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Abstract 

 

Herbal medicines are widely used in our community. A survey of Australian 

consumers indicated that 60% had used complementary and/or alternative medicines 

in the past year with the majority not informing their doctor that they were using 

herbal medicines. Little is known about the potentially serious consequences of 

interactions between herbal and conventional medicines. Warfarin has an important 

role in treating people with heart disease, yet it has a narrow therapeutic range, is 

highly bound to plasma proteins, and is metabolised by cytochrome P450. This 

creates the potential for life-threatening interactions with other drugs and foods 

leading to excessive bleeding. Hence, warfarin is one of the most frequently 

investigated drugs for interaction studies. Early clinical reports suggest that there 

exists the potential for an interaction between warfarin and four herbal medicines: St 

John’s wort, ginseng, ginkgo and ginger. However, these herb-drug combinations 

have never been conclusively studied.  

 

The two clinical studies conducted as part of this research had an identical study 

design. Twenty-four healthy male subjects were recruited into the two separate 

studies. This was an open label, three-way crossover randomised study in twelve 

healthy male subjects, who received a single 25 mg dose of warfarin alone or after 14 

days pre-treatment with St John’s wort, or 7 days pre-treatment with ginseng. Dosing 

with St John’s wort or ginseng was continued for 7 days after administration of the 

warfarin dose in study I or who received a single 25 mg dose of warfarin alone or 
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after 7 days pre-treatment with recommended doses of ginkgo or ginger from single 

ingredient products of known quality. Dosing with ginkgo or ginger was continued 

for 7 days after administration of the warfarin dose in study II. Platelet aggregation, 

international normalised ratio (INR) of prothrombin time, warfarin enantiomer 

protein binding, warfarin enantiomer concentrations in plasma and S-7-

hydroxywarfarin concentration in urine were measured in both studies. Statistical 

comparisons were made using ANOVA and 95% confidence interval (CI) for mean 

value and 90% CI for geometric mean ratio value are reported. 

 

In study I, the mean (95% CI) apparent clearance of S-warfarin after warfarin alone 

or with St John’s wort or ginseng were, respectively, 198 (174 – 223) ml/h, 269 (241 

– 297) ml/h and 220 (201 – 238) ml/h. The respective apparent clearances of R-

warfarin were 110 (94 – 126) ml/h, 142 (123 – 161) ml/h and 119 (106 – 131) ml/h. 

The mean ratio of apparent clearance for S-warfarin was 1.29 (1.16-1.46) and for R-

warfarin was 1.23 (1.11-1.37) when St John’s wort was co-administered. The mean 

ratio of AUC0-168 of INR was 0.79 (0.70 - 0.95) when St John’s wort was co-

administered. The urinary excretion ratio of S-7-hydroxywarfarin after 

administration of warfarin alone was 0.04 (0.03 – 0.06) mg/h and there was no 

significant difference following treatment with either St John’s wort 0.03 (0.02 – 

0.04) mg/h or ginseng 0.03 (0.02 – 0.04) mg/h. The ratio of geometric means for S-7-

hydroxywarfarin UER was 0.82 (0.61-1.12) for St John’s wort, and 0.68 (0.50-0.91) 

for ginseng. St John’s wort and ginseng did not affect the apparent volumes of 

distribution or protein binding of warfarin enantiomers. 
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In study II, the mean (95% CI) apparent clearance of S-warfarin after warfarin alone, 

with ginkgo or ginger were 189 (167 – 210) ml/h, 200 (173 – 227) ml/h and 201 (171 

– 231) ml/h, respectively. The respective apparent clearances of R-warfarin were 127 

(106 – 149) ml/h, 126 (111 – 141) ml/h and 131 (106 – 156) ml/h. The mean ratio of 

apparent clearance for S-warfarin was 1.05 (0.98 -1.12) and for R-warfarin was 1.00 

(0.93 -1.08) when co-administered with ginkgo. The mean ratio of AUC0-168 of INR 

was 0.93 (0.81 -1.05) when co-administered with ginkgo. The mean ratio of apparent 

clearance for S-warfarin was 1.05 (0.97 -1.13) and for R-warfarin was 1.02 (0.95 -

1.10) when co-administered with ginger. The mean ratio of AUC0-168 of INR was 

1.01 (0.93 -1.15) when co-administered with ginger. The urinary excretion ratio 

(UER) of S-7-hydroxywarfarin after administration of warfarin alone was 0.04 (0.03 

– 0.05) mg/h and there was no significant difference following treatment with either 

ginkgo 0.04 (0.03 – 0.04) mg/h or ginger 0.03 (0.02 – 0.04) mg/h. The ratio of 

geometric means for S-7-hydroxywarfarin UER was 1.07 (0.69-1.67) for ginkgo, and 

1.00 (0.64-1.56) for ginger. Ginkgo and ginger did not affect the apparent volumes of 

distribution or protein binding of either S-warfarin or R-warfarin.  

 

In conclusion, St John’s wort significantly induced the apparent clearance of both S-

warfarin and R-warfarin, which in turn resulted in a significant reduction in the 

pharmacological effect of rac-warfarin.  Ginseng, ginkgo and ginger at 

recommended doses affect neither clotting status, nor the pharmacokinetics or 

pharmacodynamics of either S-warfarin or R-warfarin in healthy subjects. 
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Chapter 1 Introduction 

 

1.1 Overview 

Herbal medicines are widely used in our community [1-3]. A survey of Australian 

consumers indicated that 60% had used complementary and/or alternative medicines 

in the past year  with the majority not informing their doctor that they were using 

herbal medicines [4]. Little is known about the potentially serious consequences of 

herbal medicines and conventional medicine interactions. Furthermore, herbal 

products are not marketed with proof of efficacy or safety as is normally required for 

conventional medicines by the Therapeutical Goods Administration (TGA) or Food 

and Drug Administration (FDA). In the literature, most herb-drug interactions are 

based on case reports or suspected interactions [5]. Fugh-Berman reported that of one 

hundred and eight cases of suspected interactions identified in a review article 

assessing the reliability of reported herb- drug interactions, seventy-four (68.5%) did 

not contain sufficient information to evaluate the likelihood of an interaction [6]. 

Additionally, there is only variable evidence supporting herb-drug interactions, much 

of which includes conflicting in vitro and in vivo data [7]. There have been a number 

of case reports of suspected interactions and in vitro data indicating the possible 

effects of herbal medicines on blood coagulation and clot formation [8]. However 

there has been no systematic investigation of the potential interactions between 
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herbal medicines and the anticoagulant drug warfarin. This presents a challenge for 

health care practitioners.  

 

Warfarin has an important role in treating people with heart diseases, yet it has a 

narrow therapeutic range, exhibits stereoselective metabolism, is approximately 99% 

bound to plasma proteins, and is metabolised by cytochrome P450 (CYP). This 

creates the potential for life-threatening interactions with other drugs and foods 

leading to excessive bleeding or therapeutic failure. Hence, warfarin is one of the 

most frequently investigated drugs for interaction studies [9]. Early clinical reports 

suggest that there exists the potential for an interaction between warfarin and four 

herbal medicines: St John’s wort, ginseng, ginkgo and ginger. However, these herb-

drug combinations have never been conclusively studied. Warfarin is widely used in 

the community where people have free access to herbal and alternative medicines [4]. 

Hence, there is considerable potential for clinically significant drug interactions. The 

systematic study of potential interactions between warfarin and herbal medicines 

proposed in this research will lead to safer dosing guidelines for the use of warfarin 

in combination with these supposedly “safe” herbal medicines. Excessive warfarin 

response can be life threatening or cause excessive bleeding leading to serious 

consequences. The identification and avoidance of significant drug interactions with 

warfarin can reduce patient problems caused by bleeding and reduce the length of 

hospital stays and decrease the need for frequent blood monitoring. Warfarin is a 

substrate for the drug metabolising enzyme CYP2C9, so the present study will also 

provide a valuable insight into possible interactions with other medicines that are 

substrates for CYP2C9. 
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The aims of the studies reported in this thesis were 

• To investigate the herb-drug interactions between four commonly used herbal 

medicines (St John’s wort, ginseng, ginkgo, and ginger) and the anticoagulant 

drug warfarin 

• To identify the drug interaction mechanisms 

• To investigate St John’s wort, ginseng, ginkgo, and ginger’s effect on clotting 

status, respectively 

The findings of these studies can be used to infer whether there are potentially 

serious herb-drug interactions between these four herbal medicines and other 

conventional medicines in addition to warfarin.  

 

1.2 Physicochemical Properties of Warfarin 

Warfarin, C19H16O4, ((RS)-2-oxo-3- (3-oxo-1-phenylbutyl)-2H-chromen-4-olate) is a 

colourless crystalline material with a MW of 308.3 and melting point between 159oC 

to 160oC. Warfarin can exhibit natural fluorescence with excitation and emission 

wavelengths of 290-342 nm and 385 nm, respectively. It is practically insoluble in 

water, moderately soluble in ethanol and readily soluble in acetone. On the other 

hand, warfarin sodium, C19H15NaO4 (MW: 330.32), (sodium (RS)-2-oxo-3-(3-oxo-1-

phenylbutyl)-2H-chromen-4-olate) is a white hygroscopic powder which is very 

soluble in water and in alcohols, soluble in acetone, very slightly soluble in ether and 

in methylene chloride. Warfarin has an apparent dissociation constant (pKa) of 5.0 

(at 20oC) and a partition coefficient  (log P) (octanol/pH 8.0) of 0.0 [10]. 
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Warfarin is a chiral molecule. The asymmetric carbon at position 9 of warfarin gives 

rise to two enantiomers, namely R-(+)-warfarin (R-warfarin) and its mirror image 

isomer S-(-)-warfarin (S-warfarin) (Figure 1-1). The main monohydroxylated 

metabolites of warfarin, such as 4’-, 6-, 7- and 8-hydroxywarfarin, also contain a 

single asymmetric centre (Table 1-1) [11]. 

 

Figure 1-1. Three dimensional structures of warfarin enantiomers. 

 

R-warfarin

O

OH

O
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OH
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Table 1-1. Structures of warfarin and its main metabolites. Adapted from [12]. 

O
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CH3

O

 

H H 

7-Hydroxywarfarin  
7= OH  
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Note: *: Asymmetric centre; a: The second asymmetric centre generated at C-10 

position. 
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1.3 Clinical Use of Warfarin 

In the clinical setting, warfarin is administered for the prevention and treatment of 

venous thromboses and pulmonary embolism [13]. It is also used for the prophylaxis 

and treatment of thromboembolic complications associated with atrial fibrillation, 

diabetes mellitus and hypertension associated with an otherwise normal heart. It is 

additionally used as an adjunct in the treatment of coronary occlusion. Warfarin does 

not affect established thrombi or reverse tissue ischaemia but is instead used to 

prevent clot growth and secondary complications [14]. The following ranges of 

International normalized ratio (INR) of prothrombin time are recommended by the 

British Society of Haematology. 2.0 to 2.5: prophylaxis of deep vein thrombosis 

including high risk surgery; 2.0 to 3.0: treatment of deep vein thrombosis, pulmonary 

embolism and atrial fibrillation; 3.0 to 4.5: recurrent deep vein thrombosis and 

pulmonary embolism; arterial disease including myocardial infarction, arterial grafts; 

cardiac prosthetic valves and grafts. 

 

1.4 Pharmacodynamics of Warfarin 

1.4.1 Mechanism of Action 

Warfarin is a vitamin K dependent factor anticoagulant. It acts by inhibiting the 

synthesis of vitamin K dependent clotting factors (Factors II, VII, IX and X and 

clotting protein C and S) [15] (Figure 1-2).   
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 Figure 1-2. The probable mechanism of action of vitamin K and the site of 

action of oral anticoagulants. Adapted from [16]. 

 

 

γ 
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Reduced vitamin K (the hydroquinone) acts as a cofactor in the conversion of 

glutamic acid (Glu) to γ-carboxyglutamic acid (Gla). During this reaction, the 

reduced form of the vitamin K is converted to the epoxide, which in turn is reduced 

to the quinone and then the hydroquinone. Warfarin has similar structural 

characteristics to vitamin K, the inhibition of vitamin K reductase is competitive and 

only exerts its actions in vivo without affecting clotting if added to blood in vitro [17]. 

 

Warfarin does not alter the degradation rate of clotting factors already in circulation; 

it only affects the synthesis rate of clotting factors [18]. Therefore, the onset of 

anticoagulation induced by warfarin is delayed. The anticoagulation effect of 

warfarin takes about 8 hours to become apparent as a result of the time taken for 

degradation of carboxylated factors [18]. The onset of action of warfarin depends on 

the elimination half-lives of the relevant factors. Factor VII, with half-life of 6 hours, 

is affected first, then Factors IX, X and II with half-lives of 24, 40 and 60 hours, 

respectively [19, 20]. The two enantiomers of warfarin display different 

anticoagulant potency in humans.  S-warfarin is considerably more potent than R-

warfarin in terms of the anticoagulant effect [14].  

 

1.4.2 Pharmacodynamic Models Used to Describe Warfarin Response 

Various models have been reported to describe the relationship between warfarin 

concentration (C) and the inhibitory effect of warfarin on the synthesis rate of 

vitamin K-dependent clotting factors. The simplest is the linear pharmacodynamic 

model [21]. The liner pharmacodynamic model is described in Equation 1-1. 
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f(C) = 1 - S×C                                                     Equation 1-1 

                           

where f(C) is an appropriate  pharmacodynamic model describing the relationship 

between warfarin concentration and its inhibiting effect on prothrombin complex 

activity (PCA) synthesis rate; S is a slope parameter reflecting the patient’s 

sensitivity to warfarin. 

 

A power function has also been employed to define the effect of warfarin on the 

inhibition of clotting factor synthesis (Equation 1-2). This modified version of the 

linear pharmacodynamic model successfully deals with high warfarin concentrations 

but fails with a zero concentration [22]. 

 

f(C) = 100 × 1 – 1/(S×Cn)                              Equation 1-2 

                              

in this model n is the power parameter. 

 

Nagashima et al [23] proposed the first log-linear pharmacodynamic model to 

describe warfarin pharmacodynamics. This was the first comprehensive model, 

which described the in vivo effect of warfarin on the synthesis of clotting factors. The 

hypothetical minimum effective plasma concentration (Cmin) is obtained by 

extrapolating the percent inhibition of clotting factor synthesis rate versus log 

concentration line to zero inhibition. In theory, the log-linear pharmacodynamic 

model will overpredict the true effect when synthesis rate is more than 80% inhibited 
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and underpredict the effect when synthesis rate is less than 20% inhibited. This 

model is described in Equation 1-3. 

  

f(C) = 1 – M × [log (C) – log(Cmin)]               Equation 1-3 

               

where M is the slope of the log warfarin concentration versus percentage inhibition 

of clotting factor synthesis rate profile. 

 

The Emax pharmacodynamic model [24] has a more secure base in pharmacological 

theory, and was able to describe the entire range of warfarin concentrations and 

effects. However, this model assumes a fixed value for the gradient of the 

concentration-effect relationship. The inhibitory Emax pharmacodynamic model is 

described in Equation 1-4. 

 

f(C) =1 – 1/(IC50+C)                                Equation 1-4 

                       

where IC50 is the warfarin concentration producing 50% inhibition of clotting factor 

synthesis rate.  

 

Chan et al. [18] detailed a further elaboration of the Emax model, the sigmoid Emax 

pharmacodynamic model, which has been used to describe the simultaneous effect of 

the S- and R- warfarin enantiomers on the inhibition of clotting factor synthesis rate. 

This model is described in Equation 1-5. 
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                          Equation 1-5 

             

where CS and CR are concentrations of S-warfarin and R-warfarin, IC50S and IC50R 

are the corresponding concentrations of the enantiomers which individually produce 

50% inhibition of prothrombin complex synthesis, and γ is the steepness parameter. 

 

As described in Section 1.4.1, warfarin acts by inhibiting the synthesis of vitamin K-

dependent clotting factors. At any time, the PCA expressed as a percentage of 

maximum response in blood is the net effect of synthesis rate (Rsyn) and degradation 

rate (Rdeg) of the prothrombin complex (Equation 1-6 and 1-7) [18]. 

 

dPCA/dt = Rsyn - Rdeg                              Equation 1-6                        

dPCA/dt=Rsyn - kd×PCA                                  Equation 1-7 

                       

where kd is the degradation or elimination rate constant of the prothrombin complex. 

The effect of an anticoagulant drug (eg. warfarin) on Rsyn can be expressed in terms 

of its fractional effect of the pre-treatment (control) synthesis rate (Rsyn,0): 

 

dPCA/dt=Rsyn,0 [1-f(C)] - kd×PCA                      Equation 1-8 
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The unbound concentration of warfarin enantiomers are considered to be responsible 

for the anticoagulant response at the active site and can be included in the model. 

Combining the Equation 1-8 with Equation 1-5, the pharmacodynamic model is 

described in Equation 1-9. 
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      Equation 1-9 

 

where Cu50,S and Cu50,R are the unbound concentrations of S- and R-warfarin, 

respectively, required to produce a 50% inhibition of prothrombin complex activity. 

Cu(t) is the unbound concentration of each enantiomer at time t, and γ is a measure 

of the steepness of the concentration-response curve for each warfarin enantiomer. 

Since the anticoagulant effect of racemic warfarin is predominantly contributed by S-

warfarin [18]. The Equation 1-9 can be simplified to Equation 1-10. 
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1.5 Pharmacokinetics of Warfarin 

Warfarin is a racemic mixture of the R- and S-enantiomers. In studies that 

administered warfarin enantiomers separately, it was found that the S-enantiomer 

exhibits two to five times more anticoagulant activity than the R-enantiomer in 

humans but generally has a more rapid clearance [25, 26]. Furthermore Chan et al 

[18] found that the anticoagulant effect of warfarin is predominantly contributed by 

S-enantiomer when warfarin was administered as rac-warfarin. 

 

1.5.1 Absorption  

Warfarin is essentially completely absorbed after oral administration and has a 

systemic bioavailability of more than 90% in humans [18]. The peak concentration 

after oral dosing is generally achieved within 60–90 min. No identifiable enantiomer-

specific differences in absorption have been reported while both the rate and extent 

of absorption are independent of the dose administered [20, 27].  

 

1.5.2 Distribution 

Warfarin enantiomers distribute into a relatively small apparent volume of 

distribution (V) of about 0.14 ± 0.03 L/kg (VS); 0.15 ± 0.03 L/kg (VR) in humans 

[27-29]. A distribution phase last 6 to 12 h in distinguishable after rapid intravenous 

or oral administration of an aqueous solution. Model-based estimates of volume of 

distribution were close agreement for each enantiomer [18]. Approximately 99.5% of 

the warfarin is bound to human plasma serum proteins, primarily albumin, where it is 

pharmacologically inactive and is protected from biotransformation and excretion, 

but  the plasma protein bound drug is not permanently which is reversible [30]. No 
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stereoselective differences in protein binding of warfarin enantiomers has been found 

(fuS = 0.0051 ± 0.0005, fuR = 0.0062 ± 0.0005, fu, fraction unbound drug 

concentration) [30, 31].  

 

1.5.3 Metabolism 

The elimination of warfarin is almost entirely accounted for by hepatic enzymatic 

metabolism (Figure 1-3). Warfarin is stereoselectively metabolised by hepatic 

microsomal enzymes (cytochrome P450) located in the hepatic smooth endoplasmic 

reticulum to inactive hydroxylated metabolites (predominant route) and also by 

reductases to reduced metabolites (warfarin alcohols). 

 

Hepatic metabolism of warfarin is the major determinant of inter-subject variability 

in the warfarin dose-concentration-response relationship [20, 32]. Warfarin is 

metabolized in a complex manner involving: (1) keto reduction resulting in the 

formation of four diastereoisomeric metabolites designated as warfarin alcohols; 
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Figure 1-3. A: Sites of hydroxylation of S- and R-warfarin catalysed by human 

cytochrome P450 isozymes to yield the hydroxylated metabolites of warfarin. B: 

Structures of the dehydrowarfarin metabolites of warfarin. , major 

metabolic pathway; , minor metabolic pathway. Adapted from [33]. 
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(2) oxidation to yield regioisomeric 4’-, 6-, 7-, 8- and 10-hydroxywarfarin; (3) 

dehydration of warfarin alcohol to the cyclic metabolite and (4) various conjugation 

reactions [34]. The warfarin alcohols have minimal anticoagulant activity. Table 1-1 

shows the structures of warfarin and its main metabolites. 

 

Based on in vitro studies, S-warfarin is metabolised predominantly to the inactive 

metabolite S-7-hydroxywarfarin by the cytochrome P450 2C9 (CYP2C9) [35-37] 

while R-warfarin is mainly metabolised to R,S-warfarin alcohol by liver cytosolic 

ketone reductases [38]. A small percentage of R-warfarin is converted to oxidative 

metabolites by several CYP450 enzymes including CYP1A2 [37], CYP3A4 [39] and 

CYP2C19 [40]. Very little is known about the Phase II metabolism of the warfarin 

metabolites in humans [33]. One in vivo study demonstrated that 10-hydroxywarfarin 

was fully conjugated, 8-hydroxywarfarin was 66% conjugated and the extent of 6-

hydroxywarfarin conjugation varied between 66 and 100% in different patients by 

treating the urine with glucuronidase and sulfatase enzymes [33]. 

 

CYP2C9 is known to be polymorphic [33]. Two known allelic variants CYP2C9*2 

and CYP2C9*3 differ from the wild-type CYP2C9*1. Both allelic variants display 

impaired hydroxylation of S-warfarin when expressed in vitro compared to wild type. 

The CYP2C9*3 variant is less than 5% as efficient as the wild-type activity while 

CYP2C9*2 shows about 12% of wild-type activity [41, 42]. Furthermore, some 

CYP2C9 polymorphisms are associated with increased risk of excessive bleeding for 

patients undergoing warfarin anticoagulation in the clinical setting [43, 44]. 
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1.5.4 Excretion 

Both reductive and oxidative metabolites of warfarin are excreted in urine and in bile 

while enterohepatic circulation has been observed for the parent drug [45]. The 

metabolites are principally excreted into the urine and, to a lesser extent, into the bile. 

Only 2-5% of the warfarin administered appears unchanged in human urine [46, 47]. 

Warfarin enantiomers have different elimination rate constants (kS = 0.024 ± 0.009 

1/h; kR = 0.017 ± 0.003 1/h) [18]. Since the volumes of distribution of warfarin 

enantiomers are similar, the clearance of R-warfarin is generally half of S-warfarin 

unbound clearance (CLuS = 675 ± 212 ml/h/kg; CLuR = 399 ± 58 ml/h/kg) [18]. 

Hence, the half-life of R-warfarin ranges from 37 to 89 h while the half-life of S-

warfarin ranges from 21 to 43 h [27].  

 

1.5.5 Pharmacokinetic Modelling  of Warfarin 

Warfarin plasma concentration-time data after oral administration has been described 

by both one- and two-compartment pharmacokinetic models [46, 48]. Although the 

two compartment pharmacokinetic model may enhance the precision of data fitting, a 

simple model should be adequate for drug-drug interactions and combined 

pharmacokinetic-pharmacodynamic (PK/PD) studies [18]. The one compartment 

pharmacokinetic model is described in Equation 1-11 and 1-12. 

 

C t F D
V

ka
ka k

e eS
S S

k t katS( ) = ⋅
⋅

F
HG

I
KJ −
F
HG

I
KJ −− −

2
c h

               Equation 1-11 
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where D is the dose of racemic warfarin administered (divided by 2 to obtain the 

equivalent dose of each enantiomer), F is the fraction of the dose absorbed, ka is the 

first order absorption rate constant, kS and kR are the respective elimination rate 

constants for individual warfarin enantiomers, and VS and VR are the respective 

volumes of distribution. 

 

1.5.6 Warfarin Pharmacokinetic-Pharmacodynamic Modelling  

Equations 1-11 and 1-12 have been combined with Equation 1-9 to generate a 

combined PK/PD model. An additional pharmacodynamic parameter was introduced 

to account for the observed delay in PCA change after warfarin administration. The 

parameter td represents the time between the onset of absorption of the drug and the 

initiation of anticoagulant response. Therefore t in the combined PK/PD model was 

replaced with a corrected time value t*, where t* = t - td. 

 

Since the anticoagulant response data are generally obtained as an INR, the response 

data can be transformed to PCA with the use of the functional relationship between 

INR and PCA (percentage of normal activity) described in the following equation: 

 

PCA(% normal) a
INR b

=
−                       Equation 1-13 
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The values of the constants a and b are determined by fitting this Equation 1-13 to 

PCA and INR data obtained using serial dilutions of pooled normal plasma (See 

Section 2.5).  

 

1.6 Warfarin Drug Interaction Mechanisms 

Drug interactions with warfarin can occur via three main mechanisms: 1) 

Pharmacodynamic interactions: modification of the pharmacological effect of 

warfarin without altering its concentration in the body; 2) Pharmacokinetic 

interactions: alteration of the concentration of warfarin reaching its site of action and 

3) Physicochemical interactions. Clinically important drug interactions occur when 

either of the interacting drugs have a steep concentration-response curve and narrow 

safety margin such that a small change in plasma concentration leads to a substantial 

change in beneficial or adverse effect [16]. 

 

As a result of its narrow therapeutic range, high binding to plasma proteins and 

metabolism by cytochrome P450, warfarin is prone to life-threatening interactions. 

There have been more than 250 compounds, including clinically used drugs, herbal 

medicines and other xenobiotics, proven to or suspected of having an interaction with 

warfarin [49]. Understanding the mechanism of warfarin drug interactions provides 

an insight into the possible clinical significance of an interaction and can help 

elucidate strategies to avoid or minimise the impact in a given patient. 
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1.6.1 Pharmacodynamic Interactions 

Drugs or herbal medicines can alter the pharmacodynamics of warfarin by their 

influence on vitamin K intake and absorption, the rate of synthesis and clearance of 

vitamin K-dependent clotting factors, by direct effects on blood coagulation or 

platelet function. Pharmacodynamic interactions can occur in many different ways 

and by various mechanisms. Their mechanisms are discussed in the following 

sections. 

 

Drugs that Affect Vitamin K Intake, Synthesis and Elimination of Vitamin K and 

Clotting Factors 

Warfarin competes with vitamin K and prevents the hepatic synthesis of various 

coagulation factors. There are two main sources of vitamin K in humans. Vitamin K1 

is of plant origin and is ingested [50], while vitamin K2 is synthesized by bacteria in 

human intestine [51]. Drugs that reduce the systemic availability of vitamin K in the 

intestine should be considered to potentially alter the patient’s the response to oral 

anticoagulants. For example, Karlson et al [52] reported that a single administration 

of 250 µg vitamin K1, 250 g spinach, 250 g broccoli and 37.5 ml wine did not affect 

prothrombin time values in patients fed an ordinary diet and warfarin therapy. 

However, when vitamin K1, broccoli and spinach were given daily for one week, the 

prothrombin time was significantly reduced and the warfarin dose needed to be 

adjusted. Furthermore, in a clinical trial study, Kim et al [53] reported that INR on 

day 2 following a dose of 10 mg warfarin was 1.18 ± 0.19, which differed 

significantly from baseline (INR = 1.00 ± 0.05) and warfarin (10 mg) orally with 

vitamin K (10 mg) (INR = 1.06 ± 0.07). INR at baseline was not significantly 
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different from warfarin with vitamin K in a randomized crossover fasted study in 

eleven (3 men, 8 women) healthy adults by investigating the effects of oral vitamin K 

on S- and R-warfarin. On the other hand, if vitamin K2 production in the intestine is 

inhibited, for example, by administration of broad spectrum antibiotics [49] that kill 

intestinal microflora, the anticoagulant action of warfarin is increased.  

 

Drugs that Affect Blood Coagulation and Platelet Aggregation 

Drugs that have an independent effect on blood coagulation or platelet aggregation 

may affect bleeding by distinct mechanisms in patients receiving warfarin therapy. 

For example, halofenate [54] and paracetamol [55] have a pharmacodynamic 

interaction with warfarin by independently affecting the activity of circulating 

coagulation factors. Mercaptopurine [56] increases the activity of circulating of 

Factor II which may correspondingly decrease the pharmacological effect of warfarin. 

Aspirin and most NSAIDs [57] increase the risk of bleeding in patients receiving 

warfarin by inhibition of platelet thromboxane A2 biosynthesis. An added concern 

with NSAIDs is the risk of damage to the integrity of epithelial surfaces leading to 

major bleeding [58]. 

 

1.6.2 Pharmacokinetic Interactions 

Pharmacokinetic mechanisms for drug interactions with warfarin comprise mainly of 

induction or inhibition of drug metabolising enzymes and to a lesser extent alteration 

of plasma protein binding. It is important to note that some drugs may interact by 

multiple mechanisms. All of the four major processes that determine the 
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pharmacokinetic behaviour of a drug: absorption, distribution, metabolism and 

excretion can be affected by co-administration of other drugs. 

 

Drugs that Affect Warfarin Absorption 

Gastrointestinal absorption is slowed by drugs that inhibit gastric emptying or is 

accelerated by drugs, which hasten gastric emptying. Alternatively, one drug may 

interact with another drug in the gut in such a way as to inhibit absorption of 

warfarin. Co-administration of cholestyramine [59], a bile acid binding resin used to 

treat hypercholesterolemia, binds to warfarin in the gastrointestinal tract to prevent 

its absorption if administered simultaneously. Despite a number of possible 

interactions influencing warfarin absorption, the clinical significance of the 

interaction is limited because generally warfarin is very rapidly absorbed and also 

has a delay in the onset of its pharmacological response.  

 

Drugs that Affect Warfarin Distribution 

Although one drug may alter the distribution of another, such interactions are seldom 

clinically important [60]. Warfarin is very highly bound to plasma protein (fuS = 

0.0051 ± 0.0005, fuR = 0.0062 ± 0.0005) especially to albumin [18] and as a 

consequence, small changes in protein binding will therefore lead to correspondingly 

large changes in circulating unbound drug. Displacement of a drug from binding sites 

in plasma or tissues transiently increases the unbound concentration of warfarin. 

However, warfarin has a low hepatic extraction ratio so an increase in fraction 

unbound leads to an increased hepatic clearance; a new steady state results in which 
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total drug concentration in plasma is reduced but the unbound drug concentration is 

similar with that before. In this case, it should be appreciated that the target 

therapeutic concentration range (with respect to total drug) will be altered by co-

administration of a displacing drug. For example, phenylbutazone is capable of 

competing with warfarin for these plasma protein binding sites and it has been shown 

to increase the unbound fraction of S-warfarin from 0.0062 ± 0.0005 to 0.0111 ± 

0.0011 and from 0.0052 ± 0.0005 to 0.0114 ± 0.0015 for R-warfarin [18]. In other 

words, the unbound concentration of warfarin almost doubled in over a short period 

of time before returning to pre-treatment levels. Furthermore, the protein binding 

affinity can be stereoselective. For example, sulfinpyrazone [61] can displace S-

warfarin from its protein binding site to a greater extent than R-warfarin.  

 

Drugs that Affect Warfarin Metabolism 

Drug interactions can occur via inhibition or induction of drug metabolism with the 

risk of toxicity or reduced drug activity. These cases will be discussed in the 

following sections. 

 

Enzyme Induction 

Many clinically important drug interactions result from enzyme induction, 

particularly for cytochrome P450s. A number of drugs and xenobiotics cause enzyme 

induction and thereby decrease the pharmacological activity of a range of other drugs 

[62, 63]. For example, the antibiotic rifampicin [64], given for 3 days, reduces the 

effectiveness of warfarin as an anticoagulant. In humans, members of the CYP3A 

subfamily of P450 enzymes are particularly relevant to drug metabolism because of 
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their broad substrate specificity and their abundance in the liver and intestine.  

CYP3A4 alone is involved in the metabolism of greater than 50% of prescription 

drugs [62] while approximately 16% of clinically used drugs are metabolized by 

CYP2C9 [65]. Furthermore, it has become increasingly evident that the pregnane X 

receptor (PXR) as well as other nuclear receptors mediate CYP3A and CYP2C9 [66-

69]. Activation of the PXR and the subsequent induction of CYP3A, CYP2C9 and 

other drug metabolising enzymes and transporters by xenobiotics can result, in turn, 

in an accelerated metabolism of some medications.  

 

Enzyme Inhibition 

Many drugs cause enzyme inhibition, particularly of the cytochrome P450 system. 

This can lead to increased drug and metabolite concentrations leading to excessive 

drug effects at a given dose. Inhibition of drug metabolism can be either 

stereoselective or non-stereoselective. For example, phenylbutazone selectively 

inhibits S-warfarin metabolism and cimetidine selectively inhibits R-warfarin 

metabolism, whereas amiodarone is known to inhibit the metabolism of both isomers 

[36, 70]. 

 

Drugs that Have Effects on Warfarin Excretion 

Warfarin mainly undergoes hepatic metabolism. After administration of warfarin to 

humans, only trace amounts of unchanged warfarin are recovered in the urine [71]. 

Metabolites of warfarin excreted in urine are inactive, so drug interactions with the 

renal excretion of warfarin metabolites are not likely to be clinically significant [27, 

71, 72]. 
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1.7 St. John's Wort 

St John's wort, also called hypericum, consists of the whole plant or cut dried 

flowering tops of Hypericum perforatum, harvested during flowering time. This herb 

contains not less than 0.08% total hypericins usually expressed as the content of 

hypericin (C30H16O8; MW 504.4), calculated with reference to the dried herb [73].  St 

John’s wort is widely used in the community for the management of a range of 

conditions including depression. The constituents, pharmacology and drug 

interactions of St John’s wort have been the subject of several review articles [8, 73-

75]. 

 

1.7.1 Chemistry and Pharmacology 

St John’s wort has been shown to contain at least nine groups of compounds that may 

contribute to the herb’s pharmacological effect; however, the pharmacology of the 

many constituents is not yet fully known (Table 1-2). 

 

In a manner similar to conventional antidepressant pharmacology, it is reported that 

constituents of St John’s wort may exert a significant affect on catecholamine 

neurotransmission via known pathways, including: 1) inhibition of neurotransmitter 

metabolism; 2) modulation of neurotransmitter receptor density and sensitivity; and 3) 

synaptic reuptake inhibition [76]. St John’s wort extracts have been shown to inhibit 

the uptake of serotonin (5-HT) [77], noradrenaline (NA) and dopamine (DA) and it 

has also been shown to have a potent affinity for the adenosine, serotonin 5-HT1, and 

benzodiazepine and γ-aminobutyric acid (GABA) receptors as well as weakly 

inhibiting monoamine oxidase [78].  
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Table 1-2. The main constituents of St John’s wort and possible 

pharmacological activity [74-76]. 

Constituent and percentage of composition Possible action 

Anthraquinone derivatives (naphthodianthrones): 

Hypericin and pseudohypericin (0.1 – 0.15%) and 

isohypericin; 

Protohypericin and protopseudohypericin 

(biosynthetic precursors of hypericin and 

pseudohypericin, respectively); 

cyclopseudohypericin 

Affinity for σ-opioid 

receptors 

Flavonoids 

Flavonols (2-5%) (eg. kaempferol, quercetin); 

Flavones (eg. luteolin); 

Glycosides (eg. hyperoside (0.5-2%), isoquercitrin 

(0.3%), quercitrin (0.3%), rutin (0.3-1.6%)); 

Biflavonoids including biapigenin (a flavone) and 

amentoflavone (a isomeric to biapigenin derivative); 

Catechins (flavonoids often associated with condensed 

tannins) 

Inhibition of MAO-A 

Agonist at 

benzodiazepine and 

GABA receptor 

Prenylated phloroglucinols 

Hyperforin (2.0 – 4.5%) 

Adhyperforin (0.2 – 1.9%) 

Oxygenated analogues of hyperforin 

Affinity for GABA 

receptors 

Inhibition of uptake of 5-

HT, norepinephrine 

(NE), DA 

Tannins (8-9%) 

Proanthocyanidins (condensed type) 

Unknown 

Other phenols; Caffeic; Chlorogenic; p-coumaric; 

ferulic; ρ-hydroxybenzoic; Vanillic acids 

Unknown 

Volatile oils (0.05 – 0.9%) 

Methyl-2-octane (saturated hydrocarbon) 

Unknown 
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It has been reported that interleukin-6 could be affected by St John’s wort and that 

this might be related to the antidepressant activity of St John’s wort. Hyperforin is 

the constituent most likely to contribute to the St John’s wort antidepressant activity 

[79]. There have been no published reports suggesting that St John’s wort could 

affect platelet aggregation or the coagulation system. 

 

1.7.2 Pharmacokinetics of St John’s Wort Constituents 

Hyperforin 

Biber et al [80] investigated the oral bioavailability of hyperforin from hypericum 

extracts in rats and humans. After oral administration of 300 mg/kg St John’s wort 

extract (containing 5% hyperforin) to rats, the Cmax of hyperforin of 370 ng/ml were 

reached after 3 h, and the estimated half-life and apparent clearance were 6 h and 70 

ml/min/kg, respectively. In this study healthy volunteers received a film-coated tablet 

containing 300 mg St John’s wort extract, which is equivalent to a dose of 14.8 mg 

hyperforin. LC/MS/MS was used to measure the hyperforin concentration in the 

plasma. The hyperforin Cmax, tmax and half-life were estimated to be 150 ng/ml, 3.5 h 

and 9 h, respectively. Hyperforin pharmacokinetics were found to be linear up to a 

dose of 600 mg of the St John’s wort extract. Increasing the doses to 900 or 1200 mg 

of St John’s wort extract resulted in lower that expected Cmax and AUC. Multiple 

doses of St John’s wort were also used in the study and no accumulation of 

hyperforin in plasma was observed and the steady-state plasma concentrations of 

hyperforin were 100 ng/ml after 3 x 300 mg/day of the St John’s wort extract [80].  
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Hypericin and Pseudohypericin 

The single- and multiple-dose pharmacokinetics of the naphthodianthrones hypericin 

and pseudohypericin derived from St. John's wort (Hypericum perforatum, LI 160, 

Lichtwer Pharma GmbH, Berlin) were studied in 12 healthy male subjects. After a 

single oral dose of 300, 900 or 1800 mg of dried St John’s wort extract (equivalent to 

250, 750, or 1500 µg hypericin and 526, 1578, or 3156 µg pseudohypericin), the 

median maximal plasma concentrations were 1.5, 4.1, and 14.2 ng/ml for hypericin 

and 2.7, 11.7, and 30.6 ng/ml for pseudohypericin, respectively [81]. The elimination 

half-lives of hypericin ranged from 24.8 to 26.5 h, and varied from 16.3 to 36.0 h for 

pseudohypericin. Ranging between 2.0 to 2.6 h, the median lag-time of absorption 

was longer for hypericin when compared with pseudohypericin (0.3 to 1.1 h). The 

area under the plasma drug concentration-time curve (AUC) showed a non-linear 

increase with increasing dose; this effect was statistically significant for hypericin. 

