
A Parallel Solution Adaptive Implementation

of the Direct Simulation Monte Carlo Method

Stuart Jackson Wishart

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

Department of Aerospace, Mechatronic and Mechanical Engineering

The University of Sydney

August 2004

Declaration

This thesis is submitted to The University of Sydney in fulfilment of the

requirements for the degree of Doctor of Philosophy. This thesis is entirely

my own work and, except where otherwise stated, describes my own

research.

Stuart Wishart

August 30, 2004

Copyright � 2004 Stuart Wishart

All Rights Reserved

ii

Abstract
Stuart Wishart Doctor of Philosophy
The University of Sydney August 2004

A Parallel Solution Adaptive Implementation
of the Direct Simulation Monte Carlo Method

This thesis deals with the direct simulation Monte Carlo (DSMC) method of analysing
gas flows. The DSMC method was initially proposed as a method for predicting
rarefied flows where the Navier-Stokes equations are inaccurate. It has now been
extended to near continuum flows. The method models gas flows using simulation
molecules which represent a large number of real molecules in a probabilistic
simulation to solve the Boltzmann equation. Molecules are moved through a simulation
of physical space in a realistic manner that is directly coupled to physical time such that
unsteady flow characteristics are modelled. Intermolecular collisions and molecule-
surface collisions are calculated using probabilistic, phenomenological models. The
fundamental assumption of the DSMC method is that the molecular movement and
collision phases can be decoupled over time periods that are smaller than the mean
collision time.

Two obstacles to the wide spread use of the DSMC method as an engineering tool are in
the areas of simulation configuration, which is the configuration of the simulation
parameters to provide a valid solution, and the time required to obtain a solution. For
complex problems, the simulation will need to be run multiple times, with the
simulation configuration being modified between runs to provide an accurate solution
for the previous run’s results, until the solution converges. This task is time consuming
and requires the user to have a good understanding of the DSMC method. Furthermore,
the computational resources required by a DSMC simulation increase rapidly as the
simulation approaches the continuum regime. Similarly, the computational
requirements of three-dimensional problems are generally two orders of magnitude
more than two-dimensional problems. These large computational requirements
significantly limit the range of problems that can be practically solved on an
engineering workstation or desktop computer.

The first major contribution of this thesis is in the development of a DSMC
implementation that automatically adapts the simulation. Rather than modifying the
simulation configuration between solution runs, this thesis presents the formulation of
algorithms that allow the simulation configuration to be automatically adapted during a
single run. These adaption algorithms adjust the three main parameters that effect the
accuracy of a DSMC simulation, namely the solution grid, the time step and the
simulation molecule number density. The second major contribution extends the
parallelisation of the DSMC method. The implementation developed in this thesis
combines the capability to use a cluster of computers to increase the maximum size of
problem that can be solved while simultaneously allowing excess computational
resources to decrease the total solution time. Results are presented to verify the
accuracy of the underlying DSMC implementation, the utility of the solution adaption
algorithms and the efficiency of the parallelisation implementation.

iii

Acknowledgments

I would like to thank all of the people who encouraged and supported me during the

undertaking of this research.

Firstly, I would like to thank all the members of the Aeronautical Engineering

Department. To my supervisor, Dr. Doug Auld, who set me on this path of research.

To my post-graduate colleagues Jeremy Randle, Dr. Hugh Stone and Dr. Nick van

Bronswijk, who helped make the experience of this thesis more rewarding. Thanks also

to the members of the ACFR who encouraged my research and provided me with good

coffee.

I would also like to acknowledge the support of my employer BAE Systems Australia.

While they have tried to tempt me away from my research with interesting projects,

they have also been supportive of my completion.

My last and greatest thanks is for my family. To my parents and siblings for their

encouragement and support throughout the entirety of this project. To my in-laws who

kept my strength up with good food and the inquisitive questions. Lastly, I would like

to thank my wife Clare who has been steadfast in her support. But most importantly for

her love and companionship.

“The end of a matter is better than its beginning, and patience is better than pride.”

Ecclesiastes 7:8

iv

Contents

Declaration i

Abstract ii

Acknowledgments iii

Contents iv

List of Figures viii

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Background and Motivation ... 1

1.2 Problem Summary .. 2

1.3 Principle Contributions... 2

1.4 Outline .. 4

2 The Direct Simulation Monte Carlo Method 5
2.1 Introduction... 5

2.2 DSMC Theory .. 5

2.3 Method Outline... 6

2.4 Implementation Issues .. 7

2.4.1 Grid Representation .. 8

2.4.2 Time Step Selection .. 9

2.4.3 Number of Molecules per Cell .. 10

2.4.4 Ratio of Real to Simulation Molecules ... 11

2.5 Griding Methods... 11

2.5.1 Discussion ... 17

3 Movement Algorithms 18
3.1 Introduction... 18

3.2 Alternate Methods .. 19

3.2.1 Physical Domain Methods .. 19

3.2.2 Computational Movement Methods.. 23

v

3.3 Computational Movement Algorithms... 23

3.3.1 Constant Time Step Subdivision Algorithm ... 24

3.3.2 Improved Time Step Subdivision Algorithm.. 26

3.3.3 Results ... 27

3.4 Hybrid Algorithm ... 29

3.4.1 Derivation.. 30

3.4.2 Robustness... 32

3.4.3 Simplifications .. 33

3.4.4 DSMC Movement Implementation... 33

3.4.5 Results ... 37

3.4.6 Extension to 3D Geometries ... 37

4 Program Structure 44
4.1 Introduction... 44

4.2 Physical Models.. 44

4.2.1 Collision Model... 44

4.2.2 Molecule-Surface Interactions .. 46

4.2.3 Boundary Models .. 46

4.2.4 Flowfield Initialisation .. 48

4.3 Grid Generation .. 48

4.3.1 Geometry Definition ... 48

4.3.2 Grid Generation... 50

4.4 Implementation ... 54

4.4.1 Simulation Configuration Parameters ... 54

4.4.2 Geometry Definition ... 54

4.4.3 Optimisations .. 54

4.4.4 Programming and Storage Issues .. 56

4.4.5 Solution Management ... 57

4.4.6 Flow Chart... 58

5 Solution Adaption 60
5.1 Introduction... 60

5.2 Grid Adaption ... 60

5.2.1 Adaption Methodology ... 61

5.2.2 Grid Resizing and Splitting... 64

5.2.3 Parameter Tuning .. 68

vi

5.2.4 Implementation ... 74

5.3 Ratio of Real to Simulation Molecule Adaption .. 74

5.3.1 Adjusting Grid blocks with an Excessive Number of Molecules per
Cell .. 77

5.4 Time Step Adaption.. 79

5.4.1 Base Algorithm ... 79

5.4.2 Implementation ... 81

5.5 Solution Adaption Implementation... 82

5.5.1 Molecule Injection .. 82

5.5.2 Steady Flow Problems... 83

5.5.3 Unsteady Flow Problems .. 85

6 Parallelisation 87
6.1 Introduction... 87

6.2 Physical Domain Decomposition Parallelisation.. 88

6.2.1 Domain Decomposition Algorithm... 90

6.2.2 Dynamic Domain Decomposition... 91

6.2.3 Total Node Computational Load... 94

6.2.4 Node Grid Structure .. 95

6.3 Parallel Statistically Independent Runs .. 96

6.4 Implementation ... 98

6.4.1 Sub-domains.. 99

6.4.2 Domain Decomposition .. 100

6.4.3 Solution Adaption ... 103

6.4.4 Parallel Libraries ... 105

7 Program Verification and Results 106
7.1 Introduction... 106

7.2 Program Verification .. 106

7.2.1 Collision Rate Test .. 106

7.2.2 Supersonic Leading-edge Test .. 108

7.3 Serial Results .. 112

7.3.1 Test Configuration .. 112

7.3.2 Subsonic Test Results ... 113

7.3.3 Supersonic Test Results .. 117

7.3.4 Conclusions ... 122

vii

7.4 Parallel Results ... 122

7.4.1 Cluster Description.. 122

7.4.2 Test Configuration .. 123

7.4.3 Results ... 123

7.4.4 Summary ... 128

8 Conclusion 129
8.1 Introduction... 129

8.2 Principle Contributions... 129

8.2.1 Efficient Molecule Movement .. 129

8.2.2 Multi-block Grid Adaption ... 130

8.2.3 Time Step Adaption .. 130

8.2.4 Parallelisation.. 130

8.3 Future Research .. 131

8.3.1 Domain Boundary Adaption ... 131

8.3.2 Domain Decomposition .. 131

8.3.3 Unsteady Flow Problems .. 132

8.4 Summary... 132

A Simulation Configuration Files 133
A.1 Parameter Configuration File ... 133

A.2 Geometry Definition File.. 134

Bibliography 139

viii

List of Figures
Figure 2.1 Serial DSMC flow chart... 8

Figure 2.2 Example of a regular rectangular grid.. 13

Figure 2.3 Example of an algebraic grid ... 13

Figure 2.4 Example of a variable resolution rectangular grid 14

Figure 2.5 Example of a body-fitted grid .. 15

Figure 2.6 Example of an unstructured grid .. 16

Figure 2.7 Example of a multi-block body-fitted grid .. 16

Figure 3.1 Types of molecule-surface interactions ... 18

Figure 3.2 Geometric cell location vector definitions ... 21

Figure 3.3 General transformation between physical body-fitted coordinates and
computational rectangular coordinates .. 24

Figure 3.4 Definition of cell boundary surface area vectors 25

Figure 3.5 Movement algorithm test grids .. 27

Figure 3.6 Mach No. contours of flow past a horizontal flat plate.............................. 28

Figure 3.7 Molecule movement error due to changes in cell aspect ratio and
‘skew’... 28

Figure 3.8 Geometry definition for an arbitrary quadrilateral cell 30

Figure 3.9 Geometry definition for an arbitrary hexahedral cell................................. 38

Figure 3.10 Geometry definition for an arbitrary tetrahedral cell 40

Figure 3.11 Subdivision of a hexahedra cell into six tetrahedral 42

Figure 4.1 Variable sub-cell search method .. 45

Figure 4.2 TFI grid with folding.. 51
Figure 4.3 Detail of TFI grid with folding .. 51

Figure 4.4 Grid smoothing results of folded TFI grid ... 53

Figure 4.5 Parallelm implementation optimised time step processing........................ 56

Figure 4.6 Full simulation flow chart .. 59

Figure 5.1 Grid split line calculation... 67

Figure 5.2 Split contour calculation .. 68

Figure 5.3 Grid adaption test case 1 flow field. .. 69

Figure 5.4 Grid adaption test case 1 adapted grids.. 71

Figure 5.5 Grid adaption test case 1, configuration B2 adapted flow field................. 71

Figure 5.6 Grid adaption test case 2 flow field ... 72

Figure 5.7 Grid adaption test case 2 adapted grids.. 73

ix

Figure 5.8 Grid adaption test case 2, configuration C1 adapted flow field................. 74

Figure 5.9 Grid adaption flow chart .. 76

Figure 5.10 Steady flow adaption solution procedure flow chart 86

Figure 6.1 Physical domain decomposition flow chart ... 89

Figure 6.2 Measured parallel efficiency of the PDD method ([19], Figure 17) 95

Figure 6.3 Extract of sub-domain grid movement flow chart 96

Figure 6.4 Parallel statically independent runs flow chart .. 97

Figure 6.5 Hybrid parallel flow chart .. 99

Figure 6.6 Domain decomposition test grids... 102

Figure 6.7 Domain decomposition test results .. 103

Figure 7.1 Supersonic leading-edge number density contours overlaying the
results from [7] Figure 14.7, Ma� = 4.0, T� = 300K, Kn = 0.0143,
n = 10-20 m3... 110

Figure 7.2 Supersonic leading-edge number density contours, Ma� = 4.0,
T� = 300K, Kn = 0.0143, n = 10-20 m3. .. 110

Figure 7.3 Supersonic leading-edge temperature number contours, Ma� = 4.0,
T� = 300K, Kn = 0.0143, n = 10-20 m3. .. 110

Figure 7.4 Supersonic leading-edge local Mach contours, Ma� = 4.0, T� = 300K,
Kn = 0.0143, n = 10-20 m3... 111

Figure 7.5 Supersonic leading-edge pressure coefficient, Ma� = 4.0, T� = 300K,
Kn = 0.0143, n = 10-20 m3... 111

Figure 7.6 Supersonic leading-edge skin friction coefficient, Ma� = 4.0,
T� = 300K, Kn = 0.0143, n = 10-20 m3. .. 111

Figure 7.7 Vertical flat plate static, unadapted grid .. 113

Figure 7.8 Local Mach number contours past a vertical flat plate, Ma� = 0.53,
T� = 300K, Kn = 0.043, n = 10-20 m3. .. 113

Figure 7.9 Number density contours past a vertical flat plate, Ma� = 0.53,
T� = 300K, Kn = 0.043, n = 10-20 m3. .. 114

Figure 7.10 Streamlines past a vertical flat plate, Ma� = 0.53, T� = 300K,
Kn = 0.043, n = 10-20 m3... 114

Figure 7.11 Adapted grid, Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3. 114

Figure 7.12 Adapted time step multiple, Ma� = 0.53, T� = 300K, Kn = 0.043,
n = 10-20 m3... 115

Figure 7.13 Ratio of average cell side length to local mean free path, Ma� = 0.53,
T� = 300K, Kn = 0.043, n = 10-20 m3. .. 115

Figure 7.14 Ratio of maximum collision separation to local mean free path,
Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3. 115

x

Figure 7.15 Static grid, ratio of average cell side length to local mean free path,
Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3. 116

Figure 7.16 Static grid, ratio of maximum collision separation to local mean free
path, Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3. 116

Figure 7.17 Local Mach number contours past a vertical flat plate, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3. .. 118

Figure 7.18 Temperature contours past a vertical flat plate, Ma� = 5.0, T� = 300K,
Kn = 0.043, n = 10-20 m3... 118

Figure 7.19 Number density contours past a vertical flat plate, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3. .. 118

Figure 7.20 Streamlines past a vertical flat plate, Ma� = 5.0, T� = 300K,
Kn = 0.043, n = 10-20 m3... 119

Figure 7.21 Adapted grid, Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3. 119

Figure 7.22 Adapted time step multiple, Ma� = 5.0, T� = 300K, Kn = 0.043,
n = 10-20 m3... 119

Figure 7.23 Ratio of average cell side length to local mean free path, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3. .. 120

Figure 7.24 Ratio of maximum collision separation to local mean free path,
Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3. 120

Figure 7.25 Static grid, ratio of average cell side length to local mean free path,
Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3. 120

Figure 7.26 Static grid, ratio of maximum collision separation to local mean free
path, Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3. 121

Figure 7.27 PDD and PSIR parallelisation results .. 124

Figure 7.28 Combined PDD and PSIR results .. 125

Figure 7.29 Performance of comdined PDD and PSIR method relative to PDD
method.. 126

Figure 7.30 PDD results with a constant number of molecules per node 127

List of Tables
Table 5.1 Grid adaption test case 1. ... 69

Table 5.2 Grid adaption test case 1 results... 70

Table 5.3 Grid adaption test case 2 .. 72

Table 5.4 Grid adaption test case 2 results... 73

Table 6.1 Domain decomposition test results .. 103

Table 7.1 Collision rate test gas species molecular properties................................. 107

Table 7.2 Ratio of simulated collision rate to theoretical value............................... 108

Table 7.3 PDD and PSIR parallelisation results .. 124

Table 7.4 Combined PDD and PSIR results .. 125

Table 7.5 PDD results with a constant number of molecules per node 126

xii

Nomenclature
a speed of sound
c molecule position vector, computational space
c � average molecule speed
cf skin friction coefficient
CP coefficient of pressure
d molecular diameter
FN ratio real to simulation molecules
lm cell side length

ml average cell side length

Ma Mach number
Nm number of molecules
k Boltzmann’s constant, 1.380658�10-23 JK-1

Kn Knudsen number
m molecule mass
mr reduced molecule mass
n number density
Ssf stream species, of species group, fraction
S cell boundary surface area vector
t time

mct average collision time
T temperature
v molecule velocity vector, physical space
Vc cell volume
x molecule position vector, physical space
x, y, z physical domain coordinates
�, �, � computational domain coordinates
� local mean free path
� collision frequency
� temperature exponent of the coefficient of viscosity

Subscripts
avg average
HS hard sphere molecule model
max maximum
min minimum
ref reference value
rem remainder
� freestream value

Chapter 1

Introduction

1.1 Background and Motivation

This thesis deals with the direct simulation Monte Carlo (DSMC) method of analysing

gas flows. The DSMC method was initially proposed as a method for predicting

rarefied flows where the Navier-Stokes equations are inaccurate and it has now been

extended to near continuum flows. The method models gas flows using simulation

molecules which represent a large number of real molecules in a probabilistic

simulation to solve the Boltzmann equation. Molecules are moved through a simulation

of physical space in a realistic manner that is directly coupled to physical time such that

unsteady flow characteristics can be modelled. Intermolecular collisions and molecule-

surface collisions are calculated using probabilistic, phenomenological models. The

fundamental assumption of the DSMC method is that the molecular movement and

collision phases can be decoupled over time periods that are smaller than the mean

collision time.

Two obstacles to the wide spread use of the DSMC method as an engineering tool are in

the areas of simulation configuration, which is the configuration of the simulation

parameters to provide a valid solution, and the time required to obtain a solution. For

complex problems1, the simulation will need to be run multiple times, with the

simulation configuration being modified between runs to provide an accurate solution

for the previous run’s results, until the solution converges. This task is time consuming

and requires the user to have a good understanding of the DSMC method. Furthermore,

the computational resources required by a DSMC simulation increase rapidly as the

simulation approaches the continuum regime. Similarly, the computational

requirements of three-dimensional problems are generally two orders of magnitude

1 The expression “complex problems” refers to problems that contain mixed subsonic and supersonic
flows, transition regimes, boundary layers, slip planes or chemically interacting flows.

1.2 Problem Summary 2

more than two-dimensional problems. These large computational requirements

significantly limit the range of problems that can be practically solved on an

engineering workstation or desktop computer.

While there are less computationally expensive alternative methods available for

solving near continuum flows, e.g. Navier-Stokes based programs, these methods do not

work well rarefaction effects are present. One example of where rarefaction effects are

significant is in the micro-electro-mechanical systems (MEMS) [53]. The design of

MEMS components requires the simulation of gas flows around microscale structures.

It is possible to adapt Navier-Stokes based solvers to solve these types of problems by

the use of special boundary conditions. However, this is a time consuming task that

requires a very high level of user knowledge, and is not applicable to a standard

engineering tool.

For a program to be a useful engineering tool, it should be simple to set up and run, and

provide accurate results in a timely manner. It should warn the user when results are

expected to be inaccurate and ideally, it should automatically adapt the program

parameters to obtain a more accurate solution. However, as Harvey and Gallis state in

their review of DSMC validation studies, [25], “writing and running a DSMC code is a

demanding task that requires considerable skill, care and experience.”. In the

comprehensive presentation of the DSMC method [7] Bird states "The objective is to

develop a code that requires only the specification of the boundaries ... and the flow

conditions. The program should itself generate the grid and, ideally it should adapt the

grid to its optimal form as the flow develops."

1.2 Problem Summary

The aim of this thesis is to develop a DSMC implementation that allows a non-expert

user to efficiently solve arbitrary problems with the DSMC method in both serial and

parallel environments.

1.3 Principle Contributions

This thesis addresses the issues related to the development of a parallel, solution

adaptive direct simulation Monte Carlo implementation. The principle contributions of

this thesis arise from the formulation of different solution adaption and parallelisation

1.3 Principle Contributions 3

algorithms. The integration of these algorithms into a single DSMC implementation

results in a significant improvement in performance. The contributions made are:

� A novel molecule movement algorithm is developed which allows the efficient

calculation of a molecule’s trajectory through an arbitrary quadrilateral grid. This

movement algorithm combines the simplicity and accuracy of calculating the

molecule movement in physical space with the simple cell indexing afforded by

tracking the molecules computational space position. The algorithm achieves this

by performing the molecule movement in physical space and then transforming the

molecule’s final position into computational space. The computational space

position is then used to determine the molecule’s new cell index and whether any

surface/boundary interactions took place over the molecule’s trajectory.

� A multi-block grid adaption algorithm is developed. Using the intermediate results

of the solution, the grid adaption algorithm calculates the number of cells and the

distribution required to ensure that the grid meets the DSMC cell size requirements.

The algorithm determines whether the distribution of cell size across a block would

be more efficiently represented by splitting the block into two or more blocks and

creating the required splits. Furthermore, the algorithm adjusts the ratio of real to

simulation molecules to ensure that the number of molecules per cell is sufficient to

ensure that the correct collision rate is maintained.

� A parallelised time step adaption algorithm is developed. This algorithm allows the

time step of each cell to be set to a locally optimal value while still maintaining the

ability to efficiently synchronise the solution process in a parallel implementation.

Additionally, the algorithm is formulated such that the calculation of a new time

step distribution is performed in parallel.

� Two different but complementary parallelisation methods are integrated. This

integration of complementary parallelisation methods allows the use of the optimal

parallel configuration for the available computational resources. Furthermore, the

parallel implementation allows the parallel distribution to be dynamically changed

to account for changes in the solution.

� An improved implementation of the stop-at-rise algorithm is developed. This

modified algorithm incorporates information relating to the total solution progress

1.4 Outline 4

with the current solution performance to more determine whether it is efficient to

perform a domain decomposition repartitioning.

1.4 Outline

Chapter 2 presents an outline of the direct simulation Monte Carlo method and

summarises the implementation issues that effect the accuracy and validity of the

method.

Chapter 3 presents an analysis of the different movement algorithms. A novel

movement algorithm is developed which allows the trajectory calculation of a molecule

through an arbitrary quadrilateral grid.

Chapter 4 details the program structure of the baseline serial implementation.

Chapter 5 develops the solution adaption procedures implemented to ensure that the

simulation is configured to meet the requirements for an accurate simulation.

Chapter 6 discusses two different parallelisation methods and details their integration

into the serial implementation.

Chapter 7 presents the verification and results of the direct simulation Monte Carlo

implementation developed in the previous chapters.

Finally, Chapter 8 presents conclusions and directions for future research.

Chapter 2

The Direct Simulation Monte Carlo

Method

2.1 Introduction

The direct simulation Monte Carlo (DSMC) method uses probabilistic simulation to

solve the Boltzmann equation. Bird states in [9] "The direct simulation of the physical

processes contrasts with the general philosophy of computational fluid dynamics which

is to obtain solutions of the mathematical equations that model the processes.". Initially

proposed as a method for predicting rarefied flows where the Naiver-Stokes (NS)

equations are inaccurate, [11], it has now been shown to be accurate in the continuum

regime, [2]. Currently the DSMC method has been applied to the solution of flows

ranging from estimation of the Space Shuttle re-entry aerodynamics, [42], to the

modelling micro-electro-mechanical systems (MEMS), [53].

2.2 DSMC Theory

The DSMC method models gas flows using simulation molecules2 that represent a large

number of real molecules. Molecules are moved through a simulation of physical space

in a realistic manner that is directly coupled to physical time such that unsteady flow

characteristics can be modelled. Intermolecular collisions and molecule-surface

collisions are calculated using probabilistic, phenomenological models. A grid is used

for associating molecules that are in close spatial proximity. Molecules in the same grid

cell are used as possible collision partners as well as for sampling molecules states to

calculate the macroscopic properties in the cell. The fundamental assumption of the

2 Note for brevity, the term “molecule” shall be used synonymously for the term “simulation molecule”
unless it is unclear from the context. Where a simulation molecule represents a number of real, physical
molecules in the DSMC simulation.

2.3 Method Outline 6

DSMC method is that the molecular movement and collision phases can be decoupled

over time periods that are smaller than the mean collision time.

The most comprehensive presentation of the DSMC method is given in Bird's

monograph "Molecular Gas Dynamics and the Direct Simulations of Gas Flows" [7].

This book is a sequel to Bird's first book on the subject "Molecular Gas Dynamics" [6]

that was published in 1976. This updated work details the theory and implementation of

the phenomenological approach upon which the DSMC method is based. The book

covers all areas of DSMC theory from the derivation of the underlying theory through

to example implementations of the method for the solution of three-dimensional

problems. Bird keeps a list of developments in DSMC theory that have occurred since

the publication of his book on his web site [10].

There are a number of published papers that review the current status of the DSMC

method, [3], [8], [25]. Results of validation studies are available in the following papers

[25], [43], [61].

2.3 Method Outline

The steps involved in a scalar DSMC simulation are:

1. Load the simulation configuration: Load, or input, the simulation configuration

parameters used to define the geometry, freestream conditions and initial flow state.

2. Initialise simulation: If the initial flow state is a uniform flow, then the simulation

domain is populated with molecules. Alternatively, if the simulation is restarting

from a previous saved state, then the saved molecule states are loaded.

3. Enter molecules through boundaries: All simulation boundaries that allow molecule

influx, ie. external freestream boundaries or jet boundaries, are processed to calculate

the number and state of molecules that enter during the time step.

4. Move all molecules: Each molecule is moved a distance equal to the sum of its

velocity and the time step. Any surface collisions detected during the molecules

movement are processed. The final cell location of each molecule is determined and

stored. Some DSMC implementations break out the process of determining the final

cell location into a separate step referred to as indexing.

2.4 Implementation Issues 7

5. Calculate molecule collisions: Each cell is processed to determine the number of

possible collisions that could take place in the time step. The number of possible

collision pairs is a function of the number of molecules in the cell, the average

number of molecules normally in the cell, the cell volume and the time step.

Collision pairs are chosen at random from the molecules in the cell. However, this

selection process is biased towards minimising the separation between molecules. A

collision is accepted or rejected based upon a probability proportional to the

molecules relative velocity and molecular properties. If a collision is accepted, then

the kinetic and internal energies of the molecules are redistributed.

6. Sample molecules: The state of all the molecules in the cell at the end of a time step

are sampled for the purpose of calculating cell macroscopic properties. Sampling is

generally not performed every time step to reduce the correlation between samples.

In addition, different sampling strategies are used for steady and unsteady flow

problems.

7. Increment simulation time: The simulation time is incremented by the time step.

8. Finished?: Repeat steps 3 through 6 until simulation has finished. This is either

when sufficient samples have been accumulated for a steady state simulations, or for

unsteady simulations when the required simulation time has been reached.

9. Save Results: Sampled macroscopic cell data is saved for post processing and

analysis. Additionally, the state of all the molecules can be saved to allow the

simulation to be resumed from its current condition.

This process is summarised in Figure 2.1.

2.4 Implementation Issues

There have been a number of papers published, [4], [21], [24], [46], that seek to

quantify the errors associated with the DSMC methods stochastic implementation of the

Boltzmann equation. A summary of the implementation issues that effect the accuracy

and validity of a DSMC solution is presented in the following section.

