Long-Range Imaging Radar for Autonomous Navigation

Graham Brooker

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Australian Centre for Field Robotics School of Aerospace, Mechanical and Mechatronic Engineering The University of Sydney

January 2005

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the University or any other institute of higher learning, except where due acknowledgement has been made in the text.

Graham Brooker

January 2005

Abstract

Graham Brooker The University of Sydney Doctor of Philosophy January 2005

Long-Range Imaging Radar for Autonomous Navigation

This thesis describes the theoretical and practical implementation of a long-range high-resolution millimetre wave imaging radar system to aid with the navigation and guidance of both airborne and ground-based autonomous vehicles. To achieve true autonomy, a vehicle must be able to sense its environment, comprehensively, over a broad range of scales. Objects in the immediate vicinity of the vehicle must be classified at high resolution to ensure that the vehicle can traverse the terrain. At slightly longer ranges, individual features such as trees and low branches must be resolved to allow for short-range path planning. At long range, general terrain characteristics must be known so that the vehicle can plan around difficult or impassable obstructions. Finally, at the largest scale, the vehicle must be aware of the direction to its objective.

In the past, short-range sensors based on radar and laser technology have been capable of producing high-resolution maps in the immediate vicinity of the vehicle extending out to a few hundred metres at most. For path planning, and navigation applications where a vehicle must traverse many kilometres of unstructured terrain, a sensor capable of imaging out to at least 3km is required to permit mid and long-range motion planning. This thesis addresses this need by describing the development a high-resolution interrupted frequency modulated continuous wave (FMICW) radar operating at 94GHz.

The contributions of this thesis include a comprehensive analysis of both FMCW and FMICW processes leading to an effective implementation of a radar prototype which is capable of producing high-resolution reflectivity images of the ground at low grazing angles. A number of techniques are described that use these images and some *a priori* knowledge of the area, for both feature and image based navigation. It is shown that sub-pixel registration accuracies can be achieved to achieve navigation accuracies from a single image that are superior to those available from GPS.

For a ground vehicle to traverse unknown terrain effectively, it must select an appropriate path from as long a range as possible. This thesis describes a technique to use the reflectivity maps generated by the radar to plan a path up to 3km long over rough terrain. It makes the assumption that any change in the reflectivity characteristics of the terrain being traversed should be avoided if possible, and so, uses a modified form of the gradient-descent algorithm to plan a path to achieve this.

The millimetre wave radar described here will improve the performance of autonomous vehicles by extending the range of their high-resolution sensing capability by an order of magnitude to 3km. This will in turn enable significantly enhanced capability and wider future application for these systems.

Acknowledgements

I would like to thank Professor Hugh Durrant-Whyte who had the vision to employ me, almost sight unseen, and who showed me that what I know about radar is valuable. His vision and guidance has built the ACFR into an environment that nurtures talent and allows people like me to realise our dreams.

I would also like to thank Professor Mike Inggs who has gone out of his way to advise me, for old-times sake and for the good of radar - which has shaped our lives.

To my parents who have been waiting nearly half a century for a doctor, I thank them for the seed of curiosity and the mandate to do anything I wanted, so long as I did it to the best of my ability.

To my wife Mandi, my soul-mate and guiding star, who has nurtured me with her unconditional love forever, thank you for creating an environment that has given me the freedom and the courage to produce this thesis.

Thanks are also due to many of my colleagues at the ACFR and worldwide who worked on the original radar with me, who read portions of the drafts and who offered useful advice.

Contents

Long-Ra	inge Imaging Radar for Autonomous Navigation	i
Chapter	· 1. Introduction	1
1.1.	Objectives	1
1.2.	Radar Imaging	3
1.3.	Radar Feature Characteristics	5
1.4.	Radar Systems Requirements	6
1.5.	Navigation, Guidance and Path planning	8
1.6.	Contributions	10
1.7.	Thesis Structure	10
Chapter	[•] 2. Radar Imaging Principles	14
2.1.	Introduction	14
2.2.	Resolution	14
2.2	1. Angular Resolution	14
2.2	2. Range Resolution	15
2.3.	Building Images	17
2.3	1. Range Gate Limited Images	17
2.3	2. Beamwidth Limited Images	18
2.3	3. Image Interpretation	20
2.3	4. Alternative Representations	21
2.4.	Radar Applications for Autonomous Guidance and Navigation	22
2.4	1. Indoor Applications	22
2.4	2. Ground-based Outdoor Applications	23
2.4	3. Airborne Applications	25
2.5.	Conclusions	26
Chapter	· 3. Target and Propagation Effects	
3.1.	Introduction	
3.2.	Target Reflectivity Measurements	
3.2	1. The Noise Floor	29
3.2	2. Spatial Variations	
3.2	3. Temporal Variations	
3.2	4. Effects of Radar Movement	
3.3.	Target Feature Representations	
3.3	1. 2-D Representations	
3.3	2. 3-D Representations	39
3.4.	Propagation	
3.4	1. The Range Equation	40

