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ABSTRACT

The application of static shape control was investigated in this thesis particularly for a
composite pl ate configuration using piezod ectric actuators. A new €l ectro-mechanically coupled
mathematical model was developed for the analysis and is based on athird order displacement
field coupled with a layerwise electric potential concept. This formulation, TODL, is then
implemented into afinite element program. Themathematical model representsanimprovement
over existing formulations used to model intelligent structures using piezoel ectric materials as
actuators and sensors. The reason is TODL does not only account for the electro-mechanical
coupling withinthe adaptive material, it al so accountsfor thefull structural couplingintheentire
structure due to the piezoelectric material being attached to the host structure. The other
significant improvement of TODL isthat it is applicableto structures which arerelatively thick
whereas existing models are based on thin beam / plate theories. Consequently, transverse
shearing effects are automatically accounted for in TODL and unlike first order shear
deformation theories, shear correction factors are not required.

The second major section of this thesis uses the TODL formulation in static shape
control. Shape control isdefined hereasthedetermination of shape control parameters, including
actuation voltage and actuator orientation configuration, such that the structure that is activated
using these parameters will conform as close as possible to the desired shape. Severa shape
control strategies and consequently algorithms were developed here. Initial investigations in
shape control has revealed many interesting issues which have been used in later investigations
to improve shape controllability and also led to the development of improved a gorithms. For
instance, the use of discrete actuator patches has led to greater shape controllability and the use
of slopes and curvatures as additional control criteria have resulted in significant reduction in
internal stresses. The significance of optimizing actuator orientation and its relation to
piezoel ectric anisotropy in improving shape controllability has also been presented. Thus the
major facets of shape control has been brought together and the agorithms developed here

represent a comprehensive strategy to perform static shape control.
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PREFACE

Thisthesisisthe acamulation d reseachwork condwcted inthefield of smart structures
tedindogy. Sinceitsinception, alittl e over ten yeasago, it had attraded gred interest anong
scientistsandengineeasin related fields and sparked the auriosity of thosewhoarein lessrelated
fields. The potential applicaions are courtless The so cdled smart or intelli gent structure can
be integrated orto existing structures using existing materials, such as piezoeledric material
which wasdiscovered morethan a century ago. Perhapsthisiswhat makesit so exciting, thefad
that previously passve structures can now be manipulated while in ogeration - henceits other
name “active structures’. Of course, the techndogicd motivation in this field has also driven
new innovations sich as the aeaion of new types of piezoeledric materials with even higher
aduation authority than previous ones which have been used for decales.

This thesis represents a small contribution to the total body of on-going research work
in this field. The new contribution in this thesis is twofold - the first is the development of a
mathematicd formulation that models the alaptive and the non-adaptive parts of the structure
simultaneously and impartially, thereby incorporating not only the piezoeledric efeds but as
well asthe physicd presenceof the adaptive materia (e.g. stresss). In this snse, the alaptive
material istruly reaognized as being a cnstituent of the structure instead of a separate external
comporent providing sensing or actuating capability. Thesemndcortributionisthedevel opment
of shape control methods with the purpaose of determining the necessary aduationin order to
change the shape of the structure to conform to a desired shape. The mathematicd formulation
developed in the first part will be aoded into afinite dement software which will then be used
for shape mntrol cdculationsin the second gart. The finite dement software would be eleto
model laminated composite plate structures, in which any part of the structure can be model ed
as being piezoeledric or nonpiezoeledric materials.

Chapter 1 setsthe scenefor thisresearcch work. It introducesthefield of smart structures,
itsengineeing/ techndogicd significance andthevariety of appli cations. Sincethisfieldisonly
limited by one’ simagination, the introductionis not meant to be a @mprehensive mverage of
thereseachinthisfield. Thevariouskindsof adaptive materia sare described together with their
advantages and dsadvantages. The piezoeledric material, which is the preferred adaptive

material inthisreseach work, isdescribed in greaer detail i n the foll owing chapter. Therest of
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the chapter then surveys the advances of smart structures technology including various
mathematical models that have been used. The chapter concludes by explaining the motivation
and relevance behind this work and setting out the objectives of this research work.

In Chapter 2 the main adaptive material, piezoel ectric materials, are explained in greater
detail. It examines the origin of the linear theory of piezoelectricity by looking at the discovery
of the direct and the converse piezoel ectric effects and how the mechanical and the electrical
phenomena was combined. The constitutive equations were also shown to be able to be
developed quite naturally from a thermodynamic perspective and from this, some of the
significance of the coupling propertiesemerged. Thecrysta structurereceived apassing mention,
sufficient to explain the particular type of crystal structure of the piezoelectric material chosen
to be used in this research. Issues such as non-linearity of the piezoelectric material were also
presented. Followingthis, the practical propertiesof the piezoe ectric materia inrelationto their
use in smart structures is described as well as listing the main physical forms of piezoelectric
materials that have currently been used.

