing nature’s inherent value. It at least comes close to describing
what gives rise to my impassioned plea for protecting the rich diversity of life. Later
on I hope to provide some justification for linking the type of biodiversity concept I
will develop and nature’s inherent value. The justification is necessarily weak,
however, because inherent value is not a quality that can be easily analysed. I can only

hope that my desires correspond with yours.
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3 Measuring biodiversity

When you can measure what you are speaking about, and express it in numbers, yon
know something about it: but when you cannot measure it, your knowledge is of a
meagre and unsatisfactory kind: it may be the beginning of knowledge, but you have

scarcely, in your thoughts, advanced to the stage of science.

— Lord Kelvin

It is generally acknowledged that all organic beings have been formed on two great
laws—Unaty of Type and the Conditions of Existence. By unity of type is meant that
Sfundamental agreement in structure, which we see in organic beings of the same class,
and which is quite independent of their habitats of life. On my theory, unity of type is
explained by unity of descent. The expression of conditions of existence, so often in-
sisted upon by the illustrions Cuvier, is fully embraced by the principle of natural selec-
tion. For natural selection acts by either now adapting the varying parts of each being
to its organic conditions of life; or by having adapted them in long-past periods of time

— Chatles Darwin

The diversity of living forms is apparent to us all. Beetles and whales are vastly
different creatures. Just as apparent is the unity of such forms; the extent to which
organisms can be grouped by similarity. Virtually all multicellular organisms can
grouped by species, and these species can in turn be organised into hierarchical
categories. Taxonomy is the science of classifying organisms. It is a science whose
roots extend at least as far back as Aristotle and for which parallels can be found in
the folk taxonomies of numerous cultures. At least since Darwin, the patterns of life
recognised by taxonomy have been explained in terms of both common descent—
Darwin’s Unity of Type—and adaptation to the environment—his Conditions of
Existence. Interpreting the patterns of nature through the lens of these ‘two great
laws’ has provided modern taxonomy with a powerful means of organising biological
information. In recent years, taxonomy has in turn been used as a tool for carrying

out what Robert May calls ‘the calculus of biodiversity’ (Takacs, 1996, p. 61).
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The concept of actually measuring biodiversity in an apparently mathematically
rigorous fashion has attracted some strong criticism. Daily and Ehrlich have

described it as

. ‘crackpot rigour’ (detailed mathematical analyses of an intractable
problem) or ‘suboptimization’ (doing in the very best way something that
should not be done at all). (Daily & Ehrlich, 1992)

Ehrlich also describes it as “mental masturbation” (Takacs, 1996, p. 62). However, as
with biological triage, these objections are largely aimed at practical rather than
conceptual aspects of measuring biodiversity. No one doubts that attempting to
measure biodiversity with any sort of mathematic rigour is an Herculean task.
However, my main concern is not to address the practical aspects of measuring
biodiversity, but simply to understand what biodiversity is, how we might measure it
and what sort of property it might be. If I am able to demonstrate that biodiversity
can, at least in principle, be measured in a mathematically rigorous fashion, then I
have taken a large step towards understanding what biodiversity is and perhaps
showing that it is an intrinsic property of biological systems. However, before I look
at taxonomic approaches to measuring biodiversity, I need to consider the aims and

methodologies of taxonomy itself.

3.1 A tale of three taxonomies

In recent decades, the science of taxonomy has undergone significant change as
competing approaches to the taxonomic classification of organisms have been
advocated (Hull, 1988). Each approach can generally be classified under one of three
labels—evolutionary taxonomy, phenetics and cladistics. These three approaches
differ markedly, not just in the classifications they produce, but in their aims,
methodologies and philosophical outlooks. These differences must therefore be

examined in order to understand the biodiversity measures to which they give rise.
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3.1.1  Evolutionary taxonomy

Modern evolutionary taxonomy is a system that combines elements of evolutionary
thinking with aspects of the Linnean and other systems of classification that predate
the Darwinian revolution. The traditional element of evolutionary taxonomy is the
recognition that similarities between organisms allow them to be grouped and ranked
to form a nested hierarchy of taxa. Thus a highly similar population of interbreeding
organisms are grouped into a species (e.g. Homo sapiens), several highly similar species
are grouped into a genus (e.g. Homo), several genera into a family (Hominidae) and so
on through the ascending levels of order, class, phylum and kingdom. The notion of
common ancestry central to modern Darwinian thinking later explained these
patterns of similarity and diversity among organisms, thus allowing pre-Darwinian
taxonomy to be reinterpreted within this Darwinian context without undergoing

radical change.

The main feature of evolutionary taxonomy is its attempt to classify and rank

organisms on the basis of two criteria:

1. phylogenetic branching (i.e. the relationships between species in respect of

common ancestry), and

2. the degree and type of evolutionary change between branching points.

In other words, the evolutionary taxonomist attempts to group organisms on the

basis of both ancestry and morphology.

In recent decades, evolutionary taxonomy has been heavily criticised and largely
replaced by alternative systematic techniques (Hull, 1988). One of the central
criticisms is that evolutionary taxonomy attempts to classify organisms on the basis
of two incompatible criteria: phylogeny and morphology. Although these two criteria
often produce congruent classifications, frequently they do not. Similarity often

belies ancestry. For example, there is significant morphological (and ecological)
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affinity between tuataras and lizards, despite their closest common ancestor predating
the divergence of lizard and snake lineages. Deciding how to classify organisms in
such cases can be unclear. Should tuataras be classified as primitive lizards or
something completely different to either lizards or snakes? An evolutionary taxono-
mist is forced to decide such questions by using some arbitrary weighting of both
morphological and phylogenetic factors. Because of this ‘intuitive’ approach to
classification, the methods of evolutionary taxonomy are almost impossible to codify
explicitly. Instead they are developed over many years of experience. Although
different taxonomists working in the same area tend to reach general agreement in
their classifications, problems arise when attempts are made to explicitly justifying
these classifications, teach the methods used to derive them, or apply the methods

used in one class or phylum to another.

3.1.2 Phenetics

In response to some of the problems posed by evolutionary taxonomy, an alternative
classificatory scheme known as phenetics'® was developed in the early 1960s, princi-
pally by Sokal and Sneath (Hull, 1988). Unlike the ‘intuitive’ approach used by
evolutionary taxonomists, pheneticists use a standardised classificatory procedure
based on quantitative techniques to measure the degree of ‘overall similarity’ among
groups of organisms. The similarity measure employed is based on the presence or

absence of numerous unweighted characters or character states.

By using a standardised quantitative technique, pheneticists hoped to remove
subjectivity and ambiguity from taxonomy. Although some convergent or highly

variable characters might obscure the observed pattern, reproducible results, it was

12 Also referred to as numerical phenetics ot numerical taxonomy.
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claimed, should arise whenever sufficient characters are used for analysis. However,
such hopes have proved unfounded, leading to the abandonment of phenetic
techniques of classification (de Queiroz & Good, 1997; Hull, 1988). The calculated
degree of similarity between any two organisms depends on which characters are
measured. So, for example, cuttlefish and rabbits could be classified as similar on the
basis that both have two eyes, can be kept as pets, and are found on restaurant
menus in provincial France. Furthermore, significant morphological differences
frequently exist between different members of a single polymorphic species.” A
purely phenetic classification would necessarily classify these organisms into separate
taxa. The infinity of similarities and differences between any two organisms means
that the use of more characters cannot, on its own, guarantee a stable classification.
The hope that phenetic measures would converge on a single classificatory scheme
by including more characters has proved false. Hence the objective ‘theory-free’
approach of phenetics has proved ill-founded, since some theory must be introduced

to decide which characters are relevant and which are not (Hull, 1988).

Despite its problems, phenetics represents a positive step towards separating the two
divergent aims of evolutionary taxonomy. In grouping organisms only by morpho-
logical similarity, a phenetic classification eschews any claims about ancestry."
Furthermore, by demonstrating the limitations of evolutionary taxonomy and
employing mathematical analysis to classification, phenetics proved highly influential
on a third approach to classification, an approach that has come to be known as

cladistics.

13 For example, catetpillars and butterflies, or even males and females of many species such as garfish
(Hull, 1988).

14 An implicit hope of many pheneticists, however, was that a purely phenetic classification would
nevertheless reveal ancestral patterns.
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3.1.3 Cladistics

Like phenetics, cladistics also recognises the conflicting aims of evolutionary
taxonomy in trying to capture both phylogenetic and morphological affinity. With
cladistics, however, this conflict is resolved by focusing on the phylogenetic compo-
nent. The central idea of cladistics is that systematics represents evolutionary history;
the job of the taxonomist is to deduce the phylogenetic relationships among
organisms, not their morphological similarities. Cladistics makes a further metaphysi-
cal claim that real taxonomic units are necessarily the monophyletic groups. A mono-
phyletic group is one for which all and only the descendants of a single ancestral
species are members.”” Thus the cetaceans are a monophyletic group, since all
cetaceans share a common ancestor that was not the ancestor for any other living
organism. In contrast, the monkeys are paraphyletic, since there was no common
ancestor of all monkeys that was not also an ancestor of the apes, while the cyano-
bacteria are polyphyletic, since this grouping consists of an assemblage of organisms

that evolved common traits independently.

As with phenetics, the methodology of cladistics is based on trait analysis. Only
certain types of traits, however, are informative for constructing evolutionary history.
A unigue trait possessed by only one species gives no information about that species’
relationship with other species. Similarly, a primitive trait that was inherited by all
members of a particular group gives no information about the relationships within
that group, although at a higher level in the tree, it may help infer the relationships
linking the entire group with other groups. The only type of traits that are informa-

tive in cladistic analysis are derived traits; ones that vary within a group.

15 The monophyletic group consisting of an organism and all of its descendants is known as a ‘clade’.

38 Biodiversity: its measurement and metaphysics



In cladistic analysis, species are linked on the basis of shared derived traits. If species
A and B possess a certain trait, and species C does not, then A and B are likely to be
more closely related to one another than either is to C. Of course, this may not be
the case. C may be more closely related to B than either is to A, either because C lost
the trait that the common ancestor of A, B and C all shared, ot because A and B
evolved the trait independently. These possibilities are illustrated in the ‘cladograms’

of Figure 1 below.

1 0 1 1 0 data
A B C A B c taxa

plesiomorphic

0 0 form
(AB)C A(BC) hypotheses
a b

Figure 1: Cladistics infers phylogeny from character analysis. In the data, ‘1’
indicates the possession of a particular trait, whereas ‘0’ indicates its ab-
sence. In the absence of other information, the true phylogenetic relation-
ships are more likely to correspond to (a) than (b), since (a) requires fewer
character state changes; i.e., it is more parsimonious (after Sober, 1988).

In cladistic analysis, we decide between the two competing hypotheses of ancestry
illustrated in Figure 1 by choosing the most ‘parsimonious’ cladogram; that is, the
one that requires the fewest character state changes. The hypothesis represented by
Figure 1a requires the assumption only that a single character state change occurred
somewhere along the lineage that gave rise to A and B, whereas that represented by
Figure 1/ requires the assumption of at least two character state changes, with the
two possible ways in which such changes could have occurred illustrated. Figure 14 is

therefore more parsimonious than 14. In practice, numerous character state changes
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are possible, and hence the most parsimonious cladogram will not always reflect true
ancestral relationships. Nevertheless, such a methodology reflects a ‘best guess’
inference of such relationships on the basis of available evidence. Moreover, the
inclusion of additional data into the analysis can help resolve such discrepancies,

resulting in convergence towards a single, stable classification (Patterson, 1977).

The key advantage of cladistics over both evolutionary taxonomy and phenetics is
that its central aim is clearly defined. This aim is to ascertain knowledge of the ‘one
true tree of life’; the phylogenetic relationships among existing organisms. The
existence of such a tree is uncontroversial. In contrast, the notion of ‘biological
similarity’ that both evolutionary taxonomists and pheneticists try to measure has yet
to be clearly defined. Cladistics avoids this problem by reformulating the role of
biological similarity. Rather than using similarity to define taxonomic affinity,
cladistics uses taxonomic affinity, defined phylogenetically, to explain similarity. In
other words, cladistics has removed similarity from a classificatory role and made it

part of taxonomy’s explanatory agenda.

Cladistics is not without its methodological problems. However, the achievements of
cladistics are more than just methodological. It has clearly established phylogenetics
as the central aim of taxonomy, giving rise to what is now commonly referred to as
‘phylogenetic systematics’. Once agreement has been established about the funda-
mental aim of taxonomy, many mathematical methods for estimating phylogeny
other than parsimony analysis become permissible (even phenetics). Once derided as
a higher form of stamp collecting, taxonomy has now secured a central position in
the biological sciences. It can no longer be seen as simply collecting and classifying
the gifts of a benevolent creator to impose an order upon nature’s untidiness, but as
a means for compiling detailed knowledge of earth’s evolutionary history. Taxonomic
data now play an important role in resolving important theoretical and conceptual

issues in biology, such as in understanding the notion of evolutionary constraint
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central to debates over ‘adaptationism’.'* Taxonomy is also pivotal to the biodiversity

question, because it is taxonomy on which existing biodiversity measures are based.

3.2  Taxonomic biodiversity

In recent years, a relatively rich literature has been produced concerning the taxo-
nomic measurement of biodiversity. There are several motivations for constructing a
measure of biodiversity. One is to demonstrate that biodiversity is a robust concept;
defining what biodiversity is through the development of a well-defined measure-
ment procedure. A more practical motivation is the development of procedures to
assist conservation decision-making, such as which regions of a forested area to
protect from logging. This may involve developing not just a technique of biodiver-

sity measurement, but also things like optimisation procedures for area-selection.'”

Given the difficulties we have already encountered in trying to define a precise
notion of biodiversity, it is perhaps unsurprising that there exists a variety of
taxonomic biodiversity measures; there is simply not yet enough agreement about
such fundamental questions as what biodiversity is. Hence many of the differences
between measures arise because their target properties differ—they are trying to
measure different things. Biodiversity measures also differ in many instances because
they are based on different indicators."® Measuring biodiversity is not just conceptually

but also practically difficult, and so some other property is often measured that,

16 See, for example, Gould & Lewontin (1978), Dennett (1995) and Sterelny & Griffiths (1999).

17 A key notion here is complementarity. A region is more worthy of protection if it not only has high
biodiversity; but also contains species not already contained in other protected regions.

18 Sarkar (1999) introduces the terms surrogate (ot true surrogate) and estimator surrogate in this context. For
Sarkar, an estimator surrogate is akin to what I call an indicator, whereas a true surrogate is a target
property that supposedly represents ‘overall biodiversity’. Sarkar presupposes that ‘biodiversity’ is an
ill-defined concept, not reducible to a single target property. I eschew this terminology because it is
unnecessarily confusing for my purposes.
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hopefully, is a good indicator of a more fundamental target property (#rue biodiversity).
In the remainder of this section, I will give an overview of the various types of

taxonomic biodiversity measure.

3.2.1 Species richness

In Chapter 1, we met the concept of ‘species richness’’, which is simply the number
of species within a particular area or ecosystem. Although species richness is often
used as a crude definition of biodiversity, most biologists think it is simply an
indicator of some more fundamental property (Takacs, 1996). The main limitations
of species richness as a biodiversity measure have already been discussed. Measuring
the species richness of an assemblage accounts only for the number of species, and
not how much those species might differ from one another. Beetle species are
numerous and in many cases highly similar, whereas whale species are few and
relatively disparate. Red wolves attract considerable conservation effort, despite their
status as a mere subspecies. It is generally accepted that an ideal biodiversity measure
should somehow account for these differences between species, and not just sum

them with equal weighting.

Despite such limitations, there are many good reasons for retaining species richness

as a biodiversity measure. Gaston (1996, pp.78-79) lists five.

1. Species richness can be correlated to many measures of ecological diversity
and it functions better than most other potential indicators including species

diversity.

19 ‘Species diversity’ is sometimes defined as a different measure that also accounts for the relative
abundance of different species (Sarkar, 1999).
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2. There is usually a positive correlation between species richness and higher
taxon richness (see following section), allowing the latter to be used as a good

indicator of species richness.

3. When species richness is relatively high, it is correlated with character rich-

ness.

4.  Some parameters used to measure the complexity of community webs (in-
cluding the number of edges and the length of directed paths) seem to be

correlated with species richness. (This remains somewhat controversial.)

5. Relatively high species richness is correlated with increasing topographic
diversity. This is only to be expected insofar as topographic diversity not only
potentially allows more niches but also may encourage reproductive isolation

and speciation.

. . . . . 2{) . .
Given these advantages, as well as its conceptual simplicity,” species richness

remains the most prevalent measure of biodiversity.

3.2.2 Higher taxon richness

Higher taxa are the various groupings of species that form the hierarchical classifica-
tions of taxonomy; the genera, families, orders, classes, phyla and kingdoms inherited
from the Linnean system. Measuring higher taxon richness is analogous to measuring
species richness, but carried out at a higher level of the taxonomic hierarchy. There
are two clear advantages to such an approach. One is that higher taxa are less
numerous and easier to distinguish than individual species, making them an easier
sampling unit in field surveys. A second is that such ‘coarse graining’ partly avoids
the problem of counting each member of speciose taxa as a single unit of biodiver-

sity, regardless of their degree of similarity (Williams & Gaston, 1994).