3.4.2.	Atmospheric Attenuation	41
3.4.3.	Attenuation due to Dust and Smoke	42
3.4.4.	Foliage Penetration	43
3.5. Oth	er Important Effects	45
3.5.1.	Multipath Images	45
3.5.2.	Electromagnetic Interference	46
3.6. Co	nclusions	47
Chapter 4. F	Radar Systems	48
4.1. Int	roduction	48
4.2. Mc	dulation and the Ambiguity Function	48
4.3. Pul	sed Radar	50
4.3.1.	Transmitter Options	51
4.3.2.	The Matched Filter	
4.3.3.	Potential for Autonomous Applications	54
4.4. Pul	se Compression	56
4.4.1.	Matched-filter Definition	58
4.4.2.	Phase-Coded Pulse Compression	59
4.4.3.	SAW Based Pulse Compression	60
4.4.4.	Step Frequency	62
4.5. Fre	quency Modulated Continuous Wave Radar	63
4.5.1.	Operational Principles	63
4.5.2.	Matched Filtering	65
4.5.3.	The Ambiguity Function	67
4.5.4.	Phase Noise and Leakage Effects	69
4.5.5.	Radar Performance Evaluation	70
4.5.6.	Potential for Autonomous Applications	72
4.6. Inte	errupted FMCW	74
4.7. Co	nclusions	75
Chapter 5. I	nterrupted FMCW	77
5.1. Int	roduction	77
5.2. FM	IICW Matched Filter	79
5.2.1.	Derivation of the Matched-filter Equations	79
5.2.2.	Evaluation of Options	
5.2.3.	Processing Efficiency and Integration	
5.3. Im	plementation of an FMICW Front-End	
5.3.1.	Open-loop Linearisation	
5.3.2.	Determining the Effectiveness of Linearisation Techniques	
5.3.3.	Implementation of Closed-Loop Linearisation	
5.3.4.	Amplifying and Pulsing	
5.3.5.	Effective Range Resolution	90
	-	

5.4. Ra	dar Hardware Considerations	90
5.4.1.	Mitigation of Switching Effects	92
5.4.2.	Practical Aspects of Linearisation	92
5.4.3.	Automatic Frequency Control	94
5.4.4.	Transmit Power and Spectrum	94
5.4.5.	Noise Power Measurements	97
5.5. Sys	stem Measurements	98
5.5.1.	Antenna Gain	98
5.5.2.	Multipath Effects	99
5.5.3.	Bandwidth Effects	100
5.5.4.	Noise Effects	101
5.5.5.	Closing the Calibration	
5.5.6.	Range Resolution	
5.6. Per	formance Prediction	104
5.7. An	tenna Scanning and Beam Stabilisation	106
5.8. Sig	nal Processing	107
5.8.1.	Coarse Range Gating	107
5.8.2.	Generating In-Phase and Quadrature Signals	108
5.8.3.	Fine Range Gating	110
5.8.4.	Image Generation	111
5.8.5.	Measured Resolution Effects	112
5.8.6.	Resolution Enhancement Methods	113
5.9. Co	nclusions	116
Chanter 6 F	Radar-Based Navigation and Guidance	117
6.1 Int	roduction	117
6.1. Int.	llimetre-wave Radar Image Generation and Interpretation	, 118 118
621	Image Construction	110 119
6.2.2	Image Interpretation from an Aerial Perspective	121
6.2.3	Image Interpretation from a Pilot's Perspective	121
63 Fea	ature Based Navigation	122
631	Reference-feature-base Construction	122
6.3.2.	Radar Image Processing	
6.3.3.	Navigation Error Estimation	
6.3.4.	Results	
6.4. Co	rrelation Based Navigation	
6.4.1.	The Correlation Process	
6.4.2.	Correlation Results	
6.4.3.	Positioning Accuracy	
6.4.4.	Effects of Reference Image Errors	
6.4.5.	Application for Autonomous Navigation	134
6.5. Gro	ound-Based Path Planning and Navigation	134

6.5.1.	Advantages of using Radar Images	
6.5.2.	Multi-Level Terrain Map Description	
6.5.3.	Terrain Map Interpretation	
6.6. R	adar Reflectivity-Based Path Planning	
6.6.1.	A Simplified Path-Planning Algorithm	
6.6.2.	Basic Path-Planning Algorithm Interpretation	140
6.6.3.	Path-Planning Algorithm with Waypoints	142
6.6.4.	Path-Planning Algorithm Allowing Increases in Potential	143
6.6.	4.1. Gradient 2 and Search Area 5×5	143
6.6.	4.2. Gradient 1.5 and Search Area 5×5	144
6.6.	4.3. Gradient 2 and Search Area 3×3	144
6.6.	4.4. Gradient 4 and Search Area 3×3	
6.6.	4.5. Algorithm to Accommodate No-Go Areas	
6.7. C	onclusions	146
Chapter 7.	Summary, Contributions and Future Work	147
7.1. S	ummary and Contributions	147
7.2. F	uture Work	149
7.2.1.	Radar Systems	149
7.2.2.	Processing and Analysis	151
7.2.3.	Applications	
7.2.4.	Summary	154

Appendix A. Radar Background: Resolution, Target Reflectivity, Attenuation

and Mul	tipath	155
A.1.	Resolution	
A.1.	1. Angular Resolution	
A.1.	2. Relation between Range Resolution and Spectral Content	
A.1.	3. Range Gating	
A.2.	Reflectivity	
A.2.	1. Target Cross-Section and Reflectivity	
A.2.	2. Measuring Reflectivity	
A.2.	3. Backscatter	
A.3.	Attenuation	
A.3.	1. Effect of Rain	
A.3.	2. Effect of Fog and Clouds	
A.4.	Multipath	169
Appendi	x B. Mutual Interference	171
B.1.	Introduction	171
B.2.	Typical FMCW Radar Performance Specifications	171