During long-term dosing (3 x 300 mg/day) steady state was reached after 4 days. 

Mean maximal plasma concentrations during the steady-state dosing regimen were 

8.5 ng/ml for hypericin and 5.8 ng/ml for pseudohypericin, while mean trough 

concentrations were 5.3 ng/ml for hypericin and 3.7 ng/ml for pseudohypericin [81]. 

 

1.7.3 St John’s Wort Drug Interactions 

Numerous clinical trials have demonstrated that St John’s wort is an antidepressant 

indicated in patients with mild to moderate depression [82-84]. Recently, St John’s 

wort has been implicated in numerous herb-drug interactions [8]. In response to the 

suspected St John’s wort drug interactions, the Food and Drug Administration (FDA) 

published a Public Health Advisory announcement [85], stating that warnings need 
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to be added to the St John’s wort labelling. In Australia, the Therapeutic Goods 

Administration (TGA) highlighted potentially serious interactions between St John’s 

wort preparations and some prescribed medicines including warfarin [86]. But the 

suspected interaction between St John’s wort and warfarin has not been systemically 

investigated. Furthermore, conflicting results appear in the literature between in vitro 

and in vivo studies. St John’s wort drug interactions are reviewed in detail in the 

following sections. 

 

Alprazolam 

The benzodiazepine alprazolam is a substrate of CYP3A4 [87]. Markowitz et al [88] 

suggested that pre-treatment with St. John's wort (300 mg 3 times daily for three 

days) taken at recommended doses for depression is unlikely to affect alprazolam 

activity in healthy volunteers. The long-term use of St John’s wort can induce 

CYP3A4 as demonstrated in several studies [8]. The fact that no significant 

difference was found in this study [88] could be related to short term use of St John’s 

wort. 

 

Amitriptyline 

Several cytochrome P450 enzymes are involved in the metabolism of the tricyclic 

antidepressant amitriptyline including CYP2D6, CYP2C19 and CYP3A4 [89]. Johne 

et al [90] reported that plasma concentrations of amitriptyline, nortriptyline (a 

metabolite of amitriptyline) and other hydroxylated metabolites decreased when 
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amitriptyline was co-administrated with St John’s wort (900 mg daily for 14 days). 

Cumulative urinary excretion of amitriptyline and metabolites decreased to the same 

extent as plasma concentrations upon co-administration with St John’s wort based on 

a clinical trial in twelve patients[89]. Induction of cytochrome P-450 enzymes or 

drug transporters (P-glycoprotein) by St. John's wort extract may contribute to this 

pharmacokinetic interaction. 

 

Caffeine 

Two drug interaction studies [91, 92] have been reported with St John’s wort  and 

caffeine using different dose regimens; 1) 300 mg, 3 times daily for 28 days, 2) a 

single 900 mg oral dose and 300 mg, 3 times daily for 14 days based on clinical trials. 

No significant effect was observed on the activity of CYP1A2 using a probe-drug 

cocktail including caffeine [91, 92]. Caffeine is a substrate of CYP1A2 [93] and it 

was concluded that St John’s wort does not affect CYP1A2 activity. However the 

cocktail approach has several limitations. First, the substrates of CYPs are not 

directly relevant to a particular drug class. Second, it is important to use a validated 

cocktail where there is not drug-drug interaction in them. Furthermore, a cocktail 

approach is designed to study drug interaction mechanism in metabolism, which does 

not allow assessing pharmacokinetic mechanism (including absorption, distribution, 

metabolism and excretion) and pharmacodynamic mechanism.  
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Carbamazepine 

The anticonvulsant carbamazepine is a predominantly metabolised by CYP3A4 and 

partly by CYP2C8. Burstein et al [94] reported that treatment of eight healthy 

volunteers with St John's wort (300 mg 3 times daily for 14 days) did not induce the 

clearance of carbamazepine. Carbamazepine is subject to autoinduction so the 

authors suggested that St John’s wort might not be potent enough to alter an enzyme 

system that is already induced. 

 

Chlorzoxazone and Debrisoquine 

By using a probe-drug cocktail including chlorzoxazone and debrisoquine which are 

substrates for CYP2E1 [95] and CYP2D6 [96], respectively and measuring single-

time point phenotypic metabolic 6-hydroxychlorzoxazone/chlorzoxazone serum and 

debrisoquine urinary recovery ratios, Gurley et al [91] reported that St John’s wort 

(300 mg, 3 times daily for 28 days) did not significantly affect the activity of 

CYP2E1 and CYP2D6 suggesting that St John’s wort does not affect the metabolic 

activity of CYP2E1 and CYP2D6. 

 

Cyclosporin 

Numerous case reports of drug interactions between the immunosuppressant 

cyclosporin and St John’s wort have been identified including eight kidney transplant 

recipients, one heart transplant recipient and one liver transplant recipient [97-105]. 

In these cases cyclosporin blood concentrations were consistently documented to be 

subtherapeutic during co-administration with St John’s wort. One patient developed 
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acute rejection possibly due to low cyclosporin concentrations [97]. Another patient 

developed acute graft rejection due to low cyclosporin concentrations, after stopping 

treatment with St John's wort, cyclosporin blood levels remained within the 

therapeutic range and liver function recovered completely [102]. Dresser et al [106] 

reported that multiple doses of St John’s wort (300 mg 3 times daily for 12 days) 

increased the clearance of cyclosporin after an oral dose in 21 young healthy subjects. 

Furthermore, Bauer et al [107] reported that administration of a St John’s wort 

extract (600 mg once daily for 14 days) to renal transplant recipients resulted in a 

rapid and significant reduction of blood cyclosporin concentrations. Cyclosporin is a 

substrate for the CYP3A4 isoenzyme and P-glycoprotein [108, 109], so the induction 

of both CYP3A4 and P-glycoprotein by constituents of St John’s wort may act to 

reduce the blood concentration of cyclosporin to subtherapeutic levels. This can lead 

to clinically significant consequences such as the rejection of a transplanted organ. 

 

Dextromethorphan 

Several drug interaction studies have been performed using the cough suppressant 

dextromethorphan as a substrate for CYP2D6 [110] in clinical trials. Roby et al [111] 

reported that St John’s wort (300 mg 3 times daily orally for 14 days) failed to elicit 

a statistically significant change in dextromethorphan – dextrorphan ratios in thirteen 

healthy volunteers. Markowitz et al [88] suggested that pre-treatment with St. John's 

wort (300 mg 3 times daily for 3 days) taken at recommended doses for depression is 

unlikely to effect CYP2D6 activity in seven healthy volunteers. Furthermore, Wang 

et al [92] reported that short-term (3×300 mg, a single oral dose) and long-term St 
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John's wort (300 mg 3 times daily for 12 days) had no significant effect on 

dextromethorphan pharmacokinetics (and by inference CYP2D6 activity) in twelve 

healthy subjects.  

 

Digoxin 

Digoxin, a cardiac inotropic agent, is a substrate for P-glycoprotein [112]. In one 

case report, Cheng et al [113] reported a St John’s wort interaction with digoxin. 

Durr et al [114] provided evidence from a rat study where St John's wort extract was 

administered to rats over 14 days resulting in a 3.8-fold increase of intestinal P-

glycoprotein expression and a 2.5-fold increase in hepatic CYP3A2 expression using 

western blot analyses. In the clinical arm of this study, the administration of St John's 

wort extract (300 mg × 3 times) to eight healthy male volunteers for 14 days resulted 

in an 18% decrease of digoxin exposure after a single digoxin dose (0.5 mg), a 1.4- 

and 1.5-fold increase in expression of duodenal P-glycoprotein and CYP3A4, 

respectively [114]. These researchers showed a 1.4-fold increase in the functional 

activity of hepatic CYP3A4 using the 14C-erythromycin breath test. These results 

indicate that St John’s wort induces intestinal P-glycoprotein in rats and humans, 

hepatic CYP3A2 in rats, and intestinal and hepatic CYP3A4 in humans. In a separate 

study, Johne et al [115] investigated the pharmacokinetics of digoxin in a single-

blind, placebo-controlled parallel study. After the achievement of steady state for 

digoxin concentrations on day 5, 13 healthy volunteers received digoxin either with 

placebo or with St John’s wort (900 mg/d) for another 10 days. No statistically 

significant change was observed after the first dose of St John’s wort extract; 
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however, 10 days of treatment with St John’s wort extract resulted in a significant 

decrease of digoxin AUC0-24 by 25%.  

 

Fexofenadine 

Several drug interaction studies have been carried out using fexofenadine as a typical 

substrate for the drug transporter P-glycoprotein [116] in clinical trials. Dresser et al 

[106] reported that St John’s wort (300 mg, 3 times daily for 12 days) increased the 

clearance of fexofenadine after oral administration to 21 young healthy volunteers. In 

a study by Wang et al [117] fexofenadine (60 mg) was orally administered before a 

single dose of St John's wort (900 mg), and after 2 weeks of treatment with St John's 

wort (300 mg 3 times a day) to determine P-glycoprotein activity using a three-

period, open-label, fixed-schedule study design. A single dose of St John's wort 

significantly increased the maximum plasma concentration of fexofenadine by 45% 

and significantly decreased the apparent clearance by 20%, with no change in half-

life or renal clearance. Long-term administration of St John's wort did not cause a 

significant change in fexofenadine disposition relative to the control phase. 

Compared with the single-dose treatment phase, long-term St John's wort caused a 

significant 35% decrease in maximum plasma concentration and a significant 47% 

increase in fexofenadine apparent clearance [117]. These results therefore suggest 

that single dose of St John’s wort is an inhibitor of P-glycoprotein activity but is an 

inducer of P-glycoprotein activity after long-term use (two weeks). 
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Indinavir and Nevirapine  

Drug interactions between antiretroviral agents and St John’s wort have been 

identified in several case reports. St John’s wort was found to lower nevirapine, Non-

nucleoside Reverse Transcriptase Inhibitors (NNRTIs) or indinavir concentrations in 

people with human immunodeficiency virus (HIV) who were co-administered St 

John’s wort [118-121].  In vivo studies in humans have shown that nevirapine is 

extensively biotransformed via cytochrome P450 metabolism to several hydroxylated 

metabolites. In vitro studies with human liver microsomes suggested that oxidative 

metabolism of nevirapine is mediated primarily by isoenzymes from the CYP3A 

family, although other isoenzymes may have a secondary role [8, 122]. Furthermore, 

in a clinical trial in sixteen healthy volunteers, St John's wort significantly reduced 

the AUC of the HIV-1 protease inhibitor indinavir by a mean of 57% and decreased 

the extrapolated 8 h indinavir trough concentration by 81% [123]. 

 

Irinotecan 

Mathijssen et al [124] reported the effect of St John’s wort on the metabolism of 

irinotecan, a pro-drug of SN-38 and a known substrate for CYP3A4, in 5 cancer 

patients treated with intravenous irinotecan in both the presence and absence of St 

John’s wort (900 mg daily, orally for 18 days) in an unblinded, randomized crossover 

study design. The plasma concentrations of the active metabolite SN-38 decreased by 

42% following St John’s wort treatment. The degree of myelosuppression was 

substantially worse in the absence of St John’s wort. 
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Midazolam 

Several drug interaction studies with St John’s wort have been reported using the 

sedative hypnotic midazolam as a typical substrate for CYP3A4 [125, 126]. Dresser 

et al [106] reported that St John’s wort (300 mg, 3 times daily for 12 days) increased 

the clearance of midazolam after oral and intravenous administration in 21 young 

healthy volunteers. Furthermore, Gurley et al [91] reported that St John’s wort (300 

mg, 3 times daily for 28 days) significantly induced the activity of CYP3A4 using a 

probe-drug cocktail including midazolam by measuring single-time point phenotypic 

metabolic ratios. Interestingly, Wang et al [92] reported that short-term 

administration of St John's wort (a single 3×300 mg oral dose) had no effect on CYP 

activities but longer-term St John's wort (300 mg, 3 times daily for 14 days) 

administration caused a significant increase in the apparent clearance of midazolam 

using both oral midazolam (to study intestinal wall and hepatic CYP3A) and 

intravenous midazolam (to investigate hepatic CYP3A) in 12 healthy subjects.  

 

Pravastatin and Simvastatin  

The effects of St John's wort on the pharmacokinetics of the lipid lowing drugs 

simvastatin and pravastatin were investigated by Sugimoto et al [127]. St John's wort 

capsule (300 mg, three times a day for 14 days) was taken by sixteen healthy male 

subjects (n = 8 in group 1 and n = 8 in group 2) in a double blind, crossover study. 

On day 14, a single oral dose of simvastatin (10 mg) and pravastatin (20 mg) was 

given to subjects in group 1 and group 2, respectively. Plasma concentrations of 

simvastatin and simvastatin hydroxyl acid, an active metabolite, were significantly 
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reduced by coadministration with St John’s wort while plasma concentrations of 

pravastatin were not affected. Simvastatin is metabolized by CYP3A4 in the 

intestinal wall and liver. No significant differences were observed in the elimination 

half-life of simvastatin or pravastatin. The results of this study suggest that the 

interaction is caused by the enhancement of the CYP3A4-mediated first-pass 

metabolism of simvastatin in the small intestine and liver. The lack of an interaction 

with pravastatin is probably because the major metabolites of pravastatin are 

produced by chemical degradation in the stomach rather than by cytochrome P450-

dependent metabolism in the liver and is mainly excreted into urine and bile [128].  

 

Theophylline 

The bronchodilator theophylline is a substrate for CYP1A2 [129]. Nebel et al [130] 

reported the potential metabolic induction of theophylline by coadministration of St 

John’s wort based on a case report. In an in vitro study, Karyekar et al [131] reported 

that St John’s wort increased the expression of CYP1A2 in LS180 cells in a 

concentration dependent manner. The induction was time-dependent, since enzyme 

levels returned to baseline within 4-8 hours after removal of St John’s wort 

constituents. This induction may be responsible for the observation of reduced 

plasma theophylline concentrations during co-administration of St John’s wort [8, 

131]. But this finding is in contrast with the results of an in vivo study using caffeine 

as typical substrate for CYP1A2 [91, 92]. 
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Tolbutamide 

Tolbutamide is a substrate of CYP2C9 [132]. Wang et al [92] reported that short-

term administration of St John's wort (3×300 mg, a single oral dose) and long-term 

St John's wort (300 mg 3 times daily for 12 days) administration in twelve healthy 

subjects did not significantly affect tolbutamide pharmacokinetics.  

 

Warfarin 

Potential St John’s wort interactions with warfarin have been reported in the 

literature. There are a number of case reports suggesting that co-administration of St 

John’s wort decreases the effects of warfarin [8]. The Medical Products Agency 

(MPA, Sweden) has received seven case reports of a reduced anticoagulant effect 

and decreased INR of warfarin associated with co-administration of St John’s wort 

[75].   Similarly, over the period October 1992 to September 2000, the United 

Kingdom (UK) Committee on Safety of Medicines and the Medicines Control 

Agency received 35 reports of suspected interactions between St John’s wort and 

conventional medicines of which four were related to potential interactions with 

warfarin [74], two reported an increase in INR and two cases reported a decrease in 

INR. However no systematic investigation of the clinical significance and possible 

mechanism of a St John’s wort interaction with warfarin have been reported. 

 

Oral contraceptives 

Oral contraceptive steroids are metabolised by cytochrome P450 [8]. Two drug 

interactions with St John’s wort have been identified based on case reports. Schwarz 
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et al [133] reported an unwanted pregnancy upon self-medication  with St John’s 

wort despite hormonal contraception while Ratz et al [134] reported a case of 

irregular bleeding upon co-administration of  St John’s wort and oral contraceptives. 

While these cases are suggestive of herb-drug interaction, two recent controlled 

clinical trials have provided more definitive information. 

 

Hall et al [135] reported that coadministration with St John's wort was associated 

with a significant increase in the apparent clearance of norethindrone and a 

significant reduction in the half-life of ethinyloestradiol.  The study was conducted in 

twelve healthy premenopausal women who had been using oral contraception for 3 

months as a combination oral contraceptive pill containing ethinyloestradiol and 

norethindrone for 3 consecutive 28-day menstrual cycles. The participants were 

administered St John's wort (300 mg, 3 times a day) during the second and third 

cycles. The serum concentrations of ethinylestradiol (day 7), norethindrone (day 7), 

follicle-stimulating hormone (days 12-16), luteinizing hormone (days 12-16), 

progesterone (day 21), and intravenous and oral midazolam (CYP3A4) (days 22 and 

23) were measured. The incidence of breakthrough bleeding was quantified during 

the first and third cycles. The apparent oral clearance of midazolam was significantly 

increased during St John's wort administration, but the systemic clearance of 

midazolam was unchanged. Serum concentrations of follicle-stimulating hormone, 

luteinizing hormone, and progesterone were not significantly altered by St John's 

wort treatment. Breakthrough bleeding occurred in 2 of 12 women in the control 

phase compared with 7 of 12 women in the St John's wort phase. Induction of 

ethinyloestradiol and norethindrone metabolism caused by St John’s wort was 
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consistent with increased CYP3A activity, which was demonstrated by using 

midazolam as a probe for this drug metabolism enzyme. In another study, Pfrunder et 

al [136] investigated the interaction between an oral contraceptive and St John’s wort 

using eighteen healthy females treated with a low-dose oral contraceptive (0.02 mg 

ethinyloestradiol, 0.150 mg desogestrel) alone or combined with St John's wort 

extract (300 mg, twice daily or three times daily). Ovarian activity was assessed by 

measuring follicle maturation and serum concentrations of oestradiol and 

progesterone. During co-administration of low-dose oral contraceptive and St John's 

wort, there was no evidence of ovulation and no significant change in follicle 

maturation or serum sex hormone concentrations. However, significantly more 

subjects reported intracyclic bleeding during combined treatment with St John's wort 

extract (300 mg, twice daily) (13/17) and coadministration with St John's wort 

extract (300 mg, three times daily) (15/17) than with oral contraceptives alone (6/17). 

The Cmax and AUC0-24 of ethinyloestradiol were not changed during and study cycle, 

whereas the AUC0-24 and Cmax of 3-ketodesogestrel decreased significantly during 

administration of both St John's wort extract regimens. These data strongly suggest 

the potential for a serious interaction between oral contraceptives and St John’s wort. 

 

Others Drugs 

One in vitro study demonstrated that St. John's wort constituents (hyperforin and 

quercetin) significantly inhibited the metabolic activity of CYP1A2 (hyperforin IC50: 

3.87 µM; quercetin IC50: 11.6 µM), CYP2C9 (hyperforin IC50: 0.01 µM; quercetin 

IC50: 3.14 µM), CYP2C19 (hyperforin IC50: 0.02 µM; quercetin IC50: 6.13 µM) 
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CYP2D6 (hyperforin IC50: 12.03 µM; quercetin IC50: 21.0 µM)and CYP3A4 

(hyperforin IC50: 4.2 µM; quercetin IC50: 19.52 µM) by analysing the conversion of 

specific surrogate substrates measured fluorometrically in a 96-well plate format 

[137]. Roby et al [138] reported that treatment with St John's wort (300 mg 3 times a 

day for 14 days) resulted in significant increases in the urinary 6-beta-

hydroxycortisol/cortisol (a phenotype indicator of CYP3A4) ratio using healthy 

volunteers. In an in vitro study, Obach et al [139] reported that crude extracts of St 

John’s wort demonstrated inhibition of each of the five isoenzymes CYP2D6, 

CYP2C9, CYP3A4, CYP1A2 and CYP2C19. The three former enzymes were more 

sensitive than the two latter enzymes to inhibition by St John’s wort crude extracts. 

The flavonoid compound I3, II8-biapigenin of St John’s wort was shown to be a 

potent, competitive inhibitor of CYP3A4, CYP2C9 and CYP1A2 activities [139]. 

Hyperforin was a potent non-competitive inhibitor of CYP2D6 activity and 

competitive inhibitor of CYP2C9 and CYP3A4 activities. Hypericin also 

demonstrated potent inhibition of several CYP activities. Budzinski et al [140] 

reported that St. John's wort has demonstrated in vitro CYP3A4 inhibitory capability 

by means of a fluorometric microtitre plate assay.  Furohyperforin, a mono-oxidized 

hyperforin isolated from St John’s wort (MW 552, IC50 4.49 µM) was reported to be 

less potent as an inhibitor compared to other hyperforin analogues (IC50 0.072 – 0.2 

µM). The hyperforin analogues with MW 588 (IC50 0.072 µM) and MW 522 (IC50 

0.079 µM) were the most potent inhibitors of CYP3A4 [141] using a fluorometric 

method to measure the fluorescence of the substrate metabolite fluorescein. These in 

vitro data suggesting that St John’s wort and its constituents are inhibitors of drug 
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metabolising enzymes is in striking contrast to in vivo data, which implicate long 

term St John’s wort administration as an inducer of drug metabolism. 

 

Enzyme Expression  

Several in vitro studies have been performed to determine the effect of St John’s 

wort on drug metabolising enzyme and transporter expression. In one in vitro study, 

Perloff et al [142] exposed LS-180 intestinal carcinoma cells to St John’s wort 

extract for 3 days. P-glycoprotein expression was strongly induced after exposure to 

St John’s wort extract in a concentration-dependent manner. In Caco-2 cell 

monolayers, St John’s wort significantly induced P-glycoprotein expression at 

clinically relevant concentrations of its constituents. As previously discussed, the in 

vivo study by Durr et al [114] demonstrated that St John's wort extract induced 

hepatic CYP3A2 in rats, and intestinal and hepatic CYP3A4 in humans. In a clinical 

trial using healthy volunteers who were randomized to receive either St John’s wort 

(600 mg three times daily) for 16 days (in 15 subjects) or placebo (in 7 subjects), 

Hennessy et al [143] reported that St John’s wort extract increased expression and 

enhanced the drug efflux function of the multi drug transporters P-glycoprotein in 

peripheral blood lymphocytes.  

 

In summary, long-term use of St John’s wort extract in human subjects induces the 

activity of CYP3A4 and P-glycoprotein but the available evidence suggests that the 

herb has less of an effect on CYP1A2, 2E1, 2D6 and 2C9. Furthermore, conflicting 

results were found between in vivo and in vitro studies. The role of individual 
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constituents of St John’s wort in herb-drug interactions has not been conclusively 

investigated in vivo. 

 

1.8 Panax Ginseng  

In this thesis the term ginseng, also called Korean ginseng, refers to the whole or cut 

dried root of Panax ginseng. Ginseng contains not less than 0.40% of combined 

ginsenosides Rg1 (C42H72O14, 2H2O, = 837) and Rb1 (C54H92O23, 3H2O, = 1163), 

calculated with reference to the dried herb [144]. Ginseng has been used in 

Traditional Chinese Medicines to enhance stamina and capacity to cope with fatigue 

and physical stress [145]. Numerous constituents, pharmacological activities and 

drug interactions of ginseng have been reported in the literature [146-148]. 

 

1.8.1 Chemistry and Pharmacology 

The chemistry and pharmacology of ginseng constituents have been reviewed by 

Gillis et al [145] and Attele et al [147]. Ginseng typically contains panaxadiols 

including ginsenoside Rb1 (0.38%), Rb2 (0.13%), Rc (0.19%), Rd (0.04%), Rg3, 

Rh2 and Rh3, panaxatriols including ginsenoside Re (0.15%), Rf (0.09%), Rg1 

(0.38%), Rg2 (0.02%) and Rh1, and oleanic acid including ginsenoside Ro. Most of 

the pharmacological actions of ginseng are attributed to the ginsenosides [147].  

However, more than twenty ginsenosides have been isolated. Some major 

pharmacological effects are summarised in the following sections.  
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Ginseng has been claimed to have both stimulatory and inhibitory effects on the 

central nervous system (CNS) including memory, learning and behaviour [149] and 

may modulate neurotransmission. Ginsenosides Rb1 and Rg1 are thought to play a 

major role in the effects of ginseng on the CNS [150, 151]. Several ginsenosides 

show direct cytotoxic and growth inhibitory effects against tumour cells in vitro via 

different mechanisms [152, 153]. Other studies have shown ginseng to induce 

differentiation as well as to inhibit metastasis [154, 155] based on in vitro and animal 

studies. Furthermore, ginseng and individual ginsenosides have demonstrated effects 

on cardiovascular physiology by a mechanism involving nitric oxide [145]. 

 

Numerous in vitro and in vivo studies have been performed on the effect of ginseng 

constituents on platelet aggregation and coagulation. One in vitro study in humans by 

Park et al [156] reported that the non-saponin fraction from the roots of ginseng 

inhibited the aggregation of human platelets induced by thrombin in a dose-

dependent manner by regulating the levels of cGMP and thromboxane A2 (TXA2). 

Teng et al [157] reported that panaxynol markedly inhibited the aggregation induced 

by collagen, arachidonic acid, adenosine diphosphate (ADP), ionophore A23187, 

platelet activating factor (PAF) and thrombin  of washed platelets while ginsenosides 

had no significant effect on the aggregation. Even so, ginsenoside Ro (1 mg/ml) did 

inhibit the ATP release from platelets. Kimura et al [158] reported that among six 

saponins tested; only ginsenoside Rg1 inhibited adrenaline- and thrombin-induced 

platelet aggregation and serotonin release in a dose-dependent manner. Park et al 

[159] reported that the lipophilic fraction from ginseng increased cGMP directly and 

cAMP indirectly and thus inhibited thrombin- or collagen-induced platelet 
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aggregation in one in vitro rat study. In another in vitro study using rabbit platelet, 

Kuo et al [160] reported that panaxynol and ginsenosides Ro, Rg1, and Rg2 were 

found to be the main antiplatelet components. In addition, panaxynol inhibited the 

aggregation, release reaction, and thromboxane formation in rabbit platelets while 

ginsenosides Ro, Rg1, and Rg2 suppressed the release reaction only. In one in vitro 

study, Yun et al [161] reported using a platelet aggregation assay with human 

platelet rich plasma, Korean red ginseng significantly inhibited thrombin (IC50 >2 

mg/ml), ADP (IC50, 0.72 mg/ml), or collagen (IC50, 0.32 mg/ml) induced platelet 

aggregation. Furthermore, in a study conducted in rats [159], both the prothrombin 

time and activated partial thromboplastin time (APTT) were prolonged in vivo by the 

action of the lipophilic fraction (25 mg) from ginseng on rat platelet aggregation 

induced by collagen or thrombin. Blood coagulation and cGMP levels were also 

significantly increased.  

 

1.8.2 Pharmacokinetics of Ginseng Constituents 

Few pharmacokinetic studies of the constituents of ginseng have been reported in 

human subjects. Cui et al [162] determined that approximately 1.2% of the oral dose 

of protopanaxatriol ginsenosides (3 mg) and smaller amounts of the protopanaxadiol 

ginsenosides not exceeding 0.2% of the administered dose (7 mg) were recovered in 

urine over five days after a single dose of ginseng to healthy subjects. However, 

Shibata et al [163] reported that neither the individual ginsenosides nor their 

metabolites could be identified except compound-K, which is the main intestinal 

bacterial metabolite of protopanaxadiol ginsenosides, was identified in human serum 

using a specific enzyme immunoassay 8 h after oral administration of ginseng. Panax 
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notoginseng is different with Panax ginseng but it also contains ginsenoside Rb1 and 

Rg1.  Very low bioavailability of ginsenoside Rb1 and ginsenoside Rg1 were found 

by Xu et al [164] after Panax notoginseng was administered to rats and serum 

samples were measured using an established HPLC method to quantitate ginsenoside 

Rb1 and Rg1. The decline in the concentrations of Rb1 in serum was described by a 

two-compartment pharmacokinetic model. The distribution half-life was reported as 

23.4 min and the elimination half-life was 18.0 h. Ginsenoside Rb1 was absorbed 

from the gastrointestinal tract and the absolute bioavailability after oral 

administration was estimated to be only 4.35%. The pharmacokinetics of Rg1 in rats 

also was described by a two-compartment model with distribution and elimination 

half-lives were 24.23 and 14.13 h, respectively. Ginsenoside Rg1 was absorbed in 

the gastrointestinal tract and the oral bioavailability was estimated to be 18.4% [164].  

 

1.8.3 Ginseng Drug Interactions 

Ginseng has been used for thousands years and was listed in the top five selling 

herbal products for 2002 [165]. It could be expected that co-administration of 

ginseng with other conventional medicines is likely to be very high. However, 

relatively little information regarding herb-drug interactions with ginseng can be 

found in the literature. The available data are summarised in the following section. 

This thesis will focus on ginseng (Panax ginseng) which is different to Siberian 

ginseng (Eleuthroccus senticosus) containing eleutherosides B and eleutherosides E 

[166] and Panax notoginseng containing ginsenoside Rb1 and Rg1 [164]. 
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Caffeine, Chlorzoxazone, Debrisoquine and Midazolam 

Gurley et al [91] reported that administration of ginseng had no significant effect on 

CYP3A4, CYP1A2, CYP2E1, and CYP2D6 activity in twelve healthy volunteers 

who were randomly assigned to receive either ginseng or other herbal medicines for 

28 days with a 30-day washout period between each treatment phase. A cocktail of 

probe drugs including midazolam (CYP3A4), caffeine (CYP1A2), chlorzoxazone 

(CYP2E1), and debrisoquin (CYP2D6) were administered before ginseng (baseline) 

and after ginseng pre-treatment. To determine the relative metabolic activity of 

CYP3A4, CYP1A2, CYP2E1, and CYP2D6, metabolic ratios including 1-

hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine 

serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios 

(2-hour sample), and debrisoquine urinary recovery ratios (8-hour collection) were 

used to compare with or without coadministration, respectively [91].  

 

Warfarin 

In a case report, a 47-year-old man had received anticoagulation therapy with 

warfarin since 1990 to prevent embolic events. The dosage of warfarin and INR had 

been stabilised for past nine months. The patient’s INR was 3.1 four weeks before 

co-ingestion of ginseng. Two weeks after the patient started taking ginseng, his INR 

declined to 1.5. Ginseng was discontinued, and the INR returned to 3.3 in two weeks 

[167]. However, in an animal study, Zhu et al [168] reported that there was no 

significant impact of ginseng on the pharmacokinetics or pharmacodynamics of 

warfarin  using either single or multiple doses administration in male rats. Despite 

these conflicting observations, the possible effects of ginseng’s constituents on 
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platelet aggregation still provides the possibility of a pharmacodynamic interaction 

with warfarin in humans. 

 

Other Drugs 

Based on in vitro experiments that investigated the catalytic activity of c-DNA 

expressed cytochrome P450 isoforms, Henderson et al [169] reported that the 

ginsenosides including Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 and eleutherosides 

including B and E are not likely to inhibit the metabolism of coadministered 

medications in which the primary route of elimination is via cytochrome P450 

including CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Increasing 

concentrations of these ginsenosides and eleutherosides were incubated with a panel 

of recombinant human CYP isoforms and their effects on the conversion of specific 

surrogate substrates were measured fluorometrically in a 96-well plate format. In a 

clinical trial, Anderson et al [165] reported that administration of ginseng (100 mg 

standardized to 4% ginsenosides, two times a day for 14 days) did not significantly 

alter the urinary 6-β-hydroxy-cortisol/cortisol ratio, leading to the suggestion that  

ginseng does not affect CYP3A4. Kim et al [170] reported that the standardized 

saponin of red ginseng showed inhibitory effects on CYP450-associated 

monooxygenase activities in a dose-dependent manner. These in vitro studies found 

that p-nitrophenol hydroxylase activity, which has been shown to represent the CCl4-

activating CYP450 2E1 enzyme, was inhibited. Chang et al [171] reported on CYP1 

catalytic activity as assessed by 7-ethoxyresorufin O-dealkylation. The ginsenosides 

Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1, either individually or as a mixture and at the 

levels reflecting those expected in vivo did not influence CYP1 activities. However, 
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at a higher ginsenoside concentration (50 mg/ml), Rb1, Rb2, Rc, Rd, and Rf 

inhibited the enzyme’s activity. 

 

In summary, no significant ginseng-drug interactions have been demonstrated in the 

literature by in vivo or in vitro studies in therapeutic range of concentrations of 

ginseng constituents. Furthermore, the poor bioavailability of ginseng constituents 

ginsenoside Rb1 and Rg1 following administration of ginseng casts doubt on 

potential interactions in vivo (See Section 1.8.2).  

 

1.9 Ginkgo Biloba 

Ginkgo is the dried leaf of Ginkgo biloba. It is generally collected in autumn when 

leaves are green and leaves are dried immediately. Ginkgo biloba contains not less 

than 0.40% of total amount of flavonol glycosides, calculated on the dry basis [172]. 

 

1.9.1 Chemistry and Pharmacology 

The constituents of primary interest in ginkgo (Ginkgo biloba L.) leaf are terpenoid 

compounds including ginkgolides (ginkgolides A, B, C, J and M), bilobalide and 

phenolic compounds including flavonoids (flavones, biflavones, flavonols, tannins 

and associated glycosides) [173]. The standardised leaf extract is prepared by a multi 

step purification process to a 35 - 67:1 (average 50:1) ratio of dried leaves to final 

concentrated extract. The extract is standardised to contain 22-27% flavonol 

glycosides (determined as quercetin, kaemferol and isorhemnetin usually determined 

by HPLC and calculated as quercetin and kaemferol glycosides with molar masses of 
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756.7 and 740.7, respectively), 5%-7% terpene lactones consisting of approximately 

2.8-3.4% ginkgolides A, B and C and approximately 2.6-3.2% bilobalide; and below 

5 ppm ginkgolic acids. The ginkgo leaf extract of the EGb 761 is standardised to 

contain 24% flavonol glycosides and 6% terpene lactones [73]. 

 

Ginkgo has been claimed to have various pharmacological actions which have been 

reviewed in several articles [174-177]. Ginkgo has been reported to have effects on 

the cardiovascular and circulatory systems [178], peripheral vascular system [179], 

neurological, psychological and behavioural function [180], immune system [181], 

and the metabolic and nutritional systems [173].  

 

The effects of ginkgo on thrombosis, hemostasis and embolism have also been 

reported [173]. These effects provide the suggestion of a potential pharmacodynamic 

interaction with warfarin. However, conflicting results have been observed in the 

literature regarding the effect of ginkgo on clotting status. Several in vitro studies 

have demonstrated that ginkgo extract or ginkgolides A, B and C can inhibit platelet 

PAF rather than ADP or arachidonic acid induced platelet aggregation [182-185]. 

Furthermore, in clinical trials, collagen-induced platelet aggregation was inhibited 

after an intravenous infusion of a ginkgo extract in 24 patients suffering from 

arteriosclerotic disorders [186]. In another study, ginkgo extract significantly reduced 

collagen but not PAF-mediated platelet aggregation in healthy volunteers and Type 2 

diabetic subjects in a clinical trial in which 120 mg of standardised extract was 

ingested for 3 months [187]. Reports that ginkgo does not affect clotting status have 

also been reported. An in vitro study found that up to 0.2 mg/ml of ginkgo extract did 
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not inhibit ADP and collagen-induced aggregation of rat platelets [188]. In another 

prospective, double blind, randomised, placebo-controlled study in 32 young male 

healthy volunteers; ginkgo extract (EGb761) did not alter any haematological marker 

using three doses of ginkgo extracts 120, 240 and 480 mg/day for 14 days [189]. In 

this study, primary haemostasis was assessed by both the bleeding time measured by 

the 3-point Ivy-Neison technique and a direct quantitative measurement of blood loss 

according to the Bernal-Hoyos methods. The interaction between platelets and 

coagulation was assessed using the thrombin generation test in platelet rich plasma. 

Several methods were used to assess platelet function including (i) by platelet 

aggregation in citrated platelet rich plasma, induced by three different agonists: 

adenosine diphosphate (2.5 µM), thrombin receptor agonist peptide (25 µM) and 

collagen (1.25 µg/ml); (ii) by quantification of platelet membrane glycoproteins and 

(iii) by measurement of procoagulant activity assessed by annexin fixation on the 

platelet membrane [189].    

 

1.9.2 Pharmacokinetics of Ginkgo Constituents 

Ginkgolide A, B, C and bilobalide 

Drago et al [190] reported that a dose of Gingko biloba extract (40 mg twice daily 

for 7 days) was accompanied by a significantly longer half-life of  ginkgolide B (t1/2 

= 11.64 ± 5.2 h) than gingko biloba extract (a single 80 mg dose daily for 7 days) (t1/2 

= 4.31 ± 0.49 h), even though the latter caused a higher peak concentration of 

ginkgolide B. The tmax of ginkgolide B was 2.3 h after administration in two different 

dosage regimens for orally administered Gingko biloba extract using twelve healthy 

volunteers randomly assigned to different treatment groups with a 21 day washout 
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period. Fourtillan et al [191] reported that after oral administration of 120 mg EGb 

761 containing ginkgolide A (1.44 mg), ginkgolide B (1.03 mg) and bilobalide (3.36 

mg) to twelve healthy volunteers, the mean absolute bioavailability was 80%, 88% 

and 79% for ginkgolide A, B and bilobalide, respectively, while ginkgolide C was 

not bioavailable. A significant amount of the given dose was excreted unchanged in 

urine [191]: ginkgolide A (72.3%), ginkgolide B (41.4%) and bilobalide (31.2%) 

after oral administration. The t1/2 was 4.5, 10.6 and 3.2 h for ginkgolide A, B and 

bilobalide, respectively. The volumes of distribution were 36.9 L for ginkgolide A 

and 53.6 L for ginkgolide B. There was no relevant influence of food on the 

pharmacokinetics of ginkgolide A, B and bilobalide (Table 1-3). The 

pharmacokinetics of these ginkgo constituents were found to be linear over the dose 

range of 80 to 240 mg of EGb 761. The clearances in elderly people were lower (7.1 

vs. 10.1 L/h for ginkgolide A, 8.4 vs. 9.7 L/h for ginkgolide B, 20.1 vs. 52.2 L/h for 

bilobalide) when compared with young volunteers [191]. 

Table 1-3. Pharmacokinetic parameters of ginkgolide A, B and bilobalide after 

oral administration of 120 mg EGb 761 under fasted and fed conditions (Data 

extracted from [192]). 

