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ABSTRACT 

Drawing of standard telecommunication-type optical fibres has been optimised in terms of 

optical and physical properties. Specialty fibres, however, typically have more complex 

dopant profiles. Designs with high dopant concentrations and multidoping are common, 

making control of the fabrication process particularly important. In photonic crystal fibres 

(PCF) the inclusion of air-structures imposes a new challenge for the drawing process.  

 

The aim of this study is to gain profound insight into the behaviour of complex optical 

fibre structures during the final fabrication step, fibre drawing. Two types of optical fibre, 

namely conventional silica fibres and PCFs, were studied. Germanium and fluorine 

diffusion during drawing was studied experimentally and a numerical analysis was 

performed of the effects of drawing parameters on diffusion. An experimental study of 

geometry control of PCFs during drawing was conducted with emphasis given to the 

control of hole size. The effects of the various drawing parameters and their suitability for 

controlling the air-structure was studied. The effect of air-structures on heat transfer in 

PCFs was studied using computational fluid dynamics techniques.   

 

Both germanium and fluorine were found to diffuse at high temperature and low draw 

speed. A diffusion coefficent for germanium was determined and simulations showed that 

most diffusion occurred in the neck-down region. Draw temperature and preform feed rate 

had a comparable effect on diffusion. The hole size in PCFs was shown to depend on the 

draw temperature, preform feed rate and the preform internal pressure. Pressure was shown 

to be the most promising parameter for on-line control of the hole size. Heat transfer 

simulations showed that the air-structure had a significant effect on the temperature profile 

of the structure. It was also shown that the preform heating time was either increased or 

reduced compared to a solid structure and depended on the air-fraction. 

 



 iv

 

 



 v

PUBLICATIONS 

The majority of the work presented in this thesis has been published in the following 

publications [A1-A9]. During the course of the study a large number of papers were 

published which resulted indirectly from the findings in this thesis and where the research 

done in this thesis was essential to the published studies. These co-authored papers are 

listed below in [A10-A41] and include studies in the area of FBG in PCFs [A20, A22, A29, 

A39], Fresnel fibres [A18, A19, A23, A26, A27, A38], cleaving of PCFs [A16, A30, A31], 

tapering of PCFs [A21], microfluidics [A11, A34-A37] and preform and fibre measurement 

techniques [A10, A13, A14, A28, A32, A33]. 

 
First author journal papers 
 

A1. Lyytikäinen, K., Huntington, S. T., Carter, A. L. G., McNamara, P., Fleming, S., 
Abramczyk, J., et al., "Dopant diffusion during optical fibre drawing," Optics 
Express, Vol. 12, No.6, pp. 972-977, 2004. 

A2. Lyytikäinen, K., Zagari, J., Barton, G., and Canning, J., "Heat transfer within a 
microstructured polymer optical fibre," Modelling and Simulation in Materials 
Science and Engineering, Vol. 12, pp. S255-S265, 2004. 

 

First author conference papers 

A3. Lyytikäinen, K., Råback, P., and Ruokolainen, J., "Numerical simulation of a 
specialty optical fibre drawing process," Proceedings of 4th International 
ASME/JSME/KSME Symposium on Computational Technologies for Fluid/ 
Thermal/ Chemical/ Stress Systems with Industrial Applications, Vancouver, BC, 
Canada, S. Kawano and V. V. Kudriavtsev, Vol. PVP448-2, American Society of 
Mechanical Engineers, pp. 267-275, 2002. (full reviewed paper) 

A4. Lyytikäinen, K., Canning, J., Digweed, J., and Zagari, J., "Geometry control of air-
silica structured optical fibres using pressurisation," Proceedings of International 
Microwave and Optoelectronics Conference, Parana, Brazil, Sept 20-23, Vol. 2, 
pp. 1001-1005, 2003. 

A5. Lyytikäinen, K., Huntington, S. T., Carter, A., Fleming, S., and McNamara, P., 
"Germanium diffusion during optical fibre drawing," Proceedings of Conference 
on the Optical Internet & Australian Conference on Optical Fibre Technology, 
Melbourne, Australia, July 13-16, pp. 357-360, 2003. 

A6. Lyytikäinen, K., Canning, J., Digweed, J., and Zagari, J., "Geometry control of air-
silica structured optical fibres," Proceedings of Conference on the Optical Internet 
& Australian Conference on Optical Fibre Technology, Melbourne, Australia, July 
13-16, pp. 137-140, 2003. 

A7. Lyytikäinen, K. and Huntington, S. T., "Characterising submicron changes in 
optical fibres due to the drawing process using atomic force microscopy," 



 vi

Presented at The Fourth Australian Scanning Probe Microscopy Conference, 
Melbourne, Australia, July 9-11, 2003. 

A8. Lyytikäinen, K., "Numerical  simulation of a specialty optical fibre drawing 
process," Proceedings of 27th Australian Conference on Optical Fibre 
Technology, Sydney, Australia, Photonics Institute Pty Ltd, The Institute of 
Engineers Australia, pp. 134-136, 2002. 

A9. Lyytikäinen, K., Zagari, J., Barton, G., and Canning, J., "Heat transfer in a 
microstructured optical fibre preform," Proceedings of 11th International Plastic 
Optical Fibers Conference, Tokyo, Japan, Sept 18-20, pp. 53-56, 2002. 

 

Co-authored journal papers 
A10. Zhao, Y., Fleming, S., Lyytikäinen, K., and Poladian, L., "Nondestructive 

measurement for arbitrary RIP distribution of optical fiber preforms," Journal of 
Lightwave Technology, Vol. 22, No.2, pp. 478-486, 2004. 

A11. Canning, J., Buckley, E., and Lyytikainen, K., "Electrokinetic air-silica structured 
multi-microchannel capillary batteries," Electronic Letters, Vol. 40, No.5, pp. 298-
299, 2004. 

A12. Town, G. E., Funaba, T., Ryan, T., and Lyytikainen, K., "Optical supercontinuum 
generation from nanosecond pump pulses in an irregularly microstructured air-
silica optical fiber," Journal of Applied Physics B - Lasers and Optics, Vol. 77, 
No.2-3, pp. 235-238, 2003. 

A13. Pace, P., Huntington, S. T., Lyytikäinen, K., Roberts, A. and Love, J. D., 
“Refractive index profiles of Ge-doped optical fibers with nanometer spatial 
resolution using atomic force microscopy,” Optics Express, Vol. 12, No.7, pp. 
1452-1457, 2004. 

A14. Zhao, Y., Lyytikainen, K., van Eijkelenborg, M., and Fleming, S., "Nondestructive 
measurement of refractive index profile for holey fiber preforms," Optics Express, 
Vol. 11, No.20, pp. 2474-2479, 2003. 

A15. McNamara, P., Lyytikäinen, K., Ryan, T., Kaplin, I. J., and Ringer, S. P., 
"Germanium-rich "starburst" cores in silica-based optical fibres fabricated by 
modified chemical vapour deposition," Optics Communications, Vol. 230, No.1-3, 
pp. 45-53, 2003. 

A16. Huntington, S. T., Lyytikainen, K., and Canning, J., "Analysis and removal of 
fracture damage during and subsequent to holey fiber cleaving," Optics Express, 
Vol. 11, No.6, pp. 535-540, 2003. 

A17. Canning, J., Buckley, E., and Lyytikäinen, K., "Multiple source generation using 
air-structured optical waveguides for optical field shaping and transformation 
within and beyond the waveguide," Optics Express, Vol. 11, No.4, pp. 347-358, 
2003. 

A18. Canning, J., Buckley, E., and Lyytikäinen, K., "Propagation in air by field 
superposition of scattered light within a Fresnel fibre," Optics Letters, Vol. 28, 
No.4, pp. 230-232, 2003. 

A19. Canning, J., Buckley, E., and Lyytikäinen, K., "All-fibre phase-aperture zone 
plates," Electronic Letters, Vol. 39, No.3, pp. 311-312, 2003. 



 vii

A20. Groothoff, N., Canning, J., Buckley, E., Lyytikäinen, K., and Zagari, J., "Bragg 
gratings in air silica structured fibers," Optics Letters, Vol. 28, No.4, pp. 233-235, 
2003. 

A21. Huntington, S. T., Katsifolis, J., Gibson, B. C., Canning, J., Lyytikäinen, K., Zagari, 
J., et al., "Retaining and characterising nano-structure within tapered air-silica 
structured fibers," Optics Express, Vol. 11, No.2, pp. 98-104, 2003. 

A22. Canning, J., Groothoff, N., Buckley, E., Ryan, T., Lyytikainen, K., and Digweed, J., 
"All-fibre photonic crystal distributed Bragg reflector (PC-DBR) fibre laser," 
Optics Express, Vol. 11, No.17, pp. 1995-2000, 2003. 

A23. Canning, J., Buckley, E., Lyytikäinen, K., and Ryan, T., "Wavelength dependent 
leakage in a Fresnel-based air-silica structured optical fibre," Optics 
Communications, Vol. 205, No.1-3, pp. 95-99, 2002. 

A24. Canning, J., van Eijkelenborg, M., Ryan, T., Kristensen, M., and Lyytikäinen, K., 
"Complex mode coupling with in-air silica structured optical fibres and 
applications," Optics Communications, Vol. 185, No.4-6, pp. 321-324, 2000. 

A25. van Eijkelenborg, M. A., Canning, J., Ryan, T., and Lyytikäinen, K., "Bending-
induced colouring in a photonic crystal fibre," Optics Express, Vol. 7, No.2, pp. 
88-94, 2000. 

 

Co-authored conference papers  
 
A26. Canning, J., Buckley, E., and Lyytikäinen, K., "Propagation in air by field 

superposition of scattered light within a Fresnel fibre," Proceedings of Optical 
Fiber Communication Conference, Atlanta, Georgia, USA, Optical Society of 
America, Vol. 1, MF2, pp. 2, 2003. 

A27. Canning, J., Buckley, E., Lyytikainen, K., and Huntington, S. T., "Optical fibre 
Fresnel lenses and zone plates," Proceedings of International Microwave and 
Optoelectronics Conference, Parana, Brazil, Sept 20-23, Vol. 2, pp. 633-636, 2003. 

A28. Zhao, Y., Fleming, S., Lyytikäinen, K., and Poladian, L., "Nondestructive 
measurement of two dimensional refractive index profile of non-circularly 
symmetric optical fibre preform," Proceedings of Conference on the Optical 
Internet & Australian Conference on Optical Fibre Technology, Melbourne, 
Australia, July 13-16, pp. 323-326, 2003. 

A29. Groothoff, N., Canning, J., Ryan, T., Lyytikäinen, K., and Digweed, J., 
"Distributed Bragg Reflector (DBR) Er3+ doped air-silica structured fibre laser," 
Proceedings of Conference on the Optical Internet & Australian Conference on 
Optical Fibre Technology, Melbourne, Australia, post-deadline paper, 2003. 

A30. Huntington, S. T., Lyytikäinen, K., and Canning, J., "Crack generation and 
removal in cleaved air-silica structured optical fibres," Proceedings of International 
Microwave and Optoelectronics Conference, Parana, Brazil, Sept 20-23, Vol. 2, 
pp. 997-1000, 2003. 

A31. Huntington, S. T., Lyytikäinen, K., and Canning, J., "Analysis and removal of 
fracture damage from holey fibres," Proceedings of Conference on the Optical 
Internet & Australian Conference on Optical Fibre Technology, Melbourne, 
Australia, July 13-16, pp. 149-152, 2003. 



 viii

A32. Pace, P., Lyytikainen, K., Huntington, S. T., Roberts, A., and Love, J. D., 
"Characterisation of single dopant core fibres," Proceedings of Conference on the 
Optical Internet & Australian Conference on Optical Fibre Technology, 
Melbourne, Australia, July 13-16, pp. 330-333, 2003. 

A33. Pace, P., Lyytikainen, K., Huntington, S. T., Roberts, A., and Love, J. D., 
"Characterisation of germanium doped core fibres," Proceedings of Australasian 
Conference on Optics, Lasers, & Spectroscopy, Melbourne, Australia, 1-4 
December 2003, 2003. 

A34. Rodd, L. E., Huntington, S. T., Lyytikainen, K., Boger, D. V., and Cooper-White, 
J. J., "The effect of surface character on flows in microchannels," Proceedings of 
SPIE's International Symposium on Microelectronics, MEMS, and 
Nanotechnology, Perth, Australia, December, 2003. 

A35. Rodd, L. E., Huntington, S. T., Lyytikainen, K., Boger, D. V., and Cooper-White, 
J. J., "Velocity profiles in circular microchannels with hydrophobic and hydrophilic 
surfaces," Presented at The Annual Society of Rheology Meeting, Pittsburgh, 
Pennsylvania, US, October, 2003. 

A36. Rodd, L. E., Huntington, S. T., Lyytikainen, K., Boger, D. V., and Cooper-White, 
J. J., "Quantifying surface effects on Newtonian laminar flows in cylindrical 
microchannels," Presented at The Korean and Australian Society of Rheology 
Meeting, Geongju, Korea, September, 2003. 

A37. Rodd, L. E., Huntington, S. T., Lyytikainen, K., Boger, D. V., and Cooper-White, 
J. J., "Quantifying surface effects on Newtonian laminar flows in circular 
microchannels," Presented at The 7th International Conference on Micro Total 
Analysis Systems, Lake Tahoe, California, US, October 5-9, 2003. 

A38. Canning, J., Buckley, E., Lyytikäinen, K., and Ryan, T., "Wavelength dependent 
leakage in a Fresnel-based air silica structured optical fibre," Proceedings of 27th 
Australian Conference on Optical Fibre Technology, Sydney, Australia, Photonics 
Institute Pty Ltd, The Institution of Engineers Australia, pp. 32-34, 2002. 

A39. Groothoff, N., Canning, J., Buckley, E., Lyytikäinen, K., and Zagari, J., "Gratings 
in Air-Silica Structured Fibres," Proceedings of 27th Australian Conference on 
Optical Fibre Technology, Sydney,  Australia, Photonics Institute Pty Ltd, The 
Institution of Engineers Australia, pp. 84-85, 2002. 

A40. Town, G., Funaba, T., Ryan, T., and Lyytikäinen, K., "Optical continuum 
generation with nanosecond pump pulse in an irregularly microstructured optical," 
Proceedings of 27th Australian Conference on Optical Fibre Technology, Sydney, 
Australia, Photonics Institute Pty Ltd, The Institution of Engineers Australia, pp. 
84-85, 2002. 

A41.  Ryan, T., Canning, J., Kristensen, M., and Lyytikäinen, K., "Multiple-core air-silica 
structure optical fibre," Proceedings of Optoelectronics and Communications 
Conference OECC'2000, Chiba, Japan, 2000. 



 ix

ACRONYMS 

AFM   atomic force microscopy 

ASOF   application specific optical fibres 

BHF   buffered HF 

BSE  back-scattered electron 

CRN   continuous random network  

CT  computer tomography 

DCF   dispersion-compensating fibre 

EDFA   erbium-doped fibre amplifier 

EDS   energy dispersive spectrometry  

EELS   electron energy loss spectroscopy  

EMU   Electron Microscope Unit 

EPMA  electron probe microanalyser  

ESI  equivalent step-index  

FBG   fibre Bragg gratings 

FEG   field emission guns  

FFP  far-field profile 

FIB  focused ion beam 

FIC  flow indicator and controller 

ID  inner diameter 

MCVD  modified chemical vapour deposition 

MFD  mode-field diameter 

MM  multimode 

MPOF  microstructured polymer optical fibre 

NA  numerical aperture 

NFP  near-field profile 

NZ-DSF nonzero-dispersion-shifted fibres 

OD  outer diameter 

OFTC   Optical Fibre Technology Centre, University of Sydney  

OVD  outside vapour deposition  

PBG   photonic band gap 

PCF   photonic crystal fibre 

PCS   plastic-clad silica  



 x

PCVD  plasma chemical vapour deposition  

PIC  pressure indicator and controller 

PID   proportional-integral and derivative 

PIPS  precision ion polishing system  

PMD  polarisation mode dispersion 

PMMA  polymethylmethacrylate 

POF  polymer optical fibre 

RI  refractive index 

RIP   refractive index profile 

RNF   refracted near-field  

SD   standard deviation 

SE  secondary electron 

SEM   scanning electron microscopy 

SIMS  secondary ion mass spectrometry 

SM   single-mode  

STEM   scanning transmission electron microscope 

TEC  thermally expanded core 

TEM  transmission electron microscopy  

TIR   total internal reflection 

VAD  vapour-phase axial deposition  

WDM   wavelength division multiplexing 

WDS   wavelength dispersive spectrometer  

ZDF  zero-dispersion-shifted fibres 



 xi

NOMENCLATURE 

A Area, m2 

C Concentration, mol% 

C i Concentration of species i, mol% 

D Diameter, m or diffusion coefficient, m2/s 

D0 Pre-exponential diffusion term, m2/s 

E Activation energy, J/mol or emissivity matrix (AIII) 

F Force, N or view factor matrix (AIII) 

G Gebhardt factor 

H Internal heat generation, J/m3s or visibility function (AIII)  

J Diffusion flux, mol/m2s 

K Equilibrium constant 

L Length, m 

N Number of layers 

M Total amount of substance, mol 

R Gas constant, J/molK 

S Surface area, m2 or sensitivity factor 

T Temperature, K or °C 

V Normalized frequency (Ch1) or velocity, m/s  

a Scaling factor 

ai Constant (AIII), i=1-4 

b Constant (AIII) 

c Concentration, mol/m3 or constant (AIII) 

cp Specific heat capacity, J/kgK 

d Diameter, m 

f Function 

g Acceleration of gravity, m/s2 

h Heat transfer coefficient W/m2K, or thickness (S4.1.2), m 

k Heat conductivity, W/mK 

kj Reaction rate constant, j=reaction number 

n Normal to the surface or refractive index or reaction order 

p Pressure, Pa 



 xii

p0 Pressure difference between hole and atmosphere, Pa 

q Heat flux, W/m2  

r Radial coordinate, radius, m 

retch Etching reaction rate, mol/m2s 

rID Initial tube inner radius, m 

t Time, s or thickness, m 

v Velocity, m/s 

x Spatial coordinate, m 

y Spatial coordinate, m 

z Axial coordinate, m or length, m 

  

Greek symbols 

∆ Relative index difference 

Λ Pitch, m 

α Absorption coefficient, m-1 

β Angle 

ε  Emissivity 

ε’ Constant involving emissivity (S5.1) 

φc   Critical angle 

η Kinematic viscosity, m2/s 

λ Wavelength, m 

µ Dynamic viscosity, Pas 

θ Angle 

ρ Density, kg/m3 

σ Stefan-Boltzmann constant 

ξ Surface tension, N/m 

  

Subscripts 

0 Initial 

1 Inner (S.5.1) 

2 Outer (S5.1) 

a Ambient 

c Conduction 



 xiii

e External fluid 

ext External 

f Fibre or fictive (S4.1.1) 

g Gravity or glass transition (S4.1.1) 

I Inertia 

i Surface participating in radiation 

k Surface participating in radiation 

p Preform 

r Radiation 

T Tension 

ξ Surface tension 





 1

 

CHAPTER 1 INTRODUCTION 

1.1 Optical fibres in telecommunications 

Optical fibres were proposed for telecommunication transmission nearly four decades 

ago by Kao and Hockham [1]. Although glass fibres had been used for other purposes 

as early as the 19th century, it was not until the 1970s when optical fibre with loss less 

than 20dB/km was demonstrated [2] that intensive research began in the development 

of silica optical fibres in various research laboratories around the world. The adoption 

of chemical vapour deposition techniques, used in the semiconductor industry, for 

optical fibre manufacturing further reduced the transmission losses and significant 

improvements in fibre strength were achieved. Research was driven by the demand for 

increased long-distance capacity in telecommunications. The move to use single-mode 

fibre and the shift to a longer operating wavelength (1550nm) in the 1980s made greater 

bandwidth, longer system spans available and enabled significantly higher bit-rates. The 

first transatlantic cable system using optical fibres, TAT-8, was deployed in 1988 [3, 4]. 

