

Alkane Oxidation Catalysis by Homogeneous and Heterogeneous Catalysts

A thesis presented to

The University of Sydney

in fulfilment of the requirement for the degree of

Doctor of Philosophy

By

Chris D. Y. Guo

School of Chemistry The University of Sydney

August 2005

Acknowledgements

I would like to thank my supervisor Associate Professor James K. Beattie and cosupervisor Associate Professor Anthony F. Masters for their tireless enthusiasm, dedication, patience, guidance, strong support and friendship during the course of this work, and for their excellence choice of this research project.

I would like also to thank Professor Wim Buijs from DSM Research, The Netherlands, for his kindness, friendship, guidance, great organisation and support for the catalysis testing. Thanks also to Professor Thomas Maschmeyer from Delft ChemTech, Delft University of Technology, The Netherlands (now at the School of Chemistry, University of Sydney), for his support of this project and the catalytic testing.

Thanks to Dr Paul Humphrey, for his pre-reading and cooperation in the testing of the oxidation of toluene. Thanks also to Dr Ruby F. M. J. Parton and Mr. Harry Wolters from DSM Research, The Netherlands, and Dr Peter Waller from Delft ChemTech, Delft University of Technology, The Netherlands, for their help and friendship during the course of the catalysis testing. Thanks to Associate Professor Brendan J. Kennedy and his group for their kindness and help.

I would also to thank all members in Professor Beattie's and Master's group, especially, Dr Alexander Djerdjev, Dr John Klepetko and Dr Ahmed Amin Dezaye (now Assistant Professor in The University of Salahaddin, Iraqi Kurdistan) for their kind help and sharing chemicals and equipment. Thanks to all staff and members of the School of Chemistry, University of Sydney, for providing the nice and safe environment and also for their support.

I am also grateful to DSM Research B.V., The Netherlands, Faculty of Applied Sciences of The Technische Universiteit Delft, The Netherlands, and School of Chemistry, The University of Sydney to provision of the "DSM-TU Delft research scholarship in oxidation catalysts" and the financial support. Without the help from the following people, it would have been impossible to complete this work:

Dr Elizabeth Carter (for the excellent Raman spectra) Dr Jeffrey Shi from School of Chemical Engineering (for ICP) Dr Tom Savage from School of Geosciences (for ICP) Associate Professor Peter Turner (for crystal structures) Dr Ian Kaplin, and Mr. Tony Romeo from Electron Microscopy Unit (for SEM) Mr Fernando Barasoain from fourth floor service room (for the ordering)

Finally, I would like to thank my wife Rosa Dai and my lovely daughter Penny Guo, for all their love and support. In memory of my father.

Chris D. Y. Guo

August 2005

Abstract

Cobalt-based complexes are widely used in industry and organic synthesis as catalysts for the oxidation of hydrocarbons. The Co/Mn/Br (known as "CAB system") catalyst system is effective for the oxidation of toluene. The Co/Mn/Br/Zr catalyst system is powerful for the oxidation of *p*-xylene, but not for the oxidation of toluene. $({\rm Co}^{3+})$ $[Co_3O(OAc)_5(OH)(py)_3][PF_6]$ trimer 5) is more effective than $[Co_3O(OAc)_6(py)_3][PF_6]$ (Co³⁺ trimer 6) as a catalyst in the CAB catalyst system. Higher temperatures favour the oxidation of toluene. Zr^{4+} does not enhance the oxidation of toluene. Zr⁴⁺ could inhibit the oxidation of toluene in the combination of Co/Br/Zr, Co/Mn/Zr or Co/Zr. NHPI enhances the formation of benzyl alcohol, but the formation of other by-products is a problem for industrial processes. Complex(es) between cobalt, manganese and zirconium might be formed during the catalytic reaction. However, attempts at the preparation of complexes consisting of Co/Zr or Mn/Zr or Co₃ZrP or Co_8Zr_4 clusters failed.

The oxidation of cyclohexane to cyclohexanone and cyclohexanol is of great industrial significance. For the homogeneous catalysis at 50 °C and 3 bar N₂ pressure, the activity order is: $Mn(OAc)_3 \bullet 2H_2O >$ $Mn_{12}O_{12}$ cluster > Co^{3+} trimer 6 > $[Co_{3}O(OAc)_{3}(OH)_{2}(py)_{5}][PF_{6}]_{2} \quad (Co^{3+} \ trimer \ 3) > Co^{3+} \ trimer \ 5 > Co(OAc)_{2}\bullet 4H_{2}O > 0$ $[Co_2(OAc)_3(OH)_2(py)_4][PF_6]_{-asym}$ (Co dimer_{asym}) > $[Co_2(OAc)_3(OH)_2(py)_4][PF_6]_{-sym}$ (Co dimer_{sym}); whereas [Mn₂CoO(OAc)₆(py)₃]•HOAc (Mn₂Co complex) and zirconium(IV) acetate hydroxide showed almost no activity under these conditions. But at 120 °C and 3 bar N₂ pressure, the activity order is changed to: Co dimer_{asym} > Co(OAc)₂•4H₂O > Co trimer 3 and Mn(OAc)₃•2H₂O > Co^{3+} trimer 6 > Mn₂Co complex > Co^{3+} trimer 5 > Co $dimer_{sym} > Mn_{12}O_{12}$ cluster. The molar ratio of the products was close to cyclohexanol/cyclohexanone=2/1. Mn(II) acetate and zirconium(IV) acetate hydroxide showed almost no activity under these conditions. Among those cobalt dimers and trimers, only the cobalt dimerasym survived after the stability tests, this means that [Co₂(OAc)₃(OH)₂(py)₄][PF₆]_{-asym} might be the active form for cobalt(II) acetate in the CAB system.

Metal-substituted (silico)aluminophosphate-5 molecular sieves (MeAPO-5 and MeSAPO-5) are important heterogeneous catalysts for the oxidation of cyclohexane. The preparation of MeAPO-5 and MeSAPO-5 and their catalytic activities were studied. Pure MeAPO-5 and MeSAPO-5 are obtained and characterised. Four new pairs of bimetal-substituted MeAPO-5 and MeSAPO-5(CoZr, MnZr, CrZr and MnCo) were prepared successfully. Two novel trimetal-subtituted MeAPO-5 and MeSAPO-5 (MnCoZr) are reported here. Improved methods for the preparation of four monometal-substituted MeAPO-5 (Cr, Co, Mn and Zr) and for CoCe(S)APO-5 and CrCe(S)APO-5 are reported. Novel combinational mixing conditions for the formation of gel mixtures for Me(S)APO-5 syntheses have been developed.

