

The multiple roles of zinc finger domains

Raina Jui Yu Simpson

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

School of Molecular and Microbial Biosciences

University of Sydney

Sydney, Australia

May, 2004

Declaration

The work described in this Thesis was performed between March 2001 and March 2004 in the School of Molecular and Microbial Biosciences (formerly the Department of Biochemistry) at the University of Sydney. The experiments were carried out by the author unless stated otherwise. This work has not been submitted, in part or in full, for a higher degree at any other institution.

Raina Simpson

May 2004

Abstract

Zinc finger (ZnF) domains are prevalent in eukaryotes and play crucial roles in mediating protein-DNA and protein-protein interactions. This Thesis focuses on the molecular details underlying interactions mediated by two ZnF domains.

The GATA-1 protein is vital for the development of erythrocytes and megakaryocytes. Pertinent to the protein function is the N-terminal ZnF. In particular, this domain mediates interaction with DNA containing GATC motifs and the coactivator protein FOG. The importance of these interactions was illustrated by the findings in Chapter 3 that naturally occurring mutations identified in patients suffering from blood disorders affect the interaction of the N-terminal ZnF with either DNA (R216Q mutation) or FOG (V205M and G208S mutations).

In addition to the interaction FOG makes with GATA-1, it also interacts with the centrosomal protein TACC3. In Chapter 4, this interaction is characterised in detail. The solution structure of the region of FOG responsible for the interaction is determined using NMR spectroscopy, revealing that it is a true classical zinc finger, and characterisation of the interaction domain of TACC3 showed that the region is a dimeric coiled-coil. The FOG:TACC3 interaction appears to be mediated by α -helices from the two proteins. The data presented here represent some of the first described molecular details of how a classical ZnF can contact a *protein* partner. Interestingly, the α -helix used by the FOG finger to bind TACC3 is the same region utilised by DNA-binding classical zinc fingers to contact DNA.

In addition to the multiple roles played by ZnFs, this domain is also known for its robustness and versatility. In Chapter 5, incomplete ZnF sequences were assessed for its ability to form functional zinc-binding domains. Remarkably, CCHX sequences (in the context of BKLF finger 3) were able to form discrete zinc-binding domains and also, mediate both protein-DNA and protein-protein interactions. This result not only illustrates the robust nature of ZnFs, it highlights the need for expanding ZnF sequence criteria when searching for functional zinc-binding modules.

Together, the data presented here help further our understanding of zinc finger domains. Similar to the use of DNA-binding ZnFs in designer proteins, these data may start us on the path of designing novel protein-binding ZnFs.

Acknowledgements

First, I would like to thank Dr Joel Mackay. Joel is an exemplary supervisor whose unwavering support, contagious enthusiasm and expert advice kept me and this work afloat throughout the years. I am honoured to have had the privilege to work in his lab, not only to have him supervise this work, but also because I believe his influence has made me a better scientist and a better person. I would also like to acknowledge all the advice and help that Dr Merlin Crossley and Dr Jacqui Matthews have afforded.

Second, people with whom I have shared projects need to be acknowledged for all their help and contributions: Kasper Kowalski, Chu Kong Liew, Ann Kwan and Anthea Newton in the GATA-FOG study, Stella Lee, Natalie Bartle and David Bishop in the FOG-TACC3 project and Ed Cram and Robert Czolij in the CCHX story.

Third, I would like to thank everyone in the Mackay and Matthews lab for their help in the last few years and also for making lab time so much fun! Thanks Ann (and Pokemonk), Little Chu, Wendy, Dave and Margie. Big thank you's go out to Belle, Ed, Bel W, Mike, Big Chu, Lyndal, Daniel, Phillipa, Kasper, Jason L, Neelan, Fionna, Amy and Chris.

Last but not least, I would like to thank my family for all their love and support throughout the years. Mum, Charlie and especially John, I love you all very much.

I gratefully acknowledge the financial support of an Australian Postgraduate Award.