 

The invention of the erbium-doped fibre amplifier (EDFA) in 1987 [5] facilitated a 

significant advancement in optical fibre communication systems. EDFAs enabled 

considerably longer repeater spacing and overcame the bit-rate limitation of electronic 

regeneration. These advantages ensured the rapid incorporation of EDFAs into 

operating systems in just three years [4]. The 1990s saw an ever-increasing market 

demand for bandwidth driven by the introduction of the internet and applications such 

as digital television, streaming video and multi-media on-demand products. Progress in 

photonic components such as EDFAs and fibre Bragg gratings (FBG) made possible 

the launch of wavelength division multiplexing (WDM) technology that uses many 

high-speed channels carried by different wavelengths and enabled a dramatic increase in 

fibre capacity and even larger amplifier spacing. These advances have resulted in optical 

fibre becoming the main information transmission medium for large bandwidth 

applications. 
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1.2 Application specific optical fibres 

Erbium-doped fibre is a prime example of how functionality can be added to optical 

fibres. In addition to optically active ions in silica glass, functionality can be added by 

varying the constituents and dopant concentrations to create complex and/or 

asymmetric refractive index profiles and stress structures. These fibres that are modified 

for specific applications from the simple structure used in standard long-haul fibres are 

called Application Specific Optical Fibres (ASOF) or simply, specialty fibres. Specialty 

fibres have played an important role in the advances in telecommunication 

technologies. As longer transmission lengths and higher powers were used, non-linear 

effects became an issue and fibres with modified dispersion properties had to be 

developed. To realise the use of WDM systems, sophisticated components that used, 

for example FBGs, were required involving special photosensitive fibres. Speciality 

fibres are also used in couplers, lasers, filters and in pigtailing.  

 

Over the last decade the focus of development and innovation has shifted largely to 

ASOF for fibre devices. Specialty fibres have found their way not only into 

telecommunications applications but also in various other fields such as medical, 

military and industrial processing (including gyroscopes and lasers). Specialty fibres are 

used for example in temperature, stress and strain sensors as well as in imaging systems. 

New designs of optical fibres are constantly developed to improve the existing fibres or 

to develop fibres for novel applications. The past seven years have seen intense research 

into a new type of optical fibre called Photonic Crystal Fibre (PCF) where the optical 

fibre structure is greatly modified by the introduction of arrays of holes. Optical 

properties that are impossible to obtain with conventional specialty fibres can be 

achieved with these structures and there is potential even to surpass the attenuation 

limits of standard telecommunications fibre. 

 

1.3 Optical fibre fabrication 

The intense research into optical fibres resulted in well-established fabrication methods 

for standard telecommunication fibres that met the stringent low-loss and high strength 

requirements. The subsequent research has mainly been towards reducing fabrication 

costs by producing larger preforms, removing the OH peak and controlling dispersion 

and PMD (polarisation mode dispersion). In fibre drawing the quest has been to 

increase the draw speeds without compromising the fibre quality.  
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Although the specialty fibres are fabricated using similar techniques to those used to 

manufacture standard telecommunication fibres, an added complexity in the fabrication 

is created irrespective of the means by which the structure of the fibre has been altered. 

In addition, in most cases the fibre properties require the structures to be produced to 

great precision. In order to manufacture these specialty fibres to their tight 

specifications in a repeatable manner, and in order to realise some of the more complex 

designs yet to be manufactured, it is of utmost importance to understand the 

phenomena by which the fabrication steps affect the final optical fibre structures.  

 

1.4 Motivation for the study 

This thesis looks at some of the changes produced in optical fibres during the fibre 

drawing process. Fibre drawing is the final stage in the optical fibre fabrication process. 

Although post processing such as testing, cabling and packaging are frequently applied, 

the fibre does not typically experience significant changes in its properties as a result. 

Fibre drawing is the most important stage after the preform fabrication stage where the 

optical and geometrical properties of the fibre are determined. As mentioned earlier, 

fibre drawing for standard telecommunication-type fibres has been optimised in terms 

of optical properties such as attenuation and physical properties such as geometric 

control and strength. Specialty fibres are however drawn under very different drawing 

conditions mainly due to the considerably shorter length requirements and the 

limitations imposed by the complex fibre structures. Although some fibre properties 

can be related to the same optimal drawing conditions as standard telecommunication 

fibre, by no means can it be expected that the optimal drawing conditions are exactly 

the same for fibres with different structures, dopants and geometry.   

 

Due to high temperatures in the fibre formation process changes in fibre structure and 

geometry are possible during drawing. Changes in dopant distribution can occur via 

diffusion or viscous flow. This results in change of the fibre refractive index profile that 

determines the optical properties of the fibre. In standard telecommunication fibres the 

dopant concentrations are small and cross-sectional profiles are symmetric making the 

minimisation of profile changes relatively easy. In specialty fibres however, some fibre 

designs have non-circular cross-sectional symmetry. Many specialty fibre designs also 

have very high dopant concentrations and multiple dopants are frequently used. These 
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structures are more vulnerable to dopant distribution changes during the fibre drawing 

process.  

 

There are very few studies published on dopant diffusion during drawing. Although 

germanium was qualitatively reported to diffuse during drawing by Hersener et al in 

1984 [6] a more recent study by Pugh et al in 1993 [7-9] specifically concluded that no 

such diffusion was observed. Germanium diffusion induced in optical fibres by various 

heat treatments has been measured in a number of studies but considerable scatter in 

the results was found in a literature survey (see Chapter 4, Section 4.1.3.1, p88). As 

germanium is the most common dopant used in specialty fibres for increasing the 

refractive index of silica it was chosen in this thesis as the focus of study in dopant 

diffusion during drawing. Another dopant, namely fluorine, was also considered in this 

study. Fluorine is frequently used in optical fibres to reduce the refractive index of 

silica. Unlike the results for germanium, the literature is relatively consistent with regard 

to the reported diffusion coefficient of fluorine (see Chapter 4, Section 4.1.3.3, p92). 

However no studies of fluorine diffusion during fibre drawing were found in the 

literature. This thesis presents a qualitative study of fluorine diffusion during fibre 

drawing. 

 

It is surprising how few studies can be found on the fabrication of photonic crystal 

fibres. This can perhaps partly be accounted for by the secrecy characteristic of the 

optical fibre fabrication industry. In addition to this a trial and error type approach is 

common when novel structures are fabricated for the first time and it is likely that not 

all aspects of the fabrication of PCFs have yet been looked at in detail. The inclusion of 

air structures in silica imposes a new challenge for the drawing process and entails an 

additional control target, namely the numerous internal air-silica interfaces absent in 

solid fibres. Numerous studies of PCFs which report on the fascinating optical 

properties of these fibres imply that the fibre drawing step is crucial for obtaining a 

suitable geometry and some important draw parameters are listed but no further 

elaboration on the fabrication aspects are given. A theoretical study has been published 

by Fitt et al [10, 11] on draw parameter effects on fibre capillaries and some 

experimental results are given for a simple structure with one hole. A purely theoretical 

study on PCF drawing has also been published by Deflandre [12] who does take into 

account the complex geometry of the fibre, however no supporting experimental results 
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are given. The objective of the present study is to look at the geometry control of PCFs 

during the fibre drawing stage including some aspects relating to preform fabrication. 

An experimental approach is chosen and the effects of all draw variables are studied 

with specific focus on control of the PCF hole structure.  

   

Both the dopant diffusion study and the study of geometry control of PCFs during 

drawing require detailed knowledge on the physical aspects of the fibre drawing 

process. Elaborate heat and mass transfer studies have been conducted to optimise the 

standard telecommunication fibre drawing process. Some of the studies date back to the 

early days of optical fibre research in the late 1960s and 1970s [13-16]. The latest studies 

have taken full advantage of the computing power available today and all the aspects of 

heat and mass transfer have been incorporated into these studies [17-21]. These 

sophisticated models however tend to assume a simple structure for the preform and 

fibre, an assumption which is valid for standard telecommunications fibres. Specialty 

fibres however, often have structures with high dopant concentration modifying the 

thermal properties of the glass and asymmetric and complex internal geometries. More 

drastic changes are expected for heat transfer in PCFs arising from the effects of the 

hole structure. In addition to solid fibre drawing the effects of air structures are studied 

in this thesis using numerical methods.  

 

The aim of the research project is to gain profound insight into the behaviour of 

complex fibre structures during the final fibre fabrication step, fibre drawing. 

Germanium and fluorine diffusion during drawing has been studied experimentally and 

a numerical analysis of the effects of various draw parameters on diffusion has been 

performed. Specific questions addressed include whether dopant diffusion can be 

induced during drawing, at what stage of the drawing the diffusion occurs and what are 

the effects of the various drawing parameters on diffusion. A detailed experimental 

study of geometry control of photonic crystal fibres during drawing has been conducted 

with particular emphasis given to the control of hole size. The effects of the various 

drawing parameters and their suitability for controlling the air-structure have been 

studied. The effect of air structures on the heat transfer in PCF structures is looked at 

using computational fluid dynamics techniques. Special attention is given to providing 

results that are reliable and applicable for a wide range of fibres and draw conditions 

and in some cases not limited to silica fibres.   
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1.5 Outline of the thesis 

The structure of this thesis is shown in the diagram in Figure 1-1. Chapter 2 provides a 

background relating to optical fibres and their fabrication. Chapter 3 describes the 

methods used in the experimental studies, including fibre designs used and their 

fabrication and describes the various techniques used for preform and fibre 

measurements. Chapters 4 to 6 present the results. Experimental dopant diffusion 

results are given in Chapter 4. Chapter 5 presents the experimental results of geometry 

control of photonic crystal fibres. Heat and mass transfer simulations are presented in 

Chapter 6 including dopant diffusion during drawing and the effect of air structures in 

PCF structures. Conclusions are presented in Chapter 7.  

 

Due to the complex nature of this study the various chapters are interdependent. 

Significant improvements in the analysis techniques were implemented during the 

course of the diffusion study. Consequently some repetition is necessary to give a clear 

and logical flow of thought in the text. Some of the diffusion results are repeated in the 

methods chapter, Chapter 3, and some of the methods are discussed in Chapter 4 when 

diffusion results are presented. As both experimental and theoretical studies have been 

conducted, some of the experimental results are discussed in Chapter 6, where 

theoretical heat and mass transfer computations are presented. The same applies to the 

experimental results of PCF fabrication. Great effort was taken to cohesively present 

these studies together, however due to the very different nature of the phenomena 

characterising the fabrication issues this was sometimes found very challenging. To 

improve readability a detailed background and literature review are provided at the 

beginning of each of chapters 4, 5 and 6.   
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Figure 1-1. Diagram of the structure of the thesis. 
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CHAPTER 2 BACKGROUND 

2.1 Principles of fibre optics 

In its simplest form optical fibre structure consists of a core and a cladding as shown in 

Figure 2-1. The light propagates in the core when the core material has higher refractive 

index (ncore) than that of the cladding (ncladding). When light travelling in a higher 

refractive index impinges on the interface with a lower refractive index medium at an 

angle greater than a critical angle it is totally reflected. This is called total internal 

reflection (TIR). The critical angle φc  is defined as sin c cladding coren nφ = .  

 

A light wave has certain paths it can follow down an optical fibre, which are called 

modes. More specifically, modes are permitted solutions to Maxwell's equations. 

Depending on its refractive index profile (RIP), the number of possible modes that can 

be supported by the fibre varies from one to more than a hundred thousand. Optical 

fibres can be divided into two categories: multimode and single-mode fibres, according 

to the number of modes they can propagate. Multimode fibres typically have a large 

core whereas single-mode fibre cores are small (typically around 10µm or less in 

diameter) allowing only the fundamental mode to be guided in the structure. Figure 2-2 

shows typical RIPs for some fibres used in telecommunication applications. The 

refractive index is not necessarily constant in the core (step index) as presented in 

Figure 2-1 (a), but may be intentionally varied along the radius of the fibre to alter its 

optical properties. More complex RIPs are discussed in Section 2.2 in relation to 

application specific optical fibres. 

 

 

Figure 2-1. Diagram of the refraction of light entering a step-index fibre and total reflection 

within the fibre. θ is defined in Eq. (1). 
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Figure 2-2.  Graphical presentation of the three different types of RIPs in the core of the fibre; (a) 

multi-mode step index,  (b) multi-mode graded index and (c) single-mode step index. 

 

A basic parameter that characterises optical fibres is numerical aperture (NA). It is 

related to the refractive indices of the core and the cladding and for multimode fibres is 

the sin of the maximum angle at which light entering the end of the fibre will be 

propagated within the core, see also Figure 2-1.  

 

2 2sin core claddingNA n nθ= = −      (1) 
 

The relative core-cladding index difference, ∆ = (ncore-ncladding)/ncore, is also commonly 

used to characterise the RIP. The number of modes than can propagate is related to a 

dimensionless quantity V called the normalized frequency: 

 

2 rV NAπ
λ

= ,       (2) 

 

 

where λ is the wavelength of light in vacuum and r is the core radius. When V is less 

than 2.405 for a step-index profile, the fibre is single-moded.  

 

Optical fibres can be made of a variety of transparent materials. Various glasses such as 

chalcogenides and fluorides can be used as waveguide materials as well as polymers 

such as PMMA (polymethylmethacrylate). Silica glass is however the most widely used 

material due to the practical realisation of fibres exhibiting low optical loss 

(<0.2dB/km) and high information transmission capacity. Silica fibres also have high 

tensile strength and fabrication technology is available to realise high capacity 

production and so relatively low costs. Polymer optical fibres (POF) and composite 

plastic and glass fibres (plastic-clad silica PCS) typically exhibit much higher losses and 
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so are generally used for short distance data links or non-telecommunications 

applications. Fluoride and chalcogenide glass fibres may be used where transmission at 

longer wavelengths is required or as hosts for rare earths in optically active fibres. 

 

In silica fibres the refractive index is modified by incorporating dopants such as 

germanium, fluorine, phosphorus, boron and aluminium. Ge, P and Al increase the 

refractive index whereas F and B decrease it. In a typical single-mode (SM) fibre design 

the core is doped with 3 - 7mol% of GeO2 to give ∆ = 0.3 - 0.7% [22]. As part of the 

power of the propagating mode lies in the cladding, the purity of the cladding is also 

very important. Depending on the manufacturing technique and desired refractive index 

of the cladding, a number of cladding compositions are typically used. Cladding can be 

composed of pure SiO2 or SiO2 doped with either F or P or both. P2O5 is typically 

included to lower the viscosity of the glass due to fabrication limitations. When 

matched cladding index is required, F is used to compensate for the increased index due 

to P. More details are given in [23]. 

 

2.2 Application specific and specialty optical fibres 

Application specific optical fibres known also as specialty fibres typically have more 

complicated structures than those used for long-haul transmission. The structures are 

modified for example by introducing new dopants or by changing the geometry of the 

core or cladding or by introducing additional regions such as doped rings to the 

structure.  The structure is modified in order to tailor specific optical properties or add 

functionality as required by the application. Some of the more common specialty fibres 

are briefly discussed below to give an idea as to the variety of designs that exist. 

 

2.2.1 Fibres for dispersion management  

Dispersion is an optical property, which causes a broadening of a propagating pulse 

with respect to time. In single-mode fibres the main source of the broadening is 

chromatic dispersion. The broadening is a result of the different spectral components 

of the pulse travelling at different speeds. Chromatic dispersion arises from two sources 

(i) material dispersion and (ii) waveguide dispersion. Material dispersion is due to the 

material refractive index variation with wavelength. Waveguide dispersion results from 

the changes in the power confinement of the mode as the core and the cladding have 



 12

different wavelength-velocity relationship. The total chromatic dispersion is the sum of 

the material and waveguide dispersion, see Figure 2-3 (a). 

 

Pulse broadening can be prevented, or compensated for by modifying the fibre design. 

Such fibres are typically called dispersion-compensating fibres (DCF), zero- and 

nonzero-dispersion-shifted fibres (ZDF, NZ-DSF) and dispersion-flattened fibres. In 

these fibres the RIP has been modified to alter the waveguide induced component of 

the dispersion, resulting in specific dispersion characteristics. Figure 2-3 (b) shows 

examples of dispersion curves of the dispersion-shifted and dispersion-flattened fibre. 

Figure 2-4 shows the corresponding refractive index profiles.  

 

           
           (a)            (b) 

Figure 2-3. (a) Chromatic dispersion of a typical step-index single-mode fibre. Material and 

waveguide dispersion components shown as dashed lines. (b) Waveguide dispersion of 1. Step-

index, 2. dispersion-shifted triangular core and 3. dispersion flattened W-fibre. 

 

 

 

Figure 2-4. RIP designs of fibre cores for dispersion management; (a) dispersion-shifted 

triangular core, (b) dispersion-flattened double-clad fibre (W-fibre) and (c) dispersion-flattened 

quadruple-clad  (QD) fibre [22]. 
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2.2.2 Highly-birefringent fibres  

Some applications require fibres that maintain the polarisation state of the light which it 

is guiding. Such fibres are typically called polarisation maintaining, polarisation-

preserving or highly-birefringent fibres. These fibres are designed to introduce a large 

amount of birefringence that makes the fibre insensitive to small birefringent 

fluctuations typically present in fibres due to inhomogeneities in the geometry or 

mechanical perturbation. More specifically, they are designed with high birefringence to 

break the degeneracy of the fundamental mode and hence minimise any coupling 

between the two polarisations of the fundamental mode by giving them different 

propagation velocities. Birefringence can be introduced for example by making the core 

elliptical or by introducing stress-inducing elements on opposite sides of the core. 

Boron is typically used as the dopant for the stress inducing parts. The designs are 

called for example PANDA, bow-tie and ‘elliptical clad’ (or Tiger) fibre according to the 

shape of the stress-inducing regions, see Figure 2-5. The boron doping level is typically 

around 20mol% (depending upon the required birefringence) and the fibre cores are 

doped with germanium. 

 

 

 
(a)                         (b)                          (c) 

Figure 2-5. (a) PANDA and (b) bow-tie and (c) elliptical clad fibre. Photos of fibre (a) and (c) are 

courtesy of Nufern Ltd. Fibre (b) was fabricated at OFTC.  
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2.2.3 Photosensitive fibres  

Photosensitive fibres, as the name indicates, are fibres that have been modified to 

enhance the photosensitivity1 of the structure. Such fibres can be used to fabricate 

Bragg fibre gratings that have a multitude of applications in telecommunications. 

Gratings specifically play a role in WDM enabling components, amplifiers and fibre 

lasers. Gratings are also used in temperature, stress and strain sensors. More details are 

given in [24]. 

 

Germanium doped fibres have been found to be most suitable as photosensitive fibres. 

Photosensitivity is believed to result from formation of colour centres GeE' (GeO 

defects), densification, stress and the formation of GeH centres. Typically, higher Ge 

content results in greater photosensitivity. Germanium-boron co-doped fibres are the 

most common fibres employed. Boron provides an electron trap that stabilises the 

photoreactive change. Large amounts of germanium can also be incorporated whilst 

keeping the refractive index compatible to standard SM specifications by codoping with 

B. Figure 2-6 shows an example of the composition of boron co-doped fibre. 

Photosensitive regions can also be placed into other parts of the fibre if required. Tin 

codoped fibres can also be used and have some advantages over Ge-B codoped such as 

thermal stability and no additional loss related to B doping [24].  

 

 

 

Figure 2-6. Refractive index components due to Ge and B contributing to the resultant RIP [24].  

                                                 
1 Photo-induced change in refractive index due to exposure to UV-radiation. 
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2.2.4 Rare-earth doped fibres 

The functionality of optical fibre can be enhanced by introducing optically active 

elements such as lanthanides. When these ions are optically excited with irradiation of 

an appropriate wavelength they act as a lasing or amplifying medium through stimulated 

emission. Fibre amplifiers are used to overcome transmission losses and restore the 

signal intensity in communication systems. The erbium-doped fibre amplifier is 

particularly interesting because it provides gain in the wavelength range typically used in 

fibre communication networks. By using suitable lanthanide-ion doped fibres, lasers can 

be made which operate over a wide range of wavelengths extending from 0.4 to 4µm 

(though silica transparency is a problem beyond 2µm). In addition to erbium, other 

lanthanides typically used in fibre lasers and amplifiers include neodymium, thulium, 

ytterbium, holmium and praseodymium. 

 

Although the lasing properties are determined by the selection of the lanthanide ion and 

its concentration, the design of the silica fibre acting as a host to the ions is important 

to optimise the optical properties. Figure 2-7 shows an example of dopant distribution 

in an erbium-doped fibre preform. Rare-earth doped fibres typically use germanium to 

increase the refractive index of the core. Aluminium is often used as it increases the 

solubility of rare-earth ions in the silica matrix and prevents clustering [25]. Phosphorus 

can also be used to alter the silica structure and accommodate the lanthanide ions [25]. 