 Cmax 

(ng/ml) 

tmax (h) AUC 

(ng.h/ml) 

F (%) fe(%) t1/2 (h) CL (L/h) 

Fasting 

Ginkgolide A 

Ginkgolide B 

Bilobalide 

 

33.3 ± 9.1 

16.5 ± 5.0 

18.1 ± 8.8 

 

1.1 ± 0.7 

1.2 ± 0.7 

1.2 ± 0.8 

 

146.4 ± 21.5 

109.9 ± 20.6 

79.0 ± 39.0 

 

0.8 ± 0.1 

0.9 ± 0.2 

0.8 ± 0.3 

 

72.3 ± 12.3 

41.4 ± 12.9 

31.2 ± 10.1 

 

4.5 ± 1.6 

10.6 ± 3.6 

3.2 ± 0.6 

 

10.1 ± 1.6 

9.7 ± 2.2 

52.2 ± 26.2 

After breakfast 

Ginkgolide A 

Ginkgolide B 

Bilobalide 

 

21.1 ± 4.3 

11.5 ± 2.6 

11.8 ± 6.7 

 

2.0 ± 0.5 

2.5 ± 0.6 

2.9 ± 1.4 

 

159.4 ± 52.5 

112.3 ± 37.4 

77.0 ± 33.0 

 

0.9 ± 0.2 

0.9 ± 0.2 

0.8 ± 0.3 

 

58.4 ± 12.3 

40.0 ± 8.0 

14.2 ± 12.2 

 

4.0 ± 0.6 

9.5 ± 3.2 

4.3 ± 2.1 

 

9.7 ± 2.4 

9.9 ± 2.6 

50.0 ± 17.8 
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1.9.3 Ginkgo Drug Interactions 

Ginkgo has been widely used in many countries with the claims that it assists 

peripheral circulation and improves memory and cognitive function [173]. A review 

of ginkgo-drug interactions is presented in the following section. 

 

Caffeine, Chlorzoxazone, Debrisoquine and Midazolam 

Gurley et al [91] found no significant effect on CYP3A4, CYP1A2, CYP2E1, and 

CYP2D6 metabolic activity in twelve healthy volunteers who were randomly 

assigned to receive either ginkgo or other herbal medicines for 28 days with a 30-day 

washout period between each treatment phase. In this study, a cocktail of probe drugs 

including midazolam (CYP3A4), caffeine (CYP1A2), chlorzoxazone (CYP2E1), and 

debrisoquine (CYP2D6) was administered before ginkgo and after pre-treatment with 

ginkgo to determine the relative metabolic actability of these enzymes. However, this 

study using the cocktail approach is not directly relevant to a particular drug class 

and pharmacodynamic interactions remain unknown. 

 

Digoxin 

An open-labeled, randomized, crossover trial was conducted in eight healthy human 

volunteers to investigate the potential interaction between ginkgo and digoxin.  In the 

first phase of this study, volunteers were randomly assigned to receive ginkgo (80 

mg, three times daily) for one week, then ingested a single dose of digoxin (0.5 mg) 

with ginkgo for another two days while other volunteers received digoxin alone. No 
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significant difference between treatments was observed with respect to digoxin 

pharmacokinetics [193]. 

 

Diltiazem  

In vitro and in vivo studies in rats by Ohnishi et al [194] reported that the addition of 

ginkgo to small intestinal and hepatic microsomes inhibited the formation of N-

demethyl diltiazem, an active metabolite of diltiazem produced by CYP3A, in a 

concentration-dependent manner. The pre-treatment significantly decreased the 

elimination rate constant (k) of diltiazem following intravenous administration of 

diltiazem. These results indicated that the concomitant use of Ginkgo biloba in rats 

increased the bioavailability of diltiazem by inhibiting both intestinal and hepatic 

metabolism, via inhibition of CYP3A [194]. However, data from animal may infer 

the potential interactions but are not possible to conclusively assess clinical 

significance in humans. 

 

Ibuprofen 

Meisel et al [195] described a case report of the fatal intracerebral mass bleeding 

associated with co-ingestion of Ginkgo biloba and the NSAID ibuprofen (600 mg 

daily) in a 71-year old patient who had been taking ginkgo (40 mg, twice daily) for at 

least 2 years and 6 months. The fatal intracerebral mass bleeding in this patient was 

suspected to be intensified due to the inhibition of the TXA2–dependent platelet 

aggregation conferred by ibuprofen and ginkgo.  However, uncontrolled 

observational study may overestimate the significance. 
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Nicardipine 

An in vivo study in rats by Shinozuka et al [196] reported that the feeding of ginkgo 

extracts to rodents  for 4 weeks significantly reduced the hypotensive effect of the 

calcium channel blocker nicardipine, which is reported to be metabolized by 

CYP3A2 in rats. But clinical significance remains unknown. 

 

Warfarin 

Engelsen et al [197] have conducted a randomised, double blind, placebo-controlled 

crossover clinical trial in twenty-four outpatients on stable, long-term warfarin 

treatment with two week wash out period. These researchers found that 

coadministration of ginkgo extract (100 mg daily for four weeks) did not influence 

the INR of warfarin. However, the effect of ginkgo on the pharmacokinetics of 

warfarin was not investigated in this study. 

 

Other Drugs 

Zou et al [137] reported that constituents of Ginkgo biloba (ginkgolic acids I and II 

rather than ginkgolide A, B and C), respectively, inhibited CYP1A2 (IC50 (µM): 4.81, 

4.88), 2C9 (IC50 (µM): 2.41, 1.94), 2C19 (IC50 (µM): 4.22, 4.41), 2D6 (IC50 (µM): 

10.42, 7.82) and 3A4 (IC50 (µM): 6.74, 6.25) metabolic activity of the cDNA human 

P450 isoforms  during in vitro experiments to measure their effects on the conversion 

of specific substrates measured fluorometrically in a 96-well plate format. The 

constituent bilobalide was found to inhibit the metabolic activity of CYP2D6 (IC50 

(µM): 11.23). However, isolated tissues or microsomes may not reflect in vivo 

response. 
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Enzyme Expression 

Several in vivo studies in rats have suggested that ginkgo extract is capable of 

inducing drug metabolism. Shinozuka et al [196] reported that male rats were fed 

either a control diet or diet containing ginkgo for 4 weeks. The ginkgo diet markedly 

induced levels of CYP2B1/2, CYP3A1 and CYP3A2 mRNA in the rodent liver. But 

the levels of CYP1A1, CYP1A2, CYP2E1, CYP2C11 and CYP4A1 were unchanged. 

Furthermore, Umegaki et al [188] reported that in rats, the concentration of CYPs 

and activity of various CYP enzymes in the rodent liver were increased in a dose- 

and time-dependent manner. The induction of CYP2B enzyme by ginkgo extract was 

confirmed by Western blot analysis [188].  

 

In summary, in vitro studies suggest ginkgo constituents inhibited enzyme activity of 

CYP3A whereas in vivo studies in animals suggest the herb is an inducer to CYP3A2, 

2B1/2 and 3A1. Data from a number of studies also suggests that ginkgo does not 

affect CYP3A4, CYP1A2, CYP2E1, CYP2D6, CYP2C9, CYP1A1, CYP 2C11 and 

CYP4A1. 

 

1.10 Ginger 

Ginger consists of the peeled, dried, whole or cut rhizome of Zingiber officinale, 

either completely or from the wide flat surfaces only. Whole or cut, ginger contains 

not less than 15 ml/kg of essential oil, calculated with reference to the dried herb 

[198]. Constituents, pharmacological activity and potential drug interactions have 

been reported for ginger [199, 200]. 



Chapter 1                                             Introduction                                                 57 

 

1.10.1 Chemistry and Pharmacology 

Ginger contains volatile oils (1-3%), and the main constituents of these oils are 

sesquiterpene hydrocarbons in which the most abundant are zingeberene (35%) and 

farnesene (10%). Pungent compounds are considered to be responsible for the 

biological effect of ginger [200]. The major constituents found among these are 

different types of gingerols (33%) which are a series of homologous compounds 

differentiated by the number of carbon atoms in their side-chain: 10, 12 and 14 

carbon atoms give rise to [6]-, [8]- and [10]-gingerols, respectively. The [6]-gingerol 

constituent is the most common. With prolonged storage of ginger, large amounts of 

[6], [8]- and [10]-shogaols are also found which are the dehydrated form of the 

gingerols [200] . 

 

Numerous pharmacological effects have been documented in the literature including 

gastrointestinal, cardiovascular, serotonin antagonistic effects [200]. The following 

section reviews the effect of ginger and its constituents on platelet aggregation and 

coagulation. 

 

A series of synthetic gingerols and related phenylalkanol analogues were found to 

inhibit arachidonic acid-induced platelet serotonin release and aggregation based on 

an in vitro study using human platelets [201]. Furthermore, it was found in in vitro 

studies that a significant effect of ginger extract was to inhibit platelet aggregation. 

Srivastava et al  [202-204] reported that ginger extract extracted using three organic 

solvents: n-hexane, chloroform and ethyl acetate reduced platelet thromboxane 
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formation from exogenous arachidonic acid and also inhibited platelet aggregation 

induced by arachidonic acid, epinephrine, ADP and collagen in a dose-dependent  

manner. Suekawa et al [205] reported that (6)-Shogaol, a pungent component of 

ginger, inhibited arachidonic acid - induced platelet aggregation in rabbits. In a 

clinical trial, 5 g of dry ginger in two divided doses with a fatty meal was reported to 

significantly inhibit the platelet aggregation induced by ADP and epinephrine in ten 

healthy male volunteers in whom platelet aggregation was enhanced by 100 g butter 

for 7 days while there was no significant alteration in platelet aggregation in the 

placebo control group (10 healthy male volunteers) [205]. In addition, using a single 

dose of 10 g powdered ginger, a significant reduction in platelet aggregation induced 

by ADP and epinephrine was observed in patients with coronary artery disease while 

no significant effect was found using a dose of 4 g daily for 3 months [206]. 

 

However, conflicting findings related to the effect of ginger constituents on platelet 

aggregation are found elsewhere in the literature. In animal studies, no significant 

effect on the coagulation parameters PT and APTT or on warfarin-induced changes 

in blood coagulation was found in rats using multiple 100 mg/kg doses of 

EV.EXT™33, which is a ginger extract of patented standardised ethanol extract of 

dry rhizomes of Zingiber officinale Roscoe [207]. Lumb et al [208] investigated the 

effects of 2 g dried ginger or placebo capsules on platelet function using eight 

healthy male volunteers in a randomised double blind study. Bleeding time, platelet 

count, thromboelastography and whole blood platelet aggregometry were measured 

before, 3 h, and 24 h after the capsules. There were no significant differences found 

between ginger and placebo [208].  
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1.10.2 Pharmacokinetics of Ginger Constituents 

After bolus intravenous administration of a 3 mg/kg dose of ginger extract in rats, the 

pharmacokinetics of [6]-gingerol were described by a two-compartment open 

pharmacokinetic model. [6]-Gingerol was rapidly cleared from plasma with a 

terminal elimination half-life of 7.2 min and a total body clearance of 16.8 ml/min/kg. 

Serum protein binding of [6]-gingerol was reported to be 92.4% [209]. There are no 

data describing the pharmacokinetics of ginger constituents in humans. 

 

1.10.3 Ginger Drug Interactions 

Ginger is a spice which is used daily in our society and with claims for aiding travel 

sickness and nausea relief [73]. The possibility of herb-drug interactions with ginger 

is expected in our community. The following sections provide a literature review of 

the available evidence supporting ginger – drug interactions. 

 

Paracetamol 

In a randomised double-blind crossover trial, ginger (1 g) or placebo was 

coadministered with paracetamol to 16 healthy volunteers. Gastric emptying and the 

absorption of paracetamol was not affected by co-ingestion with ginger [210]. 

 

Warfarin 

In studies conducted in rats, the effects of patented standardised ginger extract on 

blood coagulation were studied. It was found that ginger had no significant effect on 

warfarin-induced changes in blood coagulation, suggesting that this herb does not 
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interact with warfarin [207]. However, because of the possible effects of ginger’s 

constituents on platelet aggregation, the possibility of a pharmacodynamic 

interaction with warfarin in humans cannot be excluded. 

 

Enzyme Expression 

Banerjee et al [211] investigated the influence of certain essential oils including 

ginger oil on carcinogen-metabolizing enzymes and acid-soluble sulfhydryls in 

mouse liver and found ginger oil (10 µl/day for 14 days by gavage) did not 

significantly affect CYP levels.   

 

In summary, the available information suggests there is no conclusive evidence 

supporting pharmacokinetic drug interactions with ginger. However, ginger has been 

found to have a range of pharmacological effects including the inhibition of platelet 

aggregation based on several in vitro studies. The possible pharmacodynamic 

interaction with the anticoagulant drug warfarin remains to be clarified.  
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Chapter 2 General Methodology 

2.1 Clinical Study 

2.1.1 Overview of Warfarin Drug Interaction Clinical Trial Designs 

The anticoagulant drug warfarin remains one of the most frequently investigated 

drugs in interaction studies with new chemical entities [9]. This section presents a 

review of the literature of warfarin drug interaction studies with a focus on 

methodological aspects of clinical trial design and in particular on the dose 

administration to healthy volunteers.  

 

The source of data for this review was obtained from MEDLINE 1966 to 2003 

including articles listed under the search terms “warfarin” and “interactions”. Studies 

were limited to clinical trials involving humans. Articles were reviewed to examine 

the study design, dose of warfarin and all cases of subject withdrawal from drug 

interaction studies involving warfarin related adverse events. 

 

Table 2-1 summarises the outcome of the literature review. In this review there were 

58 papers identified describing 50 studies conducted in healthy volunteers and eight 

studies conducted in both male and female patients. The use of a single 25 mg dose 

of warfarin was the most widely used dose in warfarin drug interaction clinical trials 

involving healthy subjects. There were only eight reports of volunteer withdrawal 

due to warfarin side effects from the 58 studies, which represented a total of 704 

subjects. 
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Table 2-1. Summary of clinical study designs to assess warfarin-drug 

interactions. 

Aspect of Study design Total  References 

Papers 58 papers  

Studies using healthy subjects 50 papers (male, 670 

subjects; female, 34 subjects) 

 

Studies using patient subjects 8 papers (158 patients)  

Studies using multiple doses 26 papers (Dose adjusted 

according to the target INR) 

 

5 mg 1 paper [212] 

7.5 mg 1 paper [213] 

10 mg 1 paper [214] 

20 mg 1 paper [215] 

25 mg 16 papers [216-231] 

30 mg 7 papers [232-238]  

50 mg 1 paper [239] 

0.36 mg/kg 1 paper [240] 

0.75 mg/kg 1 paper [241] 

St
ud
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ng

 si
ng

le
 d

os
e 

: 3
1 
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1.5 mg/kg 1 paper [18] 

Number of volunteers 

withdrawn due to ADR to 

warfarin 

8 subjects  

Note: In one paper the dose of warfarin administered was unknown. 

ADR: Adverse drug reaction 
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Based on the data presented in this review, it can be concluded that it is safe and 

reasonable to study drug interactions of warfarin in healthy male volunteers taking a 

single oral dose of 25 mg of warfarin.  

 

2.1.2 Subjects  

The two clinical studies conducted as part of this research had an identical study 

design. Twenty-four healthy male subjects were recruited into the two separate 

studies (n=12 in each study). Subjects were non-smokers and selected based on the 

following subject inclusion and exclusion criteria. A post-hoc power calculation 

indicated that twelve subjects in a crossover study would provide an 80% chance of 

detecting a 20% difference in the AUC0-∞ of S-warfarin at the p=0.05 level of 

significance. All participants gave written informed consent before entering the study. 

The study was approved by both the St Vincent’s Hospital Research Ethics 

Committee and Human Ethics Committee of the University of Sydney. 

 

Subject Inclusion Criteria 

Subjects who fulfilled the following criteria were eligible for inclusion into this study: 

1. Subjects must be healthy male volunteers aged 18 to 50 years and within 15% 

of ideal body weight for height and build.  

2. Subjects must be in good health based on medical history, physical 

examination, and clinical laboratory test results including haematological test 

with a full differential blood count and haemostasis investigation (platelet 

aggregation and INR) and serum concentrations of creatinine, albumin, total 

bilirubin and total protein. 
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3. The current or past medical conditions of subjects must NOT be likely to 

significantly affect their pharmacokinetic or pharmacodynamic response to 

warfarin. 

4. Subjects must not have taken any medication for at least two weeks before 

commencing the study. 

5. The subjects must be willing and able to comply with the “Information for 

Participants”. 

 

Subject Exclusion Criteria 

The subjects who did not meet the subject inclusion criteria would not be eligible for 

inclusion into this study. 

1. Subject requesting cessation of treatment. 

2. Subjects with any current or past medical condition that might significantly 

affect their pharmacokinetic or pharmacodynamic response to warfarin were 

excluded from the study.  

3. Subject experiencing an adverse event that deemed to be sufficiently severe. 

The adverse event must be recorded. 

4. Subject that exhibits non-compliance with the protocol. 

5. INR of subject is greater than 4.5 (at which time medical management might 

warrant vitamin K administration). 

 

2.1.3 Warfarin and Herbal Medicine Products 

Coumadin™ (Warfarin sodium, Boots Healthcare Australia Pty Ltd, North Ryde 

NSW, Australia) was used in these two clinical trials. The commercially available 
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preparations of St John’s wort, ginseng, ginkgo and ginger used in these two studies 

were chosen according to an assessment of the quality of various brands and also 

conformity of the dose with that recommended in the Herbal Medicine-Expanded 

Commission E Monographs. The qualitative assessment of a range of herbal 

medicine products are described in Chapter 4. Proprietary products Bioglan® (St 

John’s wort, each tablet containing standardised dry extract equivalent to 1 g 

Hypericum perforatum flowering herb top, 0.825 mg hypericin and 12.5 mg 

hyperforin; Batch 1331-2, Bioglan Ltd, Kirrawee NSW, Australia), Golden Glow 

(Korean ginseng, each capsule containing extract equivalent to 0.5 g Panax ginseng 

root and 8.93 mg ginsenosides as ginsenoside Rg1; Batch K0125, Queensland 

Biochemics Pty Ltd, Virginia Qld, Australia), Tavonin™ (Ginkgo biloba, each tablet 

containing the standardised dry extract, EGb761, equivalent to 2 g of Ginkgo biloba 

leaf, 9.6 mg of ginkgo flavonglycosides, 2.4 mg of ginkgolides and bilobalide, Batch 

6250202, Epping NSW, Australia) and Blackmore’s Travel Calm Ginger (Zingiber 

officinale, each tablet containing extract equivalent to 0.4 g of ginger rhizome 

powder, Batch 103863, Balgowlah NSW, Australia) were used in these two clinical 

trials. 

 

2.1.4 Study Design and Dose Administration 

Both study designs were based on a 3 × 3 Latin Square (Table 2-2). It was an open 

label, controlled three-treatment, three-period, three-sequence crossover study with at 

least 14-day washout period between period I, period II and period III of dosing. An 

equal number of subjects were randomly assigned to each of the three possible 

dosing sequences. 
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Table 2-2. 3 × 3 Latin Square study design. 

Period Group 

I                                        II                                         III 

1. (Subject 1 – 4)          A                                       B                                         C 

2. (Subject 5 – 8)          B                                       C                                         A 

3. (Subject 9 – 12)        C                                       A                                         B 

 

Study I 

A: A single 25 mg warfarin dose. 

B: St John’s Wort doses (one tablet, three times daily) for 13 days, then a single 25 

mg warfarin dose co-administered with multiple St John’s wort doses (one tablet, 

three times daily) for a further 7 days. 

C: Ginseng doses (two capsules, three times daily) for 6 days, then a single 25 mg 

warfarin dose co-administered with multiple ginseng doses (two capsules, three times 

daily) for a further 7 days. 

 

Study II 

A: A single 25 mg warfarin dose. 

B: Ginkgo doses (two tablets, three times daily) for 6 days, then a single 25 mg 

warfarin dose co-administered with multiple ginkgo doses (two tablets, three times 

daily) for a further 7 days. 

C: Ginger doses (three tablets, three times daily) for 6 days, then a single 25 mg 

warfarin dose co-administered with multiple ginger doses (three tablets, three times 

daily) for a further 7 days. 
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2.1.5 Randomisation 

Subject sequence numbers were allocated to the twelve subjects when they registered. 

Following which, subjects were assigned a random number generated using 

Microsoft Excel. In this manner, subjects were assigned to one of the three treatment 

groups (Table 2-3). 

 

Table 2-3. Randomisation. 

Subject Sequence No. 1 2 3 4 5 6 7 8 9 10 11 12 

Subject Random No. 2 2 3 3 1 3 2 1 1 1 2 3 

Subject Group No. 2 2 3 3 1 3 2 1 1 1 2 3 

 

 

2.1.6 Sample Collection and Analysis 

In both studies, blood samples (20 ml) were collected into both sodium citrate and 

EDTA tubes via an indwelling cannula or by venipuncture. Sampling times in 

relation to warfarin dosing were: -48, -24, 0, 1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144 

and 168 h. Whole blood was collected to measure platelet aggregation while plasma 

was harvested by centrifugation (at 1500 g for 10 min) to determine the INR. A 

portion of plasma was stored frozen until the time of drug concentration analysis. 

Urine (24 h) was collected before and after administration of warfarin dose for three 

days.  The volume of urine was recorded and a portion was stored frozen for 

subsequent analysis. 
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2.2 HPLC Assay for Warfarin Enantiomers  

The concentrations of S-warfarin and R-warfarin in plasma were determined using a 

modified version of the high performance liquid chromatography (HPLC) assay by 

Naidong et al [242] which employed a chiral HPLC column (Silica-bonded β-

cyclodextrin, Cyclobond™, Astec, Alltech Associates Australia Pty Ltd, Baulkham 

Hills, NSW, Australia) with fluorescence detection. In brief, aliquots (0.5 ml) of 

plasma were spiked with the internal standard (I.S., naproxen) and sulfuric acid 

solution (0.35 ml, 0.5 M) and then extracted with dichloromethane: hexane (1:5, 4 ml) 

on a roller for 15 min.  The organic phase was decanted after separation by 

centrifugation (at 1500 g for 10 min) and freezing the aqueous phase in dry ice. The 

organic layer was evaporated to dryness under nitrogen and reconstituted in 

acetonitrile (200 µl) and an aliquot (20 µl) was injected onto the column. The mobile 

phase comprised of acetonitrile: triethylamine: glacial acetic acid (100:0.2:0.3, 

v/v/v/v) with a flow rate of 1 ml/min. Measurements were made using a fluorescence 

detector (RF 535, excitation wavelength 310 nm, emission wavelength 400 nm, 

Shimadzu Scientific Instruments (Oceania) Pty Ltd, Rydalmere, NSW, Australia). 

Unknown concentration in plasma samples from the clinical trial were analysed in 

duplicate with five different concentrations of standard samples in plasma for 

standard curve and low, medium and high concentration of the quality control 

samples in plasma. 
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2.3 HPLC Assay for S-7-hydroxywarfarin 

The concentrations of S-7-hydroxywarfarin in urine were determined using a 

modified version of the HPLC assay by Naidong et al [242] which employed a chiral 

HPLC column (Silica-bonded β-cyclodextrin, Cyclobond™, Astec, Alltech 

Associates Australia Pty Ltd, Baulkham Hills NSW, Australia) with fluorescence 

detection. In brief, aliquots (0.1 ml) of urine samples were spiked with internal 

standard (naproxen) and sulfuric acid solution (0.5 M, 0.1 ml) and then extracted 

with dichloromethane: hexane (1:2, 4 ml). After 30 min on a roller bed mixer, the 

organic phase was decanted after separation by centrifugation (at 1500 g for 10 min) 

and freezing the aqueous phase in dry ice. The organic layer was evaporated to 

dryness under nitrogen and reconstituted in acetonitrile (200 µl) and an aliquot (20 µl) 

injected onto the column. The mobile phase comprised of acetonitrile: methanol: 

triethylamine: glacial acetic acid (100:1.5:0.3:0.25, v/v/v/v) with a flow rate of 1 

ml/min. Measurements were made using a fluorescence detector (Shimadzu RF 535, 

excitation wavelength 310 nm, emission wavelength 400 nm, Shimadzu Scientific 

Instruments (Oceania) Pty Ltd, Rydalmere, NSW, Australia). Unknown 

concentration urine samples from the clinical trial were analysed in duplicate with 

five different concentrations of standard samples in urine for standard curve and low, 

medium and high concentrations of the quality control samples in urine. 

 

2.4 Plasma Protein Binding 

The unbound fractions of S-warfarin and R-warfarin in plasma were assessed by 

ultrafiltration (Centrifree® YM-30, Millipore Australia Pty Ltd, North Ryde, NSW, 
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Australia). Rac-warfarin (10 µg) was added to 1 ml of pooled plasma obtained from 

each subject between the sampling times of 1-8, 12-72 and 96-168 h after warfarin 

dose. After centrifuging at 1800 g for 20 min at 37oC, the ultrafiltrate was collected 

for drug concentration measurement. The concentration of each warfarin enantiomer 

in the ultrafiltrate and in plasma was measured by the validated HPLC method. In 

brief, plasma ultrafiltrate (0.2 ml) containing warfarin, 10 µl of I.S. solution 

(naproxen; 0.0341 mg/ml) and sulfuric acid (0.5 M, 140 µl) were added. After 

mixing, dichloromethane: hexane (1:5, 2 ml) was added as an extraction solvent. 

After roller bed mixing for 15 min, centrifuging at 1500 g for 10 min and freezing 

the aqueous phase in dry ice, the organic phase was separated and evaporated to 

dryness under nitrogen and the residue was reconstituted in 100 µl of the mobile 

phase. A 50 µl of the reconstituted residue was injected into the HPLC. The fraction 

unbound (fu) was calculated as the ratio of the concentration of each warfarin 

enantiomer in the ultrafiltrate to that in plasma. All of the samples were analysed in 

duplicate. 

 

2.5 INR Measurement 

Warfarin therapy can be monitored by measuring the prothrombin time (PT) or 

International Normalised Ratio (INR). A number of methods can be used to measure 

the effect of warfarin in individuals, including the measurements of vitamin K1 and 

vitamin K1 2,3 epoxide concentration [243], γ-carboxyglutamic acid concentration 

[244] and clotting factor concentrations [245]. Of the various methods available, the 

PT test or INR test is the most common method for monitoring the effect of oral 

anticoagulants [14]. The PT is responsive to depression of three of the four vitamin 
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K-dependent clotting Factors (II, VII and X), which can be reduced in the presence 

of warfarin at a rate proportional to the respective half-lives of these factors (Figure 

2-1). The principle of the method is described in Equation 2-1. 

 

Citrated plasma + Thromboplastin + CaCl2                 Fibrin Clot     Equation 2-1 

 

Thromboplastin is a phospholipid-protein extract of tissue usually lung, brain or 

placenta, containing both the tissue factor and phospholipid necessary to promote the 

activation of Factor X by Factor VII. During induction of anticoagulant treatment, 

the PT primarily reflects the depression of Factor VII, since this factor has the 

shortest half-life (4-6 h) among the vitamin K-dependent factors. During 

maintenance therapy, this test is sensitive to depression of prothrombin (Factor II), 

Factor VII and Factor X [246].  

 

Thromboplastins vary in their responsiveness to the anticoagulant effects of warfarin, 

depending on their source, phospholipid content and preparation [247]. The 

responsiveness of thromboplastins can be measured by assessing their International 

Sensitivity Index (ISI). Difference in thromboplastin responsiveness was the main 

reason for clinically important differences in oral anticoagulant dosing. In 1983, the 

INR system proposed by Kirkwood was adopted by the World Health Organization 

(WHO) which then made international PT standardisation possible [248]. The 

calculation of INR is described in Equation 2-2. 
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Figure 2-1. The coagulation cascade. Adapted from [16]. 
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Note: PL, negatively charged phospholipid supplied by activated platelets; ATIII, 

antithrombin III, LMWHs, low-molecular-weight heparins. 
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INR = (patient PT/mean normal PT)ISI              Equation 2-2 

 

The measurement of INR in the present study was conducted according to the 

instructions supplied by the manufacturer (Dade Behring, Australia) in the principles 

of the method. The coagulation process is triggered by incubation of plasma with the 

optimal amount of thromboplastin and calcium. The time to formation of a fibrin clot 

is then measured. Thromborel S (human thromboplastin/calcium reagent for one 

stage prothrombin time, Dade Behring, Diagnostics Pty Ltd, Lane Cove NSW, 

Australia) was reconstituted according to the labelled amount of distilled water and 

warmed to 37oC before use (after reaching 37oC the reagent must be incubated at this 

temperature for at least 30 minutes). Citrated plasma (50 µl) was pipetted into a Dade 

Behring cuvette pre-warmed to 37oC and incubated for 1 min at 37oC; 100 µl of 

Thromborel® S (warmed to 37oC) was pipetted to the Dade Behring Coagulometer 

analyser. On the addition of the Thromborel® S reagent, the timer on the 

coagulometer (Dade Behring, Diagnostics Pty Ltd, Lane Cove NSW, Australia) was 

started and the PT was determined. INR is calculated using Equation 2-2, where 

International Sensitivity Index (ISI) is provided for the Thromborel® S reagent by the 

manufacturer. All of the samples were analysed in duplicate. 

 

2.6 Platelet Aggregation Measurement 

Numerous methods have been reported for measuring platelet function including 

photo-optical (turbidimetric) methods of platelet aggregometry, impedance methods 
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of platelet aggtegometry, viscometry, Clot retraction, PFA-100 and rapid platelet 

function assay. The advantages and disadvantages of these methods have been 

reviewed in several review articles [249-251]. Impedance platelet aggregation was 

introduced in 1980 by Cardinal and Flower [252] as an alternative to photo optical 

aggregometry that could also be applied to whole blood samples. The advantage of 

this method is that whole blood is more physiologic, a smaller quantity of blood is 

needed for testing, and it can be performed quickly and conveniently.  

 

Platelet activation can be induced by a variety of chemical and mechanical methods 

via several distinct intracellular pathways [251] (Figure 2-2). Adenosine 

disphosphate (ADP) has been the agonist most commonly used for turbidimetric 

aggregation studies. The relevance of collagen as an agonist stems from the 

abundance of collagen in the subendothelium, which is exposed at the time of arterial 

injury. The use of collagen as an agonist is limited by variability between production 

lots that occur at the time of harvest. Arachidonic acid and TXA2 are weak platelet 

agonists that are completely inhibited by aspirin. Thrombin is the most potent platelet 

agonist; however, thrombin-induced platelet aggregation has several limitations 

including lot-to-lot variability, storage requirements and the ability of thrombin to 

activate the coagulation cascade and thus interfere with the assay. Recently, a 

thrombin receptor agonist peptide (TRAP) has been used to replace thrombin to 

allow activation of platelets through the thrombin receptor without activating 

fibrinogen into fibrin [253].  
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Figure 2-2.  Platelet activation cascade. Adapted from [16]. 

 

 

Note: ADP, adenosine disphosphate; GP, glycoprotein; NO, nitric oxide; TXA2, 

thromboxane A2 

Ruptured atherosclerotic plaque 
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Platelet aggregation was measured in these studies using a whole-blood 

aggregometer (Chrono-par®, Chrono-log Corporation, USA, supplied by Edward 

Keller Australia Pty Ltd, Hallam, Vic, Australia) according to the manufacturer’s 

instructions. Briefly, pre-warmed whole blood (1 ml) diluted 1 in 2 (one part of 

blood to one part of saline) with normal saline was incubated at 37oC for 2 min 

(stirring speed-1200 rpm). Platelet aggregation was induced by adding arachidonic 

acid (10 µl, 50 mM stock concentration, Chrono-par®, Chrono-log Corporation, 

USA, supplied by Edward Keller Australia Pty Ltd, Hallam, Vic, Australia). A 

change in impedance was recorded for 6 min after stimulation with arachidonic acid 

and reported as impedance aggregation (ohm). All of the samples were analysed in 

duplicate. 

 

2.7 Data Analysis 

2.7.1 Model Independent Pharmacokinetic and Pharmacodynamic Analysis 

The pharmacokinetic parameters for warfarin enantiomers were estimated using two 

approaches; model independent and model dependent methods (See Section 2.7.2). 

The elimination rate constant (k) of warfarin enantiomers was obtained by linear 

regression analysis of the terminal log-linear portion of the warfarin enantiomer 

concentration – time curve. Elimination half-life (t1/2) was calculated as ln2/k. The 

area under the plasma S-warfarin and R-warfarin concentration-time curves until the 

last concentration observation (AUC0-t) were calculated using the trapezoidal rule. 

The AUC was extrapolated to infinity (AUC0-∞) using Ct/k where Ct is the last 

measured S-warfarin or R-warfarin concentration occurring at time “t”. The highest 

S-warfarin and R-warfarin concentrations (Cmax) and the time that these occurred 
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(tmax) were obtained by observation without interpolation. Apparent clearance (CL/F) 

and apparent volume of distribution (V/F) for the warfarin enantiomers were 

calculated as Dose/2/AUC0-∞ and CL/F/k, respectively. INR was reported as the area 

under the INR versus time curve (AUC0-168 of INR) and calculated by the trapezoidal 

method. Also the INRmax and tmax of INR were reported. Urinary excretion rate (UER) 

of S-7-hydroxywarfarin was calculated as the amount of metabolite eliminated (Ae,m) 

over the sample collection time interval (T). 

 

2.7.2 Pharmacokinetic-Pharmacodynamic Modelling 

Equation 2-3 and Equation 2-4 were combined with Equation 2-5 to produce a 

combined PK/PD model as described by Chan et al [18]: the enantiomer 

concentration-time data was described using the one-compartment Pharmacokinetic 

model with first order absorption (ka) and elimination (k). Such that; 

 

 

C t F D
2 V

ka
ka k

e eR
R R

k t t ka t tR d dbg e jb g b g=
⋅
⋅

F
HG

I
KJ −
F
HG

I
KJ −− − − −

           Equation 2-3 

  

 

C t F D
2 V

ka
ka k

e eS
S S

k t t ka t tS d dbg e jb g b g=
⋅
⋅

F
HG

I
KJ −
F
HG

I
KJ −− − − −

           Equation 2-4 

 

where CR(t) and CS(t) are the concentrations R- and S-warfarin at time (t). 
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The terminology used in these equations is defined in Section1.4.2. An additional 

pharmacodynamic parameter was introduced to account for the observed delay in 

PCA change after warfarin administration. Anticoagulant response data was obtained 

as INR, so in order to fit these data using the proposed PK/PD model, response data 

was transformed to PCA with the use of the functional relationship between INR and 

PCA (percentage of normal activity) described in Equation 2-6. 

 

PCA(% normal) a
INR b

=
−                          Equation 2-6 

 

in where a = 80.65 and b = 0.18. The values of the constants a and b were determined 

by fitting Equation 2-6 to PCA% and INR data (Figure 2-3) obtained using serial 

dilutions of pooled normal plasma. This relationship was substituted into the 

combined equation to allow direct application of INR data. 
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Figure 2-3. PCA%-INR standard curve (n=4). 
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Then the pharmacokinetic-pharmacodynamic modelling of warfarin enantiomer was 

analysed using Scientist® for Windows™ Version 2.0 (MicroMath, Inc., Salt Lake 

City, Utah 84121) to estimate PK/PD parameters. 

 

2.7.3 Statistical Analysis  

The PK/PD parameters were compared using analysis of variance (ANOVA) 

followed by the post hoc multiple comparisons with Dunnett using Stata® 5.0 (Stata 

Corporation, USA) and SPSS® 11.0 (SPSS Inc., USA) for sequence, period and 

treatment effects. The 95% confidence interval (CI) was used for the descriptive 

presentation of study parameters while the 90% CI of the ratio of logarithmically 

transformed parameters was used to compare control (warfarin alone) and treatment 

(warfarin with herbal medicine) phases. It was deemed that an interaction lacked 

clinical significance if the 90% CI values fell within the range 80%-125%. A p-value 

of less than 0.05 was considered significant. 
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Chapter 3 Validation of Analytical Methods 

 

3.1 Calibration of HPLC Assay for Warfarin Enantiomers in 

Human Plasma and S-7-hydroxywarfarin in Urine 

3.1.1 Introduction 

An assay capable of quantifying warfarin enantiomers in human plasma and S-7-

hydroxywarfarin in human urine is necessary for the present study. Several HPLC 

methods have been developed for the determination of warfarin enantiomers in 

human plasma in the literature. The HPLC methods can be classified into two 

categories: methods (Table 3-1) that employ derivatisation of warfarin to 

diastereoisomers followed by an achiral HPLC separation and methods (Table 3-2) 

that employ a chiral HPLC stationary phase column to directly separate enantiomers. 

The major issue of methods requiring derivatisation is the optical purity of the chiral 

derivatising agent and the reaction efficiency. Methods requiring derivatisation can 

also be time consuming and laborious hence most recent assays of warfarin 

enantiomers have focussed on using chiral stationary phase. There are several kinds 

of chiral stationary phases which are used in stereoselective HPLC that have been 

used to separate warfarin enantiomers, such as Chiralcel OC (Cellulose), Chiralcel 

OD (Cellulose), Achiral/chiral (C8/Chiral-AGP), Silica-bonded β-cyclodextrin and 

achiral/chiral (Bovine serum albumin/ Pinkerton) (Table 3-2).  
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The main disadvantage of such an approach is the expense and relatively short life of 

the column. 

 

A modified version of the assay by Naidong et al [242] was employed in the present 

investigation of warfarin enantiomer concentrations in plasma and S-7-

hydroxywarfarin in urine. This assay was chosen because it demonstrates excellent 

enantiomer resolution, high sensitivity and longer column stability compared with 

other assays. 

 

3.1.2 Materials and Methods 

Materials and Reagents 

Racemic warfarin (98%, Lot 65H12131) was purchased from Sigma-Aldrich (Sigma-

Aldrich Pty. Ltd., NSW, Australia), S-7-hydroxywarfarin (98%) was purchased from 

UFC Ltd (Manchester, England), naproxen (Lot B-6-JD-006) was obtained from 

Syntex laboratories, Inc. (Palo Alto, Calif., USA). All organic solvents were of 

analytical grade and purchased from Biolab (Mulgrave, Vic, Australia) including 

dichloromethane (Mallinkrodt, ChromAR®), hexane (Mallinkrodt, ChromAR®), 

acetonitrile (B&J Brand ®), triethylamine (AJAX Chemicals, UNILAB), acetic acid, 

glacial (AJAX Chemicals, UNIVAR) and sulfuric acid was purchased from (AJAX 

Chemicals, UNIVAR). 
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Instrumentation 

The HPLC system consisted of an autosampler (Waters 715 Ultra WISP Sample 

processor), pump (Shimadzu, LC-10 AS), detector (Hitachi, F1000, Fluorescence 

Spectrophotometer, with the excitation wavelength was set at 310 nm and the 

emission wavelength was set 400 nm), the β-cyclodextrin analytical column 

(Cyclobond I 2000 column of 250×4.6 mm, Cat. No.20024, Ser. No. 13175, Astec, 

Whippany, NJ, USA, purchased from Alltech Associates Pty Ltd, Australia) and β-

cyclodextrin guard column (Cyclobond I 2000 column of 20×4.0 mm, Cat. No. 