Contents

Declaration		i
Abstract		
Acknowledgements		
Contents		
List of figure	S	Х
List of tables		xiv
List of abbrev	viation	XV
List of public	ations	xvii
Chapter 1.	General introduction	1
1.1 Reg	ulation of transcription in eukaryotes	1
1.1.1	Transcription factors in DNA-binding multi-protein complexes	1
1.1.2	Domains involved in protein-DNA interactions	2
1.1.3	Mediators of protein-protein interactions	4
1.2 Zine	c fingers (ZnFs)	6
1.2.1	The different classes of zinc fingers	6
1.2.2	Zinc finger-mediated functions	9
1.2.3	Protein engineering using zinc fingers	13
1.3 Gen	eral aims of this study	14
Chapter 2.	Materials and methods	16
2.1 Sub	cloning	16
2.1.1	Site-directed mutagenesis using polymerase chain reaction (PCR)	18
2.1.2	Restriction enzyme digestion	19
2.1.3	Purification of DNA by ethanol precipitation	20
2.1.4	Ligation	20
2.1.5	Transformation into Escherichia coli cells	20
2.1.6	Colony screen	21
2.1.7	Extraction of plasmids from E. coli	21
2.2 Pro	tein overexpression	21
2.2.1	Overexpression using shaker flasks	21
2.2.2	Overexpression using a fermentor	22
2.3 SDS	-PAGE analysis	24
2.3.1	Glycine SDS-PAGE	24

	2.3.2	Tricine SDS-PAGE	24
2.4	Pro	tein purification	25
	2.4.1	Glutathione (GSH) affinity chromatography	25
	2.4.2	Reverse phase (rp) HPLC	26
	2.4.3	Size exclusion chromatography of NF54	27
	2.4.4	Size exclusion chromatography and multiangle light scattering of TACC77	27
	2.4.5	Determination of protein concentration	27
2.5	Lar	ge-scale DNA purification	28
2.6	Eleo	ctrospray mass spectrometry	29
2.7	Cire	cular dichroism (CD) spectropolarimetry	29
	2.7.1	Using CD to determine secondary structure content	29
	2.7.2	Using CD to determine the Zn ²⁺ -binding affinities of BF3 and BF3N	30
2.8	Isot	hermal titration calorimetry (ITC)	30
	2.8.1	Sample preparation	30
	2.8.2	ITC parameters	32
2.9	Cro	ss-linking studies	32
2.10) Sed	imentation equilibrium	33
2.11	I GSI	Γ-pulldowns	33
	2.11.1	The FOG-F3 and TACC103 interaction	33
	2.11.2	The GATA-CF and BF3X interaction	34
2.12	2 NM	R spectroscopy	35
	2.12.1	Spectral processing	35
	2.12.2	Sample preparation	36
	2.12.3	NMR experiments	36
	2.12.4	Structure determination of FOG-F3 _{KRA}	37
2.13	3 Ato	mic absorption spectrometry (AAS)	40
2.14	4 Eleo	ctrophoretic mobility shift assays (EMSAs)	40
Chapte	er 3. '	The role of the GATA-1 N-terminal zinc finger in transcriptional	
-		regulation	42
3.1	Intr	oduction	42
	3.1.1	The GATA protein superfamily	42
	3.1.2	The different roles of the zinc fingers in GATA-1	42