For the oxidation of cyclohexane by TBHP catalysed by MeAPO-5 and MeSAPO-5 materials, CrZrSAPO-5 is the only active MeSAPO-5 catalyst among those materials tested under conditions of refluxing in cyclohexane. Of the MeAPO-5 materials tested, whereas CrCeSAPO-5 has very little activity, CrZrAPO-5 and CrCeAPO-5 are very active catalysts under conditions of refluxing in cyclohexane. MnCoAPO-5, MnZrAPO-5 and CrAPO-5 are also active. When Cr is in the catalyst system, the product distribution is always cyclohexanone/cyclohexanol=(2-3)/1, compared with 1/2 for other catalysts. For MeAPO-5, the activity at 150 °C and 10 bar N₂ pressure is: CrZrAPO-5 > CrCeAPO-5 > CoZrAPO-5. For MeAPO-5 and MeSAPO-5, at 150 °C and 13 bar N₂ pressure, the selectivity towards cyclohexanone is: CrZrAPO-5 > CrZrSAPO-5 > CrCeAPO-5 > CrAPO-5 > MnCoAPO-5 > MnZrAPO-5; and the selectivity towards cyclohexanol is: MnZrAPO-5 > CrZrAPO-5 > MnCoAPO-5 > CrZrSAPO-5 > CrCeAPO-5 > CrAPO-5. Overall the selectivity towards the oxidation of cyclohexane is: CrZrAPO-5 > CrZrSAPO-5 > CrCeAPO-5 > CrAPO-5 > MnCoAPO-5 > MnZrAPO-5. The amount of water in the system can affect the performance of CrCeAPO-5, but has almost no effect on CrZrAPO-5. Metal leaching is another concern in potential industrial applications of MeAPO-5 and MeSAPO-5 catalysts. The heterogeneous catalysts prepared in the present work showed very little metal leaching. This feature, coupled with the good selectivities and effectivities, makes them potentially very useful.

Abbreviations

AAS	atomic absorption spectra
Ac ₂ O	acetic anhydride
AIBN	2,2'-azobis(2-methylpropionitrile)
AlPO ₄	aluminophosphate molecular sieves
APO-5	aluminophosphate-5 molecular sieves
APO-36	aluminophosphate-36 molecular sieves
APO-n	aluminophosphate-based molecular sieves
[asym][PF ₆]	$[Co_2(\mu-OH)_2(\mu-OAc)(OAc)_2(py)_4][PF_6]_{-asym} (Co dimer_{asmy})$
atm	atmosphere
CAB system	Co/Mn/Br catalyst system
Catapal A	a <i>pseudo</i> -boehmite phase comprising 72 wt.% Al ₂ O ₃
4-CBA	4-carboxybenzaldehyde
CTAB	cetyltrimethylammonium bromide
CoAPOs	cobalt-substituted aluminophosphate molecular sieves
CoAPO-5	cobalt-substituted aluminophosphate-5 molecular sieves
CoAPO-11	cobalt-substituted aluminophosphate-11 molecular sieves
CoAPO-16	cobalt-substituted aluminophosphate-16 molecular sieves
CoAPO-18	cobalt-substituted aluminophosphate-18 molecular sieves
Co ³⁺ trimer 3	$[Co_3O(OAc)_3(OH)_2(py)_5][PF_6]_2$
Co ³⁺ trimer 5	$[Co_3O(OAc)_5(OH)(py)_3][PF_6]$
Co ³⁺ trimer 6	$[Co_3O(OAc)_6(py)_3][PF_6]$
CoCeAPO-5	cobalt and cerium-substituted aluminophosphate-5 molecular sieves
CoCeSAPO-5	cobalt and cerium-substituted silicoaluminophosphate-5 molecular
	sieves
CoZrAPO-5	cobalt and zirconium-substituted aluminophosphate-5 molecular sieves
CoZrSAPO-5	cobalt and zirconium-substituted silicoaluminophosphate-5 molecular
	sieves
CrAPO-5	chromium-substituted aluminophosphate-5 molecular sieves
CrCeAPO-5	chromium and cerium-substituted aluminophosphate-5 molecular sieves

CrCeSAPO-5	chromium and cerium-substituted silicoaluminophosphate-5 molecular sieves
CrZrAPO-5	chromium and zirconium-substituted aluminophosphate-5 molecular
	sieves
CrZrSAPO-5	chromium and zirconium-substituted silicoaluminophosphate-5
	molecular sieves
СуООН	cyclohexyl hydroperoxide
1-D	one dimension
3-D	three dimension
DAE	2-diethylaminoethanol
DEA	diethanolamine
EDAX	energy dispersive X-ray fluorescence and electron backscattered
	diffraction
FAB	fast atom bombardment
g	gram
GC	gas chromatography
h	hour
HOAc	acetic acid
HPLC	high performance liquid chromatography
ICP	inductively coupled plasma analysis
Ionol [®]	2,6-di- <i>tert</i> -butyl-4-methylphenol
I.R.	infrared
Κ	Kelvin
L	liter
Μ	$mol L^{-1}$
mCPBA	<i>m</i> -chloroperbenzoic acid
MeAPO-n	metal-substituted aluminophosphate-n molecular sieves
MeAPO-5	metal-substituted aluminophosphate-5 molecular sieves
MeSAPO-5	metal-substituted silicoaluminophosphate-5 molecular sieves
min	minutes
mL	milliliter
MnAPO-5	manganese-substituted aluminophosphate-5 molecular sieves
Mn ₂ Co complex	$[Mn_2CoO(OAc)_6(py)_3] \bullet HOAc$

Abbreviations

Mn_{12} cluster	$[Mn_{12}O_{12}(OAc)_{16}(H_2O)_4]$ •2HOAc•4H ₂ O
MnCoAPO-5	manganese and cobalt-substituted aluminophosphate-5 molecular
	sieves
MnCoSAPO-5	manganese and cobalt-substituted silicoaluminophosphate-5
	molecular sieves
MnCoZrAPO-5	manganese and cobalt and zirconium-substituted
	aluminophosphate-5 molecular sieves
MnCoZrSAPO-5	manganese and cobalt and zirconium-substituted silicoalumino
	phosphate-5 molecular sieves
MnZrAPO-5	manganese and zirconium-substituted aluminophosphate-5
	molecular sieves
MnZrSAPO-5	manganese and zirconium-substituted silicoaluminophosphate-5
	molecular sieves
NHPI	<i>N</i> -hydroxyphthalimide
NMR	nuclear magnetic resonance
OAc	acetate (CH ₃ COO ⁻)
PBS-1	sodium perborate monohydrate
PhCHO	benzaldehyde
PhCOOH	benzoic acid
ⁱ Pr	isopropyl
1,2,4-pseudocumene	1,2,4-trimethylbenzene
Pseudo-boehmite	a hydrated aluminium oxide comprising 70 wt.% Al_2O_3
Pural SB	a <i>pseudo</i> -boehmite phase comprising 75.1 wt.% Al_2O_3
PX	para-xylene
ру	pyridine
pyromellitic acid	1,2,4,5-benzenetetracarboxylic acid
QN	quinuclidine
S	total spin
SAPO-5	silicoaluminophosphate-5 molecular sieves
SEM	scanning electronic microscopy
[sym][PF ₆]	$[Co_2(\mu-OH)_2(\mu-OAc)(OAc)_2(py)_4][PF_6]_{-sym} (Co dimer_{sym})$
ТА	terephthalic acid
TBHP	tert-butyl hydroperoxide

TEA	triethylamine
TEAOH	tetraethylammonium hydroxide
TFA	trifluoroacetic acid
ТМАОН	tetramethylammonium hydroxide
TS-1	titanium silicalite
TPA	tripropylamine
ТРАОН	tetrapropylammonium hydroxide
μL	microliter
UV	ultraviolet
UV/Vis	ultraviolet /visable light
XRD	X-Ray powder diffraction
ZrAPO-5	zirconium-substituted aluminophosphate-5 molecular sieves