20 Although a single species definition has proved elusive (Mallet, 1995; Sterelny & Griffiths, 1999),
particular species are, at least outside the microbial world (Sogin & Hinkle, 1996), typically well-
defined. As mentioned in Chapter 1, however, species from diverse clades are not necessarily
commensurate.
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A serious problem with using higher taxon richness as a measure of biodiversity is
that higher taxa are not robustly defined. Cladistics enables us to organise species
into a nested hierarchy of monophyletic groups, but it offers no advice on where to
draw the boundaries between genera, families or any other higher taxonomic rank.
From a cladistic perspective, these higher taxa make little sense. There is simply no
well-defined notion of ‘evolutionary divergence’ for determining whether a particular
monophyletic group of species constitutes a genus, a family or an order (Sterelny &

Griffiths, 1999).

Despite this problem, there are nevertheless some conventions, albeit not always
well-defined ones, which are used to delineate higher taxa. Such conventions are
typically based on morphological disparity; just the sort of target property that we
might want a biodiversity measure to capture. The suitability of higher taxon diversity
is further supported by empirical evidence that it provides a good indicator for more
detailed morphological measures based on ‘character richness’, as discussed below

(Williams & Humphreys, 1990).

3.2.3 Genetic diversity

Biodiversity is commonly held to be manifest at three levels: genes, species and
ecosystems. Genetic diversity is the lowest of these levels. Advocates of this type of
biodiversity typically make either a weak or strong claim regarding the status of
genetic diversity. The weak claim is that genetic diversity provides a simple and
practical indicator of biodiversity. The strong claim is that genetic diversity zs the

fundamental unit of biodiversity.

Advocating the utility of genetic diversity measures is not without foundation. DNA
is operationally useful. Base pairs are discrete and easily counted units that can be
compared across widely different species. Moreover, there is evidence to support the

use of genetic distance as an indicator of phenotypic diversity (Templeton, 1994,
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O’Donnell et al., 1994; Williams & Humphries, 1996) and hence for the substitution
of genetic distance for phylogenetic distance in taxonomic distinctness measures

(Crozier, 1992).

Nevertheless, there are substantial problems with using genetic diversity to measure
phenotypic diversity. Primary among these is the lack of any simple mapping
between DNA structures and phenotypic outcomes. In most organisms, most of the
genome does not code for protein structures, whereas some portions of the genome
may code for multiple traits. Small changes in DNA structure can lead to massive
phenotypic change, while relatively large genetic changes such as reversals, transloca-
tions or allopolyploidy can lead to trivial phenotypic change. Determining the
outcome of a genetic change in order to meaningfully define genetic distance requires
some sort of ‘reading back’ from the phenotypic and other higher levels. These
observations undermine the assumption that the probability of a character state
change is linearly related to genetic distance. Hence genetic distance is at best an

unreliable indicator of phylogenetic distance.

The second and stronger approach to using genetic diversity is to claim it as a more
fundamental form of biodiversity of which phenotypic and ecosystem diversity are

simply manifestations. Harper and Hawkworth (1994), for example, claim that:

Unlike higher taxa which may be based on characters which are not nec-
essarily comparable, the DNA and RNA found in all living cells can pro-
vide a basis on which to make direct comparisons between diverse or-
ganisms. There is a sense in which the biodiversity of a community is ex-
pressed as the sum of the variety of genetic information coded within the
genotypes of the inhabitants. A biodiversity calculus could be envisaged
for which we ask of the various species (and individuals) in a community
how many new base sequences they contribute to the genetic vocabulary
of the whole. (p. 8)

In a similar vein, Mallet (1996) asserts that:
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Biodiversity consists of the variety of morphology, behaviour, physiol-
ogy, and biochemistry in living things. Underlying this phenotypic diver-
sity is a diversity of genetic blueprints, nucleic acids that specify pheno-

types and direct their development. (p. 13)

This stronger thesis relies on the notion that phenotypes can in some sense be
reduced to their genotypes. The points already made against genetic diversity as an
operational measure undercut this argument. Without rehearsing in detail the debate
over ‘genetic reductionism™', an additional point taken from this debate, namely the
parity thesis, weakens it further. It is well known that many factors other than the
genome are necessary for embryonic development. Whatever can be said about the
causal and informational roles of genes in development can also be said about
epigenetic factors (Oyama, 1985; Griffiths & Gray, 1994). Cell membranes, methyla-
tion patterns, parental instruction and a host of other essential developmental
resources are transmitted from parent to offspring in much the same manner as
genetic resources. Genotypes do not define their phenotypes any more than do
epigenetic factors, and hence genetic diversity is no more fundamental than pheno-

typic diversity.

Another reason we might reject genetic diversity as the fundamental unit of biodiver-
sity is that genetic diversity is just not the sort of thing we care about. We might
marvel at the blue feet of a blue-footed booby, but few of us would get too excited
about the alleles that produce this blueness. Preserving a particular species may
require us to maintain a certain degree of genetic diversity, but this is a property we
need only satisfy, not one we want to maximise for its own sake. However, this

argument does not rule out biodiversity being some fundamental property that we do

21 See, for example, Sterelny and Griffiths (1999) for a recent summary.
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not value in its own right, but which is nonetheless something worth preserving

because we value its consequences.

3.2.4 Phylogenetic diversity measures

Phylogenetic diversity measures are based on the observation that more distantly
related species tend to be more distinct in terms of their morphological or other
characters. They therefore use relatedness as a criterion for assessing what weighting

each species should be given. Atkinson sums up the rationale behind this approach.

... given two threatened taxa, one a species not closely related to other
living species, it seems reasonable to give priority to the taxonomically
distinct form. (Atkinson, 1989)

There are two basic strategies for measuring phylogenetic diversity. One strategy, as
exemplified by Vane-Wright e# a/. (1991), is to define a procedure for calculating the
relative weights for each taxon within a set of taxa. The weight of a taxon is akin to the
value of that taxon. If we were then to use this information to carry out triage, we
would give highest priority to protecting those taxa with the greatest weights. The
second approach, as exemplified by Faith (1992), is to define a procedure for
calculating the weights, not of individual taxa, but of subsets of the main set of taxa.
Hence if we were to use this information to carry out triage, we would first ask how
many taxa we are able to protect, and then select the subset of this size with the
greatest total weight. This approach recognises the conservation value of a taxon as
being context-dependent; it varies depending on which other taxa are being consid-

ered for protection. In other words, it accounts for complementarity.

Maclaurin (19985) introduces a nice analogy to illustrate the differences between
these two strategies. Suppose we liken two followers of each of the above two
strategies to stamp collectors. The first Maclaurin labels ‘the investor’, and the

second he labels ‘the enthusiast’ (p. 144). The investor is interested only in the value
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of her collection, whereas the enthusiast is interested only in its completeness. The
difference between them is best exemplified when the two collectors are given the
opportunity to buy a large number of rare but similar stamps. The investor will buy
as many of them as she can afford. Since they are all rare, they will all increase the
value of her collection. The enthusiast, on the other hand, will buy only a few. He
cares only about the completeness of his collection. Once he has bought enough to
satisfy completeness, the remaining stamps on offer are of less value to him.
Applying this analogy to phylogenetic measures of biodiversity, the investor strategy
would have us save both species of tuatara. They are both rare and both valuable.
The enthusiast strategy, on the other hand, would have us save at least one species of
tuatara. Once we have secured its future, saving the other species is of less impor-

22
tance.

W % I %
A 1 625 — A 4 107
B 1 625 B 4 107
c 2 125 c 3 143
D 4 25 D 2 214
E 8 50 E 1 429
total 16 100 total 14 100
a b

Figure 2: Phylogenetic biodiversity measures. (a) Equal weighting for sister
groups. Column W lists the weighting applied to each species, which equals
the aggregate weighting of its sister group. (b) Taxonomic distinctness. Col-
umn | lists the number of clades to which each species belongs, the normal-
ised reciprocals of which are used to determine each weighting (after Vane-
Wright et al., 1991).

22 In practice, however, trying to protect both species of tuatara may be the best strategy for securing
the future of at least one species.
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Figure 2 above shows two phylogenetic diversity measures of the investor type,
introduced by Vane-Wright e a/. (1991). These are labelled ‘equal weighting for sister

groups’ and ‘taxonomic distinctness’.

In cladistics, sister groups are two clades separated by a single speciation event. So in
Figure 14, the clade consisting solely of the species C is the sister group of the clade
consisting of species A and B, while the clades formed by A and B are themselves
sister groups. The phylogenetic diversity measure based on equal weighting for sister
groups considers sister groups to be of equal importance. So if we could only afford
to preserve two species from A, B and C in Figure 14, we would preserve C and
either A or B. Figure 24 illustrates this procedure for a more complicated cladogram.
The two most closely related species are first given a weighting of one, giving a total
weighting of two for the clade they comprise. The sister group to this clade is also

given a weighting of two, and so on down the cladogram.

The principal objection to applying equal weighting to sister groups is that it seems
to weight phylogenetically distinct species too heavily (Vane-Wright e a/, 1991; May,
1994; Maclaurin, 19984). The coelacanth,” for example, is the sister group of a large
clade that includes all terrestrial vertebrates. According to a biodiversity measure that
applies equal weighting to sister groups, coelacanths are more valuable than every
species of mammal, bird, lizard and frog combined. Vane-Wright ez a/. (1991) offer
an alternative weighting scheme of ‘taxonomic distinctness’ that avoids this problem,
as shown in Figure 24. In this system, each species is assigned a number correspond-
ing to the number of clades of which it is a member. These numbers express the

‘information content’ represented by each branch of the cladogram; in other words,

23 A rare and highly unusual species of lobe-fined fish found near the Comoros Islands, between
Africa and Madagascar, and recently discovered off the coast of Sulawesi in Indonesia.
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the number of visible speciation events™ between the ancestor of the entire group
and the species in question. The weighting for each species is then the reciprocal of
this number, normalised to some arbitrary total. This system has several advantages
over the ‘equal weight for sister groups’ strategy. One is that species of equal
taxonomic rank are given equal weighting. Another is that groups with many species
have a higher aggregate weight than sister groups with fewer species, avoiding the

problem of excessive weighting of phylogenetically distinct species.

The basic approach of enthusiast-strategy phylogenetic diversity measures is to take
the cladogram for the set of taxa in question, apply a weight (length) to each branch
according to some rationale regarding ‘evolutionary distance’, and then select the
subset of taxa that maximises overall intervening branch length (Humphries ez /.,
1995). Figures 3-5 illustrates this procedure. Three cladograms of ten taxa are
shown, with branch lengths weighted using different criteria. The subsets of three

taxa with maximum intervening branch length are highlighted.

The three weighting schemes typically used to determine evolutionary distance are:

Clock model: Branch lengths are weighted chronologically. Evolutionary change is

assumed to occur at a constant rate along each lineage (Figure 3).

2+ Visible in the sense that they are represented by extant species.
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|

Figure 3: Clock model of branch weighting (after Humphries et al., 1995).

Sample model: Branch lengths are weighted by extrapolating from some sample of
character state change data (typically genetic or morphological). Evolutionary change
is assumed to occur at varying rates, as represented by the character state change data

(Figure 4).

Figure 4: Sample model of branch weighting (after Humphries et al., 1995).

Saltatory model: Branch lengths are weighted by the number of intervening
speciation events. A fixed amount of evolutionary change is assumed to be associated

with each speciation event (Figure 5).
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Figure 5: Saltatory model of branch weighting (after Humphries et al., 1995).

All three of the above weighting schemes have been developed to cope with the
central problem of such phylogenetic diversity measures; the sheer quantity of data
required to accurately determine branch length. However, none of the three
weighting schemes is without its own difficulties. Clearly, rates of evolution have
varied greatly over time. Such morphologically diverse species as whales and goats
diverged from a common ancestor only a few tens of millions of years ago, while
over similar time scales, ‘living fossils’ such as coelacanths and Wollemi pines have
undergone almost no evolutionary change. Only the sample model has some hope of
adequately accounting for this problem, although the quantity of data required is in

many cases still prohibitive.

The sample model of measuring phylogenetic distance also goes under the name of
‘character richness’. Figure 6 provides a further illustration of this approach, based
on the original method developed by Faith (1992). In this example, the character
state change data are superimposed onto the branches of the cladogram where such
state changes are inferred to have occurred. The subset of, say, four organisms with
the greatest proportion of total character richness can then be found by choosing the
spanning path connecting four organisms that intersects the most character state

changes (as well as speciation events, in Faith’s example).
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== minimum spanning path

taxon not on the path

— taxon

@  character state change @ character state change

a b

Figure 6: Another phylogenetic biodiversity measure based on character
richness. (a) A cladogram on which has been superimposed the inferred
character state changes. (b) The most diverse set of four species is that
which includes the most character state changes and speciation events, as
shown (after Faith, 1992).

Of the various approaches to measuring biodiversity examined so far, character
richness appears to come closest to a sort of universal biodiversity measure that
accounts for variation both within and between species. Measures based on species
and higher-taxa may provide good indicators of biodiversity, but they do not fully
capture the desired target property, if only because they fail to adequately account for
the degree of difference between species. A measure that does take such degrees of
difference into account must be based on a smaller currency unit; a unit such as

character.

We can either interpret character richness as the true currency of biodiversity—the
target property we want to measure—or as an indicator of some more fundamental
target property yet to be specified. Faith, for example, adopts the former position,
although he is by no means alone (e.g. Vane-Wright ez @/, 1991; Williams & Hum-

phreys, 1996). According to Faith,

[the] fundamental level of organismal variation corresponds to features
or attributes of species. When biodiversity is defined at this level, the oft-
stated conservation goal of ‘protecting biodiversity’ translates into pro-

tecting as much of this feature-diversity as possible. (Faith, 1994, p. 46)
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Faith’s rationale for this stance is that feature diversity corresponds to option value,

as defined by

an attempt to keep options open, for realizing values of species in future,

by saving as much biodiversity as possible now. (p. 40)

If we want to maximise option value, we should, according to Faith, maximise

feature diversity, since

the greater the number of different features represented by a protected

subset of taxa, the greater the option value. (p. 46)

5

So the important attribute of biodiversity that we call ‘distinctness™ is rooted in
character richness, not the other way around. How distinct a species is from other
species will depend on the sort of characters it has and the degree to which these
characters are unique or otherwise differ from those of other species. Measures of

biodiversity based on character richness are a sensible way of quantifying distinct-

ness, but it is the character richness itself that we are interested in.

Despite its attractions, there are several reasons why we might reject character
richness as a target property. One major reason is that ‘characters’, ‘traits’ or
‘features’ are simply not well-defined. What exactly counts as a trait? Moreover, does
it make sense to describe an organism by simply reducing it to a collection of traits?
The debate over adaptationism (Gould & Lewontin, 1978) clearly demonstrates the
difficulties with such a notion. Because organisms are highly integrated systems,
delineating one trait from another is problematic. Even when certain organs can be
delineated, should we think of them as a single trait or a collection of traits? In other

words, should a character richness measure apply more weight to a highly complex
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trait such as an eye than to a relatively simple trait such as skin colour? And how
should a character richness measure account for variations within traits across groups
of organisms? Given that lungs in terrestrial vertebrates are homologous to swim
bladders in teleost fishes, do we count lungs and swim bladders as a single trait or as
two different traits? There is a strong intuition that the evolution of some characters
such as lungs is highly significant, whereas the evolution of others, such as a new skin

colour, is of little significance (Miller, 1991).

Given these problems, it seems that character richness is not a robust property.
Despite its distinctly cladistic origins, it sets out to quantify biodiversity in largely
phenetic terms, where something like ‘overall similarity’ or ‘overall distinctness’ is
assessed in terms of character state changes. The same criticisms that were levelled at
phenetics similarly apply in a more limited form to character richness. In particular,
we need to determine what counts as a character, and how characters can be

compared with one another.

May (1994) offers an alternative target property of phylogenetic diversity measures; a
property termed ‘independent evolutionary history’ (IEH). Under this view, phyloge-
netic diversity is not a measure of the richness of character state changes, but of
evolutionary Aistory. Many historical human artefacts are valuable. This is partly due to
their rarity, but also in part because of what they tell us about the past. A 16th
century map, for example, is valuable in part because it says something about the way
people thought about the world in the 16th century. Organisms also tell us some-
thing about the past. They have a history that has been shaped by evolution. A
character state change tells us something not only about the way an organism is today

but about the evolutionary history of its lineage. One species represents an historical

25 Although ‘distinctness’ is usually thought of morphologically, behavioural or biochemical forms of
distinctness are also recognised as important.
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record of long dead organisms, and the more phylogenetically distinct it is, the more

it tells us.