2.4 Implementation Issues 8

Start

Load simulation
 configuration

Initialise simulation

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Save Results

Stop

Finished?
No

Yes

Increment simulation
time

Figure 2.1 Serial DSMC flow chart

2.4.1 Grid Representation

The function of the grid in the DSMC method is to subdivide the flow field for the

purpose of molecule collision partner selection and macroscopic property sampling. To

guarantee a physically correct collision partner selection, the cell dimensions should be

less than the local mean free path, �. If distance between a pair of colliding molecules

is larger than �, then there would be a physically incorrect transfer of momentum and

energy.

It was shown in [4] that the cell size dependence of the transport coefficients truncation

error is proportional to the square of the cell size. For a hard sphere collision model, the

2.4 Implementation Issues 9

maximum transport coefficient error was proved to be 7.5% when the collision cells are

one mean free path wide. However, if collision partners are selected via sub-cell

sampling, then the condition of relating the cell size relative to the mean free path then

applies to the sub-cell size.

Additionally, to ensure that the sampled cell macroscopic properties are physically

representative of the underlying gas flow, the cell size should be no larger than �. For

rectangular cells, the longest dimension of a cell is between two opposite corners.

Therefore, for two-dimensions the cell side should be kept less than 2� and for

three-dimensions 3� . Furthermore, if the cell is skewed then the longest dimension

of a cell will be greater than a rectangle with the same cell side lengths. Therefore, if

the cell side length is kept to a maximum of 2� and 3� for two- and three-

dimensions respectively, then both the collision partner selection and macroscopic

sampling requirements will be satisfied for any cell shape.

A more detailed review of the different griding methods available is presented at the

end of this chapter in Section 2.5.

2.4.2 Time Step Selection

As discussed in Section 2.2, the simulation time step must be smaller than the local

mean collision time so that the movement and collision phases of the simulation can be

decoupled. The local mean collision time, mct , is defined as,

c
t mc

�
��
�

�

1 (2.1)

where,

� is the collision frequency, and

� is the local mean free path, and

c � is the average molecule speed.

It has been shown that the error in the transport coefficients are proportional to the

square of the time step, [21] and [24]. When the time step is equal to the local mean

collision time, the truncation error is approximately 5% [24].

2.4 Implementation Issues 10

Moreover, to allow the properties of a molecule to be included in the macroscopic

property sampling of a cell, it should take longer than one time step for the molecule to

traverse the cell. Therefore, the time step should be a small fraction of the local mean

collision time and calculated separately for each cell. Generally, the cell time step is

chosen to be between a quarter and a sixth of the local mean collision time, [9].

2.4.3 Number of Molecules per Cell

The number of molecules per cell, Nm, needs to be greater than 10, and preferably in the

order of 20-30, to ensure that a realistic collision rate is maintained, [7] p334, [17] &

[46]. Furthermore, keeping the same number of simulated molecules in each cell is

important because it allows the cell sampling to accumulate at the same rate and thus

have the same level of random noise [48].

The number of molecules in a cell is given by,

N

c
m F

nV
N � (2.2)

where,

n is the cell number density

Vc is the cell volume

FN is the ratio of real to simulation molecules (discussed in Section 2.4.4)

The minimum number of molecules required increases as the number of different

molecule species, or species groups, increases. This is required to avoid the distortion

of inter-species collision rates, [17]. The main reason the number of molecules per cell

is not set at an arbitrarily high value is due to computational resources, system memory

and storage space limitations; as well as the solution time increasing in proportion to the

total number of molecules.

Therefore, the desired average number of molecules in a cell can be calculated as a

function of the minimum species or species group fraction in the simulated freestream

gas,

� � �
�

�

�

�
�

�

�
� 20,2max

minsf
m S

N (2.3)

where,

2.5 Griding Methods 11

mN is the average number of molecules per cell, and

� �
minsfS is the minimum stream species, or species group3, fraction.

Unless the product nVc = constant, then Nm will vary through out the simulation grid.

Similarly, if the simulated physical flow causes the local concentrations of molecule

species to change, this will affect the local minimum species fraction.

2.4.4 Ratio of Real to Simulation Molecules

The ratio of the number of real molecules represented by a single simulation molecule,

FN, is used to control the total number of simulation molecules in the solution. The

discussion from the previous section implies that it is advantageous to have a variable

value of FN to ensure that there is sufficient number of each species of simulation

molecule. This approach is taken by a number of DSMC implementations, [19] & [46].

However, the use of variable FN for different regions of the simulation, or species, can

lead to random walks in the solution. This is because the molecular quantities are

conserved only on the average, and not exactly, ([7], p213). Therefore, a constant value

of FN is generally used for a simulation and its value is chosen either using Equation 2.3

or limited by the maximum number of simulation molecules that can be accommodated.

2.5 Griding Methods

As discussed in Section 2.4.1, the function of the grid in the DSMC method is to

subdivide the flow field for the purpose of molecule collision partner selection and

macroscopic property sampling. Based on this purpose for the grid, the DSMC method

has no requirement that cells be regular and/or orthogonal. Similarly, discontinuities

between grid regions do not degrade the method’s results. However, post-processing

software used to analyse the simulation results often has difficulty with grid

discontinuities, so it is desirable that they be kept to a minimum.

The choice of griding method has a direct affect on the utility and efficiency of the

DSMC implementation. Quoting from Bird in [7] p334,

3 Species groups are used to group gas species that have similar molecular masses. This will improve the
efficiency of the collision selection process without measurably decreasing its accuracy.

2.5 Griding Methods 12

"The ideal DSMC grid would:

a. have a high computational efficiency;

b. allow efficient definition of complex flow geometries;

c. be 'fitted' to any body and other significant flow boundaries;

d. have variable cell sizes related to the local gradients in the flow properties and to the

mean free path;

e. allow this size to adapt to local conditions as the flow develops; and

f. employ sub-cells for effective 'nearest neighbour' collision pair selection."

Point a in the above list refers to the efficiency of moving the molecules through the

grid. This task involves calculating the molecule’s final physical position, its relative

position in the grid and if a surface collisions occurred during the molecules movement.

This process is discussed in detail in the following chapter.

Point f relates to the ability of the grid to subdivide cells for the purpose of collision

partner selection. This ability is relatively independent of the grid scheme used, though

the difficulty of implementation varies between schemes. This point is covered in detail

in Section 4.2.1.1.

The remaining points, b-e, relate to the definition and structure of the grid scheme used.

The different categories of griding methods are summarised in the following sections.

i. Regular rectangular grid

This is the simplest of all griding schemes where cells are a constant size and aligned

with the orthogonal axes systems. While this grid allows for efficient molecule

movement it has significant shortcomings with respect to modelling surfaces and

adapting the grid.

Unless all external boundaries and internal objects are rectangular, surfaces will not

coincide with cell boundaries which complicates the process of calculating surface

interactions. More significantly, it is not possible to adapt the grid to local flow

properties. This means for flows that have significant density variations, which is all

but the simplest of flows, parts of the grid will be sub-optimal for the local flow

properties.

2.5 Griding Methods 13

The one area where regular rectangular grids are still used for non-trivial flow problems

is in the solution of unsteady, oscillatory flows. For this class of problems, it is

impractical to adapt the grid to the calculated flow density as it is continually changing.

Therefore, a fine uniform grid is generally used.

Figure 2.2 Example of a regular rectangular grid

ii. Algebraic grids

Algebraic grids extend the regular rectangular scheme by allowing the grid distribution

to be defined by an algebraic expression. It is a requirement that the algebraic

expression be uniquely and explicitly invertible. Moreover, this scheme is readily

adaptable to work in cylindrical or spherical coordinates.

While this scheme does offer some level of ability to adapt the grid, it is only applicable

to flows that have linear or circular objects on the boundary of the grid.

Figure 2.3 Example of an algebraic grid

2.5 Griding Methods 14

iii. Variable resolution rectangular grids

Variable resolution rectangular grids attempt to resolve the shortcoming of the regular

rectangular scheme with respect to the inability to adapt to the grid by subdividing

individual cells. There are two methods of implementing this scheme. In both

implementation methods, there is a top-level regular rectangular grid which generally

has square or cubic cells.

The first method has two levels of cell resolution. At the second level, each grid cell

can be subdivided into arbitrary an number of sub-cells that are equal in size. The

sizing of the second level grid cells is determined by the local flow conditions.

The second method has multiple levels of cell resolution. Each cell can be subdivided

into four or eight equal sized cells for two- and three-dimensions respectively. If an

individual subdivided cell is still too large, it is subdivided. This continues until the

required cell size is achieved. This method allows a finer, more adaptable grid than the

first method but has a higher overhead in grid maintenance.

An example of a DSMC implementation that uses the first method of a variable

resolution rectangular grid is presented in [37].

Figure 2.4 Example of a variable resolution rectangular grid

iv. Body-fitted grids

Body-fitted schemes use a non-regular grid that is fitted to the geometry of the external

boundaries and internal objects. This method allows arbitrary geometries to e

accommodated with no change to the underlying code. In addition, this scheme allows

the grid to be adapted by redistributing the grid points and/or changing the number of

cells in the grid.

2.5 Griding Methods 15

Examples of DSMC implementations that use body-fitted grids are presented in [52],

[59].

Figure 2.5 Example of a body-fitted grid

v. Unstructured grids

The regular rectangular, algebraic and body-fitted grid schemes are all structured

methods, ie. a two-dimensional grid is defined as a block of n � m cells. These

structured methods impose differing degrees of restrictions on the ability to adapt the

grid to the local flow conditions. This imposes the constraint that the resolution of the

grid in one area has an affect on other areas in the grid. Variable resolution grids

attempt to compensate for this by allowing adaption at the cell level.

Unstructured grids remove these constraints by only constraining the individual cells to

share sides. Unstructured grids generally use triangular or tetrahedral cells for two- and

three-dimensional problems respectively.

Surfaces are always on the edge/face of cells and the scheme is able to handle any

physically definable geometry. Grid adaption is performed by subdividing cells to

increase resolution, or fusing adjacent cells to decrease resolution.

The primary disadvantage of this scheme is the complexity of managing the grid. Each

cell edge/face needs to keep a list of which other cells it is linked too. This becomes

more complicated if the adaption scheme is allowed to split edges/faces on one side, ie.

if two cells share a common edge and one of the cells is split, then the un-split cell will

now have an edge composed of two segments. Grid adaption also causes inefficiencies

with the storage of the grid in the host computer’s memory. This is because the

properties of cells that are physically close may be stored in different sections of

memory which increases the time to access these properties.

2.5 Griding Methods 16

Examples of DSMC implementations that use unstructured grids are presented in [19],

[29], [34].

Figure 2.6 Example of an unstructured grid

vi. Multi-block grids

Any of the previous grid methods can be incorporated into a multi-block grid method.

This method subdivides the simulation region into sub-regions, or blocks, that are

grided separately. Structured grid schemes generally benefit most from being

implemented in a multi-block scheme. There is a small additional overhead in the

complexity of managing the grid, but this is generally outweighed by the improved

matching of the grid to the local flow conditions.

An example of a DSMC implementation that uses a multi-block grid is Bird’s G2 code,

[7] p337.

Figure 2.7 Example of a multi-block body-fitted grid

2.5 Griding Methods 17

2.5.1 Discussion

The griding schemes summarised above are now analysed with respect to points b-e

from Bird’s list of ideal DSMC grid qualities.

The regular rectangular and algebraic grid schemes do not allow the grid to be adapted

to the local flow conditions and therefore, do not meet the requirements of points d and

e.

The variable resolution rectangular grid scheme meets the requirements of adapting to

local flow conditions, points d and e. However, the requirements of accepting complex

flow geometries and being fitted to bodies and flow boundaries, points b and c, is

achieved in a inefficient manner. As the top-level grid is fixed to being rectangular,

internal bodies and external boundaries that are not rectangular cause regions of the grid

not to be used in the solution. Furthermore, additional grid management is required to

track where bodies and boundaries cut through cells.

Body-fitted grid schemes are by definition fitted to bodies and flow boundaries, point c.

However, to efficiently define complex geometries, point b, a multi-block scheme is

generally required. Furthermore, the scheme is well suited to adapting to the local flow

conditions, points d and e, especially if a multi-block scheme is used. This allows

individual block grid resolutions to be adjusted.

Unstructured grid schemes are in effect similar to body-fitted grid schemes, and meet all

of the requirements in Bird’s list. The main difference between the two schemes is that

the unstructured scheme allows finer control of the grid adaption. However, this is at

the cost of increased complexity of grid management [38].

3.1 Introduction 18

Chapter 3

Movement Algorithms

3.1 Introduction

The movement phase in a DSMC program has three primary functions:

1. Update the physical position of the molecule,

2. Calculate any molecule-surface collision, and

3. Determine the cell in which the molecule ended its movement in, and the relative

position of the molecule within that cell.

The final position of a molecule is calculated as the linear sum of the velocity

components multiplied by the time step. This simple calculation is complicated by the

need to determine if the molecule collided with a surface over the course of it

movement. For arbitrary surface geometries, the calculation of the molecule-surface

impact point can be difficult to calculate as the molecule may just graze the surface or

pass through the object, as depicted in Figure 3.1 below. Therefore, the molecule-

surface calculation cannot only consider the start and end points of the molecule, but

must analyse the entire trajectory.

Figure 3.1 Types of molecule-surface interactions

As discussed in Section 2.4.2, the ideal molecule time step should only allow the

average molecule to move a half to a third of the cell length, if the cell size is equal to

half the local mean free path length. Therefore, on average only a fraction of the

molecules will change cells or collided with a surface each time step. Additionally, the

significant majority of the molecules that do change cells will only move into an

adjacent cell. However, the movement algorithm needs to account for the infrequent

3.2 Alternate Methods 19

molecules that have a velocity significantly higher than the average. These molecules

may move across several cells in a single time step.

If it is determined that a molecule collides with a surface, the effects of the collision

needs to be calculated. This requires,

� determining the point where the molecule first intersects the surface,

� the properties of the surface at this point, ie. geometric gradient, surface type, surface

temperature, etc.,

� the time at which the collision occurs,

� adjusting the molecules velocity components to account for the collision dynamics,

and

� moving the molecule for the remainder of its time step after the molecule-surface

collision is calculated.

Determining the cell in which the molecule ends its movement is required so that the

molecule can be associated with other nearby molecules. This is required for

calculating the local macroscopic properties. The relative position of the molecule in

the cell is required so that it can be allocated to a sub-cell for the purpose of identifying

possible collision partners. See Section 4.2.1 for discussion of this requirement.

3.2 Alternate Methods

As discussed in Section 2.5 there are a number of different griding methods available to

describe a DSMC simulation. The choice of movement algorithm is significantly

influenced by the griding method used. There are two main methods used for

implementation of the movement phase, physical domain methods and computational

domain methods.

Both methods are widely used in DSMC programs, [7], [19], [35], [52] and in the

particle tracing community, [18], [26], [33].

3.2.1 Physical Domain Methods

The physical domain methods perform all the calculations of the molecule’s trajectory,

determination of any surface collisions, and final cell location in the physical domain.

3.2 Alternate Methods 20

For regular algebraic grids, all of the movement functions can be calculated using exact

closed form equations. However, as discussed in Section 2.5.i this griding method

substantially limits the complexity of the geometry able to be modelled. Regular grids

that allow surface objects to pass through a cell can model arbitrary geometries, but

require a more complex surface interaction method. The standard method is to perform

a “ray tracing” analysis of the molecule trajectory to determine if and where a surface

interaction occurred. Ray tracing methodologies are discussed in more detail below.

Non-regular grids, ie. body-fitted grids, offer a compromise between the above two

alternatives by allowing arbitrary geometries to be modelled while ensuring that all

surface boundaries are on cell edges. These methods require ray tracing calculations for

every molecule movement to determine whether it crossed a cell boundary.

Furthermore, there is an added computational burden associated with calculating the

relative location of the molecule endpoint in the cell.

3.2.1.1 Ray Tracing

The basic ray tracing algorithm is described below,

1. The molecule is moved through its full time step via the physical linear update

equation, the linear sum of the velocity components multiplied by the time step,

tttt ���
�

vxx 1 (3.1)

2. Calculate the distance to the intersection point between the ray defined by the start

and end points of the molecule, and each of the cell sides/faces.

3. Find the smallest intersection distance that is in the same direction as the molecule

movement ray.

4. Compare the intersection distance, from step 3, relative to the length of the ray. If

the intersection distance is smaller, the correct molecule end cell has been located

and the process is finished. Otherwise, if greater, the molecule passed through the

side/face, and is processed accordingly.

Internal Boundary: Update the molecule end cell index and repeat the procedure

from step 2.

External Boundary: Remove the molecule from the simulation.

3.2 Alternate Methods 21

Plane of Symmetry: Determine the fraction of the time step used to travel to the

intersection point. Update the molecule’s velocity components for the symmetry

interaction. Recalculate the molecule’s final position using Equation 3.1, the

molecule’s new velocity and the remaining portion of the time step. Repeat the

procedure from step 2.

Object Surface: Calculate the molecule impact point and remaining movement time

using the same process as the plane of symmetry case. Record the molecule surface

interaction. Update the molecule’s velocity components, and possibly the

remaining movement time, based upon the type of surface. Recalculate the

molecule’s final position using Equation 3.1, the molecules new velocity and the

remaining portion of the time step. Repeat the procedure from step 2.

The computational cost of the ray tracing method can be decreased by pre-calculating

and storing the cell edge gradients or surface normals.

3.2.1.2 Geometric Cell Location

Another method that has been proposed as alternative to using ray tracing to check

whether a molecule is inside a cell is presented in [18] and [19]. This method is based

upon vectorial analysis.

A (xA,yA)

B (xB,yB)

C (xC,yC)

D (xD,yD)

O (xO,yO)

P (xP,yP)

y

x
A (xA,yA)

B (xB,yB)

O (xO,yO)

P (xP,yP)

y

x

NAB

rO

rP

a. b.

Figure 3.2 Geometric cell location vector definitions

Figure 3.2a shows an arbitrary quadrilateral cell ABCD, reference point O that is the

centre of the cell and the molecule position P. If the point P is inside the cell, then it

3.2 Alternate Methods 22

will be on the same side of each cell edge as the point O. This property can be tested by

the following equation,

� �� �ABPABAB NrNr ���� 0 (3.2)

where Figure 3.2b shows the definition of the vectors.

If � � 0, then P is on the same side of each cell edge as the point O. By calculating

Equation 3.2 for all cell edges it can be determined whether the molecule position is

inside cell. Furthermore, if the molecule is not inside the cell, the side which has a

negative value of � indicates the cell to check next.

The computational cost of this method is more than the standard ray tracing method, but

can be improved by pre-calculating and storing the sign of the cell edge/surface

normals. If it is determined that the molecule crossed a plane of symmetry or object

surface during its movement then a ray tracing calculation is still required to determine

the edge/surface intersection point.

3.2.1.3 Calculation of Relative Cell Position

The relative position of the molecule in its cell is generally calculated using the iterative

Newton-Raphson method,

� �
� �n

n
nn F

F
c
c

cc
�

��
�1 (3.3)

where,

cn is the nth estimate of the computational position,

F(cn) is the difference between molecules physical location and the transformation

of cn into physical space, given by bilinear or trilinear interpolation for two-

and three-dimensions respectively,

F�(cn) is the derivative of F(cn) which corresponds to the Jacobian matrix of the cell.

The 1D division turns into the multiplication of the inverse of the 2D or 3D

Jacobian matrix.

An initial guess of the location of the molecule in computational space, c0, is made.

This guess can either be the molecules last computational position if the molecule did

not change cells, or the centre of the molecule’s new cell. Equation 3.3 is then iterated

until the difference between successive results reaches a pre-defined threshold. For the

3.3 Computational Movement Algorithms 23

purpose of relative cell location, the threshold is set as the inverse of twice the

maximum number of sub-cells in any direction.

Due to the large number of calculations required each iteration, this calculation is

computationally expensive.

3.2.2 Computational Movement Methods

The computational movement method tracks the molecules trajectory in computational

space. This allows for simple detection of molecule-surface collisions and the

calculation of the relative location of the molecule endpoint in the cell. However, this

comes at the expense of the calculation of the molecules trajectory which is no longer

linear in computational space. This method is discussed in more detail in the following

section.

3.3 Computational Movement Algorithms

The basic premise of a computational movement algorithm is that an arbitrary grid in

physical space can be transformed into a regular, unit square grid in computational

space. As a body-fitted grid can generally not be described in analytical terms, the

transformation from physical to computational space is defined separately for each cell

in the grid.

The general transformation for a two-dimensional region in physical space (x,y) to a

regular rectangular region in computational space (�,�) is given by,

� �
� �yx

yx
,
,

��

��

�

�

(3.4)

and illustrated in Figure 3.3.

The primary reference for the use of computational movement algorithms in DSMC

simulations is [52]. This method proposed by Shimada and Abe was to subdivide the

simulation time step into a number of smaller time steps, small enough to resolve the

molecule trajectory through a series of linear time integration steps. The time step

subdivision factor used was dependent on the molecules velocity and a small constant.

3.3 Computational Movement Algorithms 24

Figure 3.3 General transformation between physical body-fitted coordinates and
computational rectangular coordinates

A brief overview of the theory used in the computational movement algorithm,

developed by Shimada and Abe, is present below. The full derivation of the method is

given in [1] and [52].

3.3.1 Constant Time Step Subdivision Algorithm

Molecular movement is performed by transforming the physical velocity vector, q , into

the computational domain and integrating the equations of motion,

n
J

n
I

n
J

n

nn

n
J

n
I

n
I

n

nn

SS
qS

t

SS
qS

t

�

�
�

�

�
�

�

�
�

�

�
�

�

�

��
�

��
�

1

1

�

�

(3.5)

where, n
IS and n

JS are the interpolation of the cells boundary surface area vectors to the

point (n
� , n�). The cell boundary surface area vectors are defined in Figure 3.4 and can

be evaluated from the cell vertices,

� � � �

� � � � yjijixjijiJ

yjijixjijiI

exxeyyS

exxeyyS

ij

ij

,,1,,1

,1,,1,

�����

����

��

��

(3.6)

A first order interpolation scheme is used to evaluate these vectors at the point (n� , n�),

assuming �� = �� = 1,

� � � �

� � � �
jiji

jiji

J
n

J
nn

J

I
n

I
nn

I

SjSjS

SiSiS

,1,

,1,

1

1

�

�

�����

�����

��

��
(3.7)

3.3 Computational Movement Algorithms 25

j

j+1

i
i+1

�

�

SJ i,j

SI i+1,j

SJ i,j+1

SI i,j

Figure 3.4 Definition of cell boundary surface area vectors

The time step used in Equation 3.5 is the local time step, that is a fraction of the

simulation time step. The local time step is calculated as,

� �

�

�
�

�

�
�

�

�

��

�

�

�
��

�
��

�����

t

t

tttt r
n ,,min

(3.8)

where,

� = small constant

��, �� = computational grid spacing = 1

�� , �� = computational velocity components

�tr = remaining time in simulation time step

The velocity integration is repeated until the full simulation time step has been

completed, the molecule hits an object or leaves the simulation area. Molecule

object/boundary interactions are computationally trivial to determine since both

simulation boundaries and object surfaces correspond to lines of constant � or �.

Similarly, the identification of the cell in which the molecule is contained is determined

by finding the largest integers, (i,j) not larger than (�,�).

3.3 Computational Movement Algorithms 26

The small constant value, �, used in Equation 3.8, was determined empirically to be

0.05 ([52], p264). This value yielded good trajectory tracking through the severest grid

irregularities tested by the authors. However, this necessitates that all molecules are

moved with a time step subdivision that assumes that they moving through the worst

case cell.

3.3.2 Improved Time Step Subdivision Algorithm

The limitation of using a constant time step subdivision value can be reduced by making

the value a variable calculated for each cell based on the cell's 'skew' and relative size

[33]. This allows the use of the property that if the physical cell geometry is a

parallelogram, then the molecule’s transformed velocity vector is still a linear function.

In addition, a molecule needs to take smaller steps to accurately traverse a small cell,

conversely a larger step size can be used to traverse a large cell.

The skew of each cell is estimated as the product of the ratio of geometrically opposite

cell side lengths. The ratio of the opposite cell sides is arranged such that the longest

side of each pair is placed in the denominator. Using this formulation, a parallelogram

will have a skew factor of 1 and this value will decrease as the difference between the

cell sides grows.

The local time step is calculated as,

� �

�

�
�

�

�
�

�

�

��

�

�

�
��
�

�
��
�

�
�	�

�
��
�

�
��
�

�
�	�

���	�

2

4

1

3

2

4

1

3

,,min

l
l

l
l

t

l
l

l
l

t

tttt r
n

(3.9)

where,

�� = small constant

lm = cell side lengths, numbered circularly such that l1 > l3 and l2 > l4

To improve the efficiency of the local time step calculation, the cell skew factor is pre-

calculate for each cell when the grid is generated.

3.3 Computational Movement Algorithms 27

3.3.3 Results

Simulation test were conducted on a number of relatively simple grids, as shown in

Figure 3.5, to evaluate the relative performance of the standard and modified

algorithms.

a. b.

c. d.
Figure 3.5 Movement algorithm test grids

An 18% reduction in the total simulation move time was measured for the modified

algorithm relative to the standard algorithm. However, neither algorithm was

satisfactory for general use because the small constant value used in each algorithm had

to be determined empirically for each test case to achieve the best performance. A

uniformly very small value could be used, but this resulted in an increased movement

time for grids with a small amount of skew.

The tuning of the small constant values was done by starting with a large value and

reducing the value until there was no discontinuities in the results caused by changes in

grid geometry. Figure 3.6 illustrates the effects of using too large a value for the time

step subdivision constant.

3.3 Computational Movement Algorithms 28

Figure 3.6 Mach No. contours of flow past a horizontal flat plate

Figure 3.6 shows the Mach number contours for flow past a horizontal flat plate using

the grid defined in Figure 3.5a. The freestream conditions for this test are Ma� = 4 and

a Knudsen number of, Kn = 0.0143, referenced to the plate length (see Section 7.2.2).

The results of this test indicate that there is a weak standing shock at the leading edge of

the flat plate, which is incorrect for the test geometry. Figure 3.5a shows that there is a

significant reduction in the horizontal grid spacing around the leading edge of the plate

that corresponds to the location of weak standing shock. This erroneous flow feature is

an artefact of the movement algorithm which implicitly assumes that when a molecule

crosses a cell boundary the adjacent cell is an extrapolation of the current cell. Figure

3.7 graphically illustrates the effects of this assumption.

Computational Domain Physical Domain

Red lines are the correct physical molecule trajectory and blue lines are the computational estimate.