B.3.	Spectrum Utilisation	172
B.4.	Sensitivity and Interference for FMCW Radars	172
B.4	1. Interfering Source Levels	173
B.4	2. Effect of Sidelobes	174
B.4	3. Effect of Target	174
B.4	.4. Effect of the Operating Band	175
B.4	.5. Identical Radar Systems	175
B.4	.6. Similar Radars	179
B.5.	Techniques to Minimise Interference	181
B.5	.1. Pre-FFT Signal Processing	181
B.5	2. Post FFT Signal Processing	182
B.5	3. Detection and Tracking	182
B.5	.4. Examples of Interference Reduction	182
B.6.	Sensitivity and Interference for FMCW and FMICW Radars	184
Append	ix C. Implementation of a 94GHz Pulsed Radar Front-End	187
C.1.	Overview	187
C.2.	Pulsed IMPATT Transmitter	188
C.3.	The Duplexer	190
C.4.	The Antenna	191
C.5.	Local Oscillator	192
C.6.	The mixer	193
C.7.	The amplifier	194
C.8.	Matched Filter Implementation	194
C.9.	Closing the Calibration	195
C.9	1. Received Power	196
C.9	2. Output Signal to Noise Ratio	196
C.10.	Imaging Performance	197
C.11.	Slope Estimation	198
Append	ix D. Effect of Chirp Linearity on the Range Resolution of an	FMCW
Radar		200
D.1.	Introduction	200
D.2.	Analytical Solution	201
D.2	.1. Cos(A+B) Term from (D.6)	202
D.2	.2. Cos(A-B) Term from (D.6)	202
D.2	.3. Values of some constants	203
D.2	.4. Evaluation of the first cosine term (D.9) reproduced here	204
D.2	.5. Evaluation of the second cosine term (D.12) reproduced here	205
Append	ix E. Improving the Chirp Linearity of an FMCW Radar	208
E.1.	Open-loop Techniques	209
E.2.	Closed-loop Techniques	211

E.3.	Other Methods	
E.4.	Linearisation, Chirp Bandwidth and Spectral Width	213
Appendi	x F. Improving the Imaging Performance of an FMCW Radar	215
F.1.	Reducing Range Sidelobes	215
F.2.	Phase Noise, Mixing and Common Aperture Problems	217
F.3.	Phase Noise around the Target and Image Contrast	221
F.4.	AM Noise	
F.5.	Signal Processing Effects	
F.5.1	I. Signal Quantisation and Noise	224
F.5.2	2. Resolution and the FFT	225
Appendi	x G. IMPATT Oscillator Fundamentals	227
G.1.	Device Physics	227
G.1.	1. Simplified IMPATT Theory	
G.1.	2. Diode Packaging	230
G.1.	3. Thermal Effects	232
G.2.	Oscillator Description	233
G.3.	Injection Locking	234
G.3.	1. Implementation	235
G.4.	Spectral Splitting	236

List of Figures

Figure 1.1: Performance of the 3cm H_2S radar flying over the Guldborg Sound in December 1943 showing (a) a map of the area and (b) a photograph of the PPI display in which the interface between land and water is quite clear [134]4
Figure 1.2: Airborne SAR image showing hangars around the Kirtland AFB, Albuquerque, New Mexico, (1m resolution) [10]
Figure 1.3: Beamwidth-limited occupancy image of a tree-lined quadrangle adjacent to the ACFR at the University of Sydney
Figure 1.4: Plan and cross-section diagrams showing the long-range image generation process using a sector scan and a range-gate limited sensor
Figure 2.1: Three dimensional Cartesian plot of the gain pattern of a fan-beam antenna showing the narrow azimuth beamwidth and the cosec ² elevation beam pattern
Figure 2.2: Operational principles of a pulsed time-of-flight radar illustrating the round-trip time to the target and range resolution due to overlapping pulses
Figure 2.3: Polar to Cartesian image transform shows an example where each Cartesian pixel becomes the weighted average of the polar pixels with which it overlaps
Figure 2.4: Range-gate-limited image of the ground transformed from polar to Cartesian space illustrating the good image quality obtained by over-sampling and pixel weighting
Figure 2.5: The difference between (a) beamwidth and (b) range-gate-limited imaging illustrated in this example of a shovel-mounted imaging radar
Figure 2.6: Illustration of beamwidth-limited surface quantization in which a limited number of uniformly spaced measurements is made at discrete points over the target
Figure 2.7: Reconstructed 3-D geometry of an indoor scene (walls, door, table and locker) based on 20×20×20cm volume cells
Figure 2.8: Two perspectives of occupancy grid based 3-D representation of outdoor data made at CMU. In these images the radius of the opaque spheres is proportional to the log of the reflectivity value at that point
Figure 2.9: Collision avoidance radar application for human detection at the ACFR comparing (a) a photographic image and (b) a radar image with the return from a person indicated
Figure 2.10: Synthetic Vision using ALG showing (a) a radar Image of a runway and (b) a visible cockpit-camera image of the same view
Figure 3.1: FMCW radar system noise-floor characteristics showing the minimum, mean and maximum values measured over a 500kHz frequency span
Figure 3.2: FMCW radar system noise-floor characteristics showing the standard deviation of the noise over a 500kHz frequency span
Figure 3.3: Image reflectivity analysis tool output showing the captured file ss3834.bmp which consists of a section of runway with two intersecting taxi ways and