Knowing something about evolutionary history does have some utility. For example,
knowing that Zeosinte and domestic maize shared a recent common ancestor tells us
that wild strains of fessinte can probably be crossed with strains of domestic maize to
improve crop yields. Nevertheless, the value associated with independent evolution-
ary history seems predominantly like inherent value. Our desire to preserve evolu-
tionary history is largely akin to our desire to preserve a 16th century map. Both

stem, in large part, from some irreducible passion.

Despite this limitation, many of the phylogenetic diversity measures discussed above
appear to bring us closer to capturing what we want from a #ue measure of biodiver-
sity. Measures such as character richness appear to match many of our intuitions
about biodiversity: that its unit of currency is smaller than individual species, that it
encompasses diversity not only between but within species, and that it corresponds
to something like the overall richness of biological structure. Nevertheless, none of
these measures, character richness included, seems to fully capture what we want

biodiversity to mean. Biodiversity remains an elusive concept.

All of the measures of biodiversity discussed above have been developed by
biologists. Unsurprisingly then, there is an emphasis on the practicality and useful-
ness of these measures, and a lack of serious philosophical investigation into the
metaphysical foundation of biodiversity itself. The main objective of my project is to
fill this gap. Maclaurin (19985) also addresses this problem. In doing so, Maclaurin
proposes and develops a novel concept of biodiversity; a concept which he labels

‘raw biodiversity’.
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3.3 Raw biodiversity

Maclaurin’s concept of raw biodiversity is intended to achieve two things. On one
hand it is intended to measure option value; the value associated with ‘hedging our
bets’ (p. 175). On the other hand, it is intended to avoid the arbitrary nature of
existing biodiversity definitions; to make biodiversity a non-anthropocentrically

defined feature of the world. Maclaurin therefore defines it as the

. notion of diversity ... not based upon antecedent beliefs about what
it is that makes a property or an entity valuable [nor| upon antecedent
beliefs about what it is that makes a property or an entity scientifically
important. So you might think of this as diversity without reference to

the value or importance of properties or entities. (p. 175)

Hence raw biodiversity should both maximise option value and incorporate a range

of properties without regard to how important we think they might be.

Many biologists’ and conservationists’ notions of biodiversity correspond to
something like raw biodiversity—an all-encompassing concept that encapsulates
every possible aspect of biological variety. However, there is a problem concerning
its dual definition that I need first to dispel before looking at the concept in more
detail. Maclaurin assumes a congruence between a biodiversity measure that maxi-
mises option value and one not based on antecedent beliefs about which properties
are important or valuable. Such a congruence has not been demonstrated, and there

are good reasons for rejecting it.

Recall that when culling from my jar of assorted hardware in Chapter 2, I was forced
to make decisions about what to keep and what to discard in a way that would
maximise option value. I concluded that a rational strategy would be first to discard
those items that were unlikely to be useful in future, and to keep those that were
more likely to be useful. The notion of likely future usefulness was based on what we

know about the sort of properties that we think might be important, so my strategy
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was not completely bereft of such considerations. It may well be that these properties
do not fully correspond to the sort of properties that are eventually important. So the
black nail I discarded because it was otherwise identical to the silver ones may
eventually prove to have a useful property, namely blackness, despite my considering
such a property unimportant on the basis of present knowledge. Nevertheless, option
value can only ever be a ‘best guess’ of likely future value. We know that some
properties are important, so it seems sensible to give them a greater weight than
properties whose importance we can only guess at. In other words, whatever
knowledge we currently have about what sorts of properties are important is a vital
component of option value. The lack of knowledge under which an option value
assessment must be made need only be partial, not complete. Wheat is valuable now
and will almost certainly be valuable in future, so it has lots of option value. Yet this
option value has everything to do with what we think of and are able to do with
wheat. Although option value may correlate to some extent with some non-
anthropocentric property of the biosphere on which some robust concept of

biodiversity is based, option value cannot be congruent with such a property.

Henceforth 1 will consider raw biodiversity only in its second guise; as an all-
encompassing concept that includes biological variety at many levels, without
consideration of why we think such variety is important. As will be shown in
Chapter 5, such a definition more closely corresponds to the sort of biodiversity
concept that I, as well as many biologists and conservationists, seek—a robust
intrinsic property of the world that encompasses many levels of organisation. Such
notions of biodiversity typically ignore option value, and where option value is
included (e.g. Kunin & Lawton, 1996), typically treat it as a secondary argument for

protecting biodiversity, not as a definition of what biodiversity is.

Maclaurin clearly rules out the possibility of a theory-free concept of biodiversity.

Any two objects are both similar and different with respect to infinite sets of
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properties. Regardless of their differences, they may share any number of ‘abundant
properties’ such as ‘being 4.2+1.7 light years from Proxima Centanr?. Regardless of the
number of similarities between the two objects, such abundant properties can be
used to construct an equal or greater number of differences. Hence measuring the
degree of diversity among a set of objects requires that we introduce some means of
limiting what counts as a property. Maclaurin explores three ways of achieving this,
which give rise to three types of raw biodiversity: process biodiversity, structural
biodiversity and anthropocentric biodiversity. Process biodiversity is based on
properties that can be defined in terms of biological processes, structural biodiversity
is based on Lewis’ notion of natural properties, whereas anthropocentric biodiversity is
based on Quine’s notion of innately-acquired pretheoretical categories in which

human beings perceive the world.

In all three cases, Maclaurin’s approach to limiting properties is based on a considera-
tion of natural kinds. As he notes, classifying the world on the basis of natural kinds
should generate ... some large set of well-motivated, non-gerrymandered properties
that allow us to talk about similarity in general” (p. 201). Unfortunately, as Maclaurin
notes, natural kinds alone do not generate a single well-defined measure of biodiver-
sity. One immediate problem is simply that we have no way of justifying the
commensurability of different properties. Does ‘possessing an eye’ count as one
property and ‘possessing red feathers’ count as another? Or is ‘having an eye’ actually
a collection of properties such as ‘having a lens’, ‘having light sensitive cells’, ‘having
an optic nerve’ and so on. In other words, at what level do we count properties? This
is exactly the same problem that beset character richness measures, discussed above.
Making an inventory of properties does not in itself give us a well-defined measure,

although it may usefully illustrate where we should begin to look for one.

Maclaurin raises some interesting critiques of each of the three ways of formulating

raw biodiversity that he proposes. Consider, for example, raw process biodiversity.
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Recall that this is defined in terms of natural kinds arising from some set of biologi-
cal processes. One such process is natural selection, so we can use process diversity
as a means of comparing organisms on the basis of adaptations. As Maclaurin notes,
however, limiting process diversity only to adaptations rules out properties that we
might think are useful but which are mere ‘biological epiphenomena’, such as the
ability of dung beetles to moderate blow-fly populations. Moreover, casting our net
wider to include such epiphenomena by broadening the definition of process
biodiversity appears only to return us to where we started, with nearly every conceiv-

able property counting as some sort of epiphenomenal property.

A different set of objections can be raised against raw anthropocentric biodiversity,
which is defined in terms of Quine’s concept of natural kinds as stemming from the
way in which humans pretheoretically perceive and classify the world into classes of
similar objects. This notion of biodiversity is explicitly anthropocentric, since it is
based on our ‘innate’ propensity for classification. Maclaurin illustrates some of the
problems stemming from this notion of raw anthropocentric biodiversity, such as its
inability to reflect non-obvious features that do not form part of pan-cultural
attributes of classificatory schemes. For example, many past (and some present)
cultures classified whales as fish, largely because of their fish-like appearance. Of
course, we now know that whales are mammals. Whales have not changed, but our
fish-category has. Clearly, our classificatory schemes are not pretheoretically fixed.
We can change them in the light of new knowledge. More fundamental objections
may also be raised against Quine’s conception of natural kinds, both on philosophical
grounds (Dupré, 1993, p. 277) and on biological grounds concerning the concept of
innateness on which it is based (Lehrman, 1970; Lickliter & Berry, 1990; Bateson,

1991; Maclaurin, 1998a4).

The third of Maclaurin’s three approaches to developing raw biodiversity is based on

what he labels raw structural diversity. Of his three approaches, this is the one of
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which Maclaurin is most dismissive. It is also the approach that comes closest to the
notion of biodiversity developed in Chapters 4 and 5. Raw structural biodiversity is

based on Lewis’ notion of natural properties. Of these Lewis says

Sharing of them makes for similarity, they carve at the joints, they are in-
trinsic, they are highly specific, the sets of their instances are ipso facto not
entirely miscellaneous, there are only just enough of them to characterise

things completely and without redundancy. (Lewis, 1986, p. 60)

As Maclaurin notes, the requirement of characterising without redundancy automati-
cally excludes disjunctive properties such as ‘being a mammal or a milk bottle’. A
sensible scheme of classifying the world already includes mammals and milk bottles,
and so a further classificatory rule based on ‘being a mammal or a milk bottle’ is
redundant. Furthermore, raw structural biodiversity offers the possibility of including
important epiphenomenal properties without also including ‘unnatural’ properties
such as ‘being 4.241.7 light years from Proxima Centaur?. Hence it can overcome at

least one of the major objections raised against raw process biodiversity.

The main objections against raw structural biodiversity that Maclaurin raises concern
the way it treats ecological categories such as ‘being a predator’. Lewis’ natural
properties are intrinsic. According to Maclaurin, based on Lewis’ notion of what
counts as an intrinsic property, ecological categories such as ‘being a predator’ do not
qualify. Loosely speaking, Lewis defines a property of an object as intrinsic if it
would still belong to that object unaccompanied—that is, if the object were in a /onely
world (Lewis, 1986; Langton & Lewis, 1998). Since ‘being a predator’ is a property of
an organism that depends on its relationship with other organisms, it is not an
intrinsic property in Lewis’ strict sense and therefore can not be included among

Lewis’ natural properties.

One possible solution to this problem is to relax Lewis’ definition of intrinsic to

include functional properties such as ‘being a predator’. There are two main theories
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of biological function (Sterelny & Griffiths, 1999). According to the etiological theory,
biological functions are explained in terms of their evolutionary origins. Under the
rival propensity theory, they are explained in terms of their present adaptive effects. So
the etiological theory implies that a lion possesses the predator property because its
ancestors were selected to kill and eat other animals, whereas the propensity theory
implies it is because the lion is well-suited to killing and eating other animals.
According to the propensity theory, a lion in a lonely world would no longer possess
the predator property because there would be no other animals in that world for the
lion to kill and eat. It would have no propensity for killing and eating other animals.
According to the etiological theory, however, a lion can still possess the predator
property in certain types of lonely worlds. These would be lonely worlds in which the
lion has a history; in other words, worlds in which the lion persists through time.
Admittedly, such worlds are not strictly lonely worlds, since the lion is accompanied
by its past and future selves (Langton & Lewis, 1998). Nevertheless, although
properties such as ‘being a predator’ are not strictly intrinsic according to Lewis’
definition, they are certainly not arbitrary. A suitably relaxed definition of intrinsic

can accommodate functional properties without admitting such ontological detritus

as ‘being 4.241.7 light years from Proxima Centaur? .

Maclaurin raises a second objection against ecological categories such as ‘being a
predator’. Because such categories are a matter of function rather than structure, they
are multiply realisable. This means that the single category ‘being a predator’ might
include a host of realisations that together represent a significant level of diversity

not represented by the category alone. As Griffiths (1997) describes the problem,

. the causal homeostatic mechanism of each ecological category is a
particular set of adaptive forces [which] are sensitive only to properties at
the level of task description, so properties at [lower] levels are not pro-

jectable in ... categories derived from the ecological level ... The same
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task can be performed in many ways at lower levels of description. (p.
234)

Here Maclaurin raises a serious and interesting issue about biological classification.
Ecological categories are generally more weakly projectable than, say, phylogenetic
categories.” However, they are projectable nonetheless. For example, if A and B are
closely related species, and C and D are not closely related but share an ecological
category such as ‘being a predator’, then we can generally be more confident about
predicting the attributes of B from knowledge of the attributes of A than we can be
about predicting the attributes of D from knowledge of the attributes of C. Never-
theless, despite the confidence level of predictions based on ecological categories

being lower, they are not zero.

Maclaurin’s objection can be further countered by considering ecological-historical
categories. If A and B are closely related and share an ecological category such as
being a predator, then the properties of A are more highly projectable onto B than if
they shared only the phylogenetic or ecological category alone. Ecological categories
may be multiply realisable, but history imposes constraints on the possible space of
forms for realising any particular ecological function (Griffiths, 1997). Predators
come in a wide range of forms, but the features of avian predators are quite consis-
tent despite their phylogenetic diversity—good eyesight, well-developed flying ability,
sharp claws and hooked beaks.”” On their own, ecological properties may be only
weakly projectable, but when combined with phylogenetic properties, they give rise

to highly projectable categories.

26 For arguments in support of this assertion, see Griffiths & Sterelny (1999) Ch. 11 and de Queiroz &
Good (1997).

27 As a more detailed empirical example, Faith (1989) demonstrates the repeated evolution of certain
morphological traits, in response to feeding mode, for many species of wading bird.
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A final objection to raw structural biodiversity is simply that Lewis’ natural properties
are not sufficiently abundant for characterising biological diversity. There are many
more intrinsic properties than there are natural properties, given that natural
properties occur only in fundamental physics (assuming everything else supervenes).
Hence biologically similar things are unlikely to share many more natural properties
than are biologically dissimilar things. Natural properties simply apply at the wrong

level of detail to be useful in characterising biological diversity.

Of the three forms of raw biodiversity discussed by Maclaurin, raw structural
biodiversity has some potential for further development. Turning it into a workable
concept would, however, require extending the range of properties used beyond
Lewis’ natural properties to include other intrinsic properties, as well as relaxing the
definition of what counts as an intrinsic property to include functionally-defined
properties such as ‘being a predator’. The result, I suspect, would look much like the
concept of biodiversity that I intend to develop in the following chapters. However,
this is a point I do not wish to pursue in detail. My approach to developing an
intrinsic concept of biodiversity will be quite different to that of Maclaurin. I plan to
look first at a more general measurable property, and then show how biodiversity can
be interpreted in terms of this property. Moreover, it is a universal, multilevel and, in

Lewis’ strict sense, intrinsic property: complexity.
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4 Complexity

More is different.
— Phillip Anderson

Complexity is a concept widely applied in discussions of biology, although not
without controversy (Castrodeza, 1978; Hinegardner & Engleberg, 1983; McShea,
1991, 1992, 19964, 19965; Yagil, 1985). Organisms and other biological systems are, it
seems, complex entities. If only we could somehow quantify or otherwise understand
biological complexity, we would perhaps better understand biology in general. The
controversial aspects of complexity are manifold. First there is the issue of the
origins of biological complexity. Why are living things complex compared to non-
living things? How do some organisms become more complex than others? A second
controversy relates to the notion of ‘progress’ in evolution; whether or not it occurs,
and the sense in which progress can be equated with increasing complexity. Although
there is little doubt that many present-day species are much more complex than early
prokaryotes, there is much doubt over assertions that there is some evolutionary
drive towards increasing complexity or that this increasing complexity can be
characterised in some meaningful sense as progressive (Gould, 1989, 1991, 1993;

McShea, 1991; Ridley, 1993).

A third controversy regarding biological complexity concerns mathematical and
computational approaches to understanding complex systems. The so-called ‘sciences
of complexity’ address problems in the biological sciences and other areas in which
‘complex adaptive systems’ play a fundamental role, and try to render difficult
problems in these areas tractable through the use of newly developed mathematical
techniques and modern computer technology. Much of this work has attracted
significant criticism, partly because of the imbalance between its excessive hyperbole

and modest successes (Horgan, 1995).
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None of these criticisms concerns my project. I make no claims for the origins of
biological complexity, nor for how complexity might change over time. Furthermore,
I do not advocate any particular approach to understanding complex systems. My
concerns are simply with the nature of complexity, its measurement, and its relation-
ship to biodiversity. In this chapter, I hope to develop some tools for understanding
complexity and to show that complexity is a well-defined and intrinsic property of
any system. In the following chapter, I will reinterpret biodiversity in terms of
complexity. In other words, in answer to the question What is biodiversity?, my answer
is biological complexity. 1f complexity is an intrinsic property of any system, then
biodiversity, construed as biological complexity, must also be an intrinsic property of
any biological system. First, however, I want to discuss an intuitive concept of

complexity.

4.1 An intuitive complexity concept

Virtually by definition, complex systems are difficult to describe. Indeed, the more
complex something is, the more difficulty we have in describing it. That is, the
description of a complex thing tends to be longer than the corresponding description
of a simple thing. This observation provides an intuitive and surprisingly useful
concept for thinking about complexity measures; namely, that the relative complexi-
ties of objects can be compared by comparing the lengths of some descriptions of
those objects. So, for example, if we wish to compare the complexity of a Volks-
wagen Beetle with that of a Boeing 747 passenger jet, we could compare a service-
manual description of the Beetle with a service manual description of the 747. By
doing this we could then determine that the 747 is considerably more complex than

the Beetle.