Figure 3.7 Molecule movement error due to changes in cell aspect ratio and
‘skew’

3.4 Hybrid Algorithm 29

In Figure 3.7, the red lines show the molecules true trajectory and the blue lines the

calculated trajectory. In the computational domain, each sub-time step moves the same

distance. However, when a molecule crosses a grid edge, and the new cell has a

different geometry, the portion of the molecules movement in the grid for that

remaining fraction of the sub-time step will have the incorrect trajectory. In the test

case shown in Figure 3.6, the majority of the molecules are moving from left to right

across the flow filed. When a molecule moves from the column of large cells to the left

of the leading edge of the flat plate and first enters the adjacent column of smaller cells,

the x velocity component will be effectively reduced. This effect is illustrated in Figure

3.7. The reduction of the molecules x velocity component artificially increases the

number density in this column of cells, which in turns changes the cell’s macroscopic

properties resulting in the weak standing shock.

To correct this error, the algorithm was changed to check whether a molecule entered a

new cell during a sub-time step. If a molecule was determined to cross a cell boundary,

the time and point at which it crossed into a new cell was calculated. The boundary

surface vectors (Equation 3.6) were calculated for the new cell and a new local time step

was calculated as well. The molecule was then propagated through the rest of its time

step.

This correction removed the artificial weak standing shock from the horizontal flat plate

test case. It also resulted in a small decrease in the total simulation movement time for

all the test cases. This was due to the small constant values, � and ��, being increased

slightly. However, this reduction was partially offset by the increased computational

burden of having to calculate all cell boundary crossing points.

A more significant advantage of the correction is that it allowed the small constant

value used in the improved algorithm, ��, to be fixed independently of the grid. A value

of �� = 0.2 was found to give good results for all test grids. However, the original

algorithm still required hand tuning for each grid to achieve the best performance.

3.4 Hybrid Algorithm

An alternative movement algorithm was developed to overcome the problem of non-

linear molecule movement in computational space while retaining the simple cell

indexing afforded by tracking the molecules computational space position. The

3.4 Hybrid Algorithm 30

algorithm achieves this by performing the molecule movement in physical space and

then transforming the molecule’s final position into computation space. The

computation space position is then used to determine the molecules new cell index and

whether any surface/boundary interactions took place over the molecule’s trajectory.

3.4.1 Derivation

The physical to computation space transformation function was derived by inverting the

computation to physical space transformation. For two-dimensions, bilinear

interpolation is used to transform the computation coordinates of an arbitrary

quadrilateral cell to physical space,

� � � �� �� � � �� ��������� CDBAP xxxxx ������� 111, (3.10)

y

x

P(�,�)

A
B

C
D

�

�

Figure 3.8 Geometry definition for an arbitrary quadrilateral cell

Since the transformation is only dependent on a single cells geometry, a local

coordinate system can be used. For the purpose of this derivation, the point A is used as

the cells origin. Rearranging Equation 3.10 to group the computational space

coordinates and referencing the cell vertices with respect to the cell origin,

� �

� �����

����

DBCDBP

DBCDBP

yyyyyy
xxxxxx

�����

�����

(3.11)

where,

xi and yi are the distances parallel to the x and y axes respectively from the cell
origin, point A, to the point i.

3.4 Hybrid Algorithm 31

The solution can be seen to be of the form,

����

����

fedy
cbax

P

P

���

���

(3.12)

Now, solving Equation 3.12 for � and �,

� �
� �

�

�
�

�

fe
dy

AB

AB
B
C

AB
A

ACBBB

B
ACBBB

C

P

�

�
�

�
�
�
�

�

��
�
�

�

�

��

��
�

	

�

��

�
��

�

�

0,0,undefined

0,0,

0,0,
2

4sign

0,
4sign

2

2

2

(3.13)

where,

PP

PP

exbyC
xfcybdaeB

cdafA

��

����

��

Equation 3.13 is defined for all A, B, C; except for when A 	 B = 0. This exception can

be countered by solving for � first, which gives the following equation,

� �
� �

�

�
�

�

fd
ey

ABundefined

AB
B
C

AB
A

CABBB

B
CABBB

C

P

�

�
�

�
�
�
�

�

��
�
�

�

�

����

��	�
�

��

���
��

�������

��
�������

��

�

0,0,

0,0,

0,0,
2

4sign

0,
4sign

2

2

2

(3.14)

where,

PP

PP

dxayC
xfcyaebdB

cebfA

���

�����

���

Similarly, Equation 3.14 is defined for all A�, B�, C�; except for when A� 	 B� = 0.

3.4 Hybrid Algorithm 32

3.4.2 Robustness

3.4.2.1 Internal Points

Both Equations 3.13 and 3.14 will exactly calculate the computational coordinates of P

for a valid quadrilateral cell geometry, except for the special case where A 	 B = 0 and

A� 	 B� = 0. A valid quadrilateral cell geometry is one where all internal angles are less

than or equal to 180° and no edge crosses another. For a valid geometry, the solution

from the algorithm is unique and reversible, ie. substituting the calculated result into

Equation 3.12 will yield the original point to within calculation accuracy.

This special case where A 	 B = 0 and A� 	 B� = 0 corresponds to a physical cell

geometry that is a rectangle aligned with the x and y axes. This physical cell geometry

can be easily detected and the solution then becomes a trivial linear interpolation.

The algorithm will yield a correct solution for the two special cases where the cell

geometry is equivalent to a triangle,

i. one side has a length of zero, or

ii. two abutting sides are collinear.

3.4.2.2 External Points

If P is located outside of the cell, then the transformation will calculate the

computational coordinates based on an extrapolation of the current cell geometry. This

solution is still accurate, except when P is in a region where the extrapolated grid is

folded. The boundary of this region is defined by the turning point of the gradient of

the discriminate from either Equation 3.13 (B2 - 4AC) or Equation 3.14 (B�2 - 4A�C�).

It is not possible to calculate the gradient of the discriminate without first knowing the

computational coordinates. However, this case is very rare and generally only occurs

when a molecule is moving an order of magnitude faster than the average molecule

velocity and the cell is highly skewed. The movement algorithm presented in Section

3.4.4 is robust enough to handle these cases and it generally results in only one extra

iteration of the cell location calculation.

The point where opposing cell edges that are not parallel intersect is undefined in

computational space. If the point being transformed is found to be at an edge

3.4 Hybrid Algorithm 33

intersection point, the physical position used in the transformation equation is shifted by

a small amount to move it off the intersection point and allow a solution to be found.

It was found that the best accuracy for the calculation of the computational position of a

point located outside of the reference cell is achieved if,

i. the local origin used is not one of the end points of the cell’s shortest edge, and

ii. if the shortest edge is parallel to the �-axis then Equation 3.13 is used,
conversely if the shortest edge is parallel to the �-axis Equation 3.14 is used, and

iii. if the cross product of the two edges connected to the local origin is negative and
(A,A�
� 0), then the sign of (B,B�) is in effect swapped for the purpose of
selection which form of the quadratic equation to solve.

3.4.3 Simplifications

The solutions of the transformation algorithm presented in Equations 3.13 and 3.14 can

be simplified if one or both of the pairs of opposing cell edges are parallel to the x or y

axes. Starting with the definition of the computational to physical transformation

presented in Equation 3.11, the calculation of the computational coordinates can be

simplified for special cell geometries,

B

P

D

P

B

P

D

P

x
xyBCAD

x
xyCDAB

y
y

xBCAD

y
y

xCDAB

��

��

��

��

�

�

�

�

(3.15)

3.4.4 DSMC Movement Implementation

3.4.4.1 Cell Initialisation

After the grid for a simulation has been generated, a number of cell geometry constants

are calculated to improve the efficiency of the movement algorithm. Specifically, the

constants are,

1. Local cell origin (§3.4.2.2.i)

2. Transformation equation (§3.4.2.2.ii)

3.4 Hybrid Algorithm 34

3. Sign of the cross product of the two edges connected to the local origin

(§3.4.2.2.iii)

4. Whether any of the pairs of opposing cell edges are parallel to the x or y axes

(§3.4.3)

This set of pre-calculated constants can be represented by seven flags that are packed

into a single byte. Therefore, there is only a very small penalty for the storage of the

constants with each cell.

3.4.4.2 Molecule Movement

The method implemented to update the position of a molecule during its movement

phase is present below.

1. The molecule is moved through its full time step via the physical linear update

equation, Equation 3.1

2. Calculate the molecules position in computational space relative to the starting cell.

The pre-calculated cell constants discussed in the previous section are used to

determine:

i. which cell vertice to use as the local origin,

ii. which computational coordinate to calculate first, Equations 3.13 or 3.14, and

iii. if a simplified form of the algorithm can be used, Equation 3.15;

3. If the calculated values of (�,�) are in the domain (0 � �,� < 1), then the molecule

stayed in its starting cell and no further processing is required.

4. Calculate index of next cell to check,

if (� < 0)
i = i – 1

else if (�
� 1)
i = i + 1
 (3.16)

if (� < 0)
j = j – 1

else if (�
� 1)
j = j + 1

5. Check whether cell edge crosses corresponds to an internal boundary, external

boundary, plane of symmetry or object surface; and process accordingly.

3.4 Hybrid Algorithm 35

Internal Boundary: Check whether new cell estimate is oscillating between two

values. If it is not, repeat the procedure from step 1 with updated cell estimate.

Otherwise, cell oscillation only occurs if both the calculated values of (�,�) are

outside the domain (0 � �,� < 1). Therefore, update the cell index that corresponds

to the estimated computational position that is furthermost from the valid domain.

Repeat the procedure from step 1.

External Boundary: Remove the molecule from the simulation.

Plane of Symmetry: Calculate the intersection point of the molecule trajectory and

the cell edge. Determine the fraction of the time step used to travel to the

intersection point. Update the molecule’s velocity components for the symmetry

interaction. Recalculate the molecule’s final position using Equation 3.1, the

molecules new velocity and the remaining portion of the time step.

Object Surface: Calculate the molecule impact point and remaining movement time

using the same process as the plane of symmetry case. Record the molecule surface

interaction. Update the molecules velocity components, and possibly the remaining

movement time, based upon the type of surface. Recalculate the molecule’s final

position using Equation 3.1, the molecules new velocity and the remaining portion

of the time step.

6. Repeat the procedure from step 1.

As discussed in Section 3.1, for a correctly configured simulation time step, on average

only a quarter of the molecules will move to a new cell each time step. Therefore,

three-quarters of the molecules will only require a single calculation of the physical to

computational space transformation. For the remaining quarter that change cells, the

vast majority of these will only need two calculations of the physical to computational

space transformation to determine the molecule’s final cell. The remaining few

molecules that require more than two transformations have a significantly higher than

average velocity and/or are in a region of small, skewed cells.

3.4.4.2.1 Numerical Issues

The movement calculations are performed using double precision variables, while the

molecules physical and computational space positions are stored in single precision

variables. Therefore, caution needs to be exercised to ensure that rounding does not

3.4 Hybrid Algorithm 36

cause the stored position to “move” the molecule into a new cell if its final position is

very close to a cell edge.

The movement algorithm is structured such that all the molecules starting in the same

cell are processed together. This allows some of the cell dependent values, ie. the

location of the cell corners relative the local origin, to be calculate once for the cell and

only updated if the molecule moves to a new cell.

3.4.4.3 General Point Location Algorithm

The implementation presented above is efficient for the case where the molecule is

generally located in the same cell as it was the previous time step. However, if it is

required to calculate the computational position of a point in the grid where no prior

information is available, ie. after a grid adaption, then a large number of inverse

transformations may need to be calculated. To reduce this computational burden, a

simple search algorithm is used to first identify which cell the molecule is most likely

in. Then the cell update algorithm derived in the previous section is used to correctly

identify the cell and calculate the computational position.

The search algorithm used “walks” along the grids rows and columns until the closest

cell corner point is found, and is as follows,

1. Specify a starting cell for the search. This could be the result of the last search if

successive molecule positions are related, or more generally the centre of the

grid.

2. Use a bisection followed by a hunt search algorithm to search along the current

grid row to find the nearest bottom/left cell corner to the molecule.

3. Repeat step 2 but search along the grid column.

4. Repeat steps 2 and 3 until the estimated cell does not change between successive

passes, or the estimated cell gets into a repetitive loop.

This algorithm will correctly estimate the molecules cell the majority of the time, and at

most will be one cell incorrect for highly distorted grids.

3.4 Hybrid Algorithm 37

3.4.5 Results

The performance of the Hybrid Movement Algorithm (HMA) was compared to the

improved computational movement algorithm (ICMA) present in Section 3.3. This

comparison was performed using the same test cases as defined in Section 3.3.3.

It was found that HMA was always faster than the ICMA. On average, the HMA

achieved a 23% reduction in total simulation move time relative to the ICMA. The

largest improvement in total simulation move time was achieved for case C which was

50%. This significant improvement for case C was due to the nature of the grid that

contained regions of rectangular cells as well as regions of small, highly skewed cells

around the aerofoil leading edge. In the regions of rectangular cells, the HMA was able

to use a simplified physical to computational transformation algorithm that decreases

the movement time. Conversely, in the regions of small, highly skewed cells the ICMA

decreased the local cell time step, to ensure accurate tracking of the molecule through

the cell, and thus increased the movement time.

Additionally, the HMA will always give the exact molecule movement trajectory

independent of the time step used. This is an important result as it allows a large

simulation time step to be used without compromising the molecule’s trajectory. The

utility of increasing the simulation time step above the local mean collision time is

discussed in Section 5.5.2.2.

Therefore, for any arbitrary structured two-dimensional grid, the physical movement

algorithm is faster and more accurate than the improved computational movement

algorithm.

3.4.6 Extension to 3D Geometries

For three-dimensions, the transformation from computation to physical space is defined

by the trilinear interpolation function.

For an arbitrary hexahedral cell, as defined in Figure 3.9, the trilinear interpolation

function is,

� � � �� �� � � �� �� �� �

� �� �� � � �� �� ��������

����������

GHFE

CDBAP

xxxx
xxxxx

������

���������

111
1111,,

(3.17)

3.4 Hybrid Algorithm 38

x

y

z
A B

CD

E F

G
H

P(�,�,�)

�

�

�

Figure 3.9 Geometry definition for an arbitrary hexahedral cell

A closed form solution to the inversion of this transformation is not possible for an

arbitrary hexahedral cell.

Using the Newton-Raphson method, an iterative numerical method, it is possible to

estimate the computational space coordinates that provide a solution to the inverse

transformation for an arbitrary hexahedral cell. However, these solution methods are

quite computationally expensive and therefore relatively slow compared to an exact

solution [31].

3.4.6.1 Special Case

A close form solution is possible for the special case where two of the opposing faces of

the cell are parallel to one of the coordinate frames orthogonal planes. This form of grid

still allows arbitrary and complex geometries to be modelled without the need to

customise the program to the problem. The grid is not constrained to ensure that the

four hexahedral faces, between the two parallel faces, are planer which simplifies the

grid generation.

3.4.6.1.1 Derivation

For the purpose of deriving the solution to the inverse transformation, it is assumed that

the faces ABCD and EFGH , as defined in Figure 3.9, are parallel to the XY plane of

the coordinate frame. The solution method is the same for any two opposing faces

3.4 Hybrid Algorithm 39

parallel to one of the coordinate frames orthogonal planes, with the only difference

being the order of solution.

Using point A as the origin, the solution for is given by,

AE

AP

zz
zz

�

�

�� (3.18)

Using this result, the plane that passes through the point P and is parallel to the XY plane

of the coordinate frame can be calculated by linear interpolation,

EFGHABCDIJKL �� ���)1((3.19)

The coordinates of the plane IJKL can then be used to solve for � and � by using the 2D

algorithm presented in Section 3.4.1.

3.4.6.1.2 Implementation

The only limitation of this grid is that the thickness of cells between adjacent planes in

the grid is constant. However, the thickness of cell planes can vary and be adapted to

the local flow conditions. Additionally, the majority of all local flow phenomena can be

considered 2D. This form of grid is well suited to a multi-block configuration.

The DSMC movement implementation is the same as presented in Section 3.4.4 except

for the extra checks required for the additional molecule dimension. The algorithm first

checks whether the molecule has moved between grid planes, as it known that two of

the cell faces are parallel to the XY plane. The algorithm then follows the 2D cell

update method detailed in Section 3.4.4.2.

3.4.6.2 General Case

For a grid where the constraint of having two opposing faces parallel to one of the

coordinate frames orthogonal planes is not possible, there is an alternative method

available. Instead of solving the physical to computational space transformation for the

hexahedral, Equation 3.17, the hexahedral cell is subdivided into tetrahedra. For an

arbitrary tetrahedra it is possible to calculate the closed form solution of the physical to

computational space transformation.

3.4 Hybrid Algorithm 40

3.4.6.2.1 Derivation

The derivation of the physical to computational space transformation for an arbitrary

tetrahedral is derived in [32] and is summarised here.

�

�

�

x

y

z

A

B

C

D

P(�,�,�)
A

B

C

D

Figure 3.10 Geometry definition for an arbitrary tetrahedral cell

The transformation from computational to physical space is given by

���

���

���

DCBP

DCBP

DCBP

zzzz
yyyy
xxxx

���

���

���

(3.20)

where,

xi, yi and zi are the distances parallel to the x, y and z axes respectively from the cell

origin, corner A, to the point i.

As the transformation equation is a linear sum of the computational space coordinates, it

can be directly inverted. Rearranging Equation 3.20 into matrix form gives,

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�

�

�

DCB

DCB

DCB

P

P

P

zzz
yyy
xxx

z
y
x

(3.21)

This matrix equation can be solved by pre-multiplying both sides of the equation by the

inverse of the 3x3 matrix on the right side. This results in the following equation

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

P

P

P

z
y
x

aaa
aaa
aaa

V
333231

232221

1312111

�

�

�

(3.22)

where,

3.4 Hybrid Algorithm 41

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � � � �BBCBDDBBDCCDDCB

CBBBCB

DBBD

DCDDDC

BCBCBB

BDDB

DDCDCD

CBBBCB

DBBD

DCDDDC

zyzyxzyzyxzyzyxV
yyxyxxa

yxyxa
yyxyxxa
zxxzzxa

zxzxa
zxxzzxa

zzyzyya
zyzya

zzyzyya

������

����

��

����

����

��

����

����

��

����

33

23

13

32

22

12

31

21

11

The constant V is the determinant of the 3x3 matrix from Equation 3.21 and is

equivalent to 6 times the volume of the tetrahedral.

3.4.6.2.2 Cell Subdivision

Firstly, each hexahedral cell needs to be subdivided into tetrahedra. Using only the

cells corner points, it is possible to subdivide a hexahedral cell into either five or six

tetrahedron. The six-tetrahedron scheme is preferred as the five-tetrahedron scheme can

break down for very thin tetrahedra ([7], p. 390). The subdivision of a hexahedral cell

into six tetrahedral is shown in Figure 3.11 below.

It is possible to subdivide a hexahedral cell into six tetrahedra in 12 different ways. As

the faces of the hexahedral cell are usually non-planar, it is a requirement that adjacent

cell faces have matching diagonals to prevent gaps. This is achieved by alternating

between the two subdivision solutions that meet this requirement. Figure 3.11 shows

pair of matching subdivision solutions.

The correct subdivision solution for each cell is determined by the summation of the

cell’s three global grid indices. When the sum is odd, solution A is used and conversely

when the sum is even, solution B is used. As only the cell corner points are used, no

extra information storage is required to define the hexahedral subdivision.

3.4 Hybrid Algorithm 42

a. Solution A

b. Solution B

Figure 3.11 Subdivision of a hexahedra cell into six tetrahedral

3.4.6.2.3 Cell Update

Initially the computational coordinates of the molecule is calculated by using Equation

3.22, assuming the molecule did not change cells during the movement time step. This

assumption is verified by using the calculated computational coordinates and he

following four conditions,

01
0
0
0

����

�

�

�

���

�

�

�

(3.23)

3.4 Hybrid Algorithm 43

If any of these conditions are violated, then the molecule moved out of it’s starting cell

during its movement. If only one condition is violated, the molecule crossed the face

associated with that condition and the adjacent tetrahedron is checked. Where the

conditions �,�,� � 0 correspond to the faces of the tetrahedron that are on the defining

hexahedral cell, and the condition 1-�-�-� > 0 corresponds to the internal diagonal face.

If more than one condition is violated, then the condition that is violated by the largest

margin is used to determine which tetrahedron to check next.

The remainder of the cell update method follows the 2D method outlined in Section

3.4.4.2.

3.4.6.3 Discussion

One disadvantage of the general 3D method is that an average molecule will change

tetrahedra almost every time step. Additionally, as the “thickness” of tetrahedra is small

near the verticies, then a molecule that passes near a vertice is likely to cross a number

of tetrahedra in a single time step. This means that generally at least two physical to

computational space transformations are required per molecule each movement time

step. In contrast the Special Case method, Section 3.4.6.1, should only have a molecule

change cells every fourth time step.

Chapter 4

Program Structure

4.1 Introduction

Based upon the analysis and results presented in the previous two chapters it was

decided that the grid structure used for this thesis would be a multi-block body-fitted

grid and the hybrid movement algorithm derived in Section 3.4 would be used. The

version of the program developed for this thesis was for two-dimensional problems

only. However, the program has been structured such that it can be readily extended to

three-dimensions.

4.2 Physical Models

The physical models implemented in this thesis primarily follows the theory presented

by Bird in his monograph [7]. Details of the theory implementation are only presented

when it is in variance with this reference. The reader is directed to this reference for full

details of the underlying theory.

4.2.1 Collision Model

By default the Variable Hard Sphere (VHS) model is employed for the purpose of

calculating molecule collision dynamics. In addition, the user may chose to use the

Variable Soft Sphere (VSS) model. All gas properties are defined independently for

each species and cross-collision parameters can be specified if the VSS model is used.

For the purpose of collision partner selection, each gas species can be treated

individually or associated with other species in a species group.

The No Time Counter (NTC) method is used to calculate the number of possible

collisions per cell and the probability of these collisions being processed. The

maximum value of the product of the collision cross-section, �T, and the relative

4.2 Physical Models 45

velocity, cr, is stored separately for each species group collision pair and is updated after

each collision if required.

4.2.1.1 Variable Sub-cells

To minimise the separation between molecule collision pairs, a variable number of sub-

cells are used in each grid cell. The number of sub-cells is chosen such that the ratio

between the number of sub-cells and the number of molecules is between 0.5 – 1.0. The

number of sub-cells along the � and � directions is different by at most one sub-cell,

with the larger number of sub-cells being assigned based upon the cell aspect ratio. All

sub-cells are of equal size in the computational domain, and molecules are assigned to

sub-cells based upon their relative position in the cell.

After a collision between two different species groups has been selected to be evaluated,

the molecule from the first species group is randomly selected from the list of

appropriate molecules in the cell. If a molecule of the second species group is not in the

same sub-cell as the first molecule, a spiral search through the other sub-cells is

conducted until the first molecule of the second species group is found. The starting

step direction and spiral direction of rotation is chosen randomly and the process is

illustrated in the Figure 4.1.

1

2 3

4

57 6

8

9

10 11 12 13

14

15

16

1718192021

22

23

24

25

30

29

28

27

26

Figure 4.1 Variable sub-cell search method

4.2.1.2 Rotational Relaxation Model

The program allows the user to enable the simulation of internal rotational energy for

diatomic and polyatomic molecules. The Larsen-Borgnakke phenomenological model

4.2 Physical Models 46

[13] is implemented to model the rotational relaxation in inelastic collisions. A constant

value or a second order polynomial with respect to local total temperature can be used

to specify the rotational relaxation collision number, Zr.

4.2.2 Molecule-Surface Interactions

For the simulation of molecule-surface interactions, the program includes the

Maxwellian models and the Cercignani-Lampis-Lord (CLL) model. The Maxwellian

model implementation allows the user to select either a specular surface or a diffuse

surface with complete temperature accommodation. The CLL model implementation

allows the normal energy, rotational energy and tangential momentum accommodation

coefficients to be specified independently.

4.2.3 Boundary Models

The user is able to assign different models to internal and external boundaries. The

available boundary models are,

� Vacuum: No molecule inflow. Molecules exiting through the boundary are removed

from the simulation. Molecule-boundary collision properties are not sampled.

� Freestream: Molecule inflow is freestream gas properties. Molecules exiting

through the boundary are removed from the simulation. Molecule-boundary

collision properties are not sampled.

� Symmetry: Perfectly elastic collision surface. Molecule-boundary collision

properties are not sampled.

� Object: Uses one of the defined gas-surface interaction models from Section 4.2.2.

Molecule-boundary collision properties are sampled for post-processing. Each

surface is independently assigned a temperature and three velocity components. The

surface velocity components are vectorially added to the molecules post-collision

velocity.

� Jet: Molecule inflow that has independently defined gas properties. Molecules

exiting through the boundary are removed from the simulation. Molecule-boundary

collision properties are not sampled.

4.2 Physical Models 47

� Internal: Molecule crossing is uninhibited and molecule-boundary collision

properties are not sampled. This model cannot be used for an external boundary.

The user is able to associate any of the boundary models with either an internal or

external boundary, except the internal model. However, it is the responsibility of the

user to ensure that selected configuration is physically realistic.

4.2.3.1 Molecule Injection

Freestream or jet boundaries have molecule inflow. The number of molecules entering

through a boundary segment per unit length and time, the inward number flux, iN� , is

given by,

� � � �� �� �
��

����

2

coserf1cos
2cos

,

ssen
N

s
p

pi

��

�

�

� (4.1)

where,

piN ,
� is the inward number flux of gas species p,

np is the inflow stream number density of gas species p,

s is the molecular speed ratio, = co�,

� is the angle between the inflow stream and the edge surface normal,

� is the inverse of the most probable molecular thermal speed

co is the inflow stream velocity, and

erf is the error function, � � xea
a

x d2erf
0

2

�
�

�

�

The total number of molecules of gas species p that enter a cell side per time step is

given by,

 pipipi RtlNN ,,, ����� � (4.2)

where,

piN , is the number of molecules of gas species p entering the cell,

l is the cell side length on the inflow boundary,

�t is the cell time step, and

Ri,p is the remainder from the previous inflow calculation.

4.3 Grid Generation 48

As the result of Equation 4.2 is normally not an integer value and only an integer

number molecules can enter a cell side per time step, the actual number of molecules

that enter is the truncated result of Equation 4.2, � �piN , . The remainder from the

truncation is given by,

 � �pipipi NNR ,,, �� (4.3)

4.2.4 Flowfield Initialisation

When a new simulation problem is started, the user has the option of starting the

simulation as a vacuum state or populated with molecules that are at the freestream

state. If the simulation is initiated to the freestream state, the number of molecules

starting in each cell is given by,

N

cp
pm F

Vn
N �, (4.4)

where,

Nm,p is the number of molecules of gas species p in the cell,

np is the inflow stream number density of gas species p,

Vc is the cell volume, and

FN is the ratio of real to simulation molecules.

4.3 Grid Generation

A multi-block, body-fitted structured grid is used to define the physical domain used in

the simulation problems. Each grid block is composed of arbitrary quadrilateral cells

and the cell spacing can be discontinuous at inter-block boundaries. This grid structure

was chosen based upon the results of the analysis presented in Chapter 3.