	3.1.3	FOG is a friend of GATA	43
	3.1.4	The GATA-FOG interaction	43
	3.1.5	The GATA-DNA interaction	45
	3.1.6	Naturally occurring mutations of GATA-1 N-finger	46
	3.1.7	Specific aims of this study	47
3.2	Cha	racterisation of wild-type N-finger	47
	3.2.1	Purification of NF48 and NF54	48
	3.2.2	Circular dichroism (CD) analysis of NF48 and NF54	49
	3.2.3	One-dimensional NMR spectra of NF48 and NF54	50
3.3	The	interaction of wild-type NF with DNA	51
	3.3.1	Isothermal titration calorimetry (ITC)	51
	3.3.2	N-finger binds DNA in pH- and salt-dependent manners	53
	3.3.3	The NF:DNA complex was not amenable for NMR studies	54
3.4	The	structural and functional effects of naturally occurring mutations	in
	GA	ATA-1	57
	3.4.1	Mutant NF proteins were only partially structured	57
	3.4.2	The R216Q mutation impaired DNA binding	59
	3.4.3	FOG-binding was affected by several of the mutations	61
3.5	Disc	ussion	63
	3.5.1	The DNA-binding properties of N-finger	63
	3.5.2	Exchange processes affected NMR data	64
	3.5.3	The effects of naturally occurring mutations on the DNA- and	
		FOG-binding abilities of GATA-1 N-finger	66
Chapt	er 4. A	novel zinc finger-mediated interaction between FOG and TA	ACC3
- ·· ·			70
4.1	Intro	oduction	70
	4.1.1	The GATA-independent roles of FOG	70
	4.1.2	Identification of TACC3 as a protein partner of FOG	70
	4.1.3	TACC3 is a centrosomal protein implicated in the control of cell grow	vth
		and differentiation	71
	4.1.4	Coiled-coil domains	72
	4.1.5	The minimal regions required for the FOG:TACC3 interaction	73
	4.1.6	Specific aims of this study	74
4.2	Cha	racterisation of FOG-1 finger 3	75

4.2 Characterisation of FOG-1 finger 3

	4.2.1	Wild-type FOG-F3 protein is folded and monomeric	75
	4.2.2	The design of FOG-F3 mutants with increased solubility	76
	4.2.3	Wild-type and mutant FOG-F3 contain similar structural elements	78
	4.2.4	The solution structure of FOG-F3 _{KRA} shows that it is a true classical zinc	;
		finger	79
4.3	Cha	racterisation of the TACC3 C-terminal coiled-coil	82
	4.3.1	TACC3 C-terminal domains are highly α -helical in solution	83
	4.3.2	TACC77 exists in an equilibrium between multiple oligomeric states	86
	4.3.3	TACC103 is dimeric in solution	87
	4.3.4	C-terminal TACC domains undergo exchange on the ¹ H chemical shift	
		timescale	89
4.4	The	FOG-TACC3 interaction	91
	4.4.1	FOG-F3 bound the TACC domain in an in vitro GST-pulldown	
		experiment	91
	4.4.2	The affinity of the FOG:TACC3 interaction	91
	4.4.3	Analysis of the FOG:TACC3 interaction using ¹⁵ N-HSQC NMR	
		experiments	93
	4.4.4	Residues necessary for binding were determined by site-directed	
		mutagenesis	99
	4.4.5	Mapping of the FOG and TACC3 binding surfaces	100
	4.4.6	A model of the FOG:TACC3 complex	102
4.5	Disc	cussion	104
	4.5.1	Classical zinc fingers as protein-binding domains	104
	4.5.2	Conservation of binding residues in other FOG and TACC proteins	106
	4.5.3	Weak interactions in biology	108
	4.5.4	Functional implications of a FOG:TACC3 complex	108
	4.5.5	Summary	109
Chapt	er 5. 1	Investigating the ability of CCHX sequences to form functional	
-		zinc-binding modules	111
5.1	Intr	oduction	111
	5.1.1	BKLF finger 3: a model CCHH zinc finger	111
	5.1.2	The aims of this study	112
5.2	CCI	HX sequences in the database	112
5.3	The	zinc-binding properties of CCHX domains	114

	5.3.1	Production of the mutant BF3X proteins	114
	5.3.2	Mutants form stable secondary structures in a Zn ²⁺ -dependent manner	115
	5.3.3	Mutant BF3N and wild-type proteins bound Zn^{2+} with similar affinities	117
	5.3.4	The zinc:protein ratio of folded BF3D was 1:1	118
	5.3.5	CCHE is monomeric in solution	118
	5.3.6	Mutants appeared to be only partially folded	119
5.4	4 The	protein- and DNA-binding properties of CCHX domains	120
	5.4.1	Can CCHX domains of BF3 bind GATA-1?	121
	5.4.2	Can CCHX domains bind DNA?	122
5.	5 Disc	ussion	125
	5.5.1	Zinc-binding properties of CCHX domains	125
	5.5.2	Conformations of the CCHX domains	126
	5.5.3	DNA-binding properties of CCHX domains	127
	5.5.4	Implications for other studies	128
Chap	oter 6. G	eneral summary	130
6.	1 Hun	nan mutations in the N-terminal ZnF domain of GATA-1	130
6.2	2 A no	ovel ZnF-mediated interaction between FOG and TACC3	131
6.	3 'Inc	omplete' ZnF sequences may be functional	131
6.4	4 Zinc	e fingers: the versatile protein domain	132