21100, Ser. No. 000815, Astec, Whippany, NJ, USA, Alltech Associates Pty Ltd, 

Australia). The flow rate was 1.0 ml/min. The mobile phase was acetonitrile: 

triethylamine: glacial acetic acid (100:0.2:0.3, v/v/v) for the separation of the 

warfarin enantiomers in human plasma assay. Whereas, the mobile phase was 

acetonitrile: methanol: triethylamine: glacial acetic acid, (100:1.5:0.3:0.25, v/v/v) for 

S-7-hydroxywarfarin in the urine assay. 

 

Data Management 

The chromatograms were measured and data were captured using a Turbochrom data 

system (version 4, Perkin Elmer, purchased from Alltech Associates Pty Ltd, 

Australia). 
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3.1.3 Calibration of HPLC Assay for Warfarin Enantiomers in Human 

Plasma  

Extraction Procedures 

Aliquots (0.5 ml) of plasma were spiked with the internal standard (naproxen, 0.17 

mg/ml) and sulfuric acid solution (0.35 ml, 0.5 M) and then extracted with 

dichloromethane: hexane (1:5, 4 ml).  The organic phase was decanted after 

separation by centrifugation (at 1500 g for 10 min) and freezing the aqueous phase in 

dry ice. The organic layer was evaporated to dryness under nitrogen and 

reconstituted in acetonitrile (200 µl) and an aliquot (20 µl) injected onto the column. 

 

Results 

Warfarin Fluorescence Spectrum in Mobile Phase 

The warfarin fluorescence spectrum was measured in mobile phase (acetonitrile: 

triethylamine: glacial acetic acid, (100:0.2:0.3, v/v/v)) using a fluorescence 

spectrophotometer (Hitachi, F-2000, Hitachi Ltd, Tokyo, Japan). The excitation 

wavelength was 311nm and the emission wavelength was 400 nm (Figure 3-1). 
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Figure 3-1. The fluorescence spectrum of warfarin in mobile phase. 

 

 

 

 

 

 

 

 

 

Specificity 

Figure 3-2 shows typical HPLC chromatograms of warfarin enantiomers. Twelve 

different batches of control plasma containing EDTA were used to investigate the 

specificity of the assay. No interfering peaks were observed in the different batches 

of drug free plasma samples at the retention time of warfarin enantiomers and 

internal standard (I.S.). The typical retention times were 5.7, 6.2 and 11.9 min for S-

warfarin, R-warfarin and I.S., respectively. The analytical run time was 20 min per 

sample.
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Figure 3-2. HPLC chromatogram of warfarin enantiomers. 

I. Extracted blank plasma; II. Extracted blank plasma with I.S.; III. Extracted plasma 

sample from a subject at 144 h with I.S.; IV. Extracted blank plasma spiked with rac- 

warfarin and I.S.; a. S-warfarin; b. R-warfarin; c. I.S. (Naproxen); d. Unknown 

metabolite of warfarin 
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Calibration Curve 

Limit of Quantitation (LOQ) 

The LOQ for S-warfarin and R-warfarin is 36.9 ng/ml using 0.5 ml of plasma sample 

and injecting 20 µl of reconstituted residue. The typical peak height response at this 

concentration is five times greater than background interference in blank plasma 

samples at the retention time of the S-warfarin and R-warfarin (Figure 3-3). The 

peaks of the S-warfarin and R-warfarin were identifiable, discrete and reproducible. 

Table 3-3 shows the precision was less than 20% at 36.9 ng/ml. 

 

 

                                                                Time (min) 

Figure 3-3. HPLC chromatogram of extracted low quality control plasma 

sample (36.9 ng/ml). 

 

Linearity 

The plasma concentration range of warfarin enantiomers expected in warfarin 

pharmacokinetic studies is 40 to 2500 ng/ml [216]. Eight different warfarin 

concentrations were used to establish the standard curve for each analytical run. Five 
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validation standard curves were run on five different days over three weeks during 

assay development.  

Table 3-3. Standard curve statistics for spiked S- and R-warfarin in human 

plasma. 

Conc. Ratio of warfarin (peak height) to I.S.  

 ng/ml 1 2 3 4 5 Mean SD CV% 

S-warfarin 18.5 0.04 0.03 0.02 0.04 0.00 0.03 0.02 64.4 

R-warfarin 18.5 0.03 0.03 0.03 0.00 0.00 0.02 0.02 91.3 

S-warfarin 36.9 0.06 0.06 0.05 0.04 0.06 0.05 0.01 16.6 

R-warfarin 36.9 0.06 0.06 0.06 0.05 0.06 0.06 0.01 7.7 

S-warfarin 73.8 0.10 0.11 0.10 0.10 0.13 0.11 0.01 12.1 

R-warfarin 73.8 0.10 0.11 0.09 0.09 0.09 0.10 0.01 9.3 

S-warfarin 184.5 0.26 0.25 0.26 0.25 0.25 0.25 0.01 2.2 

R-warfarin 184.5 0.28 0.25 0.23 0.23 0.24 0.25 0.02 8.4 

S-warfarin 369.0 0.56 0.53 0.51 0.53 0.55 0.54 0.02 3.6 

R-warfarin 369.0 0.54 0.53 0.48 0.52 0.52 0.52 0.02 4.4 

S-warfarin 1107.0 1.61 1.58 1.63 1.61 1.63 1.61 0.02 1.3 

R-warfarin 1107.0 1.58 1.53 1.55 1.56 1.60 1.56 0.03 1.7 

S-warfarin 2214.0 3.12 2.96 3.15 3.30 3.30 3.17 0.14 4.5 

R-warfarin 2214.0 3.01 2.95 3.09 3.26 3.16 3.09 0.12 3.9 

S-warfarin 2952.0 3.93 4.28 4.20 4.37 4.58 4.27 0.24 5.6 

R-warfarin 2952.0 3.89 4.19 4.10 4.20 4.44 4.16 0.20 4.8 
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Figure 3-4. Typical S-warfarin standard curve in plasma. 
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Figure 3-5. Typical R-warfarin standard curve in plasma.  
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Table 3-3 shows that the precision at the LOQ is less than 20% and the deviation of 

standards other than LOQ in eight non-zero standards is less than 15%. The 

correlation coefficients (r2) of S-warfarin and R-warfarin are greater than 0.995. 

Figure 3-4 and Figure 3-5 show that there are linear relationships in the plasma 

concentration range of 36.9 – 2952 ng/ml for both enantiomers of warfarin. 

 

Precision and Accuracy 

Precision and accuracy assessment was conducted at three different enantiomer 

concentrations of quality control samples in the range of expected concentrations 

with five determinations per concentration. Table 3-4 shows that the inter-day 

accuracy was within 15% of the actual value and precision did not exceed 15% CV at 

each concentration. 

 

Recovery 

The recovery experiment was performed by comparing the peak height of warfarin 

enantiomers of extracted plasma samples at three concentrations with unextracted 

standard solutions. Liquid-liquid extraction was used for sample clean up. Table 3-5 

shows that the overall extraction recoveries were 90%, 91% and 87% for S-warfarin, 

R-warfarin and I.S., respectively. Also demonstrated are the precision, accuracy, 

reproducibility and efficiency. 
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Table 3-4. Precision and accuracy of S- and R-warfarin quality controls (n=5). 

 S-Warfarin (ng/ml) R-Warfarin (ng/ml) 

Nominal 

Conc. 65.4 981.0 2289.0 65.4 981.0 2289.0 

Inter-day       

1 64.3 821.4 2007.1 69.2 892.3 2069.2 

2 71.4 935.7 2335.7 71.4 907.1 2278.6 

3 85.7 892.9 2064.3 78.6 878.6 1985.7 

4 66.7 833.3 1873.3 64.3 871.4 1957.1 

5 73.3 913.3 1960.0 80.0 873.3 1933.3 

Mean 72.3 879.3 2048.1 72.7 884.6 2044.8 

SD 8.3 50 175.3 6.6 15.0 140.4 

CV% 11.5 5.7 8.6 9.0 1.7 6.9 

RE% 110.5 89.6 89.5 111.2 90.2 89.3 

Intra-day 

Run       

1 66.7 820.0 1913.3 53.3 786.7 1840.0 

2 86.7 946.7 2166.7 73.3 953.3 2106.7 

3 73.3 846.7 1873.3 66.7 820.0 1793.3 

4 66.7 913.3 1880.0 53.3 860.0 1860.0 

5 73.3 913.3 1960.0 80.0 873.3 1933.3 

Mean 73.3 888.0 1958.7 65.3 858.7 1906.7 

SD 8.2 52.6 121.2 12.0 63.0 122.7 

CV% 11.2 5.9 6.2 18.3 7.3 6.4 

RE% 112.2 90.5 85.6 99.9 87.5 83.3 

SD: Standard deviation; CV: Coefficient of variation; RE%: Relative error or 

Accuracy; n: Number of replicates 
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Table 3-5. Recovery of S- and R-warfarin and internal standard in human 

plasma. 

S-Warfarin  

(ng/ml) 

R-Warfarin  

(ng/ml) 

Internal 

standard 

(mg/ml) Nominal 

Conc. 104 552 2760 104 552 2760 0.012 

Extracted peak height 

Mean (n=4) 645.9 2910.3 13954.1 644.7 2904.7 13649.0 484.2 

SD 5.1 177.5 684.1 15.9 189.1 524.0 42.6 

CV% 0.8 6.1 4.9 2.5 6.5 3.8 8.8 

Unextracted peak height 

Mean (n=4) 698.1 3382.3 15320.6 693.6 3286.1 14876.9 555.4 

SD 18.0 72.5 573.3 35.3 90.2 611.8 25.4 

CV% 2.6 2.1 3.7 5.1 2.7 4.1 4.6 

%Recovery 92.5 86.1 91.1 92.9 88.4 91.8 87.2 

Mean 

Recovery% 90 91 87 

SD 3.4 2.4  

CV% 3.8 2.6  

Recovery % = Extracted peak height/ Unextracted peak height × 100% 
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 Stability 

Table 3-6, Table 3-7 and Table 3-8 show that S-warfarin, R-warfarin and I.S. in 

human plasma QC samples stored at -4oC were stable after 17 days and 5 freeze-

thaw cycles. S-warfarin, R-warfarin and I.S. in this mobile phase were stable at the 

room temperature for 17 hours when stored in the autosampler. S-warfarin, R-

warfarin and I.S. of stock standard solutions stored at 5oC were stable over 15 days. 

 

Table 3-6. Sample storage and freeze thaw stability of quality control samples in 

plasma. 

S-Warfarin (ng/ml) R-Warfarin (ng/ml) 

Nominal 65.4 981.0 2289.0 65.4 981.0 2289.0 

1 64.3 821.4 2007.1 69.2 892.3 2069.2 

2 71.4 935.7 2335.7 71.4 907.1 2278.6 

3 85.7 892.9 2064.3 78.6 878.6 1985.7 

4 66.7 833.3 1873.3 64.3 871.4 1957.1 

Fr
ee

ze
/T

ha
w

 C
yc

le
 

5 73.3 913.3 1960.0 80.0 873.3 1933.3 

Observed 

mean 72.3 879.3 2048.1 72.7 884.6 2044.8 

SD 8.3 50.0 175.3 6.6 15.0 140.4 

CV% 11.5 5.7 8.6 9.0 1.7 6.9 
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Table 3-7. Autosampler stability of quality control samples in plasma. 

 S-Warfarin (ng/ml) R-Warfarin (ng/ml) 

I.S. 

(mg/ml)

Nominal 

Conc. 65.4 981.0 2289.0 65.4 981.0 2289.0 0.2 

0 71.4 914.3 2371.4 71.4 878.6 2335.71 3316.9*

9 64.3 942.9 2357.1 64.3 928.6 2264.3 3482.5*

Ti
m

e 
(h

) 

17 71.4 950.0 2285.7 71.4 914.3 2228.6 3770.5*

Mean 69.1 935.7 2338.1 69.1 907.1 2276.2 3523.3*

SD 4.1 18.9 45.9 4.1 25.8 54.6 229.6 

CV% 6.0 2.0 2.0 6.0 2.8 2.4 6.5 

*Measured by comparing peak height 

 

Table 3-8. Stock solution stability of quality control samples in plasma. 

Time 

(Day) S-Warfarin (ng/ml) R-Warfarin (ng/ml) 

I.S. 

(mg/ml) 

Nominal 

Conc. 65.4 981.0 2289.0 65.4 981.0 2289.0 0.17 

0 58.3 991.7 2400.0 58.3 958.3 2341.7 5329.8* 

7 61.5 984.6 2323.1 61.5 961.5 2246.2 4854.1* 

9 72.7 1163.6 2745.5 73.3 900.0 2309.1 5612.3* 

14 61.5 815.4 2284.6 66.7 1000.0 2416.7 5199.5* 

Mean 63.5 988.8 2438.3 65.0 955.0 2328.4 5248.9* 

SD 6.3 142.2 210.3 6.5 41.3 71.0 314.6 

CV% 9.9 14.4 8.6 10.1 4.3 3.1 6.0 

*Measured by comparing peak height 
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3.1.4 Calibration of HPLC Assay for S-7-hydroxywarfarin in Human Urine 

Extraction Procedures 

Aliquots (0.1 ml) of urine samples were spiked with internal standard (naproxen, 

0.17 mg/ml, 10 µl) and sulfuric acid solution (0.5 M, 0.1 ml) and then extracted with 

dichloromethane: hexane (1:2, 4 ml). After 15 min on a roller bed mixer, the organic 

phase was decanted after separation by centrifugation (at 1500 g for 10 min) and 

freezing the aqueous phase in dry ice. The organic layer was evaporated to dryness 

under nitrogen and reconstituted in acetonitrile (200 µl) and an aliquot (20 µl) 

injected onto the column. 

 

Results 

7-Hydroxywarfarin Fluorescence Spectrum in Mobile Phase 

The 7-hydroxywarfarin fluorescence spectrum was measured in mobile phase 

(acetonitrile: methanol: triethylamine: glacial acetic acid, (100:1.5:0.3:0.25, v/v/v)) 

using a fluorescence spectrophotometer (Hitachi, F-2000, Hitachi Ltd, Tokyo, Japan). 

The excitation and emission wavelengths were 301 nm and 401 nm, respectively 

(Figure 3-6). 



Chapter 3                        Validation of Analytical Methods                                 97 

 

 

Figure 3-6. The fluorescence spectrum of 7-Hydroxywarfarin in mobile phase.  
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Figure 3-7 shows HPLC chromatograms of S-7-hydroxywarfarin in the mobile phase. 

Twelve different batches of control urine were used to investigate the specificity of 

the assay. No interfering peaks were found in the different batches of control urine 

samples at the retention time of S-7-hydroxywarfarin and I.S. The typical retention 

times were 12.8 and 15.6 min for S-7-hydroxywarfarin and I.S., respectively. The 

analytical run time was 20 min per sample. 
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Figure 3-7. HPLC chromatogram of S-7-hydroxywarfarin. 

I. Extracted blank urine; II. Extracted urine spiked S-7-hydroxywarfarin and I.S.; III. 

Extracted blank urine with I.S; IV. Extracted urine sample from a volunteer receiving 

25 mg dose of warfarin with added I.S. a. I.S (Naproxen) b. S-7-hydroxywarfarin 
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Precision and Accuracy 

Precision and accuracy assessment was conducted at three different 7-

hydroxywarfarin concentrations of quality control (QC) samples in the range of 

expected concentrations with five determinations per sample. Table 3-9 shows that 

the inter-day accuracy were within 15% of the actual value while precision did not 

exceed 15% CV% at each concentration. Figure 3-8 shows that there is linear 

relationship in the urine concentration range of 82.5 – 1650 ng/ml for S-7-

hydroxywarfarin. 

 

Figure 3-8. S-7-hydroxywarfarin standard curve (n=4). 
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Table 3-9. Inter-day precision and accuracy of S-7-hydroxywarfarin quality 

control sample in urine (n=4). 

 S-7-hydroxywarfarin (ng/ml) 

Nominal Conc. 165.0 330.0 660.0 

Observed Mean 160.5 320.1 646.5 

SD 16.6 15.8 14.3 

CV% 10.3 4.9 2.2 

RE% 97.2 97.0 98.0 

RE%: Relative error or Accuracy; n: Number of replicates 

 

Recovery 

The recovery experiment was performed by comparing the peak height of S-7-

hydroxywarfarin of extracted urine samples at three concentrations with unextracted 

standard solutions. Liquid-liquid extraction was used for sample clean up. Table 3-10 

shows that the overall extraction recoveries were 83.0% and 83.3% for S-7-

hydroxywarfarin and I.S., respectively. The data demonstrate the precision, accuracy, 

reproducibility and efficiency of the recovery of S-7-hydroxywarfarin from human 

urine. 
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Table 3-10. Recovery of S-7-hydroxywarfarin and internal standard (I.S.) in 

human urine. 

S-7-hydroxywarfarin (ng/ml) I.S. (ng/ml)  

Nominal 

Conc. 

82.5 330.0 825.0 11100.0 

Unextracted peak height 

Mean (n=3) 3483.3 13175.6 34419.6 15866.0 

SD 213.2 686.4 1590.7 988.1 

CV% 6.1 5.2 4.6 6.2 

Extracted peak height 

Mean (n=3) 2810.9 11542.1 27748.4 13219.5 

SD 389.3 260.0 2334.1 1026.5 

CV% 13.8 2.3 8.4 7.8 

Recovery% 80.7 87.6 80.6 83.3 

Mean 

Recovery % 

83.0 

SD 4.0 

CV% 4.8 

 

Recovery % = Extracted peak height/ Unextracted peak height × 100% 

 



Chapter 3                        Validation of Analytical Methods                                 102 

Discussion 

Assay of Warfarin Enantiomers in Human Plasma 

Twelve batches of control drug-free plasma (from St Vincent’s Hospital, 

Darlinghurst, NSW, Australia) were used to investigate the specificity of the assay. 

No interference was observed in different control plasma samples at the retention 

time of warfarin enantiomers or the internal standard (naproxen). Fluorescence 

detection was chosen to measure the intensity of warfarin enantiomers in the HPLC 

column eluent rather than a UV detector because interference was observed at 

retention times of S-warfarin, R-warfarin and I.S. when a UV detector (320 nm) was 

used. This is modification to the assay published by Naidong et al [242]. 

 

Several extraction solvents have been used in an attempt to clean up the plasma 

sample, for example, diethyl ether, hexane, dichloromethane, chloroform, and a 

mixture of dichloromethane: hexane (1:5). Dichloromethane: hexane (1:5) was 

selected for use in this assay since the interference was smaller and the extraction 

recovery was higher for warfarin enantiomers compared with other solvents. This is 

another modification to the assay published by Naidong et al [242] in which ether 

was employed as an extraction solvent. 

 

Sensitivity of this method was less (LOQ is 36.90 ng/ml) when compared with the 

assay published by Naidong et al [242] (LOQ is 12.5 ng/ml) [5]. However, 0.5 ml of 

plasma was used for this assay and reconstituted residue (20 µl) was used to inject 

into HPLC column, while plasma (1 ml) and reconstituted residue (50 µl) was used 

in the assay published by Naidong et al [242]), yet still covered the range of warfarin 
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enantiomer plasma concentrations expected in pharmacokinetic studies using the 

design outlined in this  thesis. Hence this is a more practical method and has the 

added advantage of extending the working life of the column. If the sensitivity of this 

assay was found to be inadequate, it would be possible to improve sensitivity by 

increasing the plasma sample volume or by increasing the injection volume into 

HPLC column.  

 

Assay of S-7-hydroxywarfarin in Human Urine 

S-7-Hydroxywarfarin could not be detected in the human plasma but was 

quantifiable in urine samples. After modification of the assay published by Naidong 

et al [242], the present method can now be used to analyse S-7-hydroxywarfarin in 

human urine. Twelve batches of control urine were used to investigate the specificity 

of the assay. No interference was observed in different control samples at the 

retention time of S-hydroxywarfarin and I.S. (naproxen). Fluorescence detection was 

chosen to measure the intensity of S-7-hydroxywarfarin. Several extraction solvents 

have been used to try to clean up the urine sample including diethyl ether, hexane, 

dichloromethane, chloroform, a mixture of dichloromethane: hexane (1:5) and a 

mixture of dichloromethane: hexane (1:2). Dichloromethane: hexane (1:2) was 

selected for use in the present assay because the interference was smaller and the 

extraction recovery was higher for S-7-hydroxywarfarin. The limit of quantification 

of this method was 82.5 ng/ml.  
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3.2 Calibration of Warfarin Protein Binding  

3.2.1 Introduction 

The plasma protein binding of drugs has been shown to have significant effects on 

numerous aspects of clinical pharmacokinetics and pharmacodynamics. In many 

clinical situations, measurement of the total drug concentration does not provide the 

necessary information concerning the unbound fraction of drug in plasma, which is 

available for distribution, elimination, and pharmacodynamic action. Thus, accurate 

determination of unbound plasma drug concentrations is essential in the therapeutic 

monitoring of drugs [262]. Many methodologies are available for determining the 

extent of plasma protein binding of drugs including microdialysis, equilibrium 

dialysis, ultrafiltration, dynamic dialysis, ultracentrifugation, gel filtration, 

electrophoresis, and spectrophotometry and enzyme kinetic methods. In the clinical 

evaluation of drug therapy, equilibrium dialysis and ultrafiltration are the most 

routinely utilised methods. Both of these methods have been proven to be 

experimentally sound and to yield adequate protein binding data [256, 263]. 

 

Warfarin has high binding to plasma proteins (See Section 1.5.2). A small change in 

the fraction of unbound warfarin has the potential to significantly affect the 

anticoagulant activity in a transient manner [18]. Two main techniques for measuring 

unbound drug concentration, equilibrium dialysis and ultrafiltration using the 

addition of radiolabeled warfarin enantiomers or addition of racemic warfarin, have 

been reported to measure the concentration of unbound warfarin enantiomers [263, 

264]. The present study examines the method of ultrafiltration with addition of 

racemic warfarin for the assessment of unbound fractions of warfarin enantiomers. 
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This approach relies on the assumption of concentration independent protein binding 

as established by Banfield et al [265]. 

 

3.2.2 Materials and Methods 

Materials and Reagents 

The materials and methods for section have been presented in Section 3.1.2. 

 

Instrumentation 

Ultrafiltration Tubes (Centrifree YM-30) were purchased from Amicon, Millipore 

Corporation (North Ryde, NSW, Australia). A fixed angle rotor centrifuge (Jouan 

CT422) was used. 

 

Preparation of Ultrafiltrate 

Warfarin standard buffer solution (1 ml, 10 µg/ml) was transferred to Centrifree® 

YM-30 tube. After centrifuging at 1800 g for 20 min at 37oC, 0.1 ml of the 

ultrafiltrate was transferred to a 10 ml volumetric flask and diluted to volume. The 

ultrafiltrate (0.1 µg/ml, in buffer) was then ready for analytical use.  

 

Warfarin plasma standard (1 ml, 10 µg/ml) and different concentrations of warfarin 

in plasma for measuring linear range of warfarin unbound fraction were transferred 

to Centrifree® YM-30 tube. After centrifugation at 1800 g for 20 min at 37oC, the 

ultrafiltrate was ready for analytical use.  
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Extraction Procedures: 

To 0.2 ml warfarin original buffer solution (0.1 µg/ml), warfarin buffer ultrafiltrate 

solution (0.1 µg/ml) and warfarin plasma ultrafiltrate (10 µg/ml), 10 µl of I.S. 

solution (0.0341 mg/ml, naproxen) and sulfuric acid (0.5 M, 140 µl) were added. 

After mixing, 2 ml of dichloromethane: hexane (1:5) was added to extract the 

compounds. After 15 min on a roller bed mixer and centrifugation at 1500 g for 10 

min, the organic phase was separated and evaporated to dryness under nitrogen, 

followed by reconstitution in 100 µl of mobile phase. A 50 µl portion of the 

reconstituted residue was injected into the HPLC. 

 

Data Treatment 

The fraction unbound (fu) was calculated as the ratio of the concentration of each 

warfarin enantiomer in the ultrafiltrate to the corresponding concentration in plasma. 

 

3.2.3 Results 

Table 3-11 shows that after rac-warfarin was spiked into blank plasma the unbound 

fraction of S-warfarin and R-warfarin enantiomers were 0.0051 ± 0.0003 and 0.0057 

± 0.0002, respectively. The warfarin adsorbed by the ultrafiltrate device and 

membrane was less than 10% for S-warfarin and less than 5% for R-warfarin. Table 

3-12 shows that warfarin protein bindings are independent of concentration in the 

range 8.6 – 13.8 µg/ml. 
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Table 3-11. Fraction of unbound warfarin and unadsorbed warfarin by 

ultrafiltration. 

S-warfarin R-warfarin  

Buffer Plasma Buffer Plasma 

Mean concentration before 

ultrafiltration (µg/ml) 

5.0 5.00 5.0 5.00 

Mean concentration after 

ultrafiltration (µg/ml) 

4.6 0.03 4.9 0.03 

Mean of unbound/unadsorbed 

fraction   

0.917 0.005 0.977 0.006 

SD 0.04 0.0003 0.03 0.0002 

CV% 4.7 5.3 3.1 3.9 

n 3 3 3 3 

Note: Concentration of S-warfarin and R-warfarin is half of rac-warfarin. 

n: Number of replicates 

 

Table 3-12. Linear range of fraction of unbound warfarin (n=4). 

Warfarin concentration 

in plasma (µg/ml) 

S-warfarin 

fu 

R-warfarin 

fu 

8.6 0.005 0.005 

10.4 0.005 0.006 

12.1 0.005 0.005 

13.8 0.004 0.004 

Mean 0.005 0.005 

SD 0.001 0.001 

CV% 10.5 16.3 
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3.2.4 Discussion 

The plasma protein binding of warfarin was independent over the range of 8.6 – 13.8 

µg/ml in the present study. This is in agreement with the report of Chan et al [18] 

which demonstrated that plasma protein binding of warfarin was independent over 

the range of 0.275 to 10.55 µg/ml. Therefore, the addition of racemic warfarin to a 

plasma sample made at a concentration of 10 µg/ml before ultrafiltration is not 

expected to alter the original fraction of the unbound warfarin enantiomers in the 

sample. Furthermore, the ultrafiltrate warfarin enantiomers in plasma at this 

concentration can be measured by the presently established method. The results 

demonstrated by this method show good agreement with those previously reported 

by ultrafiltration and equilibrium dialysis methods using radiolabel warfarin 

enantiomers [265]. 

.
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Chapter 4 Variability in Constituents of Herbal 

Medicines 

 

4.1 Introduction 

Herbal medicines are included under the broader definition of complementary 

medicines. To be listed by the Therapeutic Goods Administration (TGA), herbal 

medicine products need to meet requirements for safety and quality, the latter 

requiring that they be manufactured under Good Manufacturing Practice (GMP) 

conditions. Most herbal medicines are listed. Listed herbal medicine products are not, 

however, individually assessed for efficacy but the sponsors are required to hold 

evidence to support efficacy claims for their product [266]. The World Health 

Organization (WHO) publishes guidance concerning the quality assurance of 

pharmaceuticals and the specifications for drug substances and dosage forms and 

provides advice on the validation of manufacturing processes and on the manufacture 

of both investigational products for clinical trials and herbal medicinal products. 

WHO also has a certification scheme to endorse the quality of pharmaceutical 

products moving in international commerce, and the assessment of herbal medicines 

and import procedures for pharmaceutical products [267].  

 

However, there is relatively little information about the quality of herbal medicine 

products in the scientific literature. This partly stems from the complexity of these 
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medicines which often contain a complex mixture of phytochemicals. Several quality 

issues were found in the literature regarding the variability in the content of the 

constituents including Hypericum perforatum [268-270], Ginkgo biloba [271, 272] 

and their commercial extracts in herbal medicine products. 

 

The aim of this chapter was to investigate the recommended dose regimen suggested 

by manufacturers and, using thin-layer chromatography (TLC) as a screening method, 

to assess the quality of different commercial herbal medicine products available in 

Australia. These included St John’s wort (Hypericum perforatum), ginseng (Panax 

ginseng), ginkgo (Ginkgo biloba) and ginger (Zingiber officinale) that were to be 

used in the herb-drug interaction studies with warfarin presented later in this thesis.  

 

4.2 Materials and Methods 

4.2.1 Materials and Reagents 

Commercially available herbal medicine products of St John’s wort included  

• Golden Glow St John’s Wort (Batch H11092, Queensland Biochemics Pty 

Ltd, Virginia, Qld, Australia);  

• Blackmores Hyperiforte™ (St John’s Wort) (Batch 20183, Blackmores Ltd, 

Balgowlah, NSW, Australia);  

• Nature’s Own Hypericum (St John’s Wort) (Batch 7890701, Bullivant’s 

Natural Health Products Pty. Ltd, Virginia, Qld, Australia);  

• Bioglan® Stress Relax with St. John’s Wort (Batch 1331-2, Bioglan Ltd, 

Kirrawee, NSW, Australia);  
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• Greenridge Extra Strength Hypericum (St John’s Wort), (Batch 514900B, 

Greenridge Botanicals (Australia) Pty. Ltd., Toowoomba, Qld., Australia).  

Herbal medicine products containing ginseng included  

• Golden Glow Korean Ginseng (Batch K01251, Queensland Biochemics Pty 

Ltd, Virginia, Qld, Australia);  

• Blackmores Korean Ginseng (Batch 15698, Blackmores Ltd, Balgowlah, 

NSW, Australia);  

• Nature’s Own® Korean Ginseng (Batch 7852805, Bullivant’s Natural Health 

Products Pty. Ltd, Virginia, Qld, Australia); 

• VitaGlow GINZ!NG (Batch 12569, VitaGlow Pty Ltd, Balgowlah, NSW, 

Australia).  

Ginkgo herbal medicine products evaluated included  

• Blackmores Ginkgoforte™, (Batch 20897, Blackmores Ltd, Balgowlah, 

NSW 2093, Australia);  

• Bioglan, (Batch 1268-2); Golden Glow Ginkgo Biloba, (Batch H11169, 

Queensland Biochemics Pty Ltd, Virginia, Qld, Australia);  

• Nature’s Own, Ginkgo Biloba (Batch 7859504, Bullivant’s Natural Health 

Products Pty. Ltd, Virginia, Qld, Australia);  

• BioGinkgo® (Batch 1268-2, Pharmanex Inc., Provo, UT 84601, USA);  

• Flordis Tavonin™ Extract of Ginkgo biloba (Batch 6250202, made in 

Germany by Dr. Willmar Schwabe GmbH & Co. and are marketed in 

Australia by Flordis, Epping, NSW, Australia);  

• Tebonin® forte (Batch 2860200, Dr. Willmar Schwabe Arzneimittel, 

Postfach 41 0925, 76209 Karlsruhe, Germany);  
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• Phytomedicine (Batch 41546A, Phytomedicine Pty Ltd, Dee Why, NSW, 

Australia);  

• Herron Ginkgo Biloba (Batch 53261, Herron Pharmaceuticals Pty Ltd, 

Tennyson, Qld, Australia) and Medi Herb® Ginkgo biloba (Batch 112086, 

Mediherb Pty Ltd, Warwick, Qld, Australia).  

Herbal medicine products that contained ginger included  

• Blackmores Travel Calm Ginger (Batch 19782, Blackmores Ltd, Balgowlah, 

NSW, Australia); Golden Glow Ginger (Batch D10468, Queensland 

Biochemics Pty Ltd, Virginia Qld, Australia); 

• Vcaps™ (Supplier not available); 

• Zinaxin™ (Batch 904002, Ferrosan International Pty. Ltd., Gladesville, NSW, 

Australia). 

 

Analytical standards of specific phyto-constituents including rutin, ginsenoside Rb1, 

ginsenoside Rg1, bilobalide, ginkgolide A, ginkgolide B and ginkgolide C were 

donated from the Phytolaboratory Services, Herbal Medicines Research and 

Education Centre (HMREC), Faculty of Pharmacy, The University of Sydney. 

Resorcinol was purchased from Sigma-Aldrich Pty. Ltd, (Sydney, Australia). The 

purity of standards was not less than 95%. All solvents and reagents were analytical 

grade or HPLC grade. 

 

4.2.2 Instrumentation 

The high performance thin layer chromatographic system consisted of plate of 

chromatography silica gel F254 (Merck 1.05554), TLC band loading and developing 
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device (Camag Linomat IV 1.16) and image device including Camag VideoScan 

Version 1.01, Camag HPTLC Vario System and Camag TLC Software”Cats” 

(Version 3.20) (CAMAG, Sonnenmattstr, 11, CH-4132 Muttenz, Switzerland). 

 

4.2.3 Assessment of Recommended Dose Regimens of Different Brand Herbal 

Medicine Products 

Dose regimens of different brands of herbal medicine products were evaluated and 

compared. Daily dosage equivalents of raw material and the main ingredients either 

known actives or markers were calculated and compared with those mentioned in the 

Commission E monographs for each herbal medicine [73]. 

 

4.2.4 Preparation of Reference Solutions 

Reference solution of rutin (1 mg/ml), ginsenoside Rb1 (0.1 mg/ml) ginsenoside Rg1 

(0.1 mg/ml), bilobalide (1 mg/ml), ginkgolide A (1 mg/ml), ginkgolide B (1 mg/ml) 

and ginkgolide C (1 mg/ml) and resorcinol (1 mg/ml) were prepared in methanol, 

and resorcinol (1 mg/ml) was prepared immediately before use. 

 

4.2.5 Preparation of Test Solutions  

Test Solutions of St John’s Wort 

Golden Glow, Blackmores, Nature’s Own and Bioglan St John’s wort tablets (10 

tablets) were weighed and ground into powder using a mortar and pestle, respectively. 

According to the weight of each tablet and the labelled contents, Golden Glow 

(0.1974 g), Blackmores (0.2836 g), Nature’s Own (0.1955 g), Bioglan (0.4555 g) and 

Greenridge (0.5 ml) St John’s wort, equivalent to 0.5 g of dried Hypericum 
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perforatum were weighed, respectively.  The powdered St John’s wort tablets were 

stirred in 10 ml of methanol, sonicated for 15 min then centrifuged at 1500 g for 10 

min. The supernatants of the methanolic extracts were used as test solutions and a 1 

µl portion was spotted onto the TLC plate for each sample using the loading device. 

 

Test Solutions of Ginseng 

Blackmores ginseng (10 tablets) was weighed and ground into powder with a mortar 

and pestle. According to the weight of each tablet and the labelled contents, 

Blackmores (1.034 g), Golden Glow (1 capsule), Nature’s Own (1 capsule) and 

VitaGlow (1 capsule) ginseng equivalent to 0.5 g of raw Panax ginseng were 

weighed, respectively. The powdered ginseng tablets or capsule contents were stirred 

in 5 ml of methanol, sonicated for 15 min and then centrifuged at 1500 g for 10 min. 

The methanolic supernatants were used as the test solutions and a 1 µl portion was 

spotted onto the TLC plate for each sample using the loading device.  

 

Test Solutions of Ginkgo 

Blackmores, Bioglan, Golden Glow, Nature’s Own, BioGinkgo, Tavonin, Tebonin 

forte, Phytomedicine, Herron and Medi Herb ginkgo tablets (10 tablets) were 

weighed and ground, respectively as above. According to the weight of tablet and the 

labelled contents, Blackmores (2.2626 g), Bioglan (1.3198 g); Golden Glow (1.0403 

g); Nature’s Own (1.8008 g), BioGinkgo (0.3970 g), Tavonin (0.5543 g), Tebonin 

forte (0.5485 g), Phytomedicine (1.5945 g), Herron (1.5708 g) and Medi Herb 

(1.0010 g) ginkgo equivalent to 4 g of raw Ginkgo biloba were weighed, respectively. 
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The powdered ginkgo tablets were stirred in 5 ml of methanol, sonicated for 15 min 

and centrifuged at 1500 g for 10 min. The supernatants of methanolic extracts were 

used as the test solution and a 3 µl portion of test solution was spotted onto the TLC 

plate for each sample using the loading device. 

 

Test Solutions of Ginger 

Golden Glow, Blackmores and Vcaps™ ginger tablet (10 tablets) were weighed and 

ground with mortar and pestle, respectively. According to the weight of each tablet 

and the labelled contents, Golden Glow (0.8277 g), Blackmores (1.2930 g), Vcaps™ 

(0.3710 g) and 1 ml of Zinaxin™ (1 capsule was mixed in 6.6 ml of methanol) ginger 

equivalent to 1.0 g of raw Zingiber officinale were weighed, respectively. Methanol 

(5 ml) was added to each powdered tablet and methanol (4 ml) was added to 1 ml of 

Zinaxin™. Then the powdered ginger dose forms or capsule content of ginger extract 

were shaken for 15 min on a roller and centrifuged for 10 min at 1500 g. The 

supernatant of methanolic extracts were used as the test solution and a 10 µl portion 

was spotted onto the plate for each sample.  

 

4.2.6 TLC of St John’s Wort Preparations  

TLC of St John’s wort preparations was conducted according to the Hypericum 

Monograph in the British Pharmacopeia 2001 [273]. Briefly, extracts of products 

containing hypericum were examined using thin-layer chromatography on a TLC 

silica gel plate. Test and reference solutions (1 µl) were applied to the plate as 5 mm 

bands, spaced 4 mm apart using the Camag Linomat IV loading device. A path of 7 
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cm was developed using a mixture of 6 volumes of anhydrous formic acid, 9 

volumes of water, and 90 volumes of ethyl acetate in the Camag HPTLC Vario 

System. The plate was allowed to dry at 100oC to 105oC for 10 min on the Camag 

heater. A 10 g/l solution of diphenylboric acid aminoethyl ester in methanol was then 

sprayed onto the plate and further treated with a 50 g/l solution of macrogol 400 in 

methanol. After 30 min, the plate was examined under ultraviolet (UV) light at 366 

nm. The TLC image of the constituents of St John’s wort dose forms were captured 

using the Camag VideoScan and Camag TLC Software”Cats”. 