There are two major classes of fibre laser – core pumped and cladding pumped. The 

cladding in the cladding pumped fibres is commonly made non-circular to improve 

performance. Also novel structures such as air-clad structures are introduced into the 

fibre, acting as a low index cladding, enabling the use of higher optical pump powers 

[26].  
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Figure 2-7. Distribution of Er, Ge and Al and RIP for an erbium-doped fibre preform [25]. (a.u. 

arbitrary units) 

 

2.2.5 Photonic crystal fibres 

The first air-silica structured claddings in optical fibres were introduced by Kaiser and 

Astle [27] in 1974. Their fibre consisted of pure silica with a solid core surrounded by 

an air-structured cladding. In the mid 1990s a new interest arose in using air structures 

in optical fibres when Birks et al [28] introduced Photonic Band Gap (PBG) fibres 

which used a highly periodic 2D lattice structure that would enable guidance of light in 

a lower refractive index core such as air via the band gap effect. The fibre was called 

photonic crystal fibre or PBG fibre. Although guidance in a hollow-core was not 

demonstrated until 1999, by Cregan et al [29], Russell and co-workers successfully 

fabricated fibre with air-structured cladding which used a solid core [30, 31]. These 

fibres did not exhibit PBG guidance, but light was guided by a so called modified total 

internal reflection and demonstrated a number of interesting phenomena such as 

endlessly single-mode behaviour, anomalous dispersion, high-nonlinearity and high 

birefringence [32]. These fibres are typically called ‘index-guiding’ fibres to differentiate 

them from PBG fibres. Both PBG and index-guiding fibres are frequently called PCFs 

but other names such as holey fibre [33], microstructured fibre [34], air-silica structured 

fibre [35] and Fresnel fibre [36] have been used. In this thesis PCF is chosen due to its 

wide use in the recently established industry. 

 

The air-structure in the cladding of the PCF consists of an arrangement of small air 

holes running through the entire length of the fibre. Typically a periodical arrangement 
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of holes is used although it is not always necessary. The core can be solid or hollow 

depending on the type of PCF. PCFs are commonly made of silica, but polymers [37-

39] and soft glasses [40] can also be used. The index-guiding PCFs have a solid core 

surrounded by the air-structure. An hexagonal close-packed array of holes is often used, 

as shown in Figure 2-8 (a). The guidance of these fibres has been compared to the 

conventional step-index fibre, where the air-structure represents a low refractive index 

cladding. Depending on the cladding air fraction, relative size of the holes and 

wavelength, an effective index can be computed for the cladding and some useful 

properties such as bending losses and dispersion properties can be qualitatively studied. 

For quantitative analysis the full vectorial nature of the  electromagnetic waves must be 

taken into account. 

 

One of the most intriguing properties of these fibres is that they can be made to be 

‘endlessly’ single-moded. Whereas conventional fibres exhibit a cut-off wavelength 

below which they support more than a single mode, PCFs can be made to be single-

moded over a large wavelength range [31]. This allows structures with ten times larger 

cores compared to conventional fibres to be single-moded [41] enabling, for example 

the delivery of high optical power. This property can be partly explained with the 

effective-index model by the wavelength dependent cladding mode refractive index 

where the effective cladding index increases with decreasing wavelength making the 

fibre single moded even at lower wavelengths [30]. A more accurate way of looking at 

this is that the higher order modes have a smaller transverse effective wavelength and 

will leak out along the silica bridges between the holes [32]. If these bridges are small 

enough the higher order modes are retained in the core and the fibre becomes 

multimoded. 

 

Another interesting feature of PCFs is anomalous dispersion. With high air-fraction and 

small core design the wavelength of zero dispersion can be shifted to the visible end of 

the optical spectrum while keeping the fibre single-moded [42]. A number of interesting 

dispersion properties of PCFs have been reported in the literature [33, 42-46]. Unusual 

dispersion properties can be used for example in supercontinuum generation and 

soliton formation [47, 48]. Birefringence ten times larger than in conventional 

polarisation maintaining fibres can be induced in PCFs [49, 50].   
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The optical properties of these fibres are determined by the cladding air-structure and 

the core size. Typical geometric parameters defining the properties are hole diameter, d, 

centre-to-centre distance between neighbouring holes (pitch), Λ, number of rings, the 

air-fraction represented by d/Λ and the hole arrangement. Figure 2-8 (a) shows some of 

these parameters for fibre with an hexagonal arrangement of holes. For example these 

structures are single-moded when d/Λ<0.4 [51, 52]. In order to have useful optical 

properties the fibres do not always require absolute uniformity or order of the structure 

[53], although to realise low losses this is highly desirable. The lowest loss reported for  

an effective index guiding PCF is 0.37dB/km at 1550nm by Tajima et al [54]. 

 

        
(a)                                           (b) 

Figure 2-8. Images of (a) effective index PCF fabricated for this theses and (b) PBG fibre by 

Mangan et al with 20µm hollow core [55].  

 

PBG fibres have a lower refractive index core, such as air. In PBG fibres the air 

structure is highly periodic on the scale of the optical wavelength and consists of 

hundreds of holes with a very high air-fraction. When the periodic lattice of holes is 

appropriately designed, propagation of electromagnetic waves in certain frequency 

bands may be prohibited [32]. These photonic band gaps are analogous to electronic 

band gaps in semiconductors. If the hole structure surrounding the central defect 

(hollow core) is sufficiently regular, then strong confinement of light in the low 

refractive index core can be achieved. Figure 2-8 (b) shows an example of such fibre. In 

order to achieve PBG guidance a high degree of periodicity of the structure is essential. 

It is believed that this sensitivity of the band gap to structural fluctuations is the main 

obstacle in obtaining low losses [32]. The lowest loss PBG fibre reported to date is 

1.72dB/km reported recently by Mangan et al [55]. Guidance in a hollow core is 

attractive because of the theoretical potential for extremely low transmission losses and 

significantly reduced optical non-linearity. Strong light-matter interactions can also be 
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achieved if the hollow core is filled with specific gas or liquid making the PBG fibre 

attractive in sensor applications for example.   

 

2.3 Fibre fabrication 

Optical fibre fabrication typically involves two stages; preform fabrication and fibre 

drawing. A preform is a large-scale replica of the fibre typically 100-1000mm in length 

and 10-50mm in diameter. (Large capacity manufacturing of long-haul optical fibre 

typically involves preform sizes of much larger dimensions, however emphasis here is 

on specialty fibre fabrication.) After fabricating the preform it is drawn down to fibre 

dimensions in a drawing tower. In most cases it is possible to conserve the relative 

preform cross-section (RIP) during the fibre drawing.    

 

2.3.1 Preform manufacture 

Special vapour deposition techniques have been developed to provide the necessary 

high purity levels of glass to realise today’s low losses (<0.2dB/km) in silica optical 

fibres. There are currently three major processes used for making silica optical fibre 

preforms: 

1. Modified Chemical Vapour Deposition (MCVD) 

2. Outside Vapour Deposition (OVD) 

3. Vapour-phase Axial Deposition (VAD) 

 

The techniques are all based on manufacturing synthetic silica by vapour deposition, 

however the technologies used differ significantly and unique advantages and challenges 

arise with each process. These are discussed briefly in the following sections giving 

emphasis to MCVD which is the primary preform fabrication technique used in this 

thesis. 

 

2.3.1.1 Modified chemical vapour deposition 

MCVD is based on oxidation of halides of the required elements in a gas phase to form 

oxide particles that then deposit onto a substrate surface to form a thin layer of material 

(layer thickness ranging from a few microns to 100 microns). The substrate surface in 

MCVD consists of a silica glass tube, called the substrate tube. Deposition occurs on 

the inner surface of this tube. The preform is fabricated starting with an inner cladding 
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and finishing with a core by forming glassy layers (between 10 and 100) of pure or 

doped silica. Upon completion, the tube is collapsed to form a solid rod - the preform. 

The substrate tube becomes a part of the fibre cladding or can be removed by chemical 

etching.  

 

Figure 2-9 shows a schematic diagram of the MCVD process. The high-quality silica 

glass substrate tube is mounted between rotating chucks of a glass-working lathe. An 

etching pass is typically performed first to improve the inner substrate tube surface. The 

halide vapours are delivered to the substrate tube by a carrier gas, e.g. oxygen, which is 

passed through the bubblers that contain the halide in liquid form. The more typically 

used halide precursors include SiCl4, GeCl4, BCl3, BBr3, PCl3, POCl3, SF6, CF4 and 

CCl2F2. The reagent vapours enter the rotating tube while an oxyhydrogen torch slowly 

traverses in the same direction as the gas flow. As the reagents enter the hot-zone 

created by the torch they react with oxygen by a homogeneous gas phase reaction to 

form glassy particles of submicron size. Typical reactions are shown below. [23, 56, 57] 

 

                        SiCl4(g) + O2(g) ↔ SiO2(s) + 2C12(g)       (3) 

                                        

                        GeCl4(g) + O2(g) ↔ GeO2(s) + 2C12(g)      (4) 

                                            

4POCl3(g) + 3O2(g) ↔ 2P2O5(s) + 6C12(g)      (5) 

                                             

4BBr3(g) + 3O2(g) ↔ 2B2O3(s) + 6Br2(g)      (6) 

 

 

 

Figure 2-9. MCVD preform manufacturing process. 
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The particles formed deposit downstream of the torch by thermophoresis. 

Thermophoresis arises from the thermal gradient. Particles collide with the gas  

molecules that have different average velocities resulting in a net force in the direction 

of decreasing temperature. The particles thus deposit on the cooler tube surface 

downstream of the hot-zone. As the torch moves along, it sinters the individual soot 

particles into a consolidated glassy layer. 

 

The relative proportion of the halide constituents are adjusted for each pass to provide 

the desired refractive index profile. The amount of each dopant in the final glass layer 

depends on the reactant proportions, the gas flow rates and on particle formation, 

deposition and consolidation [58]. The temperature is generally high enough so that the 

oxidation reactions Eq. (3)-(6) are not limited by reaction kinetics but by reaction 

equilibrium [23]. For example SiCl4 (Eq. (3)) reacts almost 100% to form SiO2 above a 

specific temperature, however, GeCl4 has a temperature above which the GeCl4 

conversion is reduced. Figure 2-10 illustrates the conversion of SiCl4 to SiO2 and GeCl4 

to GeO2 as a function of temperature. The equilibrium limitation for Eq. (4) means that 

100% conversion of GeCl4 is not achieved during the MCVD process. In addition to 

this the equilibrium shifts towards GeCl4 at high chlorine concentrations, which results 

from the complete oxidation of SiCl4, further reducing the oxidation efficiency of GeCl4 

[57]. Furthermore not all particles formed in the oxidation reactions deposit on the tube 

wall. Particles below a certain critical size stay in the gas stream and hence reduce the 

deposition efficiency. The deposition efficiency has been shown to depend on the ratio 

of the temperature of the gas and the tube wall and the reaction temperature [23]. The 

gas temperature is affected e.g. by torch speed, ambient temperature and tube wall 

thickness. The deposition efficiency is particularly low for GeO2, 40-70% [23, 56-58]. 
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Figure 2-10. Conversion of SiCl4 to SiO2 and GeCl4 to GeO2.2 

 

After the final core layer is deposited the tube is collapsed into a solid rod by increasing 

the torch temperature. The surface tension and the increased pressure from the torch 

[59] cause the tube to collapse. In the collapse stage small amounts of Cl2 can be used to 

reduce OH incorporation in the glass. In order to increase the preform size and to 

improve productivity the core preform can be jacketed with a silica tube using a 

sleeving technique. Alternatively an OVD process (Section 2.3.1.2) can be used to grow 

additional cladding layers on to the outside of the preform. 

 

Figure 2-11 shows  a typical Ge-doped core single-mode fibre preform RIP with F-

P2O5-SiO2 cladding. There are some features that are frequently seen in fibres used in 

this thesis and are common in MCVD fibres. The layered structure of the MCVD 

preform is clearly seen in the cladding layers. Note that each layer has a refractive index 

gradient. These gradients are presumed to be due to different chemical diffusion rates, 

oxidation reaction equilibrium and particle formation during deposition and sintering. 

The Ge-doped core has a central refractive index dip characteristic of the MCVD 

process.  At temperatures above about 1600°C the dioxide GeO2 can be converted to 

the monoxide GeO according to reaction [58]:   

 

GeO2(s) ↔ GeO(g) + ½ O2(g)    (7) 

                                                 
2 The figure is drawn for illustration purposes only and does not provide quantitative information. The 
illustration is based on results presented by Wood et al. [58]. 
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Figure 2-11. A typical single-mode preform RIP showing the layered structure and central Ge-

depleted dip. 

 

Due to the high temperatures used in the collapse phase, the above reaction can occur 

and may cause Ge-depletion from the surface of the innermost layer [56] because of 

greater volatility of GeO. Ge gradients could also be created due to tube radial 

temperature gradients where particles formed near the hotter tube wall will have a 

different GeO2 concentration (either via equilibrium considerations of Eq. (4) or the 

reaction in Eq. (7)) [58]. If large soot particles form the Ge gradients would not have 

time to equalise via Ge diffusion. These particles deposit closer to the torch than the 

particles formed near the tube centre hence resulting in a Ge gradient across the layer. 

Typically the central refractive index dip does not cause a significant change in optical 

properties but can add to increased losses in high concentration single-mode fibres via 

scattering [60]. If required the central dip can be compensated by using small amounts 

of GeCl4 during collapse or by removing the depleted area by etching prior to collapse 

[23]. 

 

2.3.1.2 Other deposition techniques  

Plasma Chemical Vapour Deposition (PCVD) is similar to MCVD but reaction inside 

the tube is initiated by a nonisothermal microwave plasma that traverses the length of 

the tube. Deposition occurs directly on the tube wall and no particulate soot is 

generated. Reaction and deposition of both GeO2 and SiO2 are more efficient than in 

MCVD, approaching 100%, and very fast traverse speeds can be used to produce 

hundreds of layers in a relatively short period of time [57].  
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The Outside Vapour Deposition (OVD) process differs from MCVD in that vapour 

deposition occurs on the outside surface of the starting or target rod. The preform is 

thus built from inside to outside by forming soot layers. The chemicals are delivered 

into the torch where they react to form submicron glassy particles. A porous preform is 

formed layer by layer. Before consolidation the target rod is removed and the porous 

preform is placed in a consolidation furnace. The OVD method is preferred in large-

scale production because of the relative ease associated with producing large preform 

diameters.  

 

The Vapour-phase Axial Deposition (VAD) technique is similar to OVD in that vapour 

deposition occurs outside the starting rod. Differing from the OVD and MCVD 

processes, the layers grow axially rather than radially. In theory this method allows a 

continuous process, where a soot preform is grown, consolidated and drawn directly 

into the fibre. In the process the rod is rotated and the chemical vapours are delivered 

into the torches, which are placed at the end of the rod. As the soot particles build up, 

the starting rod moves upwards to make room for new growth. The refractive index 

profile is adjusted via precise control of the raw material flow, position of the preform 

tip and its surface temperature. The consolidation occurs in a similar manner as in the 

OVD process. More details of these deposition techniques can be found in [23]. 

 

2.3.1.3 Additional techniques used in specialty fibre fabrication 

In the manufacture of specialty optical fibres additional processing steps are sometimes 

required. In highly-birefringent fibres, the so-called PANDA structure is made by using 

a rod-in-tube method. A preform with the required core is first fabricated and two holes 

drilled on opposite sides of the core. Boron-doped rods are then inserted into the holes 

to create the PANDA structure and the resulting structure is drawn. In fabricating the 

‘bow-tie’ structure, additional burners are used in MCVD to etch parts of the stress-

inducing B-doped layers away after which an inner cladding is deposited. Similar 

techniques can be used to create other complex structures requiring cylindrical 

asymmetry. 

 

The so-called “rod-in-tube” method can also be used to make rare-earth doped fibres 

where a rare-earth containing rod is inserted into a tube which is subsequently collapsed 
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to form a rod. The more commonly used techniques involve either a solution-doping or 

vapour phase deposition. The solution-doping method involves the deposition of an 

unsintered porous layer of glass. The porous layer is then impregnated with a solution 

containing the lanthanide ions. After soaking, the solution is drained and the substrate 

is dried in a chlorine-oxygen mixture and collapsed into a solid preform. Various 

solvents can be used e.g. water, ethanol, methanol or acetone. More novel techniques 

such as chelate deposition [61], aerosol [62] and direct nanoparticle deposition [63] 

techniques have also been used to incorporate lanthanides into optical fibres. 

 

Photonic crystal fibre preforms are fabricated typically by two methods (i) drilling or (ii) 

capillary stacking. In the drilling technique the required hole structure is drilled using an 

ultrasonic-drill in a solid silica rod. In capillary stacking the hole structure is created by 

stacking silica capillaries and solid rods inside a silica tube to generate a suitable pattern. 

These techniques are discussed in more detail in Section 3.1.2. 

 

2.3.2 Fibre drawing 

To produce the final fibre, the preform is drawn down in a draw tower. Typical optical 

fibre diameter is 125µm but specialty fibre diameters can range from 40µm to 2000µm. 

Figure 2-12 shows a schematic diagram of the fibre drawing process. The preform is fed 

vertically into a furnace, which is heated above the glass-softening temperature about 

2000°C. As the glass softens a neck-down forms due to gravity and the pulling force. 

The pulling force is provided by a capstan, the speed of which is controlled to maintain 

constant fibre diameter.  

 

2.3.2.1 Preform feed unit 

The preform is mounted in a holding chuck attached to a preform feed mechanism that 

lowers the preform into a furnace. The preform feed rate, Vf , depends on the preform 

diameter, Dp , the fibre diameter, Df , and the drawing speed, Vf , according to the 

conservation of mass (assuming constant density). 
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Typically the preform feed rate is held constant and draw speed used to control the 

fibre diameter due to the much faster response. 

 

 

Figure 2-12. Schematic diagram of optical fibre drawing process 

 

2.3.2.2 Drawing furnace 

A variety of methods can be used to heat the preform to its “draw temperature” (1900-

2200°C). As turbulence around the fibre causes unacceptably large variations in the 

fibre diameter, the furnace must provide laminar ambient gas flow and must also be 

clean, i.e. give off no particles that might impinge on the preform and degrade fibre 

strength. The most common furnaces used that meet these requirements are graphite 

resistance and induction furnaces, and zirconia induction furnaces. The advantage of 

the induction furnace is its compact size compared to resistance furnaces. Zirconia 

furnace elements emit fewer contaminating particles than graphite elements, but have 

more stringent operating procedures due to the large volume change when cooled 

below 1600°C.  
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Furnaces with graphite elements must use an inert gas, such as argon or nitrogen, 

during operation to prevent oxidising the element and hence increasing the particle 

contamination and reducing element lifetime. Several gas inlets are provided to give 

either resultant upflow or downflow of the gases. The furnace top and bottom irises are 

carefully adjusted, together with the inert gas flow to provide laminar flow of a 

sufficient quantity to maximize fibre strength and minimize diameter variations 

characteristic of turbulent gas flows. Furnace temperature is measured with an optical 

pyrometer from either the outer surface of the heating element or directly from the 

preform neck-down depending on the furnace set-up, the former being the more typical 

configuration. The temperature can be controlled to within 1°C, but it must be 

remembered that it does not necessarily coincide with the preform temperature. Fibre 

tension can be used to gauge the neck-down temperature. Fibre tension depends on the 

viscosity of the glass and hence will give a more accurate indication of the neck-down 

draw condition. Repeatability in fibre quality is improved by keeping the tension 

constant from draw to draw. On-line control of fibre tension can also be set-up while 

furnace temperature and/or preform feed rate can be used to alter the neck-down 

temperature. 