References

133

List of figures

Chapter 1

Figure 1.1.	Schematic model of transcriptional activation	2
Figure 1.2.	Structures of DNA-binding domains bound to their cognate DNA	
Figure 1.3.	Domains that mediate protein-protein interactions	
Figure 1.4.	Classical zinc fingers	7
Figure 1.5.	Structures of treble clef zinc fingers	8
Figure 1.6.	Classical ZnFs of Zif268 bound to its cognate DNA	10
Figure 1.7.	Structure of HIV-1 nucleocapsid protein complexed to the SL3 Ψ -RN	A
	element	11
Figure 1.8.	Structure of the GATA-FOG complex	12
Figure 1.9.	Structure of a LIM domain of LMO4 bound to ldb1	12
Figure 1.10.	Structure of the chimeric Zif23-GCN4 protein	14
Chapter 2		
Figure 2.1.	Steps involved in subcloning	17
Chapter 3		
Figure 3.1.	Zinc fingers of mFOG and dUshaped	44
Figure 3.2.	The GATA-FOG binding interfaces	45
Figure 3.3.	Structure of the cC-finger bound to DNA	46
Figure 3.4.	Sequence of murine GATA-1 NF	47
Figure 3.5.	Tricine SDS-PAGE analysis of glutathione-affinity chromatography	
	of NF48 and NF54	48
Figure 3.6.	CD spectra of NF48 and NF54	49
Figure 3.7.	1D ¹ H NMR spectra of NF48 and NF54	50
Figure 3.8.	ITC data showing titrations of NF54 and NF48 into DNA	52
Figure 3.9.	ITC data showing the dependence of DNA-binding on pH and ionic	
	concentration	54
Figure 3.10.	¹⁵ N-HSQC titrations of DNA into ¹⁵ N-NF	56
Figure 3.11.	CD spectra of the mutant NF proteins	58
Figure 3.12.	1D ¹ H NMR spectra of mutant NF proteins	58
Figure 3.13.	ITC titrations of mutant NFs into DNA	59

Figure 3.14.	ITC titrations of Ushaped finger 1 into wild-type NF54, V205M,	
	G208S, R216Q and D218G	61
Figure 3.15.	Minimal domains of mNF and cCF required for DNA-binding	64
Figure 3.16.	Hypothetical NMR spectra showing the effects of chemical exchange	65
Figure 3.17.	Naturally occurring mutations mapped onto the structure of NF	67
Figure 3.18.	Sequence alignment of FOG-F1, F9 and Ush-F1	68
Chanter 4		
Figure 4 1	Schematic of murine FOG-1	70
Figure 4.2	Schematic of TACC3	71
Figure 4 3	Schematic diagram of a coiled-coil	72
Figure 4.4.	Examples of coiled-coil domains	73
Figure 4.5.	The minimal region of FOG-1 required to bind TACC3	73
Figure 4.6.	The minimal FOG-binding region of TACC3	74
Figure 4.7.	pH- and Zn ²⁺ -dependent folding of FOG-F3	75
Figure 4.8.	1D ¹ H NMR spectrum of wild-type FOG-F3	76
Figure 4.9.	FOG-F3 mutants designed to increase solubility	77
Figure 4.10.	Comparison of the CD spectra of wild-type FOG-F3 and the triple and	
	quadruple mutants	77
Figure 4.11.	1D ¹ H NMR spectra of wild-type FOG-F3, FOG-F3 _{KRA} and	
	FOG-F3 _{KRRA}	78
Figure 4.12.	H^{α} chemical shift differences for wild-type FOG-F3 and FOG-F3 _{KRA}	79
Figure 4.13.	Solution structure of FOG-F3 _{KRA}	80
Figure 4.14.	Heptad repeats of the C-terminal region of TACC3	83
Figure 4.15.	CD spectra of the TACC proteins	84
Figure 4.16.	Effects of trifluoroethanol and temperature on TACC77	85
Figure 4.17.	SDS-PAGE analysis of cross-linked TACC77	86
Figure 4.18.	Sedimentation equilibrium analysis of TACC103	88
Figure 4.19.	Size exclusion chromatography and light scattering of TACC77	89
Figure 4.20.	ID ¹ H NMR spectra of TACC3 domains	90
Figure 4.21.	GST-pulldown of GST-FOG-F3 and TACC103	91
Figure 4.22.	ITC data for the titration of FOG-F3 _{KRA} into TACC77	92
Figure 4.23.	¹⁵ N-HSQC spectra of ¹⁵ N-TACC77 alone and in the presence of	
	FOG-F3 _{KRA}	94