In carrying out such a comparison, it is obviously important that the descriptions be

at the same level of detai/ to make valid conclusions about relative complexity. If we
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compared a service-manual description of the Beetle with an encyclopaedia-entry
description of the 747, the former would probably be longer. However, whereas the
service-manual description of the Beetle would contain considerable detail about
minor parts such as the bonnet release mechanism and the windscreen wipers, the
encyclopaedia-entry description of the 747 might only contain details about the
aircraft’s dimensions, top speed, seating capacity and so on. It will ignore details
about its altimeter, yaw-angle control system and a host of other features relevant to
a service technician. In this case the description of the VW Beetle is longer than that
of the 747 only because it contains more detail, not because the Beetle is more

complex.

With two highly dissimilar objects, defining what we mean by a# the same level of detail
may prove problematic. Suppose we wish to compare the complexity of a VW Beetle
with that of the Matisse painting Les Poissons rouges (1911). What level of description
of this painting corresponds to the service-manual level description of a VW Beetle?
We could try describing Les Poissons rouges using the steps a colour-by-numbers copy
artist would use to reproduce the painting. Or we could describe it using the actual
brushstrokes and colour choices Matisse made in creating the painting. We could
even try scanning a photograph of the painting into a computer and applying the
latest image compression software to give a description in terms of a computer file
that we could send to a friend by e-mail. Clearly none of these is exactly analogous to
the sort of engineering description used in a VW Beetle service manual. Indeed it
appears that no such description exists, tempting us to conclude that the complexi-
ties of the two objects cannot be meaningfully compared in this way. Whereas
comparing the complexities of similar types of objects, such as VW Beetles and
Boeing 747s, is relatively straightforward, comparing the complexities of dissimilar
objects appears problematic. Later on we shall see that this problem is not as
intractable as it first appears. At this stage, it will suffice to observe that, provided the

objects in question are not too dissimilar, then we can make meaningful comparisons
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of their complexities by comparing similar level descriptions of the objects. More-
over, the more similar the two objects are, the more meaningful such a comparison
becomes and the more meaningful is our measure of their relative complexities based

on description length.

A further observation about this sort of complexity measure is that it tends to
become more accurate as we include more detail in our descriptions. Superficial
descriptions of a VW Beetle and Boeing 747 listing their colours, shapes and overall
appearances might lead us to conclude that their complexities are similar. Even a
description listing their major components (engine, wheels, windscreen, exhaust
system etc.) might be misguiding as a measure of complexity. Only when we come to
describing each at a sufficient level of detail, such as the sort of descriptions required
if we were to try to build each from scratch, do we begin to appreciate the significant

differences in complexity between the two objects.

One of the features of complex objects is that they can usually be described in a
number of different ways. Take, for example, copies of Shakespeare’s Julins Caesar
and the Barbara Cartland romance novel Bride to a Brigand. Since both of these are to
some extent the same sort of thing—stories written in ink on paper—we should be
able to make comparisons about their relative complexities. Which is more complex?
If we use a length-of-description technique to determine the answer, the outcome
will depend on the type of description we adopt. We could describe each in terms of
the physical location of every atom of which they consist, or in terms of the two-
dimensional patterns on their pages, or simply in terms of the texts themselves. In all
three cases we might find that Bride fo a Brigand is more complex, largely because it is
longer and physically bulkier than our copy of Julius Caesar. What we might really be
interested in, though, is the meaningful content of the stories. In this case we could try
to describe each in terms of features such as the number of characters, details about

each character, aspects of plot development, overall themes, interesting uses of
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language and the other sorts of elements studied by students of English. Once we
carry this out we will probably find that Julius Caesar is significantly more complex
than Bride to a Brigand. Clearly this sort of description-length definition of complexity
is not, on its own, well-defined unless we specify the sort of description to be
applied. In other words, we cannot talk about the complexity of something unless we
have some understanding of the sort of description-level attributes to which we wish

our notion of complexity to refer.

At this stage it seems like complexity is not a very intrinsic property. If, for every-
thing whose complexity we wish to measure, we first have to specify the type of
description to be applied, then it looks as if we are not measuring any strongly
intrinsic complexity-like property, only complexity with respect to some arbitrarily-
selected set of qualities. This, however, is not what I want. I want a strongly intrinsic
concept of complexity that can be used as a strongly intrinsic concept of biodiversity.

Later I hope to demonstrate how we can solve this problem.

Leaving these metaphysical questions aside for the moment, let us think of complex-
ity in terms of a metric—a mathematical function that we can use to measure the
amount of some property (complexity) possessed by any systezz. So if x is some
system, let C(x) be the complexity of x and let C(x;, y) be the complexity of the joint
system consisting of x and y. Well-defined mathematical measures tend to have

properties such as the following:
1. C(x) =2 0 (non negativity)
2. Ifx=y, C(x) = C(y) (reflexivity)
3' C(X))/) = C(j/, X) (SymmetrY)
4. C(x,9) = C(x) (accumulation)

5. ((x) + C() = C(x, ) (convexity).
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How then does description length fare in terms of the above properties? It can be
clearly demonstrated that, properly understood, a description length definition of
complexity satisfies all of them. It satisfies the test for non-negativity, since it is
impossible to write a description of negative length. It satisfies the test for reflexivity,
since identical objects can be given identical descriptions, which therefore have
identical lengths. It also satisfies symmetry, given that a description of the system
consisting of x and y is the same as a description of the system consisting of y and x.
It satisties accumulation, since the description of the system consisting of x and y is
at least as long as the description of x alone. Finally, it satisfies convexity, since the
description of the system consisting of x and y is no longer than the description of x

together with the description of y.

This last point is interesting. The reason the description of the system consisting of x
and y is generally shorter than the combined descriptions of each element considered
separately is that x and y may share some similarities. In other words, a joint
description of the two elements considered separately may contain some redundancy,
which can be removed without loss of completeness to describe the system consist-
ing of both elements. Using the expression C(x:)) to specify the amount of
redundancy in the system (x, y)—that is, the amount of complexity shared by x and
Jp—we can measure redundancy by C(x:)) = C(x) + C()) — C(x, ). If x and y are
identical, then C(x:y) = C(x) = C(j), whereas if x and y share no similarities,

Clx:y) = 0.

For example, consider once again our VW Beetle. Our Beetle is not more complex
by virtue of its having two rear brake drums instead of only one. Description length
can quite easily account for redundancy. A service manual description of a VW
Beetle, for example, would not include a separate entry for each rear brake drum.
Instead there would be merely one entry that covers both. This entry might take the

form of a detailed description of the right rear brake drum, together with a short
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statement such as “the left rear brake drum is a mirror-reversed copy of the right rear
brake drum.” This additional sentence can be made arbitrarily short, thereby
representing virtually no additional complexity. This suggests that we should not use
just any description to assess complexity, but the shortest or at least neatly shortest
possible description, given the existing language constraints. In other words, we
should remove all redundancy. So instead of including in our description of a VW

Beetle, “has one wheel with attributes {a,, a,, a,} and another wheel with

.oy

attributes {a,, @, ..., a,} and another wheel ...”, we should simply say, “has four

wheels with attributes {a,, @, ..., 4,}”. Whether there are four identical wheels or

el

only one will therefore have little bearing on overall complexity.

This issue of convexity, however, is not so straightforward. In some cases, descrip-
tion length does not appear to satisfy convexity. The description of a system
consisting of several elements can be longer than the combined descriptions of those
elements alone, because the elements can have relational properties. This is a feature
of complex systems in general. They are typically more complex than the complexity
of their parts would suggest. According to Anderson (1972), more is not just more;

more is different.

One of the ways around this problem is to consider relational properties when
measuring complexity. So the system (x, y) consists only of the elements x and y
without any relational properties, whereas the system consisting of x and y and
including all their relational properties p,, p,, ..., p, should be written as something
like (x, 9, p1s po P3 ---» P,)- For example, a working VW Beetle is in some sense more
complex that a pile of junk consisting of the parts of a VW Beetle. The elements of a
working VW Beetle comprise not just its parts but the relational properties between
those parts. In contrast, the pile of Beetle parts contains no significant relational
properties, only the single relational property ‘randomly assembled into a pile’. In

terms of description length, the description of a working VW Beetle would have to
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include more than simply a description of the parts that comprise that VW Beetle; it
would also have to include a description of how those parts go together. A descrip-
tion of a disassembled Beetle is therefore shorter then a description of a working

Beetle. By including all such relational properties, convexity is maintained.

This intuitive notion of measuring the complexity of an object by the length of a
description of that object seems to be very useful. It is perhaps unsurprising,
therefore, that description length, loosely defined, forms the basis for all complexity
measures. The differences between measures arise in large part from adopting
different types of descriptions, or more specifically, different representations. We will
now look in more detail at some of these specific complexity measures. From a
mathematical perspective, the simplest types of complexity measures to consider are
those that apply to strings of symbols. And strings of symbols are exactly the sort of

objects dealt with by the mathematical theory of information.

4.2 Information content as a measure of complexity

Information theory officially began in 1948 with the work of Bell engineer Claude
Shannon (Shannon & Weaver, 1949). Shannon was concerned with quantifying
information for the purposes of better understanding how messages could be
efficiently transmitted over noisy communication channels. The technical concept of
information applied in information theory is quite different to the everyday concept
of information as ‘meaningful message content’. In information theory, the meaning
of any message is explicitly ignored. Instead, information is identified more with the
length of the message or the ‘cost’ of transmitting it. Hence the amount of informa-
tion in a message depends not only on the message itself but on the communication

system in which the message is transmitted.
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A simple communication system considered by Shannon consists of an information
source that transmits a message chosen from a finite set of characters in the form of a
signal over a channel to a recezver. The channel can also introduce noise, which changes
the signal at the receiver from that sent by the source. In the context of such an
arrangement, Shannon defined information as a measure of the reduction in

uncertainty at the receiver as a result of transmitting the message.

Suppose the source can only transmit two types of characters, say ‘0’ and ‘1°, and
from the perspective of the receiver, each of these has equal probability of being
transmitted. Assuming no noise, transmission of a single character therefore reduces
the uncertainty at the receiver by half. Before transmission there were two possibili-
ties—‘0” or ‘I’—whereas after transmission there is only one possibility defined by
whichever character was sent. If, instead of one character, we consider a message
consisting of three characters, then the number of possible messages that can be sent
is eight (000, 001, 010, 011, 100, 101, 110 and 111). Transmission of a particular
message, say ‘110°, therefore reduces the uncertainty by a factor of eight. The
information measure defined by Shannon takes the logarithm of the reduction in
uncertainty as an estimate of the information content of the message. So in the above
example, the quantity of information sent is log,8. Although the logarithmic base
used is arbitrary, it is conventional to use base two, in which case the unit of
information is the ‘bit’ (a contraction of binary digit). Hence the above message ‘110
consists of three bits of information. Indeed for any string of equiprobable binary
digits, Shannon’s information measure corresponds exactly with the length of the

string transmitted.

One of the nice aspects of considering information in terms of reduction in uncer-
tainty is that is can account for redundancy. If I send you the e-mail message “I
WILL SEE YOU INSIDE THE ROYAL RANDWICK HOTEL THIS EVENING

AT 7 O’CLOCK?”, I have transmitted just as much information as if I had sent the
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much more compact “C U IN ROYAL 7 2NITE”. This is because both messages
reduce your uncertainty about where and when I intend next to see you by the same
amount. There are, however, some penalties associated with the second message
form. One is that you have to do more work to understand the second message. For
example, you have to know that ‘C’ and ‘U’ can be translated into the common
English words ‘see’ and ‘you’, respectively, and you have to extract from the context
of the message that this is how I intend you to understand them. A second penalty is
that the second message is much more prone to being misunderstood, especially if
noise happens to be introduced into our communication system. Suppose the e-mail
system has the annoying habit of occasionally replacing individual characters by ‘N’
in all its messages. The first message might then be received by you as “I WILL SEE
YOU INNIDE THE ROYAL RANDWINK HOTEL THIN EVENING AT 7
O’CLONK”. As a result you might exchange a few witty remarks on my poor
spelling and/or typing skills upon meeting me at the intended time and place. If,
however, I chose the more economic message format, you might receive a message
such as “C U IN ROYAL 7 2NINE”, in which case I might end up waiting around
for almost two hours while you drink with other friends at the Doncaster and discuss

my odd habit of setting overly precise meeting times.

As the above example shows, redundancy in communication systems is not always a
bad thing. It can reduce the amount of work required by the receiver to decode the
message and provide a way of making the message robust to noise. Indeed ‘error
correcting codes’ are used extensively in communication systems expressly for this
purpose. In many cases, however, redundancy in a message can cost time and money.
If I want to e-mail you a large text file, using a file compression program such as
WinZip can reduce the size of the file by removing some of its redundancy, thereby
reducing the amount of time and money it costs me to send it to you. Provided you
also have a copy of WinZip on your computer, you should be able to decompress the

file and read it. The key aspect of this strategy is it requires that we both have a copy
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of WinZip. That is, not only must the source be able to encode the message, but the
receiver must know how to decode it. Redundancy is therefore not a property of the
message itself but an aspect of the entire communication system. There is a joke
about a country pub in which the patrons have heard every joke so often that instead
of bothering to tell an entire joke, they just refer to it by a number (upon which the
other patrons laugh).”® In other words, how redundant a message is depends not just

on the message but on how much the receiver already knows.

A system’s ‘information content’ can be used as a measure of its complexity. If the
system is itself a message string, then assuming equiprobable digits and ignoring
redundancy for the moment, we need only consider the length of the string. The
string ‘1011” contains four bits of information, whereas the string 01101010
contains eight bits. The second string is in some sense twice as complex as the first
because it is twice as hard for us to specify. Considerations of redundancy may lead
us to reduce the complexity of some highly ordered strings. So, for example, the
string ‘11111111” consists of eight bits, but it is in some sense less complex than the
eight-bit string ‘01101010°, because is can be replaced by the simple instruction
“write ‘1’ eight times”. To account for this sort of redundancy, we need a different
complexity measure, one based not simply on information content but on some
notion of ‘true information content’; that is, on information content with all
redundancy removed. However, we have just seen that redundancy is context
dependent, so how should we remove all redundancy in a consistent and well-

principled manner?

28 In one version of this joke, a visitor to the pub calls out ‘63’ and nobody laughs because he didn’t
tell it right. In another version, everybody laughs hysterically because it was one they hadn’t heard
before.
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Algorithmic information content (AIC) was introduced in the 1960s as a means of
measuring the ‘true information content’ of a message string. It is a measure that can
account for all redundancy in a message string without making any assumptions
about the knowledge of a receiver. Consider a so-called #niversal computer—an
idealised all-purpose computer with infinite storage capacity. Consider also a message
consisting of a string of symbols taken from a finite alphabet. The AIC of the string
is then defined as the shortest program that can be run on the computer which will

cause the computer to print out that string and then stop.

This definition of AIC is quite useful for measuring the complexity of certain
computational problems. This type of complexity measure is known as Ko/wogorov
complexity, after the Russian mathematician instrumental in its invention. The
advantage of Kolmogorov complexity is that it effectively addresses the issue of
redundancy. Instead of a program that says “print ‘1’ then print ‘1’ then ... then print
‘1’ then stop”, we could write a program that says “print ‘1’ eight times then stop”.
The Kolmogorov complexity of a string of eight 1s is something like the length of
the second program rather than the former. More typically, this complexity measure
is not used as an absolute measure applied to individual strings, but as a way of
understanding how the complexity of a class of computational problems increases as
the size of the problem increases. For example, if we make the string of 1s longer
and longer, its Kolmogorov complexity remains almost constant. Thus, regardless of
its length, a highly ordered string can be described by a short program and has little
Kolmogorov complexity, whereas the Kolmogorov complexity of a random string

increases in proportion to the length of the string.

The definition of Kolmogorov complexity in terms of the length of a computer
program seems to raise a problem of language dependence. A program written in one
programming language will typically differ in length from a program written in

another language. Indeed, the same criticism seems to apply to any sort of descrip-
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tion-length definition of complexity. How can we be sure that, in trying to compare
the complexities of different systems, the outcome does not depend on the choice of

language?

The solution to this problem involves modifying the programming language in each
case so as to minimise the expected value of the code word lengths. It has been
proved that for any universal computer, there exists a slightly modified universal
computer such that the average algorithmic information content over a class of
systems is essentially equal to the Shannon information content over that class of
systems (Gell-Mann & Lloyd, 1996). Once we have specified the class of systems we
are dealing with, the residual algorithmic information content of a particular member
of that class is then given by the length of the code assigned to it by the modified
universal computer. In short, there is a technique for removing language-dependence
from the overall measure, thereby reducing the Kolmogorov complexity of any
system to a universal metric. Just as we can measure the information content of a
message with a universal metric, so too can we measure its Kolmogorov complexity.

In both cases the same unit applies, namely the bit.