the surrounding scrub. The circular arc is an artefact of the radar linearisation process Figure 3.4: Image reflectivity analysis tool output showing the captured file, Figure 3.5: Range corrected histograms of reflectivity distribution for the different target areas show the typical log-normal distributions obtained for millimetre-wave Figure 3.6: Comparison between the measured reflectivity of grass and crops at 95GHz with the Georgia Tech statistical model predictions for 10%, 30%, 50%, 70% Figure 3.7: Histograms of runway signal level compared with the noise floor confirm Figure 3.8: Measured clutter-return power from grassland and scrub showing (a) the time-frequency pseudo-image and (b) the variation in signal level measured during a Figure 3.9: Measured clutter reflectivity from grassland and scrub showing (a) the Figure 3.10: Low and high frequency components of the power spectral density returns for wind-blown trees showing differences in the spectra that can be attributed Figure 3.11: The effect of moving the observation point on image clarity is illustrated by comparing the image (a) produced by a single scan and (b) four integrated scans 37 Figure 3.12: Histograms of the grass verge surrounding the runway for (a) a single image and (b) an integrated sequence of images obtained from slightly different Figure 3.14: Schematic diagram illustrating the surface and volume clutter returns that Figure 3.15: Graphical solution to the radar range equation showing the effects of Figure 3.16: Summary of atmospheric attenuation effects for clear air, fog and rain at Figure 3.17: Signal attenuation (one way) at different frequencies due to dust, as a Figure 3.18: Total attenuation of a radar signal as a function of one-way foliage depth Figure 3.19: Measured and calculated attenuation coefficients through trees as a Figure 3.20: An illustration of the confusion that can arise in the interpretation of the ground level by an AGV fitted with a radar sensor, due to the effect of multipath.....45 Figure 3.21: Multipath fading over flat earth (RMS surface variation 0.1m) for an Figure 3.22: Effect of multipath on the bearing of target features as seen in this point-Figure 4.1: Block diagram illustrating the standard processing of a radar waveform.49

Figure 4.2: Schematic block diagram showing the major components of a typical non- coherent pulsed millimetre-wave radar system
Figure 4.3: The relationship between the waveform and spectrum of a rectangular pulse
Figure 4.4: Matched-filter output for a generic rectangular pulse of duration τ 53
Figure 4.5: Ambiguity function for the matched-filter response to a 100ns long rectangular pulse
Figure 4.6: Contour plot and Helstrom's uncertainty ellipse of the ambiguity function for the matched-filter response to a 100ns rectangular pulse
Figure 4.7: Matched-filter output of a pair of closely spaced targets showing the limits to the range resolution at zero Doppler
Figure 4.8: Pulsed millimetre-wave radar reflectivity contour map superimposed on an aerial photograph of the same airfield scene showing high intensity returns produced by buildings
Figure 4.9: Matched-filter configurations for pulse compression using (a) conjugate filters, (b) time inversion and (c) correlation
Figure 4.10: Diagram to illustrate the concept of phase-coded pulse compression for a five bit Barker code
Figure 4.11: Ambiguity diagram for a 13-bit Barker code showing the "thumbtack" main lobe decaying into a sea of increasing delay and Doppler sidelobes
Figure 4.12: Conceptual diagram of a linear-chirp pulse-compression radar61
Figure 4.13: Schematic diagram illustrating the FMCW concept
Figure 4.14: Frequency domain representation of a linear FM chirp64
Figure 4.15: Frequency domain representation of the FMCW receiver output including both the high and low frequency components after mixing but before filtering
Figure 4.16: Spectrum of the truncated sinusoidal signal output by an FMCW radar 66
Figure 4.17: Linear FM up chirp ambiguity diagram for a 100ns duration signal showing the interaction between delay and Doppler
Figure 4.18: Transmitter signal leakage paths in an FMCW front-end
Figure 4.19: Comparison between phase-noise and thermal noise at the mixer output of a typical Gunn-oscillator based millimetre-wave FMCW radar
Figure 4.20: Phase-noise and integrated phase-noise in each 1kHz range-bin around a point target at a range of 400m
Figure 4.21: Effect of quadratic chirp-nonlinearity on the spectra of two closely- spaced point targets for (a) a rectangular and (b) a Hamming window71
Figure 4.22: Effect of phase-noise on the spectra of two closely-spaced targets for (a) rectangular and (b) a Hamming window
Figure 4.23: Effect of nonlinear chirp and phase-noise on the spectra of two close spaced targets for (a) rectangular and (b) a Hamming window
Figure 4.24: Airborne images of a section of runway and taxiway showing (a) the composite millimetre-wave radar image and (b) an aerial photograph73
Figure 4.25: Schematic diagram illustrating the FMICW concept74
Figure 5.1: Process to determine the effect of target range on an FMICW radar signal where (a) is the FMCW signal (b) the transmitter gating sequence (c) the receiver

gating sequence (d) the transmitted FMICW signal and (e) the received FMICW signal for a round-trip time of T_p sec
Figure 5.2: Comparison between the received signals and spectra for two closely spaced targets of different amplitudes for (a) an FMCW radar and (b) an FMICW radar with a deterministic interrupt sequence
Figure 5.3: The received signals and spectra for two closely spaced targets of different amplitudes for an FMICW radar with a pseudorandom interrupt sequence
Figure 5.4: The received signals and spectra for two closely spaced targets of different amplitudes for an FMICW radar processing a single return packed with zeros
Figure 5.5: The received signals and spectra for two closely spaced targets for an FMICW radar processing a single return only for the case in which (a) the target amplitudes differ by 10dB and (b) the target amplitudes are identical
Figure 5.6: Schematic block diagram of an FMICW radar system showing that it consists of two major components (a) a linear ramp generator and (b) transmit signal gating and amplification
Figure 5.7: Schematic diagram of a linear chirp generator based on a lookup table85
Figure 5.8: Quadratic frequency chirp correction circuit using an analog multiplier chip
Figure 5.9: Schematic diagram of a delay-line discriminator
Figure 5.10: Discriminator output spectra for (a) an unlinearised Hughes VCO and (b) after open-loop correction
Figure 5.11: Example of the non-linear characteristics exhibited by a typical Gunn VCO
Figure 5.12: Schematic diagram showing the process of chirp linearisation based on a combination of open-loop correction and closed-loop delay-line discriminator output feedback
Figure 5.13: Locking gain-bandwidth characteristics of millimetre-wave IMPATT injection-locked oscillators[122]
Figure 5.14: FMICW timing optimised for a 3km operational range with two interrupt cycles per ramp period
Figure 5.15: Diagram showing the received waveforms at 1.5 and 3km and the interrupt timing for the implemented FMICW radar
Figure 5.16: Block diagram showing the RF levels and loss budget for the 94GHz FMICW radar
Figure 5.17: Photograph of the FMICW front-end showing the brass-block construction and indicating the positions of the critical components that are mounted close to the antenna
Figure 5.18: Schematic diagram of the switched LNA showing the positions of the clamp and FET switch designed to minimise leakage-transient effects
Figure 5.19: LNA output signal showing the residual switching transients that introduce wideband noise into the received signal spectra
Figure 5.20: Delay-line discriminator output spectrum showing the effect of closing the linearization loop. Chirp linearity is proportional to the width of the spectral peak.
Figure 5.21. Phase detector performance comparison showing the processed return