 

4.2.7 TLC of Ginseng Preparations  

TLC of ginseng preparations was conducted according to the Ginseng Monograph in 

the British Pharmacopeia 2001 [144]. Briefly, extracts of products containing 

ginseng were examined using a TLC silica gel plate. Test solution (1 µl) and 

reference solution (3 µl) were applied to the silica gel plate as 5 mm bands, spaced 4 

mm apart using the Camag Linomat IV loading device. A path of 9 cm was 

developed using an unsaturated tank with the upper layer of a mixture of 2.5 ml of 

ethyl acetate, 5 ml of water and 10 ml of butanol, which had been allowed to separate 

for 10 min. The plate was allowed to dry in air and was then dipped in 10% 

methanolic sulfuric acid solution (20 ml of sulphuric acid, 10 ml of methanol and 

170 ml of water) for 1 sec followed by heating at 120oC for 2 min. The TLC image 

of the constituents of ginseng products were captured using the Camag VideoScan 

and Camag TLC Software”Cats” with VideoStore 2 under a UV source at 366 nm. 

 



Chapter 4                Variability in Constituents of Herbal Medicines              117 

4.2.8 TLC of Ginger Preparations  

TLC of ginger preparations was conducted according to the Ginger Monograph in 

the British Pharmacopeia 2001 [198]. Briefly, extracts of products containing 

Zingiber officinale were examined using TLC. Test solution (8 µl) and the resorcinol 

reference solution (1 µl) were applied to the silica gel plate as 5 mm bands, spaced 4 

mm apart using the Camag Linomat IV loading device. The plate was developed 

over 10 cm in the unsaturated Camag HPTLC Vario System using a mixture of 40:60 

(hexane: ether). The plate was allowed to dry in air.  A 10 g/l solution of vanillin in 

sulfuric acid was sprayed onto the plate and examined in the daylight while heating 

at 100oC to 105oC for 10 min. The TLC image of the constituents of ginger dose 

forms was captured using the Camag VideoScan and Camag TLC Software”Cats”. 

  

4.2.9 TLC of Ginkgo Preparations  

TLC of ginkgo preparations were conducted according to the Ginkgo Monograph in 

the Pharmacopeia of P. R. China, 2000 [172]. Briefly, extracts of products containing 

Ginkgo biloba were examined using TLC. Test and reference solutions (1 µl) were 

applied as 5 mm bands, spaced 5 mm apart using the Camag Linomat IV loading 

device to a plate pre-washed with methanol, dried then pre-treated with 4% sodium 

acetate for 20 min and then dried. The plate was developed over 9 cm using a 

mixture of 10 ml volume of toluene, 5 ml volume of ethyl acetate, 5 ml of acetone 

and 0.6 ml of methanol. The plate was allowed to dry and was then dipped in a 

mixture of 8 g of sodium acetate, 120 ml of ethanol, and 80 ml of water (4% sodium 

hydroxide) for 1 sec followed by heated at 160oC for 30 min. The TLC image of the 
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constituents of ginkgo was captured with VideoStore 2 under a UV source at 366 nm 

using Camag VideoScan and Camag TLC Software”Cats”. 

 

4.3 Results 

4.3.1 Comparison of Recommended Dose Regimens of Herbal Medicine 

Products 

St John’s Wort (Hypericum perforatum) 

Hypericum perforatum, also named St John’s wort, is an herbal medicine with 

claimed therapeutic effects on nervous tension and mild anxiety (See Section 1.7). 

There is clear evidence of its antidepressant actions (See Section 1.7). Daily dosage 

according to the Commission E monograph [73] for hypericum is 2-4 g per day of 

chopped or powdered herb for internal use, or 0.2-1.0 mg of total hypericin in other 

forms of preparation via alternative application. The daily dosage regimens 

recommended on the labels of different commercial herbal medicine products 

containing St John’s wort as a single herbal ingredient are summarised in Table 4-1. 

Variation in the recommended dosage regimens and quality was found in different 

commercial products of St John’s wort. For St John’s wort, the daily dose 

recommended on Blackmores (raw: 5.4 g), Nature’s Own (raw: 5.4 g) and 

Greenridge (raw: 6 g) product labels are higher than recommended according to the 

Commission E monographs for St John’s wort (raw: 2-4 g). However, the 

recommended daily dose suggested on the Bioglan (raw: 3 g), Golden Glow (raw: 2-

4 g) and Remotiv (raw: 2.73 g) product labels are consistent with the dose 

recommended by the Commission E monographs for hypericum.    
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Ginseng 

Ginseng is an herbal medicine with claimed efficacy in “stress relief” (See Section 

1.8). The daily recommended dosage regimens according to the Commission E 

monograph for Panax ginseng is 1-2 g of Panax ginseng root per day for up to three 

months [146].  The daily dosage regimen recommended on the labels of different 

commercial herbal medicine products containing ginseng as a single ingredient are 

summarised in Table 4-2. For ginseng, the daily doses given on the Blackmores (raw: 

1g) and Nature’s Own (raw: 1 g) product labels are consistent with the dose 

recommended by the Commission E.  
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In contrast, the daily dose given on the VitaGlow (raw: 0.55-1.1 g) product label is 

lower than the dose recommended by the Commission E while the daily dose given 

on the Golden Glow (raw: 3g) product label is higher than the dose recommended by 

the Commission E. 

 

Ginger 

Ginger (Zingiber officinale) is an herbal medicine with claimed therapeutic benefits 

in travel sickness, morning sickness and indigestion (See Section 1.10). 

Recommended dosage according to the Commission E monograph for Zingiber 

officinale is dose of 2-4 g of cut rhizome or dried extract, or 0.25-1.0 g of powdered 

rhizome, three times daily [199]. Dosage regimens of ginger on the labels of different 

commercial product available in Australia are summarised in Table 4-3. For ginger, 

the recommended daily dose of the Golden Glow (raw: 2-4 g) product is consistent 

with dose recommended in the Commission E monograph, but daily dose raw 1-2 g 

given on the Vcaps™ product label is lower than the dose recommended in the 

Commission E. The dose recommended on the Blackmores product is only for short 

term use, so a valid comparison with the Commission E recommended dose is not 

appropriate. 
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Ginkgo 

Ginkgo biloba leaf preparation is an herbal medicine with claimed therapeutic 

benefits in assisting blood circulation (See Section 1.9). The recommended daily 

dosage according to the Commission E monograph for Ginkgo biloba is 120-240 mg 

(raw material: 6 – 12 g) standardised dry extract in liquid or solid pharmaceutical 

dose form for oral administration, given in two or three divided daily doses [175]. 

Recommended daily dosage regimens on different commercial ginkgo product labels 

are summarised in Table 4-4. For ginkgo, the daily doses given on the Nature’s Own 

(raw: 1.5-3 g) and Bioglan (raw: 2-6 g) product labels are lower than the dose 

recommended in the Commission E monograph for Ginkgo biloba. The daily doses 

given on the Blackmores (raw: 6 g), BioGinkgo (raw: 6 g), Golden Glow (6 g), 

Tavonin 6-12 g), Phytomedicine (7.5 g), Herron (raw: 6 g) and Medi Herb (6 g) 

product labels are consistent with the dose recommended in the Commission E 

monograph for the herb. 

 



Chapter 4                Variability in Constituents of Herbal Medicines              126 

D
ai

ly
 d

os
ag

e 
re

gi
m

en
t 

eq
ui

va
le

nt
 

to
 

ra
w

 
m

at
er

ia
l 

an
d 

m
ai

n 
in

gr
ed

ie
nt

s  

R
aw

 m
at

er
ia

l: 
6 

g 
G

in
kg

o 
fla

vo
ng

ly
co

si
de

s:
 3

2.
1 

m
g 

G
in

kg
ol

id
es

: 8
.1

 m
g 

 
B

ilo
ba

lid
e:

 8
.1

 m
g  

R
aw

 m
at

er
ia

l: 
1.

5-
3 

g 
G

in
kg

o 
fla

vo
ne

 g
ly

co
si

de
s:

 7
.2

-1
4.

4 
m

g  

R
aw

 m
at

er
ia

l: 
2-

6 
g 

G
in

kg
o 

fla
vo

ne
 g

ly
co

si
de

s:
 9

.6
-2

8.
8 

m
g  

A
ct

iv
e 

in
gr

ed
ie

nt
 p

er
 t

ab
le

t 
or

 
ca

ps
ul

e  

G
in

kg
o 

bi
lo

ba
 

(G
in

kg
o)

 
ex

tra
ct

 
eq

ui
va

le
nt

 
to

 
dr

y 
le

af
 

2 
g 

(s
ta

nd
ar

di
se

d 
to

 
co

nt
ai

n 
gi

nk
go

 
fla

vo
ne

 g
ly

co
si

de
s 

10
.7

 m
g 

an
d 

gi
nk

go
lid

es
 

an
d 

B
ilo

ba
lid

e 
2.

7 
m

g)
.  

C
on

ce
nt

ra
te

d 
st

an
da

rd
is

ed
 G

in
kg

o 
bi

lo
ba

 a
s 

ex
tra

ct
 e

qu
iv

al
en

t t
o 

dr
y 

le
af

 
75

0 
m

g.
 

St
an

da
rd

is
ed

 
to

 
gi

nk
go

 f
la

vo
ne

 g
ly

co
si

de
s 

3.
6 

m
g 

(2
4%

).  

St
an

da
rd

is
ed

 
ex

tra
ct

 
dr

y 
co

nc
. 

Eq
ui

va
le

nt
 d

ry
 g

in
kg

o 
bi

lo
ba

 le
af

 2
 

g 
eq

ui
va

le
nt

 
to

 
gi

nk
go

 
fla

vo
ne

 
gl

yc
os

id
es

 9
.6

 m
g  

A
du

lt 
do

sa
ge

 
an

d 
w

ei
gh

t 
pe

r 
ta

bl
et

 o
r 

ca
ps

ul
e  

Ta
ke

 o
ne

 t
ab

le
t 

th
re

e 
tim

es
 d

ai
ly

 
w

ith
 m

ea
ls

. 
W

ei
gh

t p
er

 ta
bl

et
: 1

 g
 

Ta
ke

 1
 o

r 
2 

ca
ps

ul
es

 t
w

ic
e 

da
ily

. 
O

r 
as

 a
dv

is
ed

 b
y 

yo
ur

 h
ea

lth
 c

ar
e 

pr
of

es
si

on
al

. 
W

ei
gh

t p
er

 c
ap

su
le

: 0
.3

4 
g  

Ta
ke

 1
-3

 ta
bl

et
s d

ai
ly

 w
ith

 a
 m

ea
l. 

W
ei

gh
t p

er
 ta

bl
et

: 0
.6

6 
g  

T
ab

le
 4

-4
.  

D
ai

ly
 d

os
ag

e 
re

gi
m

en
 o

f d
iff

er
en

t c
om

m
er

ci
al

 p
ro

du
ct

s o
f g

in
kg

o.
 

(1
20

-2
40

 m
g 

(r
aw

 m
at

er
ia

l: 
6 

– 
12

 g
) s

ta
nd

ar
di

se
d 

dr
y 

ex
tra

ct
 w

as
 re

co
m

m
en

de
d 

on
 C

om
m

is
si

on
 E

) 

B
ra

nd
 n

am
e  

B
la

ck
m

or
es

 
G

in
kg

of
or

te
™

 
A

U
ST

 L
 6

71
01

 
B

at
ch

 2
08

97
 

Ex
pi

ry
 d

at
e:

 0
72

00
4  

N
at

ur
e’

s O
w

n;
 

G
in

kg
o 

bi
lo

ba
; 

A
U

ST
 L

 2
84

60
 7

51
/4

 
B

at
ch

: 7
85

95
04

; 
Ex

pi
ry

 d
at

e:
 0

22
00

4  

B
io

gl
an
®

; 
Su

pe
r g

in
kg

o 
20

00
 

A
U

ST
 L

 6
14

61
 

B
at

ch
: 1

26
8-

2 
Ex

pi
ry

 d
at

e:
 0

12
00

5  

 



Chapter 4                Variability in Constituents of Herbal Medicines              127 

D
ai

ly
 d

os
ag

e 
re

gi
m

en
t e

qu
iv

al
en

t 
to

 
ra

w
 

m
at

er
ia

l 
an

d 
m

ai
n 

in
gr

ed
ie

nt
s 

R
aw

 m
at

er
ia

l: 
6 

g 
G

in
kg

o 
(G

in
kg

o 
bi

lo
ba

) l
ea

f e
xt

ra
ct

 
(5

0:
1)

: 1
20

 m
g 

R
aw

 m
at

er
ia

l: 
6 

g 
G

in
kg

o 
fla

vo
ng

ly
co

si
de

s:
 3

2.
1 

m
g 

G
in

kg
ol

id
es

: 8
.1

 m
g 

B
ilo

ba
lid

e:
 8

.1
 m

g 

R
aw

 m
at

er
ia

l: 
6-

12
 g

 
G

in
kg

o 
fla

vo
ng

ly
co

si
de

s:
 

28
.8

-
57

.6
 m

g 
G

in
kg

ol
id

es
: 7

.2
- 1

4.
4m

g 
 

B
io

ba
lid

e:
 7

.2
-1

4.
4 

m
g 

N
ot

 a
va

ila
bl

e 

A
ct

iv
e 

in
gr

ed
ie

nt
 p

er
 t

ab
le

t 
or

 
ca

ps
ul

e 

Le
af

 (5
0:

1)
 e

xt
ra

ct
 s

ta
nd

ar
di

ze
d 

to
 

sc
ie

nt
ifi

ca
lly

- 
su

pp
or

te
d 

ra
tio

s 
of

 
27

%
 

gi
nk

go
 

fla
vo

ne
 

gl
yc

os
id

es
 

an
d 

7%
 te

rp
en

e 
la

ct
on

es
 

Ex
tra

ct
 

eq
ui

va
le

nt
 

dr
y 

gi
nk

go
 

bi
lo

ba
 

le
af

 
ap

pr
ox

im
at

el
y 

2 
g 

st
an

da
rd

iz
ed

 
eq

ui
va

le
nt

 
gi

nk
go

 
fla

vo
ne

 
gl

yc
os

id
es

 
10

.7
 

m
g,

 
St

an
da

rd
iz

ed
 

eq
ui

va
le

nt
 

gi
nk

go
lid

es
 

an
d 

B
ilo

ba
lid

e 
2.

7 

Ea
ch

 
ta

bl
et

 
co

nt
ai

ns
 

ex
tra

ct
s 

eq
ui

va
le

nt
 t

o 
dr

y 
G

in
kg

o 
bi

lo
ba

 
le

af
 2

 g
 s

ta
nd

ar
di

se
d 

to
: 

G
in

kg
o 

fla
vo

ne
 

gl
yc

os
id

es
 

9.
6 

m
g 

G
in

kg
ol

id
es

 a
nd

 b
io

ba
lid

e 
2.

4 
m

g 

Ea
ch

 t
ab

le
t 

co
nt

ai
ns

 e
xt

ra
ct

s 
(4

0 
m

g)
 

eq
ui

va
le

nt
 

to
 

dr
y 

G
in

kg
o 

bi
lo

ba
 le

af
 2

 g
 (3

5 
– 

67
:1

). 

A
du

lt 
do

sa
ge

 
an

d 
w

ei
gh

t 
pe

r 
ta

bl
et

 o
r 

ca
ps

ul
e 

Ta
ke

 1
 t

ab
le

t 
tw

ic
e 

da
ily

 w
ith

 a
 

m
ea

l. 
D

o 
no

t c
he

w
 ta

bl
et

. 
W

ei
gh

t p
er

 ta
bl

et
: 0

.3
 ±

 0
.0

3g
 

Sw
al

lo
w

 1
 ta

bl
et

, 3
 ti

m
es

 d
ai

ly
. 

W
ei

gh
t p

er
 ta

bl
et

: 0
.5

 ±
 0

.0
4 

g 

Ta
ke

 o
ne

 to
 tw

o 
ta

bl
et

s t
hr

ee
 ti

m
es

  
a 

da
y.

 
M

ea
n 

ta
bl

et
 w

ei
gh

t: 
0.

27
 ±

 0
.0

3 
g 

O
ne

 ta
bl

et
 th

re
e 

tim
es

 d
ai

ly
 b

ef
or

e 
m

ea
ls

, 
M

ea
n 

ta
bl

et
 w

ei
gh

t: 
0.

27
 ±

 0
.0

2 
g 

T
ab

le
 4

-4
.  

C
on

tin
ue

d.
 

 B
ra

nd
 n

am
e 

B
io

G
in

kg
o®

 E
xt

ra
 S

tre
ng

th
* 

B
at

ch
: 1

08
01

 
Ex

pi
ry

 d
at

e:
 0

42
00

3 
 G

ol
de

n 
G

lo
w

 
G

in
kg

o 
B

ilo
ba

 2
00

0;
 

A
U

ST
 L

 6
36

05
 

B
at

ch
: H

11
16

9 
Ex

pi
ry

 d
at

e:
  0

72
00

4 
 Ta

vo
ni

n™
 (E

G
B

 7
61

) 
A

U
ST

L 
76

75
9 

B
at

ch
: 6

25
02

02
 

Ex
pi

ry
 d

at
e:

  0
12

00
5 

Te
bo

ni
n®

 fo
rte

 (E
G

B
 7

61
) 4

0 
m

g*
 

B
at

ch
: 2

86
02

00
 

Ex
pi

ry
 d

at
e:

 1
22

00
4 

* 
N

ot
 a

va
ila

bl
e 

in
 A

us
tra

lia
 

 



Chapter 4                Variability in Constituents of Herbal Medicines              128 

D
ai

ly
 d

os
ag

e 
re

gi
m

en
t 

eq
ui

va
le

nt
 

to
 

ra
w

 
m

at
er

ia
l 

an
d 

m
ai

n 
in

gr
ed

ie
nt

s 

R
aw

 m
at

er
ia

l: 
7.

5 
g 

G
in

kg
o 

fla
vo

ne
 g

ly
co

si
de

s:
 4

0.
05

 
m

g 

R
aw

 m
at

er
ia

l: 
6 

g 
G

in
kg

o 
fla

vo
ne

 g
ly

co
si

de
s:

 3
2.

1 
m

g 
G

in
kg

ol
id

es
: 8

.1
 m

g 
B

ilo
ba

lid
e:

 8
.1

 m
g 

R
aw

 m
at

er
ia

l: 
6 

g 
G

in
kg

o 
fla

vo
ne

 g
ly

co
si

de
s:

 3
2.

1 
m

g 
G

in
kg

ol
id

es
: 8

.1
 m

g 
B

ilo
ba

lid
e:

 8
.1

 m
g 

A
ct

iv
e 

in
gr

ed
ie

nt
 p

er
 t

ab
le

t 
or

 
ca

ps
ul

e 

G
in

kg
o 

bi
lo

ba
 e

xt
ra

ct
 e

qu
iv

. 
To

 
dr

ie
d 

le
af

 2
50

0 
m

g.
 S

ta
nd

ar
di

se
d 

to
 

co
nt

ai
n 

gi
nk

go
 

fla
vo

ne
 

gl
yc

os
id

es
 1

3.
35

 m
g 

Ea
ch

 
ta

bl
et

 
co

nt
ai

ns
: 

G
in

kg
o 

(G
in

kg
o 

bi
lo

ba
) 

ex
tra

ct
 e

qu
iv

al
en

t 
to

 d
ry

 l
ea

f 
2 

g 
st

an
da

rd
is

ed
 t

o 
co

nt
ai

n 
G

in
kg

o 
Fl

av
on

gl
yc

os
id

es
 

10
.7

 
m

g,
 

G
in

kg
ol

id
es

 
an

d 
B

ilo
ba

lid
e 

2.
7 

m
g,

 

Ea
ch

 ta
bl

et
 c

on
ta

in
s 

ex
tra

ct
 e

qu
iv

. 
D

ry
: 

G
in

kg
o 

bi
lo

ba
 

le
af

 
2.

0 
g 

st
an

da
rd

. 
to

 
gi

nk
go

 
fla

vo
ne

 
gl

yc
os

id
es

 
10

.7
 

m
g 

st
an

da
rd

 
to

 
gi

nk
go

lid
es

 a
nd

 b
ilo

ba
lid

e 
2.

7 
m

g 

A
du

lt 
do

sa
ge

 
an

d 
w

ei
gh

t 
pe

r 
ta

bl
et

 o
r 

ca
ps

ul
e 

O
ne

 
ta

bl
et

 
th

ric
e 

da
ily

 
be

fo
re

 
m

ea
ls

 
Ta

bl
e 

w
ei

gh
t: 

1.
0 

± 
0.

1 
g 

A
du

lts
: T

ak
e 

on
e 

ta
bl

et
 th

re
e 

tim
es

 
da

ily
 w

ith
 fo

od
 

Ta
bl

e 
w

ei
gh

t: 
0.

8 
± 

0.
05

 g
 

Ta
ke

 1
 ta

bl
et

 3
 ti

m
es

 d
ai

ly
, 

Ta
bl

e 
w

ei
gh

t: 
0.

5 
± 

0.
05

g 

T
ab

le
 4

-4
. C

on
tin

ue
d.

 
 B

ra
nd

 n
am

e 

Ph
yt

om
ed

ic
in

e 
gi

nk
go

 2
50

0 
A

U
ST

 L
 7

54
21

 
B

at
ch

: 4
15

46
A

  
Ex

pi
ry

 d
at

e:
  0

62
00

3 

H
er

ro
n 

G
in

kg
o 

B
ilo

ba
 2

00
0 

A
U

ST
 L

 7
68

46
 

B
at

ch
: 5

32
61

 
Ex

pi
ry

 d
at

e:
 0

72
00

5 

M
ed

i H
er

b®
 

Ph
yt

os
yn

er
gi

st
™

 
G

in
kg

o 
bi

lo
ba

 
A

U
ST

 L
 7

63
85

 
B

at
ch

: 1
12

08
6 

Ex
pi

ry
 d

at
e:

 0
52

00
5 

 



Chapter 4                Variability in Constituents of Herbal Medicines              129 

 

4.3.2 TLC of Herbal Medicines 

Figure 4-1 shows TLC chromatograms of different commercial products of 

hypericum with a run time of 25 min. The chromatogram obtained with the reference 

solution shows a band in the lower third zones which is attributable to rutin and 

which shows yellow-orange fluorescence. The chromatogram obtained with the test 

solution shows reddish-orange fluorescent zones of rutin and hyperoside in the lower 

third, the band corresponding to pseudohypericin in the lower part of the upper third 

and above it, band corresponding to hypericin, both with red fluorescence. Other 

yellow or blue fluorescence zones are also visible. These results suggest that the 

Bioglan, Natures Own and Golden Glow products have a pattern and amount of 

constituents, which are consistent with comparable quality. In contrast, the 

Greenridge product appears to lack some constituents suggesting it is of lower 

quality. Based on the qualitative TLC results obtained from different commercial St 

John’s wort products (Figure 4-1), the Bioglan product was selected for use in 

clinical trials to investigate drug interactions between warfarin and St John’s wort 

that are described in this thesis. 
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TLC of St John’s Wort (Hypericum) 

 

 

 

Figure 4-1. TLC of different commercial products of St John’s wort and 
standard constituents. 
 
A: Golden Glow; B: Blackmores Hyperiforte™; C: Nature’s Own; D: Rutin (1 

mg/ml); E: Bioglan® Stress Relax with St John’s wort; F: Greenridge (The labelled 

standards have been identified based on their expected retention times in this TLC 

system according to the British Pharmacopoeia 2001). 

 

-Hypericin 
-Pseudohypericin 

-Hyperoside 

-Rutin 

 

 
    A        B       C       D       E       F 
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Figure 4-2 shows the TLC chromatograms of different commercial products 

containing Panax ginseng over a run time of 35 min. From the TLC chromatograms 

of ginseng, it can be seen that the Golden Glow and Blackmores Korean ginseng 

products have well defined TLC finger prints while the pattern of constituents is less 

well defined for the Nature’s Own and Vita Glow products. These qualitative data 

suggest that the Golden Glow and Blackmores products have comparable quality. In 

contrast, the quality of the Nature’s Own and Vita Glow herbal medicine products 

are not as well established. Based on the TLC comparison of different commercial 

products of ginseng, the Golden Glow product was deemed to be of appropriate 

quality for use in the clinical studies. 

 

Figure 4-3 and Figure 4-4 show TLC chromatograms of different commercial 

products of Ginkgo biloba with a run time of 20 min. It suggests that all products 

contain a similar range and amount of constituents. The Ginkgo biloba extract of 

EGb 761 is used in the Tavonin™ product.  Several clinical trials using EGb 761 

extract have already been performed with this ginkgo extract (as reviewed in Section 

1.9), so the Tavonin™ product was selected for use in subsequent clinical trials to 

investigate drug interactions between warfarin and this herbal medicine. 

 

Figure 4-5 shows TLC chromatograms of different commercial products of Zingiber 

officinale. The chromatogram obtained with the reference solution shows an intense 

red band (resorcinol) in the lower half of the TLC plate.  
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TLC of Ginseng 

 

 

 

Figure 4-2. TLC of different commercial products of ginseng and standard 
constituents. 
 
A: Ginsenoside Rb1 (0.1 mg/ml); B: Blackmores; C: Nature’s Own; D: Golden 

Glow; E: Vita Glow; F: Ginsenoside Rg1 (0.1mg/ml). 

-Rg1 

-Rb1 

    A       B        C        D       E       F 
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-Ginkgolide C 

 

 TLC of Ginkgo 

 

 

 

Figure 4-3. TLC of different commercial products of ginkgo and standard 
constituents. 
 
A: Ginkgolide B (1 mg/ml); B: Bilobalide (1 mg/ml); C: Blackmores; D: Bioglan; E: 

Golden Glow; F: Nature’s Own; G: BioGinkgo; H: Ginkgolide A (1 mg/ml); I:  

Ginkgolide C (1 mg/ml). 

 

 

 

-Bilobalide 

-Ginkgolide A 

-Ginkgolide B 
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-Ginkgolide C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4.  TLC of different commercial products of ginkgo and standard 
constituents. 
 
A: Ginkgolide B (1 mg/ml); B: Bilobalide (1 mg/ml); H: Ginkgolide A (1 mg/ml); I:  

Ginkgolide C (1 mg/ml); J: Tavonin™; K: Tebonin®forte; L: Phytomedicine; M: 

Herron; N: Medi Herb. 

 

-Ginkgolide A 
-Ginkgolide B 

-Bilobalide 

      A      B       J       K       L       M      N       H      I 
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TLC of Ginger 

 

 

 

Figure 4-5. TLC of different commercial products of ginger and standard 
constituent. 
 
 A: Golden Glow; B: Blackmores, C Resorcinol (1 mg/ml), D: Vcaps™, E: Zinaxin™ 

(The standard of gingerol has been identified based on the expected retention time 

for this TLC system according to British Pharmacopoeia 2001). 

-Resorcinol
-Gingerol 

       A        B       C       D        E 
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The chromatogram obtained with the test solutions shows two intense violet bands 

(gingerols) below the resorcinol band. These data suggest that the Blackmores 

product has a well defined constituent finger-print and hence, this product was used 

in subsequent clinical trial to investigate drug interactions between warfarin and 

ginger.  

  

4.4 Discussion 

The daily dosage regimens of these four herbal medicines vary according to different 

commercial products. However, most are within the recommended dosage range 

suggested by the Commission E. The main ingredients were comparable in different 

commercial products of ginseng, ginger and ginkgo, but there were notable 

differences between different commercial products of St John’s wort. The most 

likely explanation is that these differences between products arise from the different 

sources of herbal medicines and the different manufacturing processes used for these 

products including herb extraction, purification, drying and dosage formulation. TLC 

was used in this study as a method for quality screening of different brands of 

commercial herbal medicines. It should be noted that in this study pharmacopoeial 

methods have been used to investigate the quality of herbal medicines to facilitate 

product selection. The exact concentration of active or marker compounds has not 

been quantitated. 

 

This qualitative study has highlighted some differences in the dose recommendations 

and pattern of different constituents between herbal medicine products. Similar 
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results regarding dosage issues of herbal medicines have also been noted in the 

literature. For example, Garrard et al [268] investigated the 10 most commonly 

purchased herbs based on their highest sales (as dollars) in 1998 including echinacea, 

St John's wort, ginkgo, garlic, saw palmetto, ginseng, goldenseal, aloe, Siberian 

ginseng and valerian. A large range in label ingredients and recommended daily dose 

were found in these 10 herbal medicine products. Among the 880 products 

investigated for these ten herbal medicines, 43% were consistent with product labels 

in ingredients and recommended daily dose, 20% in ingredients only, and 37% were 

either not consistent this recommended doses or the labeled information was 

insufficient to assess dosing guidelines. 

 

In contrast to conventional medicines, the pharmaceutical properties of most herbal 

medicine products are poorly characterized. Since it is difficult to find the individual 

components, which are responsible for the observed or claimed pharmacological 

activities, in many cases the whole plant extract is considered to be the “active” part 

of the dose form. However, where the active components or extraction markers have 

been identified, these constituents should be used to establish a quality control 

monograph. Such a monograph can be used to ensure the quality of herbal medicine 

products from batch to batch, between different brands of commercial herbal 

medicine products involving the same herbal ingredients and to compare products 

with respect not only to content uniformity but also to their biopharmaceutical 

properties. With the increasing use of analytical methods such as HPLC, GC and 

TLC to investigate the quality control of herbal medicines, there is greater 

understanding of the complex nature of many herbal medicines.   
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Quality issues including content uniformity and stability are critical issues for herbal 

medicine products. Numerous quality studies have been done on products containing 

St John’s wort but few studies have been conducted on ginseng, ginkgo and ginger. 

Bergonzi et al [269] investigated samples of Hypericum perforatum, including the 

dried extracts and four commercially available dried extracts, using HPLC to 

determine the relative concentration of the main constituents of this herb. The total 

flavonol content ranged from 4.58% to 15.90%; hypericins ranged from 0.05% to 

0.11%; and hyperforins ranged from 1.37% to 20.80% in these products. For 

commercial dried extracts, their flavonol content varied from 10.64% to 15.01%, 

hypericins varied from 0.03% to 0.20%, and hyperforins varied from 1.18% to 6.54% 

[269]. Batch to batch reproducibility of St. John’s wort herbal medicine products has 

been performed by Wurglics et al [274]. These researchers analyzed both hyperforin 

and hypericin content from five batches from each of eight manufacturers. 

Hyperforin concentrations were analyzed by HPLC, and total hypericin 

concentrations were determined by polarography, an electrochemical method. 

Widely differing amounts of hypericin and hyperforin were found in some products 

[274]. Bilia et al [275] evaluated thermal and photostability of a commercial dried 

extract and capsules of St. John's wort. In addition, capsules of different colors 

corresponding to different opacity and pigment contents were also evaluated as the 

primary packaging of the herbal medicine product. Tests in the secondary pack were 

performed using amber containers. HPLC was employed for determination of the 

stability of all the characteristic constituents including flavonols, hyperforins and 

hypericins. Results of the photostability test showed all the constituents to be 

photosensitive under the tested conditions. However, capsules of different opacity 
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and containing different pigments influenced the stability of the different classes of 

constituents. Amber containers, suggested as secondary packages, only partly 

influenced the photostability of the investigated constituents. Long-term thermal 

stability testing by measuring t90 of hyperforins and hypericins, respectively,  showed 

the stable period was less than 4 months even if the antioxidants ascorbic and citric 

acids were added to the formulation.  

 

Besides the quality issues mentioned above, issues related to phytoequivalence or 

bioequivalence of commercial herbal medicine remains an area of research. One 

study conducted by Westerhoff et al [276] investigated the dissolution of specific 

constituents of St John’s wort products. The components of St John's wort including 

phloroglucines, naphthodianthrones and the flavonoids, which were known or 

suspected to play a role in its antidepressant activity, were measured in the 

dissolution study.  The study demonstrated that products had notably different 

release profiles of selected constituents. Another conclusion was that bioequivalence 

was not likely to be demonstrated even though the label claims on these St John’s 

wort products indicated that these products should be pharmaceutically equivalent 

[276]. 

 

Kressmann et al [271, 272] published two separate studies which aimed to identify 

the quality issues of ginkgo products and the influence on the bioavailability of 

ginkgo constituents. A variety of products on the USA market was studied including 

quantity of constituents and in vitro dissolution. Flavone glycosides ranged from 

24% to 36%, terpene lactones from 4% to 11% and the ginkgolic acids from < 500 
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ppm to about 90000 ppm were found in these ginkgo products. Comparing the 

dissolution rates of terpene lactones and flavone glycosides within the single 

products, most of the products released more than 75% of the content of both 

components within 30 min. However, several products showed differences in 

dissolution rates. Furthermore, two different Ginkgo biloba brands were analysed for 

dissolution rates and relative bioavailability in terms of ginkgolide A, ginkgolide B 

and bilobalide. Dissolution rates at pH 1 and 4.5 were conducted according to the 

USP 23. The relative bioavailability was investigated after single oral administration 

of 120 mg Ginkgo biloba extract as tablets or capsules in twelve healthy male 

volunteers using an open-label, randomized crossover design. Significant difference 

in AUC0-∞, tmax and Cmax in term of ginkgolide A, ginkgolide B and bilobalide were 

found in the test and reference products. The poor dissolution rate of the ginkgo 

product resulted in poor bioavailability. The results demonstrated that the two ginkgo 

products were not considered to be bioequivalent [271].  

 

Only in the last few decades, reports of clinical trials started to appear in the 

literature that compare the constituents of different products using in vivo 

investigations [277]. Most reports have been based on observational trials and were 

rarely conducted according to the Good Clinical Practice (GCP). Recently, clinical 

studies with herbal medicines have started to be performed according to the GCP 

requirement by a few pharmaceutical companies. Compared with conventional 

medicines, the complex composition of herbal medicines makes it difficult to carry 

out pharmacodynamic and pharmacokinetics studies. It is not unreasonable that 

clinical development of herbal medicine products should be conducted according to 
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the general principles of conventional drug development. However, without rigorous 

phytoequivalence studies, the results of a clinical trial performed with a particular 

brand of herbal medicine product cannot be easily or reliably extrapolated to other 

brands of herbal medicine products.  
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Chapter 5 Effect of St John’s Wort and Ginseng 

on the Pharmacokinetics and Pharmacodynamics of 

Warfarin in Healthy Subjects 

 

5.1 Introduction 

The anticoagulant warfarin has an important place in the management of 

cardiovascular disease in the community where people have free access to herbal 

medicines. The narrow therapeutic range of warfarin and its metabolism by 

cytochrome P450 (CYP) make it prone to potentially life-threatening interactions and 

result in warfarin being one of the most frequently investigated drugs with respect to 

drug interactions [9]. St John’s wort (Hypericum perforatum) is a herbal medicine 

widely used in the community for the management of a range of conditions including 

depression.  Numerous drug interactions with St John’s wort have been documented 

based on case reports, and in vitro and in vivo studies [8, 74, 75]. There are a number 

of case reports suggesting that co-administration of St John’s wort decreases the 

effects of warfarin [8]. The Medical Products Agency (MPA, Sweden) has received 

seven case reports of a reduced anticoagulant effect and decreased INR of warfarin 

associated with co-administration of St John’s wort [75].   Similarly, over the period 

of October 1992 to September 2000, the UK Committee on Safety of Medicines and 

the Medicines Control Agency received 35 reports of suspected interactions between 

St John’s wort and conventional medicines; of these four were related to potential 
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interactions with warfarin [74]; two cases reported an increase in INR and two cases 

reported a decrease in INR. Despite these observations, the possible interaction 

between warfarin and St John’s wort has not been systemically investigated.  

 

Similarly, ginseng (Panax ginseng) is also widely used in the community for a 

variety of indications, but few drug interaction studies have been undertaken. There 

is a published case report of decreased effect of warfarin in a patient receiving 

ginseng [167], but a study in rats found no effect of ginseng on the pharmacokinetics 

or pharmacodynamics of warfarin [168]. The conclusion from a recent systematic 

review was that patients who take warfarin with ginseng should regularly monitor 

their INR [148].  

 

The aim of the present study was to investigate the possible drug interactions 

between warfarin and these two widely used herbal medicines in healthy subjects 

using single herbal ingredient products of known quality. The results from this 

chapter have been published in the British Journal of Clinical Pharmacology [278]. 

 

5.2 Materials and Methods 

The materials and methods for this chapter have been presented in Chapter 2. 

 

 

 

. 
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5.3 Results 

5.3.1 Subjects 

Twelve healthy male subjects were recruited into and completed the study in three 

treatment groups. Subjects were aged between 20 to 39 years and within 15% of 

ideal body weight for height and build. Subjects came from a diverse ethnic mix (8 

Caucasians, 4 Asians).  All subjects were non-smokers and met the inclusion criteria 

outlined in Section 2.1.2. The demographic data for the subject cohort are described 

in Table 5-1. 

 

5.3.2 Results of Statistical Analysis 

ANOVA was performed on log transformed parameters including AUC(0-∞) and Cmax 

of S-warfarin and R-warfarin and AUC0-168 of INR. Sequence and period factors of 

AUC(0-∞) of S-warfarin and R-warfarin and AUC0-168 of INR were not identified as 

being statistically significant while treatment was significantly different (Appendix 

1-5). The lack of a period or sequence effect supports the observation that the trial 

design, especially the washout period, was adequate to exclude any carryover effect 

of St John’s wort, ginseng and warfarin. This is especially important given that St 

John’s wort has been shown to be an inducer of drug metabolising enzymes.  

 

5.3.3 Pharmacokinetics of S-warfarin and R-warfarin 

There was a significant difference in AUC0-∞, t1/2 and CL/F for both S-warfarin and 

R-warfarin following pre-treatment with St John’s wort. By contrast, there were no 

significant changes in these parameters following treatment with ginseng. Neither St 
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John’s wort nor ginseng affected the apparent volume of distribution, Cmax or tmax of 

the warfarin enantiomers (Figure 5-1 to 5-12, Table 5-2 and Table 5-3).  

 

Table 5-1. Subject demographic data (n=12). 