Table of contents

Acknowledgements	i
Abstract	iii
Abbreviations	v
Table of contents	ix
Lists of tables	XV
Lists of figures	xix
Lists of schemes	xxi
Chapter One Constal Introduction	1
1 1 Autovidation	ב
1.1. Autoxidation	2
1.1.1. Mechanism	∠ 1
1.1.2. Metal foil and dioxygen involved autoxidation	4
1.1.5. Some nonogeneous oxidation catalysis	
(A) Metal carboxylate as catalyst	
(B) Cobalt(II) acetate as catalyst	
(C) The Co/Min/Br catalyst.	/
1.1.4. Heterogeneous oxidation catalysts	/
1.2. The catalytic oxidation of specific hydrocarbons	8
1.2.1. The oxidation of adamantine	
1.2.2. The oxidation of toluene	10
1.2.3. The oxidation of cyclohexane	13
1.2.4. The oxidation of <i>p</i> -xylene and Amoco MC method	16
1.2.5. Other oxidation catalysis	20
1.3. Problems for the catalytic oxidation of hydrocarbons	
1.3.1. Inhibitors	
1.3.2. The oxidation of cyclohexane	24
1.3.3. The oxidation of <i>p</i> -xylene	
1.4. The scope of the present work	27
Chapter Two Cobalt-based Oxidation Catalysts	28
2.1. Cobalt based oxidation catalysts	
2.1.1. Cobalt-based homogeneous oxidation catalysts	
2.1.2. Cobalt-based heterogeneous oxidation catalysts	35
2.2. Manganese as a co-catalyst	
2.3. Zirconium as a co-catalyst	
2.4. Other transition metal complexes	41
Chapter Three Syntheses of Homogeneous Oxidation Catalysts	43
3.1. The syntheses	44
3.2. Discussion on the attempted syntheses	44
3.2.1. The attempted preparation of Co and Zr complex	44
3.2.2. The attempted preparation of Mn and Zr complex	45
3.2.3. Zr(IV) peroxide	48

3.3. Summary	48
Chapter Four The Oxidation of Toluene by Homogeneous Catalysts	49
4.1. Experimental	50
4.1.1. General	50
4.1.1.1. High performance liquid chromatography (HPLC)	50
4.1.1.2. HPLC standards	51
4.1.1.2.1. 2 μL injection	51
4.1.1.2.2. 5 μL injection	52
A). Toluene HPLC standards	52
B). Other substrate HPLC standards	52
4.1.1.3. General procedure for the oxidation	53
4.1.2. Oxidation of toluene in glacial acetic acid using dioxygen	54
4.1.2.1. Oxidation of toluene in glacial acetic acid using a needle to	
bubble dioxygen	.54
4.1.2.2. Oxidation of toluene in glacial acetic acid using balloon	
filled with dioxygen	54
4.1.3. Oxidation of toluene catalysed by Co/Mn/Zr	55
4.1.3.1. Using bubbling dioxygen	55
4.1.3.1.1. Toluene/Co/Mn/Br=27.1/1.0/1.03/1.40 at 85-96 °C	55
4.1.3.1.2. Toluene/Co/Mn/Br=43.2/1.0/1.0/1.22 at 90-93 °C	
(using a frit)	56
4.1.3.1.3. Using two balloons filled with dioxygen (Toluene/C	<u>'</u> 0/
Mn/Br=26.8/1.0/1.03/1.28 at 91-98 °C)	57
4.1.4. Oxidation of toluene catalysed by Co/Mn/Br/Zr	58
4.1.4.1. Using dioxygen bubbled through a frit	
(Toluene/Co/Mn/Br/Zr=42.39/1.0/0.99/1.26/0.099 at 90-98 °C	:)58
4.1.4.2. Using one balloon filled with dioxygen	
(10luene/Co/Mn/Br/Zr=26.3/1.0/1.01/1.22/0.099 at 88-96 °C)	60
4.1.5. Oxidation of toluene using balloon(s) filled with dioxygen catalys	ed
by different combinations of Co, Mn, Br and Zr	62
4.1.5.1. Toluene/Co/Br/Zr= $26.3/1.0/1.24/0.099$ at 91-96 °C	62
4.1.5.2. Toluene/Co/Mn/Zr=26.2/1.0/1.0/0.102 at 8/-98 °C	62
4.1.5.3. Toluene/Mn/Br/Zr= $26.8/1.0/1.26/0.095$ at 90-102 °C	62
4.1.5.4. I oluene/Co/ $Zr=26.4/1.0/0.112$ at 85.5-96 °C	63
4.1.5.5. 1 oluene/Br/Zr= $20.9/1.0/0.08$ at 92.3-96.5 °C	63
4.1.5.6. I oluene/Min/ $Zr=27.3/1.0/0.11$ at 93.5-102 °C	64
4.1.5.7. I oluene/ $Zr=27.8/0.1$ at 91.5-106 C	64
4.1.6. Oxidation of toluene using two balloons filled with dloxygen	(5
catalysed by <i>N</i> -nydroxyphthalimide (NHPI)	05
4.1.0.1. TOTUETE/INTPT/C0/Z1-27.8/3.0/1.0/0.104 at 94.5-104 C 4.1.6.2. Toluene/INTPT/Co=27.8/2.65/1.0 at 05.5.101 $^{\circ}$ C	03
4.1.0.2. TOTUCHE/NHFI/Co $-2/.0/5.05/1.0$ at 95.5-101 C	00
4.1.0.5. 101delle/NHF1/C0/MII/B1/Z1–20.0/5.55/1.0/1.21/0.11 at 94.5-101 °C	66
4.1.7. Oxidation of toluene using two balloons filled with dioxygen	
catalysed by cobalt trimers	.67
4.1.7.1. Toluene/ $[Co_3O(OAc)_5(OH)(py)_3][PF_6]/Mn/Br=$	
26.3/0.33/1.0/1.25 at 93-100 °C	.67
4.1.7.2. Toluene/ $[Co_3O(OAc)_6(py)_3][PF_6]/Mn/Br=$	

		26.3/0.33/1.0/1.25 at 93-98 °C	68
4.2.	Discussion	on	69
	4.2.1. A	Analysing method	71
	4.2.2. I	nduction time	71
	4.2.3. H	Product distribution	73
	4.2.4.	The colour change	77
	4.2.5.	The effects of water	79
	4.2.6.	Гhe Co/Br/Zr catalvst	79
	427	The Co/Mn/Br catalyst	80
	428	The Co/Mn/Br/Zr catalyst	81
	429	V-Hydroxynhthalimide as a promoter	82
	4 2 10 (o(III) trimers	
13	Conclusion	20(111) trimers	
4.3.	Conclusion	1	
Chapter Fiv	o Synthoe	ses of Matal substituted (Silica) aluminanhasahata-5	
Chapter Fiv	e Synthes Molecul	lor Sieves of Heterogeneous Ovidetion Catalysts	Q.1
5 1	Conorolin	ar Sieves as neterogeneous Oxidation Catalysis	04
3.1.	5 1 1 7		
	5.1.1. Ze		83
	5.1.2. A	PO-5	83
	5.1.3. N	Actal-substituted APO-5 and SAPO-5	86
	5.1.4. G	seneral method for MeAPO-5 synthesis	88
	5.1.5. G	ieneral method for MeSAPO-5 synthesis	89
5.2.	Experimen	ntal	90
	5.2.1. G	eneral	90
	A) Telfon-lined autoclave	90
	B) Materials	90
	C) Equipments	90
	D) General procedure	91
		1. For the preparation of MeAPO-5	91
		2. For the preparation of MeSAPO-5	92
	E) Example calculation for the uniform gel composition	ratio
	,		92
	F)	Metal analysis	93
	5.2.2. Ĥ	Preparation of monometal-substituted (silico)aluminopho	sphate-
	5	5 molecular sieves	
53	Discussion	n on the syntheses of metal-substituted (silico)alumino	
0.01	phosphate	-5 molecular sieves	103
	531 S	vntheses of multimetal-substituted aluminophosphate-5	
	0.0111 2	molecular sieves	103
	5	3.1.1 Molar ratio of Al ₂ O ₂ to Template	103
	5	3.1.2 Metal salt sources	105
	5	3.1.3 The amount of water	108
	5.	3.1.4 The template	110
	5	3.1.5 The gel composition	110
	5	3.1.6 The temperature of mixing autoclaying and calci	nations
	5.	5.1.0. The temperature of mixing, autociaving and calch	111
	5	217 The order of mixing	114
	5. F	2.1.2. Characterization of MaADO 5	110
	Э.	5.1.6. Unaracterization of MeAPU-5	11/
		Э. <u></u>	117/