4.3.1 Geometry Definition

The geometric definition of the external boundaries and internal objects are constructed

from simple geometric segments. One or more segments are joined to make an edge,

four edges are coupled to make a grid block and one or more grid blocks are linked to

define the simulation domain. The requirements and constraints of each step of this

process is detailed in the following sections.

4.3 Grid Generation 49

4.3.1.1 Geometric Segments

The available geometric segments are lines, arcs, elliptic segments and cubic splines.

The information required to define each of the geometric segments is,

Line Segment: Start and end points.

Arc Segment: Start, end and centre points.

Elliptic Segment: Start, end and centre points; major and minor axis lengths; and the

angular orientation of the major axis with respect to the x-axis.

Cubic-spline Segment: An array of control points and the start and end gradient of the

spline.

It is a requirement that all geometric segments are monotonic in either the x- or y-axis.

This requirement is not a severe limitation as a surface that is not monotonic can be

defined by two contiguous segments that are monotonic.

When a geometric segment is created, it is associated with one of the boundary models

defined in Section 4.2.3. In addition, extra properties of the boundary model, i.e.

temperature and velocity, are defined at the same time.

4.3.1.2 Grid Edges

A grid edge is a set of geometric segments that form a contiguous contour. When a grid

edge is created, its primary orientation, either the x- or y-axis, is recorded. This

information is used for the purpose of determining whether the edge forms a � and �

grid boundary. Furthermore, it is a requirement that all the geometric segments in a grid

edge are monotonic in the edge’s primary orientation.

4.3.1.3 Grid Blocks

By definition, a grid block cannot have any edges inside its boundary. The boundary of

a grid block is defined by four grid edges, or portions of an edge, that when linked form

a contiguous boundary. If a portion of a grid edge is used as a boundary, the

intersection point of the next boundary must occur at the end point of a geometric

segment.

4.3 Grid Generation 50

It is a requirement that a grid block boundary must be composed of two edges with an

x-axis primary orientation and two with an y-axis primary orientation. In addition, the

boundary edges must join to edges with a different primary orientation.

4.3.2 Grid Generation

After the simulation domain geometry has been defined, an initial grid is generated.

The internal grid structure of each grid block is generated independently using

transfinite interpolation (TFI) and a user defined edge point distribution. If the grid’s

internal structure is going to be adapted, then a uniform edge point distribution is

sufficient for the initial grid. However, if the grid is not going to be adapted, ie. an

unsteady flow problem, it may be preferable to use a non-uniform distribution. The

user is able to chose between uniform, cosine, parabolic, linear and double-linear point

distributions.

By default, the initial grid size is chosen so that the average cell size is equal to half the

freestream mean free path length. As with the edge point distribution, this default value

is adequate if the grid structure is going to be adapted. However, the user has the option

of applying a scale factor to the grid size.

4.3.2.1 Transfinite Interpolation

The transfinite interpolation scheme developed by Gordon [23] is a second order

method that maps an arbitrary grid boundary point distribution on four edges into an

interior grid. The interpolation scheme is given by the following equation,

� � � � � � � � � � � � � � � � � �

� �� � � � � �� � � � � �� � � �

� �� � � �maxmax

maxmax

maxmax

,

1,1,111,111

,1,1,,11,

����

��������

������������

x

xxx

xxxxx

�

�������

������

(4.5)

where,

�max, � max are the maximum computational domain indices in the � and � directions

respectively, and

1
1

1
1

max

max

�

�

�

�

�

�

�

�
�

�

�
�

(4.6)

4.3 Grid Generation 51

For the majority of grid block boundary contours, this scheme generates an effective

internal grid. However, if one or more boundary contours are discontinuous, then the

TFI generated grid can have regions of folding, ie. grid lines crossing each other or the

boundary contours. Boundaries that contain convex corners which protrude inside the

grid block area are particularly susceptible to folding when used with a TFI scheme.

Figure 4.2 illustrates a TFI generated grid the exhibits folding, and the folded region is

shown in detail in Figure 4.3.

Figure 4.2 TFI grid with folding

Grid folding can be automatically detected using the following algorithm,

� � � �� � foldedcell0or0if ����� DCDAADAB (4.7)

where,

A, B, C, D are the vertices of an arbitrary quadrilateral cell defined in a circular

order.

Figure 4.3 Detail of TFI grid with folding

While detection of grid folding is relatively trivial, it is not possible to use this

information in the TFI algorithm to correct the error. Additionally, the elliptic grid

generation technique of Thompson [55] was tested but was not sufficiently robust to

handle all the possible boundary shapes. The most reliable solution to the grid folding

4.3 Grid Generation 52

problem was found to be that of correcting the TFI generated grid with a smoothing

technique.

4.3.2.2 Grid Smoothing

Jeng [27] present a grid smoothing method that is equivalent to adding a second-order

damping to the grid structure. This method reduces the discontinuities in grid lines

while preserving the general grid topology. The smoothed grid structure is calculated

by,

� �

� �

�
�

�

�

�
�

�

�

���

�
�

���

�
�

�
�

�

�

�
�

�

�

���

�
�

���

�
�		

�
�

�

�

�
�

�

�

���

�
�

���

�
�

�
�

�

�

�
�

�

�

���

�
�

���

�
�		

��

�

��

�

�

��

�

�

��

�

�

��

�

��

�

�

��

�

�

��

�

�

jj

jij

jj

jij

ii

jji

ii

jii
jiji

kk

jij

kk

jij

ii

jji

ii

jii
jiji

ss
ys

ss
ys

ss
ys

ss
ys

yy

ss
xs

ss
xs

ss
xs

ss
xs

xx

1,1,
2

,1,1
1,21,

1,1,
2

,1,1
1,21,

1

1

�

���

�

���

(4.8)

where,
� � � �

� � � �2
,1,

2
,1,

2
,,1

2
,,1

jijijijij

jijijijii

yyxxs

yyxxs

�����

�����

��

�

��

�

�1, �2 are the smoothing parameters, �1 = �2 = 0.45

Figure 4.4b - f illustrates the effects of successively applying the grid smoothing

algorithm to the grid shown in Figure 4.4a.

A single application of the grid smoothing algorithm adjusted the grid sufficiently to

remove the folding. However, the grid was still highly skewed around the previously

folded region. Subsequent applications of the smoothing algorithm reduced the overall

grid skewness, except in the area adjacent to the convex corner. After five successive

applications of the smoothing algorithm, the grid had moved far enough to be folded

around the convex corner. It is a characteristic of the smoothing algorithm to pull grid

lines towards convex corners and away from concave corners.

4.3 Grid Generation 53

a. Initial grid b. First smoothing application

c. Second smoothing application

d. Third smoothing application

e. Fourth smoothing application f. Fifth smoothing application

Figure 4.4 Grid smoothing results of folded TFI grid

As it was intended that in general the initial grid should be adapted to the flowfield of

the problem being simulated, it was decided that the grid smoothing algorithm should

be run the minimum number of times to achieve a correct non-folded grid. While this

could result in some areas of the grid being highly skewed, this was deemed to be

acceptable as it did not effect the accuracy of the simulation. It was not possible to

implement a robust algorithm that could determine at which point the grid smoothing

algorithm results become detrimental. Furthermore, if after five successive applications

of the smoothing algorithm the grid was still folded, the smoothing was halted and it

was assumed that the grid could not be corrected. During testing, the majority of folded

grids only required a single application of the smoothing algorithm and all grids were

able to be corrected in less that five applications.

4.4 Implementation 54

4.4 Implementation

The DSMC program was implemented to run as a command line program on a

computer using a Unix (Posix) compatible operating system. All Operating System

(OS) specific functions were kept to a minimum and partitioned from the main code to

allow for straightforward porting to a different OS.

4.4.1 Simulation Configuration Parameters

All simulation configuration parameters were passed to the program via a text file. The

primary method of generating the configuration file was through the program prompting

the user for each value. The program was written such that the user could not input

physically inconsistent data. The format of the configuration file was,

<data label>: <numeric value> # (optional comment string)

Subsequent runs of the same simulation could be made using the same configuration file

or by manually making changes to the data values in the file. The ordering of the data

labels was not fixed and any manually edited data were checked to ensure that it was

physically consistent. Appendix A provides the listing of a sample configuration file.

4.4.2 Geometry Definition

The definition of the simulation geometry and the initial grid structure was generated by

the user modifying a standard geometry definition template file. This file was then

compiled into a simple program that when run assembled the grid block boundary

contours, checked their consistency and generated the internal grid structure.

Appendix A provides the listing of an example geometry definition file.

4.4.3 Optimisations

All modern CPU designs now incorporate between one to three levels of fast data cache

placed between the CPU and main system memory. When data is accessed from

memory, the cache is checked to see whether it is already resident there, and if it is, it

can be read from cache with a very small delay. If the data is not resident in the cache,

then it must be read from the main memory, which is a slower operation. However, at

the same time the requested data is read from main memory, a small block of memory

surrounding the requested data is also read into cache.

4.4 Implementation 55

Therefore, the performance of the program can be increased if,

1. once data is read from memory, as many operations as possible are performed on the

data before other data is used so that the cache copy is used, and

2. all data that will be processed simultaneously should be stored close together in

memory to maximise the possibility that it is read in the same main memory

operation.

The DSMC implementation used in this thesis was designed using these performance

objectives.

To improve the performance of the code with respect to the first performance strategy, it

is beneficial to perform all the cell processing steps sequentially. However, all

molecules must complete their movement before the collision processing can be started.

Therefore, it is not possible to perform all of the cell processing steps sequentially.

Instead, each time step is broken into two loops. One loop performs the molecule

injection and movement, while the other performs the collision and sampling.

The traditional order of performing the processing steps is injection, movement,

collisions and sampling, as detailed in Section 2.3. However, for distributed parallel

implementations, see Section 6.2, it required that all processing nodes be synchronised

after the completion of the movement processing and at the end of each simulation time

step. To improve the efficiency of the parallel implementation it is beneficial if these

two synchronisation points are combined. Therefore, the DSMC processing steps are

reordered to collisions, sampling, injection and movement, as shown in Figure 4.5. This

modified processing order can be used for serial DSMC implementations without any

noticeable performance penalty.

To improve the performance of the code with respect to the second performance

strategy, all molecule and cell variables are aggregated in data structures so that they are

stored contiguously in memory. Furthermore, linked lists are used to associate

molecules with their host cells. This negates the need to access, and keep up to date, a

molecule-cell index array.

4.4 Implementation 56

Inject molecules
at cell boundaries

Move molecules

Calculate molecule
collisions

Sample molecules

Increment simulation
time

Loop over
all cells

Loop over
all cells

Figure 4.5 Parallelm implementation optimised time step processing

4.4.4 Programming and Storage Issues

As the number of molecules in a complex simulation is generally limited by the

available system memory, anything that can be done to reduce the memory

requirements of molecule data storage is beneficial. Generally, it is sufficient to store

the various state properties of each molecule as single precision floating points (32bit)

instead of double precision floating points (64bit). However, for accuracy of the

simulation result, all calculations on molecule properties should be performed using

double precision floating points and converted back to single precision floating points at

the end of the calculation.

The conversion from double to single precision floating points can introduce errors in

the simulation. The primary mechanism for these errors is in the storage of the

molecules physical and/or computational position. A molecule that is very close to the

edge of a cell may be artificially moved to the adjacent cell when the position data is

converted from double to single precision. This can cause simulation errors when the

new position is on the other side of an object or it may cause a program error if the

physical and computational locations no longer correspond.

4.4 Implementation 57

The smallest value greater than zero that can be represented by a floating point number

is called the epsilon constant, 	. This constant can be used to test for and correct values

that will change to the next integer value on conversion from double to single precision.

For the case where molecules are index by the integer component of their position, ie.

regular grids or computational positions, the following algorithm can be used to ensure

that the conversion to a single precision does not cause a change in the index,

i1 = floor(P64)
P32 = P64

i2 = floor(P32)
if (i2 > i1)

P32 = i2 - �32

else if (i2 < i1)
P32 = i2 + �32

where the subscripts 32 and 64 refer to a single or double precision floating point number

respectively.

4.4.5 Solution Management

The program implements a number of features to automate and simplify the solution

process. These features are steady flow detection, results formatting and solution state

saving. All of these features are performed at a constant user selectable rate or can be

selectively performed at any time.

4.4.5.1 Steady Flow Detection

For a steady flow simulation there is an initial instationary flow phase where the

flowfield structure is developing towards its steady state composition. During this flow

phase the molecule sample data cannot be incorporated in the final solution average.

The primary indicator that the simulation has not reached its steady state composition is

a non-constant number of molecules in the simulation. The program determines

whether the steady flow state has been reached by examining the variation in the total

number of simulation molecules over a user defined number of samples, Nt. The

stationary flow phase is deemed to have been achieved if the following equality is true,

� �� � � �� �� �mNmmNm NNNN
mm

max2&min2 ���� �� (4.9)

where,

4.4 Implementation 58

Nm is the set of the number of simulation molecules at each time step since the last

test,

mN is the average number of simulation molecules at each time step since the last

test, and

mN� is the standard deviation of the number of simulation molecules at each time
step since the last test.

4.4.5.2 Results Formatting

During the instationary and stationary flow phases, the current results of the cell

sampling are output to a data file. This output occurs at the same interval, Nt, used for

steady flow checking. Before being written to the output data file, the cell sample data

is processed to calculate the equivalent cell macroscopic properties. The output data

file is written in a TecPlot text file format. Similarly, the surface collision sample data

is processed to determine the surface segment macroscopic properties and appended to

the end of the cell data file.

4.4.5.3 Solution State Saving

At the same interval that the steady flow checking and results output occurs, the

program also saves the current state of the simulation. This allows the program to be

stopped and the solution restarted from its current state at later time or alternatively on a

different computer. This state file is in binary format to ensure that no precision is lost

when converting to a text format and to save storage space.

4.4.6 Flow Chart

Figure 4.6 shows the full simulation flow chart where the following symbols are used,

nt number of samples since last results processing

Nt number of samples between results processing

ns number of steady state samples

Ns number of steady state samples to accumulate for solution

4.4 Implementation 59

Increment simulation
time

Process cell

Loop over
all cells

Start

Load simulation
 configuration

Initialise simulation

ns > Ns

No

Yes

Steady flow?

Yes

Reset Sampling

No

Stop

nt > Nt

Save solution state

Save macroscopic
results

No

Figure 4.6 Full simulation flow chart

Chapter 5

Solution Adaption

5.1 Introduction

By its very definition, a simulation problem is something that does not have a

predictable answer. It follows that it is not possible to set-up a DSMC simulation for a

new flow problem with a configuration that guarantees an accurate solution. Generally,

for most complex problems the simulation will have to be run multiple times, with the

simulation configuration modified between runs to provide an accurate solution for the

previous runs results, until there is no significant deference between successive runs.

This is a time consuming task if undertaken manually. Alternatively, the DSMC

program can be written to automatically adapt its configuration between runs, or during

a run, to achieve an accurate solution.

The adaption procedure has the secondary benefits of decreasing the simulation time

and computational resources required. This is because the non-adaptive solution would

generally be configured conservatively to ensure an accurate solution [46].

This chapter discusses the procedures implemented to ensure that the simulation is

configured to meet all the requirements for an accurate simulation as discussed in

Section 2.4.

5.2 Grid Adaption

As discussed in Section 2.4.1, the maximum cell side length should be 2� and 3� for

two- and three-dimensions respectively. Due to the complexity of the flows being

simulated, the initial grid definition will not meet this requirement over the entire flow

field. Each grid block is adapted independently using a two step process. First the grid

cells are adapted to the flow field and then the grid size is adjusted if required.

5.2 Grid Adaption 61

The adaption step is performed before the final grid size is calculated because the

resizing function sums the number of local mean free path lengths across the grid rows

and columns. These sums are then used as the basis for calculating the new grid size. If

this calculation is performed before the grid has been adapted, the result is not an

accurate representation of the final grid structure.

5.2.1 Adaption Methodology

The grid points are redistributed using a one-dimensional grid adaption algorithm

successively along grid lines of constant � and �. This method of successive one-

dimensional adaptions requires less computational effort and is not susceptible to

mathematical instabilities as methods that adapt rows and columns simultaneously.

Additionally, the method is easily extensible to three-dimensional problems.

5.2.1.1 Base Algorithm

The base adaption algorithm utilises the model of equi-distributing weight functions

such that,

� �
constant�

�

kW
sk (5.1)

where,

W is the adaption distribution function at the grid vertice, and

�sk is the desired local grid size for segment k along lines of � or � = constant.

Therefore, the expression for the grid adaption along � = i is,

� �
� � � ���

��

��
�

J

j

ji
m

j

ji

jWjW
miD

1

,

1

,,
��

�
(5.2)

where,

D�(i,m) is the relative cell spacing function for column i, and � � 1,
1

��
�

J

j
miD

�
,

� � � �21,,
2

1,,, ��

����� jijijijiji yyxx� , and

J is the maximum column ordinate.

5.2 Grid Adaption 62

5.2.1.2 Adaption Distribution Function

Woronowicz [60] proposes two rules relating to grid cell size to local flow properties

that should be followed to ensure the results are accurate. A summary of these rules

are,

1. Where the flow undergoes strong changes in macroscopic properties, ie. shock waves

and shear layers, the cell spacing should not exceed
.

2. Near the surface of an object, the cell spacing normal to the body should be less than

.

These rules are similar in intent but less stringent to those defined in Section 2.4.1.

The authors suggest using a composite distribution function of
 and ln, where ln is the

gradient length scale based on number density, as the adaption function. They use the

term ln to obtain a finer grid in regions of strong changes in macroscopic properties.

The equation to calculate ln along a constant � line is,

� �
��

�
�

�
n

ln
ln1 (5.3)

Which can be seen to be of the form,

n
ln

1
� (5.4)

The hard-sphere (HS) definition of
HS is,

nndHS
1

2
1

2
��

�

� (5.5)

Equations 5.4 and 5.5 show that
HS and ln are both proportional to the inverse of the

number density. Additionally, Woronowicz [60] notes that the contribution of ln to the

composite distribution function is noisy. Therefore, if the more stringent grid spacing

rules defined in Section 2.4.1 are followed, a single variable adaption distribution

function based upon
HS will give an accurate grid for DSMC simulations.

The hard-sphere definition of
 is used as the adaption distribution function,

HSW �� (5.6)

HS is used instead of the variable-hard-sphere (VHS) definition as it is easily calculated

and is not dependent on the temperature. As
VHS is proportional to temperature, this

5.2 Grid Adaption 63

increases the magnitude of
VHS�in regions of relatively high temperatures, ie. shock

fronts, [34]. Therefore, it is beneficial to use
HS for adaption since it is conservative

relative to
VHS which maybe used in the collision process. All future references to the

local mean free path,
, will refer to the hard sphere definition unless otherwise

explicitly noted.

As the
 data is generated for the cell centres and the redistribution algorithm adapts the

grid cell vertices, the cell vertice data is estimated by bilinear interpolation of the

surrounding cell centred data.

5.2.1.3 Grid Smoothing

As the distribution function is derived from cell averaged flow properties that are not in

a state of equilibrium, there is a perceptible level of statistical scatter in the result. This

statistical scatter is accentuated by areas of highly localised gradients in the adaption

distribution function. If not corrected, these two factors result in a grid that is

discontinuous and has excessive skewness. While, the DSMC method is relatively

immune to these grid effects, programs used in post-processing to analyse the results

have difficulties with these grid effects. A two step approach is implemented to smooth

the adapted grid while maintaining the adapted grid distribution.

Firstly, the adaption distribution function used for each grid line is coupled to the

adjacent grid lines as suggested by Jeng [27]. This coupling of adjacent grid lines

reduces skewness caused by areas of localised gradients in the adaption distribution

function. The modified adaption distribution function is calculated by,

� � � � � � � � � �
� � � � � ��

�
�

���

��������

linesboundaryfor,11
linesinteriorfor,111

11

2211

kWkW
kWkWkWkW

��

����
 (5.7)

where,

W��(k)�is the modified adaption distribution function, and

�1, �2 are the weighting factors among grid lines, �1 = �2 = 0.25.

Secondly, the effects of the statistical scatter in the distribution function results in short-

wave oscillations in the adaptive grid. The grid smoothing method presented in Section

4.3.2.2 significantly removes the short-wave grid oscillations while preserving the grid

adaption.

5.2 Grid Adaption 64

5.2.1.4 Implementation

The grid points were redistributed using the following procedure,

1. Calculate the adaption distribution function, W, at the cell centres using Equation

5.6 and the macroscopic flow properties of the starting grid.

2. Use bilinear interpolation to calculate distribution function at the grid vertices

using the starting grid and the result from step 1.

3. Apply Equation 5.2, using the distribution function defined in Equation 5.7, along

lines of constant �. Adjust the grid block boundary grid lines, � = [1,I]; so that

there is a grid vertice at all boundary control points.

4. Use bilinear interpolation to calculate distribution function at the grid vertices

using the starting grid and the result from step 1.

5. Apply Equation 5.2, using the distribution function defined in Equation 5.7, along

lines of constant �. Adjust the grid block boundary grid lines, � = [1,J]; so that

there is a grid vertice at all boundary control points.

6. Apply the grid smoothing algorithm, Equation 4.8.

7. Optionally repeat steps 2-6 one or more times. The effect of changing the number

of adaption cycle iterations is investigated in Section 5.2.3.

5.2.2 Grid Resizing and Splitting

The aim of the grid resizing and splitting functions are to ensure that the adapted grid

meets the maximum cell side length requirement. If the flow field has large variations

or localised strong gradients of
 across the grid block, it may not be possible for a

structured grid to meet the cell side length requirements without making some cells

significantly smaller than the maximum cell size. Large ratios of cell size (volume) lead

to an inefficient simulation as the value of FN is set by the smallest cell volume.

As discussed in Section 2.4.3, if the product of nVc is constant, the number of molecules

in a cell, Nm, will also be constant. Now Equation 5.5 shows that n is inversely

proportional to
, which implies that to achieve a constant number of molecules per cell

the ratio Vc/
 should be constant. The ratio Vc/
 is equivalent to the grid adaption

distribution function, Equation 5.1. Therefore, a well adapted grid will have a near

5.2 Grid Adaption 65

constant number of molecules per cell. To compensate for the case discussed in the

previous paragraph where large variations in
 cause significantly smaller cells, the grid

block should be split.

5.2.2.1 Implementation

The grid resizing function is implemented using the following methodology,

1. For each block, calculate the number of the local mean free paths along the lines of

constant ��and �.

� �

� �
i

J

j

ji
i

j

I

i

ji
j

ji
S

ji
S

�

�

�

�

�
�

�
�

1

,

1

,

,

,

�

�

�

�

�

�

where,

� � � � � � � �

� � � � � � � �
��
�

��
� �������	

��
�

��
� �������	

��������

��������

2
1,1,1

2
1,1,1

2
1,,

2
1,,,

2
1,11,

2
1,11,

2
,1,

2
,1,,

5.0

5.0

jijijijijijijijiji

jijijijijijijijiji

yyxxyyxx

yyxxyyxx

�

�

(i,j) is the hard-sphere value of
 in the cell (i,j)

2. Calculate the grid block’s new grid size.

The number of cells required to ensure that the adapted grid meets the maximum cell

side length requirement is given by,

� �

� �

max,

max,

max

max

�

�

�

�

�

�

R
S

N

R
S

N

i

j

�

�

(5.8)

where,

N� and N� are the number of cells in the � and � directions respectively, and

R�, max is the maximum allowable ratio of cell size to
 (see Section 5.2.3).

5.2 Grid Adaption 66

3. Determine if the grid block needs to be split.

A grid block is split if the ratio of the maximum to the minimum number of local

mean free paths along the lines of constant ��and �, is greater than the ratio of

maximum to minimum allowable cell size,

SplitRR �� (5.9a)

SplitRR �� (5.9b)

where,

� �
� �
� �
� �

min,

max,
Split

min
max

min
max

�

�

�

�

�

�

�

�

R
R

R

S
S

R

S
S

R

i

i

j

j

�

�

�

R�, min is the minimum allowable ratio of cell size to
 (see Section 5.2.3).

4. If either or both of the inequalities of Equation 5.9 are true, then the grid block needs

to be split.

If only Equation 5.9a is true then the grid is split along lines of constant �.

Conversely, if only Equation 5.9b is true then the grid is split along lines of constant

�. Finally, if both Equation 5.9a and 5.9b are true then the direction of the split lines

is chosen by the larger of R� and R�.

Considering the case were the grid is split along lines of constant �, the number of

splits is calculated by the following algorithm,

if (R� > 3�RSplit)
// requires more than two split lines
// split once and re-split, if still required at next interval
NoSplits = 1
SplitPoint[1] = �R � min(S�j)

else if (R� > 2�RSplit)
// requires two split lines
NoSplits = 2
SplitPoint[1] = 3

�R � min(S�j)

SplitPoint[2] = 3
�R � SplitPoint[1]

5.2 Grid Adaption 67

else
// requires one split line
NoSplits = 1
SplitPoint[1] = �R � min(S�j)

end

In the above algorithm, SplitPoint[n], corresponds to the value of S�j where the grid

is to be split. The array of S�j data calculated in step 1 is searched through until a

split point crossing is detected. This crossing becomes the index for the start of the

next new grid block. The process is repeated until the end of the S�j vector is

reached. The procedure is limited to creating three split lines, ie. four new grid

blocks. This procedure is illustrated in Figure 5.1.

�s(3)s(1)

S��j

SplitPoint[1]

SplitPoint[2]

s(2)

Figure 5.1 Grid split line calculation

5. To minimise the number of geometry segments used to define the grid, the current

grid geometry is check to determine if there is an existing segment end points within

3 vertices of the desired split point location. If there is, the new split point is moved

to be coincident with the existing end point.

6. If the grid block is to be split, the contour of the split line needs to be calculated.

This contour should be a relatively simple geometry to minimise the number of grid

points forced to be at the end points of geometric segments, while still allowing the

shape of the current split line contour to be approximated relatively accurately.

It was decided to limit the number of segments that could be used to describe the

split contour to four segments. Testing showed that this produced a good

compromise between contour accuracy and minimum complexity. The majority of

5.2 Grid Adaption 68

split contours only required two segments to describe them. The algorithm used to

calculate the internal split points is described below and illustrated in Figure 5.2.

a. Calculate the length of the line that joins the two end points of the split.

b. Calculate the equation of the line that joins the two end points of the split.

c. Search along the current grid contour from both ends and find the first local

maximum perpendicular distance to the line from step b.

d. Select the larger of the two local maxima from step c. If this distance is less than

5% of the value from step a, then no more internal points are required. Otherwise,

change the line from step b to two segments using the local maxima as a new

internal point.

e. If three internal points have been defined, end the process. Otherwise, repeat

from step b with the new segment end point replacing one of the old end points

a. b. c. d.