 

2.3.2.3 Diameter control 

In order to maintain a uniform fibre diameter, the drawing process includes a diameter 

control loop. The fibre diameter is monitored as it exits the furnace. The output signal 

from the diameter monitor is used to automatically adjust the speed of the drawing 

capstan using a PID controller to obtain the correct diameter. The diameter control is 

essential to minimize the effect of fibre diameter fluctuations on such properties as 

microbending sensitivity and splicing loss. Fibre diameter is usually specified as 

125±1µm but even better control is routinely possible. Low frequency variation in the 

average fibre diameter can result from changes in preform diameter, drift in furnace 

temperature and the preform feed rate. This is minimised using PID control. Diameter 

variations with shorter period typically arise from perturbations in the neck-down 

region caused by thermal fluctuations of the furnace atmosphere, such as fluctuations in 

inert gas flows and acoustic and mechanical vibrations [57]. 
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2.3.2.4 Coating 

Before the fibre reaches the capstan it is coated with a protective polymer. Coating is 

required to protect the surface from abrasions and preserve the intrinsic strength of the 

silica by providing a barrier to moisture. The coating usually consists of two layers of 

acrylate, a softer inner layer and a harder outer layer. Acrylate is applied in a liquid state 

and is solidified by UV-curing. To provide other functionalities special coatings such as 

hermetic coatings or thermally curable coatings may be used. The final diameter of the 

fibre with coating is typically around 250µm. It is necessary that the fibre be cooled 

(<80°C) prior to coating. Between the furnace and the coater the fibre is cooled down 

by the surrounding air. At high speeds and with limited tower height it may be 

necessary to use forced cooling. Helium is often used for this purpose due to its 

improved heat transfer properties in specifically designed cooling tubes that enhance 

turbulence to remove heat more efficiently. After coating the fibre passes over a capstan 

onto a fibre take-up that winds the fibre onto a spool. Prior to coating, the fibre surface 

is exposed to potential contamination that will reduce the fibre strength. The fibres are 

therefore drawn in a clean room environment. Class 100 (see footnote3) is typically 

sufficient to provide the required high strength fibre.  

 

2.3.2.5 Post-processing 

After the drawing process fibres are proof-tested at a given stress level to minimise 

failure during the subsequent post-processes or fibre usage. Standard proof-test force is 

0.7GN/m2 (100kpsi). During the proof testing the weak points of the fibre are removed 

ensuring a minimum tensile strength for the remaining fibre. The fibre is then 

characterised with regard to its optical properties. Depending on the fibre application 

the finished fibres can be coloured, made into ribbons and/or cabled or processed into 

optical device. 

 

2.3.2.6 Draw-effects 

The optical properties of the fibre are predominantly determined by the preform 

composition and structure and so the preform fabrication is the key process to 

optimise. The fibre drawing process can however modify the pattern laid down in the 

                                                 
3 There exist no more than 100 particles larger than 0.5 microns in any given cubic foot of air. 
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preform and affect the final properties of the fibre. In the past the main effects studied 

include drawing effects on transmission losses and fibre strength [23]. Since the 

preform is drawn at very high temperatures followed by rapid cooling, modification to 

the glass structure is possible. It has been shown that defects such as EI centres in silica 

and Ge-EI centres in Ge-doped fibres, can result from the fibre drawing process [64-

66]. These defects cause increased absorption losses in the fibre. To prevent draw-

induced losses the fibres are commonly drawn in an optimal fibre tension range that 

varies according to fibre composition and design. In addition to tension, draw 

parameters such as furnace temperature and cooling rate affect defect formation [64]. 

 

The intrinsic strength of silica fibre can be compromised by the drawing process. As 

mentioned earlier cleanliness during drawing is an absolute prerequisite for high-

strength fibre. Furnace and inert gas set-up play a significant role in reducing particle 

contamination as well as eliminating possible physical contact of the fibre with any 

surfaces prior to coating. The coating process itself can also be a cause of reduced fibre 

strength. The coating material should be filtered to remove any contaminants, should 

be bubble-free and applied concentric to the fibre and the curing process should be 

optimised. The drawing temperature has also been shown to play a role in high-strength 

fibre fabrication. Sometimes the required temperature ranges conflict with those 

required for minimized loss conditions. For example higher temperatures have been 

found to provide higher fibre strengths [23], but too high a temperature can result in 

changes in the refractive index profile via viscous flow and diffusion.  

 

Modification of the RIP can also occur during drawing via residual stress. The 

differences in viscoelastic properties between the core and the cladding result in 

mechanical stress build-up during drawing [67]. As a consequence the refractive index is 

modified via the photoelastic effect. The modification depends on the particular fibre 

structure and the drawing conditions. A more detailed literature survey is given in 

Appendix I. A recent study in this area was published by Yablon et al [68] who state that 

refractive index perturbations result from frozen-in viscoelasticity during drawing4. 

                                                 
4 The term ‘frozen-in viscoelasticity’ used by Yablon et al [68] is not standard terminology. Author 
recommends the reader to refer to Ref. [68] for further details. 
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2.3.2.7 Specialty fibre drawing 

Some modifications to the standard drawing process are required in specialty fibre 

fabrication. To produce circularly birefringent fibres the hi-birefringent preform can be 

spun during drawing (with spin speeds of 300-2000rpm). This requires a rotating 

preform chuck or spinning the fibre at the capstan. Some of the specialty fibres have 

non-circular cladding and require modification to the fibre diameter measurement and 

control. Fibres with air-structures such as PCFs, capillaries and poling fibres may 

require additional control for the air-structures.   

 

Due to more complicated geometry and reduced fibre length requirements specialty 

fibres are drawn at considerably lower drawing speeds and with smaller towers than 

standard telecommunications fibre. Due to higher dopant concentrations and more 

complex fibre designs specialty fibres are likely to be more susceptible to draw-induced 

changes such as residual stress and RIP deformations. As stated in the Introduction 

chapter, the aim of the work reported in this thesis is to look at some of the specific 

drawing effects that must be taken into account in specialty fibre drawing. Dopant 

diffusion and geometry control of PCFs are the particular focus of this study. 
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CHAPTER 3 METHODS 

The various methods employed in this thesis are presented in this chapter. The first 

section describes the designs used for the two fibre types studied, namely conventional 

silica fibre where doping is done by chemical vapour deposition techniques and silica 

photonic crystal fibre. The fibre fabrication techniques used to manufacture the studied 

fibres are described in Section 3.2. Section 3.3 encompasses the measurement 

techniques used to characterise the preform and fibre samples. In the course of this 

study it was found that no one particular measurement technique proved to be ideal, 

but that various complementary techniques had to be applied in order to obtain results, 

particularly in the diffusion study presented in Chapter 4. Some aspects of the 

measurement techniques were developed further in this work and are presented in 

depth here.  

3.1 Fibre designs studied 

3.1.1 Conventional silica fibres 

The more common dopants used in silica fibres to modify the refractive index are 

germanium and phosphorus which increase the refractive index, and boron and fluorine 

which reduce the refractive index (as compared with pure silica). The most common 

dopant used to increase the refractive index in the core is germanium. In addition to 

standard telecommunications fibres most of the speciality fibres such as pigtailing, 

lasing and grating fibres also use germanium in the core to alter the refractive index, 

although lasing fibres typically also have aluminium. In addition to core doping, some 

fibre designs also employ germanium doped ring structures in the cladding region to 

alter the dispersion characteristics of the fibre. For all these fibres germanium 

distribution in the fibre plays a major role in defining optical properties. Hence 

germanium doped fibre designs were chosen as the focus of this study. Fluorine doped 

silica fibre was also studied in this thesis as fluorine is commonly used to reduce the 

refractive index of silica in the cladding of a multimode pure silica core fibres. These 

fibres play an important role for example in the medical industry. In addition to this, 

fluorine is frequently used as a co-dopant in other fibre designs to alter the refractive 

index profile.     
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Table 3-1 lists all the fibre designs used, with their geometrical properties. Three 

different fibre types were employed; Ge-doped core fibre, Ge-doped ring fibre and F-

doped fibre. Figure 3-1 shows a schematic diagram of these fibre designs. In the 

germanium doped core fibre (code SS) the design was based on a pigtailing fibre with 

germanosilicate core surrounded by a silica cladding doped with phosphorus and 

fluorine. The fibre design gives an NA of 0.2 and a cut-off wavelength around 750 nm. 

In addition to a standard single-mode Ge-doped fibre, an asymmetric core preform 

(code SA) was also used. The structure of the preform was identical to the standard case 

however a strong cylindrical asymmetry was present in the core. The germanium 

distribution in the core was highly asymmetric causing the core-cladding refractive 

index difference to change from 0.028 to 0.018 within the core. This structure was 

selected in order to find out if such asymmetry would change during the draw. This 

result is important for other fibre designs such as elliptical core fibres where asymmetry 

is purposely introduced into the structure. 

 

As shown in more detail in the results chapter, Chapter 4 Dopant diffusion during fibre 

drawing, some problems were encountered in using the single-mode core design (code 

SS) for diffusion study. It was found during the course of this study that the germanium 

distribution in the core changed along the length of the preform (code SS fabricated for 

this study) by an amount comparable to expected diffusion. In order to get reliable 

quantitative diffusion results the fibre design had to be altered from the germanium 

doped core design. A number of changes were made to the design. First of all to 

improve the longitudinal homogeneity of the preform the germanium depleted dip in 

the centre of the core had to be eliminated. It is know that the central dip changes along 

the length of the preform due to the nature of the collapse stage in the MCVD process. 

In order to prevent the effect of the Ge-depleted dip the design was changed from a 

circular core into a germanium doped ring (code 1R). Pure silica was deposited in the 

central region of the core, hence preventing any germanium depletion during the 

collapsing phase of the preform fabrication. Pure silica was also deposited outside the 

germanium doped ring to prevent cladding dopants interfering with the germanium 

diffusion.  
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A fibre with three Ge-doped rings (code 3R) was also made with different germanium 

concentration in each doped ring. This design was made to improve the etching and 

atomic force microscopy (AFM) technique (see Section 3.3.2) and to see whether 

concentration dependent diffusion could be observed. The refractive index profiles of 

all the Ge-doped preforms are shown in Figure 3-2 to 3-4. The fluorine doped fibre 

design (code F) is a multimode pure silica core fibre with fluorine doped cladding. A 

commercial preform SWU1.1 (03100906A) was used with a cladding to core diameter 

ratio of 1.1 and NA 0.22. 

 

 

 

Table 3-1. MCVD fibre parameters 

Code Preform Df Dp Layer t or D Composition N ∆n 
 number µm mm description µm    
SS OD010 125 18 core 3 GeO2-SiO2 1 0.015 
    cladding1 30 SiO2-P2O5-

SiO1.5F 
23 -0.007 

SA CD306 125 17 core 3 GeO2-SiO2 1 0.028/ 
0.0182 

    cladding1 30 SiO2-P2O5-
SiO1.5F 

31  

1R OD0009 125 16 ring 3 GeO2-SiO2 9 0.025 
    cladding1 5 SiO2 3 0.000 
3R OD0032 125  innermost 

ring 
4 GeO2-SiO2 9 0.021 

    middle ring 4 GeO2-SiO2 8 0.009 
    outermost 

ring 
6 GeO2-SiO2 4 0.003 

F SWU1.1 110 25 core 100 SiO2 -3 0.000 
    cladding 5 F-doped SiO2 -3 -0.017 

1Cladding refers here to the layers deposited between the substrate tube before the first Ge 
doped core or ring layer. 

2Preform SA had an asymmetric core. ∆n values correspond to the maximum and minimum 
peaks within the core. 

3The number of deposition layers is proprietary information of the supplier. The amount of 
layers is significantly higher than in MCVD process. 

Df is fibre diameter, Dp is preform diameter, t is ring or cladding thickness, D is core diameter, 
N is number of layers and ∆n is refractive index difference to pure silica. 



 34

 

 

Figure 3-1. Schematic diagrams of fibres with Ge-doped (a) core SS and SA, (b) 1-ring 1R, (c) 3-

ring 3R and (d) fluorine doped F fibre design. 
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Figure 3-2. Refractive index profile of the Ge-doped core preform, SS 
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Figure 3-3. Refractive index profile of the Ge-doped 1-ring preform, 1R 
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Figure 3-4. Refractive index profile of the Ge-doped 3-ring preform, 3R 

 

3.1.2 Photonic crystal fibres 

In PCFs the optical properties of the fibre are defined by the dimensions and position 

of the air holes as described in Section 2.2.5. The air structure can be created by two 

methods (i) stacking of capillaries and (ii) drilling holes in a solid rod. As the capillary 

stacking technique enables a relatively fast fabrication method of potentially large 

capacity preforms, it is the most common technique employed for silica PCF 

fabrication at present. Drilling techniques are more useful when the design requires the 

ability to create arbitrary hole positions and hole sizes. In this study the focus is on the 

drawing of capillary stacked preforms, though an experiment with drilled preform 

drawing is also included. 

 

The most popular design used in the capillary stacked fibres is the hexagonal array of 

holes surrounding either a solid or air core. Figure 3-5 (a) shows such a fibre with 

hexagonal hole arrangement surrounding a solid core. In this structure the guidance 

properties of the fibre can be related to geometrical parameters such as the hole 

diameter d, hole-to-hole distance Λ, hole edge-to-edge separation Λ-d, ratio of hole 

diameter to pitch (approximately air-fraction) d/Λ and the number of rows surrounding 

the core, N, see Figure 3-5 (b).  

 



 36

The capillary stacked fibres used in this study had four rows of holes surrounding a 

solid core. This number of rows was chosen as it is sufficient to provide low 

confinement loss but not too complicated to stack due to the relatively small (60) 

number of capillaries required. The hole diameter and the air fraction were adjusted 

with chosen capillary hole size, the fibre diameter and the draw conditions. For a 

125µm cladding diameter typical range of hole diameter was 1-5µm and hole diameter 

to pitch ratio (d/Λ) of 0.2-0.4. Figure 3-6 shows three fibres which were drawn using 

the same preform structure but different draw conditions. Note that (c) shows a fibre 

where the interstitial holes characteristic of a capillary stacked preform are preserved 

during drawing. As an example of how the preform design could be altered a schematic 

is shown in Figure 3-7 of (a) using thin walled capillaries (b) thick walled capillaries. 

 

 
(a)                               (b) 

Figure 3-5. (a) Optical micrograph of fibre with hexagonal hole pattern. (b) Schematic of a 

hexagonal hole pattern surrounding a solid core 

 

 

 

     
(a)                                          (b)                                          (c) 

Figure 3-6. Optical microscope image of drawn capillary stacked fibres with air-fraction d/Λ of 

(a) 0.2 (b) 0.3 and (c) 0.6 with interstitial holes preserved    
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                                         (a)                                           (b) 

Figure 3-7. Schematic of preform design using (a) thin walled and (b) thick walled capillaries. 

 

Figure 3-8 (a) shows a photograph of a drilled preform design with non-hexagonal hole 

array structure. Figure 3-8 (b) shows the corresponding optical micrograph of the fibre. 

As can be seen from the figures the preform design is very different from that of the 

capillary stacked preforms. Most notably the interstitial holes created by the stacking of 

circular capillaries are absent in the milled preform and no separate cladding is required. 

Due to these differences it was expected that the drawing conditions required would 

differ from the capillary stacked preforms and results are presented in Chapter 5. The 

design used was a Fresnel fibre design where the hole positions and sizes were designed 

to create Fresnel zones around the air core. A detailed description of the design can be 

found in Refs. [36, 69]. The drilling technique was chosen for this design as it could not 

easily be achieved by the capillary stacking method.  

 

 

  
               (a)        (b) 

Figure 3-8. (a) Drilled preform and (b) corresponding fibre with diameter of 125µm. 
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3.2 Fibre fabrication techniques 

3.2.1 Fabrication of the preforms 

3.2.1.1 MCVD preforms 

The principles of MCVD are described in Section 2.3.1.The MCVD preforms used in 

this thesis were fabricated using a Heathway MCVD lathe. The lathe is based on a 

commercial glass lathe such as described in Chapter 2 Section 2.3.1 but has been 

modified to include etching burners to enable manufacture of circularly asymmetric 

preforms and an add-on chelate deposition system to allow the manufacture of novel 

rare-earth doped preforms. These special techniques were not however required for the 

fibres presented in this work and conventional MCVD techniques were used in their 

manufacture. 

 

The preforms were manufactured to give designed dimensions for the standard 125µm 

fibre diameters. A one-metre pure silica substrate tube with outer and inner diameter of 

25mm and 19mm was used for all preforms. Before cladding layer deposition HF was 

used to etch the substrate tube inner surface. For the germanium doped core fibres, SS 

and SA, a phosphorus and fluorine doped cladding was used whereas the germanium 

doped ring fibres had pure silica cladding. The number of cladding layers and the 

cladding thicknesses are listed in Table 3-1 on page 33, which also summarises the 

preform structure for each design. 

 

For all structures the core or the rings were composed of a binary mixture of silica and 

germania. Depending on the structure, the core or the rings were deposited in one or 

more layers. The gas composition was changed in order to obtain the required refractive 

index. The halide compounds used as precursors are listed in Table 3-2. After core 

deposition the tube was collapsed by increasing the burner temperature. The refractive 

index profiles and longitudinal homogeneity are discussed in more detail with the 

results in Chapter 4.  

 

Table 3-2. Halides used as raw materials in MCVD process 

Dopant SiO2 GeO2 P2O5 SiO1.5F 
Source SiCl4 GeCl4 POCl3 SF6*+SiCl4 

*SF6 is used for both etching and F doping. 
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3.2.1.2 Photonic crystal fibre preform 

The main emphasis in this work was in the fabrication of capillary stacked fibres, as this 

is the most common technique used at the moment in the industry. However, as glass 

drilling enables arbitrary hole structures and thus is an important technique, one sample 

was included in the experiments. Both techniques are discussed below in relation to 

specific equipment and procedures used in this work. 

 

The capillary stacking technique involved two stages: (i) the manufacturing of capillaries 

and (ii) stacking of capillaries in a cladding tube5. In the early stages of this work 

capillaries were obtained from a silica glass supplier. However, it was found that in 

order to perfect the stacking technique, tolerances for capillary geometry had to be very 

tight. Commercial capillaries of a reasonable price could not be found to fulfil these 

stringent requirements and an in-house capillary fabrication process was setup (see 

Chapter 5 Geometry control of photonic crystal fibres, Section 5.3.1).  

 

Commercial MCVD substrate tubes were used both for the capillaries and the cladding 

tubes. Two different materials were used (i) synthetic silica (Heraeus-Tenevo F300) and 

(ii) natural fused silica (Heraeus-Tenevo LWQ300). Synthetic silica has a very low OH 

content, <1 ppm compared to ~150ppm in the natural fused silica. Natural fused silica 

also contains impurities such as Li, Na, Ti, Fe and Al although their content  is typically 

<4 ppmw for the grade used in this work. For high strength and low loss fibres 

materials with highest purity should naturally be used. 

 

The tube quality was selected according to the purpose of the preform. If low loss fibre 

was required, F300 tubing was used, whereas if the preform was used only for 

fabrication process condition optimisation lower quality tubing was used. Also a 

combination of the two could be used. The size of the tubing for both capillary and the 

outer cladding was selected according to desired thickness and air fraction in the final 

fibre design. Before the stacking process the cladding tube and the capillaries were 

cleaned with high purity solvent and dried with an inert gas. Note, that in order to 

increase the strength and to minimise defects from the capillary fabrication and 

                                                 
5 Cladding tube here refers to the outer solid silica cladding that in conventional MCVD fibres is formed 
by the substrate tube. 
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handling, an additional HF etching step can be introduced in the preparation process to 

remove a fraction of the glass surface [54]. 

 

Figure 3-9 shows a typical hexagonal stacking pattern for four layers of holes. In order 

to stack the hexagonal pattern inside a circular cladding, ‘filling’ capillaries or ‘filling’ solid 

rods were used to support the main stack on each side of the hexagon. The stacking 

process proved to be one of the most important steps in the preform fabrication. The 

capillary sizes were selected carefully according to the measured inner diameter of the 

cladding tube, taking into account the variation of the cladding tube inner diameter. 

Typical cladding tube inner and outer dimensions and variations are shown in Figure 

3-10 along the length of a substrate tube for two different quality tubes6. Note how the 

smaller size 16x10mm tube varies significantly more than the tube 20x17mm. The 

16x10mm tube was natural quartz whereas 20x17mm synthetic. The different 

manufacturing process is a likely reason for the difference in variation.  