Before goinginto the derivation of the mathematical model, the Chapter 3 first describes
the existing methods and their shortfall for modeling intelligent composite plate structures. Then
the high order displacement theory and the layerwise concept is explained. The mathematical
formulation, known as TODL, is developed using HODT for mechanical and layerwise for the
electrical components. The analytical formulation, derived from variational energy principles,
fully integrates the entire smart structure because it models both piezoelectric and non-
piezoel ectric materials taking into account all mechanical, electrical and piezoelectric effects.
Although the general formulation was done for a plate structure, a beam structure formulation
was shownto be easily derived fromit. Theanalytical formulationiscompletefor both the beam
and the plate in the sense direct solutions are obtainable if desired. As an illustration, direct
analytical solutions for two beam examples were presented.

The TODL plate analytical formulation developed in Chapter 3 isimplemented into a
Finite Element (FE) formulation in Chapter 4. Since FE is anumerical technique that has been
established for over several decades, this thesis will assume that the reader is familiar with the
fundamental conceptsof FE. Thus Chapter 4 quickly launchesinto the FE formulation of TODL
where the main goa is to show how the new features in TODL such as the 11 mechanical
variables and the el ectric potential |ayerwise concept fit into the FE formulation. Although there
are many new variables, their names and symbol s have been kept consistent with traditional FE

notation asfar as possible. The TODL-FE is developed for an 8-node rectangular plate element



since this element is quite adequate for the investigations in this thesis. The formulation can be
readily modified to accommodate other types of elements. In addition, the FE implementation
using a 2-node Hermitian beam element is a so included.

The TODL-FE beam formulation is verified in Chapter 5 with numerical and
experimental results found in the literature. The verification included conventional non-
piezoel ectric structures, structures with piezoel ectric materials used as actuators, and structures
with actuating / sensing capabilities. Following this is the presentation of new results of
investigation of the structural effects using the beam TODL-FE. This include the effects on
displacements, curvature and sensor voltages due to the rotation of the actuators, their selected
positionsandtheelectricfield polarity. Finally it solved acantilever beam exampleand compares
with its exact solution derived in Chapter 3.

Chapter 6 is the counterpart of Chapter 5 for the plate TODL-FE formulation. The
verification and the investigations of the composite plate model are more extensive since the
development of the TODL-FE for the composite plate structure is one of the main focus of this
thesis. Verification of non-piezoelectric structures have shown the capability of TODL for
analyzing moderately thick structures where results correlate well with 3D elasticity exact
solutions. Verification with structures containing piezoelectric materials are aso in good
agreement. Exceptionsto thisarise most notably in structures with actuator patch configurations
where the difference between this TODL formulation and others based on the Induced Strain
concept, isreflected inthenumerical results. New investigationsfor structural actuationincluded
aparametric study on actuator locations, el ectric field directions, actuator orientations, anisotropy
of piezoelectric actuators and how they affect shape characteristics such as bending and twist.
The understanding of thesefactorsis significant in the development of shape control algorithms
in subsequent chapters. The variety of verification and new examplestested successfully testify
to the robustness of TODL-FE.

Chapter 7 onwards represent the second major part of thisthesiswhich isthe application
of shape control using piezoelectric actuators. This chapter uses displacement as the only
criterionto measurethe conformity between the actual and the desired shapes. Thisthesisdefines
shape control asthe determination of actuation parameters such as electric voltages or structural
parameters such as actuator orientation angle which are required to manipulate the actual
structure to conform to a desired shape. The SC algorithmsin Chapter 7 would calcul ate these
parameters given the desired shape. A novel SC agorithm, BVD, was developed here and

compared with somegeneric optimization algorithms. Thelimited amount of examplesavailable
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intheliterature has been verified successully here. In addition, rew investigative studiesreved
variousisales sich asthefad that nat all desired shapes can be generated exadly andthe degree
of shape controll ability depends on the number of independent aduator patches. The dapter
concludes with a manual processof aduator locaion ofimization by using a “Displacanent
Patch Insensiti vity” index.

