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ABSTRACT 

Broccoli is a vegetable crop of increasing importance in Australia, particularly in 

south-east Queensland and farmers need to maintain a regular supply of good quality 

broccoli to meet the expanding market.  However, harvest maturity date, head yield 

and quality are all affected by climatic variations during the production cycle, 

particularly low temperature episodes.  There are also interactions between genotype 

and climatic variability.  A predictive model of ontogeny, incorporating climatic data 

including frost risk, would enable farmers to predict harvest maturity date and select 

appropriate cultivar – sowing date combinations. 

 

The first stage of this research was to define floral initiation, which is fundamental to 

predicting ontogeny.  Scanning electron micrographs of the apical meristem were 

made for the transition from the vegetative to advanced reproductive stage.  During 

the early vegetative stage (stage 1), the apical meristem was a small, pointed shoot tip 

surrounded by leaf primordia.  The transitional stage (stage 2) was marked by a 

widening and flattening to form a dome-shaped apical meristem.  In the floral 

initiation stage (stage 3), the first-order floral primordia were observed in the axils of 

the developing bracts.  Under field conditions, the shoot apex has an average diameter 

of 500 ± 3 µm at floral initiation and floral primordia can be observed under a light 

microscope. 

 

Sub-zero temperatures can result in freezing injury and thereby reduce head yield and 

quality.  In order to predict the effects of frosts, it is desirable to know the stages of 

development at which plants are most susceptible.  Therefore, the effects of sub-zero 

temperatures on leaf and shoot mortality, head yield and quality were determined after 

exposure of plants to a range of temperatures for short periods, at different stages of 

development (vegetative, floral initiation and buttoning).  Plants in pots and in the 

field were subjected to sub-zero temperature regimes from –1 °C to –19 °C.  

Extracellular ice formation was achieved by reducing temperatures slowly, at a rate of 

-2 °C per hour.  The floral initiation stage was most sensitive to freezing injury, as 

yields were significantly reduced at –1 °C and –3 °C, and shoot apices were killed at  

–5 °C.  There was no significant yield reduction when the inflorescence buttoning 
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stage was subjected to –1 °C and –3 °C.  Although shoot apices at buttoning survived 

the –5 °C treatment, very poor quality heads of uneven bud size were produced as a 

result of arrested development.  The lethal temperature for pot-grown broccoli was 

between –3 °C and –5 °C, whereas the lethal temperature for field-grown broccoli 

was between –7 °C and –9 °C.  The difference was presumably due to variation in 

cold acclimation.  Freezing injury can reduce broccoli head yield and quality, and 

retard plant growth.  Crop development models based only on simple thermal time 

without restrictions will not predict yield or maturity if broccoli crops are frost-

damaged. 

 

Field studies were conducted to develop procedures for predicting ontogeny, yield 

and quality.  Three cultivars, (‘Fiesta’, ‘Greenbelt’ and ‘Marathon’) were sown on 

eight dates from 11 March to 22 May 1997, and grown under natural and extended 

(16 h) photoperiods in a sub-tropical environment at Gatton College, south-east 

Queensland, under non-limiting conditions of water and nutrient supply.  Daily 

climatic data, and dates of emergence, floral initiation, harvest maturity, together with 

yield and quality were obtained.  Yield and quality responses to temperature and 

photoperiod were quantified.  As growing season mean minimum temperatures 

decreased, fresh weight of tops decreased while fresh weight harvest index increased 

linearly.  There was no definite relationship between fresh weight of tops or fresh 

weight harvest index and growing season minimum temperatures ≥ 10 °C.  Genotype, 

rather than the environment, mainly determined head quality attributes.  ‘Fiesta’ had 

the best head quality, with higher head shape and branching angle ratings than 

‘Greenbelt’ or ‘Marathon’.  Bud colour and cluster separation of ‘Marathon’ were 

only acceptable for export when growing season mean minimum temperatures were < 

8 °C.  Photoperiod did not influence yield or quality in any of the three cultivars.  A 

better understanding of genotype and environmental interactions will help farmers 

optimise yield and quality, by matching cultivars with time of sowing. 

 

Crop developmental responses to temperature and photoperiod were quantified from 

emergence to harvest maturity (Model 1), from emergence to floral initiation (Model 

2), from floral initiation to harvest maturity (Model 3), and in a combination of 

Models 2 and 3 (Model 4).  These thermal time models were based on optimised base 
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and optimum temperatures of 0 and 20 °C, respectively.  These optimised 

temperatures were determined using an iterative optimisation routine (simplex).  

