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SUMMARY 
 

This thesis explores the design of flexible pipes, buried in shallow trenches with dry 

sand backfill.  The thesis reports the comprehensive analysis of twenty-two full-scale 

load tests conducted between 1989 and 1991 on pipe installations, mainly within a 

laboratory facility, at the University of South Australia.  The pipes were highly 

flexible, spirally-wound, uPVC pipes, ranging in diameter from 300 to 450 mm.   

Guidelines were required by industry for safe cover heights for these pipes when 

subjected to construction traffic.  The tests were designed by, and conducted under 

the supervision of, the author, prior to the author undertaking this thesis.   

 

As current design approaches for pipes could not anticipate the large loading 

settlements and hence, soil plasticity, experienced in these tests, finite element 

analyses were attempted.  Extensive investigations of the materials in the 

installations were undertaken to permit finite element modelling of the buried pipe 

installations.  In particular, a series of large strain triaxial tests were conducted on the 

sand backfill in the buried pipe installations, to provide an understanding of the sand 

behaviour in terms of critical state theory.  Subsequently a constitutive model for the 

soil was developed. 

 

The soil model was validated before implementation in an element of finite element 

program, AFENA (Carter and Balaam, 1995).  Single element modelling of the 

triaxial tests proved invaluable in obtaining material constants for the soil model.  

The new element was applied successfully to the analysis of a side-constrained, plate 

loading test on the sand.  The simulation of the buried pipe tests was shown to 

require three-dimensional finite element analysis to approach the observed pipe-soil 

behaviour.   Non-compliant side boundary conditions were ultimately adjudged 

chiefly responsible for the difficulty in matching the experimental data.  The value of 

numerical analyses performed in tandem with physical testing was apparent, albeit in 

hindsight. 

 

The research has identified the prediction of vertical soil pressure above the pipe due 

to external loading as being the major difficulty for designers.  Based on the finite 

element analyses of the field tests, a preliminary simple expression was developed 

 xx   



  

for estimation of these pressures, which could be used with currently available design 

approaches to reasonably predict pipe deflections. 

 
 
 
 
 

PREFACE 
 
 

I hereby certify that this thesis contains no material for the award of any other degree 

or diploma and that, to the best of my knowledge and belief, this thesis contains no 

material previously published or written by any other person, except where due 

reference has been made in the text.  

 

Much use has been made of finite element analysis in this thesis.  While the author 
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