Chapter 8 extends the concept of displacanent based shape wntrol (DBSC) to using
higher order attributes of shape such as $opes (SDSC) and curvatures (CDSC). The limitation
of DBSC were identified, viz. bumpinessof the resultant structure and the severe locdized
streses due to having discrete patch aduators. Another novel agorithm cdled PBVD was
developed for SDSC and CDSC ead); mainly because generic multi-criteria optimization
algorithmsare nat suited to thisappli cation dueto confli cting eff eds of displacement, slope and
curvature measures. The PBVD method, designed spedficdly for shape control, is more robust
and applicable becauseit all ows the user to speadfy the degreeof conformity between the adual
and desired shapes. Results show that PBVD is able to smooth out the bumpinessthat occur in
DBSC. More importantly it shows sgnificant reduction in stresses thus implying that in SC,
applyingthevoltage configurationca culated by PBVD doesnot generate as much stressas other
methods of SC.

The optimization d the angle/ orientation d piezoeledric aduatorsin SC, or AOSC is
consideredin Chapter 9. Several brief findingsfrom chapter 6in regardsto the df edsof aduator
orientation and material anisotropy on the shape of the structure, have been foundto be useful
in understanding the concepts of aduator orientation ogimization in SC. Ancther iterative-
heuristic algorithm cdl ed, BOD was devel oped for this particul ar type of shape cntrol inwhich
thecriteriaisthedisplacanent measurewhil etheoutput isthe aduator orientationconfiguration.
The advantage of performing AOSC, as shown by the results of using BOD, is a dea
improvement on the shape cntroll ability for some structural configurations.

Finally thethesis concludeswith the major findings discovered in thisreseach work and
highli ghts the mathematica model and SC agorithms developed here.
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NOTATION

Symbols

General Variables

£ mechanical strain

N actuation strain

o mechanical stress

(0] general electric potential vector
@(x,y) interface functions

X electric permittivity

c mechanical stiffness

d piezoel ectric strain constant

D electric displacement

e piezoel ectric stress constant

E electric field

h total thickness/height of composite
K Kinetic energy

L Lagrangian

L., L, layerwise functions

P potential energy

Rc mechanical anisotropy

Rd piezoel ectric anisotropy

T temperature

u genera displacement vector
(u,v,\w total displacement components
V voltage

w work

Finite Element Variables

B

matrices relating variables to FE nodal variables
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D definition matrices of some variable with derivatives
F, Q mechanical and electrical load vectors
J Jacobian matrix
Kuu, Kug, Kqu, K@
electro-mechanical stiffness matrices incorporating piezoel ectric effects
N®  8-node serendipity element shape functions
Q 2D transformation matrix - rotation about z-axis
R transformation between engineering and infinitesimal strain tensor
T, Ty, 3D transformation matrix - rotation about z-axis
(&,n) local planar coordinate of element

(x,y) global planar coordinate system

Shape Control Variables
W, S, S, Ko K,y Ky
Transverse displacement, slopes and curvatures respectively.
C", C¥ CY, Ci C'w, C*v
Influence coefficient matrix for displacement, slopes and curvatures respectively, in
response to electric voltage.
Ci Coefficient based on the displacement measure of the previous iteration.
y Gamma factor - intermediate cost function in BVD.
Aw  Least squares difference of transverse displacement.
AKXxx, AKyy, AKxy
Areaintegrated squared difference of curvatures.
A, ASy
Areaintegrated squared difference of slopes.
Lnm Lshape normalized by 4*Nn
LSd  Displacement tolerance of PBVD
LshapeSelf-normalized displacement measure.
LSw, LS, LSSy, LSKxx, LIKyy, LSKxy
Normalized least squares difference measure between actual and desired shape of the
structure.
Ny Total number of curvature points.

N, Total number of nodes of the FE model of a structure
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Z

Z
(7)) =]

EBU)'O

Total number of active patches.

Total number of slope points.

Slope - displacement tolerance factor.
Slope tolerance factor.

Selection Rate of patchesin BVD.

Symbolswhich have only appeared briefly in thisthesis are not included here. Also due

tothelarge number of quantities, it isunavoidableto have some symbolsrepresenting morethan

one quantity. In such cases, it is important to be aware of the context in which the symbols

Thelist of symbolshereisdividedinto several sectionsto assistinidentifyingthe context

of the symbols.

Acronyms- Glossary

AOSC

BOD

BVD

CDSC

CLPT
CPI

DAP

DBSC

d.o.f.
DPI

DQM

Actuator Orientation Shape Control - shape control that optimizestheorientation
angle of the piezoel ectric actuators.