		5.3.1.8.2. SEM	118
		5.3.1.8.3. Metal analysis by AAS, ICP and SEM-E	DAX
			122
		5.3.1.8.4. UV-Vis	124
		5.3.1.8.5. The location of metals	127
	5.3.2.	Syntheses of bimetal- and trimetal-substituted silicoalumino)
		phosphate-5 molecular sieves	129
		5.3.2.1. Molar ratio of Al_2O_3 to template	129
		5.3.2.2. Metal salt sources.	129
		5.3.2.3. The amount of water	130
		5.3.2.4. The template	131
		5.3.2.5. The gel composition	131
		5.3.2.6 The temperature of mixing autoclaving and calcing	ations
			132
		5327 The order of mixing	133
		5.3.2.8 Characterization of MeSAPO-5	134
		5 3 2 8 1 XRD	134
		5.3.2.8.1. ARD	13/
		5.2.0.2. SEIVI	DAV
		5.5.2.6.5. Mietal allalysis by AAS, ICP allu SEMI-E.	127
		52294 UV Via	120
	522	5.5.2.6.4. UV-VIS	120
	5.5.5.	Summary	139
Chanter Si		vidation of Cualchavana	1 / 1
Chapter SD	K: The Ox	stication of Cyclonexane	141
0.1.			142
	0.1.1.	The mechanism of the oxidation of cyclonexane	142
	0.1.2.	Zeolites and the petroleum chemistry	145
	6.1.3.	MeAPO-5 and MeSAPO-5 in the oxidation of cyclonexane	146
	6.1.4.	Problems in the oxidation of hydrocarbons catalysed by	1 4 7
	ъ ·	APO-5	147
6.2.	Experim	iental	149
	6.2.1.	General	149
		6.2.1.1. Materials	149
		6.2.1.2. Equipments	149
		6.2.1.3. GC standards	150
	6.2.2.	The oxidation of cyclohexane by TBHP catalysed by	
		homogeneous catalysts	151
		6.2.2.1. The stability of homogeneous catalysts	151
		6.2.2.1.1. Preparation of 1000 ppm stock solution	151
		6.2.2.1.2. Preparation of 10 ppm stock solution	152
		6.2.2.1.3. Stability test	153
		A) Summary for the stability test	153
		6.2.2.2. The oxidation of cyclohexane by TBHP catalysed l	зу
		homogeneous catalysts at 50 °C or120 °C	154
		6.2.2.3. The oxidation of cyclohexane by TBHP catalysed	by
		Co^{3+} trimer 5 at 70 °C	155
	6.2.3	The oxidation of cyclohexane by TBHP catalysed by	
		heterogeneous catalysts	156
		6.2.3.1. At 70 °C and normal condition	156

	6	2.3.2. At 98 °C and 1 atm. pressure	(normal refluxing in
		cyclohexane)	
	6	2.3.3. At 150 $^{\circ}$ C and 10 bar N ₂ press	sure160
	6	2.3.4. At 150 $^{\circ}$ C and 13 bar N ₂ press	sure163
6.3.	Discussion	on the oxidation of cyclohexane	
	6.3.1.	Homogeneous catalysis	
	6	3.1.1. The stability test	
	6	3.1.2. The oxidation of cyclohexane.	
	6.3.2.	Heterogeneous catalysis	
	6	3.2.1. Activity, product distribution a	and effectivity171
	6	3.2.2. Metal leaching	
	6	3.2.3. The effects of water	
6.4.	Summary.		
References			181
Kelel ences	•••••	•••••••••••••••••••••••••••••••••••••••	
Appendix 1	1: The prep	ration of cobalt dimer, trimers, Mn	12O12 cluster, Mn2Co
	trimer an	lα-ZrP	
A1-	1: General		A-1
A1-2	2: Preparatio	of cobalt dimer. [Co ₂ (u-OH) ₂ (u-OA	$c)(OAc)_{2}(pv)_{4}[PF_{6}]A-2$
A1	3: Preparatio	n of cobalt (III) trimers	
	A1-3-1:	Preparation of $[Co^{III}_3(\mu_3-O)(\mu-OH)_2(\mu_3)]$	$(-OAc)_3(pv)_5][PF_6]_2A-3$
	A1-3-2:	Penta(u-acetato-kO:kO')-(u-hvdroxo)	-U3-OXO-
		ri(pyridine)tricobalt(III) hexafluorop	hosphate.
		$[Co_3O(OAc)_5(OH)(pv)_3]PF_6$	
	A1-3-3	$ri[(u-acetato-kO·kO')-u_3-oxo-$	
		pyridine)]tricobalt(III)hexafluoro-ph	osphate.
		$[Co_3O(OAc)_6(pv)_3]PF_6$	
	A1-3-4	$ri[(u-acetato-kO:kO')-acetic acid-u_2-$	000-
		pyridine)]tricobalt(III) hexafluoropho	sphate
		$C_{03}O(OAc)_3(HOAc)_3(pv)_3][PF_6]$	A-8
A1-4	4. Preparatio	$1 \text{ of } [Mn_2CoO(OAc)_{\epsilon}(py)_2] \cdot HOAc$	A-8
A1-	5: Prenaratio	$1 \text{ of } Mn_2 O_1 O(OAc)_1 (H_2 O)_2 (P_2 O$	4H ₂ O A-9
A1_	6: Prenarati	$n \text{ of } Zr(HPO_4)_2 \cdot 2H_2O(\alpha_2 ZrP)$	A-10
711-	0. Troparati	$101 \Sigma1(111 O_4)_2 Z11_2O((u-Z11))$	······································
Appendix 2	2: Attempt	d methods for the preparation of C	o/Zr. Mn/Zr. Co ₃ ZrP
	and Zr($(\mathbf{O})_2(\mathbf{pv})_2$ complexes	Á-11
A2-	1: Attemp	ed preparation of cobalt(III)-zirconiu	n(IV) acetate mixed-
	metal c	mplexes	
	A2-1-1:	Attempted preparation of [Co ₂ OZr(O	$Ac_{5}(OH)(pv_{3})[PF_{6}]_{2}$
	A2-1-2:	Attempted preparation of [Co ₂ OZr(O	$Ac_{6}(py_{3})$ [PF ₆] ₂ by using
		a molar equivalent of pyridine	
	A2-1-3:	Attempted preparation of [Co ₂ OZr(C	$OAc_{6}(py_{3})[PF_{6}]_{2}$ by
		using two molar equivalents of pyrid	line
	A2-1-4:	Attempted preparation of [CoOZr ₂ (O	$Ac_{5}(OH)(py_{3}[PF_{6}]_{3}$
	A2-1-5:	Attempted preparation of a cobalt(III)/zirconium(IV)=1:1
		complex	A-17

