ADAPTIVE PROFILE DRIVEN DATA CACHING AND PREFETCHING IN MOBILE ENVIRONMENT

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Information Technologies at The University of Sydney

> Omer Mahmood December 2005

© Copyright by Omer Mahmood 2005 All Rights Reserved

ABSTRACT

This thesis describes a new method of calculating data priority by using adaptive mobile user and device profiles which change with user location, time of the day, available networks and data access history. The profiles are used for data prefetching, selection of most suitable wireless network and cache management on the mobile device in order to optimally utilize the device's storage capacity and available bandwidth.

Some of the inherent characteristics of mobile devices due to user movements are – non-persistent connection, limited bandwidth and storage capacity, changes in mobile device's geographical location and connection (eg. connection can be from GPRS to WLAN to Bluetooth). New research is being carried out in making mobile devices work more efficiently by reducing and/or eliminating their limitations. The focus of this research is to propose, evaluate and test a new user profiling technique which specifically caters to the needs of the mobile device users who are required to access large amounts of data, possibly more than the device storage capability during the course of the day or week. This work involves the development of an intelligent user profiling system along with mobile device caching system which will first allocate weight (priority) to the different sets and subsets of the total given data based on user's location, user's appointment information, user's preferences, device capabilities and available networks. Then the profile will automatically change the data weights with user movements, history of cached data access and characteristics of available networks.

The Adaptive User and Device Profiles were designed to handle broad range of the issues associated with:

- Changing network types and conditions
- Limited storage capacity and document type support of mobile devices
- Changes in user data needs due to their movements at different times of the day

Many research areas have been addressed through this research but the primary focus has remained on the following four core areas. The four core areas are : selecting the most suitable wireless network; allocating weights to different datasets & subsets by integrating user's movements; previously accessed data; time of the day with user appointment information and device capabilities.

ACKNOWLEDGEMENTS

It is not possible to thank everyone who contributed assistance, encouragement and advice, but the success of this project would not have been possible without anyone of them.

Particular thanks go to my supervisor Professor Albert Zomaya, for his support and encouragement during the course of this work and for helping to bring it all to an end. I am very grateful to him for all his ideas, his continuous interest in my work and most of all for his never ending optimism.

Further, special thanks to MySql, Netbeans and Java community for giving me access to excellent free softwares.

DEDICATION

I dedicate this thesis to my father, Dr.Safdar Mahmood, a distinguished scholar and writer, who has always been a source of advice, inspiration, encouragement and motivation. I thank him for helping me to develop independent, creative and critical thinking.

Lis	LIST OF FIGURES is		
Eq	EQUATIONS x		
Lis	LIST OF ABBREVIATIONS xi		
1.	INTRODUCTION	1	
	1.1. Motivation	2	
	1.2. Summary and Thesis Overview	4	
2.	Background	6	
	2.1. Prefetching Background	6	
	2.2. Profile Driven Prefetching	9	
	2.3. Cache Management and User Profile	9	
3.	APPLICATION DOMAIN	15	
4.	Implementation	18	
	4.1. Brief Overview	18	
	4.2. Broad Objective of the System	19	
	4.3. Core Objectives of the System	20	
	4.4. Device Profiling System	21	
	4.4.1. Document (MIME) Support System	21	
	4.4.2. Cache Management System	22	
	4.4.3. Automatic Network Selection System	23	
	4.5. USER PROFILING SYSTEM	23	
	4.6. CONTEXT-AWARE PREFETCHING SYSTEM	24	
	4.7. SIMULATOR ARCHITECTURE AND PERFORMANCE	27	
	4.7.1. Static Data Layer	28	
	4.7.2. Random Information Generator	36	
	4.7.3. Runtime Environment Layer	45	
	4.7.3.1.Conventional System Simulation	51	
	4.7.3.2. Proposed System Simulation	54	
	4.7.4. Simulator Performance	57	
5.	Evaluation and Conclusion	61	
	5.1. Evaluation	61	
	5.2. Conclusion	64	
6.	Future Directions	66	

APPENDICES

A.	APPENDIX A: Simulation Diagrams	67
B.	APPENDIX B: Source Code of the System	89
	B I) Random Information Generator	89
	B II) Runtime Environment Simulator	160
C.	APPENDIX C: Database Scripts	242
	C I) Runtime Layer Database	242
	C II) Static Layer Database	251
D.	APPENDIX D: Installation and Execution	264
E.	BIBLIOGRAPHY	300

LIST OF FIGURES

	Page	Title
Figure 1:	10	Architecture Data Recharging Service by Mitch
Figure 2:	11	Profile use in a Proposed System
Figure 3:	13	The MobiScape Model
Figure 4:	27	Layered Structure of Simulator
Figure 5:	29	Tables and their Relations in Static Layer
Figure 6:	31	Suburb Structure and Shape
Figure 7:	31	Inter Suburb Links and User Movements
Figure 8:	37	Table and their Relations in Runtime Layer
Figure 9:	49	UML - Object Diagram of Runtime Environment
Figure 10:	58	Profiling Results for Run Time Environment
Figure 11:	59	Profiling Results of Product Data Method
Figure 12:	60	Profiling Results of Without Profile Environment Simulation Method
Figure 13:	60	Profiling Results of Profile Environment Simulation

EQUATIONS

	Page	Title
Equation 1:	25	Cached data weight equation
Equation 2:	26	Prefetch data packet weight equation
Equation 3:	52	Utility per data object
Equation 4:	62	Utility from Access Time (Per Second) without using Profiles
Equation 5:	63	Utility from Downloaded Data per byte without using Profiles
Equation 6:	63	Utility from Access Time (Per Second) by using Profiles
Equation 7:	64	Utility from Downloaded Data per byte by using Profiles
Equation 8:	64	Percentage Change in Utility Derived from Access Time per Second
Equation 9:	65	Percentage Change in Utility Derived from Downloaded Data per Byte

LIST OF ABBREVIATIONS

AVP	Adaptive Value-Based Prefetch Scheme
MARS	Mobility-Aware Cache Replacement
GPRS	General Packet Radio Service
WWW	World Wide Web
WLAN	Wireless Local-Area Network
GPS	Global Positioning System
SS	Support Station
МН	Mobile Host
HTML	Hyper Text Markup Language
HTTP	Hyper Text Transfer Protocol
PDA	Personal Digital Assistance
AVP	Adaptive Value-Based Prefetch Scheme
GSM	Global System for Mobile Communication
UMTS	Universal Mobile Telecommunications System
MULTICS	Multiplexed Information and Computing Service
OBL	One Block Look-Ahead
MSHR	Miss Information Status Handling Register
MIME	Multipurpose Internet Mail Extensions
UML	Unified Modeling Language
URL	Uniform Resource Locator
ERD	Entity Relationship Diagram
00	Object Oriented
LRU	Least Recently Used
DOM	Document Object Model
UP	Uniprocessor
TIP	Transparent Informed Prefetching
PDF	Portable Document Format
PPT	Power Point Document
UML	Unified Modeling Language