 

To create a solid core a solid silica cane was stacked in place of the central capillary. The 

solid core canes were drawn in the same way as the capillaries (Section 3.2.2) from solid 

rods made either of natural quartz or high purity synthetic silica. After the stack was 

completed one end was collapsed to a neck-down and a handle tube attached to the 

other end for the draw. In addition to using fill capillaries or rods to support the 

hexagonal capillary stack, there are other ways in which the stacking can be done. The 

circular cladding tube can be replaced by a hexagonal tube or alternatively the circular 

cladding can be collapsed onto the capillary stack prior to drawing [70]. Capillary stacks 

can also be drawn without a cladding tube [70] though the strength of the fibre is 

compromised in this technique.  

 

Figure 3-9. Schematic of a 4-ring hexagonal stacking pattern of capillaries with a solid core 

inside a cladding tube, fill capillaries/rods shown as black. 

                                                 
6 The measurements were done at OFTC using a preform refractive index profiler (PK2600), see Section 
3.3.1.1.  



 41

 

0 100 200 300 400
20.10

20.15

20.20

20.25

20.30

O
D

 [m
m

]

Length [mm]

 OD

17.05

17.10

17.15

17.20

17.25

 ID
 [m

m
]

 ID

0 100 200 300 400
0.0

0.5

1.0

O
va

lit
y 

[%
]

  OD
  ID

0 100 200 300 400
1.50

1.52

1.54

 T
hi

ck
ne

ss
 [m

m
]

 Length [mm]

 
(a) 20x17mm       (b) 20x17mm 

0 100 200 300 400 500
16.05

16.10

16.15

16.20

16.25

O
D

 [m
m

]

Length [mm]

 OD

10.70

10.75

10.80

10.85

10.90

 ID
 [m

m
]

 ID

0 100 200 300 400 500
1.0

1.5

2.0

2.5

O
va

lit
y 

[%
]

 OD    
 ID  

0 100 200 300 400 500
2.64

2.66

2.68

 Length [mm]

 T
hi

ck
ne

ss
 [m

m
]

 
  (c) 16x10mm        (d) 16x10mm 

 

 OD  
(mm) 

ID  
(mm) 

Thickness  
(mm) 

Ovality 
(%) 

 20x17 mm synthetic 
Mean 20.18 17.15 1.52 0.39/0.43 
Std± 0.004 0.005 0.003 0.03 
 16x10 mm natural 
Mean 16.14 10.81 2.66 1.45/2.09 
Std± 0.03 0.02 0.008 0.03/0.04 

(e) 

Figure 3-10. Longitudinal variation in the substrate tube (a) and (c) outer and inner diameter and 

(b) and (d) thickness and ovality also shown. Tube size (a) and (b) 20x17 and (c) and (d) 

16x10mm. (e) The table shows a statistical summary of these data. 

 

The drilled photonic crystal preform was fabricated using a sonic mill (Sonic-Mill Series 

10) to drill a solid natural quartz silica rod of 17mm in diameter and 50mm in length. 

The material used was natural quartz. The preform design mentioned in Section 3.1.2 

had 37 holes, each 1mm in diameter. After the drilling procedure, the preform was 

cleaned. The preform is shown in Figure 3-1 (a). 
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3.2.2 Drawing process 

Two different drawing towers were used to draw the fibre samples. The towers are 

referred to in this text as (i) Nextrom tower and (ii) custom designed research tower 

(Heathway). The Nextrom tower was configured for drawing production-type speciality 

fibres, whereas the custom designed research tower was built for low speed drawing 

especially of preforms with length smaller than 150mm. The configurations of each 

tower are described below in detail. For an introduction to a typical drawing process 

refer back to the Background Chapter, Section 2.3.2. 

 

3.2.2.1 Nextrom tower 

The Nextrom tower has a nine metre frame which allows drawing speeds of up to 300 

m/min. The frame includes a clean-air hood which encases the preform, furnace and 

the bare fibre providing a clean air environment (Class 100). The preform feeding chuck 

and the furnace are placed so that a maximum preform length of 800mm can be fed 

into the furnace. Preforms can be fed at speeds of up to 21 mm/min.  

 

The furnace is a Centorr 11A graphite resistance furnace, wherein preforms with 

maximum diameter of 30mm can be heated. The hot-zone length of the furnace is 

40mm and argon is used as the furnace atmosphere. The heating element and gas feeds 

are configured so that a major up-flow of the inert gas is obtained in operation. The 

argon is fed in at four inlets as follows (typical flows are noted in parenthesis); upper iris 

(1.4 litre/min), hot-zone (6 litre/min), bottom iris (2 litre/min) and chamber (1.2 

litre/min). The flow into the chamber is not in contact with the preform but surrounds 

the heating element. Figure 3-11 shows a schematic of the furnace with argon flow 

inlets marked. A simulated neck-down shape is shown in the figure indicating the 

position of the preform and fibre relative to the hot-zone (for more details see Chapter 

6). The typical drawing temperature range used was 1850°C to 2200°C. The 

temperature is measured from the back of the graphite element in the hot-zone with a 

pyrometer (Ircon Infrarail infrared thermometer, type E) with an accuarcy of ±20°C 

and repeatability of 6°C. The furnace is equipped with an extension tube to prevent 

thermal shock for the fibre at high drawing speeds. The extension tube is 200mm long 

with bore diameter of 20mm. Both top and extension tube irises are adjustable, with 

typical openings of 1.5 mm top (iris to preform gap) and 8 mm diameter on the bottom.   
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Figure 3-11. Schematic of a fibre drawing furnace with gas flow inlets marked. 

 

As the fibre emerges from the furnace the bare fibre diameter is measured below the 

furnace using an Anritsu (KL151ATW) diameter measurement gauge, with averaging of 

64 scans, for fibre with diameters below 300µm. The repeatability and reproducibility of 

the measurement is ±0.05µm for 125µm fibre. For diameters above 300µm a LaserMike 

(282-14 200FI) diameter measurement device is used. The measurement error is 0.25µm 

for fibre <500µm and 0.4µm >500µm and repeatability of ±0.13µm. Output from both 

of the devices can be used in the feedback PID controller to control the diameter of the 

fibre during drawing via the capstan speed. The diameter gauge also monitors the 

position of the fibre, and this information is used on-line to position the preform in the 

centre of the furnace.  

 

Before the fibre is coated with a protective coating the bare fibre tension is measured 

using a non-contact measurement (Pullman 2+), which employs the velocity of a sound 

pulse to determine the tension. The tension measurement is used to indicate the 

temperature of the neck-down of the preform, and is considered more reliable than the 

furnace pyrometer since the latter measures the outside temperature of the graphite 

heating element temperature rather than the temperature of the preform itself. 

 

Single or dual coating was applied to the fibre before winding. The coater used is a 

pressurised model with both pressure and temperature control. A UV curable acrylate 
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coating was used. The curing was performed with a single Fusion UV-lamp with 

variable power. The coated fibre diameter was monitored with an Anritsu (KL151A) 

diameter gauge before winding the fibre on a take-up spool. The tower did not include 

any additional forced fibre cooling as sufficient natural cooling times are provided even 

at full drawing speed.  

 

The fibre samples corresponding to the different draw conditions were located on the 

spool according to the on-line data logging system and fibre length measurement. A 

data logging system was also used during drawing to log all the variables. Data were 

recorded at one second intervals. Figure 3-12 shows a graphical presentation of data 

from a typical experimental draw of PCF. The arrows show two samples with different 

preform internal pressure settings. 
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Figure 3-12. Graphical presentation of data from a typical experimental draw for a PCF draw. 

Arrows show two samples with different preform internal pressure settings.  

 

When thick fibres and capillaries were drawn a different drawing capstan was used. The 

main fibre drawing capstan diameter limits the maximum fibre diameter due to bend 

radius limits. When thick fibres, also called canes, or thick capillaries were drawn a two-

roller tractor-motor was used, wherein the fibre was not subjected to bending. The 

diameter of the capillaries and canes was controlled in a similar manner to the fibres. 

The PID control parameters were adjusted accordingly, as longer response times 

resulted from the lower drawing speed. Typically, drawing speeds ranged from 0.5 to 3 

m/min and the diameter controller enabled capillaries to be drawn with diameter 

variation ≤ ±0.5% from nominal setting.  
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For the photonic crystal fibre and capillary draws a pressurisation system was set up in 

the drawing tower in order to control the preform internal pressure during drawing. 

The pressurisation had two purposes (i) to provide additional means to control the fibre 

and capillary geometry and (ii) to create an inert atmosphere inside the preform to 

reduce attenuation due to OH diffusing into the glass from the air as well as shield from 

other contaminants. Two pressure set-ups were used during the study. The initial 

pressure system was found to be inadequate to control the more sensitive structures 

and an improved system was built allowing for a more accuarate pressure control.  

 

The schematic diagram of the pressure control set-up is shown in Figure 3-13. A 

constant flow (FIC, rotameter) of an inert gas such as nitrogen or argon was supplied to 

the system. A glass tube was attached to the top end of the preform which was 

connected to the gas line. The gas flow input was axial. The preform internal pressure 

was measured at the top of the preform and a feed-back control (PID) was used to 

adjust the gas flow into the preform. The accuracy of the preform internal pressure 

control was 1mbar. 

 

Figure 3-13. Schematic diagram of the pressure control system. 

 

3.2.2.2 Custom designed research tower 

The custom designed research tower is designed for small research preforms and for 

easy intervention and manual control by the operator when required. The small height 

of this tower also minimises the start-up waste, so the yield is higher from a small 

preform compared to a full length production tower. The custom designed tower was 

also equipped with a preform spinning system which enabled the manufacture of 

circularly birefringent fibres.  
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The furnace used in the custom designed research tower was supplied by Astro model 

GM. The furnace has graphite resistance heating elements and argon is used during 

drawing. The furnace is designed for downward argon flow, unlike the Centorr furnace 

in which the net flow is upwards. Only two argon feeds are used, the main flow being 

from the top iris and the smaller flow from the bottom iris. Typical flows are 2 

litres/min and 1 litres/min. The preform is fed in a similar manner as described before, 

with speed of up to 10 mm/min. Maximum preform size is 25mm in diameter. As this 

tower has a smaller range of draw speed, 0-40m/min, no extension tube is required 

below the furnace.  

 

The bare fibre is coated using an open coating cup based on gravitational flow. A single 

or twin coating set-up can be used. The coating is cured using a single UV-lamp 

(Fusion). Before the fibre is wound on the spool the coated fibre tension is measured 

above the capstan. The fibre diameter is measured with an Anritsu (KL151A, 

repeatability ±0.05 to ±0.15µm and reproducibility ±0.3µm) and PID feedback control 

is used to control the diameter during drawing. An optional logging system can be used 

to log the draw variables. After drawing, the fibre samples were wound onto separate 

spools, using the length data collected during drawing as with the production tower 

(Nextrom). 

 

3.3 Preform and fibre measurement techniques  

In order to study changes in the fibre structure during drawing various measurement 

techniques were employed to characterise the geometry and composition of the fibres 

and preforms. The most suitable techniques were selected according to the nature and 

magnitude of the change, the dimensions of the sample and the destructiveness of the 

measurement technique. For example preforms were measured by a non-destructive 

method along their entire length with a refractive index profiler, and only one sample 

per preform was analysed by electron micrsocopy due to the destructive nature of the 

sample preparation. The microanalysis of the preform was essential to correlate the 

refractive index profiles to dopant concentration profiles in the preform. As the 

preforms are relatively large and the features on a millimetre scale the spatial resolution 

of the measurement techniques was not an issue. Challenges were encountered when 

asymmetric preforms needed to be characterised with the refractive index profiler. 

Consequently in-house tomographic measurement software was developed [71, 72], 
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which enabled the computation of the refractive index profiles of preforms with 

arbitrary index distribution.   

 

Changes due to dopant diffusion were expected to be on a submicron scale, so high 

resolution techniques had to be used to measure the effects in the fibres. The standard 

fibre refractive index profiler is only capable of spatial accuracy of about 0.5µm, so 

Transmission Electron Microscopy (TEM) was initially selected as the most promising 

technique for measuring dopant profiles across the cores of fibres. Although TEM 

measurement had the capability for accurate high resolution dopant concentration 

measurements with nanometre spatial resolution. The preparation of the ultra-thin 

samples (circa 80nm thick) was found to be very difficult and time-consuming. 

Unfortunately the ion-beam thinning used in the final preparation stage was found to 

preferentially etch germanium thus affecting the sample concentration profile. Due to 

these challenges an alternative measurement technique was used to profile the fibre 

samples. Atomic Force Microscopy (AFM) was identified as a suitable means of 

measuring changes on a sub-micron scale with a relatively simple sample preparation 

procedure. Refractive index profiling was used to complement the AFM measurements.  

 

The draw induced changes in photonic crystal fibres were of a very different nature. 

Having only a single material no chemical analysis was required and the strong contrast 

between air and silica with changes on a larger scale suggested that an optical 

microscope would have sufficient capabilities. This was found to be the case for most 

of the samples studied, though, in order to increase resolution to submicron scale 

measurement with AFM and Scanning Electron Microscopy (SEM) were carried out for 

samples with very small features.  

 

Whenever possible, several techniques were used to confirm findings and to 

complement each other. Each measurement technique used is described below, 

including descriptions of the techniques, limitations, accuracy, sample preparation, 

analysis and the purpose for which each technique was used. 
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3.3.1 Refractive index profiling  

3.3.1.1 Preform 

Due to its non-destructive nature, refractive index profiling of the preform is widely 

used in the industry. Standard commercial equipment has been designed to be used in 

the optical fibre production environment. Once the draw induced changes are known 

or eliminated, preform refractive index measurement can provide an accurate estimate 

of the drawn fibre refractive index profile and can be used in production to monitor the 

product and process quality. Consequently refractive index profiling of the preforms 

was the first choice for measuring the structure of the preform prior to drawing. 

Although, in addition to the material composition, other factors such as stress can 

affect the refractive index of the material the non-destructive profiling method proved 

to be invaluable in evaluating longitudinal and radial homogeneity of the preform in 

addition to providing information about the dopant distribution of the samples. 

 

A commercial preform refractive index analyser (NetTest PK2600) was used to measure 

the refractive index profiles of all the MCVD preforms used in this study. In this 

instrument the preform is attached to a vertical tower and immersed in a tank 

containing index matching oil (index matched to silica at 633nm and 35°C). The 

preform can be rotated automatically to obtain scans at different rotational angles, the 

smallest step size being 1°. The system is fully automated so that several longitudinal 

positions can be measured in a single measurement routine. This is ideal for analysing 

both the longitudinal and radial homogeneity of the preforms prior to drawing.  

 

The basis of the measurement method is to scan the output of a HeNe laser (633nm) 

radially across the preform and detect the deflected laser beam by a position-sensing 

detector. The displacement of the incident beam from the centre is computed from the 

measured voltages on the detector, from which the deflection function can be 

calculated. The deflection function is the ray exit angle as a function of the ray incident 

direction. The deflection function can then be transformed into a Refractive Index 

Profile (RIP) using Abel inversion of the function [73, 74]. The corresponding RIP 

calculated from the deflection data is shown in Figure 3-14 . The spatial resolution of 

the system is 5µm and the accuracy of the refractive index is 2×10-4 with repeatability of 
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5×10-5 [75]. However any problems with centering the deflection function (common 

with complex index profiles) will result in errors in the profile. 
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Figure 3-14.  A RIP of a single-mode preform. 

 

The basic software of the PK2600 has a limitation in that the computation from 

deflection data into refractive index profile assumes circular symmetry in the preform. 

Any departure from perfect symmetry causes inaccuracies in the profile. In order to 

measure asymmetric preforms a tomographic computation technique must be used. 

During the course of this study in-house software was developed to calculate refractive 

index profiles using a tomographic computation routine [72, 76]. This enabled the 

measurement of RIP for asymmetric preforms using the raw data from the PK2600 

detector. Figure 3-15 shows a 3-dimensional plot of the refractive index of an 

asymmetric core preform and an RIP across the core.  
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Figure 3-15. (a) 3D RIP plot of an asymmetric preform core using the in-house tomographic 

computation and (b) a line profile across the core.  
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All the MCVD preforms used in the study were characterised using the preform 

refractive index profiler. Typically symmetric preforms were measured every 10mm 

along the length and in five rotational positions. Tomographic computations were 

performed when asymmetry in the preform structure was expected. For tomographic 

computations data was collected in 1° rotational steps for at least one longitudinal 

position. The refractive index plots provided two main functions (i) they were used to 

characterise the longitudinal and radial homogeneity of the preform enabling a selection 

of the best section for draw experiments and (ii) they were used to extrapolate the 

compositional profiles obtained from destructive microanalytical techniques on drawn 

sections of the preform.   

 

Due to the very sharp step index profile of the fluorine doped preform the computed 

RIPs did not present a true picture of the preform. The sharp step in the profile could 

not be measured using standard profiling methods. This is discussed in more detail in 

Ref. [77]. In this thesis the preform RIPs were only used to give indication of 

homogeneity and  microanalysis was used for the comparisons with fibre compositions.   

 

3.3.1.2 Fibre 

Unlike preform refractive index profiling, the fibre profiling is a destructive 

measurement technique and usually involves tedious preparation of  measurement cells 

to guarantee successful results. As the fibre is 80 to 800 times smaller than the preform, 

similar relative spatial accuracy achieved in preform profiling cannot be achieved in 

fibres. Fibre refractive index profiling does however provide valuable information, as it 

is measured on the drawn fibre thus providing the refractive index profile which 

determines the guiding properties of the fibre. Consequently commercial fibre profilers 

are standard equipment in a fibre production facility.  

 

As a complementary measurement technique the fibres used in this study were 

measured using a fibre refractive index profiler. Two commercial refractive index 

profilers were used, the on-site York S14 and an off-site EXFO NR9200-HR. Both 

instruments use the Refracted Near-Field (RNF) technique [78]. In RNF measurement 

the fibre end-face is scanned by a circularly polarised light and the refracted light not 

guided by the core is detected. The fibre is immersed in an index matching fluid with 
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refractive index slightly higher (S14 noil=1.468215 at 25°C) than that of the cladding to 

ensure that the refracted rays escape through the cladding to reach the detector. The 

detected signal variation is proportional to the refractive index change of the fibre. 

 

The nominal spatial resolution of the refractive index profile reported by suppliers of  

both instruments was ≤ 0.5µm, which is 16% of a 3µm fibre core. As a comparison, the 

PK2600 preform profiler has a spatial resolution of 5µm which is 0.5% of a typical 

1mm preform core. Table 3-3 shows the resolution of the profilers as reported by their 

suppliers. Although similar spatial resolution was reported for both instruments the 

second generation high resolution NR9200-HR was found to give more accurate 

profiles. For comparison of RIPs measured using both instruments see Figure 3-16.  
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              (a)            (b) 

Figure 3-16. Ge-ring fibre core profile measured with (a) S14 and (b) NR9200-HR. 

 

Table 3-3. Resolution of fibre refractive index profilers [75, 79] 

 Wavelength  
 
 

(nm) 

Spatial 
resolution  

 
(µm) 

Geometry 
measurement 
repeatability 

(µm) 

RIP 
resolution 

RIP 
repeatability 

S14 633 ≤0.5 0.15-0.3 1×10-4 2×10-4 
NR9200-
HR 655 ≤0.5 0.1 5×10-5 7×10-5 

 

 

3.3.2 Etching and atomic force microscope technique 

This section describes the use of AFM in characterising the dopant concentration 

profiles in optical fibre samples. Characterisation of optical fibres using an AFM was 

first reported in 1994 [80, 81]. Since this is relatively recent when compared to more 

traditional profiling techniques, such as RNF which dates back to the 1970’s [82], a 
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summary literature review is presented on the use of the etching and AFM technique in 

profiling of optical fibres in Section 3.3.2.3. During the progress of this thesis further 

advances were made in producing quantitative dopant profiles using AFM and hence 

the sample preparation and data analysis is discussed in detail in this section. In the 

following paragraphs first the AFM technique is described and the application to optical 

fibres introduced. A more detailed discussion is then given on the acid etching process. 

Finally, the methods and equipment used for the samples are described and the section 

is concluded by the important data analysis relating the AFM data to the fibre dopant 

concentration profile.   

