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Abstract

Abstract

Shape control of a structure with distributed piezoelectric actuators can be
achieved through optimally selecting the loci, shapes and sizes of the piezoelectric
actuators and choosing the electric fields applied to the actuators. Shape control can be
categorised as either static or dynamic shape control. Whether it is a transient or gradual
change, static or dynamic shape control, both aim to determine the loci, sizes, and
shapes of piezoelectric actuators, and the applied voltages such that a desired structural

shape is achieved effectively.

This thesis is primarily concerned with establishing a finite element formulation
for the general smart laminated composite plate structure, which is capable to analyse
static and dynamic deformation using non-rectangular elements. The mechanical
deformation of the smart composite plate is modelled using a third order plate theory,
while the electric field is simulated based on a layer-wise theory. The finite element
formulation for static and dynamics analysis is verified by comparing with available
numerical results. Selected experiments have also been conducted to measure structural
deformation and the experimental results are used to correlate with those of the finite
element formulation for static analysis. In addition, the Linear Least Square (LLS)
method is employed to study the effect of different piezoelectric actuator patch pattern
on the results of error function, which is the least square error between the calculated

and desired structural shapes in static structural shape control.

The second issue of this thesis deals with piezoelectric actuator design
optimisation (PADO) for quasi-static shape control by finding the applied voltage and
the configuration of piezoelectric actuator patch to minimise error function, whereas the
piezoelectric actuator configuration is defined based on the optimisation technique of
altering nodal coordinates (size/shape optimisation) or eliminating inefficient elements
in a structural mesh (topology optimisation). Several shape control algorithms are
developed to improve the structural shape control by reducing the error function. Further
development of the GA-based voltage and piezoelectric actuator design optimisation
method includes the constraint handling, where the error function can be optimised
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subjected to energy consumption or other way around. The numerical examples are
presented in order to verify that the proposed algorithms are applicable to quasi-static
shape control based on voltage and piezoelectric actuator design optimisation (PADO) in

terms of minimising the error function.

The third issue is to use the present finite element formulation for a modal shape
control and for controlling resonant vibration of smart composite plate structures. The
controlled resonant vibration formulation is developed. Modal analysis and LLS
methods are also employed to optimise the applied voltage to piezoelectric actuators for
achieving the modal shapes. The Newmark direct time integration method is used to
study harmonic excitation of smart structures. Numerical results are presented to induce
harmonic vibration of structure with controlled magnitude via adjusting the damping and

to verify the controlled resonant vibration formulation.
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Preface

This thesis is to submit in fulfilment of the requirements for the degree of Doctor
of Philosophy in Engineering, to be awarded by The University of Sydney. The goal to
achieve in this thesis is to focus on three main issues, namely, the development and
validation of finite element solutions for smart composite plate structure with non-
rectangular elements; development of piezoelectric actuator design optimisation
techniques/methods for quasi-static shape control of smart composite plate structures
and effectively control of resonant vibration of smart composite plate structures. The

whole thesis is covered in 8 chapters.

In Chapter 1, an overview of the current state of smart structure and its
applications in shape control problem using piezoelectric actuators. The pertinent
references are cited for establishing the concepts of analytical and finite element
formulation including piezoelectric materials effect and shape control algorithms. Also,
various representative state-of-art structural optimisation techniques are briefly
reviewed. In view of current status of shape control problem, the scope of research is

proposed.

In Chapter 2, the finite element formulation for the general laminate composite
plate structure is extended to analyse static and dynamic deformation of the smart
structures with non-rectangular elements. Its mechanical deformation is modelled using
a third order plate theory, while the electric field is simulated based on a layer-wise
theory. Static and dynamic finite element formulations are verified by comparing with
available numerical results. Experimental facilities have been set up to test structural
deformation under piezoelectric material effects in order to validate the finite element
formulation for static deformation. Before going into development control algorithms, a
set of numerical results are presented to investigate the influence of the configuration of
piezoelectric actuators on error function for static shape control. The results are obtained
for the optimum values of the electric field in the piezoelectric actuators to achieve the

desired shape using the LLS method.