Figure 5.2 Split contour calculation

7. The number of cells in the new grid blocks are then calculated using Equation 5.8.

5.2.3 Parameter Tuning

Three tunable grid adaption parameters were identified in the previous two sections,

1. The number of adaption cycle iterations, An, (Section 5.2.1.4 Step 7),

2. The maximum allowable ratio of cell size to
, R�, max, (Section 5.2.2.1 Step 2)

5.2 Grid Adaption 69

3. The minimum allowable ratio of cell size to
, R�, min, (Section 5.2.2.1 Step 3).

The primary effect of each parameters is,

An defines how aggressively the grid is adapted to distribution function. Large

values tend to produce excessive grid skew.

R�, max defines the maximum cell size and has direct correspondence to the minimum

number of cells in the grid block.

R�, min defines the minimum cell size and the ratio between R�, max and R�, min affects

how often grid blocks are split.

5.2.3.1 Test Series 1

Initial testing revealed that the first two parameters, An and R�, max, are closely coupled.

Therefore, a series of test were conducted to determine the optimum values for these

two parameters. The simulated flow used in the test corresponded to a uniform

distribution that has a sharp discontinuity diagonally across the simulation area, as

shown in Figure 5.3. A uniform grid with a size equal to
/2 was used as the starting

condition for the test. The configuration parameters for the tests are listed in Table 5.1

and R�, min was kept constant at 0.25 for all tests.

0.100
0.095
0.090
0.085
0.080
0.075
0.070
0.065
0.060
0.055
0.050

�

Figure 5.3 Grid adaption test case 1 flow field.

Config. A1 A2 A3 B1 B2 B3
An 1 2 3 1 2 3

R�, max 0.50 0.50 0.50 0.45 0.45 0.45

Table 5.1 Grid adaption test case 1.

5.2 Grid Adaption 70

Starting with the initial uniform grid, the adaption and resizing/splitting routines were

run once using the listed configuration parameters. The resultant grid for each

configuration is shown in Figure 5.4 a-f and the minimum and maximum value of the

ratio of average cell side length to local mean free path, �ml , is summarised in Table

5.2.

Config. A1 A2 A3 B1 B2 B3

max
�ml 0.63 0.56 0.55 0.57 0.51 0.49

min
�ml 0.38 0.36 0.35 0.34 0.32 0.31

Table 5.2 Grid adaption test case 1 results.

A general trend for all of the test configurations was that with increasing An there was a

marked increase in cell skewness along the line of minimum �. While this effect is

accentuated by the sharp discontinuity in the simulated flow field, the chosen

parameters need to be able to work robustly for all flow fields. Based on the results of

this test, it was found that configuration B2 offered the best combination of adaption

solution and minimum cell skew. The adapted flow field for configuration B2 is shown

in Figure 5.5. This configuration was used as the default value for the parameters An

and R�, max for the remainder of this thesis.

5.2.3.2 Test Series 2

A second series of tests were conducted to determine the optimum value for the

parameter R�, min. Ideally, this parameter should be as close as possible to R�, max so that

there is a minimum variation in �ml across the solution domain. However, as R�, min is

increased, the grid will be subdivided into more blocks to maintain the required ratio of

R�, max / R�, min. It is undesirable to have an excessive number of grid blocks as it

constricts the solution adaption and increases grid management overhead.

5.2 Grid Adaption 71

a. Configuration A1 b. Configuration A2

c. Configuration A3 d. Configuration B1

e. Configuration B2 f. Configuration B3

Figure 5.4 Grid adaption test case 1 adapted grids

0.50
0.48
0.46
0.44
0.42
0.40
0.38
0.36
0.34
0.32

lm / �

Figure 5.5 Grid adaption test case 1, configuration B2 adapted flow field

5.2 Grid Adaption 72

The simulated flow used in the second series of tests is shown in Figure 5.6. Again a

uniform grid with a size equal to
/2 was used as the starting condition for the test. The

configuration parameters for the tests are listed in Table 5.3 and for all tests An = 2 and

R�, max = 0.45.

0.100
0.095
0.090
0.085
0.080
0.075
0.070
0.065
0.060
0.055
0.050

�

Figure 5.6 Grid adaption test case 2 flow field

Config. C1 C2
R�, min 0.25 0.30

Table 5.3 Grid adaption test case 2

Starting with the initial uniform grid, the adaption and resizing/splitting routines were

run using the listed configuration parameters until the number of grid blocks stabilised.

The resultant grid for each configuration is shown in Figure 5.7 a-b and the minimum

and maximum value of the ratio of average cell side length to local mean free path,

�ml , is summarised in Table 5.4. In Figure 5.7 the magenta lines indicate grid block

boundaries.

5.2 Grid Adaption 73

Config. C1 C2

max
�ml 0.48 0.49

min
�ml 0.29 0.34

Table 5.4 Grid adaption test case 2 results.

a. Configuration C1

b. Configuration C2

Figure 5.7 Grid adaption test case 2 adapted grids.

Figure 5.7 shows that the principle difference between the two adapted grids is that the

C2 configuration has three extra grid blocks. The addition of these grid blocks does not

offer any significant improvement in the quality of the adapted grid. The adapted flow

field for configuration C1 is shown in Figure 5.8. This configuration was used as the

default value for the parameters R�, min for the remainder of this thesis.

5.3 Ratio of Real to Simulation Molecule Adaption 74

0.50
0.48
0.46
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30

�lm /

Figure 5.8 Grid adaption test case 2, configuration C1 adapted flow field.

5.2.4 Implementation

The implementation of the adaption algorithm outlined in the previous two sections is

presented in Figure 5.9 below.

5.3 Ratio of Real to Simulation Molecule Adaption

As discussed in Section 2.4.3, the number of molecules in a cell, Nm, needs to be greater

than 10, and preferably in the order of 20-30. Considering Equation 2.2 which defines

the calculation of the number of molecules in a cell,

N

c
m F

nV
N �

The number density, n, is fixed by the flow field properties and the cell volume, Vc, is

set by the results of the grid adaption. Therefore, the only way to adjust the number of

molecules in a cell is through changing the ratio of real to simulation molecules, FN.

5.3 Ratio of Real to Simulation Molecule Adaption 75

After each grid adaption, the value of FN is recalculated so that the no cell had less than

CNm,min molecules and the average size cell had at least CNm,ave molecules. This

calculation is performed using the following algorithm,

� �

min,

min
min,

Nm

c
N C

nV
F �

� �

ave,

ave
ave,

Nm

c
N C

nV
F �

ave,min,if NN FF �

min,N NFF � (5.10a)

else

ave,NN FF � (5.10b)

After calculating the new value of FN, the molecule distribution needs to be

recalculated. This is done using the same method as described in Section 4.2.4 for the

flow field initialisation, except that the freestream number density is replaced with the

local number density of each cell.

5.3 Ratio of Real to Simulation Molecule Adaption 76

Start

Adapt grid block

Interpolate adaption
data to new grid

Calculate new grid
size

Split grid?

Create new grid
regions

Resize grid?

Resize grid

Generate new grid

Stop

Yes

Yes

No

No

Loop over all
grid blocks

Interpolate cell
data to new grid

Calculate grid
adaption data

Loop over all
grid blocks

Figure 5.9 Grid adaption flow chart

5.3 Ratio of Real to Simulation Molecule Adaption 77

5.3.1 Adjusting Grid blocks with an Excessive Number of Molecules

per Cell

Results from initial grid and FN adaption tests revealed that grid blocks with a

significantly larger average � than the rest of the simulation flow field also had a larger

molecule number sum. This effect can be proved by starting with the equation that

determines the number of molecules in a cell, Nm. Equation 2.2,

N

c
m F

nV
N �

This shows that Nm is proportional to the product n and Vc,

cm nVN � (5.11)

Similarly, Equation 5.5 shows that � is inversely proportional to n,

n
1

��

Now, if the cell size is adapted to be proportional to �, then for two-dimensions,

2
��cV (5.12)

Therefore, substituting Equation 5.12 into Equation 5.11 gives,

��mN (5.13)

Equation 5.13 shows that if a grid block has higher average �, the number of molecules

per cell will be larger.

As the computational processing time is primarily dependent on the number of

molecules and not the number of cells, it was decided to increase the cell density in grid

blocks with a high average number of molecules per cell. This increased number of

cells allowed a more even number of molecules per cell to be retained as well as

increasing the resolution of the macroscopic flow field results.

The correction for excessive number of molecules in a cell is only performed after the

grid had been adapted and the FN calculated. This is done to ensure that grid blocks that

had been corrected would not influence the calculation of FN.

5.3 Ratio of Real to Simulation Molecule Adaption 78

5.3.1.1 Implementation

The grid blocks new dimensions were calculated using the following algorithm,

1. Determine scale factor for grid rows and columns.

The minimum sum of the number of molecules along the grid rows and columns was

determined. This minimum value was then divided by the product of the number of

cells in the row or column times CNm,ave. The resultant value was the desired scale

factor for the grid rows or columns.

ave,

min

Nm

i
m

scale CI

N
i

�

�
�

�
�
�

�

�

�

ave,

min

Nm

j
m

scale CJ

N
j

�

�
�
�

�
�
�
�

�

�

�

2. Check whether the application of the desired row and column scale factors will cause

the cell with the minimum number of molecules to have less than CNm,ave molecules.

If this is found to be true, adjust the row and column scale factors.

� �
�
�

�

�

�
�

�

�
��

ave,

min
scaleiif

Nm

m
scale C

N
j

� �

scalescalescale

Nm

m
scalescale

scale

rij

C
N

ri

j

��

��

�

ave,

min

scale
scale

i
r

3. Calculate the new number of cells in the grid block’s rows and columns.

� �IiII scale ��� ,max

� �JjJJ scale ��� ,max

4. Resize the grid block using the new dimensions of (I�,J�) while maintaining the

original grid distribution.

5.4 Time Step Adaption 79

5.4 Time Step Adaption

As discussed in Section 2.4.2, the cell time step should be a small fraction of the local

mean collision time, mct . If a global time step is used for the simulation domain, then

the value required to ensure an accurate result would be chosen based upon the cell with

the highest collision frequency. Laux [36] showed that using this conservative approach

resulted in a total simulation time that was more than six times slower than using a

locally optimal time step. Where a locally optimal time step is defined as each cell

having an individually defined time step that is a constant fraction of mct . However, for

a simulation to maintain physical accuracy, all cells, and molecules, must be kept in

time synchronisation. Furthermore, the optimal time step for a cell or molecule will

change while the simulation is in the instationary flow phase. Therefore, the complexity

of implementing an optimal time step solution is in the selection of the time steps and

efficiently keeping all cells and molecules in time synchronisation.

Two different methods of implementing a local time step adaption scheme have been

proposed. Laux [36] and Olynick [46] use a scheme where the time step is determined

at the cell level, while Bird [10] uses a scheme where the time step is set independently

for each molecule.

The Olynick’s cell based method uses a continuously variable cell time step. Where as

Laux’s method limits the cells time step to being integer multiples of a base time step.

While the continuously variable scheme results in a more optimal time step, the method

is not feasible to implement in a parallel environment. This is because synchronisation

between parallel solution domains needs to occur at a fixed rate. Similarly, while Bird’s

molecule based scheme results in the optimal time step for each molecule, it too cannot

be efficiently implemented in a parallel environment.

The time step adaption scheme implemented was based upon Laux’s method and is

summarised below.

5.4.1 Base Algorithm

The basic premise of the scheme is that each cell has an individual time step that is as

an integer multiple, �i, of the base time step, �tb. As discussed in Section 2.4.2, a

molecule should take longer than one time step to traverse a cell. It was decided that

5.4 Time Step Adaption 80

the average molecule should take two steps to cross a cell. Therefore, as the average

adapted cell side length is �/2 for two-dimensional problems, the local time step made

proportional to �/4.

The procedure followed at each time step adaption is,

1. Calculate the desired cell time step,

i
desi c

t
�

��
4,
� (5.14)

2. Limit the change in cell time step to between 0.5 - 2.0 times its old value to avoid

fluctuations caused by statistical scatter. This scatter is a result of the small

number of samples used in the calculation of the cell macroscopic properties.

� �
oldbidesi tt ��� �,if

� �� �desioldbinewi ttt ,, ,2min ����� � (5.15)

else

� �� �desioldbinewi ttt ,, ,5.0max ����� � (5.16)

3. Calculate desired new base time step,

� �newiinewb tt ,, min ��� (5.17)

4. If desired new base time step difference relative to old base time step

is less than 1%, use old base time step

01.0if ,
�

�

���

b

bnewb

t
tt

(5.18)

oldbnewb tt ,, ���

5. Calculate new cell time step multiple,

� �newbnewinewi tt ,,, ,div ���� (5.19)

if �i,new < 1

�i,new � 1

else if �i,new > �i,max

�i,new � �i,max

where,

�i,max is a user specified parameter.

6. Adjust all molecule time steps to account for changing cell time step,

5.4 Time Step Adaption 81

� � � �� � newbnewiBTSnewioldboldiBTSim tNtNt ,,,,, ,mod,mod �������� ��� (5.20)

where,

�tim is i'ths molecules time step for the next movement iteration, and

NBTS is the total number base time steps (main loop iterations).

5.4.2 Implementation

In Laux’s implementation, the base time step is a user specified parameter. This puts

the onus on the user to “guess” this critical parameter and will require the simulation to

be repeated if too large a value is used or increase the solution time if too small a value

is chosen. The scheme implemented in this thesis adapts the base time step along with

the time step multiple of each cell. This allows the optimal base time step to be used for

the simulation.

The maximum value of the time step multiple, �i,max, is a user specified parameter. The

value of �i,max used is trade-off between the reduction in solution time due to an optimal

cell time step versus an increase in solution time due to an increased number of base

time steps required to allow all cells to be sampled a minimum time. Laux’s results

showed a logarithmic speedup in solution time. By default �i,max was set to 20 which

was the roll-off point in Laux’s results.

Each iteration of the DSMC main loop incremented the global simulation base time

time by �tb. The program then determined which cells were scheduled to be processed

during the main loop iteration by pre-calculating which time step multiples to process.

A time step multiple is processed if the following equality was true,

0remainder ���
�

�
��
	

i

BTSN
�

(5.21)

When a cell is processed the sampling, inflow, collision and movement routines are

advanced with a time step of �i��tb. The sampling routine was only called at a user

definable rate of Ns iterations and the inflow routine was only called if the cell had an

edge defined as an external free stream boundary.

If a molecule crossed a cell boundary during its movement phase, the time increment

that the molecule was moved the next time in its new cell was adjusted to,

5.5 Solution Adaption Implementation 82

� �� � bnewiBTSnewiim tNt ����� ,, ,mod �� (5.22)

where,

�i,new is the base time step multiple of the molecules new cell.

Therefore, �tim is equivalent to the time remaining before the molecule’s new cell is

next processed.

5.4.2.1 Initialisation

At the start of the simulation, the base time step is specified as being equal to the time

required for a molecule with the maximum expected velocity to traverse a quarter of the

freestream mean free path. The maximum expected velocity is either the average

thermal velocity or freestream velocity.

� �
��

�

��
��

Vc
tb ,max4

� (5.23)

and all cells are assigned a time step multiple of, �i = 1.

5.5 Solution Adaption Implementation

The solution adaption implementation is dependent upon whether a steady or unsteady

flow is being simulated. One implementation procedure common to both flow types is

the processing of all flow boundary cells prior to adaption.

5.5.1 Molecule Injection

As the adaption processes will change the cell size and/or time step, all flow boundary

cells need to be processed so that the molecule injection is correctly accounted for. The

standard molecule injection procedure is modified in the following manner.

1. The injection time period, �tm =�i ��tb, for the cell is changed to use the time since

the cell was last processed for molecule injection,

b
i

BTS
m t

N
t ����

�

�
��
�

�
	
�

�

remainder (5.24)

2. After the adaption process, the remainder component from injection process, Ri,p

from Equation 4.2, will be reset to zero. Therefore, to account for this component of

5.5 Solution Adaption Implementation 83

molecule influx, Ri,p is used as the cut off point in random sampling to determine

whether an extra simulation molecule is injected,

if Rf � Ri,p

1,, �� pipi NN ��

where,

Rf is random value between [0,1].

5.5.2 Steady Flow Problems

For steady flow problems, the solution adaption is only performed during the

instationary phase of the simulation. It was found during testing that the grid adaption

process was more susceptible to statistical noise caused by low sample count, whereas

the time step adaption process was more resilient to statistical noise. Furthermore, the

accumulated sample data can be retained after a time step adaption, whereas it needs to

be reset after a grid adaption. Therefore, a number of time step adaptions can occur

between grid adaptions without affecting the grid adaption rate.

Time step adaption is performed every Nt base time steps, while grid adaption is

performed every Ng time step adaptions. In addition, after every grid adaption process,

the ratio of real to simulation molecules adaption process is performed. When both time

step and grid adaption processes are performed during the same interval, the grid

adaption process is performed first. This is implemented by saving a copy of the old

grid cell centre coordinates, and using this information to interpolate the sampled cell

temperature and � onto the new grid.

5.5.2.1 Simulation Molecule Regeneration

Whenever the grid is changed, ie. when the number of cells in a grid block was adjusted

because of an excessive number of molecules per cell, the simulation molecules need to

be redistributed. This can be simply done using the general point location algorithm

discussed in Section 3.4.4.3. However, for the majority of grid adaption processes FN

was also changed. This change in FN requires the simulation molecules to be

regenerated.

5.5 Solution Adaption Implementation 84

This regeneration is performed using a modified version of the process detailed in

Section 4.2.4. Specifically, Equation 4.4 which defines the equilibrium number of

molecules of each species in a cell, is changed to use the local cell macroscopic

properties instead of the free stream flow properties.

5.5.2.2 Accelerated Flow Field Initialisation

One common problem with steady state flow problems is the time taken for the

simulation flow to develop to its steady state condition. The time taken for the solution

to reach its steady state is proportional to how fast a molecule can move through the

simulation domain. By relaxing the cell size to � adaption criteria and maintaining the

same ratio of molecule time steps per cell, the number of time steps required for a

molecule to traverse the simulation domain will be decreased. In addition, if the criteria

on the number of molecules per cell is also relaxed, then the clock time required to

process a time step will be reduced. While relaxing these criteria will result in the

solution not being physically accurate enough to be used for the generation of results, it

will still have macroscopic flow properties that are close to correct values. These

macroscopic flow properties can then be used to initialise a solution that has the correct

cell size and number of molecules.

The accelerated flow field procedure was implemented by allowing the user to

optionally specify the ratio by which the cell size to ��� R�,accl, and number of molecules

per cell, RNm,accl, criteria could be relaxed. The simulation was then run in the

accelerated configuration until steady state flow conditions were detected. At this point

the cell size and number of molecules per cell relaxation parameters were reset and the

steady flow flag is cleared. The simulation then proceeds in instationary mode until

steady state flow conditions were detected again. Initial testing showed that a value of 2

for both R�,accl and RNm,accl resulted in a good compromise between solution acceleration

and the accuracy of accelerated flow field.

5.5.2.2.1 Grid Adaption Modification

For the grid adaption function, the parameter R�,accl, was inserted into Equation 5.8 as

follows,

5.5 Solution Adaption Implementation 85

� �

� �

accl,max,

accl,max,

max

max

��

�

�

��

�

�

RR
S

N

RR
S

N

i

j

�

�

�

�

(5.25)

Therefore, values of R�,accl greater than 1 result in a reduced number of cells.

5.5.2.2.2 Ratio of Real to Simulation Molecules Adaption Modification

For the ratio of real to simulation molecules adaption, the parameter RNm,accl, was

inserted into Equation 5.10 as follows,

accl,min, NmNN RFF �� (5.26a)

and,

accl,ave, NmNN RFF �� (5.26b)

5.5.2.3 Implementation Flow Chart

For steady flow problems, the time step adaption is optionally performed every Nt base

time steps. Generally, Nt was set to be an integer fraction of the ensemble sampling

period.

Referring to Figure 4.6 the modified flow chart including the solution adaption

processes is shown in Figure 5.10.

5.5.3 Unsteady Flow Problems

While it is possible to adapt the grid used for unsteady flow problems this is generally

not done because the grid adaption function creates the optimum grid for the average

flow field that was present before the adaption was calculated. By their very nature,

unsteady flow problems are in a continual state of flux and therefore, the grid would

generally be sub-optimal for the current flow conditions. Furthermore, for unsteady

flow problems it is generally desirable to compare the simulation results using the same

background grid.

For unsteady flow problems time step adaption is optionally performed every Nt base

time steps. Generally, Nt was set to be an integer fraction of the ensemble sampling

period.

5.5 Solution Adaption Implementation 86

Increment simulation
time

Calculate which time
step multiples, �i, to

process

Process cell

Loop over
all cells

Start

Load simulation
 configuration

Initialise simulation

Cell �i in set?
No

Yes

nt > Nt
No

Yes

ng > Ng

Yes

Adapt grid

Adapt time step

ns > Ns

Yes

No

Stop

Save solution state

Save macroscopic
results

Steady flow?

Yes

Reset Sampling

No

Accelerated
Initialisation?

Yes

Remove acceleration
 parameters

No

Figure 5.10 Steady flow adaption solution procedure flow chart

6.1 Introduction 87

Chapter 6

Parallelisation

6.1 Introduction

The computational resources required by a DSMC simulation increase rapidly as the

simulation Knudsen number decreases and approaches the continuum regime.

Similarly, the computational requirements of three-dimensional problems are generally

two orders of magnitude more than two-dimensional problems. These large

computational requirements significantly limit the range of problems that can be

practically solved on an engineering workstation or desktop computer.

Initial attempts by the DSMC community to solve this problem focused on utilising the

most powerful computers available at the time, vector supercomputers. While the

DSMC method was successfully vectorised, [5], [14] & [47], it was found that the

method was not efficient for this processing implementation. This is primarily due to

the random nature of the DSMC methodology. Specifically, only the movement phase

of each time step is common to all molecules, while the molecules involved in a

collision or boundary surfaces interaction is different at each time step and cannot be

determined apriori.

From the start of the 1990s the computing power of engineering workstations and

desktop computers began to increase significantly. At the same time, the availability of

relatively fast inter-computer networking capabilities became available. This lead to the

rise of distributed parallel processing as a viable alternative to vector supercomputers,

[56].

The DSMC method is well suited to the distributed parallel processing because, during

a time step, each cell can be processed independently and the only inter-cell

communication required is when a molecule changes cells. Exploiting this property, the

physical simulation domain can be decomposed into sub-domains, where each sub-

6.2 Physical Domain Decomposition Parallelisation 88

domain is assigned to a processing node4 and runs a separate DSMC simulation for the

cells in its sub-domain. All processing nodes are synchronised after each simulation

time step and molecules that have crossed a sub-domain (node) boundary are transferred

to the node that hosts the molecule’s destination cell. This is the predominate method

for parallelising DSMC and there is a large body of literature detailing different

physical domain decomposition (PDD) implementations, [20], [28], [35], [37], [44],

[51], [57], [58].

In [12] Bogdanov et. al. describes an alternative distributed parallelisation method

where multiple processing nodes solve the same DSMC simulation, ie. identical grids.

There is no molecules exchange between nodes and synchronisation only occurs for the

purpose of sample data aggregation after the simulation has finished. This

implementation makes uses of the DSMC property that different runs of the same

simulation are statistically independent. Bogdanov refers to this implementation by the

name Parallel Statistically Independent Runs (PSIR).

6.2 Physical Domain Decomposition Parallelisation

As mentioned in the introduction, physical domain decomposition (PDD) is the most

common parallel implementation of the DSMC method. Figure 6.1 illustrates the

general program flow chart.

There are a number of factors that effect the efficiency of a PDD solution. These

factors can be grouped together into four areas,

1. Domain decomposition algorithm,

2. Dynamic load balancing,

3. Total node computational load, and

4. Node grid structure.

These efficiency factors are addressed in the following sections.

4 The term node is used to refer to an instance of a DSMC simulation running in a processor. Generally,
there would only be a single node per physical processor, but this is not guaranteed. Furthermore, some
high end processors have multiple processing units in a single physical package. Therefore, the term
node is used to maintain generality.

6.2 Physical Domain Decomposition Parallelisation 89

Start

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Load simulation
 configuration

Domain
decomposition

Stop

Save Results

Molecule
exchange

Synchro-
nisation

Parallel
communication

Figure 6.1 Physical domain decomposition flow chart

6.2 Physical Domain Decomposition Parallelisation 90

6.2.1 Domain Decomposition Algorithm

The primary aim of the domain decomposition algorithm is to equally distribute the load

between the processing nodes. There is also a secondary aim of the minimising sub-

domain molecule movement.

Nance et. al., [44] found that the quality of the domain decomposition results obtained

from using two different measures of computational load, compute time per cell and the

number of molecules per cell, were almost indistinguishable. Generally, the number of

molecules per cells is used as the primary measure of computational load for a cell as it

is already calculated as part of the sampling process whereas the compute time per cell

requires extra data sampling. Other factors that effect the relative computational load of

a cell are whether the cell has a side that is an inflow boundary or a non-internal

boundary. The computational load associated with an inflow boundary is proportional

to the molecule influx of the boundary. While for a non-internal boundary, the

computational load is a function of the boundary type, ie. diffuse object, specular object

or symmetry surface, and the average number of molecules that interact with the surface

per unit time.

The second major factor that effects the efficiency of a decomposed domain is the

amount of inter-domain molecule movement. Generally, it is preferable to split

domains along streamlines to minimise inter-domain molecule movement. However,

the local stream direction is only the average of the local molecules velocities. For cells

with a local Mach number less than 2 there can be significant variations between

molecules velocities in the same cell. The average number of molecules that cross a

cell side per unit time can be calculate from Equation 4.2.

There are two main domain decomposition partition methods in general use, grid based

methods and graph based methods.

6.2.1.1 Grid Based Partitioners

As the name implies, grid based partitioners decompose the simulation domain by using

the grid as a template. These methods are most often used with structured grids but can

also be used on unstructured grids. The two most commonly used grid based partioners

are recursive bisection [57] and chain partitioning [41].

6.2 Physical Domain Decomposition Parallelisation 91

The recursive bisection method, recursively halves the domain until the number of sub-

domains equals the number of processing nodes. The choice in which direction to split

the domain can be made either to align the split with the free stream flow direction or to

minimise the aspect ratio of the new domains [57]. In general, splitting the domain

parallel to the free stream flow direction should result in less inter-domain molecule

movement. However, this benefit will be reversed when the sub-domain aspect ratio

reaches a threshold value. The main disadvantage of recursive bisection

implementations is that it requires the number of sub-domains to be equal to a power of

two.

The chain partitioning method divides the domain into a set of contiguous strips, or

chains, that have the same amount of computational work. This method creates sub-

domains that generally have high aspect ratios and is therefore most effective when the

problem being solved is highly directional. An advantage of this method relative to the

recursive bisection method is that it can generate a balanced decomposition for any

number of processing nodes.