	A2-1-6: Attempted preparation of $[Zr_3O(OAc)_5(OH)(py)_3][PF_6]_4A-1$ A2-1-7: Attempted preparation of $[Co_2OZr(OAc)_5(OH)(py)_3][OAc]_2$.7
A2-2:	A2-1-8: Attempted preparation of $[Co_2OZr(OAc)_6(py)_3][OAc]_2$ A-1 A2-1-9: Attempted preparation of $[CoOZr_2(OAc)_6(py)_3][PF_6]_2$ A-1 A2-1-10: Attempted preparation of $CoZr_2$ mixed-metal complexA-2 Attempted preparation of Mn_8Zr_4 clusterA-2 A2-2-1: Mn^{+2} mixed with Zr^{+4} , then using H_2O_2 to oxidise Mn^{+2} to Mn^{+2}	9 9 0 20 +3
	A2-2-2: Mn^{+3} mixed with Zr^{+4} A-2 A2-2-3: Mn^{+2} mixed with Zr^{+4} , then using KMnO ₄ to oxidise Mn ⁺² to Mn ⁺³ A-2	0 1 28
	A2-2-4: Attempted preparation of $MnZr_2$ mixed-metal complexA-29	9
A2-3:	Attempted preparation of Co_8Mn_4 clusterA-3	2
A2-4:	Attempted preparation of Co ₃ ZrP complexA-32	2
A2-5:	Attempted preparation of pyridine zirconium(IV) peroxide,	
	$Zr(OO)_2(py)_2$ A-34	4
A2-6:	The behaviour of zirconium(IV) acetate hydroxide in acetic acid and in	1
	mixture of pyridine and acetic acid	/ 7
	A2-6-1: Reaction of zirconium(IV) acetate hydroxide in acetic acid.A-3	/
	A2-0-2: Reaction of zirconium(1v) acetate hydroxide with pyridine in	7
	acetic acidA-3	/
Appendix 3:	Results for the oxidation of toluene by homogeneous oxidation catalysts (of chapter Four)A–38	3
	· · · · ·	
Appendix 4: A N	Attempted methods for the preparation of MeAPO-5 and IeSAPO-5A-50	6
Appendix 5:	Crystal structure of a new Mn trimer complex, Hexa-µ ₂ -acetato- i(pyridine-N)-diaqua-trimanganese(II), Mn ₃ (OAc) ₆ (py) ₂ (H ₂ O) ₂ A-6	4
A5-1:	CharacterizationA-64	4
I	A5-1-1: Kaman spectroscopyA-6	4
. = -	A5-1-2: XKDA-64	4
A5-2:	References for appendicesA-7	4

Lists of tables

Tab. 1.1:	Industrial oxidation of hydrocarbons	9
Tab. 2.1:	Summary of the results from the oxidation of toluene by dioxygen	
Tab. 2.2:	The sidechain oxidation of substituted toluene using PBS-1 in the Co(II)-	
	HOAc-Br system.	.34
Tab. 3.1:	The composition of Mn and Zr at different attempted preparations	.46
Tab. 4.1:	The HPLC standard stock solution (M) for 2 µL injection	51
Tab. 4.2:	The HPLC standard stock solution (M) for 5 µL injection	.53
Tab. 4.3:	Comparison of results from the oxidation of toluene using bubbling	
	dioxygen	.56
Tab. 4.4:	Comparison of the results from the oxidation of toluene using balloon(s)	
	filled with dioxygen	.59
Tab. 4.5:	Induction time (min) from the oxidation of toluene	.72
Tab. 4.6:	Summary of the yield and the selectivity for the oxidation of toluene	.75
Tab. 4.7:	The comparison of the colour change for different catalyst system	78
Tab. 5.1:	The gel composition for typical MeAPO-n.	88
Tab. 5.2:	Al and template sources used by literature report for the preparation of	
	SAPO-5	.89
Tab. 5.3:	Details for the preparation of MeAPO-5	94
Tab. 5.4:	Details for the preparation of MeSAPO-5	95
Tab. 5.5:	The gel composition ratios and metal analysis results for Me(S)APO-5	96
Tab. 5.6:	The UV-Vis results for Me(S)APO-5	.97
Tab. 5.7:	The XRD pattern (2θ) results for Me(S)APO-5	.98
Tab. 5.8:	The gel composition used for the preparation of MnAPO-5	99
Tab. 5.9:	The gel composition used for the preparation of CoCeAPO-5	.99
Tab. 5.10:	The gel composition used for the preparation of CrCeAPO-5	100
Tab. 5.11:	The gel composition used for the preparation of MnCoAPO-5	101
Tab. 5.12:	The gel composition used for the preparation of CoCeSAPO-5	102
Tab. 5.13:	The gel composition used for the preparation of MnCoSAPO-5	102
Tab. 5.14:	Molar ratio of Al ₂ O ₃ to Template used for the preparation of MeAPO-5.1	04
Tab. 5.15:	Metal sources for MeAPO-5	106
Tab. 5.16:	The molar ratio of water (related to P_2O_5) used for MeAPO-5	108
Tab. 5.17:	The molar ratio of P_2O_5/Al_2O_3 and $H_2O/Template$ used for MeAPO-51	10
Tab. 5.18:	The gel composition used for the successful preparation of MeAPO-51	113
Tab. 5.19:	Temperatures applied for the mixing of the gel mixtures	114
Tab. 5.20:	The composition [wt. % (mol. %)] of monometal-substituted MeAPO-5.1	122
Tab. 5.21:	The composition [wt. % (mol. %)] of multimetal-substituted MeAPO-5	
	found by SEM-EDAX	123
Tab. 5.22:	The comparison of metal composition (wt. %) of multimetal-substituted	
	MeAPO-5 found by SEM-EDAX and ICP1	24
Tab. 5.23:	The colours and the UV-Vis results for MeAPO-5	25
Tab. 5.24:	The composition (mol %) found by SEM-EDAX1	27
Tab. 5.25:	The final (molar ratio) composition from the calcined MeAPO-5	
m 1 5 6 6	detected by SEM-EDAX.	128
Tab. 5.26:	Molar ratio of Al_2O_3 to template used for the preparation of MeSAPO-5.1	29
1 ab. 5.27 :	At and metal sources used for the preparation of MeSAPO-5	30
1 ab. 5.28:	I ne moiar ratio of water (related to P_2O_5) used for MeSAPO-5	130
1 ad. 5.29:	I ne motar ratio of P_2O_5/AI_2O_3 and H_2O/I emplate used for MeSAPO-5	131