Cardinal temperatures were consistent across cultivars but thermal time of 

phenological intervals were cultivar specific.  Sensitivity to photoperiod and solar 

radiation was low in the three cultivars used.  Thermal time models tested on 

independent data for five cultivars (‘Fiesta’, ‘Greenbelt’, ‘Marathon’, ‘CMS Liberty’ 

and ‘Triathlon’) grown as commercial crops on the Darling Downs over two years, 

adequately predicted floral initiation and harvest maturity. 

 

Model 4 provided the best prediction for the chronological duration from emergence 

to harvest maturity.  Model 1 was useful when floral initiation data were not 

available, and it predicted harvest maturity almost as well as Model 4 since the same 

base and optimum temperatures of 0 °C and 20 °C, respectively, were used for both 

phenological intervals.  Model 1 was also generated using data from 1979-80 sowings 

of three cultivars (‘Premium Crop’, ‘Selection 160’ and ‘Selection 165A’).  When 

Model 1 was tested with independent data from 1983-84, it predicted harvest maturity 

well.  Where floral initiation data were available, predictions of harvest maturity were 

most precise using Model 3, since the variation, which occurred from emergence to 

floral initiation, was removed.  Prediction of floral initiation using Model 2 can be 

useful for timing cultural practices, and for avoiding frost and high temperature 

periods. 

 

This research has produced models to assist broccoli farmers in crop scheduling and 

cultivar selection in south-east Queensland.  Using the models as a guide, farmers can 

optimise yield and quality, by matching cultivars with sowing date.  By accurately 

predicting floral initiation, the risk of frost damage during floral initiation can be 

reduced by adjusting sowing dates or crop management options.  The simple and 

robust thermal time models will improve production and marketing arrangements, 

which have to be made in advance.  The thermal time models in this study, 

incorporating frost risk using conditional statements, provide a foundation for a 

decision support system to manage the sequence of sowings on commercial broccoli 

farms. 
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( ), and 1998 ( ) for (a) and 1991 ( ), 1993 ( ), 1994 ( ), 1995 
( ), 1996 ( ) and 1997 ( ) for (b) and (c). 
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1.3 Schematic representative of (a) 2-stage broken linear temperature 
response and (b) 2-stage broken linear photoperiod response 
(adapted from Birch et al. 1996, 1998a, Holzworth and Hammer 
1992). 
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2.1 Comparative morphology in broccoli and cauliflower (taken 
from Gray 1982). 
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3.1 Daily natural photoperiod (h) (curved line) at Gatton College 
from 1 February to 29 September.  The day of the year is in 
Julian days (Jday) where 1 = 1 Jan.  The horizontal line is the 16 
h photoperiod treatment for the field experiment with 
photoperiod extension.  S = sowing (1 to 8). 
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3.2 Field experiment layout (not to scale) used in a study of the 
effects of photoperiod extension, sowing date and cultivar on 
broccoli development, leaf number, yield and quality.  S = 
sowing (1 to 8), C = Cultivar (C1 = ‘Fiesta’, C2 = ‘Greenbelt’, 
and C3 = ‘Marathon’). 
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3.3 Daily maximum and minimum temperatures (°C) at (a) Gatton 
College in 1997, (b) Brookstead in 1997 and (c) Brookstead in 
1998 during the broccoli growing season from 1 February to 29 
September.  The day of the year is in Julian days (Jday) where 1 
= 1 Jan.  The horizontal lines are at 0 and 20 °C: the base and 
optimum temperatures for calculation of thermal time.  S = 
sowing (1 to 8) for the field experiment with photoperiod 
extension at Gatton College (a). 
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3.4 Daily solar radiation (MJ m-2 day-1) at (a) Gatton College in 
1997, (b) Brookstead in 1997 and (c) Brookstead in 1998 during 
the broccoli growing season from 1 February to 29 September.  
The day of the year is in Julian days (Jday) where 1 = 1 Jan.  S = 
sowing (1 to 8) for the field experiment with photoperiod 
extension at Gatton College (a). 
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5.1 Daily minimum temperatures (°C) from 31 March to 23 July 
1998 at ( ) Gatton College and ( ) Brookstead in south-east 
Queensland.  The time scale (day of the year) is in Julian day 
(Jday) where 1 = 1 Jan.  Timing of sub-zero treatments for 
Experiment 1 (E1), Experiment 2 (E2), and the vegetative (E3V), 
floral initiation (E3F) and buttoning (E3B) stages of 
development in Experiment 3 are indicated. 
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5.2 Effect of sub-zero temperature treatments (°C) on (a) ( ) leaf 
lamina and ( ) petiole relative electrical conductivity (REC) for 
explants sampled during the late vegetative stage (Experiment 1) 
and (b) ( ) leaf lamina and ( ) REC of shoot apex explants 
sampled just after floral initiation (Experiment 2) from field-
grown broccoli cultivar ‘Fiesta’ at Brookstead.  The control 
(ambient temperature) REC means were (a) 0.11 (lamina and 
petiole) for Experiment 1 and (b) 0.05 (lamina) and 0.31 (apex) 
for Experiment 2.  Vertical lines indicate l.s.d. values at P=0.05 
for sub-zero temperature treatments.  Data presented in this 
figure are treatment means (n = 3 for a; n = 5 for b). 
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5.3 Effect of sub-zero temperature treatment (ambient, -1, -3, -5, and 
–7 °C) and stage of development [( ) vegetative, ( ) floral 
initiation and ( ) buttoning] on (a) leaf lamina relative electrical 
conductivity (REC), (b) leaf lamina mortality rating (1-5), and 
(c) leaf petiole mortality rating (1-5) for pot-grown broccoli at 
Gatton College (Experiment 3).  The control (ambient 
temperature) means were (a) 0.07 for REC and 0 for both (b) leaf 
lamina and (c) petiole mortality ratings.  Vertical lines indicate 
l.s.d. values at P=0.05 for sub-zero temperature treatment by 
stage of development interactions.  Data presented in this figure 
are sub-zero temperature treatment by stage of development 
interaction means (n = 10).  Means for the vegetative stage at –1 
and –3 °C are not available as these treatments were not 
imposed. 
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5.4 Effect of sub-zero temperature treatment (ambient, -1, -3, -5, and 