To illustrate how Kolmogorov complexity can be applied to physical systems,
consider a box containing helium atoms. A simplified example of this is illustrated in
Figure 7a below. One way of measuring the complexity of this system is to measure
the amount of information I would be required to send to you in order for you to
reproduce this system almost exactly. I would therefore have to specify the location
of every atom in the box to some specified degree of accuracy and using some agreed
coordinate system, and then transmit this information to you. If the atoms were in a
gaseous state and randomly distributed within the box, then my message would look
like a string of mostly random numbers. Now consider a second box in which every
helium atom is crammed into one corner, as shown in Figure 7. I could again

specify the location of each atom using the same technique as before, but my
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message would contain a high degree of redundancy. This is because I can use the
fact that all the atoms are crammed into one corner of the box to reduce the length
of the message I need to send to you. For example, if the corner into which all the
atoms were crammed corresponded to the origin of my coordinate system, then I
could simply reduce the number of digits required to specify the location of each
atom. In a sense I have specified a much shorter algorithm for you to use in

reconstructing the box of atoms.
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Figure 7: Examples of highly disordered (a) and ordered (b) systems.

The measure of complexity used in the above example is akin to a measure of the
entropy of the physical system. This is far from coincidental, since there are deep
links between information theory and the thermodynamic concept of entropy.
Indeed the logarithmic equation for measuring information proposed by Shannon is
analogous to an equation used to measure the entropy of a physical system. What this
implies is that highly entropic systems—those with a lot of entropy—also have, in
the sense discussed above, a lot of information content and hence a lot of complex-
ity. So if we took a cockroach and heated it up in the absence of oxygen, thereby
turning it into a gas, the gaseous cockroach would have much more entropy and

therefore much more Kolmogorov complexity than the living cockroach.

There is an obvious problem here. This is that complexity as normally understood

does not usually apply to systems with a highly random arrangement of elements.
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The gaseous cockroach in the above example is more entropic than our living
cockroach, but it is in some sense much less complex. There is something important
about the way the components of a living cockroach are arranged that is lost when
we turn the cockroach into a gas. A cockroach has lots of internal relational proper-
ties between its elements. When we turn the cockroach into a gas, we lose these
relational properties. Indeed neither highly ordered systems such as crystals nor
highly disordered systems such as gases are complex in the sense that a cockroach is
complex. The sort of measure we require to differentiate between simple and
complex systems is not the same as the measures we can use to differentiate between
ordered and disordered systems. Unfortunately, the more random a string, the higher

is its Kolmogorov complexity; which is almost the opposite of what we want.

There is a second, less obvious problem with Kolmogorov complexity as a practical
complexity measure. Consider the following example. There is a relatively short
program that will print out digits 1,000,001 to 2,000,000 of the decimal expression of
the number 7. The Kolmogorov complexity of these one million digits is therefore
quite low. However, if I simply gave you these digits and asked you to find the
shortest algorithm that would print them out, you would have little idea of where to
start looking. The digits themselves appear truly random. They will pass any statistical
test for randomness you might subject them to in order to discern a pattern. You
might therefore conclude that the only suitable algorithm is “print ...” followed by
the string itself; in other words that the Kolmogorov complexity for this string is
maximal. This problem is an illustration of a curious property of Kolmogorov
complexity: its uncomputability (Gell-Mann, 1994). What this means is that, for a
given string, there is no algorithm that will produce the shortest possible program
that will output that string and hence return a value for its Kolmogorov complexity.
In other words, even if we devise a program that efficiently prints out a string by
accounting for some of the string’s redundancy, we can never be sure that this is the

most efficient program that exists.
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There are other types of complexity measure that overcome the uncomputability
problem by placing limits on the set of algorithms from which the minimum length
algorithm is to be selected. Despite this advance, both Kolmogorov and these other
types of complexity measure are ‘entropic measures’; that is, they are maximal for
truly random strings. Although they are useful for assessing the difficulty of certain
computational problems, they fail to capture the sense of complexity we want to use
as a measure of biodiversity. What we need is a different sort of complexity measure;

one based on a different sort of system representation.

4.3  Alternative complexity measures

To overcome the above limitation of informational measures of complexity, several
alternative measures of complexity have been proposed for use in a range of
disciplines (Cornacchio, 1977; Grassberger, 1988; Lofgren, 1977; Papentin, 1980).
The key feature of these alternative complexity measures is that the random parts of
the system in question—that is, those highly entropic parts that do not contribute to
what we consider to be the system’s overall complexity—are dealt with in such a way
that they contribute little to the final complexity measure. As mentioned previously,
all complexity measures, even those based on measuring information content, require
us to measure the length or some other size aspect of a representation of the system
in question. For a purely informational measure of a string of symbols, the represen-
tation is the string itself. For Kolmogorov complexity, the representation is the
shortest computer program that will output the string. Neither of these representa-
tions proved appropriate. However, if we adopt a different representation, we can
devise a complexity measure that captures the sense of complexity in which we are

interested.

Consider the previous example of a box filled with helium. In this example I was

trying to devise a message that I could send to you in order for you to recreate the
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system. Since I wanted you to recreate the system almost exactly, I went about
measuring the position of each helium atom and putting this information into my
message. Suppose instead that I was not interested in the exact position of each
helium atom. Suppose that all I wanted you to reproduce was a box filled with
helium. In this case the message I would have to send to you in order for you to
reproduce such a box would be very small. All I would have to say is “build a box of
dimensions x X y X zand fill it with 4 amount of helium”. I could then be pretty sure
that you would produce a box of helium atoms very much like mine. It would not be
exactly the same, since the positions of the atoms in my box would be quite different
to those of the atoms in your box. Nevertheless, the representations of each box as “a
box of dimensions x X y X z filled with 4/ amount of helium” would be the same.
Moreover, this representation is now much smaller than the previous representation
that specified the position of every atom. Hence the complexity of such a system

measured as the length of this representation is also quite small.

Consider an example of a complexity measure based on the length of a simplified
representation. The type of complexity is known as ‘regular language complexity’
(RLC), and is applied to character strings. The measure is applied not to particular
strings but to the class of strings to which a particular string might belong. Any string
can be classified in terms of the rules governing its generation. That is, the string may
be constrained by certain ‘grammatical’ features. For example, in a portion of English
text, the character following the character ‘QQ’ is almost always ‘U’, whereas the
character ‘V’ is commonly followed by ‘E’ or ‘O’ but almost never by ‘N’. Similarly,
the phrase ‘Once upon a’ is commonly followed by the word ‘time’. These ‘gram-
matical’ rules can be represented using a ‘deterministic graph’. To illustrate the idea
of a deterministic graph, consider the example of a string of Os and 1s whose only
grammatical rule is “the sequence ‘11’ is always followed by ‘0. In other words, the

string will never contain three or more 1s in a row. An example string of this class is
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‘1011001101011000’. The deterministic graph for all strings of this class is illustrated

in Figure 84 below.

1
0 . 1
a

b

Figure 8: Deterministic graphs for sequences of binary digits (a) with the
grammatical rule “11’ is always followed by ‘0 and (b) with no grammatical
rules.

To understand how a deterministic graph encodes a grammatical rule, try writing out
a sequence of 1s and Os using the graph as a guide. Using any node as a starting
point, select one of the paths leading from the node at random to generate the first
digit, using the path label indicated. Following this path takes you to another node
(or in some cases the same node). The second digit is generated by taking one of the
available paths from this second node to a third node and so on. Applying this
process using the graph of Figure 8/ will generate a sequence of digits in which the
grammatical rule is obeyed; that is, in which ‘11’ is always followed by ‘0’. The class
of sequences in which no grammatical rules apply; that is, in which the selection of
digits is random and completely unconstrained, can be represented by the graph of

Figure 8.

The regular language complexity of a class of sequences is measured by the number
of nodes in its deterministic graph. As the above graphs show, under this measure,

strings of binary digits constrained only by the rule ““11” is always followed by ‘0™
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are three times as complex as purely random strings. Strings of binary digits repre-
senting ASCIT” coded English sentences would be constrained by a large set of rules
pertaining to permissible letter combinations, words, word combinations, English
grammar and so on. Such strings would thus require a very large graph for their full

representation and would have a correspondingly large measure of RLC.

Although RLC only captures the complexity of the string’s ‘grammat’, not of its
meaningful content, it provides a practical example of how the right sort of represen-
tation can adequately account for the entropy problem that afflicted complexity
measures such as Kolmogorov complexity. This sort of simplified representation is
exactly what was being used in the previous example comparing the complexity of a
VW Beetle with that of a Boeing 747 aircraft. If I wanted you to recreate a VW
Beetle I could, as in the box of helium example given previously, measure the
position of every atom in the Beetle and transmit this information to you. However,
the vast majority of this information is not required to produce a working VW
Beetle. The exact position of every iron atom in the steering column is not particu-
larly useful information. From the perspective of how difficult it is to reproduce a
working VW Beetle, this information is simply not relevant, because many combina-
tions of atoms are adequate. What would be more useful and efficient is to specify
the dimensions of each part, its materials, how all the parts fit together and so on.

This brings me back to the sort of service-manual description considered previously.

Suppose now that instead of a VW Beetle I wanted you to recreate a cockroach.
Again I would not need to transmit the position of every atom in the cockroach,
since the exact position of every atom is in many cases not relevant to producing a

working cockroach. Nevertheless, the amount of information that would have to be

2 American Standard Code for Information Interchange.
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transmitted in order for you to reproduce a working cockroach would be very large.
Even if I disassembled the cockroach and accurately measured every part I could
find and transmitted this vast amount of information to you, it is doubtful in the
extreme that you could successfully reproduce a working cockroach. You might
successfully produce an inanimate replica of a cockroach, but to reproduce a working
cockroach from scratch would require at least a vast extension to existing scientific
knowledge about basic insect physiology. Even supposing that such knowledge were
available and reproduction from scratch of a working cockroach were feasible, the
amount of information that I would need to send to you to effect this task, com-
pared to that for a VW Beetle, would be truly mind boggling. This is the sense in
which biological organisms are complex. The complexity of a VW Beetle is impres-
sive compared to that of a bicycle, and that of a Boeing 747 is more impressive still,

but all of them are dwarfed by the complexity of a single cockroach.

4.4  The metaphysics of complexity

Is complexity an intrinsic property? Is it, like mass, a property that something
possesses even in lonely worlds? Is it, like beauty, in the eye of the beholder? Or is it
something in between? As we have seen, to measure the complexity of a system, we
first have to generate a representation of the system, and then measure the size of
that representation. Complexity is therefore representation-dependent; the sort of
measure we end up with depends on the sort of representation we choose. Unless 1
can specify some way of ‘privileging’” one type of representation over all others, we
are free to choose whatever representation we want. What we are left with is not
complexity as a strongly intrinsic property, but some arbitrarily-defined version of
complexity. How much complexity something has would not only depend on the
thing itself but on the way we choose to look at it. To an entomologist, a cockroach

might be complex, but to an echidna it is just one more type of food.
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Many authors accept the thesis that complexity is not a strongly intrinsic property, or
at least that there are many different types of complexity, none of which can be
singled out in some principled manner. Lofgren sums up this position in terms of the

representation-dependency of complexity.

... complexity [should] be associated with descriptions, rather than being

thought of as an intrinsic property of objects. (Lofgren, 1977, p. 197)

Kurths and Witt also emphasise the contextual nature of complexity ...

It is important to recognise that complexity measures are contextual, i.e.
they cannot be defined universally but depend on some context. (Kurths
& Witt, 1994, p. 191)

... while Cornacchio emphasises its observer-dependence.

the complexity of a system is relative to an observer’s knowledge of the
system ... to the neurophysiologist the brain ... is certainly complex ...
while to a butcher, a sheep brain is simple, since he has to distinguish it

from only, say, 30 other meats. (Cornacchio, 1977, p. 221)
Mclntyre bluntly denies complexity any intrinsic status.

. complexity is derivative rather than inherent. Complexity exists not
merely as a feature of the world, but as a feature of our attempts to un-
derstand the world. Complexity, in short, is inextricably bound up with

your point of view. (Mclntyre, 1998, p. 28)

Should we accept this position, or is there some way of formulating complexity that
makes it a strongly intrinsic property of some systems? My aim is to show the latter.
Although complexity is representation-dependent, such that different representations
result in different complexity measures, some of these representations may be ‘better’
than others when judged according to some sensible criteria. If we can pick out a
single measure from the alternatives using these criteria, the choice of representation
is no longer arbitrary, and we can perhaps establish that the resulting measure is

based on some strongly intrinsic property. To demonstrate that complexity is a
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strongly intrinsic property, therefore, I need to specify some sensible criteria for

picking out a single privileged representation and ruling out the alternatives.

4.5  Effective complexity

The sort of intrinsic complexity measure I have in mind is one based on a description
of a system that captures all its perceivable regularities. The property defined by such
a measure is intrinsic because there is no room for making subjective decisions about
what counts as a regularity and what does not—all regularities are counted. To
illustrate what I mean by ‘all perceivable regularities’, consider the previous example
of generating strings of symbols based on pre-defined grammatical rules. For these
systems, we can exhaustively list every rule governing their regularities, if only
because we specified such rules prior to creating the system.” There is no room for
arbitrary decisions about what does and does not count as a regularity in such
systems, because the systems have been created with all their regularities already

specified.

To define a measure of complexity based on ‘all perceivable regularities’ for less
contrived examples, we need to specify a well-defined procedure for determining
what does and does not count as a regularity of any given system. Gell-Mann and
Lloyd (1996) propose such a procedure. What this procedure gives us is a way of
privileging some representations over others in terms of how much of the regularities
of the system each describes. Complexity is then measured by the length of the
representation that most concisely describes the maximal set of regularities. This they

call ‘effective complexity’.

3 Even though a particular string might happen, out of pure chance, to posses a small number of
regularities that cannot be accounted for by the rules governing its generation, such regularities play a

86 Biodiversity: its measurement and metaphysics



The idea that some representations are better than others can be made precise
through the definition of ‘total information content’. This is the sum of the Kolmo-
gorov complexity of the representation we are using to approximately describe the
system, and the information left over that is required to fully specify the system
(much of which is residual entropic or Shannon information). The best representa-
tion is the one that minimises the information content of the representation with the
constraint that it also minimises total information content. In other words, the best
representation uses all law-like regularities of the system to be both maximally
descriptive and maximally concise. It contains no redundancy and is otherwise no
longer than it needs to be (otherwise the complexity measure would not be minimal),
but neither is it overly simple in the sense that it fails to describe certain regularities
of the system (otherwise the total information content would not be minimal).
Expressed another way, the complexity of a system can be thought of as the amount
of compressible information possessed by the system, once that information has

been maximally compressed using a Kolmogorov-type procedure.

For complexity measures of physical systems, the constraint on minimising total
information content automatically rules out spurious representations, such as
specifying the system by the distance of every component from Proxima Centauri.
This automatically overcomes the problem encountered in the previous chapter
when discussing raw biodiversity, namely how to decide what properties to use in
determining differences among groups of entities. The constraint on minimising total
information content means that a representation based on a set of scientific theories
that concisely represent certain regularities in the system is better than an atheoretical
representation or one based on only a crude understanding of the system. Indeed the

more we know about the system in terms of being able to concisely express some of

small part in any complexity measure and become vanishingly small as we extend the measure to
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its attributes, the closer is our complexity measure to an idealised effective complex-
ity measure derived from a representation based on everything there is to know

about the system.

The effective complexity of any object is an intrinsic property of that object in Lewis’
strict sense. It does not matter what we think of that object, nor what its relation-
ships are with any other objects; its effective complexity is an intrinsic property that
can be objectively measured. Our complete and maximally concise representation of
the object, and hence our measure of its effective complexity, would be the same
length regardless of whether or not the object existed in a lonely world. Any
representation that is not the same length is either not complete or not maximally
concise. Of course, we might not exist in such lonely worlds to construct a represen-
tation and so measure the object’s effective complexity, just as we might not exist to

measure its mass, but the property itself would still exist.

Such an abstract idea as a complete and maximally concise representation can be
better understood with an example. Let us call C our complexity measure, which is
simply the information content of our representation, and § the residual information
required to fully specify those aspects of the system not already expressed in C. The
total information content, say 7, is defined simply as T'= C + §. Now take our VW
Beetle. A measure for C based on a representation in which the position of every
atom in the Beetle is specified would leave nothing left to specify, so then we would
have § = 0 and T'= C. This representation includes no theories about any regularities
in the positions of the atoms of the VW Beetle. Hence C is very large, and so is T.
Now we ask ourselves, can we specify a representation that reduces C and/or T?

Clearly we can. We know that the steering column, for example, is made from steel

strings of infinite length.
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and has a specified set of dimensions. We can therefore predict the approximate
location of a large number of iron and carbon atoms, and therefore reduce the
amount of information required to exactly specify their locations. Using this
knowledge allows us to produce a new representation that reduces C. We still have

S =0and T = C, so we have simultancously reduced C and T.