Tab. 5.30:	The gel composition used to prepare MeSAPO-5 species
Tab. 5.31:	The composition [wt. % (mol. %)] of MeSAPO-5 species137
Tab. 5.32:	The comparison of metal composition (wt. %) of multimetal-substituted
	MeSAPO-5 found by SEM-EDAX and ICP138
Tab. 5.33:	The final compositions (molar ratio) from the calcined MeSAPO-5 detected
	by SEM-EDAX
Tab. 5.34:	The product colour and UV-Vis results for MeSAPO-5
Tab. 6.1:	Compositions of "1000 ppm stock solution" of homogeneous catalysts152
Tab. 6.2:	Compositions of "10 ppm stock solution" (100 mL) of homogeneous.
T 1 ()	catalysts
Tab. 6.3:	The results for the stability test. 153 The results for the stability test. 154
Tab. 6.4:	The results for the decomposition of TDUD at 120 °C
Tab. 6.5	The results for the evidetion of avalabasene by TDUD actalyzed by
1 a0. 0.0.	The results for the oxidation of cyclonexane by TBHP catalyzed by C_0^{3+} trimer 5 at 70 °C
Tab. 6.7.	The quantity of heterogeneous catalyst and 3^{A} molecular sieves used for the
1 ab. 0.7.	α avidation of cyclobexane by TBHP at 98 °C and 1 atm pressure 157
Tab 68.	The amounts of substances detected by GC for the catalytic oxidation of
100.0.0.	cyclohexane by TBHP at 98 °C and 1 atm pressure 159
Tab 69 [.]	ICP results for metal leaching for the catalytic oxidation of cyclohexane
1 401 0131	by TBHP at 98 °C and 1 atm pressure
Tab. 6.10:	Heterogeneous catalysts used for the oxidation of cyclohexane by TBHP at
	150 °C and 10 bar N ₂ pressure
Tab. 6.11:	Heterogeneous catalysts used for the oxidation of cyclohexane by TBHP at
	$150 ^{\circ}\text{C}$ and 13 bar N ₂ pressure
Tab. 6.12:	ICP results (ppm) for the metal leaching for the oxidation of cyclohexane by
	TBHP at 150 °C and 13 bar N ₂ pressure164
Tab. 6.13:	Heterogeneous catalysts used for the oxidation of cyclohexane by TBHP at
	150 °C and 13 bar N ₂ pressure
Tab. 6.14:	ICP results (ppm) for the metal leaching for the oxidation of cyclohexane by
T 1 (15	TBHP at 150 °C and 13 bar N_2 pressure (re-dried catalysts)166
1ab. 6.15:	The metal leaching (%) detected by ICP for the oxidation of cyclonexane by TDUD at $150 ^{\circ}$ C and $12 ^{\circ}$ kar N, measure (no dried patelying) 167
	TBHP at 150°C and 15 bar N_2 pressure (re-dried catalysis)167
Tab 12 1	HPLC regults for toluono in glacial agotic agid (100 mL) with diavygan
1 au. A3-1	(using a needle to hubble) (avacumental 4121)
Tab $\Lambda 3_2 2$.	HPL C results for toluene in glacial acetic acid (100 mL) with dioxygen
1 au. AJ-2.	(using balloon filled with $\Omega_{\rm e}$) (avaprimental 4122)
Tab $\Delta 3_{-3}$.	The mass (mmol) of products from toluene oxidation by using toluene/Co/
1 ab. 113-5.	$Mn/Br = 27 1/1/1 03/1 40 \text{ at } 85 06 ^{\circ}C \text{ (avariants)} 41311 \text{ (a)} A 30$
Tab $\Delta 3_{-4}$.	The yield $(\%)$ of products from toluene oxidation by using toluene/Co/
1 ab. 713-4.	$Mn/Br = 27 \frac{1}{1} \frac{1}{1} \frac{03}{1} \frac{1}{40} \text{ at } 85 \frac{06}{10} \frac{0}{10} (\text{avariants} 1 \frac{1}{4} \frac{1}{1} \frac{3}{1} \frac{1}{1}) $
Tab A3-5.	Selectivity (%) of products from toluene oxidation by using toluene/Co/
140.715 5.	$Mn/Br = 27 1/1/1 03/1 40 \text{ at } 85-96 ^{\circ}\text{C} \text{ (experimental } 41311)$ A-40
Tab A3-6.	The mass (mmol) of products from toluene oxidation by using toluene/ C_0 /
140.715 0.	$Mn/Br= 43 2/1/1/1 22 \text{ at } 90-93 ^{\circ}C$ (experimental 4 1 3 1 2) A_{-40}
Tab A3-7.	The yield (%) of products and selectivity of BZOH (%) from toluene
1 40. 113 7.	oxidation by using toluene/Co/Mn/Br= 43 $2/1/1/1$ 22 at 90-93 °C
	(experimental $4.1.3.1.2$ $A=41$

Tab. A3-8: The mass (mmol) of products from toluene oxidation by using toluene/Co/
Mn/Br= 26.8/1/1.03/1.28 at 91-98 °C (experimental 4.1.3.2)A-41
Tab. A3-9: The yield (%) of products from toluene oxidation by using toluene/Co/Mn/
Br = $26.8/1/1.03/1.28$ at 91-98 °C (experimental 4.1.3.2)A-42
Tab. A3-10: The selectivity (%) of products from toluene oxidation by using toluene/
Co/Mn/Br= 26.8/1/1.03/1.28 at 91-98 °C (experimental 4.1.3.2)A-42
Tab. A3-11: The mass (mmol) of products of toluene oxidation products by using
toluene/Co/Mn/Br/Zr =42.39/1/0.99/1.26/0.099 at 90-98 °C (experimental
4.1.4.1)
Tab. A3-12: The yield (%) and selectivity (%) of products of toluene oxidation by using
toluene/Co/Mn/Br/Zr = $42.39/1/0.99/1.26/0.099$ at 90-98 °C (experimental
4.1.4.1)
Tab. A3-13: The mass (mmol) of products from toluene oxidation by using toluene/Co/
Mn/Br/Zr=26.3/1/1.01/1.22/0.099 at 88-96 °C (experimental 4.1.4.2).A-44
Tab. A3-14: The yield (%) of products from toluene oxidation by using toluene/Co/Mn/
Br/Zr= $26.3/1/1.01/1.22/0.099$ at 88-96 °C (experimental 4.1.4.2)A-45
Tab. A3-15: The selectivity (%) of products from toluene oxidation by using toluene/
Co/ Mn/Br/Zr= $26.3/1/1.01/1.22/0.099$ at 88-96 °C (experimental 4.1.4.2)
A-46
1 ab. A3-16: The results for the oxidation of toluene catalyzed by using toluene/Co/
Br/Zr=26.3/1/1.24/0.099 at 91-96 °C (experimental 4.1.5.1)A-46
1 ab. A3-1/: The results of toluene oxidation by using toluene/Co/Min/Zr= $2(2/1/1/0.102 + 0.7.08)^{\circ}$ C ($1/1/1.7.02$)
26.2/1/1/0.102 at 8/-98 °C (experimental 4.1.5.2)
1 ab. A3-18. The mass (minor) of products from tordene oxidation by using tordene/ $M_{\pi}/D_{\pi}/Z_{\pi} = 26.8/1/1.26/0.005 \pm 0.0.102.9C$ (some sine sets 1.4.1.5.2)
MIN/BI/Zr $-20.8/1/1.20/0.095$ at 90-102 C (experimental 4.1.3.5)A-4/ Tab A2 10: The yield (9/) of products of toluone ovidation by using toluone/Mn/Pr/Zr=
Tab. A5-19. The yield (76) of products of toruene oxidation by using toruene/Mil/ BI/ZI = $26.8/1/1.26/0.005$ at 00.102 °C (avaparimental 4.1.5.2)
Tab $A_2 = 20.8/1/1.20/0.093$ at 90-102 C (experimental 4.1.3.3)
1 ab. A3-20. The mass (minor) of toruche oxidation products by using toruche/C0/21 = $26 \frac{4}{10} \frac{112}{12}$ at 85.5 $0.6 {}^{\circ}C$ (experimental 4.1.5.4)
Tab $\Delta 3-21$: The mass (mmol) of products from toluene oxidation by using toluene/
Br/7r = $20.9/1/0.08$ at $92.3-96.5$ °C (experimental 4.1.5.5) $\Delta -49$
Tab A3-22: The yield (%) of products from toluene oxidation by using toluene/ $Br/Zr =$
$20.9/1/0.08 \text{ at } 92.3-96.5 ^{\circ}\text{C}$ (experimental 4.1.5.5) (A=49)
Tab A3-23. The mass (mmol) and yield (%) of toluene oxidation products by using
toluene/Mn/Zr= 27 $3/1/0$ 11 at 93 5-102 °C (experimental 4.1.5.6) A-50
Tab. A3-24: The results of the oxidation of toluene catalyzed by using toluene/Zr=
27.8/0.1 at 91.5-106 °C (experimental 4.1.5.7)
Tab. A3-25: The mass (mmol) of products from toluene oxidation by using toluene/
NHPI/Co/Zr= $27.3/3.6/1/0.104$ at 94.5-104 °C (experimental 4.1.6.1).A-51
Tab. A3-26: The yield (%) of products from toluene oxidation by using toluene/NHPI/
Co/Zr=27.3/3.6/1/0.104 at 94.5-104 °C (experimental 4.1.6.1)A-51
Tab. A3-27: The mass (mmol) of products from toluene oxidation by using toluene/
NHPI/Co=27.8/3.65/1 at 95.5-101 °C (experimental 4.1.6.2)
Tab. A3-28: The yield (%) of products from toluene oxidation by using toluene/NHPI/
Co=27.8/3.65/1 at 95.5-101 °C (experimental 4.1.6.2)A-52
Tab. A3-29: The mass (mmol) of products from toluene oxidation by using
toluene/NHPI/Co/Mn/Br/Zr=26.6/3.55/1/1/1.21/0.11 at 94.5-101 °C
(experimental 4.1.6.3)