–7 °C), stage of development [( ) floral initiation and ( ) 
buttoning] and cultivar [‘Fiesta’ (closed symbols), and 
‘Marathon’ (open symbols)] on (a) head shape rating and (b) 
branching angle rating for pot-grown broccoli at Gatton College 
(Experiment 3).  The control (ambient temperature) means were 
(a) 4.9 for head shape, and (b) 4.4 for branching angle rating.  
Vertical lines indicate l.s.d. values at P=0.05 for sub-zero 
temperature treatment, stage of development by cultivar 
interaction.  The data presented in this figure are sub-zero 
temperature treatment, stage of development by cultivar 
interaction means (n = 5).  Means for floral initiation at –5 °C 
were not available as the shoot apex of plants were killed, 
producing no yield. 
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6.1 Effect of sowing date [Julian day (Jday) where 1 = 1 Jan] (closed 
symbols), growing season mean (GSM) minimum temperature 
(open symbols) and broccoli cultivar [‘Fiesta’ (circles), 
‘Greenbelt’ (squares) and ‘Marathon’ (triangles)] on (a and b) 
fresh weight of tops (g), and (c and d) fresh weight harvest index 
(%) for eight sowing dates and two photoperiods (natural and 16 
h) in a field experiment at Gatton College.  The data presented in 
(a) and (c) are sowing date by cultivar interaction means (n = 6), 
and in (b) and (d) are experimental treatment means averaged 
over three blocks (n = 3).  Vertical lines in (a) and (c) indicate 
l.s.d. values at P=0.05 (for comparisons between sowing date) 
for sowing date by cultivar interaction. 
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6.2 Effect of sowing date [Julian day (Jday) where 1 = 1 Jan] and 
broccoli cultivar [‘Fiesta’ ( ), ‘Greenbelt’ ( ) and ‘Marathon’ 
( )] on (a) bud colour (1-5) and (b) cluster separation (1-5) 
ratings; effect of growing season mean (GSM) minimum 
temperature on (c) bud colour (1-5) and (d) cluster separation (1-
5) ratings in ‘Marathon’ ( ) for eight sowing dates and 2 
photoperiods (natural and 16 h) in a field experiment at Gatton 
College.  The data presented in (a) and (b) are sowing date by 
cultivar interaction means (n = 6), and in (c) and (d) are 
experimental treatment means averaged over three blocks (n = 
3).  Vertical lines in (a and b) indicate l.s.d. values at P=0.05 (for 
comparisons between sowing date) for sowing date by cultivar 
interaction. 
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6.3 Plot of broccoli cultivars [‘Fiesta’ ( ), ‘Greenbelt’ ( ) and 
‘Marathon’ ( )] against the first two principal components (PC1, 
PC2) for eight sowing dates and two photoperiods (natural and 16 
h) in a field experiment at Gatton College. 
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7.1 Effect of sowing date [Julian day (Jday) where 1 = 1 Jan] and 
cultivar [‘Fiesta’ ( ), ‘Greenbelt’ ( ) and ‘Marathon’ ( )] on (a) 
chronological time (days) and (b) total leaf number from 
emergence to floral initiation (EFI) for eight sowing dates in a 
field experiment at Gatton College.  The data presented are 
sowing date by cultivar interaction means (n = 6). Vertical lines 
indicate l.s.d. values at P=0.05 (for comparisons between sowing 
dates) for sowing date by cultivar interaction. Effect of (c) 
sowing date and photoperiod [natural ( ) and 16 h ( )] on 
chronological time (days) from emergence to floral initiation 
(EFI) averaged over three cultivars of broccoli for eight sowing 
dates in a field experiment at Gatton College. Vertical line 
indicates l.s.d. value at P=0.05 (for comparisons between sowing 
dates) for sowing date by photoperiod interaction. The data 
presented are sowing date by photoperiod interaction means (n = 
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7.2 Effect of sowing date [Julian day (Jday) where 1 = 1 Jan] and 
cultivar [‘Fiesta’ ( ), ‘Greenbelt’ ( ) and ‘Marathon’ ( )] on (a) 
chronological time (days), (b) thermal time (°C d), (c) 
accumulated solar radiation (MJ m-2), and (d) effective thermal 
time (ETT) duration for eight sowing dates in a field experiment 
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l.s.d. values at P=0.05 (for comparisons between sowing dates) 
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l.s.d. value at P=0.05 for cultivar main effect for (d).  The data 
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7.3 Effect of average temperature (°C) (open symbols) and thermal 
time (°C d) (closed symbols) from emergence to floral initiation 
(EFI) on the total leaf number at floral initiation in three broccoli 
cultivars, ‘Fiesta’ [circles (a,b)], ‘Greenbelt’ [squares (c,d)], and 
‘Marathon’ [triangles (e,f)] for eight sowing dates in a field 
experiment at Gatton College.  The data presented in this figure 
are experimental treatment means averaged over three blocks (n 
= 3). 
 