If we keep modifying our representation by including everything we know about VW
Beetles, we will continue to decrease C while simultaneously decreasing T. All the
time, §' = 0. Eventually, we will reach the limit of our knowledge and be unable to
turther reduce C while keeping § = 0. Now we ask ourselves, can we further reduce
C without making T any bigger? Clearly we can. We have no theory that allows us to
concisely express the exact location of every air molecule in the left front tyre,
because these molecules are distributed randomly, at least within a bounding toroidal
envelope. Their locations are still specified in C, but only because we had to measure
them. In other words, most of the information required to specify the location of
every molecule in the left front tyre is incompressible. If we now take this informa-
tion out of C and put it in §, we can further reduce C without increasing the size of
T. Hence we again have a better representation. We could not do this for aspects of
the VW Beetle that have a high degree of regularity because doing so would decrease
C while keeping T constant, whereas if we know about the regularities, we can
actually do better than this and decrease C while also decreasing T. If we keep
moving all the incompressible information from C to S, we eventually come up with
a minimised value for C, with the constraint that T is also minimised. Moreover, the
more knowledge we include about VW Beetles in our representation, the closer is
our complexity measure to this ideal measure based on a representation that includes
all the predictive theoretical knowledge about the structure of VW Beetles that could

ever exist.
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How would such a complexity measure apply to organisms? Obviously, we could
carry out the same sort of analysis for a cockroach, but in that case we are not even
close to possessing a full theoretical understanding of cockroaches. Nevertheless, it
seems more than plausible that such a full theoretical understanding is possible, at
least in principle. If this is indeed the case, the notion of an intrinsic complexity
measure of cockroaches is well-defined, even though our existing complexity
measures are at best only poor approximations of this intrinsic complexity. And
despite the fact that we can measure such complexity only very approximately, we
can nevertheless chose between competing complexity measures on the basis of how
much theoretical knowledge they embody. Even on the basis of such crude meas-
ures, we can easily recognise that a cockroach really is much more complex than an
equivalent mass of gas or crystalline solid. The amount of possible theoretical
knowledge about either gases or crystals is relatively small. Gases have a lot of
entropy and therefore a lot of total information content, but they have little complex-
ity because there is virtually no theoretical knowledge that can be used to specify the
state of their constituents more concisely than a complete description. Crystals, on
the other hand, are easily described, so both their total information content and
complexity are low. In contrast, there is an enormous amount that can be said about
a cockroach that enables us to compress much of its information content. A

cockroach may possess less entropy than a gas, but it possesses vastly more complex-

ity.
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5 Biocomplexity

It is interesting to contemplate an entangled bank, clothed with many plants of many
kinds, with birds singing on the bushes, with various insects flitting about, and with
worms crawling throngh the damp earth, and to reflect that these elaborately con-
structed forms, so different from each other, and dependent on each other in so complex

a manner, have all been produced by laws acting around us.

— Chatrles Darwin

5.1  Complexity as a measure of biodiversity

At the core of my project is a simple proposal: that biodiversity be equated with
complexity—in particular effective complexity. I have called this type of biodiversity
biocomplexity. Biocomplexity is simply the effective complexity of any biological
system. In this and the following chapter, I hope to flesh out this concept of
biocomplexity and illustrate how it can be used to resolve some of the problems that
beset biodiversity. Principally, biocomplexity is real. The biocomplexity of any living
system is a strongly intrinsic property of that system. It does not depend on what we

think of it.

To justify the proposal that biodiversity be reformulated in terms of biocomplexity, I
need to do more than simply list its advantages. I need at least to show that biocom-
plexity somehow corresponds to what we want biodiversity to mean. First, consider
the similarities between the two concepts. Both diversity and complexity capture
notions of heterogeneity; the unlikeness or richness of constituent parts. The inability
to adequately account for heterogeneity is central to the criticisms already raised
against species richness as a concept of biodiversity. Dissimilar species should
constitute more diversity than similar species. Likewise, the notion of redundancy
embodied by the concept of effective complexity accounts for the degree of

heterogeneity within a system by excluding multiple descriptions of any similarities.
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Of course, when biologists (among others) use the terms ‘diversity’ and ‘complexity’,
they rarely describe exactly the same thing. Lawton (1997), for example, uses
‘ecological complexity’ to denote something like the extent and integrity of ecological
functions, and ‘biodiversity’ to denote species richness. These are two quite distinct
concepts. Nevertheless, something like effective complexity is the kind of property
that many biologists and conservationists seem to be referring to when they attempt
to define biodiversity. A few examples from both scientific and popular publications

can be found where the link between the two is explicit, such as:

Biodiversity has been seen as the total (and irreducible) complexity of all
life, including not only the great variety of organisms but also their un-

derlying behaviours and interactions. (NHM, 1994)

Similarly, Levin (1996) relates the appropriate target property for a biodiversity

measure to the ‘functional complexity’ of ecosystems.

In the measurement of biodiversity, one must recognise the diversity
within species as well as the diversity in terms of number of species, or
do away with the notion of species entirely in favor of ‘continuum’
measures of the genetic and functional diversity of communities. Such
continuum measures are more robust and probably more nearly repre-
sent the functional complexity of the system and its ability to respond to
perturbations. (p. 279)

Hence, at least in some cases, the concepts of biodiversity and complexity are not

particularly distinct.

A survey by Takacs (1996, p. 46-52) of eminent biologists’ opinions on what
‘biodiversity’ means to them is revealing. Many of the given definitions of biodiver-
sity are vague, covering “the living resources of the planet” (Ehrlich), “the diversity
of living things on the face of the earth” (Iltis), “the diversity of life in all its manifes-
tations” (Erwin) and “the richness of life” (Noss). More explicit definitions, however,

sound a lot like effective complexity. Lovejoy describes biodiversity as “diversity at
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all levels of organization,” while for Falk it is “the dimension of difference at

multiple levels of organization.”

The most explicit definitions of biodiversity focus on these multiple levels of
biological organisation, with particular emphasis on the three levels already men-

tioned: genes, species and ecosystems. Wilson (1996), for example, offers

Biodiversity is defined as all hereditarily based variation at all levels of
organization, from the genes within a single local population or species,
to the species composing all or part of a local community, and finally to
the communities themselves that compose the living parts of the multi-

farious ecosystems of the world. (p. 1)

whereas May (1994) asserts that

Biological diversity exists at many different levels, from the genetic di-
versity within local populations of a species, or between geographically
distinct populations of the same species, all the way up to communities

or ecosystems. (p. 13)

Several consistent themes emerge from these attempted definitions. Biodiversity, it

seems,

1. includes notions of organisation and interaction as well as heterogeneity,
2. covers many (perhaps all possible) levels of biological organisation, and

3. 1s an intrinsic property.

Whereas the first and second points are made explicit in many of the above quota-
tions, the third is implied by phrases such as May’s “exists at many different levels.”
Not only is biodiversity something that exis#s independent of what we think of it, it
manifests itself at multiple levels, some of which we have yet to discover. Biodiver-

sity therefore has, in the words of Michael Polanyi, “the capacity ... to reveal itself in
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unexpected ways in the future.” Biodiversity is, in short, an intrinsic property of the

world.

Biocomplexity, as I have shown, has all of the above three attributes we want from a
concept of biodiversity. Recall that the biocomplexity of a biological system is
measured by the length of a complete and maximally concise description of the
regularities of that system. As such, a measure of biocomplexity must include all
possible heterogeneity, organisation and interaction within the system. Otherwise the
description on which it is based would be either incomplete or not maximally
concise. Moreover, biocomplexity is an intrinsic property of any system, since it is
based on a single, well-defined” and privileged system representation. Hence
biocomplexity seems like the right sort of concept for understanding biodiversity. In
the following section, I hope to show why any reasonable biodiversity measure based

on a more weakly defined target property could not be strongly intrinsic.

5.2  The uniqueness of biocomplexity

I have adopted the term biocomplexity for several reasons. One is to provide a concise
means of referring to the concept of biodiversity based on effective complexity.
Another is simply to delineate the concept from the glut of alternative biodiversity
concepts already discussed. There is, however, a third and stronger reason. This is
that biodiversity, as 1 see it, is a misnomer. Brodiversity is not about diversity but about
complexity. The concepts of diversity and complexity, although similar in many respects,
are not exactly the same. In particular, biodiversity is an intrinsic property of any

biological system (or at least that is the sort of property we want it to be), and yet, as

31 Well-defined in the sense that there exists a well-defined procedure for generating the appropriate
system representation, even though full execution of this procedure may be hopelessly impractical.
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I hope to show, no concept of diversity weaker than effective complexity itself could

possibly be intrinsic.

Despite asserting that biodiversity is a misnomer, I am not advocating that it be
expunged from the popular lexicon and replaced by biocomplexity. Biodiversity is too
deeply embedded for that, whereas biocomplexity has already been coopted for use in
the application of complex systems theory to biological systems.” Biodiversity is a
useful and acceptable term. As a concept for use in conservation efforts, however,
we should recognise that what we mean by biodiversity, if we are talking about some

intrinsic feature of the world, is necessarily biocomplexity.

Recall the objection raised in Section 3.3, when discussing raw biodiversity, against a
theory-free measure of diversity. Without any theory to discount ‘unnatural’ proper-
ties such as ‘being 4.2+1.7 light years from Proxima Centaur? or ‘being neither an
aardvark nor an aeroplane’, any two objects are both similar and dissimilar in
infinitely many ways. Hence a theory-free measure of diversity is impossible. To
construct a sensible diversity measure, we need to limit what counts as a property by
considering only those properties that stem from theoretical knowledge about the
objects in question. We were still left with a problem, however; that of deciding
which theories to use. How do we decide which theories are unnatural and which are
not? How can we decide between ‘appropriate’ theories like evolutionary biology,
under which we might derive a property such as ‘sharing a recent common ancestor’,
and inappropriate theories like astrology under which we might derive a property
such as ‘born under the sign of Scorpio’ An obvious solution is to limit ourselves to

theories that have some predictive value; that is, those that give rise to projectable

32 A recent Internet search generated several hundred hits, with the term now featuring in several
journal and conference titles.
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properties. After all, such projectable properties are what allow us to derive com-
pressed descriptions of complex biological systems. So ‘sharing a recent common
ancestor’ counts because it allows us to predict some of the features of one object by
studying those of others that share the same property. If one bird builds its nest from
mud, we should not be surprised if other birds of that species do the same. Spatial
relationships with distant celestial objects, in contrast, do not give rise to such
projectable properties. Scorpion horseshoe crabs share no more properties with me

than do those born under the sign of Sagittarius.

Although we have now limited ourselves to theories with predictive value, we have
yet to fully specify which theories to include and which to exclude from our diversity
measure. Unless we can find some way of privileging one set of theories over all
others, we will fail to demonstrate that our measure of diversity is strongly intrinsic.
That is, we would have only diversity with respect to some arbitrarily chosen set of

theories.

I suggest that there are several privileged sets of theories that can be used to generate
a description of a system. One is the empty set. This is the set that would be used to
generate a theory-free description of the system. This description would contain all
statements of the form ‘s 4.2+1.7 light years from Proxima Centaunr? or ‘has never
been found in a ferret’s stomach on a Tuesday’. The empty set is privileged, because
it is unlike any other set in a very special way. It is the only set containing no
members. There is nothing arbitrary about the theories contained in the empty set,
because it contains no theories. However, as we have already seen, it is impossible to
measure diversity with respect to this set; that is, to measure theory-free diversity.
Clearly, the list of properties possessed by any system with respect to the empty set
of theories would be infinitely long, and a measure based on the length of such a

description is therefore ill-defined.
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Another privileged set of theories is that represented by a complete and maximally
concise description of the system. In other words, the set consists of a// possible
descriptive theories pertaining to the system in question. This description is akin to
the complete description of our VW Beetle encountered previously, where all
possible theoretical knowledge of VW Beetles has been used to compress the
information content of the description, but all incompressible portions of the
complete description remain. As we have seen, measuring the length of such a
description is akin to measuring Kolmogorov complexity, which is akin to measuring

entropy.

Using this same maximal set of theories pertaining to VW Beetles, we could also
generate another description in which incompressible information has been removed.
This would then be a complete and maximally concise description of all the regularities
of the VW Beetle. The regularities of the system can be distinguished from the
irregularities by the ability to describe them more concisely than with a complete
(uncompressed) description, so no arbitrary choice need be made about what counts
as a regularity. As we have also seen, the length of this description can be used as a

measure of effective complexity.

Any set of theories that falls between the two extremes described above—the empty
set and the maximal set—must necessarily be arbitrary. We must either include no
theoretical knowledge of the system, or all possible theoretical knowledge of the
system. Anything in between must involve an arbitrary selection. Even the set
containing all current theoretical knowledge involves an arbitrary choice, namely the
moment of time defining eurrent. Since we can discount the empty set as not generat-
ing a useful measure, it follows that any intrinsic diversity-like measure must be based

on a description using all possible theoretical knowledge of the system.
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As we have just seen, there are at least two intrinsic measures that can be generated
using the maximal set of theoretical knowledge pertaining to a system. One is an
entropy measure and the other a measure of effective complexity. Are there others? I
suggest not. To demonstrate why, take a particular system such as out VW Beetle.
Now consider the set containing all the descriptions based on the maximal set of
theoretical knowledge about our VW Beetle. Such descriptions need not be com-
plete; they need only be based on the maximal set of theoretical knowledge about our
VW Beetle. Suppose we now choose one such description from this set at random.

What can we conclude about this description?

First, we know that the description must be maximally compressed—if it were not
maximally compressed, then there would be some piece of theoretical knowledge
about our VW Beetle that could potentially be used to compress the description
further, meaning that the given description would not be based on the maximal set of
theoretical knowledge about our VW Beetle. Secondly, since the description uses the
maximal set of theoretical knowledge about our VW Beetle, it must at least contain a
complete description of the compressible aspects of that VW Beetle. If it did not, the

set of theories on which it is based would once again not be maximal.

Finally, we cannot say anything about the overall completeness of the description.
The overall description would contain a complete description of the regularities of
the system, but need not contain a compete description of the non-regularities. In
other words, any description based on the maximal set of theoretical knowledge
about a given system must contain a complete and maximally compressed description
of the regularities of that system and some possibly partial description of the non-

regularities.

If the description of the non-regularities is maximal in size (that is, it describes all the

non-regularities), then our total description is complete and the measure based on the
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length of that description is an entropy measure. If the description of the non-
regularities is minimal in size (that is, of zero length), then the total description only
applies to the regularities of the system and the measure based on the length of that
description is a measure of effective complexity. For anything in between, an
arbitrary choice must be made as to which parts of the incompressible description to
include. That leaves the two extremes as the only two non-arbitrary measures based
on the maximal set of theoretical knowledge: the entropy measure and the effective
complexity measure. Any more weakly-defined notion of diversity must involve an
arbitrary choice about which theories to use. Hence, only by defining diversity in
terms of entropy or effective complexity can it be considered an intrinsic feature of
the world. And entropy is simply not the sort of diversity measure we want to use for
assessing biodiversity. If that were the case, maximising bioentropy could be
achieved by turning organisms into gases. That leaves one reasonable and intrinsic

biodiversity measure: biocomplexity.

This discussion explains why biodiversity is such a problematic concept, and why I
think the term biodiversity is a misnomer. From the outset we have been trying to
develop a concept of biodiversity that is intrinsic—a non-arbitrary, non-
anthropocentric and objectively measurable feature of the world. And yet no notion
of diversity weaker than effective complexity itself could possibly be intrinsic as well
as measure some diversity-like property. Only by looking at biodiversity in terms of

complexity can we make it an intrinsic property while retain some sensible meaning.

5.3 Defending biocomplexity

Before I try to describe biocomplexity beyond the claim that it can be measured
using the length of a complete and maximally concise representation of the regulari-
ties of a given biological system, I need to address some immediate potential

objections to biocomplexity.
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One apparent problem with effective complexity (and hence biocomplexity) is that
the choice of language used in any description is arbitrary, which seems to counter
the claim that effective complexity is strongly intrinsic. We have already encountered
this problem when discussing Kolmogorov complexity. Recall that the Kolmogorov
complexity of a string of symbols is defined as the length of the shortest computer
program that will output that string and then stop. The definition says nothing about
the programming language that should be used. As we saw, this problem can be
overcome through some mathematical tricks to minimise the size of the program-
ming language used for each class of systems being measured. Although this
procedure might be near impossible to apply in practice, in principle at least,
Kolmogorov complexity is not language-dependent. Since the effective complexity of
any system can be equated to its Kolmogorov complexity less the information
content of its ‘noise’, effective complexity, when measured at its most fundamental
level, is also not language-dependent. In practice, of course, we might use natural
languages and other less perfect forms of representation when trying to construct an
approximate and relative measure of effective complexity, but this is a problem only

with our measurement techniques, not with the underlying property itself.