Subject Age (years) Weight (kg) Height (cm) Ethnicity 

1 24 66 179 Caucasian 

2 27 65 175 Caucasian 

3 36 66.4 163 Asian 

4 22 76 178 Asian 

5 21 108.9 189.5 Caucasian 

6 22 91 187.5 Caucasian 

7 23 94 185 Caucasian 

8 20 51 179 Caucasian 

9 22 70 175 Caucasian 

10 25 68 169.5 Asian 

11 35 70 180 Caucasian 

12 39 65 168 Asian 

Mean ± SD 26.3 ± 6.6 74.3 ± 15.9 177.4 ± 7.9  
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Figure 5-1. S-warfarin concentration-time profiles following administration of a 

single 25 mg oral dose of rac-warfarin either alone (warfarin only), or warfarin 

and ginseng (GS), or warfarin and St John’s wort (SJW). Data are presented as 

Mean (± SD, n=12) with semi-log (A) and linear (B) plots. Individual subject 

data are shown in Appendix 11. 
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Figure 5-2. R-warfarin concentration-time profiles following administration of a 

single 25 mg oral dose of rac-warfarin either alone (warfarin only), or warfarin 

and ginseng (GS), or warfarin and St John’s wort (SJW). Data are presented as 

mean (± SD, n=12) with semi-log (A) and linear (B) plots. Individual subject 

data are presented in Appendix 11. 
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Table 5-2. Warfarin pharmacokinetic parameters following administration a 

single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 

wort (WF + SJW) or ginseng (WF + GS). Data are presented as mean ± SD 

(n=12). The 95% confidence interval is shown in brackets for each parameter. 

Individual subject data are presented in Appendices 13-19. 

Treatment WF alone WF + SJW WF + GS 

fu 
S-warfarin 

 
R-warfarin 

 
0.0034 ± 0.0011 
(0.0027 - 0.0041) 
0.0048 ± 0.0006 
(0.0044 - 0.0051) 

 
0.0036 ± 0.0010 
(0.0030 - 0.0043) 
0.0047 ± 0.0009 
(0.0041 - 0.0052) 

 
0.0039 ± 0.0016 
(0.0029 - 0.0049) 
0.0046 ± 0.0008 
(0.0041 - 0.0051) 

AUC0-∞ (ng/ml×h) 
S-warfarin 

 
R-warfarin 

 
65400 ± 13800 
(56600 - 74100) 
120900 ± 32900 
(99000 - 142700) 

 
47700 ± 8300 

(42400 - 53000) 
91100 ± 15400 

(80800 - 101300) 

 
57800 ± 7400 

(53100 - 62500) 
108100 ± 18300 
(95900 - 120200) 

tmax  (h) 
S-warfarin 

 
R-warfarin 

 

 
1.29 ± 0.51 
(0.97 - 1.62) 
1.34 ± 0.48 

(1.02 – 1.66) 

 
1.26 ± 0.46 
(0.97 - 1.55) 
1.34 ± 0.48 

(1.10 – 1.73) 

 
1.30 ± 0.55 
(0.95 - 1.65) 
1.30 ± 0.52 

(0.95 – 1.65) 
Cmax (ng/ml) 
S-warfarin 

 
R-warfarin 

 

 
1890 ± 260 

(1700 - 2000) 
19200 ± 320 
(1700 - 2100) 

 
1820 ± 340 

(1600 - 2000) 
1840 ± 360 

(1600 - 2100) 

 
1930 ± 310 

(1700 - 2100) 
1890 ± 290 

(1700 - 2000) 
t1/2 (h) 

S-warfarin 
 

R-warfarin 
 

 
31.7 ± 4.5 

(28.8 - 34.5) 
51.7 ± 9.6 

(45.6 - 57.8) 

 
25.1 ± 4.3 

(22.4  - 27.9) 
40.3 ± 3.9 

(38.0 - 42.7) 

 
29.2 ± 5.2 

(25.9 - 32.4) 
47.9 ± 7.8 

(42.9 - 52.9) 
CL/F (ml/h) 
S-warfarin 

 
R-warfarin 

 
198 ± 38 

(174 - 223) 
110 ± 25 
(94 - 126) 

 
270 ± 44 

(241 - 297) 
142 ± 29 

(123 - 161) 

 
220 ± 29 

(201 - 238) 
119 ± 20 

(106 - 131) 
V/F (ml/kg) 
S-warfarin 

 
R-warfarin 

 

 
120 ± 30 

(110 - 140) 
100 ± 20 
(90 - 130) 

 
130 ± 30 

(110 - 150) 
100 ± 20 

(100 - 130) 

 
130 ± 30 

(110 - 150) 
100 ± 20 

(100 - 120) 
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Table 5-3. Mean ratios and 90% confidence intervals for log transformed S-

warfarin and R-warfarin pharmacokinetic parameters comparing each herb 

treatment to the warfarin only arm as control (n=12).  

Treatment 
 

St John’s wort 
(90% CI) 

Ginseng 
(90% CI) 

fu  
S-warfarin 
R-warfarin 

 
1.12 (0.96 - 1.31) 
1.04 (0.95 - 1.14) 

 
1.10 (0.85 - 1.42) 
1.03 (0.94 - 1.13) 

AUC0-∞  
S-warfarin 
R-warfarin 

 
0.73 (0.65 - 0.83)* 
0.77 (0.67 - 0.87)* 

 
0.89 (0.82 - 0.98) 
0.91 (0.84 - 0.99) 

tmax  
S-warfarin 
R-warfarin 

 
1.13 (0.76 - 1.49) 
1.17 (0.80 - 1.54) 

 
1.20 (0.77 - 1.62) 
1.11 (0.78 - 1.44) 

Cmax  
S-warfarin 
R-warfarin 

 
0.95  (0.86 - 1.05) 
0.96 (0.84 - 1.09) 

 
1.01 (0.90 - 1.12) 
0.98 (0.88 - 1.09) 

t1/2 
S-warfarin 
R-warfarin 

 
0.79 (0.72 - 0.87)* 
0.79 (0.72 - 0.86)* 

 
0.92 (0.85 - 0.99) 
0.93 (0.88 - 0.99) 

CL/F 
S-warfarin 
R-warfarin 

 
1.29 (1.16 - 1.46)* 
1.23 (1.11 - 1.37)* 

 
1.12 (1.03 - 1.22) 
1.10 (1.01 - 1.20) 

V/F 
S-warfarin 
R-warfarin 

 
1.10 (0.97 - 1.24) 
1.06 (0.88 - 1.24) 

 
1.04 (0.94 - 1.14) 
1.03 (0.95 - 1.10) 

ANOVA *p<0.05 
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Figure 5-3. S-warfarin apparent clearance (CL/F) following single oral 25 mg 

rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF + GS) and 

warfarin + St John’s wort (WF + SJW). 
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Figure 5-4. R-warfarin apparent clearance (CL/F) following single oral 25 mg 

rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF + GS) and 

warfarin + St John’s wort (WF + SJW). 
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Figure 5-5. S-warfarin half-life (t1/2) following a single oral 25 mg rac-warfarin 

dose with warfarin only (WF), warfarin + ginseng (WF + GS) and warfarin + St 

John’s wort (WF + SJW). 
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Figure 5-6. R-warfarin half-life (t1/2) following a single oral 25 mg rac-warfarin 

dose with warfarin only (WF), warfarin + ginseng (WF + GS) and warfarin + St 

John’s wort (WF + SJW). 
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Figure 5-7. S-warfarin apparent volume of distribution (V/F) following single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF 

+ GS) and warfarin + St John’s wort (WF + SJW). 
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Figure 5-8. R-warfarin apparent volume of distribution (V/F) following single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF 

+ GS) and warfarin + St John’s wort (WF + SJW). 
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Figure 5-9.  S-warfarin maximum plasma concentration (Cmax) following single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF 

+ GS) and warfarin + St John’s wort (WF + SJW).  
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Figure 5-10. R-warfarin maximum plasma concentration (Cmax) following single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF 

+ GS) and warfarin + St John’s wort (WF + SJW). 
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Figure 5-11. The time at which S-warfarin Cmax occurs (tmax) following single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF 

+ GS) and warfarin + St John’s wort (WF + SJW). 

0

1

2

3

0 1 2 3
WF +SJW          WF          WF + GS

tm
ax

 (h
)

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11
Subject 12

 

 

Figure 5-12. The time at which R-warfarin Cmax  occurs (tmax) following single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginseng (WF 

+ GS) and warfarin + St John’s wort (WF + SJW).  
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5.3.4 Urinary Excretion Rate (UER) of S-7-hydroxywarfarin 

The urinary excretion rate of S-7-hydroxywarfarin after administration of warfarin 

alone (0.04 ± 0.02 mg/h) was not significantly different following treatment with St 

John’s wort (0.03 ± 0.02 mg/h), but was reduced by treatment with ginseng (0.03 ± 

0.02 mg/h) (Figure 5-13) as assessed by the ratio of geometric mean and 90% 

confidence intervals for the UER which was 0.82 (0.61-1.12) after pre-treatment with 

St John’s wort and 0.68 (0.50-0.91) with ginseng.  

 

 Figure 5-13. Urinary excretion rate of S-7-hydroxywarfarin following a single 

oral 25 mg rac-warfarin alone (WF), and in combination with either St John’s 

wort (WF + SJW) or ginseng (WF + GS). 
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5.3.5 Plasma Protein Binding of Warfarin 

The fraction unbound of S-warfarin and R-warfarin were 0.0034 ± 0.0011 and 

0.0048 ± 0.0006, respectively, following administration of warfarin alone, and 

0.0036 ± 0.0010 and 0.0047 ± 0.0009 for warfarin following pre-treatment with St 

John’s wort, was 0.0039 ± 0.0016 and 0.0046 ± 0.0008 following pre-treatment with 

ginseng, respectively. The protein binding of warfarin enantiomers did not change 

over the duration of the sample collection interval (Figure 5-14, 15).  

 

Figure 5-14. Fraction of unbound S-warfarin following administration of a 

single oral 25 mg dose of rac-warfarin alone (WF), or in combination with either 

St John’s wort (WF + SJW) or ginseng (WF + GS).  
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Figure 5-15. Fraction of unbound R-warfarin following administration of a 

single oral 25 mg dose of rac-warfarin alone (WF), in combination with either St 

John’s wort (WF + SJW) or ginseng (WF + GS). 
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5.3.6 Pharmacodynamic Endpoints 

After administration of a single 25 mg dose of warfarin, the INR for each subject 

increased to a peak at approximately 48 h after a delay of about 8-12 hours. INR 

values returned to normal after approximately 144 hours (Figure 5-16 and Table 5-4). 

The ratios of the AUC0-168 of INR and the 90% confidence intervals were 0.79 (0.70-

0.95) for treatment with St John’s wort, and 1.01 (0.88-1.16) for ginseng (Table 5-5). 

There was a significant difference in warfarin pharmacodynamics between warfarin 

alone and co-administration with St John’s wort. However, there was no significant 

difference in warfarin pharmacodynamics when warfarin was ingested following pre-

treatment with ginseng. Neither St John’s wort nor ginseng alone affected baseline 

INR or platelet aggregation (Table 5-5). 
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Figure 5-16. INR versus time profiles following a single oral 25 mg rac-warfarin 

dose with warfarin only (WF), warfarin + ginseng (GS) and warfarin + St 

John’s wort (WF + SJW) (mean ± SD, n=12).  
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Figure 5-17. AUC0-168 of INR following a single oral 25 mg rac-warfarin alone 

(WF), in combination with either St John’s wort (WF + SJW) or ginseng (WF + 

GS). 
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Table 5-4. Warfarin pharmacodynamic parameters following a single oral dose 

of 25 mg rac-warfarin alone (WF), and in combination with either St John’s 

wort (WF + SJW) or ginseng (WF + GS). Data are presented as mean ± SD and 

95% CI are shown in brackets (n=12). Individual subject data are presented in 

Appendices 20-24. 

Treatment WF alone WF + SJW WF + GS 

INRbaseline* 

 

1.14 ± 0.07 

(1.08 - 1.20) 

1.12 ± 0.06 

(1.08 -1.20) 

1.13 ± 0.05 

(1.10 - 1.12) 

AUC0-168 of INR 

 

111.0 ± 49.3 

(79.6 - 142.3) 

88.3 ± 30.7 

(68.8 - 107.8) 

111.1 ± 43.1 

(83.9 - 138.7) 

tmax  of INR (h) 45.5 ± 17.4 

(34.5 – 56.6) 

39.8 ± 12.7 

(31.7 – 47.9) 

41.2 ± 12.1 

(33.6 – 48.9) 

INRmax 2.4 ± 0.8 

(2.0 – 2.9) 

2.2 ± 0.5 

(2.0 – 2.5) 

2.6 ± 0.8 

(2.1 – 3.1) 

Baseline platelet 

aggregation (Ω) 

7.7 ± 2.2 

(5.6 - 9.1) 

7.5 ± 1.1 

(6.5 - 8.2) 

7.1 ± 1.4 

(6.0 - 7.8) 

*INRbaseline: the INR after either 14 days pre-treatment with SJW or 7 days pre-

treatment with ginseng prior to warfarin administration 

 

Table 5-5. Mean ratios and 90% confidence intervals of the ratio of log-

transformed warfarin pharmacodynamic parameters (n=12) after treatment 

with different herb medicines. (*p<0.05) 

Treatment St John’s wort (90% CI) Ginseng (90% CI) 

INR baseline 0.99 (0.96 - 1.01) 0.99 (0.97 - 1.02) 

AUC0-168 of INR 0.79 (0.70 - 0.95)* 1.01 (0.88 - 1.16) 

tmax  of INR 0.89 (0.78 – 1.01) 0.93 (0.82 – 1.06) 

INRmax 0.95 (0.84 – 1.08) 1.07 (0.94 – 1.22) 

Baseline platelet 
aggregation 

1.00 (0.88 - 1.14) 1.00 (0.85 - 1.06) 
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5.3.7 Pharmacokinetic and Pharmacodynamic Modelling 

The warfarin enantiomer concentration – time data and the effect data (expressed as 

prothrombin complex activity, PCA) were best described by a one compartment 

pharmacokinetic model and a sigmoid Emax pharmacodynamic model, respectively. 

Mean data are presented in Figure 5-18 and individual fits to pharmacokinetic and 

pharmacodynamic data are presented in Appendix 11. The model dependent 

pharmacokinetic and pharmacodynamic parameters are presented in Table 5-6 and 

Figure 5-18 to 5-21.  Their ratios between different herbal pre-treatments are 

presented in Table 5-7. It was not possible to obtain reliable model dependent 

estimates of the concentration of R-warfarin required to produce a 50% inhibition 

prothrombin complex activity (C50,R). These results confirm the significant difference 

in t1/2 and CL/F for both S-warfarin and R-warfarin following pre-treatment with St 

John’s wort. Furthermore, these data indicate no significant changes observed in the 

pharmacodynamic parameters of S-warfarin in healthy male volunteers following 

treatment with St John’s wort. Model dependent analyses confirm that ginseng did 

not affect either the pharmacokinetics or pharmacodynamics of warfarin. The 

pharmacokinetic parameters estimated based on the model-dependent methods and 

the pharmacokinetic parameters generated using the model independent approach 

(See Section 5.3.3) is in excellent agreement. 
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Figure 5-18. Prothrombin complex activity (PCA)-time profiles following 

administration of a single oral dose of 25 mg rac-warfarin either alone (WF), 

warfarin + ginseng (WF + GS) or warfarin + St John’s wort (WF + SJW) (mean 

± SD, n=12). Individual subject profiles are presented in Appendix 11. 
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Figure 5-19. Model dependent estimates of the degradation rate constant of the 

prothrombin complex (kd) following oral administration of a 25 mg rac-

warfarin dose as warfarin only (WF), warfarin + St John’s wort (WF + SJW) 

and warfarin + ginseng (WF + GS). 
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Figure 5-20. Model dependent estimates of concentration of S-warfarin required 

to produce a 50% inhibition of PCA (C50,S) following oral administration of a 25 

mg rac-warfarin dose as warfarin only (WF), warfarin + St John’s wort (WF + 

SJW) and warfarin + ginseng (WF + GS). 
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Figure 5-21. Model dependent estimates of the steepness of the concentration-

response curve (γ) following oral administration of a 25 mg rac-warfarin dose as 

warfarin only (WF), warfarin + St John’s wort (WF + SJW) and warfarin + 

ginseng (WF + GS). 
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Table 5-6. Model dependent warfarin pharmacokinetic and pharmacodynamic 

parameters following a single oral dose of 25 mg rac-warfarin alone (WF) or in 

combination with either St John’s wort (WF + SJW) or ginseng (WF + GS) 

(mean ± SD, 95% CI, n=12). Individual data are presented in Appendices 20-24. 

Treatment WF alone WF + SJW WF + GS 

kd (1/h) 0.06 ± 0.02 
(0.04 – 0.07) 

0.06 ± 0.02 
(0.05 – 0.08) 

0.07 ± 0.03 
(0.05 – 0.09) 

C50,S (ng/ml) 698 ± 477 
(395 – 1000) 

566 ± 371 
(330 - 801) 

622 ± 506 
(300 – 943) 

γS 1.8 ± 1.0 
(1.2 – 2.4) 

1.6 ± 0.8 
(1.1 – 2.1) 

1.5 ± 0.6 
(1.1 – 1.9) 

t1/2 (h) 
S-warfarin 

 
R-warfarin 

 

 
30.9 ± 4.0 

(28.4 – 33.5) 
49.9 ± 8.8 

(44.3 – 55.5) 

 
23.6 ± 4.4 

(20.8 – 26.4) 
38.8 ± 3.9 

(36.3 – 41.3) 

 
27.6 ± 3.9 

(25.1 – 30.1) 
46.6 ± 6.5 

(42.5 – 50.7) 
CL/F (ml/h) 
S-warfarin 

 
R-warfarin 

 
202 ± 38 

(178 – 226) 
113 ± 25 

(97 – 129) 

 
283 ± 50 

(251 – 315) 
147 ± 31 

(127 – 166) 

 
223 ± 35 

(201 – 245) 
120 ± 19 

(107 – 132) 
V/F (ml/kg) 
S-warfarin 

 
R-warfarin 

 

 
120 ± 30 

(100 – 140) 
110 ± 20 

(100 – 120) 

 
130 ± 30 

(110 – 150) 
110 ± 20 

(100 – 120) 

 
120 ± 30 

(100 – 140) 
110 ± 20 

(100 – 120) 
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Table 5-7. Mean ratios and 90% confidence intervals for selected log 

transformed pharmacokinetic and pharmacodynamic parameters between herb 

treatments compared to warfarin only (n=12). 

Treatment 
 

St John’s wort (90% CI) Ginseng (90% CI) 

kd  1.11 (1.03 – 1.18) 1.23 (1.14 – 1.32) 

C50,S 0.84 (0.78 – 0.90) 
 

0.87 (0.81 – 0.94) 
 

γS 
 

0.96 (0.87– 1.05) 0.90 (0.82– 0.98) 

t1/2  
S-warfarin 
R-warfarin 

 
0.76 (0.74 – 0.78)* 
0.79 (0.76 – 0.81)* 

 
0.89 (0.87 – 0.92) 
0.94 (0.91 – 0.97) 

CL/F 
S-warfarin 
R-warfarin 

 
1.40 (1.34 – 1.47)* 
1.31 (1.25 – 1.37)* 

 
1.13 (1.08 – 1.15) 
1.07 (1.02 – 1.12) 

V/F 
S-warfarin 
R-warfarin 

 
1.06 (1.00 – 1.12) 
1.06 (0.97 – 1.06) 

 
0.98 (0.93 – 1.04) 
1.00 (0.95 – 1.04) 

*ANOVA, p<0.05 

 

5.3.8 Adverse Events 

Twelve subjects completed the study and no significant adverse events or bleeding 

episodes were observed during the study. Three subjects reported changes in sleeping 

habits (waking up early in the morning) during St John’s wort treatment.  



Chapter 5               Effect of St John’s Wort and Ginseng on Warfarin            165 

 

5.4 Discussion 

This study investigated the effect of two commonly ingested herbal medicines on the 

pharmacokinetics and pharmacodynamics of warfarin and their independent effect on 

INR and platelet aggregation using a standard study design widely used in 

investigating warfarin–drug interactions. The major finding was that the co-

administration of St John’s wort at the Commission E recommended doses (1 tablet 3 

times daily for 14 days) increased the apparent clearance of the warfarin enantiomers, 

leading to a subsequent reduction in the plasma concentrations of warfarin 

enantiomers and their pharmacodynamic effect.  

 

In assessing potential herb-drug interactions, it is essential to use herbal medicines of 

known quality to provide the best chance of being able to rigorously detect 

significant effects. In this study, qualitative TLC and Pharmacopoeial methods were 

used to characterise the constituents of proprietary preparations of St John’s wort and 

ginseng prior to the study (See Chapter 4). As some variability in the composition of 

different brands of commercial herbal medicines products of St John’s wort and 

ginseng has been described, it was important to establish the quality of the herbal 

medicines under investigation. There remains debate about which constituents of St 

John’s wort and ginseng [8, 74, 148] might be involved in potential herb-drug 

interactions, so the products employed in this study were not quantitatively assessed 

for the specific content of individual constituents but for their overall content and 

quality.  
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In this study, warfarin, a racemic mixture, was administered and the 

pharmacokinetics of the individual enantiomers was studied. It is known that S-

warfarin exhibits a significantly greater anticoagulant activity when compared to the 

R-enantiomer when each enantiomer is administered separately [18]. Furthermore, 

there are stereoselective differences in the pharmacokinetics of warfarin enantiomers. 

S-warfarin has been reported to be two to five times more potent than R-warfarin in 

terms of the anticoagulant effect [26]. However, R-warfarin may actually be less 

potent than previously reported, as the source of R-warfarin used in the study to 

investigate its potency contained a significant amount of S-warfarin (7.5%;[25]) [26]. 

Chan et al [18] reported that the anticoagulant effect observed after the 

administration of racemic warfarin is almost entirely contributed by S-warfarin and 

the observation was confirmed in the PKPD modelling analysis in the present study. 

Elucidation of the pharmacokinetics of warfarin enantiomers thus allows greater 

insight into the mechanism of possible pharmacokinetic interactions with this drug. 

S-warfarin is metabolised to S-7-hydroxywarfarin by CYP2C9 [279] while R-

warfarin is partly metabolised by CYP1A2 and CYP3A4 [18]. The simultaneous 

investigation of warfarin enantiomer pharmacokinetics thus provides insight into the 

possible effects of St John’s wort and ginseng on these drug metabolism pathways. 

 

In vitro studies have demonstrated that constituents of St John’s wort inhibit the 

metabolic activity of CYP2C9, CYP2D6 and CYP3A4 [139, 140]. Paradoxically, St 

John’s wort has also been reported to induce CYP1A2, CYP2E1 and CYP3A4 based 

on in vivo studies [91, 106, 114, 124, 127, 138, 280, 281]. This effect has been 

attributed to the activation of the human pregnane X receptor (PXR) by the St John’s 
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wort constituent, hyperforin, which has been demonstrated both in vitro [282] and in 

vivo [283]. The present study employed a regimen of 14-day pre-treatment with St 

John’s wort which was based on the study by Wang et al [92] who reported that 

following administration of St John’s wort to healthy volunteers for 14 days, there 

was induction of CYP3A4 activity in the intestinal wall and liver. Interestingly, 

Wang et al [92] found no alteration in the metabolic activities of CYP2C9, CYP1A2, 

or CYP2D6.  This conclusion was based on administration of a cocktail of substrates 

for specific cytochromes (these included tolbutamide, CYP2C9; caffeine, CYP1A2; 

dextromethorphan, CYP2D6; oral midazolam, intestinal wall and hepatic CYP3A; 

and intravenous midazolam, hepatic CYP3A). The studies reported in this thesis 

employed (at least) a 14-day washout period between treatment periods. As little is 

known about the offset of the induction of drug metabolising enzymes by St John’s 

wort, this period was based on the half-lives of warfarin enantiomers [18] and the St 

John’s wort constituents, hypericin and hyperforin [74]. The analysis of variance in 

this randomised three-period study demonstrated no period effect, suggesting the 

inductive effect of St John’s wort on drug metabolising enzymes had dissipated in 

the 14 days between treatments. 

 

In the present study, treatment with St John’s wort significantly induced not only 

CYP1A2 and/or CYP3A4 as evidenced by the effects on R-warfarin, but also 

CYP2C9 as determined by the effects on the pharmacokinetics of the S-enantiomer. 

The induction of CYP2C9 reported in this thesis was in contrast to the observations 

of Wang et al [92] but confirms the suggestions raised by Henderson et al [8] in their 

review of St John’s wort drug interactions and an in vitro study [67] that 
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demonstrated the human pregnane X receptor (hPXR) mediates induction of 

CYP2C9 by hyperforin (found in St. John's wort). Surprisingly, St John’s wort did 

not significantly affect the UER of S-7-hydroxywarfarin (the main metabolite of S-

warfarin) while it induced the clearance of S-warfarin. An increase in the UER 

would be expected due to induction of CYP2C9 by St John’s wort. The mechanism 

of this effect is not clear and needs further study. Missed urine sample collection that 

was reported by a few volunteers during 24 hours urine collections, could have 

contributed to this observation and represents a disadvantage for using urine samples 

to investigate metabolite pharmacokinetics. 

 

A few ginseng-drug interactions have been reported in the literature. In a case report, 

a 47-year-old man had received anticoagulation therapy with warfarin since 1990 to 

prevent embolic events. The dosage of warfarin and INR had been stabilised for the 

past nine months. The patient’s INR was 3.1 four weeks before he started taking 

ginseng. Two weeks after the patient started taking ginseng, his INR declined to 1.5. 

Ginseng was discontinued, and the INR returned to 3.3 in two weeks [167]. However, 

no significant effect on drug metabolism was found in a clinical trial in humans 

wherein the activities of various cytochrome P450 isoenzymes were assessed using 

the phenotypic ratios of probe-drugs that included midazolam (CYP3A4), caffeine 

(CYP1A2), chlorzoxazone (CYP2E1) and debrisoquin (CYP2D6) [91]. Furthermore. 

A warfarin–ginseng interaction study in male Sprague-Dawley rats using both single 

(2 mg/kg) and multiples doses of warfarin (0.2 mg/kg daily x 6 days) found no 

significant effect of Panax ginseng on warfarin pharmacokinetics [168]. The authors 

also found the content of vitamin K was undetectable in the ginseng decoction [168]. 



Chapter 5               Effect of St John’s Wort and Ginseng on Warfarin            169 

Consistent with these latter reports, the present study confirmed that ginseng did not 

affect the pharmacokinetics or the pharmacodynamics of warfarin in human subjects.  

From these studies it is possible to confirm that Panax ginseng had no effect on the 

activity of CYP1A2, CYP3A4 or CYP2C9 in the healthy volunteers pre-treated with 

this herb.  

 

Since approximately 99% of the warfarin in plasma is bound to plasma proteins, 

another possible drug interaction mechanism that may alter the hepatic clearance of 

warfarin enantiomers could be the effect of St John’s wort or ginseng constituents on 

the protein binding of warfarin. No in vitro or in vivo studies were found in the 

literature regarding the ability of St John’s wort or ginseng constituents to affect 

protein binding of warfarin. In this study, treatment with St John’s wort and ginseng 

did not influence warfarin enantiomer protein binding or the distribution in the 

present study. It suggests that increased clearances of warfarin enantiomers are due 

to induction of CYP 2C9, CYP 3A4 and/or CYP1A2 by pre-treatment with St John’s 

wort. 

 

Several in vitro studies have demonstrated that constituents of ginseng may inhibit 

thrombin, collagen or arachidonic acid induced platelet aggregation using human 

platelet rich plasma [157, 159, 161]. Yun et al [161] evaluated the antithrombotic 

effects of Korean red ginseng using platelet aggregation and coagulation assays. In 

the platelet aggregation assay using human platelet rich plasma (PRP), extracts of 

Korean red ginseng were found to significantly inhibit thrombin and collagen-

induced platelet aggregation. The IC50 values of Korean red ginseng were >2 mg/ml 
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for thrombin, 0.32 ± 0.01 mg/ml for collagen and 0.72 ± 0.25 mg/ml for ADP. In the 

coagulation assay, Korean red ginseng was found to significantly prolong APPT and 

PT as compared with control data. Park et al [159] studied the effect of dietary 

supplementation with 25 mg (0.0025% of the total diet) of a lipophilic fraction from 

Panax ginseng on rat platelet aggregation induced by collagen (100 µg/ml) or 

thrombin (0.1 units/ml), and on blood coagulation. The cGMP levels in collagen-

stimulated platelets from rats fed 15% corn oil plus the lipophilic fraction of ginseng 

were significantly increased compared to rats only fed 15% corn oil. The levels of 

cAMP in thrombin-stimulated platelets in the ginseng fraction treated rats were 

decreased but were increased in collagen-stimulated platelets. Furthermore, the levels 

of both cGMP and cAMP were also increased by addition of the lipophilic fraction of 

ginseng to thrombin- and collagen-stimulated platelets in vitro. Both the prothrombin 

time and activated partial thromboplastin time were prolonged in citrated platelet-

poor plasma in lipophilic fraction of ginseng group compared to corn oil only treated 

group. Teng et al [157] reported that panaxynol (0.1 mg/ml) isolated from the diethyl 

ether layer of Panax ginseng inhibited markedly the aggregation of washed platelets 

induced by collagen, arachidonic acid, ADP, PAF and thrombin while ginsenosides 

had no significant effect on the aggregation, however, ginsenoside Ro (1 mg/ml) 

inhibited the ATP release of platelets using human blood in in vitro study. 

 

Contrary to these reports, pre-treatment with ginseng in healthy male subject did not 

significantly affect the baseline INR and platelet aggregation in the present study. 

This discrepancy between in vitro and in vivo effects could be related to metabolic 

biotransformation or poor bioavailability of ginseng constituents after oral dosing as 
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suggested by several bioavailability studies [163, 284]. Cui et al [162] determined 

that about 1.2% of the oral dose of protopanaxatriol ginsenosides (3 mg) and smaller 

amounts of the protopanaxadiol ginsenosides not exceeding 0.2% of the administered 

dose (7 mg) were recovered in five days in human urine after a single dose of 

ginseng. However, Shibata et al [163] reported that neither the individual 

ginsenosides nor their metabolites could be identified except compound-K which is 

the main intestinal bacterial metabolite of protopanaxadiol ginsenosides was 

identified in human serum using a specific enzyme immunoassay 8 h after oral 

administration of ginseng. Panax notoginseng is different with Panax ginseng but it 

contains ginsenoside Rb1 and Rg1 as well.  Xu et al [164] found very low 

bioavailability of ginsenoside Rb1 ( 4.35%) and  ginsenoside Rg1 (18.40%) after 

Panax notoginseng was administrated to rats. Serum samples were measured using 

an established HPLC method to quantitate ginsenoside Rb1 and Rg1. 

 

In this study a combined PK/PD model was employed to characterise the warfarin 

concentration effect data obtained in the three phases of this clinical trial. This 

approach allows an assessment of the effect of these herbs on warfarin 

pharmacodynamic parameters. No lag time was found for drug absorption in the 

present study, but a characteristic of the pharmacological response of warfarin is the 

delay in the onset of action after oral administration of the drug [18]. In the 

combined PK/PD model this delay is represented by the parameter td. In the present 

study, it was not possible to estimate lag time of onset of anticoagulant (td) directly 

so it was fixed to the value of 8.0 h. Chan et al [18], who proposed the modelling 

approach used in this study, found that td ranged from 8.0 to 8.8 in their study of six 
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volunteers. The modelling approach could not provide reliable estimates of C50R and 

γR probably because the anticoagulant effect of racemic warfarin is predominately 

determined by S-warfarin [26]. Co-administration with St John’s wort or ginseng did 

not affect the protein binding of warfarin enantiomers so C50,S was reported rather 

than Cu50,S.  No significant difference was found in estimates of the 

pharmacodynamic parameters kd, C50,S and γS obtained from data collected with and 

without pre-treatment with herbal medicines. The estimates of kd, C50S and γS from 

the present study are in close agreement with previously reported data [18].  

 

In summary, this study found that St John’s wort when administered to healthy male 

subjects in a single ingredient herbal product at recommended doses induced the 

metabolism of both S-warfarin and R-warfarin with a subsequent effect on INR.  In 

another word, the PD relationship was not intrinsically altered by St John’s wort. By 

contrast, Panax ginseng at recommended doses had no significant effect on warfarin 

metabolism or its pharmacological effect in healthy subjects. These findings suggest 

that there is a potential for significant herb-drug interactions with St John’s wort for 

drugs that are the substrates for CYP2C9 and CYP3A4 and/or CYP1A2.  
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Chapter 6 Effect of Ginkgo and Ginger on the 

Pharmacokinetics and Pharmacodynamics of 

Warfarin in Healthy Subjects 

 

6.1 Introduction 

The anticoagulant warfarin has a narrow therapeutic index and displays high inter- 

and intra-subject variability in pharmacokinetics and pharmacodynamics.  In the 

community, there is also widespread, often unreported, self-medication with a range 

of herbal medicines. The opportunity for potential life-threatening interactions 

between herbal medications and warfarin is therefore high [2]. Ginkgo (Ginkgo 

biloba) is one such herbal medicine. It is commonly used as EGb 761, a ginkgo 

extract, for promoting and maintaining mental alertness, concentration, focus and a 

wide range of other indications [173, 285]. In a review article published in the 

Cochrane Database, Birks et al [285] reviewed the effect of ginkgo on cognitive 

impairment and dementia in the literature.  It is reported that cognition, activities of 

daily living, measures of mood and emotional function show benefit for ginkgo at 

doses less than 200 mg/day compared with placebo at less than 12 weeks. 

 

Despite the utility of this herb and its extracts, relatively little is known about the 

potential for or clinical significance of ginkgo-drug interactions. A recent review 

article [2] identified one case report of an interaction between ginkgo and warfarin 

and four case reports of spontaneous bleeding associated with ginkgo use attributed 
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to possible effects of this herb on platelet function. In vitro studies indicate that 

constituents of Ginkgo biloba (ginkgolic acids I and II) inhibit drug metabolising 

enzymes including CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 [137]. In 

contrast, the feeding of ginkgo extracts to rats for 4 weeks reportedly reduced the 

hypotensive effect of nicardipine (which is metabolised by CYP3A2) and induced 

the expression of hepatic CYP2B1/2, CYP3A1 and CYP3A2 mRNA [196]. In vitro, 

animal and in vivo clinical studies have investigated the effect of ginkgo extracts on 

platelet aggregation and coagulation, but the results have been conflicting [183, 187-

189].  

 

Ginger (Zingiber officinale) is also widely used in the community for the prevention 

of motion sickness and a variety of other indications [200]. However few drug 

interaction studies using ginger have been undertaken. Several in vitro studies 

demonstrated that platelet aggregation was inhibited by ginger extracts [201-204, 

286]. Furthermore, when patients received a single dose (10 g) of powdered ginger, 

platelet aggregation was found to be reduced [206]. These data suggest that a 

pharmacodynamic interaction with warfarin is possible. 

 

The aim of the present study was to investigate the possible drug interactions 

between warfarin and these two widely used herbal medicines at recommended doses 

from herbal medicine products of known quality. The independent effects of ginger 

and ginkgo on clotting status also were investigated. 

 



Chapter 6                     Effect of Ginkgo and Ginger on Warfarin                    175 

6.2 Materials and Methods 

The materials and methods for this chapter have been presented in Chapter 2. 

 

6.3 Results 

6.3.1 Subject 

Twelve healthy male subjects were recruited and completed this study in three 

treatment groups. Subjects were aged 22 to 31 years and within 15% of ideal body 

weight for height and build. Subjects came from 2 main ethnic groups (6 Caucasians, 

6 Asians) (Table 6-1).  All subjects were non-smokers and met the inclusion criteria 

as outlined in Section 2.1.2. 

 

6.3.2 Results of Statistical Analysis 

ANOVA was performed on the log-transformed parameters including AUC0-∞ and 

Cmax of S-warfarin and R-warfarin and AUC 0-168 of INR. Both sequence and period 

effects were found to be significant in the analysis but treatment was not. The 

statistical results of AUC0-∞ of S-warfarin, R-warfarin and AUC0-168 of INR are 

shown in  Appendix 6 - 10. The reason for the sequence and period effects was 

unclear. Despite this, the results are acceptable based on in vivo bioequivalence 

guidance [287] because this was a single-dose study, which includes only healthy 

male subjects. Furthermore, an adequate washout period was used and no detectable 

warfarin concentration was measured prior to warfarin dose administration in each 

period.  
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6.3.3 Pharmacokinetics of S-warfarin and R-warfarin 

There were no significant changes observed in the pharmacokinetic parameters of S- 

or R-warfarin in healthy male volunteers following treatment with ginkgo or ginger 

(Table 6-2 and 6-3; Figure 6-1 to 6-12).  

 

Table 6-1. Subject demographic data (n=12). 

Subject Age (years) Weight (kg) Height (cm) Ethnicity 

1 28 52.2 172.5 Asian 

2 22 79.4 183.8 Caucasian 

3 23 75.8 175.8 Asian 

4 22 70.4 168.2 Asian 

5 27 72.4 174.5 Asian 

6 25 78 180.5 Caucasian 

7 22 101 199.7 Caucasian 

8 23 71.6 187.5 Caucasian 

9 30 74.4 163 Asian 

10 26 72.6 178 Caucasian 

11 31 99.2 173 Asian 

12 28 73.8 183 Caucasian 

Mean ± SD 25.6 ± 3.2 76.7 ± 12.9 178.3 ± 9.6  
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Figure 6-1. S-warfarin concentration-time profiles following administration of a 

single 25 mg oral dose of rac-warfarin either alone (warfarin only), or warfarin 

and ginkgo (WF + Ginkgo), or warfarin and ginger (WF + Ginger). Data are 

presented as mean (± SD, n=12) with semi-log (A) and linear (B) plots. 

Individual subject profiles are presented in Appendix 12. 
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Figure 6-2. R-warfarin concentration-time profiles following administration of a 

single 25 mg oral dose of rac-warfarin either alone (warfarin only), or warfarin 

and ginkgo (WF + Ginkgo), or warfarin and ginger (WF + Ginger). Data are 

presented as mean (± SD, n=12) with semi-log (A) and linear (B) plots. 

Individual subject profiles are presented in Appendix 12. 
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Table 6-2. Warfarin pharmacokinetic parameters following administration of a 

single oral dose of 25 mg rac-warfarin only (WF), or after pre-treatment with 

ginkgo (WF + ginkgo) or warfarin + ginger (WF + ginger) (mean ± SD, 95% CI, 

n=12). Individual subject data are presented in Appendices 25-31. 