6.2.1.2 Graph Based Partitioners

Graph based partitioners are commonly used to partition finite element method

problems. The basic structure of these methods is to create a graph of the domain being

partitioned, then by first coarsening and subsequently refining this graph generate a

decomposition of the domain. The advantages of these types of partitioners is that they

produce a domain decomposition that both balances the domain work load while

minimising the amount of inter-domain communication. These partitioners work well

with finite element problems because the inter-cell communication load is well defined.

However, for DSMC simulations the inter-cell communications is variable and

expensive to calculate. Another disadvantage of graph based methods is that they do

not guarantee the creation of singly connected sub-domains, which has a significant

effect on the efficiency of the decomposition [35].

6.2.2 Dynamic Domain Decomposition

During the instationary phase of a steady flow simulation or throughout an unsteady

flow simulation, the relative computational loading of different regions within the

simulation domain can change significantly. This results in the initial domain

6.2 Physical Domain Decomposition Parallelisation 92

decomposition becoming unbalanced. As all processing nodes need to be synchronised

after every movement phase, the physical time taken to process each time step is equal

to the slowest node. Therefore, any imbalance between processing nodes has a

significant effect on the efficiency of a PDD solution. To improve the solution

efficiency most parallel DSMC programs implement dynamic domain decomposition to

keep the load balanced across all nodes.

Nance [44] states that repartitioning the domain decomposition at fixed intervals can

lead to poor performance. Therefore, it is preferable to us a variable interval strategy

that determines at what interval to repartition the domain based upon the current

solution performance. The Stop-at-Rise (SAR) algorithm of Nicol and Saltz [45] is the

most commonly used method by DSMC programs [37], [44], [49] & [50].

6.2.2.1 Stop-at-Rise Algorithm

Nance [44] applies the SAR method to the problem of when to repartition the domain

decomposition results in the form of a system degradation function, W, which is given

by,

� �

� � � �� �

n

Cjtjt
nW

n

j

��

�

�
�1

avgmax

(6.1)

where,

n is the number of time steps since the last remapping,

tmax is the maximum time required by any one processing node during the jth time

step,

tavg is the average time required by a processing node during the jth time step, and

C is the time required to repartition the domain decomposition.

The quantity W is equivalent to the average node idle time per time step if the domain

decomposition is repartitioned this time step. This quantity is monitored during the

solution process and the domain decomposition is repartitioned at the first local

minimum is detected, ie. W(n) > W(n-1). This method works by estimating ratio of the

time cost to perform a domain decomposition versus using the current decomposition.

Using this method allows the decision of when to perform a domain decomposition to

be calculated automatically based upon the current state of the simulation.

6.2 Physical Domain Decomposition Parallelisation 93

Nance states that SAR method is advantageous because “no prior knowledge of the

problem is necessary for the determination of the remapping interval”. This is the case

when the solution is in the instationary phase and the number of time steps until the

steady flow state is achieved is unknown. However, in the stationary phase of a steady

flow solution or throughout an unsteady flow simulation, the number of time steps until

the end of solution is known. This information can be used to calculate an improved

estimate of the optimal time to repartition the domain decomposition.

6.2.2.2 Constrained Stop-at-Rise Algorithm

During the instationary phase of the solution process, grid adaption occurs at a

predefined interval and a new domain decomposition is calculate at the completion of

each grid adaption. It would therefore be inefficient to recalculate the domain

decomposition just prior to a grid adaption calculation. Similarly, during the stationary

phase of the solution process it is possible to estimate the number of time steps until the

completion of the simulation.

Therefore, by using this information it is possible to calculate whether time will be

saved by recalculating the domain decomposition this time step. This is done by

comparing the ratio of the estimated time until the next scheduled domain

decomposition if the current domain decomposition is retained relative to recalculating

the domain decomposition this time step. This ratio is given by,

� �
� �� �

� �� �

� �� �

� �� � nCjtn

jtn

Cjt
n

n

jt
n

n

nG

n

j
rem

n

j
rem

n

j

rem

n

j

rem

�

�

�

�

�

�

�

�

�

�

�

�

1
avg

1
max

1
avg

1
max

(6.2)

where,

G is the estimated gain if the domain decomposition was repartitioned this time

step, and

nrem is the number of remaining time steps until the next scheduled domain

decomposition or the completion of the simulation.

6.2 Physical Domain Decomposition Parallelisation 94

If G is greater than unity, then time will be saved by recalculating the domain

decomposition this time step.

6.2.2.3 Repartitioning Strategy

After the domain decomposition has been repartitioned, the cell data and any associated

molecules need to be sent between nodes for cells that changed sub-domains. In order

to reduce the amount of inter-domain communication, and thus reduce the recalculation

time, it is advantageous to minimise the difference between the old and new domain

decompositions.

There are two methods for repartitioning the domain, recalculating the decomposition

and adapting the current decomposition. Recalculating the decomposition will result in

the optimal domain decomposition, but can take longer to calculate. Additionally,

recalculating the domain does not guarantee any correspondence between the old and

new domain decompositions.

Adapting the old decomposition, should result in the maximum correspondence between

the old and new domain decompositions. However, it can be difficult to generate an

optimal decomposition especially when there are a large number of sub-domains.

Robinson [51] found that when the number of sub-domains exceeded a critical

threshold, the graph based adaptive repartitioning scheme used by DSMC program

generated an oscillatory decomposition that had a load imbalance greater than 20%.

6.2.3 Total Node Computational Load

Results from a number of different studies, Wilmoth [57], Robinson [51] and Dietrich

[19], have shown that for a fixed size problem, the parallel speedup reaches a maximum

at some number of processing nodes, and increasing the number of nodes beyond this

number will lead to reduced efficiency. Similarly, Wilmoth [57] showed the relative

speedup of parallelising a problem increased as the number of molecules per node

increased. Furthermore, Robinson [51] found that as the number of particles per sub-

domain decreases the statistical scatter in the load balancing becomes more significant,

leading to a higher level of unbalance. Therefore, it is better to have each node as fully

loaded as possible so that the ratio between computation time and communication time

is large.

6.2 Physical Domain Decomposition Parallelisation 95

Dietrich [19] demonstrated this theory by measuring the parallel efficiency of a

simulation using two different parallelisation loading criteria. The first loading criteria

kept the total number of molecules in the simulation constant, while for the second

criteria kept the number of molecules per node constant. The results of this

demonstration are shown in Figure 6.2.

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300 350 400
Number of nodes

Pa
ra

lle
l e

ffi
ci

en
cy

Constant total number of molecules
Constant number of molecules per node

Figure 6.2 Measured parallel efficiency of the PDD method ([19], Figure 17)

6.2.4 Node Grid Structure

One area where different implementations of PDD method differ is in the storage of the

grid at the processing nodes. Some implementations only store the grid used by the

sub-domain [37], others add a “halo” of a single layer of cells around the sub-domain

[51] and finally, other implementations give a complete copy of the grid to each node

[35].

Storing only the grid used by the sub-domain at the node results in the minimum

memory requirement. However, it requires a custom grid definition to be generated for

each node. More significantly, when a molecule crosses a sub-domain boundary the

final cell location of the molecule cannot be determined. Instead, the location and time

where the molecule intersects the sub-domain boundary is calculated and this

information is sent to the node on the opposite side of the boundary. If the molecule

passes close to the confluence point of multiple sub-domain boundaries, it is possible

for the molecule to cross more than one boundary in its time step. This would require

6.3 Parallel Statistically Independent Runs 96

the molecule to be passed between multiple nodes and more significantly result in

multiple node synchronisation points. This process is illustrated in Figure 6.3.

Communicate

Boundary
crossed?

Yes

Move molecules

No

Figure 6.3 Extract of sub-domain grid movement flow chart

Using a halo layer of cells around the sub-domains grid significantly reduces the

number of times that a molecule is communicated more than once. However, this is

partially offset by the requirement of generating a more complex custom grid definition

for each node. This can become a significant burden during the instationary solution

phase when the domain may be adapted or repartitioned multiple times.

Having the entire grid available at each node negates the requirement to generate a

custom grid for each node allows the molecules final cell location to be calculated when

it crosses a sub-domain boundary. The main disadvantage of this method is that the

memory required for storing the grid on each node is constant. For the majority of

problems the storage requirement of the grid relative to the molecule information is

small. However, for large three-dimensional simulations it can be significant.

6.3 Parallel Statistically Independent Runs

As discussed in Section 6.2.3 the efficiency of a domain decomposed parallel DSMC

implementation increases as the ratio between computation and communication time

increases. The parallel statically independent runs (PSIR) method extends this concept

to the limit by removing the requirement to synchronise nodes at every time step. This

is achieved by giving each node a full copy of the simulation domain and only

combining the sample data at the end of the simulation for the purpose of calculating the

results. Figure 6.4 illustrates the general PSIR method flow chart.

6.3 Parallel Statistically Independent Runs 97

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Start

Load simulation
 configuration

Stop

Save Results

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Initialise simulation
Parallel
communication

Figure 6.4 Parallel statically independent runs flow chart

By giving each node a full copy of the simulation domain, the computational burden

and associated inefficiencies of keeping the load balanced across all nodes is removed.

However, this method has the major limitation of only being able to solve problems that

can be completely contained in an individual nodes (CPUs) memory. This is offset by

6.4 Implementation 98

the significant increase in amount of memory available on engineering workstations and

desktop computers relative to mid 1990s when distributed parallel processing solutions

of the DSMC method were initially developed. It is now common to find that for most

two-dimensional and some three-dimensional problems the CPU time required to solve

the simulation becomes the limiting constraint as opposed to the available memory.

Therefore, the PSIR method is becoming an option for more simulation problems.

6.4 Implementation

The parallelisation method implemented in this thesis is a combination of both the PDD

and PSIR methods. Where possible, problems are solved using the PSIR method.

However, if the problem is too large to fit into a single nodes memory, then the

minimum number of nodes required to contain the solution is calculated, Nmin. If the

total number of nodes available to the program, Nmax, is greater than twice Nmin then the

problem is solved using a combination of the PDD and PSIR methods.

For solutions that use the PDD parallelisation method, the user can optionally specify

that after the steady flow state has been reached the ratio of real to simulation

molecules, FN, be recalculated. The value of FN can be set so that each node has the

maximum possible number of molecules or set to some user defined number of

molecules.

For solutions that use the PSIR method, the independent node solutions are

synchronised during the instationary phase. This is done so that the aggregate sample

data can be used to calculate the solution adaption results and to ensure that a common

grid is used by all nodes.

The parallel version of the program uses a Master/Slave programming model. The

Master program preforms all of the solution adaption routines, calculates the sub-

domains and assigns them to each slave. When the Slave programs are processing the

sub-domain simulations, the Master monitors the progress and keeps the Slaves in time-

synchronisation.

6.4 Implementation 99

Start

Load simulation
 configuration

Stop

Save Results

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Enter molecules
through boundaries

Move all molecules

Calculate molecule
collisions

Sample molecules

Send Results to
Master Node

Finished?
No

Yes

Increment simulation
time

Send/receive
molecules

Domain
decomposition

Parallel
communication

Figure 6.5 Hybrid parallel flow chart

6.4.1 Sub-domains

The global simulation is decomposed into sub-domains after each grid adaption step.

The Master program keeps statistics on the relative solution time of each sub-domain

from the previous period and uses this information, combined with the number of

simulation molecules contained in each cell, to partition the global domain into

approximately equal computational sub-domains. To minimise inter-domain

communication, preference is given to subdividing the global domain into regions with

6.4 Implementation 100

high aspect ratios aligned with the freestream direction. In addition, where feasible sub-

domain boundaries are made coincident with object boundaries. As the parallelisation

method implemented in this thesis uses the PSIR method where possible, this will result

in a large ratio of molecule storage to grid storage. Therefore, each of the slave nodes

was given a complete copy of the simulation grid. This minimises the need to generate a

custom grid for each node and should have a minimal effect on the amount of memory

available for the molecule storage.

6.4.2 Domain Decomposition

The domain decomposition algorithm implemented in this thesis used a variation of the

chain partitioning method. The base algorithm was modified to take advantage of the

multi-block nature of the grid to minimise the edge cut, and was intentionally keep

simple to reduce the computation time and provide robust performance.

The computational cost of calculating the domain decomposition was small compared to

the total simulation time, of the same order of magnitude as a single time step.

Therefore, a new domain decomposition was calculated when the constrained SAR

algorithm, Equation 6.2, estimated a net time saving and after each grid adaption. This

resulted in an optimal domain decomposition for the current solution conditions.

Additionally, the decomposition algorithm was formulated to minimise the change in

cell allocation between successive iterations. This minimised the number of cells

exchanged after each decomposition.

The domain decomposition algorithm is implemented using the following methodology,

1. Calculate the computational load to be assigned to each node.

The computational load of the simulation is measured using the sum of the number

of molecules. For the first domain decomposition, each node is assigned an equal

number of molecules. For subsequent domain decompositions, the number of

molecules assigned to each node is adjusted based upon the node execution time

relative to the average node execution time for the last period. The number of

molecules to be allocated to each node is given by the following equation,

6.4 Implementation 101

� �
m

i

ii
im N

Tn
TT

N
�� ��

�

1
(6.3)

where,

Ti is the total execution time for node i for the last period,

iT is the average total execution time for all nodes,

� is a relaxation constant

n number of solution nodes, and

Nm is the total number of simulation molecules.

The relaxation constant, �, was added to the equation to stop oscillations in

decomposition distribution. A value of � = 0.67 was found to give stable results, and

was used for all simulations presented in this thesis.

2. Subdivide the simulation domain.

To minimise the change in decomposition between iterations, the nodes and grid

blocks were processed in the same order at each iteration. If a grid block was split

since the last iteration, its place in the processing was arranged to maintain the

relative order of the grid blocks.

Using the number of molecules to be allocated to a node that was calculated in the

previous step, the algorithm processes each grid block in order. If the total number

of molecules in the block was less than the remaining molecule allocation for the

node, the complete block was assigned to the node. If the number of molecules in

the block was greater than the node’s remaining molecule allocation, then each cell

was stepped through until the remaining molecule allocation was fulfilled. The cells

in the grid block were processed by row or column, depending on which was more

aligned with the primary flow direction. This was done to minimise the edge cut of

the decomposition.

3. Exchange of molecules and cell data.

Each node is given a full copy of the domain decomposition. By comparing the new

and the old decompositions, the node can calculate which cells, and associated

molecules, are no longer in its sub-domain and which node to send them to. This

allows the exchange of data to occur in a distributed manner.

6.4 Implementation 102

If it is found that the calculated decomposition results in an exchange of less than

0.5% of the total number of cells, then the next decomposition calculation is delayed

to minimise oscillations.

6.4.2.1 Efficiency Measurements

Several test cases were run to determine the efficiency of the domain decomposition

algorithm. These tests used three different grids, Figure 6.6, and two different flow

configurations.

The gas flow was molecular Nitrogen at a Mach number of 4, a temperature of 300K

and a number density of 1020 m-3. These conditions correspond to a mean free path of

0.01294m and a Knudsen number of 0.0143. For the first flow condition the stream

direction was parallel to the x-axis. For the second condition the stream direction was

inclined at 30� to the x-axis. For each test case the simulation was run with 4 solution

nodes, for a total of 5000 time steps with all solution adaption functionality disabled.

a. Uniform b. Linear Varying c. Multi-block uniform
Figure 6.6 Domain decomposition test grids

The results presented in Table 6.1 show that there was only a variation of 3.8% in the

solution time between all six test cases. Figure 6.7 shows the final grid decomposition

for the aligned flow direction tests. As there was no significant change in the domain

decomposition between the aligned and inclined flow direction tests the final grid

decompositions are not presented. Changing to a multi-block resulted in a 1.5 – 2%

increase in solution time. The majority of this time increase was due to initial load

imbalance which is shown by the increased number of domain decompositions.

However, once the stationary flow phase has been reached there should be no

significant difference between a single block and multi-block solution time. It was

interesting to note that both of the linear grid tests had a shorter solution time than the

6.4 Implementation 103

corresponding uniform grid tests. This was primarily due to the linear grid tests

performing their domain decomposition earlier than the uniform grid tests.

Additionally, the linear grid test with the aligned flow direction produced a marginally

better domain decomposition than the aligned uniform grid test.

Overall, these test results show that the domain decomposition algorithm is able to

produce an efficient decomposition for both non-uniform and multi-block grids.

Grid Flow
direction

Relative
solution time

No. of domain
decompositions

Uniform 0� 100.0% 1

Uniform 30� 100.8% 1

Linear 0� 99.0% 1

Linear 30� 100.6% 1

Multi-block 0� 101.5% 3

Multi-block 30� 102.8% 4

Table 6.1 Domain decomposition test results

a. Uniform b. Linear Varying c. Multi-block uniform
Figure 6.7 Domain decomposition test results

6.4.3 Solution Adaption

The solution adaption algorithms developed in the previous chapter were incorporated

into the parallel solution implementation. As with the other parallel functionality, the

Master node was responsible for coordinating the solution adaption algorithms. The

method of integrating the grid and time step algorithms was different and is described in

detail below.

6.4 Implementation 104

6.4.3.1 Grid Adaption

The grid adaption algorithm was implemented in a serial manner with the Master node

performing all of the adaption calculations. This method of implementation was chosen

as the Master node already had a copy of each nodes’ sample results and therefore could

generate the adaption distribution function. In addition, the adaption algorithm needs to

know the adapted state of the other grid blocks during the adaption process. This is

required to maintain consistent internal boundaries and to allow the joining internal

nodes that are closely located. The Master node aggregates the Slave nodes sample data

and uses this data with the serial adaption algorithm. After the adapted grid has been

generated, a new domain decomposition was calculated. This domain decomposition

and the new grid were then sent to all nodes. Each node then recalculated the

computational position of all molecules that it held from the previous solution period.

Any molecule that was not located in the node’s new domain decomposition was

transferred to its new host node.

6.4.3.2 Time Step Adaption

The time step adaption algorithm was implemented in both a parallel and serial manner.

When the PSIR parallelisation method is used in the solution process, the Master node

calculated the time step adaption in serial. This was done as only the Master node had a

copy of all PSIRs sample data required to calculate the adaption. While it would have

been possible for each PSIR to calculate its own time step adaption distribution, this

would have resulted in each PSIR having a different distribution and would not have

used all of the available sample data.

When only the PDD parallelisation method is used in the solution process, the time step

adaption algorithm uses a parallel implementation. This implementation follows the

serial algorithm developed in Section 5.4.1, and adds two synchronisation points.

The procedure followed at each time step adaption is:

1. Each node calculates its desired new base time step using Equations 5.14 - 5.17.

2. All nodes send their desired base time step to the Master node. The Master node

selects the smallest time step to be the new base time step for the solution and

broadcasts this value to all nodes.

6.4 Implementation 105

3. Each node uses the new base time step to calculate the new time step multiple for

each cell in its domain using Equation 5.19. This information is then used to

adjust all molecule time steps to account for changing cell time step using

Equation 5.20.

4. All nodes then send back a flag indicating whether their time step adaption

process had stabilised. The Master node aggregates these flags and broadcasts the

result to all nodes.

This procedure was found to work efficiently, required minimal data transfer and only

two synchronisation points.

6.4.4 Parallel Libraries

The most widely used method for implementing distributed computing is the message-

passing paradigm. This paradigm allows the user to setup a virtual machine across a

distributed set of computers. Communication of control signals and data is passed

between nodes via messages over the connecting network infrastructure. This network

infrastructure is most often a standard ethernet link but can be an inter-processor bus in

the case of multi-processor computer. The message-passing library handles all the low-

level communications for the user and provides a set of interface independent routines.

Two standard message-passing software libraries are currently in wide use, Parallel

Virtual Machine (PVM) [22] and Message Passing Interface (MPI) [40]. There are a

number of papers that publish results of comparisons between these two libraries, [16],

[39] and [54]. All these comparisons agree that the relative performance of the two

libraries is very similar. Furthermore, there are examples of DSMC implementations

for both the libraries, PVM: [62], and MPI: [37] and [51].

The PVM library was used to provide the message-passing functionality in this thesis as

it is the preferred parallel library of the University of Sydney Engineering Department.

However, the program has been written so that the message-passing library function

calls are wrapped in a non-specific interface to simplify the translation to a different

library, if required in the future.

Chapter 7

Program Verification and Results

7.1 Introduction

This chapter presents the verification and results of the program implemented using the

theory presented in the previous chapters. Section 7.2 presents the results for two

simulations that were run to verify the correct physical modelling of the program.

Section 7.3 presents results with the program running serially and demonstrates the

utility of the solution adaption procedures. Finally, Section 7.4 presents results for the

program running different parallelisation models.

7.2 Program Verification

This section presents the results of two simulations that were run to verify the correct

physical modelling of the program. The first test was designed to verify the accuracy of

the simulation collision rate. The second test demonstrated the overall accuracy of the

program.

7.2.1 Collision Rate Test

The purpose of this test is to verify that the program correctly simulates the inter-

molecule collision rates and total energy conservation. The test configuration is based

on the collision test configuration presented by Bird [7] §11.2, with the main difference

being the results presented below are for a two-dimensional simulation as opposed to a

one-dimensional simulation used in [7].

The problem uses a homogeneous gas mixture composed of five different species. The

molecular collisions were simulated using the variable hard sphere model with each gas

assigned to different species group for the purpose of collision partner selection.

Energy exchange between translational and rotational modes was calculated using the

Larsen-Borgnakke model. A constant rotational relaxation collision number of 5 was

7.2 Program Verification 107

used for all species. All gas species had a reference temperature of 273K, a coefficient

of viscosity of 0.75 and 5 degrees of freedom. The species fraction, molecular diameter

and mass are listed in Table 7.1. The gas had a number density of 1020 m-3 at a

temperature of 300K. These conditions correspond to a mean free path of 0.01817m for

the gas mixture. The simulation region was a square with a side length equal to 10

mean free paths and a fixed cell size equal to half a mean free path. The ratio of real to

simulated molecules was set so that there were on average 20 molecules per cell. All

boundaries were modelled as planes of symmetry.

Species
Species
fraction

%

Molecule
diameter
dref (m)

Molecule
mass
m (kg)

1 0.60 3.5 �10-10 5.0 �10-26

2 0.20 4.0 �10-10 4.5 �10-26

3 0.10 3.0 �10-10 2.5 �10-26

4 0.08 3.0 �10-10 2.0 �10-26

5 0.02 4.0 �10-10 4.0 �10-26

Table 7.1 Collision rate test gas species molecular properties.

7.2.1.1 Theoretical Collision Rate

The theoretical collision rate between molecule species p and q, � �
0pqN , is defined in

[7] Equation 4.78, and is given by,

� � � �
� �

� � 2
11

2
0

2
2 2

1

�
�
�

�

�
�
�

�

�
�

�

�

�
�

�

�
�

�

r

pqref

pqref
qppqrefpq m

Tk

T
TnndN

pq�

� (7.1)

where,

� �
pqrefd is the reference diameter for collisions between molecule species p and q,

and is equal to average of each species reference diameters,

� �
pqrefT is the reference temperature for collisions between molecule species p and

q, and is equal to average of each species reference temperature,

�pq is the temperature exponent of the coefficient of viscosity between
molecule species p and q, and is equal to average of each species value,

mr is the reduced mass of the collision pair and is given by,
qp

qp
r mm

mm
m

�

�

7.2 Program Verification 108

7.2.1.2 Results

The results of the test are summarised in Table 7.2 as the ratio between the simulated

collision rate and the theoretical rate. The average difference between the simulated

collision rate and the theoretical rate was 0.14% and the maximum difference was

0.42%. The final total temperature of the simulation region was 300.423K, with the

translational temperature being 299.815K and the rotational temperature 301.325K.

Species 1 2 3 4 5

1 1.00105 1.00065 1.00070 1.00084 1.00126

2 1.00065 1.00034 0.99943 0.99947 0.99868

3 1.00070 0.99943 1.00108 0.99949 0.99657

4 1.00084 0.99947 0.99949 0.99808 0.99653

5 1.00126 0.99868 0.99657 0.99653 0.99578
Table 7.2 Ratio of simulated collision rate to theoretical value.

These values are equivalent to those published in [7] and show that the DSMC

implementation correctly simulates the collision rate and maintains the correct total

system energy balance.

7.2.2 Supersonic Leading-edge Test

The supersonic leading-edge problem was chosen as the second validation test case as

there are published results available, Bird [7] §14.3. Additionally, Bird notes that the

supersonic leading-edge makes a good test case because “the shear stress is the same

order as the pressure and … is particularly sensitive to any failure to meet the

computational requirements of the DSMC method”.

7.2.2.1 Test Configuration

The configuration of the problem is identical to [7] and is detailed below. The flow is

comprised of Nitrogen at a Mach number of 4, a temperature of 300K and a number

density of 1020 m-3. These conditions correspond to a mean free path of 0.01294m and a

Knudsen number of 0.0143. The plate is located on the lower x-boundary and is parallel

to the free stream flow direction. The leading edge of the plate starts 5.4 mean free

paths from the upstream boundary, x = 0.0699m, and extends to the downstream

boundary at x = 1.0m. The plate has a fixed temperature of 500K and is modelled as a

7.2 Program Verification 109

diffuse surface with full temperature accommodation. The small segment of the x-

boundary in front of the plate leading edge was modelled as a plane of symmetry, while

all other boundaries were modelled as stream boundaries. The upper y-boundary was

located at y = 0.6m.

7.2.2.2 Results

The results of the simulation are presented in the Figure 7.1 - Figure 7.6. Figure

7.1shows the results generated by this author overlaid upon the results presented in [7]

Figure 14.7. This figure shows a good correspondence between the two sets of results

and is indicative of the good correspondence between the other figures published in [7]

§14.3.

The main difference evident in Figure 7.1 is the velocity slip at the surface of the plate

is more pronounced in the current results. This is due to the smaller cell size at the plate

surface and the use of an optimal time step for each cell. The smaller cell size stops the

flow properties close to the surface being diffused by the flow properties above the thin

slip region. Whereas the optimal cell time step reduces the probability of more

energetic molecules moving through the cells near the surface without colliding. The

difference in the velocity slip is less pronounced at the trailing edge of the plate due to

the influence of the downstream boundary condition. There is also a minor difference

in the thickness of the boundary layer which is again attributable to the use of an

optimal cell time step as well as being influenced by the change in velocity slip profile.

Figure 7.4 shows that the velocity slip at the surface of the plate is confined to a thin

region and has a Mach number less than 0.5. Figure 7.6 shows the short, sharp increase

in skin friction coefficient near the leading edge and the decreasing value after the

maximum. Also evident is the slight increase in skin friction coefficient near the

trailing edge that is caused by the acceleration of the flow that is induced by the

downstream boundary conditions.