Figure 5.21: Phase detector performance comparison showing the processed return from two point-targets separated by 50m at a range of 2.6km. It can be seen that only

the counter DAC techniques (c) and (d) adequately reproduce the smaller target at the Figure 5.22: Downconverted VCO centre frequency showing the effectiveness of the Figure 5.23: Relative spectra centred at 94GHz showing (a) the temperature induced frequency chirp in an unlocked PILO and (b) the effect of injection locking this Figure 5.24: Schematic diagram showing the set-up used to measure the transmit Figure 5.25: Detected output showing the four transmitted pulses with almost constant Figure 5.26: Transmitter spectrum showing the four distinct pulses visible because the Figure 5.28: Measurement set-up to investigate radar performance. The corner-Figure 5.29: Normalised elevation polar plot showing the predicted pattern, the measured pattern before environmental tests and the measured pattern after the Figure 5.30: Normalised azimuth polar plot showing the predicted pattern, the measured pattern before environmental tests and the measured pattern after the Figure 5.31: Multipath-induced amplitude lobing at a range of 2500m for a flat-earth Figure 5.32: Measured echo-signal power as a function of reflector height above the ground shows a small variation in signal level with reflector height, but no lobing .100 Figure 5.33: Measured echo-signal power spectrum of the FMICW radar for a $100m^2$ Figure 5.35: Echo return from a 100m² corner-reflector and background (30kHz spectrum analyser bandwidth) showing spectral widening caused by imperfections in Figure 5.36: Simulated spectrum for an FMICW radar with a $20\mu s + 20\mu s$ interrupt Figure 5.37: Echo return from a 100m² target and background (100kHz spectrum analyser bandwidth) showing spectral widening caused by imperfections in the PILO, Figure 5.38: Characteristics of the measurement site showing the elevation angle to the radar, the slope of the ground determined from a contour map, and the grazing Figure 5.39: Measured range profile for the FMICW radar using a spectrum analyser Figure 5.40: Measured range profile for the FMICW radar using a spectrum analyser

Figure 5.41: An isometric drawing of the radar hardware showing the roll, yaw and pitch axes with a front-end mounted to the inner gimbal plate
Figure 5.42: Schematic block diagram of the coarse analog-range-gating process implemented using a stepped down-converter and a narrow-band crystal filter 108
Figure 5.43: Block diagram showing the components required to generate the in-phase and quadrature signals from the radar IF output108
Figure 5.44: Magnitude and phase response of $H(z)$ where (a) is the magnitude response and (b) is the phase response with step jumps of π removed to make it continuous
Figure 5.45: Realisation of the I-Q generation transfer function, H(z) configured to exploit post sampling decimation
Figure 5.46: Simulation of the received signal spectra showing the difference in the range resolution at 3km and 1.5km caused by eclipsing
Figure 5.47: Measured noise floor for the FMICW radar aimed at the sky, showing gain ripples and DC offset effects due to imperfections in the down-converter and ADC modules
Figure 5.48: Gating process for image generation showing the construction of 384 range gates made up of 12 coarse \times 32 fine gates mechanically scanned over 30° in 128 steps
Figure 5.49: FMICW radar reflectivity image of a rural environment and a sketch describing the features visible in the image. Tiny marks towards the bottom of the image show the theoretical resolution of the radar at 1.5 and 3km
Figure 5.50: Measured radar image of a point target at a range of 2.75km shows that the azimuth resolution is about 2 samples wide and that the range resolution is about 5 bins deep
Figure 5.51: Hypothetical surfaces that can be reconstructed from a single range-gate echo profile
Figure 5.52: Doubling the effective angular resolution by stepping the beam by one half beamwidth and integrating the contents of the overlapping beams
Figure 5.53: Simulation result showing (a) the radar beamwidth superimposed on the rock profile to be scanned and (b) the resultant integrated output for a step size of 0.1 beamwidths.
Figure 6.1: Photograph of the FMICW radar front-end attached to 3-axis gimbals118
Figure 6.2: Photograph of the radar installed in a pod cantilevered from the side of the Puma helicopter, and the development team, the pilots and engineer
Figure 6.3: Graphical illustration of the spatial integration process from a moving platform
Figure 6.4: The effect of integration on image quality showing (a) a single unintegrated image and (b) integration of four images from a moving platform120
Figure 6.5: Comparison between (a) an aerial photograph and (b) a composite radar image of an airfield. This confirms that the runway and taxi ways are clearly visible due to their contrast with the surrounding verges and that buildings and walls appear as bright, high reflectivity returns
Figure 6.6: Projection from the Range-Azimuth to the Elevation-Azimuth Plane121
Figure 6.7: Comparison between (a) a low grazing-angle aerial photo of an airfield and (b) a radar image transformed to correspond to a similar perspective