 

3.3.2.1 Principles of AFM measurement 

AFM is a scanning probe technique, where the measurement is based on attractive or 

repulsive forces between a sharp tip and the specimen surface. A piezo-electric scanner 

is used to translate either the sample or the tip. During the measurement the piezo-

electric scanner maintains the tip force or the tip height from the sample surface 

constant depending on the measurement mode. The tip, made of silicon or silicon 

nitride, is attached to a thin and flexible cantilever beam which is typically 100 microns 

long and few microns thick. As the tip scans the surface, it moves up and down 

according to the surface topography and the cantilever is deflected. This deflection is 

measured using a laser beam which reflects off the back of the cantilever and is 

detected. In constant-force mode the piezo-electric transducer monitors the real time 

height deviation and a three-dimensional topographical map of the surface can be 

constructed. Unlike systems based on wave-optics the probe technique is not limited by 

diffraction but primarily by probe geometry. Since tip diameters as small as few 

nanometres can be made, nanometre resolution can be achieved with an AFM [83].  

 

3.3.2.2 Etching of pure and doped silica glasses 

To reveal the dopant concentration profile of the fibre a surface topography is created 

by etching the fibre end-face with hydrofluoric acid (HF) [81]. Differential etching rates 

create a 3D topography that can be related to the chemical composition of the fibre, i.e. 

dopant distribution. To determine dopant distribution from the topography the etching 

reaction and the reaction order must be known for the acid and the glass. In this study 

aqueous solution of HF was used as the etchant. The etching mechanisms of HF on 

silica are presented in more detail below.  
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The etching reaction of SiO2 with HF can be represented with an overall reaction: 

 

OHSiFHHFSiO 2622 26 +→+     (9) 

 

The etching of silica is a surface reaction with kinetics similar to a catalytic reaction. The 

reaction can be presented as three distinctive steps [84] 

  

1. HF adsorbs on a site S on the glass surface. 

SHFSHF ⋅↔+  

2. The adsorbed acid breaks the siloxane bonds on the surface and the surface 

reaction takes place. 

3. Desorption of the products occurs from the surface. 

 

In Step 2 the hydrofluoric species in the HF solution break the covalent siloxane, 

≡−−≡ SiOSi  , bonds that form the silicate network structure due to the high 

electronegativity of the fluorine. Equation (9) is a greatly simplified equation and in 

reality the reaction happens in several reaction steps including the various hydrofluoric 

species taking part in the etching. Of these reactions it is the slowest step that is the 

rate-determining step for the etching of silica [85]. 

 

The hydrofluoric species in aqueous HF are formed according to equilibrium reactions, 

Eq. (10) [86, 87]. 

 
−+ +↔ FHHF  

−− ↔+ 2HFFHF       (10) 

222 FHHF ↔  

 

The equilibrium constants, K, for the above reactions are [87] 
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    (11) 

 

In order to understand the etching kinetics, the influence of each species must be 

known. The reactivity of F- has been shown to be negligible in the etching reaction  [88, 

89], however, the reactivity of the other species has been subject to numerous studies 

presented in more detail in refs [85, 86, 90]. To show the range of available models, 

some of the proposed reaction rate dependencies on reaction species concentration are 

shown below. retch is the reaction rate of silica in units of mol/area.time and Ci is 

concentration of species i, n is the reaction order and the various kj are reaction rate 

constants of the related reactions.    

 
n
HFetch Ckr 0=         (12) 

HFHF

HFHF
etch CK

Ck
r

+
=

1
       (13) 
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+ − −

⎡ ⎤= ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (14) 

 

Equation (12) shows one of the first models proposed [91] to describe HF etching of 

silica. The model was obtained by fitting to experimental etching data and hence can 

only describe the kinetics in a system similar to that of the experiment. Equation (13) 

was based on analogy to a catalytic reaction [84] and again can only represent the 

etching in a limited manner. Equation (14) is by Knotter [87] and is the most recent 

model presented in the literature. In his approach the reaction mechanisms are 

determined more from the phenomena occurring at a molecular level rather than just by 

fitting with experimental data. Importantly though, the model is verified against 

experimental data and results in the best fit to date in terms of the range of situations 

the model applies to.  
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The model by Knotter [87] is based on work presented by Osseo-Asare [92] where the 

protonation and deprotonation of hydroxylated silica surface groups (Si-OH) are taken 

into account. Depending on the pH of the etchant either positively charged sites (Si-

OH2+) or negatively charged sites (Si-O-) are formed which then affect the surface 

concentration of the adsorbed fluoride and hence determine the reaction kinetics of 

etching. The main disadvantage of the earlier models was that these simple models 

could not explain the phenomena observed at various pH levels. By using the model in 

Eq. (14) Knotter [87] could fit the data for a range of solution pH where each of the 

components of Eq. (14) become dominant at specific range of pH. The proposed 

reaction mechanism is presented in Figure 3-17 and the full discussion can be found in 

Ref. [87].  

 

Figure 3-17. Reaction mechanism of the rate-determining step of the dissolution of SiO2 in HF 

solutions proposed by Knotter. Replacement of the SiOH unit by an SiF unit. [87] 

 

The aim of the above silica etching review is to show that etching kinetics are not 

simple and vary depending on the etching method and the environment. In this study 

doped silica was etched. The literature relating to this is reviewed in the following 

section. The basic molecular level reactions are, however, the same or similar to those 

presented above and the kinetics can be understood in terms of how the added dopants 

modify the silica network.  

 

Also note that in the following review, studies which use Buffered hydrofluoric acid 

(BHF) are also reported in addition to studies with aqueous HF. In BHF NH4F is 

added to the solution hence modifying the pH. The stoichiometry of the reaction 

between silica and HF is also altered from that of aqueous HF. To illustrate the issues 

relating to the selection of the etchant, see Figure 3-18 and Figure 3-19 where the 

etching rate of silica is shown as a function of HF and NH4F concentration. The 

maximum in the BHF case can be explained with the model based on work by Osseo-
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Asare [92] and Knotter [87]. Note also that the etching rate of un-doped silica can vary 

depending on the manufacturing technique. It has been shown for example that 

deposition temperatures and UV-exposure both affect the etching rate. This can be 

understood as resulting from the change of the bonding arrangement and porosity of 

the silica network [85]. 

 

 

 

Figure 3-18. Reaction rate of silica with HF vs. molar HF concentration [85]. 

 

 

 

Figure 3-19. Reaction rate of silica with BHF vs. molar NH4F concentration [89, 92] 
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As explained previously the etching and AFM method is based on the mapping of 

dopant concentrations due to the difference in etching rates of the various dopants in 

silica glass. How the dopants affect the etching rate depends on how the dopant is 

incorporated in the silica network and the properties of the created bonds. The etching 

rate is different due to the modified silica network where in addition to siloxane bonds 

the bonds created with the dopants must also be broken. It then depends on the 

chemistry of the bonds how the etching rate is changed.  

 

The dopants can be classed as (i) network-forming oxides or (ii) network-modifying 

oxides. Common network-forming oxides are GeO2, P2O5 and B2O3, which form 

−−−≡ AOSi  and −−−− AOA  bonds [85]. Depending on the etchant chosen (HF or 

BHF) and the properties of the bonds, the etching is either faster or slower as 

compared to pure silica. If the bonds are broken more easily than siloxane bonds, the 

etching rate will be determined by the siloxane bonds and hence the overall reaction 

rate is faster than for pure silica. On the other hand if the bonds are more difficult to 

break, this becomes the rate determining step and in addition to slower etching rate the 

etching kinetics can be changed as a result of different chemistry. 

 

Network-modifying oxides are incorporated in the silica network by breaking the 

siloxane bonds and forming non-bridging oxygen atoms. Examples of network 

modifiers include Na2O, K2O and CaO. The reaction of Na2O with silica network is 

shown in Eq. (15) [85]. 

 

2     2Na O Si O Si SiO Na− ++ ≡ − − ≡ → ≡ ⋅     (15) 

 

As the network-modifiers cause the silica network to partially break down, the etching 

rate is increased more than for network-forming oxides. The etching rate has been 

related to the concentration of non-bridging oxygens in the network [88, 93, 94]. 

 

The effects of various dopants, both network-forming and modifying, on etching rates 

are shown in Table 3-4. The findings from various past studies agree well overall, 

except for the effect of boron doping when etched with HF. The discrepancy has been 

explained by the substantially different boron concentration [85]. As described 

previously the etching mechanism can change if the way in which the dopant is 
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incorporated into the silica network is altered. For dopants commonly used in optical 

fibres, P2O5, B2O3, GeO2 and F, the etching rate is increased compared to pure silica 

when HF is the etchant. However, when BHF is used, boron and germanium doped 

silica etches more slowly than un-doped silica. This is very useful because by using 

successive steps of HF and BHF etching the distribution of various dopants in a 

multidoped fibre can be revealed. This of course applies only to certain combination of 

dopants. However, it may be possible to determine the dopant distribution of all the 

dopants in the sample, if the magnitude of the differential etching rates are known and 

we have some prior knowledge of the composition of the sample.    

 

Table 3-4. Etching rate of various dopants compared to un-doped silica, ↑ denotes higher rate 

that silica and ↓ lower rate. 

Etchant P2O5 B2O3 GeO2 As2O3 F Al2O3 Vycor1 CaO Na2O 
HF  ↑    

[86] 
↑ [85]  

↓ [86] 
↑  

[81, 93, 95] 
-  ↑   

[96, 97] 
 ↑    
[88] 

 ↑    
[98] 

  ↑  
[88, 93] 

 ↑  
[93] 

BHF   ↑  
[86, 90] 

↓   
[85, 86] 

↓   
[81, 96] 

↑    
[85] 

    -  - - - - 

1Vycor consists of silica doped with 3% B2O3 & 0.5% Al2O3. 

 

In order to obtain quantitative information of the sample composition, the qualitative 

information presented in Table 3-4 is not sufficient and the etching rate dependence of 

the dopant concentration must be quantitatively  known. For multidopant samples this 

is a challenge, but for binary systems this data can be obtained from experiments. Only 

a few quantitative studies can be found in the literature and due to the complicated 

interactions with sample structure, etchant properties and the environment, one must 

be very careful when applying such data. In fact, for these reasons it was decided that 

the etching rate dependence on dopant concentration needed to be determined for the 

specific samples used in this study. It is useful however to review some of the results 

from past studies as they can demonstrate various issues when such experiments are 

made.  

 

Figure 3-20 shows results from past studies of etch rate dependence on concentration 

for  P2O5,  B2O3 and  As2O3 doped silica etched in BHF [85]. For phosphorus doped 

silica the relationship is linear and for arsenic nearly linear. The situation is more 

complicated for boron doped silica and is accounted for by the increased number of 

=−−= BOB  bonds at higher boron concentrations as opposed to ≡−−= SiOB  
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bonds at lower boron concentrations. At higher B concentrations the hygroscopicity of 

the surface is increased hence changing the etching kinetics [85]. When the effect of 

etchant concentration is added to the boron doped silica etching data, as shown in 

Figure 3-21, one can understand the amount of complexity in the chemistry of boron 

etching with BHF.   

 

Figure 3-20.  Etch rate as a function of dopant concentration for B2O3 , P2O5  and As2O3 [85]. 

Etching solution used was 10 parts 40wt% NH4F and 1 part 49wt% HF [85].  

 

 

Figure 3-21. Etch rates of borosilicate glasses as a function of BHF concentrations. Curves 

labelled with B2O3  concentration (mol-%) [99]. 

 

3.3.2.3 Etching and AFM technique in optical fibre characterisation 

Due to its superior spatial resolution compared to conventional fibre profilers, AFM 

has been recognised as a useful tool for studying optical fibres. The etching and AFM 

technique was first employed in optical fibres by Zhong and Innis [81] in 1994 and 

AFM was used to study the microheterogeneity of optical fibres without the etching 

step by Carter et al [80]. Since then the technique has been used for measuring a 

multitude of specialty optical fibres: D-shaped fibre [100], elliptical core fibre [101], 
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high NA fibre and twin-core fibre [95]. Also multimode fibre [97], fused-taper fibre 

couplers [102] and planar waveguides [101] have been studied using the etching and 

AFM technique. Most of the samples in these studies had a single dopant, either 

germanium or fluorine in silica, and the other dopants have been of small quantity 

typically residing in the cladding.  

 

The reproducibility of the etching and AFM technique has been reported to be very 

good amounting to a 2% error for both etching depth and lateral distance 

measurements (e.g. core diameter) [81, 95]. The most relevant question relating to this 

work is, whether etching and AFM can provide quantitative information on dopant 

distribution in optical fibres. Although many of the above studies do compare the AFM 

profiles with fibre and preform refractive index profiles, each study usually 

encompassed only a single fibre type hence limiting the application of the data to this 

type of fibre and consequently to a limited range of concentrations and the type of 

dopant used.  

 

The most comprehensive study to look at the relationship between etching depth and 

dopant concentration still remains that of Zhong and Innis [81, 95] although their study 

is limited to germanium doped fibres. They analysed several Ge doped fibres, with 

various index differences in the range 0.006-0.04, etched with dilute HF. Figure 3-22 

shows the etching depth as a function of refractive index difference between fibre cores 

and cladding. If a reaction kinetic model, n
etch aCr = , is used, the reaction order n can 

be determined from the data resulting in a value of n = 0.64 (R2=0.97 (regression 

coefficient)), where a is a linear scaling factor and C species concentration. This kinetic 

model can be assumed reasonable in dilute HF, especially as bonds relating to 

germanium are shown to be weaker than siloxane bonds.  

 

In the rest of this section sample preparation and the AFM equipment used in this 

study are described. It can be concluded from the literature survey that in order to 

compete with the standard optical fibre profiling systems, the etching mechanisms for 

each dopant and multidopant systems must be determined. This is however outside of 

the scope of this thesis and the necessary parameters, such as a and n have only been 

determined for dopant systems used in this study using empirical techniques. The 

determination of n is shown in Section 3.3.2.4. 
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Figure 3-22. A correlation between refractive index difference and the etching depth of Ge-doped 

core optical fibres etched with 1 vol% HF [81]. 

 

Sample preparation of the fibre for AFM measurements involved first stripping off the 

coating by acetone and cleaving of the fibre by commercial fibre cleaver (York FK-11 

or Siemens S46999-M9-A8). The fibres were then etched. The etchant used is this study 

was aqueous HF. Etching time and etchant concentration was chosen according to 

dopant type and to obtain optimal etching depths for AFM measurements. Table 3-5 

lists the etching conditions used for each fibre type. Samples that were compared with 

each other were always etched together simultaneously to obtain the same etching 

conditions. After etching the fibres were rinsed with alcohol. It must be noted here that 

there is uncertainty about the quality of the etching solution for Samples SS, SA and 1R 

as the importance of the role of the etching solution concentration was only discovered 

later on during this study (with Sample 1R and 3R).    

Table 3-5. HF concentrations and times used for the fibre samples 

Sample SS SA 1R 3R F 
HF vol% 24 24 24 5 5 
Time (s) 7 7 5 120 240 

 

A Digital Instrument Nanoscope III AFM was used in this study. A V-shaped silicon 

nitride cantilever using a square pyramidal tip was used (NT-MDT, CSC21/SiN4/Al). 

The AFM was operated in contact mode. Figure 3-23 shows a typical topography 

measured using AFM for a Ge-doped ring fibre used in this study with a profile across 

the centre of the fibre. Figure 3-24. shows an AFM image of an photonic crystal fibre. 
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Note that in this case no etching step was required as the fibre is comprised of a single 

material, i.e. silica.  
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Figure 3-23. (a) AFM 3D plot of etched MCVD ring fibre core, (b) profile across the centre 

 

 

Figure 3-24. AFM image of air silica structured fibre core (2D plot) 

 

3.3.2.4 Determination of etching reaction order  

The 3R fibre with 3-rings each doped with different Ge concentration was used to 

determine the etching reaction order. The fibre was etched at different concentrations 

of HF for varying times. At constant dopant concentration and etchant concentration 

the etching depth was linearly dependent on the etching time, see Figure 3-25. The 

etching rate as a function of the GeO2 concentration for HF concentrations of 2, 4, 6 

and 12M is shown in Figure 3-26 and shows a non-linear relationship. The etching 

reaction order for each HF concentration was determined by fitting equation 
n

etch aCr =  into the data as shown in the figure. More detailed description can be found 

in Ref. [103] by Pace et al.  
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Table 3-6. Measured reaction order for different HF solution concentrations 

HF solution concentration  
[M] (vol%) 

Reaction order 
n 

 
1/n 

2 (4) 1.7 0.59±0.02 
4 (8) 1.7 0.59±0.02 
6 (12) 1.8 0.56±0.02 
12 (24) 1.9 0.53±0.02 

 

 

Once reaction order is known the AFM profiles can be transformed into concentration 

profiles. In this thesis 1/n is frequently stated as AFM profiles are transformed using 

(etch depth)^(1/n). Figure 3-27 shows AFM data of the 3R fibre etched in HF 5vol%, 

for 2min compared to concentration profile measured from the preform by EDS on 

SEM for (a) raw data and (b) transformed data with reaction order 1/n=0.6.  
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Figure 3-25. Etch depth vs. etch time with 2M HF for inner ring (17mol% GeO2), middle 

(8mol%) and outer (4mol%) rings of the 3R fibre. The errors presented in Fig. 3-25 represent the 

uncertainty in the height measurements from the AFM. The timing error was assumed to be 2 

sec. Figure courtesy of P. Pace, University of Melbourne [103]. 

Rate 0.5nm/s

Rate 1.6nm/s
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Figure 3-26. Etch rate vs dopant concentration for various HF concentrations for 3R fibre. Figure 

courtesy of P. Pace, University of Melbourne. 
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Figure 3-27. AFM profile comparison (a) without and (b) with transformation for the 3-ring fibre 

with germania concentration profile (EDS on SEM).  
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3.3.3 Electron microanalysis techniques 

Electron microscopy measurements are based on the interaction between the electron 

beam and the sample. Electrons either passing through the sample, backscattered from 

the sample or emitted from the sample can be analysed to obtain structural and 

compositional information with very high resolution, down to atomic levels. 

Quantitative compositional maps and profiles can be obtained by analysing X-rays 

emitted from the sample. Due to the high spatial resolution, electron microscopy 

techniques are an attractive choice for studying compositional changes in preforms and 

optical fibres.  

 

In this study Scanning Electron Microscopy (SEM) was used for compositional analysis 

of the Ge doped preform samples and Electron Probe MicroAnalysis (EPMA) was used 

for fluorine doped preform. Scanning Transmission Electron Microscopy (STEM) was 

used for a small number of fibre samples. In SEM and STEM measurements the 

chemical analysis was performed using X-ray analysis by Energy Dispersive 

Spectrometry (EDS) whereas Wavelength Dispersive Spectrometry (WDS) was used for 

the fluorine doped preform due to its superior detection resolution for light weight 

elements suchs as fluorine. Each technique is discussed in more detail in the following 

sections. Introduction to the techniques is given along with the measurement procedure 

and the sample preparation. Discussion of the suitability and limitations of each 

technique for analysing optical fibre and preform samples is also given. 

 

3.3.3.1 Scanning electron microscopy 

A schematic diagram of the electron optical column of an SEM is shown in Figure 3-28. 

The electron gun is operated at up to 50keV. The generated electron beam is 

demagnified down to a focussed spot by the condensing lenses (variable electro-

magnets). The scanning coils close to the final lens move the beam in the form of a 

raster on the specimen surface. More details are given in [104]. As the electron beam 

strikes the specimen surface at a given point, interactions with the atoms in the sample 

generate a range of signals which are collected and amplified. Figure 3-29 shows a 

schematic for commonly used signals generated by the interaction between the incident 

beam and the specimen. The incident electrons are dispersed into an interaction volume 

causing two types of interaction: (i) elastic scattering where there is angular scattering 
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but no loss of energy and (ii) inelastic scattering or energy loss event where there is a 

loss of energy but only very small angular scattering.  

 

Figure 3-28. A schematic diagram of the electron optical column of the SEM [104]. 

 

The inelastic scattering produces backscattered electrons (BSE). Due to their strong 

interaction with the specimen, BSE provides an image with high atomic number 

contrast and are mainly used in compositional analysis. Secondary electrons (SE) are 

produced when a beam of electrons interacts with an atom and causes one of the outer 

shell electrons to be ejected from the atom. As secondary electrons are generated close 

to the surface they are mainly used for topographical studies. Images taken in secondary 

electron mode also have higher resolution as the interaction volume is smaller 

compared to backscattered electrons. More details can be found in [104, 105].  

 

Figure 3-29. Schematic of signals generated by the interaction between the incident beam and 

the specimen [105]. 