Figure 4.24.	¹⁵ N-HSQC spectra of ¹⁵ N-FOG-F3 _{KRA} alone and in the presence of	
	unlabelled TACC77	95
Figure 4.25.	Quantification of peak volume changes in the ¹⁵ N-FOG-F3 _{KRA} :	
	TACC77 titration	96
Figure 4.26.	Chemical shift changes of N347 and T358 as function of TACC77	
	concentration	98
Figure 4.27.	Analysis of the FOG:TACC3 interaction by yeast two-hybrid assays	100
Figure 4.28.	TACC3-binding surface of FOG-F3 _{KRA}	101
Figure 4.29.	FOG-binding surface of the TACC3 domain	102
Figure 4.30.	Structural model of the FOG:TACC3 complex	103
Figure 4.31.	Comparison of the binding surfaces of FOG-F3 and a DNA-binding	
	classical ZnF	105
Figure 4.32.	Sequence alignment of TACC domains	106
Figure 4.33.	Sequence alignment of FOG proteins	107
Chapter 5		
Figure 5.1.	The amino acid sequence of BKLF finger 3	112
Figure 5.2.	Alignment of CCHX sequences	113
Figure 5.3.	SDS-PAGE analysis showing the overexpression of GST-BF3X	
	mutants	114
Figure 5.4.	Reverse-phase HPLC chromatograms of BF3X mutants	115
Figure 5.5.	Far-UV CD spectra of wild-type and mutant BF3X proteins	116
Figure 5.6.	His333 is not involved in chelating Zn^{2+}	116
Figure 5.7.	Zn ²⁺ titrations of BF3 and BF3N	118
Figure 5.8.	Sedimentation equilibrium data of BF3E	119
Figure 5.9.	Comparison of 1D ¹ H NMR spectra of wild-type and BF3E	120
Figure 5.10.	GST-pulldown showing interactions between BF3X and GATA-1	
	C-finger	121
Figure 5.11.	Amino acid sequence of BF1–3X	122
Figure 5.12.	CCHX mutants bound DNA	122
Figure 5.13.	Quantitative EMSAs of wild-type BF1-3 and alanine point mutant	
	BF1–3A	124
Figure 5.14.	DNA-binding ability of the BF1–3 truncation mutant	125

128

List of tables

Chapter 2

Table 2.1.	Plasmids synthesised for protein overexpression purposes	
Table 2.2.	Primer sequences	
Table 2.3.	2.3. Induction temperatures	
Table 2.4.	Recipe for 1-litre growth medium	23
Table 2.5.	Conditions used in protease cleavage	26
Table 2.6.	Molar extinction coefficients	28
Table 2.7.	ITC conditions for titrations of wild-type and mutant NF into DNA	31
Table 2.8.	ITC conditions for titrations of Ush-F1 into wild-type and mutant NF	31
Table 2.9.	NMR experiments	36