Figure 6.8: Compilation of a feature base for point, line and edge features
Figure 6.9: Image enhancement process showing (a) the original image reflectivity
histogram and (b) the expanded and clipped histogram and colour map
Figure 6.10: Compilation of a fact base from the radar image
Figure 6.11: Comparison of the distances between feature pairs (green) and fact pairs
(blue) which leads to the fact-feature association shown by the purple arrows 126
Figure 6.12: Off-line processed results from six images obtained during a flight test
Figure 6.13: Measured results of the navigation performance of the radar for two separate flight tests comprising (a) six sorties and (b) five sorties
Figure 6.14: Inputs to a correlation tracker showing (a) a distributed reference image, (b) a point reference image and (c) the raw radar image
Figure 6.15: Correlation output from a reference image made up of point targets and a section of wall, and a raw radar image shows a single unambiguous peak
Figure 6.16: Right image view and correlation output showing a single clear peak.131
Figure 6.17: Left image view and correlation output showing a single clear peak 131
Figure 6.18: Orthogonal slices through the correlator output cutting through the peak
Figure 6.19: 2 nd order polynomial fit across the peak in the two orthogonal axes is used to determine the point of correlation to a fraction of a pixel
Figure 6.20: Manual placement of the reference image at a displacement of (571,1842) on images up-sampled by a factor of ten confirms a perfect correlation to a fraction of a pixel
Figure 6.21: Correlation outputs for different reference input image template options for (a) standard unmodified template, (b) dilated, (c) dilated and rotated by 10° and (d) dilated and magnified by 120%
Figure 6.22: Hierarchy of route and path-planning processes required for AGV navigation
Figure 6.23: Comparison between (a) a video image and (b) a radar image taken from the same position and covering the same range and angles. This shows that the radar down-range resolution is superior to that of the video image
Figure 6.24: Conceptual drawing of an imaging radar mounted on the Argo AGV .136
Figure 6.25: Structure required for the generation of a multi-level description of the environment used in ground vehicle path planning
Figure 6.26: Aerial photograph of the terrain used in an autonomous path-planning exercise
Figure 6.27: Filtered 2-D millimetre-wave image of the terrain
Figure 6.28: Folding the reflectivity map to place the vehicle band-of-interest at the minimum of the repulsive potential-field
Figure 6.29: Repulsive potential-field map derived from reflectivity values, folded to produce a minimum at point B
Figure 6.30: Simulation outputs of a modified gradient-descent algorithm with expanding search area and a sink gradient of 1 showing (a) the path traversed from B to C and (b) the potentials of the points passed through during the traverse

Figure 6.31: Simulation outputs of a modified gradient-descent algorithm with expanding search area and a sink gradient of 1 showing (a) the path traversed from A to C that gets stuck in a local minimum and (b) the potentials of the points passed through during the traverse
Figure 6.32: Simulation outputs of a modified gradient descent algorithm with expanding search area and a non-linear sink gradient showing the path from A to C via waypoints D and E
Figure 6.33: Simulation outputs of a modified gradient-descent algorithm with a fixed search area of 5×5 pixels, a facility to increase the potential and a sink gradient of 2 showing (a) the path traversed from B to C and (b) the potentials of the points passed through during the traverse
Figure 6.34: Simulation outputs of a modified gradient descent algorithm with a fixed search area of 5×5 pixels, a facility to increase the potential and a sink gradient of 2 showing (a) the path traversed from A to C and (b) the potentials of the points passed through during the traverse
Figure 6.35: Simulation outputs of a modified gradient-descent algorithm with a fixed search area of 5×5 pixels, a facility to increase the potential and a sink gradient of 1.5 showing (a) the path traversed from B to C and (b) the potentials of the points passed through
Figure 6.36: Simulation outputs of a modified gradient-descent algorithm with a fixed search area of 3×3 pixels, a facility to increase the potential and a sink gradient of 2 showing (a) the path traversed from B to C and (b) the potentials of the points passed through during the traverse
Figure 6.37: Simulation outputs of modified gradient descent algorithm with a fixed search area of 3×3 pixels, a facility to increase the potential and a sink gradient of 4 showing (a) the path traversed from B to C and (b) the potentials of the points during the traverse
Figure 6.38: Map of the airfield compiled from aerial photographs and an ordnance survey map showing some of the no-go areas. The region of interest lies within the rectangular box
Figure 7.1: Coherent 94GHz front end developed for ground-based radar imaging.150
Figure 7.2: Spinning-grating antenna used to achieve a fast azimuth scan rate for range-gate limited radar images
Figure 7.3: Reconfigurable module used for the development of 77GHz radar systems
Figure 7.4: 3-D radar reflectivity image of a row of trees
Figure 7.5: Miniature 77GHz radar and mirror scanner mounted on gimbals in the nose of the Brumby Mk-II
Figure 7.6: Underground application showing (a) the installation of the 77GHz radar with a 3-D mirror scanner and (b) a point-cloud image of an underground stope made through vapour and dust while the stope was being refilled
Figure A.1: Principal plane (a) elevation and (b) azimuth patterns of a cosec ² fan-