 

In this study a Philips XL30 SEM was used to characterise MCVD preform samples 

and photonic crystal fibres. Due to the interaction volume, the spatial resolution of X-

ray analysis was limited to about 4µm hence SEM was used only on preform samples. 

However the secondary electron imaging has better spatial resolution and was found 
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suitable for characterising photonic crystal fibres where no compositional analysis was 

required.  

 

The MCVD preform samples were cut from the preform prior to fibre drawing using a 

diamond saw, into transverse sections with a thickness of about 5-10mm. The sections 

were then polished with #200 mesh emery followed by a 6µm and 1µm diamond paste. 

The samples were coated with carbon to prevent sample charging under the electron 

beam which was found to be a major problem with uncoated samples. All preform 

samples were measured under the same conditions with an accelerating voltage of 

20keV and spot size of 5, corresponding to a 125nm beam diameter and using BSE 

mode. Figure 3-30 shows a typical BSE image of a preform sample showing a 

germanium doped core as a brighter region. Compositional analyses of the MCVD 

preform samples were performed by EDAX EDS detector attached to the SEM. This 

technique is based on analysing X-rays emitted from the specimen. The technique and 

measurement procedure are described in Section 3.3.3.3. 

 

The photonic crystal fibre sample preparation involved cleaving of the fibre using a 

York FK-11 fibre cleaver. The surface roughness measured (with AFM) after cleaving is 

well below a micron and no additional polishing was required. The fibres were attached 

to a holder with carbon tape and carbon glue and coated with carbon. Typical 

accelerating voltage used was 20keV with spot diameter of 125nm, using SE imaging 

mode. Figure 3-31 (a) shows a cross-section of an photonic crystal fibre using SE 

imaging. An image using BSE mode is shown in (b) for comparison.  

 
Figure 3-30. BSE image using SEM of a germanium doped preform core. 
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Figure 3-31. Cross-section of an photonic crystal fibre using (a) SE and (b) BSE  

 

3.3.3.2 Scanning transmission electron microscopy  

In Transmission Electron Microscopy (TEM) the analysis is based on electrons passing 

through a thin specimen, <100nm. As the electrons pass through the sample they 

interact with the material, giving information of its structure and chemical composition. 

The electrons experience either inelastic or elastic scattering. Elastic scattering forms 

the basis of TEM. Elastic scattering from crystalline samples gives rise to coherent 

diffracted rays to produce diffraction patterns which are used to analyse the structure of 

the sample. If only the transmitted beam (Bright Field Imaging) or one of the diffracted 

beams (Dark Field Imaging) formed are selectively allowed down the microscope 

column, an image of the specimen is formed. The image contrast is produced by the 

variation of intensities of the beam due to the differences in diffraction conditions.  

 

In crystalline samples the images contain interference fringes due to the periodicity of 

the crystalline lattice and can provide information with near-atomic resolution. 

Improvements in electron optical lenses have produced microscopes that have point 

resolutions of less than 2Å. The use of Field Emission Guns (FEG) has improved 

image contrast and allows reconstruction of images containing information on finer 

scale than point resolution due to a coherent electron source. Because of the excellent 

resolution TEM is a popular technique in the structural study of crystalline materials 

where near atomic resolution can be achieved. For further details see [106]. 

 

Unlike in elastic collision, in inelastic collision electrons lose energy when interacting 

with matter. Measured energy losses due to this interaction can be used as a basis for 

chemical analysis in TEM equipped with Electron Energy Loss Spectroscopy (EELS). 
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Compositional analysis can also be done by analysing the characteristic X-rays using 

EDS detectors similar to the technique used in SEM. Since the TEM specimens are 

extremely thin the interaction volume is insignificant and spatial resolution in X-ray 

analysis is close to the beam diameter and submicron resolution can be achieved.  

 

STEM works on the same principle as conventional TEM but the imaging set-up is 

reversed so that the electron gun is positioned below the specimen and the detector 

above it. The electron beam is scanned across the specimen to form a raster image as in 

an SEM. In this study a scanning transmission electron microscope VG HB601UX was 

used to analyse the MCVD fibre samples that required submicron resolution. The VG-

STEM used in this study uses a room temperature FEG that provides the minute probe 

size and high beam intensity. The gun accelerating voltage used is 100keV and typical 

tip voltages 3.2-3.5 kV. Electrons are emitted from a facet of radius of about 20-2000Å. 

An apparent source radius of 5Å can be obtained which can be further demagnified for 

high resolution analysis. A very high vacuum is required to ensure proper operation of 

the FEG and to ensure a contamination free chamber and specimen. Typical operation 

pressures of the gun and column are 1.6-3.2x10-11 mbar and 2.0-11.0x10-9 mbar. Unlike a 

conventional TEM, VG-STEM does not contain any lenses after the objective but a 

variety of detectors are provided in the post-specimen chamber. The images are formed 

from the signals received from the various detectors. More details are given in [106]. 

 

The detectors used for the analysis of the optical fibre specimens were bright and dark 

field to locate the area of interest (e.g. the core) in the specimen and a large solid angle 

(0.208srad) windowless Link Pentafet EDS for compositional analysis (for more details 

see Section 3.3.3.3). One of the main challenges in electron microsocopy of fibre 

samples was the sample preparation. The most common technique used to produce the 

required thin sections, <100nm, for TEM is ultramicrotomy. In ultramicrotomy a 

diamond blade is used to cut thin slices from the bulk specimen by pressing the blade 

through the sample. The advantages of this technique is the relatively easy preparation 

process and the production of multiple sections within minutes once the sample has 

been mounted in the cutting stage. Unfortunately this technique was found to be 

unsuitable for the optical fibre samples. Although the fibres were embedded in resins 

with similar hardness to glass, no successful sections were obtained due to the brittle 

nature of glass.  
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A more promising technique involving various steps of polishing and ion beam 

thinning was developed at the Electron Microscope Unit (EMU) of the University of 

Sydney. As the preparation technique is not trivial a detailed description of the 

technique is given in Appendix II. Both longitudinal (Figure 3-32) and transverse 

(Figure 3-33) sections were made and thin enough samples were able to be fabricated. 

Unfortunately it was found that the ion beam thinning preferentially removed the 

germanium thus affecting the sample concentration profile. It was possible to however 

sometimes obtain profiles that showed a correct relative concetration profile across the 

core, but variations in the sample thickness resulted in variation in concentration and 

any comparison to profiles measured in other samples became thus unreliable. Further 

improvements in the technque may well improve these aspects and hence the results 

and procedures are presented here to benefit future studies.  

 

 

 

 
Figure 3-32. SEM image of longitudinal optical fibre TEM specimen with seven fibres. Inset 

shows magnified image of one fibre. 
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Figure 3-33. SEM image of the transverse optical fibre TEM specimen with four fibres. Inset 

shows magnified image of one fibre, core shown as bright spot near the edge. 

 

Bright field image of the longitudinal specimen is shown in Figure 3-34. The image is 

taken at 20,000 times magnification and shows section of the fibre. The core of the 

fibre can be seen as a slightly darker strip in the centre of the fibre. A cross-sectional 

compositional line scan was performed perpendicular to the core to obtain a dopant 

concentration profile. Figure 3-35 shows a similar STEM image of a transverse of a 

fibre sample at magnification of 50,000 times. The fibre core is seen as a bright area 

with a dark region at its centre. The transverse sample was found to be more useful as 

the entire core could be seen and so it could be ensured that the profile was taken 

across the centre of the core. The actual compositional profiling of the samples was 

performed using an EDS X-ray detector and is described in the following section. 

 

3.3.3.3 X-ray microanalysis 

The X-ray analysis technique is based on analysing X-rays emitted from the specimen. 

When the electron beam interacts with the specimen some of the high energy electrons 

will cause ionisation of the atoms in the sample. This means that an electron from an 

inner shell of an atom is removed. The vacancy is filled with an electron from the outer 

shell and results in an energy release in the form of an emitted X-ray. The emitted X-

rays are called characteristic X-rays and can be used to analyse the composition of the 

specimen. In order to excite characteristic X-rays, it is necessary for the accelerating 

voltage to exceed the critical excitation energy. For example 30kV accelerating voltage is 

sufficient to excite atoms with atomic number of up to 40 [104, 107]. 
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Analysis of X-rays can be done in two ways using (i) Wavelength Dispersive 

Spectroscopy (WDS) or (ii) Energy Dispersive Spectroscopy (EDS). In WDS a crystal 

spectrometer is used. The crystal disperses the impinging X-rays in such a way that only 

photons of selected wavelength reach a counter, which emits a voltage pulse whose 

height is proportional to the energy of each X-ray photon. A series of interchangeable 

crystals with different lattice parameters must be used to accommodate a range of 

emitted X-ray wavelengths (0.1-10nm). To observe characteristic X-ray peaks for all the 

elements above atomic number nine requires three different crystals. The WDS method 

provides good resolution for distinguishing between neighbouring spectral peaks and is 

especially useful in trace element and light element analysis. However, as different 

crystals are used, this means the mapping of elements across the specimen must be 

done separately for each crystal, hence slowing the measurement.  For details see [104].  

 

 

Figure 3-34. Bright field STEM image of the longitudinal specimen, magnification 20,000 times. 

Core is shown as darker area. Post-run image, where the beam damage can be seen as spots. 

Core edge 
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Figure 3-35. Bright field STEM image of a transverse specimen, magnification 50,000 times. 

Post-run image, the beam damage is shown as line of measurement spots. The dark spot in the 

centre is the dopant depleted area in the centre of the core. 

 

In EDS a solid-state detector operating as a diode is located close to the sample and 

receives the whole wavelength spectrum of X-rays emitted from the sample. Usually 

either lithium drifted silicon or intrinsic germanium detectors are used. As the EDS 

system can accept simultaneously wavelengths from many elements it is a very fast 

technique and requires comparatively low probe currents. The resolution of a solid-state 

detector is about 150eV and unlike WDS cannot be used with X-ray energies less than 1 

keV. Due to the large interaction volume in a bulk sample, the collection efficiency is 

decreased and resolution lost in detection. However, as all data is collected 

simultaneously from a single point, the EDS method is favoured in material 

composition studies relying on mapping and line scan analysis [104, 107]. For this study 

the EDS method was used for both MCVD preform and fibre samples. Typical 

detection resolution of an EDS is 0.1w% (0.2mol% GeO2 in SiO2). WDS technique was 

used for the fluorine doped preform sample. Significantly higher detection limits 

(0.01w%) are achieved with WDS.  

 

The compositional profiles of the Ge-doped preforms were performed with an EDAX 

EDS spectrometer attached to the Phillips XL30 SEM microscope. A 10 mm section 

was taken from each preform from a location well above the hot-zone after drawing or 

if two draws were conducted, between the drawn sections. The dopant concentration 

Centre of 
the core 
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profiles could then be compared with the corresponding refractive index profiles to 

determine for example the suitability of the refractive index profiles for use in diffusion 

effect comparisons. The obtained dopant concentration profile also provided the 

required molar concentrations for the diffusion calculations. An automatic line-scan 

operation was used to produce compositional profiles across the core of the preform. 

The beam dwell time was adjusted to 30ms and typically 20-30 points were measured 

across the region of interest. A typical spectrum of a single measurement point in a 

germanium doped core is shown in Figure 3-36. The ratio of germanium to silica atoms 

can be obtained from the relative peak heights of Ge and Si signals, marked in the 

figure. Figure 3-37 (a) shows a BSE image of the core with a line marking the direction 

of the EDS line scan. Figure 3-37 (b) shows the resulting GeO2 concentration profile 

computed from the spectra. The spatial beam positions were calibrated with a suitable 

calibration grid measured under the same measurement conditions as the preform 

samples (Figure 3-38).  
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Figure 3-36. A typical EDS spectra of a Ge-doped preform core. 
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(a)          (b) 

Figure 3-37. (a) SEM micrograph of a preform core, line indicates the EDS line scan direction 

and (b) the corresponding GeO2 concentration profile across the core. 
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Figure 3-38. Calibration of the spatial line scan data on SEM showing six horizontal and four 

vertical mesh units. Mesh used 200/in. 

The resolution of the SEM depends on the beam diameter, the interaction volume and 

signal-to-noise ratio, which in turns depends on the beam current, signal collection and 

amplification process [105]. The interaction volume for a given material can be 

simulated using Monte Carlo methods. A simulation program using [108] a Monte Carlo 

method was used to estimate the interaction volume of the measurements. The material 

selected for the simulation was pure silica. The accelerating voltage was chosen as 

20keV and beam diameter 125nm, which are typical values used in the real 

measurement. The estimated diameter of the interaction volume was up to 4µm. To 

illustrate the effect of the interaction volume, an optical fibre core of diameter 3µm was 

measured using EDS on SEM and compared to EDS on TEM measurement for the 

same fibre, Figure 3-39. It is clearly seen from this figure that the measurement done on 

SEM is substantially averaged compared to the TEM measurement due to the large 

interaction volume of the SEM sample.  

 

The compositional profiles of the fibre samples were analysed using a Link Pentafet 

EDS spectrometer attached to a VG-STEM microscope. An automated line scan 

feature was used to obtain quantitative element composition profiles across the region 

of interest, e.g. the core. Typical count rates used were 2.2-3.0 kcps, with 20-30 live 

second collection times per analysis point. A single profile usually had 10-20 points with 

about 80-160nm distance between them. The maximum profile length, ~1.5µm, was 

determined by the smallest magnification possible for the detector, x400,000. Due to 
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this limitation typically 3-4 profiles had to be measured across the region of interest (e.g. 

the core). The relative concentrations of the elements were automatically calculated 

from the spectra.  
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Figure 3-39. Illustration of the effect of interaction volume. EDS measurements with SEM and 

TEM for a Ge-doped fibre core. Zero on the x-axis is the centre of the core. 

The electron beam typically causes some damage on the specimen and as a result the 

measured points can be seen in the sample. Figure 3-40 shows the centre of a core 

across which two line scans have been made. The exact distance between the points and 

the position of the profile in the sample can be determined using these markings. The 

germanium concentration profile across the asymmetric fibre (SA) core consisting of 

four line scans is shown in Figure 3-41. 

 

 

Figure 3-40. Marks after EDS line scan analysis on the asymmetric core fibre STEM sample 
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Figure 3-41. Concentration profile across the asymmetric core fibre measured with EDS on 

STEM 

 

The fluorine doped preform samples were analysed using WDS on EPMA (Cameca 

SX50). Crystals used were TAP, PC4 and PC0. Fluorite, CaF2, was used as a standard 

for fluorine measurements, the preform pure silica core as standard for silicon and 

oxygen. Quartz and sanidine (KAlSi3O8) standards were also used for Si and O 

measurements. Measurements at varying magnifications were conducted (2,200 –

800,000 times) at voltage and current of 8kV, 20nA and 60nA.   

 

3.3.4 Other techniques 

Due to the vast number of PCF samples and the high refractive index difference of 

silica and air, optical microscopy was used to characterise the majority of PCF 

geometries. An Olympus BH-2 microscope was used. Prior to imaging the fibres were 

cleaved using a York FK-11 cleaver and attached to a fibre holder. Images on both 

reflection and transmission mode could be obtained by illuminating the sample from 

the top or through the bottom end-face (Figure 3-42). In order to measure geometrical 

properties the reflected light should be used as in transmission mode holes appear 

larger due to the excitation of modes within the structure (for details see Ref. [70]). The 

resolution of the optical microscope is however limited to ~0.5nm. Techniques such as 

electron microscopy and AFM were also used to characterise a selection of the samples, 

however due to the problems in equipment availability, location and sample preparation 

their application was limited. As seen in Figure 3-42 and as mentioned in Section 5.3.5 

the hole size can vary depending on its radial position. For the results presented in 
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Chapter 5 the hole size is determined as the average hole size in the second row of 

holes from the core unless otherwise stated. 

 

    
         (a)      (b) 

 Figure 3-42 Optical micrograph of a PCF fibre in (a) reflection and (b) transmission mode.  
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CHAPTER 4 DOPANT DIFFUSION DURING FIBRE 

DRAWING 

4.1 Background 

4.1.1 Structure of silica glass 

Glass is an amorphous solid i.e. a solid that does not exhibit the long-range order of 

atoms found in crystalline materials. When glass is cooled it undergoes a gradual glass 

transformation during which the viscosity of glass increases rapidly and results in 

‘freezing in’ an amorphous atomic structure if the cooling rate is fast enough. The 

structure, and therefore the properties, of the solid glass differ according to the cooling 

rate. The fictive temperature, Tf, characterises the glass structure, which represents the 

supercooled liquid structure at Tf. The glass transition temperature, Tg, is defined 

experimentally as the temperature at which the glass properties change to melt 

properties and is not necessarily a particular temperature but can also be a range. More 

details are given in [109]. 

 

The traditional model for the structure of glass was first suggested by Zachariasen [110]. 

According to the model the glass structure is formed by a continuous random network 

(CRN) of network forming oxides such as SiO2, GeO2, B2O3 and P2O5. A schematic of 

such structure in two dimensions is shown in Figure 4-1. The unit cell of the structure is 

the same as for the corresponding crystal such as the tetrahedron unit, SiO4, for silica 

glass. These basic building blocks connect to each other in a way that lacks long-range 

order to form a random network. Other models for glass structure have also been 

suggested. The randomly dispersed crystallite model by Lebedev [111] deviates most 

from the CRN model. Although the CRN model describes well the structure of simple 

glasses, there are examples of multicomponent glasses that show microcrystalline-type 

inhomogeneities [109]. Some aspects of the glass structure are still under debate; one 

such being the medium range order of glass, MRO (from 10 to 20Å) [112-116]. 

 

The conventional CRN structure, however, can be used to describe the less complex 

glasses such as SiO2 and GeO2. The basic unit, SiO4, of the structure in silica glass is 

presented in Figure 4-2, where two such units are linked by a bridging oxygen atom. 
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The unit cell consists of a tetrahedron, which has the silicon atom in the middle and 

four oxygen atoms in each corner. Each of the oxygen atoms is bonded to two silicon 

atoms, forming the SiO2 network structure. The Si-O bond length is 1.6 Å and the 

tetrahedral angle is 109.5±0.7°. The variation in the network arises from the 

intertetrahedral bond angle, β, and bond torsion angles, α, that vary significantly, 

creating disorder in the structure. In the medium range, features such as chains and 

rings characterise the glass structure.  

 

Germania glass has a similar cell unit to that of silica, where the silicon is replaced by a 

germanium atom. The Ge-O-Ge angle and bond length varies from that of SiO2. In 

binary GeO2-SiO2 at small concentrations of GeO2 the network is characterised by that 

of silica glass, however at a concentration range from 27 to 80mol% GeO2, regions 

exist that are formed by the mixed Ge-O-Si bonds, altering the glass structure [117].  

 

Figure 4-1. A random SiO2 network, Varshneya [109].  

 

Figure 4-2. Three unit cells for silica glass in a glass structure, Varshneya [109]. 
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Silica glass used in optical fibres also contains impurities such as Na, Ca and Al. 

Aluminium is used as a dopant for example in rare-earth doped fibres. Figure 4-3 shows 

a schematic of how a network modifier such as Na, K and Ca is positioned in the glass 

structure. The cations are located in the holes within the network, forming ionic bonds 

with the non-bridging oxygen atoms. Aluminium is a so called intermediate glass 

former, it does not form glass by itself, but acts like a glass former when combined with 

other glass forming elements. Other intermediate glass formers are e.g. Mg and Zn.  

 

The properties of the glass depend on its structure. In ‘simple’ binary mixtures many of 

the glass properties such as density and refractive index can be estimated by rule of 

addition where the property is linearly dependent on the composition of the glass. 

Figure 4-4 shows the refractive index change with molar concentration of GeO2-SiO2 

binary glass.  

 

Figure 4-3. Network modifier within a glass structure [109]. 
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Figure 4-4. Refractive index of GeO2-SiO2 binary glass [118]. 



 82

4.1.2 Mass transfer by diffusion 

Diffusion is migration of an individual component in a mixture under the influence of a 

physical stimulus. Diffusion describes this movement in gases, liquids and solids. 

Typically diffusion arises from concentration gradients, where the component diffuses 

towards a lower concentration and if enough time is given equalises the concentration.  

Diffusion can also be caused by an activity gradient as in reverse osmosis, by a pressure 

or temperature gradient or by the application of an external force [119]. Here we 

consider only diffusion arising from concentration gradients. 