134

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 xxiii

 
 
7.4 

 
 
(a) Comparison between fitted and observed duration (days) 
from emergence to floral initiation for three broccoli cultivars 
(‘Fiesta’, ‘Greenbelt’ and ‘Marathon’) when grown at Gatton 
College; and (b) comparison between predicted and observed 
duration (days) from emergence to floral initiation for 
independent data from five broccoli cultivars (‘Fiesta’, 
‘Greenbelt’, ‘Marathon’, ‘CMS Liberty’, and ‘Triathlon’) grown 
on a commercial farm in Brookstead in 1997 and 1998.  
Predicted duration based on thermal time was calculated using 
base and optimum temperatures of 0 and 20 °C, respectively, 
derived using the optimisation routine, DEVEL from a field 
experiment at Gatton College, south-east Queensland. 
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Predicted duration based on thermal time was calculated using 
base and optimum temperatures of 0 and 20 °C, respectively, 
derived using the optimisation routine, DEVEL from a field 
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cultivar [‘Fiesta’ ( ), ‘Greenbelt’ ( ) and ‘Marathon’ ( )] on 
chronological duration (days) for eight sowing dates in a field 
experiment at Gatton College.  The data presented are sowing 
date by cultivar interaction means (n = 6). Vertical lines indicate 
l.s.d. values at P=0.05 (for comparisons between sowing dates) 
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(‘Fiesta’, ‘Greenbelt’ and ‘Marathon’) grown at Gatton College; 
and (b) comparison between predicted and observed duration 
(days) from emergence to harvest maturity for independent data 
from five broccoli cultivars (‘Fiesta’, ‘Greenbelt’, ‘Marathon’, 
‘CMS Liberty’, and ‘Triathlon’) grown on a commercial farm in 
Brookstead in 1997 and 1998, using a combined emergence to 
floral initiation and floral initiation to harvest maturity model 
(Model 4).  Predicted duration was calculated using base and 
optimum temperatures of 0 and 20 °C, respectively, derived 
using the optimisation routine, DEVEL, from a field experiment 
at Gatton College, south-east Queensland. 
 
 

153

8.4 Comparison between predicted and observed duration (days) 
from emergence to harvest maturity for independent data from 
five broccoli cultivars (‘Fiesta’, ‘Greenbelt’, ‘Marathon’, ‘CMS 
Liberty’, and ‘Triathlon’) grown on a commercial farm in 
Brookstead in 1994, 1995, 1996, 1997 and 1998, using a single 
emergence to harvest maturity model.  Predicted duration was 
calculated using Tbase and Topt of 0 and 20 °C, respectively, 
derived using the optimisation routine, DEVEL, from a field 
experiment at Gatton College, south-east Queensland.  
 