resolution criteria and (c) increased resolution obtained by increasing the aperture still further [172]
Figure A.3: Effect of the aperture distribution function on both angular resolution and sidelobe levels for a line source
Figure A.4: Horn-lens antennas that are commonly used in radar applications at the ACFR because they exhibit good electrical characteristics as well as being extremely robust
Figure A.5: Relationship between the spectral characteristics of a radar pulse and its duration
Figure A.6: Schematic diagram illustrating the range gating concept as a sequence o digitised samples stored in computer memory
Figure A.7: Effect of grazing angle on clutter reflectivity for different types of terrain
Figure A.8: Measured ground reflectivity at 95GHz of (a) grass and crops and (b deciduous trees
Figure A.9: Comparison of an (a) aerial photograph and (b) beamwidth-limited millimetre-wave radar image of the region surrounding the ACFR. Note that some o the trees present in the aerial photograph had been removed by the time that the rada image was made
Figure A.10: A 3-D perspective view of the region surrounding the ACFR made using a high-resolution beamwidth-limited millimetre-wave radar
Figure A.11: Definition of a beamwidth-limited resolution cell
Figure A.12: Definition of a pulse-width (range-gate) limited resolution cell
Figure A.13: Definition of a volume-clutter resolution cell165
Figure A.14: Measured average backscatter (m^2/m^3) at various frequencies based of BRL and Georgia Tech data as a function of the rainfall rate [67]166
Figure A.15: Possible paths taken by a radar signal between the radar and the targe
Figure A.16: Multipath interference geometry for a flat earth
Figure B.1: FMCW radar signal level from a 1m ² target under different weathe conditions
Figure B.2: Radar simulation output showing a 1m ² point target at a range of 70m. 173
Figure B.3: FMCW Radar Mutual Interference Levels
Figure B.4: Two Identical FMCW radars operating with random relative phase175
Figure B.5: beat signal for in-phase radars with the whole of the interference signa within the receiver bandwidth (<0.2)
Figure B.6: Radar output for in-band interference with a magnitude 30dB larger that target return
Figure B.7: Beat signal for out of phase radars showing the majority of the interference out-of-band (blue) and some in-band (magenta)
Figure B.8: Radar output for out-of-band Interference with a magnitude 30dB large than the target return
Figure B.9: Interference between FMCW radars with identical sweep periods bu shifted in phase and offset in frequency

Figure B.10: Two FMCW radars with slightly different sweep times with a phase relationship that changes with time
Figure B.11: Interference between FMCW radars with slightly different periods, showing blue out-of-band interference and magenta in-band interference
Figure B.12: Radar output interference for two FMCW radars with slightly different sweep periods (1.01 difference) with the interference signal level 30dB larger than the target return
Figure B.13: Interference between FMCW radars with different periods, showing blue out-of-band interference and magenta in-band interference
Figure B.14: Radar output interference for two FMCW radars with significantly different sweep periods (1.2 difference) with the interference signal level 30dB larger than the target return
Figure B.15. Effectiveness of a notch filter to remove in-band interference
Figure B.16: Transient interference in the time-domain in shown in (a). This can be removed by substituting zeros during the interference period as shown in (b)
Figure B.17: Post FFT radar spectrum for transient interference after masking by zeros
Figure B.18: FMICW radar signal level from a 1m ² target under different weather conditions
Figure B.19: Interference levels in an FMCW radar being illuminated by an FMICW radar
Figure B.20: Interference of an FMCW radar by an FMICW radar with different periods, showing blue out-of-band interference and magenta in-band interference 185
Figure B.21: Radar interference of an FMCW radar by an FMICW radar with different sweep periods (1ms and 170µs) with the interference signal level 15dB larger than the target return
Figure C.1: Schematic block diagram showing the major components of a typical non- coherent pulsed millimetre-wave radar system
Figure C.2: Cut-away cross-sections of typical millimetre-wave oscillator circuits [20]
Figure C.3: Simplified schematic of the programmable current source and the test setup used to measure the characteristics of a pulsed IMPATT oscillator
Figure C.4: Pulsed IMPATT oscillator showing (a) large chirp spectrum 100MHz/Div. and (b) small chirp spectrum 20MHz/Div [11]
Figure C.5: Y-junction circulators190
Figure C.6: Horn-lens antenna
Figure C.7: State of the art in CW Gunn and IMPATT power [20]193
Figure C.8: Passive matched (bandpass) filter implementation for a pulsed millimetre- wave radar system (a) schematic diagram and (b) calculated transfer function 194
Figure C.9: Measured calibration transfer function for the pulsed millimetre-wave radar receiver chain from after the mixer to the range gate sum channel output 195
Figure C.10: Comparison between measured and predicted received power at the output of the mixer for a pulsed millimetre-wave radar system illuminating different RCS corner-reflectors
Figure C.11: Receiver schematic used for the calculation of noise figure196

Figure C.12: Millimetre wave radar test site at a range of 350m and a grazing angle of 23° to the target vehicle (a) Photograph and (b) beamwidth-limited radar image.....198 Figure C.13: Determining the slope of the terrain by conically scanning the pulsed Figure E.1: Conceptual diagram showing the effect of chirp non-linearity on the beat Figure E.2: Measured tuning characteristic of a typical millimetre-wave Gunn VCO Figure E.3: Geometric construction to illustrate the process of open-loop linearization correction achieved by mapping from the nonlinear function fa(v) to the linear Figure E.4: Open-loop linearization results showing (a) nonlinear tuning voltage compared to its linear counterpart and (b) unaltered and linearised output frequency Figure E.5: Schematic block diagram of the closed-loop chirp linearization technique Figure E.6: Measured delay-line discriminator output spectra (a) unlinearised chirp Figure E.7: Effect of optimising the chirp bandwidth on the range resolution of a non linearised FMCW radar illuminating a target at 500m shows that the best performance Figure E.8: Range resolution of an FMCW radar as a function of range showing the Figure F.2: Normalised amplitude spectra for finite-duration constant-frequency signals weighted by different weighting functions showing the differences in the peak Figure F.4: Characteristic phase-noise spectrum out of an oscillator showing the relationship between the SSB noise spectral density and the offset from the carrier 218 Figure F.5: Phase-noise levels at the FMCW radar mixer output due to leakage with Figure F.6: Comparison between phase-noise and thermal noise at the mixer output of Figure F.7: Phase-noise around a target return at a range of 100m compared to the Figure F.8: Phase-noise and integrated phase-noise in each 1kHz wide range-bin Figure F.9: Aerial photograph (a) and range-gate limited radar image showing the bright radial lines generated by the phase-noise signal around large RCS targets222 Figure F.10: Quantiser (a) characteristic with rounding (b) probability distribution 224 Figure F.11: The effect of noise and quantisation on the extraction of signals at low SNR is shown here for a quantisation level of 7, a signal magnitude of 1.414 and