Preface

In Chapter 3, piezoelectric actuator design optimisation (PADO) algorithms are
developed for static shape control of smart structures. These algorithms incorporate an
iterative process of the linear least square (LLS) method, and genetic algorithm (GA)
into finite element analysis, which have been developed in Chapter 2, known as coupled
alternating algorithm (CAA) and coupled concurrent algorithm (CCA) of GA+LLS
(GALLS). Voltage distribution and piezoelectric actuator configuration can be optimised
to attain a desired structural shape based on GA, CAA and GALLS. To demonstrate the
capability of these algorithms, numerical examples are presented and compared to the
LLS method, where only voltage optimisation is performed. The proposed algorithms
including PADO show improvement in achieving the desired structural shape.

Chapter 4 presents shape control of smart composite plate structures under
additional constraints beyond the structural behaviour constraint. Two main issues are
investigated here. One is to minimise the error function (Lnm) subjected to the energy
consumption constraints. Another to minimise the total energy consumption subjected to
the error function constraint. Both issues aim to control the structure to attain the desired
structural shape within a given constraint condition. Genetic Algorithm (GA) is
employed to optimise the applied voltages in actuators and the geometries of
piezoelectric actuators subjected to given additional constraints. For each issue,
numerical results are presented to demonstrate the effect of given additional constraint
on the results of objective function. Also, a comparison between single criterion
optimisation (voltage optimisation only) method and multiple criteria optimisation
(voltages and geometrical of piezoelectric actuator optimisation) method is given to

indicate the better optimisation method.

Chapter 5 presents a new evolutionary algorithm for the determination of an active
piezoelectric actuator configuration in the shape control of smart composite plate
structures. The LLS and the features of evolutionary structure optimisation (ESO) are
employed in order to find the voltage distribution and the active piezoelectric actuator
configuration for achieving the desired structural shapes subjected to the removal of
active piezoelectric material element based on the error function sensitivity number. On
the basis of FE analysis, the error function sensitivity number including electro-
mechanical effect is derived to compute the change in error function due to removing the

active piezoelectric materials. Evolutionary piezoelectric actuator design optimisation

\Y



Preface

(EPADO) is proposed with a set of numerical examples to verify EPADO at a given
applied voltage.

On the basic concepts of CAA and GALLS methods, in Chapter 6, LLS and
EPADO are merged to form two new algorithms, named Alternative Voltage &
Evolutionary Piezoelectric Actuator Design Optimisation (AVEPADO) and Voltage &
Evolutionary Piezoelectric Actuator Design Optimisation (VEPADO) for the solution of
voltage and piezoelectric actuator design optimisation problems. Within these
algorithms, the piezoelectric material distribution and the applied voltages are optimised
simultaneously. A comparison is given for the results obtained through AVEPADO and
VEPADO in order to indicate the better algorithm in terms of the performance to attain

the optimal solution.

In Chapter 7, the modal analysis and the LLS techniques are employed to optimise
the applied voltage to achieve the modal shapes. The Newmark direct time integration
method is used to study the harmonic excitation of smart structures. Numerical results
are presented to show the optimal values of electrical fields in the actuator to achieve the
desired modal shape and to induce the harmonic vibration of structure with controlled

magnitude via damping adjustments.

Finally, Chapter 8 presents a summary of the results and achievements of this

thesis. An overview of some thoughts on some future directions is also presented.

Vil
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Notations

SYMBOLS
General variables

c Mechanical stiffhess

Ch Bending stiffness matrix

Cs Shear stiffness matrix

d Piezoelectric strain constant

Electric displacement

e Piezoelectric stress constant

ep Piezoelectric bending stress matrix

e Piezoelectric shear stress matrix

E FElectric field

E, E, FElectric field sub-matrices

(E\, E,y, E..) Electric potential derivative

F, Volume load matrix

F Surface load matrix

F, Point load matrix

(K, P, W) Kinetic energy, potential energy and work done, respectively
Lnm Error function

O Electrical surface charge matrix

(Uo, Vo, Wo) Displacement components on the mid-plane
(U V, W) Total displacement components

£ Mechanical strain

& Bending strain matrix

& Shear strain matrix

(&x &y &)  Normal strains
(Yxys Yyz » Yzx)  Shear strains

(¢, & & ¢ @) Higher order terms in the Taylor’s series expansions
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o Mechanical stress