Treatment Warfarin only Warfarin + 
ginkgo 

Warfarin + 
ginger 

fu  
S-warfarin 

 
R-warfarin 

 

 
0.0052 ± 0.0013 

(0.0044 – 0.0060) 
0.0048 ± 0.0011 

(0.0041 – 0.0054) 

 
0.0049 ± 0.0012 

(0.0042 – 0.0057) 
0.0047 ± 0.0009 

(0.0041 – 0.0052) 

 
0.0052 ± 0.0010 

(0.0045 – 0.0058) 
0.0048 ± 0.0084 

(0.0043 – 0.0054) 
AUC0-∞ (ng/ml×h) 

S-warfarin 
 

R-warfarin 

 
68000 ± 11400 

(60800 – 75300) 
104000 ± 24700 

(88400 – 120000) 

 
65800 ± 16800 

(55100 – 76500) 
102200 ± 18000 

(90800 – 113600) 

 
66000 ± 1900 

(54000 – 78100) 
102600 ± 25500 

(86400 – 118800) 

tmax (h) 
S-warfarin 

 
R-warfarin 

 

 
2.1 ± 1.1 

(1.4 – 2.8) 
2.1 ± 1.1 

(1.4 – 2.8) 

 
1.4 ± 0.8 

(0.9 – 1.9) 
1.6 ± 1.7 

(0.6 – 2.7) 

 
1.6 ± 0.8 

(1.1 – 2.1) 
1.6 ± 0.8 

(1.1 – 2.1) 
Cmax (ng/ml) 
S-warfarin 

 
R-warfarin 

 

 
1700 ± 500 

(1400 – 2000) 
1700 ± 500 

(1400 – 2000) 

 
1800 ± 400 

(1500 – 2000) 
1800 ± 400 

(1500 – 2000) 

 
1700 ± 400 

(1500 – 2000) 
1700 ± 400 

(1500 – 1900) 
t1/2 (h) 

S-warfarin 
 

R-warfarin 
 

 
35.8 ± 7.2 

(31.1 – 40.3) 
50.3 ± 7.1 

(45.8 – 54.9) 

 
35.1 ± 6.7 

(30.9 – 39.3) 
48.6 ± 6.1 

(44.7 – 52.4) 

 
35.7 ± 8.9 

(30.0 – 41.3) 
47.7 ± 8.0 

(42.6 – 52.8) 
CL/F (ml/h) 
S-warfarin 

 
R-warfarin 

 

 
189 ± 34 

(167 – 210) 
127 ± 34 

(106 – 149) 

 
200 ± 43 

(173 – 227) 
126 ± 24 

(111 – 141) 

 
201 ± 47 

(171 – 231) 
131 ± 39 

(106 – 156) 
V/F (ml/kg) 
S-warfarin 

 
R-warfarin 

 

 
120 ± 20 

(110 – 140) 
120 ± 20 

(100 – 130) 

 
120 ± 10 

(110 – 130) 
110 ± 10 

(100 – 120) 

 
120 ± 20 

(110 – 130) 
110 ± 20 

(100 – 120) 
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Table 6-3. Mean ratios and 90% confidence intervals for log transformed S-

warfarin and R-warfarin pharmacokinetic parameters comparing each herb 

treatment to the warfarin only arm as control (n=12).  

Treatment Ginkgo  Ginger 

fu 
S-warfarin 
R-warfarin 

 
0.98 (0.90 – 1.02) 
0.99 (0.95 – 1.05) 

 
1.02 (0.89 – 1.15) 
1.03 (0.97 – 1.09) 

AUC0-∞ 
S-warfarin 
R-warfarin 

 
0.97 (0.89 – 1.03) 
1.10 (0.92 – 1.07) 

 
0.95 (0.89 – 1.03) 
0.98 (0.91 – 1.06) 

tmax 
S-warfarin 
R-warfarin 

 
0.68 (0.63 – 0.73) 
0.72 (0.67 – 0.77) 

 
0.79 (0.73 – 0.85) 
0.79 (0.73 – 0.85) 

Cmax 
S-warfarin 
R-warfarin 

 
1.04 (0.97 – 1.09) 
1.03 (0.97 – 1.10) 

 
1.01 (0.94 – 1.07) 
1.02 (0.95 – 1.07) 

t1/2 
S-warfarin 
R-warfarin 

 
0.98 (0.93 – 1.04) 
0.97 (0.92 – 1.02) 

 
0.99 (0.94 – 1.04) 
0.94 (0.90 – 1.01) 

CL/F 
S-warfarin 
R-warfarin 

 
1.05 (0.98 – 1.12) 
1.00 (0.93 – 1.08) 

 
1.05 (0.97 – 1.13) 
1.02 (0.95 – 1.10) 

V/F 
S-warfarin 
R-warfarin 

 
1.03 (0.99 – 1.07) 
0.95 (0.95 – 1.01) 

 
1.03 (0.99 – 1.08) 
0.97 (0.93 – 1.00) 
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Figure 6-3. S-warfarin apparent clearance (CL/F) following a single oral 25 mg 

rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) 

and warfarin + ginger (WF + Ginger). 
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Figure 6-4. R-warfarin apparent clearance (CL/F) following a single oral 25 mg 

rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) 

and warfarin + ginger (WF + Ginger). 
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Figure 6-5. S-warfarin half-life (t1/2) following a single oral 25 mg rac-warfarin 

dose with warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) and warfarin 

+ ginger (WF + Ginger). 

0

10

20

30

40

50

60

0 1 2 3
WF + Ginkgo       WF      WF + Ginger

t1/
2  (

h)
Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11
Subject 12

 

Figure 6-6. R-warfarin half-life (t1/2) following a single oral 25 mg rac-warfarin 

dose with warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) and warfarin 

+ ginger (WF + Ginger).  
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Figure 6-7. S-warfarin apparent volume of distribution (V/F) following a single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF 

+ Ginkgo) and warfarin + ginger (WF + Ginger).  
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Figure 6-8. R-warfarin apparent volume of distribution (V/F) following a single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF 

+ Ginkgo) and warfarin + ginger (WF + Ginger).  
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Figure 6-9. S-warfarin maximum plasma concentration (Cmax) following a single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF 

+ Ginkgo) and warfarin + ginger (WF + Ginger). 
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Figure 6-10. R-warfarin maximum plasma concentration (Cmax) following a 

single oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginkgo 

(WF + Ginkgo) and warfarin + ginger (WF + Ginger).  
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Figure 6-11. The time at which S-warfarin Cmax occurs (tmax) following a single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF 

+ Ginkgo) and warfarin + ginger (WF + Ginger). 
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Figure 6-12. The time at which R-warfarin Cmax occurs (tmax) following a single 

oral 25 mg rac-warfarin dose with warfarin only (WF), warfarin + ginkgo (WF 

+ Ginkgo) and warfarin + ginger (WF + Ginger).  
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6.3.4 Urinary Excretion Rate (UER) of S-7-hydroxywarfarin 

UER of S-7-hydroxywarfarin after administration of warfarin alone was 0.04 ± 0.01 

mg/h and there was no significant difference following treatment with either ginkgo 

(0.04 ± 0.01 mg/h) or ginger (0.03 ± 0.01 mg/h) (Figure 6-13). The ratio of 

geometric means (and 90% CI) for S-7-hydroxywarfarin UER was 1.07 (0.69-1.67) 

for ginkgo, and 1.00 (0.64-1.56) for ginger. These CIs of ratios were outside the 

predefined limit of 0.80 to 1.25 suggesting that a lack of difference cannot be 

concluded but appears unlikely based on the present data. 

 

Figure 6-13. Urinary excretion rate of S-7-hydroxywarfarin following a single 

oral 25 mg rac-warfarin alone (WF), in combination with either ginkgo (WF + 

Ginkgo) or ginseng (WF + Ginger). 
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6.3.5 Plasma Protein Binding of Warfarin Enantiomers 

The fraction of unbound S-warfarin and R-warfarin in plasma were 0.0052 ± 0.0013 

and 0.0048 ± 0.0011, respectively, following administration of warfarin alone, and 

0.0049 ± 0.0012 and 0.0047 ± 0.0008 for warfarin following administration with 

ginkgo. Similarly, following treatment with ginger, the fraction of unbound S-

warfarin and R-warfarin in plasma were 0.0052 ± 0.0010 and 0.0048 ± 0.0008, 

respectively (Figure 6-14 and Figure 6-15). These differences were not significant. 

Furthermore, protein binding did not change over the time course of the study. 

 

Figure 6-14. Fraction of unbound S-warfarin in plasma following 

administration of a single oral 25 mg dose of rac-warfarin alone (WF), in 

combination with either ginkgo (WF + Ginkgo) or ginger (WF + Ginger).  
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Figure 6-15. Fraction of unbound R-warfarin following administration of a 

single oral 25 mg dose of rac-warfarin alone (WF), in combination with either 

ginkgo (WF + Ginkgo) or ginger (WF + Ginger). 
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6.3.6 Pharmacodynamics 

The mean ratios of the AUC0-168 of INR (and 90% CI) were 0.93 (0.64-1.34) 

following treatment with ginkgo and 1.03 (0.72-1.49) for ginger (Table 6-4 and 

Table 6-5). While these confidence intervals included 1.0 suggesting no significant 

difference, the interval boundaries were not included in the 0.80 to 1.25 predefined 

limits. While a change in warfarin pharmacodynamics after ginkgo or ginger pre-

treatment is unlikely, this cannot be concluded based on the present data. However, 

neither ginkgo nor ginger alone affected the baseline INR or platelet aggregation in 

response to arachidonic acid (Table 6-4, Table 6-5; Figure 6-16 and Figure 6-17).  
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Figure 6-16. INR-time profiles following a single oral 25 mg rac-warfarin dose 

with warfarin only, warfarin + ginkgo  and warfarin + ginger (mean ± SD, n=12, 

warfarin dose administered on time 0). 

0

1

2

3

4

-48 0 48 96 144 192
Time (hour)

IN
R

Warfarin only

Warfarin + ginkgo

Warafrin + ginger

 
 

Figure 6-17. AUC0-168 of INR following a single oral 25 mg rac-warfarin dose 

with warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) and warfarin + 

ginger (WF + Ginger). 

0

100

200

300

400

0 1 2 3
WF + Ginkgo      WF     WF + Ginger

A
U

C
 0-

16
8 

of
 IN

R

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11
Subject 12

 



Chapter 6                     Effect of Ginkgo and Ginger on Warfarin                    190 

Table 6-4. Warfarin pharmacodynamic parameters following a single oral dose 

of 25 mg rac-warfarin alone (WF), in combination with either ginkgo (WF + 

ginkgo) or ginger (WF + ginger). Data are presented as mean ± SD and  95% CI 

are shown in brackets  (n=12). Individual subject data are presented in 

Appendices 32-36. 

Treatment Warfarin alone WF + ginkgo WF + ginger 

INRbaseline* 1.12 ± 0.08 

(1.10 – 1.17) 

1.14 ± 0.07 

(1.10 – 1.18) 

1.12 ± 0.07 

(1.10 – 1.16) 

tmax of INR (h) 45.7 ± 8.6 

(40.2 – 51.1) 

45.7 ± 16.6 

(35 – 56.3) 

43.3 ± 10.7 

(36.6 – 50.1) 

INRmax 2.6 ± 0.6 

(2.2 – 2.9) 

2.5 ± 0.8 

(2.0 – 3.0) 

2.6 ± 0.6 

(2.3 – 3.0) 

AUC0-168 of INR 124 ± 54 

(90 – 158) 

121 ± 69 

(77 – 165) 

125 ± 55 

(91 – 160) 

Baseline platelet 

aggregation (Ω) 

7.5 ± 1.5 

(6.5 – 8.4) 

8.4 ± 1.3 

(7.6 – 9.2) 

8.1 ± 0.9 

(7.5 – 8.7) 

* INRbaseline: the INR after 7 days pre-treatment with ginkgo or ginger prior to 

warfarin administration 

 

Table 6-5. Mean ratios and 90% confidence intervals of the ratio of log-

transformed warfarin pharmacodynamic parameters (n=12) after treatment 

with different herb medicines. 

Treatment Ginkgo (90% CI) Ginger (90% CI) 

INRbaseline 1.03 (1.00 – 1.05) 
 

1.10 (0.98 – 1.02) 

tmax of INR 0.96 (0.84 – 1.09) 
 

0.94 (0.82 – 1.06) 

INRmax 0.97 (0.85 – 1.09) 1.03 (0.91 – 1.17) 

AUC0-168 of INR 0.93 (0.81 – 1.05) 1.01 (0.93 – 1.15) 

Baseline platelet 
aggregation (Ω) 

1.14 (1.08 – 1.20) 1.11 (1.04 – 1.16) 
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6.3.7 Pharmacokinetic and Pharmacodynamic Modelling 

As demonstrated in Chapter 5 the warfarin enantiomer concentration and effect-time 

data were best described by a one compartment pharmacokinetic model and the 

sigmoid Emax pharmacodynamic model. The results of the pharmacokinetic 

modelling confirmed that there were no significant changes observed in the 

pharmacokinetic parameters of S- or R-warfarin following treatment with ginkgo or 

ginger. The findings of the PKPD modelling confirmed the suggestion [18] that the 

anticoagulant effect of rac-warfarin is predominantly contributed by S-warfarin and 

the pharmacokinetic and pharmacodynamic modelling does not have the ability to 

reliably estimate C50,R and γR. Interestingly, the pharmacodynamic aspect of the 

modelling approach found that there was a significant difference in the degradation 

(or elimination) rate constant of the prothrombin complex (kd) following a pre-

treatment with ginger (Table 6-6, 6-7; Figure 6-18 to 6-21).  
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Figure 6-18. Prothrombin complex activity (PCA)-time profiles following 

administration of a single oral dose of 25 mg rac-warfarin alone (WF), warfarin 

+ ginkgo (WF + ginkgo) or warfarin + ginger (WF + ginger) (mean ± SD, n=12). 

Individual subject profiles are presented in Appendix 12.  
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Figure 6-19. Model dependent estimates of the degradation rate constant of the 

prothrombin complex (kd) following oral administration of a 25 mg rac-

warfarin dose as warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) and 

warfarin + ginger (WF + Ginger).  
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Figure 6-20. Model dependent estimates of concentration of S-warfarin required 

to produce a 50% inhibition of PCA (C50,S) following oral administration of a 25 

mg rac-warfarin dose as warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) 

and warfarin + Ginger (WF + Ginger). 
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Figure 6-21. Model dependent estimates of the steepness of the concentration-

response (γ) following oral administration of a 25 mg rac-warfarin dose as 

warfarin only (WF), warfarin + ginkgo (WF + Ginkgo) and warfarin + ginseng 

(WF + Ginger). 
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Table 6-6. Model dependent warfarin pharmacokinetic and pharmacodynamic 

parameters following a single oral dose of 25 mg rac-warfarin alone (WF) or in 

combination with either ginkgo (WF + Ginkgo) or ginger (WF + Ginger) (mean 

± SD, 95% CI, n=12). 

Treatment WF alone WF + Ginkgo WF + Ginger 

kd (1/h) 0.06 ± 0.02 
(0.05 – 0.07) 

0.07 ± 0.03 
(0.05 – 0.09) 

0.08 ± 0.03 
(0.06 – 0.10) 

C50,S (ng/ml) 543 ± 241 
(389 – 696) 

611 ± 323 
(406 - 817) 

633 ± 586 
(261 – 1005) 

γS 2.0 ± 1.6 
(1.0 – 3.0) 

1.5 ± 0.3 
(1.2 – 1.7) 

1.8 ± 2.3 
(0.3 – 3.2) 

t1/2 (h) 
S-warfarin 

 
R-warfarin 

 

 
35.1 ± 6.5 

(31.0 – 39.3) 
50.3 ± 11.2 

(43.2 – 57.3) 

 
33.7 ± 6.4 

(30.0 – 37.8) 
48.1 ± 8.4 

(42.8 – 53.5) 

 
35.6 ± 9.8 

(29.4 – 41.8) 
48.2 ± 8.7 

(42.6 – 53.7) 

CL/F (ml/h) 
S-warfarin 

 
R-warfarin 

 
194 ± 40 

(168 – 219) 
130 ± 33 

(109 – 151) 

 
195 ± 42 

(168 – 222) 
124 ± 22 

(110 – 139) 

 
199 ± 48 

(169 – 229) 
132 ± 41 

(106 – 158) 

V/F (ml/kg) 
S-warfarin 

 
R-warfarin 

 

 
130 ± 20 

(120 – 140) 
120 ± 20 

(110 – 130) 

 
120 ± 10 

(110 – 130) 
110 ± 10 

(100 – 120) 

 
130 ± 20 

(110 – 140) 
120 ± 20 

(100 – 130) 
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Table 6-7. Mean ratios and 90% confidence intervals for selected log 

transformed pharmacokinetic and pharmacodynamic parameters between herb 

treatments compared to warfarin only (n=12). 

Treatment 
 

Ginkgo (90% CI) Ginger (90% CI) 

kd  1.19 (1.06 – 1.33) 1.36 (1.21 – 1.52)* 
 

C50,S  1.10 (1.03 – 1.18) 
 

0.98 (0.92 – 1.05) 

γS 0.86 (0.75 – 0.97) 0.70 (0.61 – 0.79)* 

t1/2 
S-warfarin 
R-warfarin 

 
0.96 (0.93 – 0.98) 
0.97 (0.93 – 1.00) 

 
0.99 (0.97 – 1.02) 
0.96 (0.93 – 1.00) 

CL/F 
S-warfarin 
R-warfarin 

 
1.00 (0.97 – 1.03) 
0.97 (0.94 – 1.01) 

 
1.02 (0.99 – 1.05) 
1.01 (0.97 – 1.05) 

V/F 
S-warfarin 
R-warfarin 

 
0.96 (0.93 – 0.99) 
0.95 (0.93 – 0.97) 

 
1.00 (0.97 – 1.03) 
0.97 (0.95 – 1.00) 

ANOVA *p<0.05 

 

6.3.8 Adverse Events 

In the present study, twelve subjects completed the study. No significant adverse 

events or bleeding episodes were observed. One subject reported constipation during 

the first two days of ginkgo pre-treatment and mild diarrhoea during the first two 

days of ginger pre-treatment. 
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6.4 Discussion 

This study investigated the effect of two commonly ingested herbal medicines on the 

pharmacokinetics and pharmacodynamics of warfarin enantiomers as well as the 

independent effects of these herbs on INR and platelet aggregation using a standard 

study design widely used in investigating warfarin–drug interactions. The major 

finding was that co-administration of recommended doses of ginkgo or ginger did 

not significantly affect pharmacokinetic and pharmacodynamic parameters of 

warfarin enantiomers after a single dose of the drug to healthy male subjects. 

 

Both sequence and period effects were found to be significant in the ANOVA 

analysis of the log transformed parameters including AUC0-∞ of S- and R-warfarin 

and AUC0-168 of INR. The reason for the sequence and period effects was unclear. 

The results are considered acceptable according to sequence effect described in the 

In Vivo Bioequivalence Guidances (United States Pharmacopoeia) USP23 [287] 

because this was a single-dose study which included only healthy male subjects. An 

adequate washout period was used with no detectable warfarin concentrations prior 

to warfarin dose administration in each period and INR returned to baseline in each 

case. 

 

Twelve healthy subjects were recruited in the present study. This sample size was 

determined by power calculation based on twelve subjects in a crossover study 

would provide an 80% chance of detecting a 20% difference in the AUC0-∞ of S-

warfarin while forty-three subjects were needed to find the difference in the AUC0-168 

of INR. Hence using twelve healthy subjects could not conclusively exclude a 
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pharmacodynamic interaction. However, such an interaction is unlikely because there 

was no significant change in the pharmacokinetics of S-warfarin and R-warfarin and 

there was no statistically difference in baseline INR following pre-treatment with 

ginkgo or ginger. 

 

The Ginkgo biloba leaf extracts generally have a low incidence of side effects. It is 

reported in a review article by McKenna et al [173] that numerous clinical trials have 

demonstrated that EGb 761 is considered safe without causing any serious adverse 

effects. The reported side effects include gastrointestinal complaints, headache, sleep 

disturbances, dizziness, and allergic skin reactions. And there also are several case 

reports involving patients who experience haemorrhage. Ginger has been recognized 

by the US Food and Drug Administration (FDA) and is listed as a food additive that 

is “Generally Recognized as Safe” [200]. 

 

No batch to batch or brand to brand reproducibility studies of ginger preparations 

have been found in the literature. Kressmann et al [271, 272] published two separate 

articles to identify the quality issues of the ginkgo products and their influence on the 

bioavailability of ginkgo constituents (See Section 4.4). Herbal medicine products 

containing extracts of ginkgo or ginger were chosen for this study following a 

qualitative assessment of a range of commercially available single-ingredient herbal 

medicine products (See Chapter 4). Furthermore, the selected study formulations 

conformed to the dosage recommended in the Herbal Medicine-Expanded 

Commission E Monographs. There was good agreement in the composition of 

different commercial herbal medicine products containing ginkgo as a single herb 

ingredient. In contrast, notable variability was found in the composition of the 
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different brands of ginger. As stated in Chapter 5, this observation further reinforces 

the need to establish the quality of herbal medicines products used in clinical studies 

to evaluate their clinical efficacy or potential herb-drug interactions. The herbal 

medicine product chosen for the present study (Tavonin™) contained Ginkgo biloba 

refined extract, EGb 761 which has been investigated in numerous clinical trials and 

has been the subject of a systematic review [285]. This level of evidence, which 

supports the clinical use of this extract, is one of the reasons it was selected for 

investigation in this study. 

 

Ginkgo extracts have been reported to inhibit the drug metabolising activity of 

CYP450. Zou et al [137] evaluated the effects of ginkgolide A, B, C, ginkgo acid I, 

II, bilobalide and isorhemnetin, purified compounds from Ginkgo biloba, on the 

catalytic activity of cDNA-expressed cytochrome P450 isoforms using in vitro 

experiments. Increasing concentrations of the compounds were incubated with a 

panel of recombinantly expressed human CYP isoforms and examined their effects 

on the conversion of specific substrates measured fluorometrically in a 96-well plate 

format. Ginkgolic acids I and II were found to be potent inhibitors of CYP1A2 (IC50 

(µM): 4.81, 4.88), 2C9 (IC50 (µM): 2.41, 1.94), 2C19 (IC50 (µM): 4.22, 4.41), 2D6 

(IC50 (µM): 10.42, 7.82) and 3A4 (IC50 (µM): 6.74, 6.25), respectively, while 

ginkgolide A, B, C, bilobalide and isorhemnetin did not inhibit these enzymes. 

Furthermore, Ohnishi et al [194] investigated the effects of Ginkgo biloba leaf 

extract, on the pharmacokinetics of diltiazem, a substrate for CYP 3A using both in 

vitro and in vivo studies in rats. A standardized method was used to prepare the 

Ginkgo biloba extract. The final quality of this extract was assured containing over 

24% flavonoid glycosides and 6% terpene lactones and less than 1 ppm ginkgolic 
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acids, and the yield was about 2%. The simultaneous addition of this Ginkgo biloba 

extract to small intestine and liver microsomes inhibited the formation of N-

demethyldiltiazem, an active metabolite of diltiazem generated by CYP3A, with an 

IC50 of about 50 and 182 µg/ml, respectively. Both the formation rate of N-

demethyldiltiazem and the total amount of CYP in intestinal or hepatic microsomes 

decreased transiently and the area under the concentration-time curve and absolute 

bioavailability after oral administration of diltiazem (30 mg/kg) were significantly 

increased after a single oral pretreatment with Ginkgo biloba (20 mg/kg). The 

pretreatment with Ginkgo biloba extract (20 mg/kg) significantly decreased the 

elimination rate constant and increased the mean residence time after intravenous 

administration of diltiazem (3 mg/kg). Umegaki et al [188] reported that the addition 

of ginkgo extract resulted in a concentration dependent inhibition of various CYP 

enzymes, especially CYP2B based on in vitro studies using rats and human hepatic 

microsomes. Paradoxically, ginkgo extract has also been reported in the literature to 

induce cytochrome P450. Shinozuka et al [196] reported, based on studies in rats, 

that the levels of CYP2B1/2, CYP3A1 and CYP3A2 mRNA in the liver were 

significantly induced while CYP1A1, CYP1A2, CYP2E1, CYP2C11 and CYP4A1 

remained unchanged and the hypotensive effect of nicardipine, metabolized by 

CYP3A2, was significantly reduced in rats after pre-treatment with 0.5% of ginkgo 

extract for four weeks. Umegaki et al [188] also reported that the concentration and 

activities of CYP enzymes, especially the CYP2B enzyme, were significantly 

increased on day 1 of feeding of a 0.5% ginkgo extract diet and after administration 

of ginkgo extract of 10 mg/kg body weight for 5 days by intragastric gavage in rats. 

However, these effects of ginkgo have not been observed in clinical trials in humans. 

Gurley et al [91] reported that a single-time point phenotypic metabolic ratios were 
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used to determine whether long-term administration of Ginkgo biloba and other 

herbal medicines affected CYP1A2, CYP2D6, CYP2E1 or CYP3A4 activity. Twelve 

healthy volunteers (6 males, 6 females) were randomly assigned to receive either 

Ginkgo biloba (60 mg, 4 times daily) or other herbal medicines for 28 days. For each 

subject, a 30-day washout period was used between each herbal medicine phase. 

Probe-drug cocktails of midazolam (CYP3A4), caffeine (CYP1A2), chlorzoxazone 

(CYP2E1) and debrisoquin (CYP2D6) were administered before herbal medicine 

treatment and at the end of herbal medicine treatment. Phenotypic trait measurements 

were determined for CYP3A4, CYP1A2, CYP2E1, and CYP2D6 by using 1-

hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine 

serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios 

(2-hour sample), and debrisoquin urinary recovery ratios (8-hour collection), 

respectively. No significant effect on CYP activity was observed for Ginkgo biloba. 

The effect of ginkgo extract on the in vivo metabolic activity of CYP2C9 was not 

investigated by these researchers.  

 

A recent clinical trial investigated the effect of ginkgo co-administration on warfarin 

pharmacodynamics using a randomized, double-blind placebo-controlled cross-over 

trial in patients using 100 mg of ginkgo extract daily over treatment periods of four 

weeks [197]. Twenty-four outpatients (fourteen women and ten men) were included 

who were receiving stable, long-term warfarin treatment. A two-week wash out 

period was employed. The INR was kept between 2.0 and 4.0 by appropriate 

adjustment of the warfarin dosage. The INR was stable during all treatment periods. 

The geometric mean dosage of warfarin did not change during the treatment periods 
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[197]. However, the effect of ginkgo on the pharmacokinetics of warfarin was not 

investigated in the study by Engelsen et al [197].  

 

In the study reported in this thesis, recommended doses of a herbal medicine product 

containing EGb 761 (ginkgolic acids < 5 ppm) did not affect the clearance of 

warfarin enantiomers which suggests that this herb does not significantly influence 

CYP1A2, CYP3A4 or CYP2C9 metabolic activity at this dose. The conflicting 

observations about the possible effects of ginkgo constituents on cytochrome P450 in 

the literature could be caused by variability in constituents of ginkgo and different 

concentrations of ginkgo constituents used in the in vivo and in vitro studies reported 

in the literature. Therefore, the use of standardised methods to prepare herbal 

medicines and standardised methods to perform quality control is quite important to 

guarantee equivalent efficacy in different proprietary preparations.  

 

Conflicting results have also been observed in the effect of ginkgo on clotting status 

in the literature. Several in vitro studies have demonstrated that ginkgo extract or 

ginkgolides A, B and C inhibit PAF but not ADP or arachidonic acid induced platelet 

aggregation [182-185]. Furthermore, in clinical trials, twenty-four patients suffering 

from arteriosclerotic disorders were divided into 2 groups. Twelve patients received 

sodium chloride (250 ml) with Ginkgo biloba extract (25 ml) while the other twelve 

patients were treated with sodium chloride (250 ml) only. The collagen induced 

platelet aggregation was determined before, immediately after infusion and on the 

following day. The platelet aggregation increased in both treatment groups after 

infusion. Platelet aggregation in the group treated with Ginkgo biloba extract after 1 

day returned to normal while the aggregation remained increased in the sodium 
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chloride group [186]. Furthermore, ginkgo extract significantly reduced collagen but 

not PAF-mediated platelet aggregation in healthy volunteers (n=28) and Type 2 

diabetic subjects (n=19) in which 120 mg of standardized ginkgo was ingested for 3 

months [187]. 

 

However, several studies have concluded that ginkgo does not affect clotting status. 

In one study, up to 0.2 mg/ml of ginkgo extract did not inhibit ADP and collagen-

induced platelet aggregation in vitro in rats [288]. In another prospective, double 

blind, randomised, placebo-controlled study in 32 young male healthy volunteers; 

ginkgo extract (EGb761) did not alter any haematological marker using three doses 

of ginkgo extracts 120, 240 and 480 mg/day for 14 days [189]. In this study, primary 

haemostasis was assessed by both the bleeding time measured by the 3-point Ivy-

Neison technique and a direct quantitative measurement of blood loss according to 

the Bernal-Hoyos methods. The interaction between platelets and coagulation was 

assessed using the thrombin generation test in platelet rich plasma. Several methods 

were used to assess platelet function including (i) by platelet aggregation in citrated 

platelet rich plasma, induced by three different agonists: adenosine diphosphate (2.5 

µM), thrombin receptor agonist peptide (25 µM) and collagen (1.25 µg/ml); (ii) by 

quantification of platelet membrane glycoproteins and (iii) by measurement of 

procoagulant activity assessed by annexin fixation on the platelet membrane [189].   

In the present study, ginkgo did not significantly affect platelet aggregation induced 

by arachidonic acid and coagulation which is in agreement with these findings.   

 

Few ginger-drug interactions have been reported in the literature. Banerjee et al [211] 

investigated the influence of certain essential oils including ginger oil, on 
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carcinogen-metabolizing enzymes and acid-soluble sulfhydryls in mouse liver and 

found ginger oil (10 µl/day for 14 days by gavage) did not significantly affect 

cytochrome P450 levels.  This is consistent with the observations of a lack an effect 

of ginger on warfarin metabolism reported in this thesis. 

 

Investigation of the effect of ginger on platelet aggregation or coagulation has been 

conducted by several researchers.  A series of synthetic gingerols and related 

phenylalkanol analogues were found to inhibit arachidonic acid induced platelet 

serotonin release and aggregation based on an in vitro study of human platelets [201]. 

Furthermore, it was found in in vitro studies that a significant effect of ginger extract 

was to inhibit platelet aggregation. Srivastava et al  [202-204] reported that organic 

ginger extract extracted in three organic solvents: n-hexane, chloroform and ethyl 

acetate reduced platelet thromboxane formation from exogenous arachidonic acid 

and also inhibited platelet aggregation induced by arachidonic acid, epinephrine, 

ADP and collagen in a dose-dependent manner. Suekawa et al [286] reported that 

(6)-Shogaol, a pungent component of ginger, inhibited arachidonic acid - induced 

platelet aggregation in rabbits platelet in vitro.  

 

However, conflicting findings related to the effect of ginger constituents on platelet 

aggregation are found elsewhere in the literature. Lumb et al [208] reported the 

effects of 2 g dried ginger or placebo capsules on platelet function using eight 

healthy male volunteers in a randomised double blind study. Bleeding time, platelet 

count, thromboelastography and whole blood platelet aggregometry were measured 

before, 3 h, and 24 h after administration of ginger. There were no significant 

differences found between ginger and placebo [208]. In contrast, administration of 5 
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g of dry ginger in two divided doses with a fatty meal was reported to significantly 

inhibit the platelet aggregation induced by adenosine diphosphate and epinephrine in 

ten healthy male volunteers in whom platelet aggregation was enhanced by 100 g 

butter for 7 days while there was no significant alteration in platelet aggregation in 

the placebo control group (10 healthy male volunteers) [205]. In addition, using a 

single dose of 10 g powdered ginger, a significant reduction in platelet aggregation 

induced by ADP and epinephrine was observed in patients with coronary artery 

disease while no significant effect was found using a dose of 4 g daily for 3 months 

[206].  In animal studies, no significant effect on coagulation parameters PT and 

APTT or on warfarin-induced changes in blood coagulation was found in rats using 

multiple 100 mg/kg doses of EV.EXT™ 33, which is a ginger extract of patented 

standardised ethanol extract of dry rhizomes of Zingiber officinale Roscoe [207]. In 

the present study, no significant effect was found on platelet aggregation and 

coagulation in healthy human volunteers using a daily dose of 3.6 g of ginger for 5 

days. 

 

The conflicting results on clotting status in the literature and the present study could 

be attributed to a number of factors including the in vivo metabolic biotransformation 

of the ginger constituents after oral dosing of ginger, dose regimen or study 

population. There are no studies reported on the pharmacokinetics of ginger 

constituents in humans. 

 

In this study a combined PK/PD model was employed to characterise the warfarin 

concentration-effect data obtained in the three phases of this clinical trial. This 

allows assessment of the effect of herbs on pharmacodynamic parameters. 
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Co-administration with ginger was found to significantly increase the degradation 

rate constant (kd) of PCA and slop factor in concentration-response relationship (γS) 

while no significant difference was found in C50S with and without these two herbal 

medicines.  The clinical implications of the effect of ginger on the kd of PCA and γS 

is unclear given that ginger did not significantly affect INR baseline and AUC0-168  of 

INR. The mechanism by which ginger affects kd or γS is not clear. C50S, kd and γS 

from the present study of control group are in agreement with previous reported [18].  

 

In summary, this study found that neither ginkgo nor ginger when administered as 

single herbal ingredient medicines at recommended doses for a week affected the 

pharmacokinetics of either S-warfarin or R-warfarin in humans, nor did they affect 

coagulation status. These finding suggest that the coadministration of ginkgo or 

ginger at recommended doses is unlikely to affect warfarin response in healthy 

persons. The finding that ginger increased degradation rate constant deserves further 

investigation and the safety of these herbs in anticoagulant patients has yet to be 

established. 
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Chapter 7 General Discussion, Conclusions and 

Further Studies 

7.1 General Discussion 

These studies involved standard warfarin-drug interactions study design which is the 

most frequently used in the literature (See Section 2.1.1). A power calculation 

indicated that using 12 subjects to investigate warfarin drug interaction in a crossover 

study provides an 80% chance to detect a 20% difference in AUC0-∞ of S-warfarin. 

However, 43 subjects would be needed to show a similar difference in AUC0-168 of 

INR as pharmacodynamic parameter. A number of CI ranges of ratios for 

pharmacodynamic parameters were out side the predefined limit of 0.80 to 1.25 

suggesting that a lack of significant difference cannot be concluded. While these two 

studies could not conclusively exclude a pharmacodynamic interaction such an 

interaction is unlikely because no significant change was observed in 

pharmacokinetics of S-warfarin while warfarin was coadministered with ginseng, 

ginkgo or ginger and also no statistically difference was found in baseline INR 

during pre-treatment with St John’s wort, ginseng, ginkgo or ginger. For St John’s 

wort, it induced the metabolism of warfarin and subsequently reduced the 

anticoagulant effect of warfarin. 
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Cmax of S- and R-warfarin were not suitable to be used to test sequence and period 

effect, because the sampling time was not designed to find a difference in Cmax of S- 

and R-warfarin. 

 

The single 25 mg dose of warfarin used in the study was based on the literature 

review of warfarin drug interaction study design. It is the most frequently used in the 

literature (See Section 2.1.1). Warfarin has a narrow therapeutic range and serious 

side effects such as bleeding rarely happened after an in single dose of warfarin but 

are not uncommon during long-term use. The target therapeutic range of warfarin 

therapy INR (2-3) for treatment of venous thrombosis and pulmonary embolism (See 

Section 1.3) which is recommended by Therapeutic Guidelines: Cardiovascular 

(Australia) was reached after a single 25 mg dose of warfarin (Figure 5-17 and 

Figure 6-17). Furthermore, Figure 7-1 and Figure 7-2 show the concentration-effect 

relationship for warfarin derived from the PKPD modelling analysis and the PD 

parameter estimated. Over the S-warfarin concentration range (0 - 2 µg/ml) observed 

after a single 25 mg dose, the maximum inhibition of PCA is approximately 80%. 

This observation means that this study design was capable of detecting both 

increases and decreased in warfarin effect during drug interaction studies.  
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Figure 7-1. PCA-Concentration profiles following single oral 25 mg rac-

warfarin dose with warfarin only, warfarin + St John’s wort and warfarin + 

ginseng using mean data (n=12) derived from PD parameters presented in 

Table 5-6. 
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Figure 7-2. PCA-Concentration profiles following single oral 25 mg rac-

warfarin dose with warfarin only, warfarin + ginkgo  and warfarin + ginger 

using mean data (n=12) derived from PD parameters presented in Table 6-6. 
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7.2 General Conclusions 

This thesis has investigated the effect of herbal medicines on the pharmacokinetics 

and pharmacodynamics of warfarin and their individual effect on coagulation and 

platelet aggregation in healthy subjects. This has been achieved using four of the 

most commonly used herbs St John’s wort, ginseng, ginkgo and ginger. The results 

of this study revealed important information about the potential for herbs to influence 

human metabolism enzymes including CYP2C9, CYP1A2 and/or CYP3A4.  

 

This chapter details the important findings of the work presented in this thesis. Key 

elements of the preceding chapters are discussed in a broader context and potential 

areas of further research are highlighted.  

 

Chapter 4 describes the investigations into the quality of herbal medicine products. In 

this thesis commercially available herbal medicine products were selected as it would 

most likely reflect the type of products used by patients receiving warfarin. No 

significant variability was found between different commercial products of ginkgo. 

However, the variability between different commercial products of St John’s wort, 

ginseng, and ginger was notable. TLC was used as a screening method to investigate 

the quality of herbal medicines because it is a simple, quick and productive method 

to perform batch tests investigating the qualitative differences between commercial 

products of herbal medicines and different constituents within such herbal medicines. 

Standardised quality control methods based on the British Pharmacopoeia 2001 and 

the People’s Republic of China Pharmacopoeia 2000 were used in this thesis. The 
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use of standardised methods to prepare herbal medicines and to perform quality 

control is recommended. This is critical to ensure the quality of herbal medicines; to 

minimise the variability of constitutes in herbal medicines and to ensure efficacy of 

herbal medicines. 