Chapter 3

Table 3.1.	Naturally occurring mutations of GATA-1 N-finger	46
Table 3.2.	ITC statistics for NF:DNA interactions	53
Table 3.3.	ITC statistics of mutant NF:DNA interactions	60
Table 3.4.	ITC values of Ush-F1:NF interactions	62

Chapter 4

Table 4.1.	Structural statistics for the family of 20 FOG-F3 _{KRA} structures	81
Table 4.2.	Residues implicated in the interaction between FOG-1 and TACC3	100

List of abbreviations

1D	one-dimensional
A _{600nm}	absorbance at 600 nm
AAS	atomic absorption spectrometry
BKLF	Basic Krüppel-like factor protein
BF3	BKLF zinc finger 3 (residues 316–344)
BSA	bovine serum albumin
bZIP	basic leucine zipper
ССНН	zinc ligation topology of Cys-Cys:His-His
CCHX	zinc ligation topology of Cys-Cys:His-X, where X is any amino
	acid except Cys or His
cCF or cC-finger	chicken GATA-1 C-terminal zinc finger
CD	circular dichroism
CV	column volume
D218G	NF54 with D218G mutation
DTT	dithiothreitol
dNTPs	deoxyribonucleoside triphosphates
dsDNA	double-stranded DNA
DQF-COSY	double quantum filtered J-correlated spectroscopy
D218Y	NF54 with D218Y mutation
ε	molar extinction coefficient
EMSA(s)	electrophoretic mobility shift assay(s)
FOG	Friend of GATA protein
FOG-F3	FOG zinc finger 3 (residues 328–360)
FOG-F3 _{KRA}	FOG-F3 with E330K, L336K and E349A mutations
G208S	NF54 with G208S mutation
GSH	glutathione (reduced form)
GST	glutathione S-transferase
H^{α}	protons attached to the α -carbon
HSQC	heteronuclear single quantum coherence
IPTG	isopropyl β-D-thiogalactopyranoside
ITC	isothermal titration calorimetry

LB	Luria-Bertoni medium
MALLS	multiangle laser light scattering
MBP	maltose binding protein
MRE	mean residue ellipticity
MQW	Milli-Q [®] water
MWCO	molecular weight cut-off
NF or N-finger	N-terminal zinc finger of GATA-1
NF48, NF54	NF domain encompassing residues 200-248 and 200-254
NMR	nuclear magnetic resonance
NOE	peak in NOESY spectrum resulting from dipolar connectivity
NOESY	nuclear Overhauser enhancement spectroscopy
PCR	polymerase chain reaction
PDB	Protein Data Bank
PMSF	phenylmethylsulfonyl fluoride
rpHPLC	reverse-phase high performance liquid chromatography
RT	room temperature
R216Q	NF54 with R216Q mutation
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
ssDNA	single-stranded DNA
TACC3	Transforming Acidic Coiled-coil protein 3
TACC103, 77, 47	TACC3 constructs encompassing residues 535-637, 561-637
	and 591–637, respectively
TCEP	tris(2-carboxyethyl)phosphine
TFA	trifluoroacetic acid
TFE	trifluoroethanol
TOCSY	total correlation spectroscopy
Tris	tris(hydroxymethyl)aminomethane
Ush-F1	Ushaped zinc finger 1
V205M	NF54 with V205M mutation
ZnF(s)	zinc finger(s)

List of publications

Journal Articles

Simpson, R. J. Y., Cram, E. D., Czolij, R., Matthews, J. M., Crossley, M. and Mackay, J. P. (2003) CCHX zinc finger derivatives retain the ability to bind Zn(II) and mediate protein-DNA interactions. *J. Biol. Chem.* **278**, 28011–28018.

Simpson, R. J. Y., Lee, S. H. Y., Bartle, N., Sum, E. Y., Visvader, J. E., Matthews, J. M., Mackay, J. P. and Crossley, M. (2004) A classical zinc finger from FOG mediates an interaction with the coiled-coil of TACC3. *J. Biol. Chem.* **279**, 39789–39797.