155
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9.1 Relational diagram of the work reported in this thesis.  Broken 
lines show the flow of information. 160
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Abbreviations used in this Thesis 

 

Abbreviation Meaning of abbreviation 

DWHI Dry weight harvest index 

EFI Emergence to floral initiation 

EHM Emergence to harvest maturity 

ETT Effective thermal time 

FI Floral initiation 

Fig. Figure 

FIHM Floral initiation to harvest maturity 

FSM Floral season mean temperatures (°C) 

FWHI Fresh weight harvest index (%) 

GSM Growing season mean temperature (°C) 

h Hour 

ha Hectare 

HFW Head fresh weight (g) 

HM Harvest maturity 

l.s.d. Least significance difference 

LT50 Killing temperature for 50% of the population (°C) 

r2 Coefficient of determination 

REC Relative electrical conductivity 

RMSD Root mean square deviation 

s.e. Standard error 

SE Sowing to emergence 

t Metric ton 

Tbase Base temperature (°C) for calculation of thermal time 

Tmax Maximum temperature (°C) for calculation of thermal time 

Topt Optimum temperature (°C) for calculation of thermal time 

TT Thermal time (°C d) 

TTC Triphenyl tetrazolium chloride 
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Terminology 

 

Throughout this thesis, the following definitions of terms (Birch 1996) will be used. 

 

Coefficient Derived constant that appears in an equation.  It may be a 

parameter. 

 

Plant development The change within an interval from one phenological event to 

another, and from one phenological interval to another in a 

plant. 

 

Fitted value The value of a dependent variable determined by substitution in 

a regression derived from data collected in one of the 

experiments reported in this thesis.  Other parts of the word ‘fit’ 

are to be taken to have similar application. 

 

Ontogeny The sequence of events that constitute the life cycle of the plant 

from sowing until harvest maturity is reached (Birch 1996). 

 

Phenology Study of periodic biotic events that occur once in a growing 

season of a crop.  It describes and measures developmental 

process, physiological processes controlling growth and 

development, and the environment (Alm et al. 1991). 

 

Parameter A constant for a simulation that characterises an element of a 

system.  It is constant for a specific location or application or 

time period. 

 

Prediction The output value of a state variable provided by a model, other 

parts of the word ‘predict’ are to be taken to have similar 

application. 

 

 



 xxviii



 xxix

Acknowledgments 
 

I would especially like to thank my supervisors, Assoc. Profs. Alan Wearing and Ken 

Rickert, and Dr Colin Birch, The University of Queensland, Gatton College (UQG) 

for their advice, guidance, support and encouragement throughout this research.  A 

special thanks to Mr Allan Lisle, UQG for providing valuable statistical advice. 

 

The provision of financial support by Mr Phillip Jauncey, Matilda Fresh Foods Pty 

Ltd and the Horticultural Research and Development Corporation is gratefully 

acknowledged.  Thanks are due to UQG for provision of field resources and 

equipment.  Gratitude is specially extended to Mr David Heath, Matilda Fresh Foods 

Pty Ltd, for providing technical support throughout this research.  Thanks are also due 

to Prof. Daryl Joyce, Cranfield University, UK, Mr Peter Deuter, Queensland 

Department of Primary Industries, Dr David Woodruff, Queensland Wheat Research 

Institute and Mr John Adriaans, IAMA Seed and Grain, for advice on freezing injury 

and frost simulation. 

 

I also thank the staff of UQG, Mr Ian Gordon for assistance at the plant nursery, Dr 

Robert Fletcher for advice on freeze physiology, Mr Maxwell Heslehurst for advice 

on thermal time calculations, Assoc. Prof. David Simons, Dr Donald Irving, Dr 

Robert Brown, Dr Doug George and Dr Gavin Porter for advice on the draft 

manuscripts, and Mr Dallas Williams for assistance in collection of field data.  I 

gratefully acknowledge Mr Don Gowanlock, Centre for Microscopy and 

Microanalysis, University of Queensland for technical assistance with the scanning 

electron microscope.  I am deeply indebted to the many friends and fellow PhD 

candidates, Ms Yu Sha Li, Ms Melissa Taylor, Mr Andrew Macnish and Mr Shaun 

O’Brien who also provided support and encouragement. 

 

I dedicate this thesis to my beautiful, loving wife, Xiu Zhen (Lily) and appreciate her 

continuing support and sacrifices made.  I also acknowledge the support and 

encouragement of my parents and sister, Christina, during this research. 