A second possible objection with my definition of biocomplexity concerns what I
mean by ‘regularities’. It might seem that what counts as a regularity to one person
might not be a regularity to another. I have, however, already countered this
objection by giving a well-defined procedure for deciding what counts as a regularity.
Regularities are those elements whose complete descriptions are compressible. A gas,
for example, has no regularities beyond its bounding envelope, density and so on. A
complete description of the gas would require that the position of every molecule
within the bounding envelope be specified. No more concise description exists, and
hence such a description is incompressible. A perfect crystal of silicon, on the other
hand, can be concisely described by simply specifying the position, shape and

orientation of the crystal, and specifying the structure of its lattice. The position of
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every atom in the crystal can then be predicted with precision, because each atom

exhibits a well-defined and fixed spatial relationship with its neighbours.

Another possible objection concerns the temporal aspects of biocomplexity. To date
my discussions of effective complexity have been very much focussed on the
structure of static physical systems, whereas for biological systems we are much more
interested in functions and processes; things with a clear temporal dimension.
Functions and processes are an important component of biocomplexity. There is no
reason why biocomplexity cannot be applied to dynamic systems; I have simply

limited my discussions to static systems to make the examples easier to understand.

Finally, there is the objection that a complete and maximally concise description of
any physical system is simply not available. This is particularly the case for biological
systems, which are so complex as to defy complete description. Although true, this is
a practical rather than conceptual limitation. Effective complexity is almost impossi-
ble to measure precisely in practice, but that does not prevent us from using it to
define a non-operational measure of biodiversity. Moreover, we can still devise
reasonable indicators of biocomplexity based on course-grained descriptions. The
indicator that best approximates the biocomplexity of a given system will be the one

that uses the most knowledge at our disposal to characterise all law-like regularities.

5.4  Biocomplexity—a summary

Biocomplexity—the measure of biodiversity based on effective complexity—
captures the main attributes that we want from a concept of biodiversity. First, it
incorporates the notions of heterogeneity, organisation and interaction that underlie
many biologists’ discussions of biodiversity. Complex objects such as organisms and

ecosystems have many different parts, intricately organised and interacting among
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themselves. The greater the internal heterogeneity and organisation of such objects,

the greater is their measure of effective complexity.

Secondly, biocomplexity is a multilevel measure. It is not limited to diversity at a
single level such as species, characters or genes. It incorporates all these levels and
more, accounting for diversity both between and within species and ecosystems. It
incorporates what we might previously have considered different types of biodiver-
sity, such as phylogenetic diversity and ecological diversity. We can therefore use
biocomplexity to quantify more specific conservation targets such as species
diversity, intra-species diversity or ecosystem integrity. A change in any of these

conservation targets has a quantifiable effect in terms of biocomplexity.

Thirdly, and perhaps most importantly, biocomplexity is a well-defined, measurable
and intrinsic feature of the world. In contrast, a measure of biodiversity such as
higher taxon richness is based on some arbitrary choice of higher taxon levels,
making it inherently anthropocentric. Unless we can formulate biodiversity in some
strongly intrinsic sense, reaching agreement on a target property for conservation
may prove problematic. Just as the lack of a stable target property led to the failure of
phenetic taxonomy, agreement can never be reached on what constitutes the
underlying target property of any non-intrinsic biodiversity measure. There simply is
no single privileged target property underlying such a measure on which we can all

agree.

Biocomplexity solves this problem outright. It is an intrinsic property of any
biological system. Moreover, it is the only intrinsic property that at least approxi-
mately corresponds with what we want from a biodiversity concept. In other words,
not only is biocomplexity an intrinsic property of biological systems, it is the only
intrinsic property of such systems on which we can possibly base a concept of

biodiversity. This gives us some hope that we can at least all agree on what biodiver-
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sity 1s. Just as there is one true tree of life, ensuring stability in attempts to derive a
complete cladistic taxonomy, there is also one true measure of biodiversity, namely
biocomplexity, that can form the foundation on which we can agree about how to

make rational conservation decisions.
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§) Applied biocomplexity

Nothing in biology makes sense except in the light of evolution.

— Theodosius Dobzhansky

If the concept of biocomplexity is to have any impact on the process of making real
conservation decisions, then we must be able to apply it in real situations. In this
chapter, I hope to develop the concept of biocomplexity further and show what a
practical approach to measuring biocomplexity might look like. I then return to the
various measures of biodiversity discussed in Chapter 3, and discuss their relevance

as indicators of biocomplexity.

6.1 Estimating biocomplexity

The effective complexity of any system, you will recall, is the information content of
a complete and maximally concise description of that system. A true measure of the
effective complexity of any biological system—in other words of biocomplexity—
would therefore require complete knowledge about that system. Despite its concep-
tual advantages, developing a true measure of biocomplexity is almost certainly
impossible in practice. Even a single organism such as a cockroach is too complex to
describe in complete detail. Hence we will never, it seems, be able to measure with
complete precision the biocomplexity of even a single cockroach, let alone an entire

ecosystem.

Clearly, any practical approach to assessing biocomplexity will be based not on a true
and complete measure of biocomplexity but on some representational estimator. The
most straightforward way of estimating biocomplexity is to forgo a complete
description of the given biological system, and instead use a partial ‘coarse-grained’
description. The estimated biocomplexity of the system would then be based on the

length of this coarse-grained description. Although this would not produce an
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absolute estimate of biocomplexity, it could still provide a useful estimate of relative
biocomplexity. Fortunately, for nearly all practical problems involving biocomplexity,
such as assessing conservation value or determining whether biocomplexity corre-
lates with ecosystem stability, a relative measure is sufficient. Although a crude
estimator of biocomplexity may not be able to tell us, for example, how much
biocomplexity is possessed by a particular area of land, it may be able to tell us

whether that area of land has more or less biocomplexity than some other area.

As we saw in Chapter 4, the more detailed we make our description of something,
the more accurate it tends to become as a measure of effective complexity. The most
accurate estimators of biocomplexity will therefore tend to be those that include the
most detail. Conversely, less detailed descriptions will tend to give rise to less
accurate estimators of biocomplexity, although such limited accuracy may be

sufficient for many applications.

What sort of description is appropriate for estimating biocomplexity? In Chapter 4,
we compared the complexity of a VW Beetle and a Boeing 747 by comparing the
lengths of their descriptions written at the level of a technical service manual. In
comparing the complexities of biological systems, we could adopt a similar approach.
Consider a single organism such as a cockroach. Although our existing biological
knowledge is limited, it could still be used to give a highly detailed description of a
cockroach by focussing on its various levels of internal organisation. For example, we
know that multicellular animals such as cockroaches can be described in terms of
their constituent parts or organs, each of which has one or more specialised func-
tions. The organs of cockroaches, for example, include a mouth, two eyes, six legs
and two antennae. Most of these organs, in turn, also consist of numerous subcom-
ponents. Each leg, for example, comprises both a chitinous shell and numerous hairs.
We can generally classify each of these subcomponents in terms of its tissue type.

Each tissue type is in turn composed of multitudes of microscopic cells, which can
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themselves be divided into numerous subcomponents or organelles—chromosomes,
ribosomes, mitochondria, vacuoles, lysosomes and a host of other structures. Even
the organelles are not the most fundamental unit of organisation, as each can be
described in terms of its constituent enzymes, which in turn consist of various amino

acids.

It seems as though the more we learn about the internal organisation of cockroaches,
the longer our description of them becomes. However, there is a sense in which our
knowledge of cockroaches reduces their potential description length. That is, if we
were to describe our cockroach by specifying the exact position and type of every
atom in the cockroach’s body, as well as how these positions change over time as the
cockroach moves, eats, digests, reproduces and carries out its other everyday
functions, we would be confronted with an extremely long description. Such a
description might be complete, but it is not very concise, and hence unsuitable for
assessing biocomplexity. Using knowledge of the cockroach’s internal organisation
reduces the length of this description. We can give a pretty good description of
where a large part of the cockroach’s atoms reside by describing how many legs the
cockroach has, what their morphologies are, what cell types these legs are made of,
what those cell types look like and so on. Only with this detailed knowledge of
cockroach physiology can we have some hope of concisely describing the internal
organisation of a cockroach in detail, rather than relying on the hopelessly impractical

approach of describing the exact position of every cockroach atom.

Whereas the sort of detailed description of a machine such as a VW Beetle or a
Boeing 747 results in something that resembles a service manual, a detailed descrip-
tions of an organism such as a cockroach results in something that resembles a
monograph. Of course, a typical monograph takes for granted much basic biology,
and thereby omits much of the sort of detail discussed above. Nevertheless, we can

think of the sort of detailed description of an organism being considered here as a
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sort of idealised monograph. Such a description, although not complete, is still
detailed enough for making reasonably accurate relative estimates of biocomplexity.
We could, for example, compare the length of the idealised monograph of one
organism such as a cockroach with that of another organism such as a coral to

estimate the relative biocomplexity of one with respect to the other.”

Writing idealised monographs of individual organisms such as cockroaches and
corals is still a long way from contributing to the practical process of making
conservation decisions. Conservation decisions generally apply at larger scales of
biological organisation such as whole ecosystems. To assess the biocomplexity of an
ecosystem using the above methodology would require us to write an idealised
monograph of each species in the ecosystem, combine them, and then take away all
the redundant sections, such as might occur with closely related species. Such an

exercise 1s still far too impractical.

The way around this problem is to omit more detail; to carry out the coarse-graining
process at a higher level. For most practical applications of biodiversity in conserva-
tion, we are typically only interested in determining whether ecosystem A has more
or less biodiversity than ecosystem B. In such cases, we can generally ignore many of
the lower levels of biological organisation discussed above. Since DNA is a compo-
nent of all earthly organisms, it is not necessary to describe the structure of DNA
when comparing the biocomplexities of each system. The complete descriptions of
each system will both contain a common description of the structure of DNA.
Similarly, nearly all areas of conservation value will contain a mixture of plants,

animals, bacteria and fungi, so there is no need to describe the cell structures of each

3 Such an exercise would presumably demonstrate that cockroaches are substantially more complex
than corals.
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of these types of organism if they are common to each system being evaluated. By

omitting these lower level details, we can focus instead on the larger scale patterns.

If we only wish to decide which of ecosystem A or B has more biocomplexity, then
even descriptions with a modest level of detail may no longer be necessary. In many
cases, the answer is obvious. A tropical rainforest really is more complex (more
biodiverse) than a desert. There are not only more species in a tropical rainforest
than a desert but more morphological disparity between species and more ecological
relationships. Without even attempting to describe either in detail, we can be
reasonably certain from the outset that a detailed description of one will be much

longer than that of the other.

In cases where the outcome is less obvious, existing estimators of biodiversity may
often be adequate. All other things being equal, a forest containing nine endangered
mammal species is probably more biocomplex than another forest containing seven.
Of course, a more detailed assessment may show this not to be the case. The set of
seven mammal species may include several unique members, while the set of nine
mammal species may all be from the same genus. However, such cases can still be
adequately addressed by using a more sophisticated measure than simple species

richness, such as higher taxon richness.

As suggested by the above discussion, many existing measures of biodiversity such as
species richness are reasonable, albeit imperfect, indicators of biocomplexity. This is
a topic to which we shall return in the following section. Before doing so, however,
let us consider in more detail the type of information we might expect to use in

devising practical indicators of biocomplexity.

Many of the various measures of biodiversity discussed in Chapter 3 were classified

as phylogenetic measures. Such measures generally involved taking a set of species
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and then measuring the relative amount of biodiversity of each subset by applying
some set of criteria based on phylogeny. Hence phylogenetic knowledge is a good
candidate for inclusion in an indicator measure of biocomplexity. Phylogenetic
knowledge is useful because it explains a large amount of the pattern we see in
nature. Since closely related species generally share a host of features, phylogenetic
knowledge is predictive, in the sense that we can guess a lot of facts about a particu-
lar species from knowledge about its close relatives. In other words, phylogenetic
knowledge allows us to concisely express a large amount of information. Once we
have described the phylogeny of a group of species, we have generally gone a long

way to describing the patterns of similarity between them.

As we saw in Chapter 3, the patterns of similarity between species arise from two
different sources: phylogeny and adaptation. Although phylogeny accounts for much
of the larger-scale patterns of biological similarity, it does not account for all of it.
Some is attributable to adaptation. So while the similar egg-laying habits of birds and
lizards owe their origins to a common ancestor, the similarities in wing shape

between birds and pterosaurs are due to convergent adaptation.

Given that phylogenetic knowledge can be used to devise indicator measures of
biocomplexity, we might expect that ecological factors could be used to devise
alternative indicator measures. Doing so would require a scheme for classifying and
describing organisms on the basis of their ecological categories. One way of doing
this is to use Hutchison’s notion of a niche space (Sterelny & Griffiths, 1999, Ch. 11).
A niche space is a multidimensional space in which each axis corresponds to some
environmental variable such as temperature or food size. Organisms ‘inhabit’ this
space, in the sense that they can only survive within a certain range of values for each
variable. For example, Figure 9 illustrates a two-dimensional portion of niche space
inhabited by three species, with dimensions representing temperature and food size.

In this example, species 1 inhabits a distinct portion of niche space with respect to
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the other two species, whereas the regions inhabited by species 2 and 3 significantly

ovetlap.

species 1 T

species 2 T species 3

food size

temperature

Figure 9: A two-dimensional view of a small portion of niche space inhabited
by three species.

We can think of an ecological description of a species as a description of the region
of niche space it inhabits. An indicator measure of biocomplexity based on niche
space would simply equate the relative biocomplexity of a set of species with the total
amount of niche space inhabited by those species. So a set of similar species all with
similar niches would not occupy too much of niche space and would have a relatively
low measure of biocomplexity, whereas a set of disparate species, each occupying a
largely disjoint region of niche space, would have a relatively high measure of

biocomplexity.

An ideal measure of biocomplexity would account for all biological structure,
regardless of its origin. Hence we might expect a sophisticated indicator measure of
biocomplexity to integrate both phylogenetic and ecological knowledge. However,

the balance between the two need not be equal. Indeed, there are good reasons for
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such a measure placing more emphasis on phylogenetic rather than ecological
patterns. As discussed previously, both phylogenetic and ecological categories are
projectable, but they are not equally so. Knowing that two species share a phyloge-
netic category such as .Aves allows us to project much of the knowledge of one
species onto the other. Ecological categories such as pelagic macroorganism, however,
are not as strongly projectable, since ecological functions are multiply realisable.
Aquatic propulsion is achieved by horizontal tail movement in sharks, vertical tail
movement in cetaceans and jet propulsion in cephalopods. Even where convergent
adaptations do exist, the similarities between them are largely superficial. Vertebrate
and arthropod eyes share a function, that of vision, but morphological they are very
different. They both embody principles of optics, but otherwise there is little to be
said about one that can be said about the other. The evolution of shared derived
traits generates a degree of additional biocomplexity that the evolution of shared

inherited traits does not.

There are also good reasons to suggest that the balance between phylogenetic and
ecological knowledge in indicator measures of biocomplexity might vary depending
on the evolutionary distance between the taxa being assessed. When assessing closely
related taxa such as the Anseriformes,” we might expect homoplasy to be common.
In the case of disparate taxa, homoplasy is much rarer. Two species of duck share a
relatively recent common ancestor, but they may also share a range of ecological
variables such as feeding mode. The two species may therefore share similar
evolutionary pressures, as well as inherited evolutionary constraints. Hence many of
the adaptations to a diving mode of feeding in one species will be shared by another

species with the same feeding mode (Faith, 1989). Koalas and caterpillars also share a

3 Ducks, geese and swans.
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feeding mode, that of leaf eating, but the radically different evolutionary histories of
these two taxa have led to radically different solutions to a leaf-eating lifestyle. Hence
we should see an increased predominance of phylogenetic over ecological patterns as
we move from measuring biocomplexity over smaller to larger scales. If the scale of

analysis is sufficiently large, a totally phylogenetic focus may be valid.

6.2 Measures of biodiversity—a retrospective

In Chapter 3, I discussed some of the principal biodiversity measures that have been
developed for assisting the process of making conservation decisions. We are now in
a position to revisit these measures and assess their usefulness as indicators of

biocomplexity.

6.2.1 Biocomplexity, species richness and higher taxa

The first biodiversity measure encountered in Chapter 3 was species richness—simply
the number of species in a given sample. The main advantages of species richness are
its conceptual and practical simplicity. Species are, for the most part, easily delineated
and countable entities. However, as we saw in Chapter 3, species richness is unable
to account for the degree of difference between species. Some clades such as beetles
are millions of times richer in species than others such as tuataras and coelacanths,
yet seem to possess far less than a million times as much biodiversity. Similarly, a
group of organisms comprising two distinct species would appear to have more

biodiversity than a group comprising two similar species.

As an indicator of biocomplexity, species richness adopts a fairly coarse-grained level
of representing biological systems. The system is described simply in terms of a list
of species, with each species counting as a single unit. As we have already seen, such

coarse-grained analysis may be perfectly adequate for many applications. In most
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cases, a larger set of species will tend to be more biocomplex than a smaller set,

which is often all we need to know.