Buildup Orientation Distribution - shape control algorithm developed in this
research to optimize actuator orientation configuration using displacement
measures.

Buildup Voltage Distribution - shape control a gorithm developedinthisresearch
to optimize voltage configuration using displacement measures.
Curvature-Displacement based Shape Control - shape control that uses
curvatures and transverse displacement to match the desired shape.

Classical Laminated Plate Theory - well known model for composite laminates.
Curvature Patch Insensitivity index - a measure of insensitivity of actuator
patches to affect curvature, given input voltage.

Directionally Attached Piezoelectric - technique of attaching actuatorsto
preferentially enhance certain effect such as twist.

Displacement based Shape Control - shape control that uses transverse
displacement to match the desired shape.

Degree of Freedom

Displacement Patch Insensitivity index - a measure of insensitivity of actuator
patches to affect displacement, given input voltage.

Dual Quadratic Minimization - technique of finding the minimum point between



EPA
ERF

FE/FEA/FEM

FOSDT

GA

HODT

IDE
LCW

LDU
LLS

LPCE

LS

McLLS

MCSC

MIMO

NPCE
PBVD

PFC

PIEZFEP

two intersecting, upright parabola.

Extensional Piezoelectric Anisotropy - ratio of d,;:d,,

Electro-Rheological Fluid - a fluid with coupled electrica and rheological
properties.

Finite Element / ....Analysis/ .... Method - computational analysis method.
First Order Shear Deformation Theory

Genetic Algorithm - an optimization routine based on the principles of biological
evolution.

Higher Order Displacement Theory - displacement field to model deformations
with order greater than 1.

Influence Coefficients - coefficients relating variables with alinear relationship
such as voltages and displacements.

Inter-Digitated Electrodes - alayout of electrodes pioneered by the MIT group.
Lo, Christensen, Wu (displacement theory) - third order displacement field used
by the authors mentioned.

LDU Decomposition - a mathematical technique to decompose a matrix.
Linear Least Sguares - a technique that minimizes the sum of least square
difference between functions which are linear.

Linear Piezoelectric Constitutive Equations

Least Squares

Multi Criteria Linear Least Squares - the LLS method applied for multi-criteria
Cases.

Multi Criteria Shape Control - shape control application based on using more
than one criteria

Multi Input Multi Output - control strategy having more than one input and
output.

Non-linear Piezoel ectric Constitutive Equations

Perturbation Buildup Voltage Distribution method - One of the heuristic methods
developed in thisthesis, based on BVD, for shape control applications.
Piezoelectric Fiber Composites - composite in which itsfibres are piezoelectric
material.

Piezoel ectric Finite Element Program- developed inthisthesisusingthe TODL -

FE formulation.
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PVDF
PZT
RHOD

SA

SCF
SCONFEP

SDSC

SMA

SPA
SHEC

SH

SR

SC

TODL

TODL-FE

uCs

Polyvinylidene Fluoride - a particular type of piezoeledric polymeric material.
Lead Zirconae Titanate - a particular type of piezoeledric caamic material.
Reddy’s HOD - Reddy’s (1984 version d the Higher Order Displacement
Theory.

Sensors and Actuators

Smulated Annealing- aminimizationtedniquefor multi dimensional andmulti-
modal objedive functions.

Shape Control - the goplication d manipulating astructuretoinduce @nformity
to adesired shape.

Shear Corredion Factor - a arredion fador used with FOSDT.

Shag Control Finite Element Program - implements the shape ontrol
algorithms developed in this thesis and uses PIEZFEP.

Sope-Displacement based Shag Control - shape @ntrol that uses dopes and
transverse displacanent to match the desired shape.

Shag Memory Alloy - adaptive material which changes shape in resporse to
temperatures.

Shea Piezoeledric Anisotropy - ratio of d,<:d,,

Sweessve Peak Error Corredion - Heuristic optimization algorithm for shape
control developed by Subramanian & Mohan(1996.

Sope Patch Insensiti vity index- ameasure of insensiti vity of aduator patches to
affed slope, given inpu voltage.

Seledion Rate - parameter of BVD and BOD.

Satic Sha Control - shape @ntrol applicaionin a static manner.

Third Order Displacement Layerwise - The analyticd formulation developed in
thisthesisthat incorporates athird order displacement field for medanicd field
and layerwise concept for eledricd field.

Third Order Displacement LayerwiseFinite Element -Thefinite éement program
written by the aithor based onthe TODL formulation.

Unified Condensed Sorage - astorage method ceveloped in thisreseach as part
of the implementation o TODL-FE.
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