Figure G.1: IMPATT diode internal structure	227
Figure G.2: Electric field profile in an avalanching double-drift IMPATT diode	228
Figure G.3: Drift velocities of electron and holes in silicon	229
Figure G.4: Waveform for an IMPATT diode	229
Figure G.5: Small signal admittance of a Double Drift Si IMPATT diode	230
Figure G.6: Equivalent Circuit of Packaged Diode	231
Figure G.7: Diode package design using diamond heat sinks for efficient heat rem and multiple strapping to adjust the series inductance	noval 231
Figure G.8: Copper and diamond thermal resistance as a function of diode diam	neter. 232
Figure G.9: Typical oscillator configuration comprising an active device more within a resonant cavity and iris-coupled to a load	unted 233
Figure G.10: Complex plane plot of impedance $Z(\omega)$ and $Z^*(A)$ showing operating point of the oscillator at the intersection of the two loci	g the 234
Figure G.11: Effect of a locking vector on the oscillator operating point	235
Figure G.12: Direction of power flow through a circulator	235
Figure G.13: Injection locking configuration	235
Figure G.14: Measured PILO characteristics including (a) the transmitted power function of the injected power and (b) the transmitted power as a function of the pulse-current	r as a peak 236
Figure G.15: PILO output spectra showing the relationship between input powe the magnitude of the spectral split for the Millitech PILO	er and 236
Figure G.16: PILO output spectra with different injected powers for the AMS show no indication of spectral splitting	PILO 237

List of Tables

Table 1.1: Radar resolution requirements for feature identification	7
Table 4.1: Pulsed radar performance at long range	
Table 4.2: Reflectivity contrast analysis for Integrated FMCW images	73
Table 4.3: Received power balance comparison between an FMCW radar at 50 that of an FMICW radar at 3000m indicating equivalent performance requirement	0m and ents . 75
Table 6.1: Radar-image based navigation-correction results	128
Table A.1: Rainfall attenuation coefficients at 35 and 94GHz	167
Table A.2: Specific attenuation coefficients at 35 and 94GHz	168
Table A.3: Range of LWC for clouds and fog	168
Table B.1: Typical automotive radar characteristics	171
Table C.1: Measured radar signal levels for different target reflectors	195
Table F.1: Properties of some weighting functions	215

List of Acronyms

2-D	Two Dimensional
3-D	Three Dimensional
AC	Alternating Current
ACFR	Australian Centre for Field Robotics
ADC	Analog to Digital Converter
AFC	Automatic Frequency Control
AGV	Autonomous Ground Vehicle
ALG	Automatic Landing Guidance
AM	Amplitude Modulation
AR	Autoregressive
ARMA	Autoregressive Moving Average
BAW	Bulk Acoustic Wave
BPSK	Binary Phase Shift Keying
CFAR	Constant False Alarm Rate
CMU	Carnegie Mellon University
CRT	Cathode Ray Tube
CW	Continuous Wave
DAC	Digital to Analog Converter
DARPA	Defense Advanced Research Projects Agency
dB	Decibel
dBi	Decibel relative to isotropic
dBm	Decibel relative to one milliwatt
DBS	Doppler Beam Sharpening
dBW	Decibel relative to one watt
DC	Direct Current
DDS	Direct Digital Synthesis
DERA	Defence Evaluation and Research Agency
EIK	Extended Interaction Klystron
EM	Electro Magnetic
EMI	Electro Magnetic Interference
ENR	Excess Noise Ratio
EPROM	Erasable Programmable Read Only Memory
FET	Field Effect Transistor
FFT	Fast Fourier Transform
FM	Frequency Modulation
FMCW	Frequency Modulated Continuous Wave
FMICW	Frequency Modulated Interrupted Continuous Wave
GPS	Global Positioning System

HUD HUT	Head Up Display Helsinki University of Technology
I-Q	In-Phase Quadrature
ICC	Intelligent Cruise Control
IF	Intermediate Frequency
IHS	Intensity Hue Saturation
ILS	Instrument Landing System
IMPATT	Impact Avalanche Transit Time
IMU	Inertial Measurement Unit
INS	Inertial Navigation System
ILO	Injection Locked Oscillator
IPA	Integrated Phased Array
IR	Infra Red
LO	Local Oscillator
LIDAR	Light Detection and Ranging
LNA	Low Noise Amplifier
LWC	Liquid Water Content
MOPA	Master Oscillator Power Amplifier
MUSIC	Multiple Signal Classification
mW	Milliwatt
MW	Megawatt
NF	Noise Figure or Noise Factor
PCM	Pulse Coded Modulation
P _d	Probability of Detection
PDF	Probability Density Function
P _{fa}	Probability of False Alarm
PILO	Pulsed Injection Locked Oscillator
PIN	Positive Intrinsic Negative
PLL	Phase-Locked Loop
PPI	Plan Position Indicator
RCS	Radar Cross Section
RF	Radio Frequency
RMS	Root Mean Square
Rx	Receive(r)
SAR	Synthetic Aperture Radar
SAW	Surface Acoustic Wave
SCR	Signal to Clutter Ratio
SDLA	Successive Detection Log Amplifier
SNR	Signal to Noise Ratio
SVTD	Synthetic Vision Technology Demonstrator
TUM	Technische Universität München
Tx	Transmit(ter)

UAVUnmanned Airborne VehicleUHFUltra High Frequency

- VCO Voltage Controlled Oscillator
- YIG Yttrium Iron Garnet