Liew, C. K., Simpson, R. J. Y., Kwan, A. H. Y., Loughlin, F. E., Crofts, L. A., Crossley, M. and Mackay, J. P. (2004) Structure of the GATA-1:FOG complex. Manuscript in preparation.

Oral Presentations (presenting author underlined)

Simpson, R. J. Y., Lee, S., H. Y., Bartle, N., Crossley, M. and Mackay, J. P. (2003) A novel protein-binding role for a classical zinc finger. *Sydney Protein Group Thompson Prize Night (Sydney, Australia)*

Simpson, R. J. Y., Cram, E. D., Czolij, R., Matthews, J. M., Crossley, M. and Mackay, J. P. (2003) Incomplete CCHX sequences form functional zinc fingers! *East Coast Protein Meeting (Coffs Harbour, Australia)*

Mackay, J. P, Liew, C. K., Kowalski, K., Wong, R. J. Y.*, Yung, W., Matthews, J. M., Fox, A., Newton, A. and Crossley, M. (2001) Multifunctional zinc finger domains in the regulation of gene expression. *ComBio (Canberra, Australia)*

Conference Proceedings (presenting author underlined)

Simpson, R., Lee, S., Bartle, N., Liew, C. K., Kwan, A., Crossley, M. and <u>Mackay, J.</u> <u>P.</u> (2004) Structural dissertion of a transcriptional co-regulator. 5th Biennial Conference of the Australian and New Zealand Society for Magnetic Resonance (Barossa Valley, Australia) P 63.

xvii

^{*} Wong (maiden name) prior to 2003.

Simpson, R. J. Y., Lee, S., Crossley, M. and <u>Mackay, J. P.</u> (2004) Zinc fingers and coiled coils come together: A FOG-1:TACC3 complex. 29th Annual Lorne Conference on Protein Structure and Function (Lorne, Australia) P 335.

<u>Kwan, A. H. Y.</u>, Sharpe, B. S., Wong, R. J. Y.*, Crossley, M., Matthews, J. M. and Mackay, J. P. (2003) Zinc scaffolds: Protein engineering with zinc-binding domains. 28th Annual Lorne Conference on Protein Structure and Function (Lorne, Australia) P 339.

Wong, R.*, Cram, E., Czolij, R., Crossley, M. and Mackay, J. (2002) CCHX: A novel zinc finger motif? *ComBio (Sydney, Australia) P-Wed-007*.

Wong, R. J. Y.*, Sharpe, B. K., Kwan, A. H. Y., Matthews, J. M., Crossley, M. and <u>Mackay, J. P.</u> (2002) Zinc binding domains in protein design. 20th International Conference on Magnetic Resonance in Biological Systems (Toronto, Canada) PB 055.

<u>Wong, R.</u>*, Newton, A., Crossley, M. and Mackay, J. (2002) DNA-binding ability of GATA-1 is affected by a naturally occurring mutation. 27th Annual Lorne Conference on Protein Structure and Function (Lorne, Australia) B-34.

<u>Liew, C. K.</u>, Wong, R.*, Kowalski, K., Matthews, J., Crossley, M. and Mackay, J. (2002) Understanding the role of zinc binding domains in transcriptional control. 27th Annual Lorne Conference on Protein Structure and Function (Lorne, Australia) A-64.

Wong, R.*, Newton, A., Crossley, M. and Mackay, J. (2001) Investigating the DNA-binding ability of GATA-1 N-terminal zinc finger. *ComBio (Canberra, Australia) P-1-041*.

<u>Wong, R.</u>*, Liew, C. K., Newton, A., Crossley, M. and Mackay, J. (2001) In search of the GATA:FOG:DNA structure. *The Australian Society for Medical Research Scientific Meeting (Sydney, Australia) P 38.*

<u>Wong, R.</u>*, Liew, C. K., Kowalski, K., Newton, A., Crossley, M. and Mackay, J. P. (2001) Towards the structure of a ternary ZnF:ZnF:DNA complex. 26th Annual Lorne Conference on Protein Structure and Function (Lorne, Australia) B-26.

^{*} Wong (maiden name) prior to 2003.