Although species richness does tend to correlate positively with biocomplexity, it
does so rather imperfectly given its inability to account for the degree of difference
between species. Species are not additive units in terms of their biocomplexity. There
is much redundancy between the descriptions of two closely related species, and
hence their joint biocomplexity is substantially less than the simple addition of their
individual biocomplexities. Conversely, species richness will tend to be more accurate

as an indicator of biocomplexity when the species in question are relatively disparate.

In Chapter 3, we also encountered the biodiversity measure of higher taxon richness. As
we saw, this measure offers both practical and theoretical advantages over species
richness. Higher taxa are more easily distinguished and less numerous than individual
species, making them a more practical unit of study in field surveys. Higher taxa also
tend to categorise similar species together, thus avoiding the problem of highly
speciose clades having inordinately high measures of biodiversity. The main theoreti-
cal problem with higher taxon richness is the artificiality of higher taxa themselves.
There simply is no well-principled means of determining where we should draw the

boundary that delineates one higher taxon from another.

Despite these limitations, higher taxon richness is potentially a very good indicator of
biocomplexity. Provided we delineate the higher taxa appropriately, we can think of
each higher taxon as comprising a similar amount of biocomplexity. Some taxa will
contain many similar species, while others will consist of one or two distinct species.
The combined description of all the species in a speciose taxon will contain lots of
redundancy, whereas the description of the single species in a unitary taxon will not.
Provided we have properly determined the right levels for delineating each taxon, the

concise descriptions of each taxon should be about the same length. Furthermore,
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given that the degree of overlap between the descriptions of higher taxa is less than
in the case of individual species, combining the biocomplexities of higher taxa will
tend to approximate an additive measure more accurately, albeit still somewhat

imperfectly.

Another nice feature of higher taxon richness is that it meaningfully combines both
phylogenetic and ecological patterns. Species richness, in contrast, measures only
phylogenetic patterns. Its limitations as an indicator of biocomplexity stem in large
part from its inability to account for the degree of evolutionary change within each
lineage. Australia’s crows and ravens are all remarkably similar in appearance and
habit, while Darwin’s Galapagos finches are not. Species richness simply treats each
species as a single unit of biocomplexity, regardless of diversity. In contrast, the
degree of evolutionary change in response to ecological pressures is a central
criterion for determining the levels at which higher taxa are defined. The species
within a taxon may be unified by their phylogeny, but they are separated from other

taxa in part by their ecological-determined disparity.

6.2.2 Genetic biocomplexity

In Chapter 3, I discussed genetic measures of biodiversity and rejected the idea that
we should think of genetic diversity as any more fundamental than, say, phenotypic
diversity. I argued that there is no meaningful sense in which we can reduce pheno-
typic diversity to genotypic diversity. How then does genetic diversity fair as an

indicator of biocomplexity?

Thinking of genes in terms of complexity is not a new idea. “Genetic information” is
a common phrase even outside scientific circles. A straightforward approach to
measuring genetic information would be to count the number of bits of information
encoded by a sequence of DNA. The human genome, for example, contains

approximately 3 billion base pairs, each of which encodes two bits of information (2*
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= 4 possible base pairs). This gives a total information content of 6 gigabits, roughly
the information storage capacity of a single CD-ROM. Other species have even more
genetic information. The newt Triturus cristatus, for example, has a genome with 40
gigabits of information (Dawkins, 1999). It seems, however, that newts are not an
order of magnitude more complex than humans, so it is commonly presumed that
the genomes of species such as Triturus cristatus contain a lot of redundancy. To
measure what Richard Dawkins calls the “true information content” of the genome

(Dawkins, 1999), we first have to strip out this redundancy.

As we have seen, complexity is not simply measured by information content. To
measure the complexity of a genetic sequence, we need to measure the information
content of the compressible portions of the sequence, once that information has
been maximally compressed. Such a procedure should be applicable to genetic
sequences, at least in theory. Some genomes really are more complex than others in
terms of the extent to which they encode lots of compressible information. Perhaps
there is even a good correlation between the complexity of genotypes and the

complexity of phenotypes; an empirical question of some interest.

Practically, however, there are major obstacles to measuring genetic complexity. First,
we cannot easily distinguish signal from noise. In other words, we do not know
which parts of a genome are compressible, because there is insufficient agreement as
to what constitutes so-called “junk DNA” (Kimura, 1983). Secondly, we have little
idea of what compression algorithm to apply to the remaining genetic information to
determine its maximally compressed length. In the computer sciences, various
compression algorithms have been developed for dealing with all sorts of data files.
Some of these algorithms are well suited to compressing files containing images,
while others are good at compressing files containing music. The better we under-
stand the system, the more optimally we can compress its information content. So if

we know that a file contains an image, we can write a really good algorithm to
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achieve a good compression ratio based on what we know about the way information
in image files tends to be organised. If the file contains a music track, on the other
hand, we would be able to achieve greater compression by writing a different

algorithm using what we know about the way information is organised in music files.

The problem with trying to quantify genetic complexity is that we simply do not
know enough about the way genetic information is organised to write a reasonable
compression algorithm. In time, though, we may develop such understanding. Doing
so requires two-way feedback between molecular and developmental biology. To
infer a phenotype from a genotype, we first have to understand how the phenotype is
built and then read that understanding back into the genotype. Our understanding of
molecular biology grows by exploring the genetic and phenotypic levels simultane-
ously and letting them incrementally illuminate one another. With such an under-
standing, we might eventually be able to measure genetic complexity, which in turn
may prove to be a very useful indicator of biocomplexity. At present, however,

genetic complexity seems like a very poor practical indicator of biocomplexity.

6.2.3 Biocomplexity and phylogenetic biodiversity

In Chapter 3, I discussed various phylogenetic biodiversity measures. The main
feature of these measures is that they use taxonomic distinctness as a means of
quantifying the degree of difference between taxa. So if species A and B are more
closely related to one another than either is to C, a phylogenetic measure of biodiver-
sity would typically consider the set containing only A and B to be less biodiverse

than the sets containing either A and C or B and C.

The most sophisticated of the phylogenetic diversity measures examined was character
richness. We can use this measure to estimate which subsets of a group of taxa have

the greatest amount of phylogenetic diversity by constructing the cladogram for the
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group of taxa, weighting each branch according to the inferred character state

changes, and selecting those subsets which maximise total intervening branch length.

Character richness is likely to be a more accurate estimator of biocomplexity than
simple measures such as species richness because it uses a smaller unit of currency,
namely character. Rather than use a representation in which each species counts as a
single unit, character richness represents each species in terms of its constituent
characters. In theory, such an approach could not only give an indication of the
complexity of each species in terms of the number of characters it possesses, it could
also, as an indicator of biocomplexity among groups of species, resolve the additivity
problem by ensuring characters are only counted once, thereby removing much of

the redundancy between the representations of each species.

Several criticisms of character richness were raised in Chapter 3. In particular, not all
characters seem to warrant equal weighting. A complex trait such as a vertebrate eye,
for example, can be broken down into a suite of constituent traits. There are no clear
rules about whether we should consider this a single trait or a collection of several
traits. A conceptual solution to this problem is to weight each trait according to its
complexity. Whereas an eye, for example, would be given a high weight, simple traits
such as skin pigmentation would be given a correspondingly low weight. Again, for
many applications, such detail may be unnecessary; an equally weighted character
richness measure may be more than adequate. Nevertheless, the potential to weight
traits according to their complexity counters the conceptual objection that traits are

incommensutrate.

There are several other ways in which existing measures of character richness can be
improved to make them more suitable as indicators of biocomplexity. For example,
most existing measures do not count root characters. The reasoning is that character

richness should measure diversity bemween set members. Hence any character state
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changes before the first speciation event separating members of a solution subset do
not count. From a biocomplexity perspective, this assumption is not valid. If we
consider character state changes simply as an indicator of biocomplexity, then any
character state changes are relevant, no matter when they occur. This problem is
easily resolved by simply including root characters in the procedure of selecting

solution subsets.

A further way of making existing character richness measures more suitable as
indicators of biocomplexity is to change the way they treat homoplastic characters;
that is, similar characters that have evolved independently. Biocomplexity is meas-
ured by describing all regularity. There is no discrimination as to the origins of
regularity. So when we described our VW Beetle to generate a measure of its
complexity, it did not matter whether the left front wheel was similar to the right
front wheel because they were made by the same manufacturer or because different
manufacturers came up with the same solution to a common problem. All that
mattered was that they were the same. Most of the description of one can be used as
a description of the other, allowing us to compress our overall description and

minimise its length without sacrificing completeness.

An analogous argument can be applied to species. From the perspective of biocom-
plexity, it does not matter whether a particular trait shared by species A and B
evolved independently or not. All that matters is that they share the same trait.
Existing character richness measures ignore homoplasy by counting shared derived
traits along each lineage. The solution is simply to refrain from double-counting
homoplastic characters. In other words, we should measure character richness in a
literal sense, rather than measuring phylogenetic diversity weighted by character state

changes.
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Depending on how we interpret the relationship between our indicator measure of
character richness and our target property of biocomplexity, the solution suggested
above may not be completely appropriate. So far I have been interpreting character
richness as a way of representing a species or group of species. Under this interpreta-
tion, character richness is a direct indicator of biocomplexity. An alterative way of
interpreting character richness is as an indicator of some intermediate property such
as evolutionary distance. So the more character state changes there are between
species A and B, the more independent evolution has occurred between them.
According to this interpretation, evolutionary distance is a direct indicator of
biocomplexity, whereas character richness is an indirect indicator. Under such an
interpretation, double-counting of homoplastic characters is probably valid, since it is
likely to result in a better correlation with the intermediate property of evolutionary
distance. This second interpretation is reasonable, given that character richness
measures are usually applied to representative samples of character state change data,
rather than to some vast set of data intended to describe a set of species completely.
In other words, character richness often looks like the ‘sample model” phylogenetic

diversity measures illustrated by Figure 3 in Chapter 3.

Despite the enormous practical difficulties in measuring biocomplexity with
precision, estimating biocomplexity using various indicator measures is practically
feasible. Moreover, several existing measures of biodiversity adequately provide such
indicator measures. By providing a definitive answer to the question ‘What is
biodiversity?’, the concept of biocomplexity can allow the practical development and

application of such measures to continue without metaphysical encumbrance.
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7 Conclusion

God is in the details.

— Ludwig Mies van der Rohe

7.1 Arational argument for biocomplexity

How should we understand biodiversity? My answer is simple—complexity. This is, I
believe, the answer that makes most sense of the concept. It is the only way of
understanding biodiversity that both makes it an intrinsic property of biological
systems and incorporates the main attributes we want from such a concept. If we
want a well-defined, measurable and metaphysically strong concept of biodiversity
that captures more than just species richness—that incorporates all forms of
heterogeneity, organisation and interaction at every conceivable level—then biocom-
plexity is the only answer. It is the only reasonable concept of biodiversity that

delineates some objective property of the world.

The advantages of this strongly intrinsic concept of biodiversity should not be
underestimated. First, it matches our intuitions—that biodiversity is an independently
specifiable property we can measure. Secondly, it ensures stability. Without some
such firm foundation on which to base our measurement procedures, there is little
chance of reaching agreement on what it is we are trying to measure. Thirdly, a non-
anthropocentric concept of biodiversity is meaningful. It enables us to discover
things we do not already know, such as whether ecosystem A really does have more
biodiversity than ecosystem B. Fourthly, an intrinsic concept of biodiversity carries
more political weight. If biodiversity were only defined anthropocentrically, those
arguing against its protection would have two basic strategies available to them. One
strategy would be to dismiss the importance of biodiversity. This strategy might
admit the existence of biodiversity, but deny its relevance as a target of conservation

efforts. The second strategy would be to deny biodiversity’s very existence as an
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independently-specifiable target property of conservation. By arguing that biodiver-
sity is suspect, proponents of such an argument would not even have to address its
relevance to conservation. With a metaphysically robust concept of biodiversity, this
second strategy is cut-off, narrowing the ground on which such battles can permissi-

bly be fought.

Finally, an intrinsic concept of biodiversity is essential to those wishing to use
biodiversity in pursuing environmental ethics from a position of moral realism. If
species have intrinsic value—if they have rights that transcend what we think of
them—then those rights must be rooted in something more fundamental than our
particular preferences and prejudices. As I have already stated, I do not wish to
pursue such an argument. For those who do, however, an intrinsic concept of

biocomplexity is a good place to start.

In Chapter 2, I pointed out that there are two distinct types of biodiversity concept.
One type, on which I have focussed, is targeted at issues of conservation. This sort
of biodiversity is something of value worth protecting. The other type of biodiversity
concept is scientific. It is the sort of biodiversity that might play some useful role in
scientific theories. Biocomplexity, I have argued, is useful for understand the
conservation-based type of biodiversity concept. How useful, then, is it for under-
standing the scientific concept of biodiversity? Could biocomplexity play some useful
role in scientific theories, just as the concept of mass plays a useful role in Newtonian

mechanics?

As I pointed out in Chapter 2, there are at least three features a concept must have
for it to be scientifically valuable. It must be well defined, based on some natural
properties of the world and useful in some scientific theory. Biocomplexity meets the
first two criteria. Moreover, it is the only well-defined and strongly intrinsic property

that roughly corresponds to the popular meaning of biodiversity. How well biocom-
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plexity meets the third criterion—how useful it is in scientific theories such as the
species-area law—is an empirical question, and therefore not mine to answer.
However, as an intrinsic property, biocomplexity seems the most appropriate
concept to use in attempting to answer such questions. Are complex ecosystems
more or less stable than simple ecosystems? This is a question already being asked in
ecology. Complexity is seen as the sort of property that might have some causal
relationship with ecosystem stability. Like complex machines with cybernetic control
systems, ecosystems have lots of feedback loops. A feedback loop with a small
amount of gain can enhance system stability, while a feedback loop with a large
amount of gain can create instability. Perhaps the complexity of an ecosystem
determines how many and what type of feedback loops it has, which in turn
determine its stability. Does biodiversity reflect the evolutionary time elapsed without
major disturbance? Does it reflect the frequency of major disturbances? Again, these
are not unreasonable questions. Answering them may be difficult, but at least with a

solid concept of biodiversity we can be sure what questions we are trying to answer.

7.2  Animpassioned plea for biocomplexity

In Chapter 1, I raised a question about the metaphysical status of biodiversity. I have,
hopefully, provided a satisfying answer to this question. I also raised a quite different
question—Why should we protect biodiversity? From the outset, I made a clear
choice to avoid any attempt to answer this question definitively. And yet the question
lingers. Why protect biodiversity? In the light of biocomplexity, this question has
taken on a new significance. Why should we protect biocomplexity? What is so

special about complexity that makes it worth having?

There is no simple answer to this question. Correlations between complexity and the
various types of instrumental value possessed by the natural world are in many cases

poor. The instrumental value of a wheat field is typically greater than the instrumen-
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tal value of the forest that was cleared to produce it, and yet the wheat field is
undoubtedly less complex. Some types of instrumental value, however, do correlate
reasonably well with complexity. A forest is certainly more likely to harbour a cure
for cancer or a natural predator for an introduced crop-eating insect than a wheat
field. If we care about protecting the world’s living resources for purely instrumental

reasons, biocomplexity seems like a pretty good indicator of such instrumental value.

In the end, most arguments for protecting nature on the basis of instrumental value
are, I believe, weak rationalisations of a deeper passion. In a thought experiment in
which we strip nature of all its instrumental value, nature is not left valueless. Nature
has non-instrumental (but non-intrinsic) value. It has inherent value. I have never
seen Da Vinci’s Last Supper. It was being restored when I visited Milan. Call me a
philistine, but I have never read The Tempest. And 1 have never seen a kakapo. Yet all
of these things matter. Why celebrate Shakespeare? Why preserve the Last Supper?
Why protect the kakapo from extinction? None of these things are of much
instrumental value to me, and yet I value them. I do not really understand why. Their

value seems rooted in a desire that simply springs forth without rational foundation.

Complexity, I believe, is a pretty good indicator of inherent value. Why do we
celebrate Shakespeare? Because his work is complex. Look at how difficult it can be
to fully understand him, at how many books have been written on his work. We find
Shakespeare fascinating because his work is complex; because there is so much to say
about it. Barbara Cartland may have written more words than Shakespeare, but she
essentially wrote the same story several thousand times with different names and

locations. Unlike Shakespeare, her life’s work is full of redundancy.

Why do we (ought we) try to protect the kakapo from extinction? Because its
continued existence adds a significant amount of complexity to the world. Of course,

a world without kakapos would still have lots of other parrots, but it would have no
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nocturnal flightless parrots. There is a lot to be said about kakapos that cannot be
said about any other creatures. They represent several million years of interesting and
irreplaceable evolutionary design. Complexity matters. In the end, though, my
argument for protecting biocomplexity is not easily defended. I can give no rational
justification for protecting the inherent value of biocomplexity, because it is not
reducible to more basic human desires. I can only hope that you accept my impas-

sioned plea.
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