Tab. A3-30:	The yield (%) of products from toluene oxidation by using
	toluene/NHPI/Co /Mn/Br/Zr=26.6/3.55/1/1/1.21/0.11 at 94.5-101 °C
	(experimental 4.1.6.3)
Tab. A3-31:	The mass (mmol) of toluene oxidation products by using
	toluene/[Co ₃ O(OAc) ₅ (OH)(py) ₃][PF ₆]/Mn/Br=26.3/0.33/1/1.25 at 93-100
	^o C (experimental 4.1.7.1)A–54
Tab. A3-32:	The yield (%) of products from toluene oxidation by using
	toluene/[Co ₃ O(OAc) ₅ (OH)(py) ₃][PF ₆] /Mn/Br=26.3/0.33/1/1.25 at 93-100
	^o C (experimental 4.1.7.1)
Tab. A3-33:	The mass (mmol) of products from toluene oxidation by using
	toluene/[Co ₃ O(OAc) ₆ (py) ₃][PF ₆]/Mn/Br=26.3/0.33/1/1.25 at 93-98 °C
	(experimental 4.1.7.2)
Tab. A3-34:	The yield (%) of products from toluene oxidation by using
	toluene/[Co ₃ O(OAc) ₆ (py) ₃][PF ₆]/Mn/Br=26.3/0.33/1/1.25 at 93-98 °C
	(experimental 4.1.7.2)
Tab A4.1:	Details for the attempted preparation of MeAPO-5A-57
Tab A4.2:	Details for the attempted preparation of MeSAPO-5 (Method AM3)A-60
Tab A4.3:	The gel composition ratios for attempted preparation of Me(S)APO-5A-62
Tab A4.4:	The XRD pattern (2θ) results for the attempted preparation of
	Me(S)APO-5
Tab. A5-1:	The comparison of $Mn_3(OAc)_6(py)_2(H_2O)_2$ and $Mn_3(CH_3COO)_6\cdot 12H_2O$
Tab. A5-2:	Hydrogen bond lengths (Å) for $Mn_3(OAc)_6(py)_2(H_2O)_2$ A-68
Tab. A5-3:	Hydrogen atom coordinates, isotropic thermal parameters and occupancies
	for $Mn_3(OAc)_6(py)_2(H_2O)_2$ A-68
Tab. A5-4:	Non-hydrogen atom coordinates, isotropic thermal parameters and
	occupancies for $Mn_3(OAc)_6(py)_2(H_2O)_2$ A-69
Tab. A5-5:	Non hydrogen bond lengths (A) for $Mn_3(OAc)_6(py)_2(H_2O)_2A-69$
Tab. A5-6:	Anisotropic thermal parameters (× 10^{-2} Å ²) for Mn ₃ (OAc) ₆ (py) ₂ (H ₂ O) ₂
T 1 4 5 T	
Tab. A5-7:	Non hydrogen bond angles (°) for $Mn_3(OAc)_6(py)_2(H_2O)_2$ A-70
Tab. A5-8:	1 orsion angles (°) for $Mn_3(OAc)_6(py)_2(H_2O)_2$ A-71
Tab. A5-9:	Hydrogen bond geometry for $Mn_3(OAc)_6(py)_2(H_2O)_2$ A-73
1 ab. A5-10:	Hydrogen bond angles ($^{\circ}$) for Min ₃ (OAc) ₆ (py) ₂ (H ₂ O) ₂ A-/3