7.2 Program Verification 110

Figure 7.1 Supersonic leading-edge number density contours overlaying the
results from [7] Figure 14.7, Ma� = 4.0, T� = 300K, Kn = 0.0143,
n = 10-20 m3.

1.45
1.35
1.25
1.15
1.05
0.95
0.85
0.75
0.65

n / n
�

Figure 7.2 Supersonic leading-edge number density contours, Ma� = 4.0,
T� = 300K, Kn = 0.0143, n = 10-20 m3.

2.60
2.40
2.20
2.00
1.80
1.60
1.40
1.20
1.10
1.05

T / T
�

Figure 7.3 Supersonic leading-edge temperature number contours, Ma� = 4.0,
T� = 300K, Kn = 0.0143, n = 10-20 m3.

7.2 Program Verification 111

3.90
3.70
3.50
3.00
2.50
2.00
1.50
1.00
0.50

Malocal

Figure 7.4 Supersonic leading-edge local Mach contours, Ma� = 4.0, T� = 300K,
Kn = 0.0143, n = 10-20 m3.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 10 20 30 40 50 60 70

x / �
�

C
P

Figure 7.5 Supersonic leading-edge pressure coefficient, Ma� = 4.0, T� = 300K,
Kn = 0.0143, n = 10-20 m3.

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70

x / �
�

c f

Figure 7.6 Supersonic leading-edge skin friction coefficient, Ma� = 4.0,
T� = 300K, Kn = 0.0143, n = 10-20 m3.

7.3 Serial Results 112

7.3 Serial Results

This section presents results of the DSMC implementation running serially and

demonstrates the utility of the solution adaption procedures. The aim of the solution

adaption procedures is to allow the user to enter the problem geometry and freestream

flow conditions and have the DSMC implementation adapt the grid, time step and

simulation number density to obtain an accurate result. To demonstrate the

effectiveness of the solution adaption procedures the results of two simulations that use

the same geometry and freestream flow properties, except the freestream Mach number

and temperature, are presented. The solution adapted results of these two tests are

compared against an unadapted solution.

7.3.1 Test Configuration

The two test configurations used are equivalent to the problems in [7] §14.5 and §14.6

respectively except that the location of the simulation boundaries relative to the plate

have been extended. The primary aim of the test was to show that the solution adapted

results kept the two main solution accuracy parameters, the ratio of average cell side

length to local mean free path, �ml , and the ratio of maximum collision separation to

local mean free path, dc,max/�� to less than 21 and 1.0, respectively.

The problem geometry used for both tests was a vertical flat plate with a height of

0.15m. The plate was located 0.6m from the front boundary and bottom end was

positioned on the lower boundary. The rear boundary was set at 1.2m from the front

boundary and the upper boundary was set at 0.75m from the lower boundary. The

lower boundary was modelled as a plane of symmetry, while all other boundaries were

modelled as stream boundaries. The freestream flow was Argon with a number density

of 1020 m-3. These conditions correspond to a mean free path of 0.01294m and a

Knudsen number of 0.043 (using twice the plate height due to the plane of symmetry).

For the subsonic tests, the freestream temperature was 300K and speed was

u� = 172 ms-1, which corresponds to a Mach number of 0.53. Both surfaces of the plate

were specularly reflecting. For the supersonic tests, the freestream temperature was

200K and speed was u� = 1317.3 ms-1, which corresponds to a Mach number of 5. The

plate surfaces were diffusely reflecting with the front at the stream stagnation

temperature of 1866.7K and the rear at the stream temperature of 200K.

7.3 Serial Results 113

For both of the test configurations a reference simulation was run using a static,

unadapted grid with a uniform cell size equal to ��/2, Figure 7.7.

Figure 7.7 Vertical flat plate static, unadapted grid

7.3.2 Subsonic Test Results

The results of the solution adapted DSMC implementation are presented in Figure 7.8

through Figure 7.14. These results show good correspondence with streamline and

Mach number results published in [7] §14.5. The main difference between the two sets

of results is that the flow features downstream and above the vertical plate are

elongated. This is due to the enlarged simulation domain used to generate the results

presented here. The static, unadapted solution results for the accuracy parameters �ml

and dc,max/� are presented in Figure 7.15 and Figure 7.16 respectively.

Figure 7.8 Local Mach number contours past a vertical flat plate, Ma� = 0.53,
T� = 300K, Kn = 0.043, n = 10-20 m3.

7.3 Serial Results 114

Figure 7.9 Number density contours past a vertical flat plate, Ma� = 0.53,
T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.10 Streamlines past a vertical flat plate, Ma� = 0.53, T� = 300K,
Kn = 0.043, n = 10-20 m3.

Figure 7.11 Adapted grid, Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3.

7.3 Serial Results 115

Figure 7.12 Adapted time step multiple, Ma� = 0.53, T� = 300K, Kn = 0.043,
n = 10-20 m3.

0.50
0.45
0.40
0.35
0.30
0.25

lm / �

Figure 7.13 Ratio of average cell side length to local mean free path, Ma� = 0.53,
T� = 300K, Kn = 0.043, n = 10-20 m3.

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25

dc,max / �

Figure 7.14 Ratio of maximum collision separation to local mean free path,
Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3.

7.3 Serial Results 116

0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35

lm / �

Figure 7.15 Static grid, ratio of average cell side length to local mean free path,
Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3.

0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35

dc,max / �

Figure 7.16 Static grid, ratio of maximum collision separation to local mean free
path, Ma� = 0.53, T� = 300K, Kn = 0.043, n = 10-20 m3.

The final adapted grid, shown in Figure 7.11, was divided into 27350 cells and 3 blocks,

which is the same number of blocks used to define the solution geometry. The final

grid is relatively uniform and can be divided into two regions. The smallest of the

regions is located downstream of the plate and the second region encompasses the

remainder of the simulation domain. The main difference between the two regions is

the relative cell size. The cells located in the first zone are approximately 1.5 times

smaller than the cells located in the second zone.

Starting above the tip of the plate is a small region of relatively moderate grid

distortion. This region corresponds to the interface between the two zones and is a

common artefact of the grid adaption algorithm when there is a rapid change in grid

density. Figure 7.8 and Figure 7.9 do not show any adverse effects on the solution

7.3 Serial Results 117

result caused by this region of gird distortion. As expected, Figure 7.13 shows that this

region corresponds to an area of smaller than average �ml . Figure 7.14 shows that

there are small localised areas of high dc,max/� located within the distortion region. The

cause of these areas was investigated and it was found to be a result of a combination of

small cell volume, cell skew and relatively low number sum. It was found that in very

rare cases there would be a small number of molecules in the cell, and the distribution

of molecules in the cell was such that they were grouped around opposite corners of the

cell. This resulted in a collision partner being selected from across the diagonal length

of the cell and thus an unusually large ratio of dc,max/�. These occurrences were very

rare, and did not have a measurable effect on the simulation results.

Figure 7.13 shows that the grid adaption algorithm was able to maintain the cell size

closely to the defined limits of 0.25 � �ml � 0.45. The maximum and minimum

values of �ml in the grid were 0.48 and 0.19 respectively. The region behind the plate

had the smallest value of �ml . This area corresponded to a region of higher than

average molecule number sum and therefore had its cell size reduced using the

procedure detailed in Section 5.3.1. Figure 7.12 shows that this area also corresponded

to the only region with a time step multiple greater than 1. This is due to the relatively

low average speed of the molecules in the region.

Comparing Figure 7.13 with Figure 7.15 and Figure 7.14 with Figure 7.16 shows that

the grid adaption algorithm has reduced the magnitude of accuracy parameters �ml

and dc,max/� relative to the static, unadapted solution.

7.3.3 Supersonic Test Results

The results of the solution adapted DSMC implementation are presented in Figure 7.17

through Figure 7.24. These results show good correspondence with those published in

[7] §14.6, except as noted for the subsonic test where the enlarged simulation domain

has extended the flow features. The static, unadapted solution results for the accuracy

parameters �ml and dc,max/� are presented in Figure 7.25 and Figure 7.26 respectively.

7.3 Serial Results 118

Figure 7.17 Local Mach number contours past a vertical flat plate, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.18 Temperature contours past a vertical flat plate, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.19 Number density contours past a vertical flat plate, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3.

7.3 Serial Results 119

Figure 7.20 Streamlines past a vertical flat plate, Ma� = 5.0, T� = 300K,
Kn = 0.043, n = 10-20 m3.

Figure 7.21 Adapted grid, Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.22 Adapted time step multiple, Ma� = 5.0, T� = 300K, Kn = 0.043,
n = 10-20 m3.

7.3 Serial Results 120

Figure 7.23 Ratio of average cell side length to local mean free path, Ma� = 5.0,
T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.24 Ratio of maximum collision separation to local mean free path,
Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.25 Static grid, ratio of average cell side length to local mean free path,
Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3.

7.3 Serial Results 121

1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20

dc,max / �

Figure 7.26 Static grid, ratio of maximum collision separation to local mean free
path, Ma� = 5.0, T� = 300K, Kn = 0.043, n = 10-20 m3.

Figure 7.19 shows that there is a number density ratio of 26 across the simulation

domain for this test configuration. This large number density ratio directly correlates to

a large � ratio through Equation 5.5. Figure 7.23 shows that the grid adaption algorithm

was able to keep the �ml ratio close to the defined limits of 0.25 � �ml � 0.45.

There are two small areas where the final grid is greater the desired value of �ml �

0.5, and the maximum value of �ml within the adapted grid was 0.56. Figure 7.24

shows that these areas do not have an adverse effect on the dc,max/� values and overall

dc,max/� was less 0.5 for the majority of the simulation domain. Similar to the subsonic

test case there are small localised areas of high dc,max/� which are again due to a

combination of small cell volume, cell skew and relatively low number sum.

The effectiveness of the grid adaption is evident by comparing the plots of �ml , in

Figure 7.23 and Figure 7.25. The maximum value of �ml for the adapted and

unadapted solutions is 0.56 and 2.0 respectively. For the unadapted solution the

distribution of �ml follows the number density contours, whereas, for the adapted

solution the distribution of �ml is more uniform. Figure 7.24 and Figure 7.26 show

similar results for the distribution of dc,max/�. The maximum value of the cell mean

collision separation, [dc,ave/�]max, for the adapted and unadapted solutions is 0.78 and

1.34 respectively. This shows that both solutions are on average achieving physically

accurate collision partner selection. However, the adapted solution produces a

measurable reduction in the collision separation.

7.4 Parallel Results 122

The final grid generated by the adaption algorithm was divided into 9 blocks with a total

of 43950 cells, as shown in Figure 7.21. It can been seen that the cell density is

concentrated in the region in front of the vertical plate and behind the shock. Similar to

the subsonic test case there is a region of grid distortion starting at the tip of the plate

and following the local density contours. There is also a thin region of smaller cells that

is on the downwind side of the upper-right block boundary. This region can be seen

Figure 7.23 as being on the lower limit of �ml adaption criteria. This is an artefact of

the grid adaption algorithm as the number cells in each grid block is calculated

independently.

Figure 7.22 shows that 13 different time step multiples were used in the solution and the

distribution follows the number density contours. If time step adaption was not used,

then solution time would have been significantly increased as over half the simulation

domain had a time step multiple greater than 5. Thus, the time step adaption

functionality allows the grid adapted solution to be used efficiently.

7.3.4 Conclusions

The serial results have shown that the grid adaption algorithm is able to generate a grid

that ensures that the majority of cells have a value of �ml � 0.5. Similarly, the

adapted grid ensured that the maximum value of dc,max/� was less than unity over the

entire simulation domain and that the mean collision separation was measurably

reduced. Finally, the time step adaption functionality allowed the efficient use of the

grid adapted solution by enabling the optimum time step to be used for different regions

of the solution domain.

7.4 Parallel Results

This section presents results for the DSMC implementation running different

parallelisation models. The aim of the tests is to determine the relative parallel

efficiency of the different models and their range of applicability.

7.4.1 Cluster Description

The computers used to perform the parallel testing consisted of 16 Pentium4 1.6Ghz

machines with 512Mb of memory. All of the computers were connected via 100Mbit

7.4 Parallel Results 123

ethernet through a switching hub. For all of the tests, the supervisory Master program

was run on a separate computer so that it did not influence the relative loading of the

solution nodes. For tests involving 16 computers, another Pentium4 computer on the

same network, but not part of the cluster, was used to host the Master program.

All of the computers were running Linux with kernel 2.4.18-3 and version 3.4.3 of the

PVM library was used. The timing of the tests was performed internal to the Master

program by making calls to the system real-time clock. No other programs, apart from

the operating system, were active on any of the machines during the testing.

7.4.2 Test Configuration

The simulation configuration used for tests was the same as the configuration used in

the subsonic vertical flat plate test (Section 7.3.2). This configuration was chosen as it

had a moderate number density and streamline direction variation across the flow field.

To ensure that an accurate relative measure of parallel performance was obtained, the

solution adaption routines were disabled and the simulation was started from a pre-

generated state of equilibrium. At the start of each test, a fixed number of iterations

were run to ensure that the simulation was in the stationary phase and then the solution

process was timed until a set number of molecule samples were obtained.

7.4.3 Results

When run on a single node the solution of the test configuration took 10 hours and 55

minutes and used an average of 345000 molecules. This solution time was used as the

reference point to calculate the parallel efficiency and speedup results. Parallel

efficiency is defined as the ratio of the product of the solution time by the number of

nodes (computers) used relative to the serial solution time.

7.4.3.1 Relative performance of PDD and PSIR parallelisation methods

The first series of tests measured the relative performance of the physical domain

decomposition (PDD) and parallel statically independent runs (PSIR) parallelisation

methods and the results of these tests are presented in Table 7.3 and Figure 7.27. These

results show that the efficiency of the PDD method decreases as the number of solution

nodes increases. This is in line with other published results of this method, [19], [49],

7.4 Parallel Results 124

[51], [57]. The parallel efficiency of this implementation is equivalent to the results in

[49] but slightly less than those in [51].

PDD PSIR
No. of Nodes Efficiency Speedup Efficiency Speedup

2 96.3% 1.93 99.9% 2.00
4 89.7% 3.59 98.4% 3.94
6 83.7% 5.02 98.6% 5.91
8 81.7% 6.54 98.2% 7.86

10 76.6% 7.66 97.6% 9.76
12 68.9% 8.27 96.2% 11.54
14 67.3% 9.43 97.2% 13.60
16 66.7% 10.67 95.4% 15.27

Table 7.3 PDD and PSIR parallelisation results

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16

No. of Solution Nodes

Pa
ra

lle
l E

ffi
ci

en
cy

PDD
SIPR

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

No. of Solution Nodes

Sp
ee

du
p

Ideal
PDD
SIPR

a. Parallel efficiency b. Parallel speedup

Figure 7.27 PDD and PSIR parallelisation results

The PSIR results show that the decrease in performance as the number of solution nodes

increases is minimal. This shows the advantage of the PSIR parallelisation method in

that the number of synchronisation points is significantly reduced. Furthermore, as each

node is solving exactly the same problem the solution is inherently load balanced. This

implies that the time taken for each node to reach the synchronisation point should be

equal and thus only a very small amount of the time will be spent waiting for other

nodes.

7.4 Parallel Results 125

7.4.3.2 Combined PDD and PSIR performance

A series of tests were run to evaluate the efficiency of using a combined PDD and PSIR

parallelisation method. For these tests the number of nodes over which the domain was

distributed and the number of PSIRs were varied to keep the total number of solution

nodes equal to 16. The results presented in Table 7.4 and Figure 7.28 show that the

parallel efficiency increases sharply as the number of PSIRs increase. Furthermore,

Figure 7.29 shows that there is only a small efficiency penalty, approximately 4%, of

converting a PDD only solution into a combined PDD and PSIR solution.

No. of Distributed
Domains

No. of
PSIRs

Efficiency Speedup

16 1 66.7% 10.67
8 2 78.6% 12.57
4 4 87.1% 13.93
2 8 89.6% 14.33
1 16 95.4% 15.27

Table 7.4 Combined PDD and PSIR results

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16

No. of SIPRs

Pa
ra

lle
l E

ffi
ci

en
cy

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

No. of SIPRs

Sp
ee

du
p

a. Parallel efficiency b. Parallel speedup

Figure 7.28 Combined PDD and PSIR results

7.4 Parallel Results 126

0%

20%

40%

60%

80%

100%

0 2 4 6 8

No. of Distributed Domains

Pa
ra

lle
l E

ffi
ci

en
cy

PDD
PDD + SIPR

Figure 7.29 Performance of comdined PDD and PSIR method relative to PDD
method

7.4.3.3 PDD performance with a constant number of molecules per node

The PDD test runs were repeated with the FN of the solution adjusted so that a constant

number of molecules per node was maintained. These results are summarised in Table

7.5 and are plotted in Figure 7.30. Comparing these results to the PDD results for a

constant total number of molecules it can be seen that for more than two solution nodes,

the constant number of molecules per node solution has a reduced efficiency.

No. of Nodes Efficiency Speedup

2 95.8% 1.92
4 86.5% 3.46
6 75.3% 4.52
8 69.0% 5.52

10 66.7% 6.67
12 63.2% 7.58
14 59.9% 8.39
16 56.3% 9.01

Table 7.5 PDD results with a constant number of molecules per node

7.4 Parallel Results 127

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16

No. of Solution Nodes

Pa
ra

lle
l E

ffi
ci

en
cy

Const. Total No. of Molecs
Const. No. of Molecs per Node

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

No. of Solution Nodes

Sp
ee

du
p

Ideal
Const. Total No. of Molecs
Const. No. of Molecs per Node

a. Parallel efficiency b. Parallel speedup

Figure 7.30 PDD results with a constant number of molecules per node

This result is at variance with other published results for simular tests, [19] and [57].

Examination of the run logs revealed that the primary factor contributing to the decrease

in parallel efficiency was load imbalance. One of the limitations of the current domain

decomposition algorithm is that it measures cell work load by the number of molecules

only and does not take into consideration variations in work load caused by differing

collision rates. Furthermore, with the large number of molecules per cell, small

imbalances in cell assignment are amplified. The effect of the domain decomposition

algorithm limitation was demonstrated by the algorithm being run more often in the

constant number of molecules per node simulations, but still resulting in a moderate

load imbalance after decomposition.

Secondary effects that decreased the parallel efficiency were the increased amount of

data passed between nodes each time step and communication delays. For the 16 node

test each node was exchanging on average approximately 1% of its molecules to each of

the nodes that it was connected too. As each node was connected to an average of two

other nodes, each node was sending and receiving 2% of its molecules, �8000, each

time step. This large amount of molecule exchange contributed to intermittent

communication delays between nodes. These delays were a result of the inter-node

communication hardware used by the computer cluster. The single hub that connects all

nodes together can become a choke point under heavy inter-node communications. This

problem is compounded by the fact that nodes that have a similar load balance would be

7.4 Parallel Results 128

trying to communicate at the same time. The computers used in [19] and [57] were an

Intel iPSC/860 hypercube and an IBM SP2 respectively. Both which are purpose built

parallel processing machines with specialised high speed inter-node communication

buses that reduce the effects of inter-node communication delays.

7.4.4 Summary

The parallel performance tests have demonstrated the effectiveness of the two

parallelisation methods. The results for the PDD method using a constant total number

of molecules were equivalent to previously published results. However, the results for

the PDD method using a constant number of molecules per node showed that the

current implementation does not perform as efficiently as other implementations when

the number of molecules per cell is significantly increased. This lack of performance

was attributed to a deficiency in the domain decomposition algorithm.

The results of the PSIR method showed that this method scaled well with an increasing

number of solution nodes and maintained a parallel efficiency above 95% for all tests.

Furthermore, the results showed that using a combined PDD and PSIR method was

always more efficient than using a PDD with the same number of solution nodes. These

results show that for the solution of large problems, maximum parallel efficiency will

be obtained if the combined PDD and PSIR method is used. The solution nodes should

be subdivided so that the minimum number of nodes are used in each PDD and the

number of PSIRs is maximised.

Chapter 8

Conclusion

8.1 Introduction

The objective of this thesis was to develop a DSMC implementation that allows a non-

expert user to efficiently solve arbitrary problems with the DSMC method in both serial

and parallel environments. This chapter summarises the contributions of this thesis.

Section 8.2 highlights the major theoretical and practical solutions it has offered.

Section 8.3 suggests areas of future work in this field of research. Finally, Section 8.4

provides a brief summary of the thesis and concluding remarks.

8.2 Principle Contributions

The major contributions of this thesis arise from the formulation of different solution

adaption and parallelisation algorithms. The integration of these algorithms into a

single DSMC implementation results in a significant improvement in performance.

8.2.1 Efficient Molecule Movement

A novel molecule movement algorithm was developed which allows the efficient

calculation of a molecule’s trajectory through an arbitrary quadrilateral grid. This

movement algorithm combined the simplicity and accuracy of calculating the

molecule’s movement in physical space with the simple cell indexing afforded by

tracking the molecule’s computational space position. The algorithm achieved this by

performing the molecule movement in physical space and then transforming the

molecule's final position into computational space. The computational space position

was then used to determine the molecule’s new cell index and whether any

surface/boundary interactions took place over the molecule’s trajectory.

8.2 Principle Contributions 130

8.2.2 Multi-block Grid Adaption

A multi-block grid adaption algorithm was developed that used the intermediate results

of the solution, to calculate the number of cells and the distribution required ensuring

that the grid meets the DSMC cell size requirements. The algorithm determined

whether the distribution of cell size across a block would be more efficiently

represented by splitting the block into two or more blocks and it creates the splits if

required. Furthermore, the algorithm adjusted the ratio of real to simulation molecules

to ensure that the number of molecules per cell is sufficient to ensure that the correct

collision rate is maintained.

8.2.3 Time Step Adaption

A parallelised time step adaption algorithm was developed which allowed the time step

of each cell to be set to a locally optimal value while still maintaining the ability to

efficiently synchronise the solution process in a parallel implementation. Additionally,

the algorithm was formulated such that the calculation of a new grid time step

distribution was performed in parallel.

8.2.4 Parallelisation

Two different but complementary parallelisation methods were integrated. This

integration of complementary parallelisation methods allows the use of the optimal

parallel configuration for the available computational resources. Furthermore, the

parallel implementation allows the parallel distribution to be dynamically changed to

account for changes in the solution.

An improved implementation of the stop-at-rise algorithm was developed. This

modified algorithm incorporates information relating to the total solution progress with

the current solution performance to determine whether it is efficient to perform a

domain decomposition repartitioning.

The results of the parallel tests showed that for the solution of large problems,

maximum parallel efficiency would be obtained if the combined PDD and PSIR method

is used. The solution nodes should be subdivided so that the minimum number of nodes

are used in each PDD and the number of PSIRs is maximised.

8.3 Future Research 131

8.3 Future Research

The following section outlines two areas where further work could make improvements

to the implementation of the DSMC method.

8.3.1 Domain Boundary Adaption

The results presented in Section 7.3 show the placement of the domain boundaries can

affect the results and efficiency of a simulation. For both the subsonic and supersonic

vertical flat plate solutions, repositioning of the domain boundaries would have

improved the solution. In the supersonic solution, there was an area in front of the

domain where the flow properties were equivalent to the freestream conditions. The

total solution time could have been reduced if the upwind boundary was moved closer

to the leading edge of the shock. Similarly, the results for both the subsonic and

supersonic solutions show that the location of the downstream and top boundaries had

an effect on the final flowfield. Therefore, a solution adaption procedure that compared

the flowfield properties around the domain boundary with the boundary conditions and

adjusted the boundary, if required, would make an improvement to the solution process.

Research needs to be undertaken into the optimum mix of boundary movement and

boundary property adaption.

8.3.2 Domain Decomposition

As the size of DSMC problems increase and the number of nodes used in the parallel

solution increases, the quality of the domain decomposition will become more critical.

As discussed in Section 7.4, the domain decomposition algorithm could benefit from

further research. Ideally the measurement of cell computational load should include the

collision rate and where applicable the chemical reaction rate and surface interaction

rate. Research would need to be conducted into developing a consistent measurement

of cell load that can combine all of these factors but is relatively inexpensive to

calculate.

Furthermore, research into the application of graph based partitioners to the DSMC

method would be beneficial. This partitioning method offers the potential to decrease

the inter-domain communication while maintaining an even distribution of

computational load. However, a reliable and inexpensive method of calculating the

8.4 Summary 132

inter-cell communication load will need to be developed. Further research also needs to

be conducted into mitigating the problem of non- singly connected sub-domains.

Finally, parallel implementations of this method have been developed, [30], and would

be advantageous for use in large parallel DSMC simulations.

8.3.3 Unsteady Flow Problems

The results presented in this thesis only deal with steady flow problems. As discussed

in Section 5.5.3, unsteady flow problems are generally not suited to grid adaption and a

method of implementing the time step adaption was developed. With respect to

parallelisation of the DSMC solution process, the PSIR method would be well suited to

unsteady flow problems. However, for problems that require a combined PDD and

PSIR parallelisation, research needs to be performed into the optimal implementation of

the domain decomposition strategy.

8.4 Summary

This thesis has made a significant contribution to the realisation of the DSMC

implementation that can be used as an engineering tool. It is through the combination

of solution adaptive and parallelisation techniques the DSMC method will be able to

transition from a research tool to an engineering tool.

Appendix A

Simulation Configuration Files
This Appendix contains the listing of the parameter configuration file and geometry

definition file used to run the solution presented in Section 7.3.2.