 

In Chapter 5, it has been demonstrated that pre-treatment with St John’s wort can 

induce the metabolism of both S- and R- warfarin in humans by comparing 

pharmacokinetic and pharmacodynamic parameters with and without 

coadministration with St John’s wort. S-warfarin is metabolised predominantly to S-

7-hydroxywarfarin by CYP2C9 while R-warfarin is partly metabolised by CYP3A4 

and CYP1A2. The study design and data analysis approach used in this thesis 

demonstrated that the drug interaction mechanism of St John’s wort on warfarin is 

the result of induction of the CYP2C9, CYP3A4 and/or CYP1A2 rather than a 

reduction in the unbound fraction of warfarin leading to an increase in its clearance. 

Previous studies have not demonstrated an effect of St John’s wort on CYP2C9. 

Potential drug interactions with St John’s wort include other drugs that are substrates 

of CYP2C9, CYP3A4 and/or CYP1A2. Co-administration of St John’s wort can 

reduce the efficacy of warfarin based on this pharmacokinetic interaction mechanism. 

This most certainly has implications for patients taking and the need to avoid or 

carefully monitor the use of St John’s wort. 

 

Studies in Chapter 5 and 6 of this thesis found that ginseng, ginkgo and ginger 

administered as single ingredient herbal medicines at the recommended dose had 
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little effect on the pharmacokinetics and pharmacodynamics of warfarin enantiomers. 

Furthermore, ginseng, ginkgo and ginger had little effect on substrates of CYP2C9, 

CYP3A4 and CYP1A2.  

 

Administration of St John’s wort, ginseng, ginkgo and ginger at recommended oral 

doses did not significantly affect coagulation and platelet aggregation in healthy 

subjects. Nevertheless, the safety of these herbs in patients receiving anticoagulants 

has yet to be established. 

 

The lack of an interaction with ginseng ginger and ginkgo observed in this study 

does not allow one to conclude that such an interaction is not possible in patients. 

There is little information about the way that herbal medicines are used in our 

community but the suggestion is that people often take multiple combinations of 

herbs often at higher recommended dosed. In summary, these findings provide 

rigorous evidence to support the recommendation that close monitoring of INR 

should be undertaken in patients receiving this herb-drug combination. Further 

research is needed to clarify the implications of these findings for elderly patients 

(who are likely to receive warfarin) and in people using a range of herbal and 

complementary medicines often in a variety of doses. 
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7.3 Further Studies 

The pharmacokinetic interactions between warfarin and these four herbal medicines 

have been clarified in this thesis. Understanding the mechanism of warfarin drug 

interactions provides an insight into the possible clinical significance of an 

interaction and can help elucidate strategies to avoid or minimise the impact in a 

given patient. Based on these findings in healthy male subjects, further studies 

should be conducted in patients receiving anticoagulants to obtain the most definitive 

data on the probability and magnitude of warfarin pharmacodynamic interactions 

with the four herbal medicines examined. Especially, the finding that ginger 

increased the degradation rate constant of the prothrombin complex deserves further 

study. 
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Appendices 

Appendix 1. ANOVA test of sequence, period and treatment effects on logCmax 
of S-warfarin in study I investigating the effect of St John’s wort and ginseng on 
warfarin. 

                           Number of obs =      36     R-squared     =  0.2388   
                           Root MSE      = .066307     Adj R-squared =  0.0813            
                  Source |    Partial SS        df           MS                    F         Prob > F   
                   Model |   0.040000003     6      0.006666667       1.52       0.2080   
             Treatment |   0.004999994     2      0.002499997       0.57       0.5725   
                   Period |   3.1580e-15        2     1.5790e-15           0.00       1.0000   
              Sequence |   0.035000009     2      0.017500004        3.98      0.0297   
                Residual |  0.127500023     29    0.004396553                         
                     Total |  0.167500026     35     0.004785715     

 

Appendix 2. ANOVA test of sequence, period and treatment effects on logCmax 
of R-warfarin in study I investigating the effect of St John’s wort and ginseng 
on warfarin. 
 
                           Number of obs =      36     R-squared     =  0.2044   
                           Root MSE      = .071719     Adj R-squared =  0.0398   
                  Source |    Partial SS          df            MS              F            Prob > F   
                   Model |  0.03833334         6      0.00638889       1.24         0.3143   
             Treatment |  0.011666676       2      0.005833338     1.13         0.3356   
                   Period |  1.2632e-14          2      6.3159e-15        0.00        1.0000   
              Sequence |  0.026666663       2      0.013333332     2.59         0.0921   
                Residual |  0.149166684      29     0.005143679                         
                     Total |  0.187500024      35    0.005357144    
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 Appendix 3. ANOVA test of sequence, period and treatment effects on 
logAUC0-∞ of S-warfarin in study I investigating the effect of St John’s wort and 
ginseng on warfarin. 
 
                           Number of obs =      36     R-squared     =  0.4140   
                           Root MSE      = .073826     Adj R-squared =  0.2928   
                  Source |     Partial SS        df            MS                  F          Prob > F   
                   Model |   0.111666994      6      0.018611166       3.41       0.0113   
             Treatment |   0.107222537      2      0.053611268       9.84*     0.0005   
                   Period |   0.002222229      2      0.001111114       0.20       0.8167   
              Sequence |   0.002222229      2      0.001111114       0.20       0.8167   
                Residual |  0.158055956      29     0.005450205                         
                     Total |   0.26972295        35    0.00770637        

*p<0.05 

 

 Appendix 4. ANOVA test of sequence, period and treatment effects on 
logAUC0-∞ of R-warfarin in study I investigating the effect of St John’s wort and 
ginseng on warfarin. 
 
                           Number of obs =      36     R-squared     =  0.2214   
                           Root MSE      = .100525     Adj R-squared =  0.0603   
                  Source |    Partial SS        df       MS                         F        Prob > F   
                   Model |  0.083333206     6        0.013888868       1.37        0.2580   
             Treatment |  0.068888795     2        0.034444397       3.41        0.0468   
                   Period |  0.010555517     2        0.005277758       0.52        0.5986   
              Sequence |  0.003888895     2        0.001944447       0.19        0.8260   
               Residual |  0.293055232     29       0.010105353                         
                     Total |  0.376388439    35       0.010753955     
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 Appendix 5. ANOVA test of sequence, period and treatment effects on 
logAUC0-168 of INR in study I investigating the effect of St John’s wort and 
ginseng on warfarin. 
 
                           Number of obs =      36     R-squared     =  0.1574   
                           Root MSE      = .184816     Adj R-squared = -0.0170   
                  Source |     Partial SS       df                MS                F         Prob > F   
                   Model |  0.184999999     6        0.030833333       0.90       0.5065   
             Treatment |  0.142222205     2        0.071111103       2.08       0.1429   
                   Period |  0.027222208     2        0.013611104       0.40       0.6750   
              Sequence |  0.015555585     2        0.007777793       0.23       0.7978   
               Residual |  0.990555452     29       0.034157085                         
                     Total |  1.17555545      35       0.033587299   .                

  

 

 Appendix 6. ANOVA test of sequence, period and treatment effects on 
logAUC0-∞ of S-warfarin in Study II investigating the effect of ginkgo and ginger 
on warfarin. 
 
                           Number of obs =      36     R-squared     =  0.2745   
                           Root MSE      = .097035     Adj R-squared =  0.1244      
                  Source |    Partial SS        df       MS                       F          Prob > F   
                   Model |  0.103333414     6      0.017222236       1.83        0.1281   
             Treatment |  0.008888925     2      0.004444462       0.47        0.6284   
                   Period |  0.077222263     2      0.038611132       4.10        0.0270   
              Sequence |  0.017222226     2      0.008611113       0.91        0.4119   
                Residual |  0.27305601      29     0.009415724                         
                     Total |  0.376389424     35    0.010753984      
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 Appendix 7. ANOVA test of sequence, period and treatment effects on 
logAUC0-∞ of R-warfarin in study II investigating the effect of ginkgo and ginger 
on warfarin.                

                           Number of obs =      36     R-squared     =  0.1088   
                           Root MSE      = .106269     Adj R-squared = -0.0755   
                  Source |  Partial SS          df       MS                      F        Prob > F   
                   Model |  0.039999924     6     0.006666654       0.59       0.7353   
             Treatment |  0.001666663     2     0.000833332       0.07       0.9290   
                   Period |  0.011666644     2     0.005833322       0.52       0.6020   
              Sequence |  0.026666616     2     0.013333308       1.18       0.3214   
                Residual |  0.327499375    29    0.011293082                         
                     Total |  0.367499299    35    0.01049998      
 

 

Appendix 8. ANOVA test of sequence, period and treatment effects on logCmax, 
of S-warfarin in study II investigating the effect of ginkgo and ginger on 
warfarin. 
 
                           Number of obs =      36     R-squared     =  0.5205   
                           Root MSE      = .076314     Adj R-squared =  0.4213   
                  Source |  Partial SS          df       MS                        F          Prob > F   
                   Model |  0.183333441     6      0.030555573        5.25       0.0009   
             Treatment |  0.003888895     2      0.001944447        0.33       0.7189   
                   Period |  0.117222246     2      0.058611123      10.06*     0.0005   
              Sequence |  0.0622223         2      0.03111115          5.34*     0.0106   
                Residual | 0.168888973    29     0.005823758                         
                     Total |  0.352222414    35     0.010063498      

*p<0.05 
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Appendix 9. ANOVA test of sequence, period and treatment effects on logCmax 
of R-warfarin in study II investigating the effect of ginkgo and ginger on 
warfarin. 
 
                           Number of obs =      36     R-squared     =  0.4961   
                           Root MSE      = .082988     Adj R-squared =  0.3919   
                  Source |    Partial SS        df       MS                        F         Prob > F   
                   Model |  0.196666749     6       0.032777791       4.76        0.0017   
             Treatment |  0.007222234     2       0.003611117       0.52        0.5975   
                   Period |  0.115555547     2       0.057777774       8.39*      0.0013   
              Sequence |  0.073888968     2       0.036944484       5.36*      0.0104   
                Residual |  0.199722319    29      0.006886977                         
                     Total |  0.396389068    35      0.011325402      

*p<0.05 

 

Appendix 10. ANOVA test of sequence, period and treatment effects on 
logAUC0-168 of INR in study II investigating the effect of ginkgo and ginger on 
warfarin. 
 
                           Number of obs =      36     R-squared     =  0.3296   
                           Root MSE      = .174005     Adj R-squared =  0.1909   
 
                  Source |  Partial SS          df              MS                 F        Prob > F   
                   Model |  0.431666714     6       0.071944452       2.38       0.0546   
             Treatment |  0.003888888     2       0.001944444       0.06       0.9379   
                   Period |  0.037222233     2       0.018611117       0.61       0.5477   
              Sequence |  0.390555592     2       0.195277796       6.45*     0.0048   
                Residual |  0.878055759    29      0.030277785                         
                     Total |  1.30972247       35     0.037420642       

*p<0.05 
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Appendix 11. Study I plasma concentration – time profile for S-warfarin and R-
warfarin and the PCA% -time (elapsing time – td) profile following a single oral 
dose of 25 mg rac-warfarin alone or with St John’s Wort (warfarin + St John’s 
Wort)  or with ginseng (Warfarin + Ginseng). (■, observed data for S-warfarin; 
○, observed data for R-warfarin; —, model predicted data). 
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Appendix 12. Study II plasma concentration – time profile for S-warfarin and 
R-warfarin and the PCA% -time (elapsing time - td) profile following a single 
oral dose of 25 mg rac-warfarin alone or with ginkgo (Warfarin + Ginkgo) or 
with ginseng (Warfarin + Ginger) (■, observed data for S-warfarin; ○, observed 
data for R-warfarin; —, model predicted data). 
 

Subject 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
01112 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

01112 Warfarin Only

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
01122 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

01122 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
01132 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

01132 Warfarin + Ginger



Appendices                                                                                                            254  

 

Subject 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
02112 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

02112 Warfarin Only

Time (hour)

0 50 100 150

P
C

A%

0

20

40

60

80

100
02122 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200
C

onc. (ng/m
l) 

100

101

102

103

104

02122 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
02132 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

02132 Warfarin + Ginger



Appendices                                                                                                            255  

 

Subject 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
03112 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

03112 Warfarin Only

Time (hour)

0 50 100 150

P
C

A%

0

20

40

60

80

100
03122 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200
C

onc. (ng/m
l) 

100

101

102

103

104

03122 WF + Ginkgo

Time (hour)

0 50 100 150

P
C

A%

0

20

40

60

80

100
03132 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

03132 Warfarin + Ginger



Appendices                                                                                                            256  

 

Subject 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
04112 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

04112 Warfarin Only

Time (hour)

0 50 100 150

P
C

A%

0

20

40

60

80

100
04122 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

04122 Warfarin + Ginkgo

Time (hour)

0 50 100 150

P
C

A%

0

20

40

60

80

100
04132 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

04132 Warfarin + Ginger



Appendices                                                                                                            257  

 

Subject 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%
0

20

40

60

80

100
05212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

05212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
05222 Warfarin + Ginger

Time (hour)

0 50 100 150 200
C

onc. (ng/m
l) 

100

101

102

103

104

05222 Warfarin + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
05232 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

05232 Warfarin Only



Appendices                                                                                                            258  

 

Subject 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
06212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

06212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
06222 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

06222 Warfarin  + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
06232 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

06232 Warfarin Only



Appendices                                                                                                            259  

 

Subject 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%
0

20

40

60

80

100
07212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

07212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
07222 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

07222 Warfarin + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
07232 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

07232 Warfarin Only



Appendices                                                                                                            260  

 

Subject 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
08212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

08212 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
08222 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

08222 Warfarin+ Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
08232 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

08232 Warfarin Only



Appendices                                                                                                            261  

 

 

Subject 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
09312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

09312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
09322 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

09322 Warfarin Only

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
09332 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

09332 Warfarin + Ginkgo



Appendices                                                                                                            262  

 

 

Subject 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
10312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

10312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
10322 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

10322 Warfarin Only

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
10332 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

10332 Warfarin + Ginkgo



Appendices                                                                                                            263  

 

 

Subject 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
11312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

11312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
11322 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

11322 Warfarin Only

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
11332 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

11332 Warfarin + Ginkgo



Appendices                                                                                                            264  

 

 

Subject 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hour)

0 50 100 150 200

PC
A%

0

20

40

60

80

100
12312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

12312 Warfarin + Ginger

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
12322 Warfarin Only

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 
100

101

102

103

104

12322 Warfarin Only

Time (hour)

0 50 100 150 200

P
C

A%

0

20

40

60

80

100
12332 Warfarin + Ginkgo

Time (hour)

0 50 100 150 200

C
onc. (ng/m

l) 

100

101

102

103

104

12332 Warfarin + Ginkgo



Appendices                                                                                                            265  

Appendix 13. Individual fraction of unbound (fu) warfarin in study I following 
administration a single oral 25 mg rac-warfarin (WF) alone, in combination with 
either St John’s wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No fu of S-

warfarin 
fu of R-
warfarin 

fu of S-
warfarin 

fu of R-
warfarin 

fu of S-
warfarin 

fu of R-
warfarin 

1 0.004 0.004 0.003 0.003 0.005 0.004 
2 0.004 0.005 0.004 0.005 0.005 0.005 
3 0.004 0.005 0.005 0.005 0.005 0.006 
4 0.005 0.005 0.004 0.004 0.004 0.004 
5 0.004 0.005 0.004 0.005 0.004 0.005 
6 0.003 0.004 0.004 0.004 0.002 0.004 
7 0.002 0.004 0.002 0.005 0.003 0.004 
8 0.003 0.005 0.003 0.005 0.002 0.004 
9 0.003 0.005 0.004 0.006 0.003 0.005 
10 0.005 0.004 0.005 0.004 0.005 0.004 
11 0.002 0.005 0.004 0.004 0.007 0.004 
12 0.002 0.006 0.002 0.006 0.002 0.006 

Mean 0.003 0.005 0.004 0.005 0.004 0.005 
SD 0.001 0.001 0.001 0.001 0.002 0.001 

 

Appendix 14. Individual AUC0-∞ for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No AUC0-∞ of 

S-warfarin 
(ng/ml×h) 

AUC0-∞ of 
R-warfarin 
(ng/ml×h) 

AUC0-∞ of 
S-warfarin 
(ng/ml×h) 

AUC0-∞ of 
R-warfarin 
(ng/ml×h) 

AUC0-∞ of 
S-warfarin 
(ng/ml×h) 

AUC0-∞ of 
R-warfarin 
(ng/ml×h) 

1 50900 101800 39500 82200 50300 93100 
2 57100 88700 45100 80000 54500 83400 
3 82500 165100 55900 113900 61400 121000 
4 63500 129800 45300 93800 67300 121900 
5 61400 100200 52200 76500 48000 96300 
6 82500 120700 40200 58400 60007 90600 
7 78000 107900 66000 99300 60500 94400 
8 52400 142500 44800 104200 46300 126200 
9 56700 89100 36200 77600 59700 96800 
10 89200 202400 45400 104600 68000 148300 
11 59300 95300 55400 97400 65000 119300 
12 51400 107000 46400 104900 52000 105300 

Mean 65400 120900 47700 91100 57800 108100 
SD 13800 32900 8300 15400 7400 18300 
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Appendix 15. Individual tmax for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No tmax of S-

warfarin 
(h) 

tmax of R-
warfarin 

(h) 

tmax of S-
warfarin 

(h) 

tmax of R-
warfarin 

(h) 

tmax of S-
warfarin 

(h) 

tmax of R-
warfarin 

(h) 
1 1.1 1.1 1.0 1.0 1.0 1.0 
2 2.3 2.3 2.0 2.0 1.0 1.0 
3 1.0 1.0 1.8 1.8 1.8 1.8 
4 1.2 1.2 1.0 1.0 1.0 1.0 
5 1.0 1.0 1.0 2.0 1.7 1.7 
6 1.9 1.9 0.9 0.9 1.0 1.0 
7 1.0 1.0 1.9 1.9 0.9 0.9 
8 2.0 2.0 0.9 0.9 0.9 0.9 
9 1.5 1.5 0.9 0.9 1.0 1.0 
10 0.9 1.5 0.9 1.8 2.4 2.4 
11 0.7 0.7 1.8 1.8 0.8 0.8 
12 0.9 0.9 1.0 1.0 2.1 2.1 

Mean 1.3 1.3 1.3 1.3 1.3 1.3 
SD 0.5 0.5 0.5 0.5 0.6 0.5 

 

Appendix 16. Individual Cmax for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No Cmax of S-

warfarin 
(ng/ml) 

Cmax of R-
warfarin 
(ng/ml) 

Cmax of S-
warfarin 
(ng/ml) 

Cmax of R-
warfarin 
(ng/ml) 

Cmax of S-
warfarin 
(ng/ml) 

Cmax of R-
warfarin 
(ng/ml) 

1 1860 1750 1680 1720 1940 1880 
2 1450 1480 1560 1680 2200 2110 
3 2230 2370 1920 1980 2030 2100 
4 1810 1850 1870 1820 2310 2020 
5 1460 1420 1460 1410 1410 1450 
6 2050 2360 1290 1240 1850 1740 
7 1950 1860 1540 1660 1520 1470 
8 1810 1890 2050 2020 2110 2110 
9 1880 1900 1810 1800 1800 1740 
10 2130 2250 2100 2180 1950 2040 
11 2160 2000 2530 2670 2370 2330 
12 1900 1820 2010 1960 1700 1700 

Mean 1890 1920 1820 1840 1930 1890 
SD 260 320 340 360 310 290 
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Appendix 17. Individual t1/2 for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No t1/2  of S-

warfarin 
(h) 

t1/2   of R-
warfarin 

(h) 

t1/2   of S-
warfarin 

(h) 

t1/2   of R-
warfarin 

(h) 

t1/2   of S-
warfarin 

(h) 

t1/2   of R-
warfarin 

(h) 
1 26.0 47.1 23.6 39.8 27.0 42.5 
2 30.5 42.0 25.6 37.7 25.2 37.7 
3 34.3 64.8 24.6 41.7 25.6 46.5 
4 27.3 54.6 24.5 41.8 26.7 50.6 
5 36.7 52.1 26.5 36.9 41.5 56.8 
6 37.3 40.3 27.6 38.7 26.0 37.9 
7 36.7 51.3 35.9 47.8 34.5 51.3 
8 26.3 58.2 20.8 41.5 25.5 51.3 
9 29.5 43.9 28.8 42.5 27.3 41.3 
10 36.9 70.7 20.4 43.0 35.0 63.0 
11 31.5 40.8 22.7 32.5 30.0 42.5 
12 26.9 54.6 20.7 40.3 25.7 53.3 

Mean 31.7 51.7 25.1 40.3 29.2 47.9 
SD 4.5 9.6 4.3 3.9 5.2 7.8 

 

Appendix 18. Individual CL/F for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No CL/F of S-

warfarin 
(ml/h) 

CL/F of R-
warfarin 
(ml/h) 

CL/F of S-
warfarin 
(ml/h) 

CL/F of R-
warfarin 
(ml/h) 

CL/F of S-
warfarin 
(ml/h) 

CL/F of R-
warfarin 
(ml/h) 

1 246 123 316 152 24 134 
2 219 141 278 156 229 150 
3 152 76 224 110 204 103 
4 197 96 276 133 186 103 
5 204 125 240 164 261 130 
6 152 104 311 214 206 138 
7 160 116 189 126 207 132 
8 239 88 279 120 270 99 
9 221 140 345 161 209 129 
10 140 62 275 120 184 84 
11 211 131 225 128 192 105 
12 242 117 269 119 240 119 

Mean 198 110 270 142 220 119 
SD 38 25 44.0 29 29 20 



Appendices                                                                                                            268  

Appendix 19. Individual V/F for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

WF alone WF + SJW WF + GS Subject  
No V/F of S-

warfarin 
(L/kg) 

V/F of R-
warfarin 
(L/kg) 

V/F of S-
warfarin 
(L/kg) 

V/F of R-
warfarin 
(L/kg) 

V/F of S-
warfarin 
(L/kg) 

V/F of R-
warfarin 
(L/kg) 

1 0.14 0.13 0.16 0.13 0.15 0.12 
2 0.15 0.13 0.16 0.13 0.13 0.13 
3 0.11 0.11 0.12 0.10 0.11 0.10 
4 0.10 0.10 0.13 0.11 0.09 0.10 
5 0.10 0.09 0.08 0.08 0.14 0.10 
6 0.09 0.07 0.14 0.13 0.08 0.08 
7 0.09 0.09 0.10 0.09 0.11 0.10 
8 0.18 0.14 0.16 0.14 0.19 0.14 
9 0.13 0.13 0.20 0.14 0.12 0.11 
10 0.11 0.09 0.12 0.11 0.14 0.11 
11 0.14 0.11 0.11 0.09 0.12 0.09 
12 0.14 0.14 0.12 0.11 0.14 0.14 

Mean 0.12 0.10 0.13 0.10 0.13 0.10 
SD 0.03 0.02 0.03 0.02 0.03 0.02 

 

Appendix 20. Individual INRbaseline in study I during control and pre-treatment 
with St John’s wort (SJW) or Ginseng (GS) (mean ± SD). 

Subject  
No 

Control SJW GS 

1 1.15 1.14 1.16 
2 1.12 1.08 1.08 
3 1.04 1.05 1.08 
4 1.02 1.03 1.05 
5 1.25 1.14 1.18 
6 1.16 1.13 1.14 
7 1.17 1.08 1.16 
8 1.27 1.20 1.19 
9 1.14 1.14 1.10 
10 1.10 1.15 1.07 
11 1.14 1.21 1.21 
12 1.09 1.10 1.13 

Mean 1.14 1.12 1.13 
SD 0.07 0.06 0.05 
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Appendix 21. Individual AUC0-168 of INR for warfarin in study I following 
administration a single oral 25 mg rac-warfarin (WF) alone, in combination with 
either St John’s wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

Subject  
No 

WF WF + SJW WF + GS 

1 58.8 37.8 49.9 
2 151.1 107.0 158.7 
3 203.0 109.8 147.9 
4 133.2 78.0 152.2 
5 60.2 54.5 79.8 
6 184.6 140.9 180.7 
7 110.0 85.8 112.3 
8 75.9 58.6 58.1 
9 102.7 111.3 126.1 
10 114.9 88.3 90.3 
11 62.1 66.2 65.6 
12 116.4 121.5 113.9 

Mean 111.0 88.3 111.1 
SD 49.3 30.7 43.1 

 

Appendix 22. Individual tmax of INR for warfarin in study I following 
administration a single oral 25 mg rac-warfarin (WF) alone, in combination with 
either St John’s wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

Subject  
No 

WF WF + SJW WF + GS 

1 25.3 25.7 25.7 
2 49.3 53.3 54.7 
3 49.5 49.0 48.0 
4 75.0 49.3 48.7 
5 25.0 27.1 24.3 
6 50.2 25.4 47.0 
7 49.8 51.5 25.6 
8 25.9 24.9 49.0 
9 48.8 48.9 50.4 
10 72.8 48.8 48.1 
11 25.1 24.4 24.7 
12 49.6 49.1 48.6 

Mean 45.5  39.8 41.2 
SD 17.4 12.7 12.1 
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Appendix 23. Individual INRmax for warfarin in study I following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either St John’s 
wort (WF + SJW) or ginseng (WF + GS) (mean ± SD). 

Subject  
No 

WF WF + SJW WF + GS 

1 1.6 1.6 1.6 
2 3.2 2.6 3.5 
3 3.5 2.3 3.3 
4 2.6 2.2 3.2 
5 1.7 1.6 2.0 
6 3.8 3.1 3.9 
7 1.7 2.2 2.5 
8 2.0 2.0 1.7 
9 3.0 2.8 3.2 
10 2.3 2.0 2.0 
11 1.6 1.9 1.9 
12 2.2 2.7 2.4 

Mean 2.4 2.2 2.6 
SD 0.8 0.5 0.8 

 

Appendix 24. Individual platelet aggregation for warfarin in study I during control, 
St John’s wort (SJW) or ginseng (GS) pre-treatment (mean ± SD). 

Subject  
No 

Control SJW GS 

1* . . . 
2 7.5 7.5 7.0 
3 3.5 5.0 5.0 
4 3.0 7.0 5.5 
5 10.0 7.0 7.5 
6 6.5 7.0 6.0 
7 11.5 9.5 8.0 
8 10.0 8.5 8.5 
9 7.5 8.5 7.5 
10 6.5 6.0 5.5 
11 7.5 8.0 6.0 
12 7.5 7.0 9.0 

Mean 7.7 7.5 7.1 
SD 2.2 1.1 1.4 

* Not available 
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Appendix 25. Individual fraction of unbound (fu) warfarin in study II following 
administration a single oral 25 mg rac-warfarin (WF) alone, in combination with 
either ginkgo (WF + Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No fu of S-

warfarin 
fu of R-
warfarin 

fu of S-
warfarin 

fu of R-
warfarin 

fu of S-
warfarin 

fu of R-
warfarin 

1 0.004 0.004 0.004 0.005 0.005 0.006 
2 0.007 0.006 0.008 0.006 0.007 0.005 
3 0.003 0.004 0.004 0.004 0.004 0.004 
4 0.004 0.005 0.004 0.005 0.006 0.006 
5 0.005 0.005 0.004 0.004 0.005 0.005 
6 0.005 0.005 0.004 0.004 0.004 0.004 
7 0.007 0.007 0.005 0.005 0.005 0.006 
8 0.007 0.003 0.006 0.003 0.007 0.004 
9 0.005 0.005 0.005 0.004 0.004 0.004 
10 0.005 0.004 0.005 0.005 0.005 0.004 
11 0.005 0.004 0.005 0.005 0.005 0.005 
12 0.005 0.005 0.005 0.006 0.005 0.005 

Mean 0.005 0.005 0.005 0.005 0.005 0.005 
SD 0.001 0.001 0.001 0.001 0.001 0.001 

 

Appendix 26. Individual AUC0-∞ for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No AUC0-∞ of 

S-warfarin 
(ng/ml×h) 

AUC0-∞ of 
R-warfarin 
(ng/ml×h) 

AUC0-∞ of 
S-warfarin 
(ng/ml×h) 

AUC0-∞ of 
R-warfarin 
(ng/ml×h) 

AUC0-∞ of 
S-warfarin 
(ng/ml×h) 

AUC0-∞ of 
R-warfarin 
(ng/ml×h) 

1 72700 149300 61600 135300 60200 127800 
2 70800 83700 63000 89900 52400 72800 
3 74500 130300 56900 109900 63600 116800 
4 71000 113700 55700 97000 46700 90800 
5 82500 119300 93300 121300 86600 116000 
6 52100 112700 54900 99500 47400 116700 
7 64000 60700 72000 70600 62300 57300 
8 86400 82300 101000 107600 74400 71600 
9 73800 90900 76800 98900 114600 137100 
10 62500 111900 55700 117700 67900 122700 
11 56700 112100 49100 99600 62400 113100 
12 49500 81800 49800 78700 54300 88400 

Mean 68000 104000 65800 102200 66000 102600 
SD 11400 24700 16800 18000 19000 25500 
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Appendix 27. Individual tmax for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No tmax of S-

warfarin 
(h) 

tmax of R-
warfarin 

(h) 

tmax of S-
warfarin 

(h) 

tmax of R-
warfarin 

(h) 

tmax of S-
warfarin 

(h) 

tmax of R-
warfarin 

(h) 
1 1.9 1.9 1.2 1.2 2.0 2.0 
2 1.9 1.9 1.9 1.9 1.0 1.0 
3 1.0 1.0 1.1 1.1 1.0 1.0 
4 2.1 2.1 1.0 1.0 1.0 1.0 
5 3.5 3.5 1.0 1.0 0.7 0.7 
6 1.2 1.2 0.8 0.8 3.8 3.8 
7 1.0 1.0 1.0 1.0 1.5 1.5 
8 2.0 2.0 1.0 1.0 1.7 1.7 
9 1.2 1.2 0.9 0.9 1.2 1.2 
10 1.1 1.1 1.9 1.9 2.0 2.0 
11 4.0 4.0 3.7 6.9 2.1 2.1 
12 3.9 3.9 1.0 1.0 1.1 1.1 

Mean 2.1 2.1 1.4 1.6 1.6 1.6 
SD 1.1 1.1 0.8 1.7 0.8 0.8 

 

Appendix 28. Individual Cmax for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No Cmax of S-

warfarin 
(ng/ml) 

Cmax of R-
warfarin 
(ng/ml) 

Cmax of S-
warfarin 
(ng/ml) 

Cmax of R-
warfarin 
(ng/ml) 

Cmax of S-
warfarin 
(ng/ml) 

Cmax of R-
warfarin 
(ng/ml) 

1 2500 2600 2300 2300 2000 2100 
2 1800 1800 1500 1600 1600 1500 
3 2200 2100 1600 1600 1600 1600 
4 2400 2300 2200 2300 1800 1800 
5 1400 1400 2100 2100 1700 1700 
6 1700 1700 2100 2100 1300 1500 
7 1100 1100 1600 1500 1200 1200 
8 1500 1500 2000 1800 1200 1200 
9 2000 2000 1900 1800 2600 2400 
10 1700 1600 1500 1500 2100 2000 
11 1300 1300 1000 1100 1500 1600 
12 1300 1300 1500 1400 2000 1900 

Mean 1700 1700 1800 1800 1700 1700 
SD 500 500 400 400 400 400 
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Appendix 29. Individual t1/2 for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No t1/2  of S-

warfarin 
(h) 

t1/2   of R-
warfarin 

(h) 

t1/2   of S-
warfarin 

(h) 

t1/2   of R-
warfarin 

(h) 

t1/2   of S-
warfarin 

(h) 

t1/2   of R-
warfarin 

(h) 
1 28.0 50.0 25.0 48.0 25.0 45.0 
2 34.0 40.0 33.0 43.0 30.0 36.0 
3 31.0 50.0 34.0 55.0 35.0 53.0 
4 29.0 46.0 28.0 42.0 25.0 39.0 
5 42.0 58.0 40.0 52.0 44.0 56.0 
6 32.0 61.0 33.0 46.0 30.0 58.0 
7 51.0 48.0 46.0 43.0 47.0 41.0 
8 46.0 44.0 47.0 46.0 47.0 43.0 
9 38.0 45.0 38.0 47.0 49.0 53.0 
10 36.0 62.0 35.0 61.0 30.0 51.0 
11 32.0 55.0 31.0 56.0 37.0 58.0 
12 30.0 45.0 31.0 44.0 29.0 39.0 

Mean 35.8 50.3 35.1 48.6 35.7 47.7 
SD 7.2 7.1 6.7 6.1 8.9 8.0 

 

Appendix 30. Individual CL/F for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No CL/F of S-

warfarin 
(ml/h) 

CL/F of R-
warfarin 
(ml/h) 

CL/F of S-
warfarin 
(ml/h) 

CL/F of R-
warfarin 
(ml/h) 

CL/F of S-
warfarin 
(ml/h) 

CL/F of R-
warfarin 
(ml/h) 

1 172 84 203 92 208 98 
2 177 149 198 139 239 172 
3 168 96 220 114 197 107 
4 176 110 224 129 268 138 
5 151 105 134 103 144 108 
6 240 111 228 126 264 107 
7 195 206 174 177 201 218 
8 145 152 124 116 168 175 
9 170 138 163 126 109 91 
10 200 112 225 106 184 102 
11 220 112 254 125 200 111 
12 253 153 251 159 230 141 

Mean 188 127 200 126 201 131 
SD 33 34 43 24 47 39 
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Appendix 31. Individual V/F for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

WF alone WF + Ginkgo WF + Ginger Subject  
No V/F of S-

warfarin 
(L/kg) 

V/F of R-
warfarin 
(L/kg) 

V/F of S-
warfarin 
(L/kg) 

V/F of R-
warfarin 
(L/kg) 

V/F of S-
warfarin 
(L/kg) 

V/F of R-
warfarin 
(L/kg) 

1 0.13 0.12 0.14 0.12 0.14 0.12 
2 0.11 0.11 0.12 0.11 0.13 0.11 
3 0.10 0.09 0.14 0.12 0.13 0.13 
4 0.11 0.10 0.13 0.11 0.14 0.11 
5 0.13 0.12 0.11 0.11 0.13 0.12 
6 0.14 0.13 0.14 0.11 0.15 0.11 
7 0.14 0.14 0.11 0.11 0.13 0.13 
8 0.13 0.13 0.12 0.11 0.16 0.15 
9 0.13 0.12 0.12 0.11 0.10 0.09 
10 0.14 0.14 0.15 0.13 0.11 0.10 
11 0.10 0.09 0.12 0.10 0.11 0.09 
12 0.15 0.13 0.15 0.14 0.13 0.11 

Mean 0.12 0.12 0.12 0.11 0.12 0.11 
SD 0.02 0.02 0.01 0.01 0.02 0.02 

 

Appendix 32. Individual INRbaseline for warfarin in study II during control, ginkgo 
or ginger pre-treatment (mean ± SD). 

Subject  
No 

Control Ginkgo Ginger 

1 1.1 1.1 1.1 
2 1.0 1.1 1.1 
3 1.1 1.2 1.1 
4 1.1 1.1 1.0 
5 1.1 1.2 1.2 
6 1.0 1.0 1.0 
7 1.2 1.2 1.2 
8 1.3 1.2 1.2 
9 1.1 1.1 1.1 
10 1.1 1.1 1.1 
11 1.2 1.2 1.1 
12 1.1 1.2 1.2 

Mean 1.1 1.1 1.1 
SD 0.1 0.1 0.1 
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Appendix 33. Individual tmax of INR for warfarin in study II following 
administration a single oral 25 mg rac-warfarin (WF) alone, in combination with 
either ginkgo (WF + Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

Subject  
No 

WF alone WF + Ginkgo WF + Ginger 

1 48.9 24.1 25.5 
2 49.7 25.6 25.9 
3 49.4 50.4 49.9 
4 49.5 51.0 50.8 
5 50.9 72.2 48.3 
6 28.6 48.3 48.1 
7 49.2 73.3 49.3 
8 49.4 49.3 48.9 
9 26.2 31.0 25.7 
10 48.7 25.5 49.7 
11 49.0 48.3 49.0 
12 48.8 49.3 48.7 

Mean 45.7 45.7 43.3 
SD 8.6 16.6 10.7 

 

Appendix 34. Individual INRmax for warfarin in study II following administration a 
single oral 25 mg rac-warfarin (WF) alone, in combination with either ginkgo (WF 
+ Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

Subject  
No 

WF alone WF + Ginkgo WF + Ginger 

1 2.04 1.86 1.86 
2 1.87 1.70 1.59 
3 3.19 2.80 2.70 
4 2.45 2.18 2.80 
5 3.65 4.27 3.80 
6 2.27 2.47 2.82 
7 2.73 2.79 2.54 
8 2.96 3.01 2.27 
9 2.02 1.79 2.21 
10 1.85 1.67 2.99 
11 2.99 3.33 2.95 
12 2.53 2.47 2.99 

Mean 2.60 2.50 2.60 
SD 0.60 0.80 0.60 
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Appendix 35. Individual AUC0-168 of INR for warfarin in study II following 
administration a single oral 25 mg rac-warfarin (WF) alone, in combination with 
either ginkgo (WF + Ginkgo) or ginger (WF + Ginger) (mean ± SD). 

Subject  
No 

WF alone WF + Ginkgo WF + Ginger 

1 78.0 70.0 74.0 
2 67.0 47.0 52.0 
3 161.0 119.0 143.0 
4 123.0 90.0 107.0 
5 248.0 297.0 267.0 
6 97.0 108.0 121.0 
7 139.0 163.0 130.0 
8 151.0 167.0 129.0 
9 70.0 61.0 83.0 
10 74.0 59.0 97.0 
11 172.0 155.0 165.0 
12 108.0 114.0 137.0 

Mean 124.0 121.0 125.0 
SD 54.0 69.0 55.0 

 

Appendix 36. Individual baseline platelet aggregation for warfarin in study II 
during control, ginkgo or ginger pre-treatment (mean ± SD). 

Subject  
No 

Control Ginkgo Ginger 

1 7.5 8.0 7.0 
2 5.5 7.5 8.0 
3 5.5 8.5 8.0 
4 6.0 9.0 7.5 
5 7.5 9.0 7.5 
6 7.5 8.0 9.0 
7 7.5 10.5 9.5 
8 7.5 8.0 6.5 
9 7.0 7.5 9.5 
10 11.0 11.0 8.0 
11 8.5 6.5 8.5 
12 8.5 7.5 8.0 

Mean 7.5 8.4 8.1 
SD 1.5 1.3 0.9 

 

 