Lists of figures

Fig. 3.1: $[Co_2(\mu-OH)_2(\mu-OAc)(OAc)_2(py)_4]^+$ (asymmetrical isomer) and
$[Co_2(\mu-OH)_2(\mu-OAc)(OAc)_2(py)_4]^+ (symmetrical isomer)45$
Fig. 3.2: The XRD pattern of Co(III) trimer
Fig. 3.3: The XRD of mainly $[Co_3O(OH)_2(OAc)_3(py)_5][PF_6]_2$ and minor $[Co_2(OH)_2(OAc)_2(py)_2][PF_6]_2$
Fig. 3.4: The first measured XRD pattern of
$[Co^{III}_{3}(\mu_{3}-O)(\mu_{2}-OH)_{2}(\mu_{2}-OAc)_{3}(py)_{5}][PF_{6}]_{2}$
Fig 3.5: The PM3 modeled structure of cobalt(III) trimers:
$[Co_{3}(\mu_{2}-OAc)_{6}(OAc)_{3}]^{+}, [Co_{3}(\mu_{2}-OAc)_{6}(py)_{3}]^{+},$
$[\text{Co}^{\text{III}}_{3}(\mu_{3}-\text{O})(\mu_{2}-\text{OH})_{2}(\mu_{2}-\text{OAc})_{3}(\text{py})_{5}]^{2+1}$ and
$[Co_{3}(\mu_{3}-O)(\mu_{2}-OH)(\mu_{2}-OAc)_{5}(Py)_{3}] \qquad$
Fig. 5.6. The AKD of $Mn_{12}O_{12}$ complex
1.03/ 1.40 at 85-96 °C) products against time (min) by bubbling dioxygen55
Fig. 4.2: The mass (mmol) of toluene oxidation (by using toluene/Co/Mn/Br= 43.2/1/1/
1.22 at 90-93 °C) products against the time (min) using a frit
Fig. 4.5: The mass (mmol) of toluene oxidation (by using toluene/Co/Min/Br = $26 8/1/1 03/1 28$ at $91-98$ °C) products against the time (min) 58
Fig. 4.4: The mass (mmol) of toluene oxidation (by using toluene/Co/Mn/Br/Zr=42.39/1/
0.99/1.26/0.099 at 90-98 °C) products against time (min) using a frit60
Fig. 4.5: The mass (mmol) of toluene oxidation (by using toluene/Co/Mn/Br/Zr
=26.3/1/1.01/1.22/0.099 at 88-96 °C) products against the time (min)61
Fig. 4.6: The mass (mmol) of toluene oxidation (by using toluene/Mn/Br/Zr =
26.8/1/1.26/0.095 at 90-102 °C) products against the time (min)63
Fig. 4.7: The mass (mmol) of toluene oxidation (by using toluene/Br/Zr= $20.9/1/0.08$
at 92.3-96.5 °C) products against the time (min)64
Fig. 4.8: The mass (mmol) of toluene oxidation (by using toluene/NHPI/Co/Zr=
27.3/3.6/1/0.104 at 94.5-104 °C) products against the time (min)65
Fig. 4.9: The mass (mmol) of toluene oxidation (by using toluene/NHPI/Co
=27.8/3.65/1 at 95.5-101 °C) products against the time (min)66
Fig. 4.10: The mass (mmol) of toluene oxidation (by using toluene/NHPI/Co/Mn/Br/Zr
=26.6/3.55/1/1/1.21/0.11 at 94.5-101 °C) products against the time (min)67
Fig. 4.11: The mass (mmol) of toluene oxidation (by using toluene/[Co^{3+} trimer 5]/
Mn/Br=26.3/0.33/1/1.25 at 93-100 °C) products against the time (min)67
Fig. 4.12: The mass (mmol) of toluene oxidation (by using toluene/[Co ³⁺ trimer 6]/
Mn/Br=26.3/0.33/1/1.25 at 93-98 °C) products against the time (min)68
Fig. 4.13: The major pathway of the oxidation of toluene
Fig. 4.14: Comparison of the yield (%) of benzoic acid76
Fig. 4.15: Comparison of the yield (%) of benzaldehyde
Fig. 4.16: Comparison of the yield (%) of benzyl alcohol

Fig. 5.1:	The 2-D view of the super-tunnel (or pore) of APO-5 is made up of	- -
	alternating AlO ₄ and PO ₄ tetrahedral structure.	85
Fig. 5.2:	The comparison of water (molar ratio to P_2O_5) used for the preparation of CrCeAPO-5 and MnCoAPO-5	109
Fig 53.	Comparison of the template for the preparation of MnAPO-5	111
Fig. 5.4.	Environment of chromium in as-synthesized and calcined CrAPO-5	116
Fig. 5.1.	The XRD patterns of CrAPO-5 and monometal-substituted MeAPO-5	117
Fig 5.6	The XRD of his and trimetal-substituted MeAPO-5	118
Fig. 5.0. 5.7	FDAX results in the analysis of $MnAPO_{-5}$	122
Fig. 5.7 .	EDAX results in the analysis of MnCoAPO 5	122
Fig. 5.0 .	The tetrahedral spacies of CoAPO 5 can be converted into the actahedral fo	.123
Fig. 5.9.	hy adsorption of two additional water molecules	126
Fig 5 10	The VPD patterns of MoSAPO 5	120
$\frac{1}{2}$	Catalytic avala for the decomposition of avalabasyl hydronorovida by Co.	.134
гі <u>д</u> . 0.1	Mn ions	л 143
Fig 62	Formation of adipic acid and glutaric acid from cyclohexanone	144
Fig. 6.3	Results for CrCeAPO-5	161
Fig. 6.3	Results for CoZrAPO-5	162
Fig. 6.7	Results for CrZrAPO-5	162
Fig. 6.6	Results for CrCeAPO-5	163
Fig. 6.7	Results for Cr7rAPO-5	163
Fig. 6.8.	Results for CrZrAPO-5	165
Fig. 6.9	Results for CrCeAPO-5	165
Fig. 6.10.	Results for CrZrSAPO-5	165
Fig. 6.11.	Results for MnCoAPO-5	165
Fig. 6.12.	Results for MnZrAPO-5	166
Fig. 6.13.	Results for CrAPO-5	166
Fig. 6.13 .	Results for Blank reaction	167
Fig. 6.15.	The oxidation of cyclohexane by TBHP at 98 $^{\circ}$ C at 1 atm using MeSAPO-5	
115. 0.15.	catalysts	171
Fig 6 16.	The oxidation of cyclohevane by TBHP at 98 $^{\circ}$ C at 1 atm using MeAPO-5	.1/1
115. 0.10.	catalysts	172
Fig 6 17.	The oxidation of cyclohexane by TBHP catalyzed by MeAPO-5at 150 °C	.1/2
115. 0.17.	and 10 bar	173
Fig 6 18.	The oxidation of cyclohexane by TBHP at 150 $^{\circ}$ C and 13 bar (yield of	.175
115. 0.10.	cyclohexanol)	175
Fig 6 19.	The oxidation of cyclohexane by TBHP at 150 $^{\circ}$ C and 13 bar (yield of	. 170
119.0.17.	cyclohexanone)	175
Fig 6 20.	The oxidation of cyclohexane by TBHP at 150 $^{\circ}$ C and 13 bar (yield of	
1 15. 0.20.	nroduct)	175
Fig 6.21.	The oxidation of cyclohexane by TBHP catalyzed by CrCeAPO-5 (dry and	wet)
115. 0.21.	at $150 ^{\circ}$ C and $13 ^{\circ}$ bar (vield of product)	178
Fig 6 22.	The oxidation of cyclohexane by TBHP catalyzed by CrZrAPO-5 (dry and	.170
1 15. 0.22.	wet) at 150 °C and 13 bar (vield of product)	178
Fig A1-1	• The XRD pattern of Co(III) dimer	A-3
Fig A1-2	: The XRD of mainly $[C_{03}O(OH)_2(OAc)_2(pv)_5][PF_4]_2$ and minor	
	$[C_{0}(OH)_{2}(OAc)_{2}(pv)_{4}][PF_{4}]$	A-5
Fif A1-3-	The XRD of Mn_1O_{12} complex	4-10
Fig A5-1	The crystal structure of $Mn_2(OAc)_2(H_2O)_2$	4-65
Fig. A5-2	: The crystal structure of Mn ₂ (CH ₂ COO) _{6} ·12H ₂ O	A-66

Lists of schemes

Scheme 1.1: Possible mechanisms for hydrocarbon oxidation	5
Scheme 1.2: The products from oxidation of adamantine	9
Scheme 1.3: The possible products from the catalytic oxidation of toluene	10
Scheme 1.4: Routes to produce adipic acid	14
Scheme 1.5: The oxidation of <i>p</i> -xylene	17
Scheme 1.6: The bromine cycle in a bromide-promoted oxidation of a hydrocarbon	18
Scheme 1.7: Co/Mn/Br Monomeric complexes reaction pathway	20
Scheme 2.1: $[Co_3O(OAc)_6(HOAc)_3]$ and $[Co_3O(OAc)_6(HOAc)_3]^+$	29
Scheme 2.2: The structure of cobalt dimers and trimers	31