@ Electric potential

& Electric potential within the "™ layer
4 Electric permittivity

Xis Yo Electric permittivity sub-matrices

(Wx, Wy, W) Rotational
P Density

Finite element variables

By, Bending strain-displacement matrix

By, Transverse shear strain-displacement matrix

By, Bgi Matrices defining an electric field

Cuuu Proportional damping matrix

D Definition matrices of some variable with derivatives

F, Mechanical force vector

J Jacobian matrix

K, Structural stiffness matrix

Kup K Piezoelectric stiffness matrices

Kgg Dielectric stiffness matrix

M, Mass matrix

N Interpolation function

N, Interpolation function matrix [11x88]

Ny Interpolation function matrix [(nlayer+1)x8(nlayer+1)]

0 2D transformation matrix — rotation about z-axis

Oq Electric charge vector

R Transformation between engineering and infinitesimal strain
tensor

T. Tsp 3D transformation matrix — rotation about z-axis

U Nodal displacement matrix [1x88]

V Volume

(x, y) Global planar coordinate system

(& n) Local planar coordinate of element
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@ Nodal electric potential matrix [8(nalyer+1)]
Star (*) Represents the shape functions V; (i=1,..., 8).
Dot (.) Represents zeros in the matrix

Static shape control variables

B., B, Allowable and actual value of the additional constraints

c" Influence coefficient matrix

E. E, Allowable and actual value of total energy constraint

e’ Number of removal piezoelectric material pieces

e Number of active piezoelectric material pieces in the current
design

Lnm®, Lnm® Allowable and actual value of error fucntion

Lnm", En, ¢," Optimal values obtained without constraint handling

N Total number of nodes of the FE model

N, Total number of piezoelectric actuator patches

R Resistance conductor

RMR Removal material rate

S Configuration design variables vector

V Design variable vector

Vi, Vu Lower and upper bounds of the design variable vectors

v Volume

w?, w* Desired and calculated displacements matrices, respectively
wid, wi Desired and calculated displacements of the ith node, respectively
wdmax Maximum desired displacement

X Geometric design variables vector

X, Xu Lower and upper bounds of geometric design variable vectors
ALnm Error function sensitivity number

@ Voltage design variables vector

De, Du Allowable and actual value of voltage constraint

o, du Lower and upper bounds of voltage design variable vectors

T Error tolerance

Xi



Notations

Dynamic modal shape control variables

f Constant factor

t Time

Vv Eigenvectors

a, B Rayleigh’s damping coefficients

a, f Newmark’s parameters

A Eigenvalues

Q Frequency input

0] Mechanical natural frequencies
ACRONYMS

AVEPADO Alternatively Voltage and Evolutionary Piezoelectric Actuator

Design Optimisation

BVD Build-up Voltage Distribution

DBSC Displacement Based Shape Control

CA Coupled Algorithms

CAA Coupled- Alternating Algorithm

CCA Coupled- Concurrent Algorithm

CLPT Classical Laminate Plate Theory

CDBSC Curvature-Displacement Based Shape Control
DOF Degree of Freedom

EPADO Evolutionary Piezoelectric Actuator Design Optimisation
ERF Electro Rheological Fluids

ESO Evolutionary Structure Optimisation

FE Finite Element

FEA Finite Element Analysis

FSDT First-order Shear Deformation Theory

GA Genetic Algorithm

GALLS Genetic Algorithm and Linear Least Square
HOT Higher Order Theory

LLS Linear Least Square

Xii



MRF

ocC

PZT
PADO
PVDF

SA4
SDBSC
SLP

SMA
TOD
TODL
TODL-FE
VEPADO

ID, 2D, 3D

Magneto-Rheological Fluid

Optimal Criteria

Piezoceramics (Lead Zirconate Titanate)

Piezoelectric Actuator Design Optimisation
Polyvinylidene Fluoride

Simulated Annealing

Slope-Displacement Based Shape Control

Sequential Linear Programming

Shape Memory Alloy

Third Order Displacement

Third Order Displacement Layerwise

Third Order Displacement Layerwise — Finite Element
Voltage and Evolutionary Piezoelectric ~Actuator
Optimisation

One, Two, Three Dimension

Xiii
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