A.1 Parameter Configuration File
ProgVersion : 3.5042

SteadyFlowProb : 1 # 0 - unsteady flow, 1 - steady flow
BTS_Factor : 1.0 # Factor of estimated base time step to use for starting BTS,

make smaller for unsteady problems with localised high
density flow

SimMaxBTSM : 20 # maximum base time step multiple

NoTimeSamp : 2 # No time steps between samples
NoSampCMP : 10 # No samples between updates of Cell macro properties
MinSampleSize : 10 # min No. of samples between time step adaptions & result

file saves

UseGridAdaption : 1 #0 - No, 1 - Yes
NoGridSweep : 2 # No. of i/j sweeps each grid adaption
UseGridSplit : 1 # 0 - No, 1 - Yes

UseTSAdaption : 1 # 0 - No, 1 - Yes
NoTSAdapt : 250 # No samples between time step adaptions
NoGridAdapt : 3 # No time step adaptions between grid adaptions
UseMaxMem : 0 # 0 - No, 1 – Yes
NoMolecSampleStop : 75000 # Min No of steady state molecule samples before program

termination

AcclStart : 1 # 0 - No, 1 - Yes
GridScaleFact : 2.0 # Scale factor to apply to starting grid size
MolecScaleFact : 2.0 # Scale factor to apply to starting number of molecules

RatioCellLen2LMFP_Min : 0.25 # minimum number of cells per LMFP
RatioCellLen2LMFP_Max : 0.45 # maximum number of cells per LMFP

RatioMolecs2Cells_Min : 10.0 # minimum number of molecs per cell
RatioMolecs2Cells_Max : 30.0 # desired maximum number of molecs per cell

MaxNoMolecs : 1500000 # maximum allowed number of molecs in simulation

Appendix A 134

StreamVelX : 172.0 # Uniform stream X velocity component (m/s)
StreamVelY : 0.0 # Uniform stream Y velocity component (m/s)
StreamTemp : 300.0 # Stream temperature (K)
StreamNoDens : 1.0e20 # Stream number density

InitVolState : 1 # 0 - vacuum or 1 - uniform stream

UseRotEng : 0 # 0 - No, 1 - Yes; Calculate transfer of rotational energy?
UseVSS : 0 # 0 - No, 1 - Yes

NoSpecGroups : 1
NoSpecs : 1
GasType1 : Argon
SpecGroup1 : 1
StreamSpecFrac1 : 1
SurfReflnModel : 1 # specular
RotEngAccomCoef : -1
NormEngAccomCoef : -1
TangMomAccomCoef : -1
RDoFRelax1 : 0
RDoFSpec1 : 0
RotRelaxConst1 : 0.0
RotRelaxTemp1 : 0
RotRelaxTemp21 : 0

NoJets : 0

A.2 Geometry Definition File

#include <math.h>
#include <iostream>
#include <fstream>
#include <strstream>
#include <sstream>
#include <string>
#include <cmath>

#include "mathdefs.hpp"
#include "geomgridgen.hpp"
#include "geom_cgmwrite.hpp"
#include "dsmc-inc.hpp"
#include "initdata.hpp"

string ProgVersion;

int main(void) {
 int face, edge, node, cnt;
 char *str;
 string PV;
 GRIDEDGE* pGE;

Appendix A 135

 Err_os_control Err_os_ctrl;

// #################################
 string BaseFileName = "vfp_Ar";
 double LMFP = 0.01294; // 1/(No. cells per unit length)
 float SurfTempFront = -1.0; // stream temp
 float SurfTempBack = -1.0; // stream temp
 float L = 0.15; // characteristic length
// #################################

 PLANEORIENT PO(ZDIRN, 0.0);
 GEOMGRID_2D GG2D, GG2DC;
 GeomCGMWrite GCW;

 float EdgeFact[S2D_NOSIDES];
 EDGETYPES EdgeType[S2D_NOSIDES];

 GG2D.Init(PO, XDIRN);

 ofstream OutFile;
 ifstream InFile;
 string FileName;

 UNION_16BYTES MiscData;
 DefaultValue(MiscData);

 ProgVersion = CodeVersion + '.' + SaveVersion + GridVersion + CfgVersion;

 cout << "\nDSMC2G Ver. " << ProgVersion << " : Setting up geometry definition file for \""
 << BaseFileName << "\"" << "\nCreating nodes ... " << flush;

 // create nodes used in defition of problem
 Vector<POINT2> vP(8);

 vP(0).X = 0.0;
 vP(0).Y = 0.0;

 vP(1).X = 4.0*L;
 vP(1).Y = 0.0;

 vP(2).X = 8.0*L;
 vP(2).Y = 0.0;

 vP(3).X = 8.0*L;
 vP(3).Y = 1.0*L;

 vP(4).X = 8.0*L;
 vP(4).Y = 5.0*L;

 vP(5).X = 0.0;
 vP(5).Y = 5.0*L;

 vP(6).X = 0.0;
 vP(6).Y = 1.0*L;

 vP(7).X = 4.0*L;
 vP(7).Y = 1.0*L;

 // add nodes to geometry model

Appendix A 136

 node = GG2D.GD_2D.AddNode(vP);

 cout << "Finished\nAssembling Geometry ... " << flush;

 // join nodes with geometry segments to define edges

 // bottom external edge
 pGE = GG2D.GD_2D.AddEdge(XDIRN, edge); // edge = 0
 pGE->SetOrigin(node);
 pGE->AppendLineSeg(node+1, BT_SYMMETRY);
 pGE->AppendLineSeg(node+2, BT_SYMMETRY);

 // right external edge
 pGE = GG2D.GD_2D.AddEdge(YDIRN, edge); // edge = 1
 pGE->SetOrigin(node+2);
 pGE->AppendLineSeg(node+3, BT_STREAM);
 pGE->AppendLineSeg(node+4, BT_STREAM);

 // top external edge
 pGE = GG2D.GD_2D.AddEdge(XDIRN, edge); // edge = 2
 pGE->SetOrigin(node+4);
 pGE->AppendLineSeg(node+5, BT_STREAM);

 // left external edge
 pGE = GG2D.GD_2D.AddEdge(YDIRN, edge); // edge = 3
 pGE->SetOrigin(node+5);
 pGE->AppendLineSeg(node+6, BT_STREAM);
 pGE->AppendLineSeg(node, BT_STREAM);

 // define a vertical flat plate that intersects with bottom outer edge
 // left side
 pGE = GG2D.GD_2D.AddEdge(YDIRN, edge); // edge = 4
 MiscData.f32[0] = SurfTempFront; // surface temp
 MiscData.f32[1] = 0.0; // surface X velocity
 MiscData.f32[2] = 0.0; // surface Y velocity
 MiscData.f32[3] = 0.0; // surface Z velocity

 pGE->SetOrigin(node+1);
 pGE->AppendLineSeg(node+7, BT_OBJECT, &MiscData);

 // right side
 pGE = GG2D.GD_2D.AddEdge(YDIRN, edge); // edge = 5
 MiscData.f32[0] = SurfTempBack; // surface temp
 MiscData.f32[1] = 0.0; // surface X velocity
 MiscData.f32[2] = 0.0; // surface Y velocity
 MiscData.f32[3] = 0.0; // surface Z velocity

 pGE->SetOrigin(node+7);
 pGE->AppendLineSeg(node+1, BT_OBJECT, &MiscData);

 // Add faces to define simulation area and any internal objects, see <geom-def.hpp>
 // for definition
 face = GG2D.GD_2D.AddFace(FT_EXTBDY, XDIRN, 4);

 // NOTE: edges must be defined in a circular order
 GG2D.GD_2D.Face(GD_External)->LinkEdge(S2D_BOTTOM, 0);
 GG2D.GD_2D.Face(GD_External)->LinkEdge(S2D_RIGHT, 1);
 GG2D.GD_2D.Face(GD_External)->LinkEdge(S2D_TOP, 2);
 GG2D.GD_2D.Face(GD_External)->LinkEdge(S2D_LEFT, 3);

Appendix A 137

 // define a vertical flat plate that intersects with bottom outer edge
 face = GG2D.GD_2D.AddFace(FT_EDGEOBJ, YDIRN, 2);
 GG2D.GD_2D.Face(face)->LinkEdge(S2D_BOTLEFT, 4);
 GG2D.GD_2D.Face(face)->LinkEdge(S2D_TOPRIGHT, 5);

 cout << "Finished\nChecking Continuity ... " << flush;

 if (GG2D.GD_2D.CheckContinuity()) {
 cerr << "\nGEOM_2D is not conituous!" << endl;
 return(2);
 }

 cout << "Finished\nDecomposing GeomGrid ... " << flush;

 // create internal edges
 // left internal edge
 pGE = GG2D.GD_2D.AddEdge(XDIRN, edge); // edge = 6
 pGE->SetOrigin(node+7);
 pGE->AppendLineSeg(node+6, BT_INTERNAL);

 // right internal edge
 pGE = GG2D.GD_2D.AddEdge(XDIRN, edge); // edge = 7
 pGE->SetOrigin(node+7);
 pGE->AppendLineSeg(node+3, BT_INTERNAL);

 // initialise HardRegions (global grid sub-divisions)
 GG2D.CreateHardRegions(3);

 // Bottom/left HardRegion
 GG2D.LinkEdge(0, S2D_BOTTOM, 0, 0, 1);
 GG2D.LinkEdge(0, S2D_RIGHT, 4);
 GG2D.LinkEdge(0, S2D_TOP, 6);
 GG2D.LinkEdge(0, S2D_LEFT, 3, 0, 6);

 // Bottom/right HardRegion
 GG2D.LinkEdge(1, S2D_BOTTOM, 0, 1, 2);
 GG2D.LinkEdge(1, S2D_RIGHT, 1, 2, 3);
 GG2D.LinkEdge(1, S2D_TOP, 7);
 GG2D.LinkEdge(1, S2D_LEFT, 5);

 // Top HardRegion
 GG2D.LinkEdge(2, S2D_BOTTOM, 6);
 GG2D.LinkEdge(2, S2D_BOTTOM, 7);
 GG2D.LinkEdge(2, S2D_RIGHT, 1, 3, 4);
 GG2D.LinkEdge(2, S2D_TOP, 2);
 GG2D.LinkEdge(2, S2D_LEFT, 3, 6, 5);

 cout << "Finished\nChecking GEOMGRID Continuity ... " << flush;

 if (GG2D.CheckContinuity()) {
 cerr << "FAILED\nGEOM_2D is not conituous!" << endl;
 return(3);
 }

 cout << "Finished\nCreating grid ... " << flush;

 // Generate starting grid
 GG2D.HardRegion(0).GenGrid(LMFP*0.5);
 GG2D.HardRegion(1).GenGrid(LMFP*0.5);
 GG2D.HardRegion(2).GenGrid(LMFP*0.5);

Appendix A 138

 GG2D.InitGrid();

 cout << "Finished\nSaving GeomGrid to file ... " << flush;

 FileName = BaseFileName+ OP_FileExt[CGM_FILE];
 GCW.Draw(&GG2D, BaseFileName.c_str());

 FileName = BaseFileName+ IP_FileExt[GEO_FILE];
 #ifdef BINARY_DATA_FILES
 OutFile.open(FileName.c_str(), ios::out | ios::trunc | ios::binary);
 OutFile.iword(BinaryFileIndex) = 1; // turn binary file flag on
 #else
 OutFile.open(FileName.c_str(), ios::out | ios::trunc);
 OutFile.iword(BinaryFileIndex) = 0; // turn binary file flag off
 #endif
 if (!OutFile) {
 cerr << "\nCould not open \"" << FileName.c_str() << "\" for writing!" << endl;
 return(1);
 }

 if (OutFile.iword(BinaryFileIndex) == 0) // default, text stream
 OutFile << ProgVersion << "\n";
 else {
 cnt = ProgVersion.length();
 OutFile.write((char*)&cnt, sizeof(cnt));
 OutFile.write((char*)ProgVersion.c_str(), ProgVersion.length());
 }

 GG2D.Write(OutFile);
 OutFile.close();

 GG2D.Delete();

 cout << "Finished\nExiting ... " << endl;

 return(0);
}

Bibliography
[1] Abe, T.; Rarefied Gas Flow Analysis by Direct Simulation Monte Carlo in Body-

Fitted Coordinate System, Journal of Computational Physics, No. 83, 1989

[2] Alexander, F.J., Garcia, A.L., Alder, B.J., A Consistent Boltzmann Algorithm,
Physical Review Letters, Vol. 74, No. 26, pp. 5212, 1995

[3] Alexander, F.J., Garcia, A.L., The Direct Simulation Monte Carlo Method,
Computational Physics 11, pp. 588, 1997

[4] Alexander, F.J., Garcia, A.L., Alder, B.J., Cell size dependence of transport
coefficients in stochastic particle algorithms, Physics of Fluids 10, pp. 1540, 1998

[5] Baganoff, D., Vectorization of a particle code used in the simulation of rarefied
hypersonic flow, Computer Systems Engineering, 1 (2-4), 1990

[6] Bird, G.A, Molecular Gas Dynamics, Clarendon Press, Oxford, UK, 1976

[7] Bird, G.A., Molecular Gas Dynamics and the Direct Simulations of Gas Flows,
Clarendon Press, Oxford, 1994

[8] Bird, G.A., Recent Advances and Current Challenges for DSMC, Computers
Math. Applic., Vol. 35, No. 1, pp 1-14, 1998

[9] Bird, G.A., The DSWT Implementation of the DSMC Method, Program Notes,
http://www.gab.com.au/DSWT.html, 2002

[10] Bird, G.A., Recent DSMC Developments, http://www.gab.com.au/, 2002

[11] Bird, G.A., Direct Simulation of the Boltzmann Equation, Physics of Fluids, Vol.
13, No. 11, 1970

[12] Bogdanov, A.V., Bykov, N.Yu., Grishin, I.A, et. al., Algorithms of Two-Level
Parallelization for DSMC of Unsteady Flows in Molecular Gas Dynamics,
Preprint HPCN 99, 1998

[13] Borgnakke, C., Larsen, P., Statistical Collision Model for Monte Carlo Simulation
Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas
Mixture, Journal of Computational Physics, Vol. 18, No. 4, pp. 405-420, 1975

[14] Boyd, I.D., Vectorization of a Monte Carlo Scheme for Nonequilibrium Gas
Dynamics, Journal of Computational Physics, 94, pp. 411-427, 1991

[15] Bruno, D., Capitelli, M., Esposito, F., et. al., Direct Simulation of Non-
Equilibrium Kinetics Under Shock Conditions in Nitrogen, Chemical Physics
Letters 360, pp. 31-37, 2002

[16] Bucchignani, E., Mella, R., Schiano, P., et. al., Comparison of the MPI and PVM
performances by using structured and unstructured CFD codes, Parallel
Computational Fluid Dynamics: Recent Developments and Advances Using
Parallel Computers, Elsevier Science, Amsterdam, 1998

[17] Carlson, A.B., Wilmoth, R.G., Shock Interference Prediction Using Direct
Simulation Monte Carlo, Journal of Spacecraft and Rockets, Vol. 29, No. 6, 1992

Bibliography 140

[18] Chen, X.Q., Efficient Particle Tracking Algorithm for Two-Phase Flows in
Geometries Using Curvilinear Coordinates, Numerical Heat Transfer A, Vol. 32,
No. 4, 1997

[19] Dietrich, S., Boyd, I.D., Scalar and Parallel Optimized Implementation of the
Direct Simulation Monte Carlo Method, Journal of Computational Physics, Vol
126, 1996

[20] Furlani, T.R., Lordi, J.A., Comparison of Parallel Algorithms for the Direct
Simulation Monte Carlo Method: Application to Exhaust Plume Flowfields,
Proceedings of the Sixteenth Symposium on Rarefied Gas Dynamics, P. Muntz,
Ed., (AIAA publications, New York), 1988

[21] Garcia, A.L., Wagner, W., Time step truncation error in direct simulation Monte
Carlo, Physics of Fluids, 12, pp. 2621-2633, 2000

[22] Geist, A., Beguelin, A., Dongarra, J., et. al., PVM: Parallel Virtual Machine: A
Users's Guide and Tutorial for Networked parallel Computing, MIT Press,
Cambridge, 1994

[23] Gordon, W.J., Blending Function Methods of Bivariate and Multivariate
Interpolation, SIAM Journal of Numerical Analysis, Vol. 8, pp. 158-177, 1971

[24] Hadjiconstantinou, N.G., Analysis of discretization, Physics of Fluids, 12, pp.
2634-2638, 2000

[25] Harvey, J.K., Gallis, M.A., Review of Code validation Studies in High-Speed
Low-Density Flows, Journal of Spacecraft and Rockets, Vol. 37, No. 1, 2000

[26] Hultquist, J.P.M., Improving the Performance of Particle Tracing in Curvilinear
Grids, AIAA Aerospace Sciences Meeting, AIAA Paper 94-0324, 1994

[27] Jeng, Y.N., Lee, Z.-S., Revisit to the Modified Multiple One-Dimensional
Adaptive Grid Method, Numerical Heat Transfer, Part B, Vol. 29, 1996

[28] Kannenberg, K.C., Boyd, I.D., Dietrich, S., Development of an Object-Oriented
Parallel DSMC Code for Plume Impingement Studies, 30th AIAA Thermophysics
Conference, AIAA Paper 95-2052, 1995

[29] Kannenberg, K.C., Boyd, I.D., Development of a 3D Parallel Code for Plume
Impingement Studies, 31st AIAA Thermophysics Conference, AIAA Paper 98-
1848, 1998

[30] Karypis, G., Kumar, V., Parallel Multilevel k-way Partitioning Scheme for
Irregular Graphs, Technical Report #96-036, Department of Computer Science,
University of Minnesota, 1996

[31] Kenwright, D.N., Lane, D.A., Interactive Time-Dependent Particle Tracing Using
Tetrahedral Decomposition, IEEE Transactions on Visualization and Computer
Graphics 2(2), pp. 120-129, 1996

[32] Kenwright, D.N., Lane, D.A., Optimization of Time-Dependent Particle Tracing
Using Tetrahedral Decomposition, Proceedings of IEEE Visualization 1995, pp.
321-328, 1995

[33] Lane, D.A., Scientific Visualization of Large-Scale Unsteady Fluid Flows,
Chapter 5, Scientific Visualization: Overviews, Methodologies, and Techniques;
IEEE Computer Society; Los Alamos, 1999

Bibliography 141

[34] Laux, M., Fasoulas, S., Messerschmid, E.W., Development of a DSMC Code on
Planar Unstructured Grids with Automatic Grid Adaptation, 30th AIAA
Thermophysics Conference, AIAA Paper 95-2053, 1995

[35] Laux, M., Optimization and Parallelization of the DSMC Method on Unstructured
Grids, 32nd AIAA Thermophysics Conference, AIAA Paper 97-2512, 1997

[36] Laux, M., Local Time Stepping with Automatic Adaptation for the DSMC Method,
7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA
Paper 98-2670, 1998

[37] LeBeau, G.J., A parallel implementation of the direct simulation Monte Carlo
method, Computer Methods in Applied Mechanics and Engineering, No. 174,
1999

[38] Lee, D., Tsuei, M., A Modified Adaptive Grid Method for Recirculating Flows,
International Journal for Numerical Methods in Fluids, Vol. 14, 1992

[39] McMillan, W., Woodgate, M., Richards, B.E., et. al., Demonstration of Cluster
Computing for Three-dimensional CFD Simulations, The Aeronautical Journal,
Vol. 103, No. 1027, 1999

[40] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
International Journal of Supercomputing Applications 8(3/4), 1994

[41] Moon, B., Saltz, J., Adaptive runtime support for direct simulation Monte Carlo
methods on distributed memory architectures, Proceedings of the Scalable High
Performance Computing Conference (SHPCC94), IEEE Computer Society Press,
pp. 176183, 1994

[42] Moss, J.N., Bird, G.A., Direct Simulation of transitional flow for hypersonic re-
entry conditions, Progress is Astronautics and Aeronautics, Vol. 96, pp. 113-139,
1985

[43] Moss, J.N., Price, J.M., Dogra, V.K., et. al., Comparison of DSMC and
experimental results for hypersonic external flow, AIAA Paper 95-2028, 1995

[44] Nance, R.P., Wilmoth, R.G., Moon, B., et. al., Parallel DSMC Solution of Three-
Dimensional Flow Over a Finite Flat Plate, AIAA/ASME Sixth Joint
Thermophysics and Heat Transfer Conference, AIAA Paper 94-0219, 1994

[45] Nicol, D., Saltz, J., Dynamic remapping of parallel computations with varying
resource demands, IEEE Transactions on Computers, 37(9), pp. 1073--1087, 1988

[46] Olynick, D.P., Moss, J.N., Hassan, H.A., Grid Generation and Adaptation for the
Direct Simulation Monte Carlo Method, Journal of Thermophysics, Vol. 3, No. 4.,
AIAA Paper 88-2734, 1989

[47] Prisco, G., Optimization of direct simulation Monte Carlo (DSMC) codes for
vector processing, Journal of Computational Physics, 96, 1991

[48] Rault, D.F.G, Efficient Three-Dimensional Direct Simulation Monte Carlo for
Complex Geometry Problems, Rarefied Gas Dynamics: Theory and Simulation;
Progress in Astronautics and Aeronautics, Vol. 159, AIAA, 1994

[49] Robinson, C.D., Harvey, J.K., A Parallel DSMC Implementation on Unstructured
Meshes with Adaptive Domain Decomposition, Proceedings of the Twentieth
International Symposium on Rarefied Gas Dynamics, 1996

Bibliography 142

[50] Robinson, C.D., Harvey, J.K., Adaptive Domain Decomposition for Unstructured
Meshes Applied to the Direct Simulation Monte Carlo Method, Proceedings of
Parallel CFD 96, 1996

[51] Robinson, C.D., Harvey, J.K., A Fully concurrent DSMC Implementation with
Adaptive Domain Decomposition, Parallel Computational Fluid Dynamics: Recent
Developments and Advances Using Parallel Computers; Elsevier Science,
Amsterdam, 1998

[52] Shimada, T., Abe, T., Applicability of the Direct Simulation Monte Carlo Method
in a Body-Fitted Coordinate System, Rarefied Gas Dynamics: Theory and
Computational Techniques; Progress in Astronautics and Aeronautics, Vol. 118,
AIAA, 1989

[53] Sun, Q., Boyd, I.D., A Direct Simulation Method for Subsonic, Mircoscale Gas
Flows, Journal of Computational Physics, 179, 2002

[54] Syms, G.F., Parallel Performance of Aerodynamic CFD Codes, Canadian
Aeronautics and Space Journal, Vol. 47, No. 1, March, 2001

[55] Thompson, J.F. (Ed.), Numerical Grid Generation, Proceedings of a Symposium
on the Numerical Generation of Curvilinear Coordinate Systems and their Us,
1982

[56] University Space Research Association, Beowulf History,
http://www.beowulf.org/overview/history.html, 2002

[57] Wilmoth, R.G, Application of a Parallel Direct Simulation Monte Carlo Method
to Hypersonic Rarefied Flows, AIAA Journal, Vol. 30, No. 10, AIAA Paper 91-
0772, 1992

[58] Wilmoth, R.G., Carlson, A.B., Bird, G.A., DSMC Analysis in a Heterogeneous
Parallel Computing Environment, AIAA Paper 92-2861, 1992

[59] Wishart, S., Auld, D., Investigation of Improved Movement Algorithms for Body-
fitted Coordinate Systems used in Direct Simulation Monte Carlo Flow Analysis,
Proceedings IAC, Vol. 3, 1997

[60] Woronowicz, M.S., Wilmoth, R.G., Carlson, A.B., et. al., Procedure for Adapting
Direct Simulation Monte Carlo Meshes, Rarefied Gas Dynamics: Theory and
Simulation; Progress in Astronautics and Aeronautics, Vol. 159, edited Shizgal,
B.D. and Weaver, D.P., AIAA, Washington, DC, 1994

[61] Woronowicz, M.S., Rault, D.F.G., Cecignani-Lampis-Lord gas-surface
interaction model: Comparisons between theory and simulation, Journal of
Spacecraft and Rockets, No. 31, 1994

[62] Yokokawa, M., Schneider, D., Watanabe, T., et. al., Parallel Simulation on
Rayleigh-Bénard Convection in 2D by the Direct Simulation Monte Carlo
Method, Parallel Computational Fluid Dynamics: Implementations and Results
Using Parallel Computers, Elsevier Science, 1995

	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	1.1 Background and Motication
	1.2 Problem Summary
	1.3 Principle Contributions
	1.4 Outline

	Chapter 2 The Direct Simulation Monte Carlo Method
	2.1 Introduction
	2.2 DSMC Theory
	2.3 Method Outline
	2.4 Implementation Issues
	2.4.1 Grid Representation
	2.4.2 Time Step Selection
	2.4.3 Number of Molecules per Cell
	2.4.4 Ratio of Real to Simulation Molecules

	2.5 Griding Methods
	2.5.1 Discussion

	Chapter 3 Movement Algorithms
	3.1 Introduction
	3.2 Alternate Methods
	3.2.1 Physical Domain Methods
	3.2.2 Computational Movement Methods

	3.3 Computational Movement Algorithms
	3.3.1 Constant Time Step Subdivision Algorithm
	3.3.2 Improved Time Step Subdivision Algorithm
	3.3.3 Results

	3.4 Hybrid Algorithm
	3.4.1 Derivation
	3.4.2 Robustness
	3.4.3 Simplifications
	3.4.4 DSMC Movement Implementation
	3.4.5 Results
	3.4.6 Extension to 3D Geometries

	Chapter 4 Program Structure
	4.1 Introduction
	4.2 Physical Models
	4.2.1 Collision Model
	4.2.2 Molecule-Surface Interactions
	4.2.3 Boundary Models
	4.2.4 Flowfield Initialisation

	4.3 Grid Generation
	4.3.1 Geometry Definition
	4.3.2 Grid Generation

	4.4 Implementation
	4.4.1 Simulation Configuration Parameters
	4.4.2 Geometry Definition
	4.4.3 Optimisations
	4.4.4 Programming and Storage Issues
	4.4.5 Solution Management
	4.4.6 Flow Chart

	Chapter 5 Solution Adaption
	5.1 Introduction
	5.2 Grid Adaption
	5.2.1 Adaption Methodology
	5.2.2 Grid Resizing and Splitting
	5.2.3 Parameter Tuning
	5.2.4 Implementation

	5.3 Ratio of Real to Simulation Molecule Adaption
	5.3.1 Adjusting Grid blocks with an Excessive Number of Molecules per Cell

	5.4 Time Step Adaption
	5.4.1 Base Algorithm
	5.4.2 Implementation

	5.5 Solution Adaption Implementation
	5.5.1 Molecule Injection
	5.5.2 Steady Flow Problems
	5.5.3 Unsteady Flow Problems

	Chapter 6 Parallelisation
	6.1 Introduction
	6.2 Physical Domain Decomposition Parallelisation
	6.2.1 Domain Decomposition Algorithm
	6.2.2 Dynamic Domain Decomposition
	6.2.3 Total Node Computational Load
	6.2.4 Node Grid Structure

	6.3 Parallel Statistically Independent Runs
	6.4 Implementation
	6.4.1 Sub-domains
	6.4.2 Domain Decomposition
	6.4.3 Solution Adaption
	6.4.4 Parallel Libraries

	Chapter 7 Program Verification and Results
	7.1 Introduction
	7.2 Program Verification
	7.2.1 Collision Rate Test
	7.2.2 Supersonic Leading-edge Test

	7.3 Serial Results
	7.3.1 Test Configuration
	7.3.2 Subsonic Test Results
	7.3.3 Supersonic Test Results
	7.3.4 Conclusions

	7.4 Parallel Results
	7.4.1 Cluster Description
	7.4.2 Test Configuration
	7.4.3 Results
	7.4.4 Summary

	Chapter 8 Conclusion
	8.1 Introduction
	8.2 Principle Contributions
	8.2.1 Efficient Molecule Movement
	8.2.2 Multi-block Grid Adaption
	8.2.3 Time Step Adaption
	8.2.4 Parallelisation

	8.3 Future Research
	8.3.1 Domain Boundary Adaption
	8.3.2 Domain Decomposition
	8.3.3 Unsteady Flow Problems

	8.4 Summary

	Appendix A Simulation Configuration Files
	A.1 Parameter Configuration File
	A.2 Geometry Definition File

	Bibliography