 

In solids, diffusion can be presented in two ways. In crystals, migration of species can 

be described with a so-called atomistic model where point-defect interactions form the 

basis of the diffusion theory. In amorphous solids, such as glasses, diffusion can be 

presented by Fick’s law. Fick’s law states that the flux of diffusing species is 

proportional to the concentration gradient of the species, Eq. (16) [120]. 

 

cJ D
x

∂
= −

∂
,       (16) 

where J is the flux of the diffusing species through unit area of surface in unit time 

(mol/m2s), c is the concentration of the species (mol/m3), D is the diffusion coefficient 

(m2/s) and x is the spatial coordinate in the diffusion direction (m). 

 

If the diffusion coefficient is constant, then the diffusion equation in isotropic media at 

rest can be presented by Eq. (17) in one-dimension [121]. 
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∂ ∂
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where t denotes time (s). 

 

For a case where the initial concentration profile is pulse like, where c = 0 everywhere 

else except at x = 0, the solution for Eq. (17) is [121] 
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where M is the total amount of substance diffusing. The expression is symmetrical with 

respect to x = 0 and concentration tends to zero as x approaches infinity positively or 

negatively for t > 0, see Figure 4-5 (a). The amount of substance diffusing remains 

constant and equal to the initial amount. 

 
If the initial concentration profile is stepwise with thickness 2h, the solution of Eq. (17) 
is [121]  
 

0
1
2 2 2

h x h xc c erf erf
Dt Dt

− +⎧ ⎫= +⎨ ⎬
⎩ ⎭

,    (19) 

 

where c0 is the initial concentration.  

 
(a) 

 
(b) 

Figure 4-5. (a) Concentration profiles for an instantaneous plane source. Numbers on curves are 

values of Dt . (b) Concentration profiles for an extended source of limited extent. Numbers on 

curves are values of (Dt/h2)1/2 [121].  
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If the bulk fluid is in motion, the relevant momentum terms must be included in the 

diffusion equation. The resulting diffusion equation in two-dimensions is [122] 

 
2 2

2 2x y
c c c c cv v D
t x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

,    (20) 

where vx and vy are velocities in x and y direction respectively. The above equations 

assume that the diffusion coefficient, D, is constant. When the dopant diffusion in 

glasses is considered, there are two possible cases, which deviate from this assumption. 

The first one is the temperature dependence of the diffusion coefficient. The 

temperature dependence of the diffusion coefficient is a more radical function for solids 

than for liquids or gases. Typically the diffusion coefficient shows an Arrhenius 

temperature dependence as described by Eq. (21) [123] 

 

expO
ED D
RT

⎛ ⎞= −⎜ ⎟
⎝ ⎠

,      (21)  

 

where T is temperature (K), DO is pre-exponential term (m2/s), E is activation energy 

(J/mol) and R is the gas constant (J/(molK)).  

 

The assumption of constant diffusion coefficient also fails if the diffusion coefficient 

depends on the concentration. This can arise if the magnitude of the concentration 

affects the local environment of the diffusing species. This is observed with 

macromolecules, for example proteins, which have very different diffusion coefficients 

at concentrated solutions [123]. In glasses it is possible that at low dopant 

concentrations the local environment of the dopant is characterised by the host glass, 

but above some critical concentration (or a range) the local structure is dominated by 

the dopant hence altering the diffusion coefficient. Ionic diffusion in glasses has been 

reviewed by Frischat [120]. Specifically the diffusion of sodium ion in silicates has been 

extensively studied. The studies show that the diffusion coefficient is strongly 

dependent on sodium concentration and that the fictive temperature of the glasses 

affected results due to structural changes in the environment of the diffusing ion.    

 

The current study considers dopant diffusion as the primary source of concentration 

profile change during drawing. There are however other means by which the dopant 
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distribution can change at high temperatures when interfaces are considered. An 

interface between two fluids under thermodynamical equilibrium will take a specific 

geometrical form, which is compatible with mechanical equilibrium. If there is any 

deviation from this form, the system will seek to attain the equilibrium condition. The 

forces acting on the interface are those resulting from the surface tension of the fluid-

fluid interface and the pressure of the fluids. If the densities of the fluids are different, 

gravity will play a role as well. A simple example of equilibrium shape of an interface is 

a mass of fluid immersed in another fluid, where the equilibrium shape is a sphere 

giving the minimum surface energy (least surface area) for a given volume [124]. 

Similarly in glass heated to sufficiently high temperature, interfaces that deviate from 

their equilibrium shape will tend to change towards that equilibrium shape. This has 

been observed for example in asymmetric optical fibre structures such as bow-tie fibres 

during drawing. These changes can however be minimised by using low enough 

temperatures hence increasing the viscous forces preventing flow.  

 

There are also other ways than geometrical to minimise surface energy at an interface. 

In multicomponent systems segregation of species has been observed [125] based on 

the individual surface tensions of the species. This phenomenon has been observed in 

grain boundaries of metals [125] as well as in fluoride glasses [126]. This phenomena 

has not however been reported for silica glasses and is not considered further. 

 

Other changes that involve flow of glass can occur if sufficient asymmetric thermal 

gradients are created whilst the glass is in motion (e.g. during drawing). The temperature 

gradients will cause viscosity gradients and induce velocity differences between regions 

of glass resulting in deformation of the dopant distribution. The processes are however 

carefully designed to avoid this and this is not typically observed in standard fibre 

manufacturing. 

 

 

4.1.3 Literature review 

This section presents a literature review of dopant diffusion in silica glass. The 

notations in the literature vary greatly and a few words are in place before presenting 

the review. The units for the diffusion coefficient, D, are typically reported either in 

m2/s or cm2/s. The units for activation energy, E, in the Arrhenius equation (21) are 
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J/mol, except for some cases where E/R has been replaced by E/k (k is the Boltzmann 

constant), in which case the units for E are in eV. The units for the pre-exponential 

coefficient D0 are same as that of the diffusion coefficient. The magnitude of D0 

however changes if the authors have chosen to present the Arrhenius relation in base 

10 or 2 logarithmic form instead of the natural logarithm. This applies to the activation 

energy as well. For clarity all the units reported here have been converted to m2/s for D 

and D0, kJ/mol for E and the expression in Eq (21) is used for the Arrhenius relation. 

In the literature the Arrhenius plot (logD vs. 1/T) is used frequently to compare the 

data, as D0 and E can be derived from the linear fit of the data. Arrhenius plots are also 

used here to compare the data. The individual data points are not presented but linear 

fits are shown calculated from D0 and E and plotted as lnD vs. 1/T consistent with Eq. 

(21). 

 

Primarily the need for understanding the dopant diffusion in optical fibres arose from 

requirements for reduced fibre coupling losses and the interest in thermally expanded 

core (TEC) fibres. The focus on these applications meant that the diffusion 

experiments were mostly performed on drawn fibre by heating it in a controlled 

environment, and only a few studies have looked at the effect of the drawing process. 

Table 4-1 gives a summary of all relevant studies conducted up to date on diffusion in 

optical fibres. The most popular dopant-substrate system studied in optical fibres has 

been germanium in silica, but a number of diffusion studies have also been made in 

fluorine-doped silica. Only a handful of studies could be found for boron, phosphorus, 

aluminium and rare earth dopant diffusion. The main obstacle in studying the dopant 

diffusion in fibres is the small size of the fibre samples. As methods in microanalysis 

have advanced and quantitative data can now be achieved on the nanometre scale, some 

new studies have arisen where dopant diffusion in optical fibres plays a role.  

 

The following sections summarise the findings from the past literature on dopant 

diffusion in optical fibres and preforms. These sections are organised according to 

dopant species and each section includes an Arrhenius plot of reported diffusion 

coefficients when available. As will be shown, there is significant scatter of the results 

and the possible reasons for such variations are discussed. 
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Table 4-1. Summary of past studies in dopant diffusion in optical fibres and preforms 

Diffusion coefficients and observations 
D, D0 [m2/s] and E [kJ/mol] 

Measurement 
technique 

Ref.  

Germanium   

• Diffusion observed EDS, SEM [6] 
• No diffusion observed, estimation of D<1.0×10-18 

(1400°C) 
EDS, SEM [127] 

• D=1.8×10-14 (1790°C) RIP, splice loss [128] 
• Diffusion observed in fused couplers (1100°C) EDS, SEM [129] 
• Various Ge-doped SM fibres studied, range: 

D0=10-11-10-7, E=150-290  
EPMA [130] 

• MFD expanded from 5 to 30µm (TEC) (1700°C) MFD meas. [131, 132]
• Splice loss minimised using diffusion Splice loss [133, 134]
• No diffusion observed during fibre drawing TEM, EPMA, EDS, 

RIP 
[8, 9] 

• Incorporation of F increased diffusion of Ge Preform RIP  [135] 
• MFD expanded from 10 to 40µm (TEC) (1300°C) MFD meas., NFP [136] 
• D0=2.4×10-6, E=310 EPMA, mode shape [137] 
• MFD expanded from 8 to 17µm (1000°C) MFD meas., FFP [138] 
• Diffusion rates 1.86 times higher when codoped  Splice loss, MFD msr. [139] 
• Diffusion observed in tapered fibre Etching and AFM  [102, 140]
• Indirect observation of diffusion (1400-1700°C) Optical signal 

absorption  
[141] 

Fluorine   

• D0=1.52×10-8, E=183 RIP, splice loss [128] 
• D0=1.2×10-5, E=350, in preforms EDS, SEM [142] 
• Diffusion observed and coefficients from Ref. 

[142] confirmed 
RIP, splice loss [143-145] 

• D=5×10-17 (1300°C) EPMA [130] 
• D0=8.3×10-5, E=369,  P-co-doped: D0=5.2×10-6, 

E=287, OH content enhances diffusion 
EPMA in preforms [146] 

• Diffusion observed (700, 1000°C) Etching and AFM  [97] 
• D0=3.7×10-7, E=312, Ge-co-doped D=2×10-17 

(1010°C), P-Ge-co-doped                 
RI modulation in 
gratings 

[147] 

• OH increases diffusion, Ge-co-doped, (1000°C) SIMS [148] 

Boron   

• No diffusion observed (1200-1400°C) EPMA [130] 
• D0=1.4×10-8, E=210 EPMA, mode profile [137] 
• D=10-12-10-14 (1800-2100°C) and varied  B conc. EPMA in preforms [149] 

Phosphorus   

• D0=8×10-13, E=114 EDS, SEM [127] 

Aluminium   

• No diffusion observed SIMS [150] 
• D0=4.8×10-3, E=479  EPMA in preforms [149] 

Rare earth elements   

• Er, no diffusion observed 
 
• Yb, D0=4.8×10-3, E=479  

TEM, EPMA, EDS, 
RIP 
EPMA in preforms 

[9]  
 
[149] 
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4.1.3.1 Germanium diffusion in silica 

Germanium is the dopant that has most frequently been reported in diffusion studies in 

optical fibres. As noted in Table 4-1 there are a number of studies, which show 

diffusion of germanium in optical fibres and some that report no observation of such 

diffusion. As diffusion depends on the temperature and time of the heat treatment, it is 

quite possible that low enough temperatures and/or times have been used in these 

studies to avoid diffusion. The resolution restrictions in measurement techniques can 

also limit the ability to observe diffusion.  

 

Diffusion of germanium in silica optical fibres has been observed, for example, during 

splicing [128, 133, 134], manufacture of fused fibre couplers [102, 129, 140] and beam 

expanding fibres [130, 132, 136, 138]. The heat treatment temperatures vary from 1000 

to 2000°C although a majority of the reported data is in the lower part of this range. 

Heating times vary from seconds to tens of hours and heating techniques vary 

according to the application. Measurement techniques are listed in Table 4-1 and 

include microanalysis and optical measurement techniques, such as MFD or loss 

measurements. The fibre samples used vary by manufacturing method (e.g. MCVD or 

VAD), germanium concentration and cladding composition. From the past studies a 

general conclusion can be made that germanium does diffuse under certain conditions. 

The important question is whether reliable diffusion data can be found from literature, 

which can be used for estimating germanium diffusion under a particular heat treatment 

such as fibre drawing. 

 

Figure 4-6 shows the available data from past studies where diffusion coefficients have 

been reported. First, it is worth noting that the reported values have been measured at 

lower temperatures than typical fibre drawing temperatures. As diffusion has been 

reported to follow an Arrhenius law, it should be possible to extrapolate the data to 

higher temperatures, given that the structure of glass does not change significantly. 

There is noticeable scatter in the reported data. The variation in values reported for the 

activation energy, E, manifests itself in variations of the slope of the lines in the figure. 

This results in even larger variation of the diffusion coefficient if the data is used to 

extrapolate values to higher temperatures.  
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Figure 4-6. Arrhenius plot for germanium diffusion in silica reported in literature. 

 

Diffusion coefficients for the greatest temperature range (1300-1600°C) were reported 

by Yamada and Hanafusa [137] who studied diffusion to create a mode shape convertor 

in PANDA fibre. The diffusion coefficient reported by Krause et al [128] agrees 

reasonably well with this data. Also, some of the results by Shiraishi et al [130] overlap 

with those of Yamada and Hanafusa [137]. Significant scatter of the results is, however, 

observed in their study. For example, the diffusion coefficient varied from 1×10-15 to 

5×10-16 m2/s at a given temperature. The fibres studied in this paper were varying in 

both fabrication method (VAD and MCVD) and their relative index difference (0.23-

0.37%). Due to the number of variables, no clear cause for the scattered diffusion 

results was obtained. There is one reported value for Ge diffusivity that greatly 

disagrees with all the above studies. Fleming and Kurkjian [127] studied diffusion in 

MCVD fibres with binary GeO2-SiO2 cores. The study concluded that, within 

measurement accuracy, there was no evidence of germanium diffusion as a result of 

their heat treatment and calculated the diffusion coefficient plotted in Figure 4-6 based 

on this observation.   

 

It cannot be said with certainty why such a scatter is reported for Ge diffusivities, but 

some likely reasons are given. There are a number of variables that could affect 

diffusivity of Ge, such as the manufacturing method of the preforms. For example 

preforms manufactured by the VAD method contain significant amounts of chlorine, 
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which could affect the diffusion. Also fibres made by different techniques can have 

different fictive temperatures affecting the structure of glass and hence the diffusion 

coefficient. The Ge concentrations of the reported fibres are fairly similar and thus 

should not affect the diffusion coefficient significantly. The cladding composition can 

affect Ge diffusion from the core in a similar way to the impurity content, by altering 

the diffusion environment. No details were available for some of the fibres, but it is 

likely that the P and F cladding doping levels varied between the fibres. It is also 

possible that the limitations in measurement resolution caused significant errors in the 

reported values. EDS and EPMA techniques typically have spatial resolution varying 

from one to several microns and detection limits can be as high as 1% (Section 3.3.3). 

The spatial resolution in optical measurements is unlikely to be better than 0.5µm. 

Despite the scatter in the results, some agreement was found among the various studies 

and approximate diffusion estimations could be based on these values.  

 

4.1.3.2 Germanium diffusion in codoped silica  

The studies reviewed in Section 4.1.3.1 were made for germanium surrounded by pure 

silica or a phosphorus and fluorine doped silica cladding. The following paragraphs 

describe studies made on germanium diffusion in codoped fibres. Not many 

publications are dedicated to this area, however two subjects can be identified: (i) 

germanium diffusion in PANDA fibre, which has a germanium doped core with two 

boron doped circular regions in close proximity to the core and (ii) rare-earth doped 

fibres, with high NA germanium doped cores. For a general description of the above-

mentioned fibres see Chapter 2, Section 2.2. As discussed previously the local 

environment of the diffusing species can have a significant effect on the diffusion 

coefficient. This section looks at whether there is evidence in past studies on the effects 

of co-doping on Ge diffusion. If this was the case, some of the scattered results 

reported in the previous section might be explained for example via effects of cladding 

dopants. 

 

Germanium diffusion in PANDA fibre was studied by Shiraishi et al [130]. As the 

boron-doped regions create stress across the core, they were able to study the effect of 

stress on dopant diffusion by measuring the germanium concentration profile in both 

perpendicular and parallel direction to the boron-doped regions. The study concluded 

that germanium diffusion was not affected by stress. This result disagrees with the 



 91

earlier study by McLandrich [129] who reported that there might be a mechanism 

enhancing the diffusion of Ge, which originates from axial stress applied to fibres 

during a tapering process. Germanium diffusion in PANDA fibres was also studied by 

Yamada and Hanafusa [137]. Both germanium and boron were found to diffuse under 

the heating conditions and overlapping diffusion of both germanium outwards from the 

core and boron towards the core was reported. No statement was made however 

whether boron affected the diffusivity of germanium. As discussed previously, their 

germanium diffusivities do agree to a degree with other reported values, Figure 4-6, 

indicating that boron did not greatly alter the diffusivity.   

  

The rare-earth doped optical fibres typically consist of a core doped with either one or 

two rare-earth dopants as well as aluminium and germanium. The diffusion of each 

dopant is of interest due to the possible effects on the fibre performance. Germanium 

diffusion in rare-earth doped fibres has been studied by Stevenson et al [139] for the 

purpose of understanding the losses associated with fusion splicing such fibres. The 

codopants used in the studied fibres were ytterbium, phosphorus and erbium and a 

“reference” fibre having a Ge-doped silica core was measured as well. The study 

concluded that the germanium diffusion rate for the rare earth doped fibre was 1.86 

times higher than for the reference fibre, showing that codoping affects germanium 

diffusion. This was also found by Kirchhof et al [149] who studied codoping effects on 

diffusion coefficients in silica. They stated that in all cases studied, codoping has led to 

higher diffusion rates. For example in their study [135] they found that co-doping with 

fluorine increased the diffusivity of germanium. Diffusion in rare-earth doped fibres has 

also been considered in a number of other studies [9, 131, 132, 141, 151] though no 

comparisons were made for single doped fibres or diffusion coefficients published.  

 

In can be concluded from the few results published that at least some dopants such as 

erbium, ytterbium and fluorine increase the mobility of germanium. It is not known 

however whether the degree of this effect depends on the concentrations of the 

dopants for example. The enhanced mobility due to co-doping could explain some of 

the scatter in results presented in the previous section, for example if some of the 

cladding dopants had diffused towards the core and interacted with germanium. The 

effect of stress was found insignificant in PANDA fibres but due to lack of other 

studies no further conclusions can be made about the effects of stress. 
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4.1.3.3 Fluorine diffusion 

The diffusion coefficients for fluorine diffusion in silica reported in the literature are 

plotted in Figure 4-7. The range of temperature for reported coefficients is greater than 

that for germanium diffusion and reaches the temperatures used in the drawing process. 

The fluorine diffusivities have been reported in five studies [128, 130, 142, 146, 147]. 

Although most of the studies cover a different temperature range from 1000 to 2000°C, 

there is a good agreement with studies by Hermann et al [142], Kirchhof et al [146], 

Fokine [147] and Shiraishi et al [130]. The higher fluorine mobility reported by Krause et 

al [128] was explained by Kirchhof et al [146] to result from the effects of co-doping 

with phosphorus. It must be noted that Krause et al [128] also noticed a significant 

difference with fluorine diffusivity when no co-doping was present in the fibres, 

however these results were not presented. As can be seen in Figure 4-7 the two data 

sets with phosphorus co-doping show reasonable agreement given the possible 

measurement limitations and varying glass composition.  

 

Fluorine diffusion has also been studied in mode field expanding fibres [143-145] and 

fibres for sensor application [97, 152], however no diffusion coefficients were reported. 

It can be concluded from the published results for fluorine diffusion that there is 

reliable data available as long as the possible effects of co-doping are taken into 

account. It has been reported also that the fluorine diffusion coefficient is independent 

of concentration [142, 146]. 
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Figure 4-7. Arrhenius plot for fluorine diffusion in silica reported in literature. 
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4.1.3.4 Boron diffusion 

Only a few studies can be found on boron diffusion in optical fibres or preforms [130, 

137, 149]. Figure 4-8 shows the Arrhenius plot for reported values. Boron diffusion in 

heat-treated PANDA fibre was reported by Yamada and Hanafusa [137] in a 

temperature range from 1300 to 1600°C. A diffusion coefficient range for boron is 

given by Kirchhof et al [149] (possible area is shown in Figure 4-8) who also note that 

the coefficient was greatly affected not only by temperature but also by boron 

concentration.      

 

Although publications about boron diffusion in optical fibres are scarce there are 

several studies made in semiconductors. A diffusivity literature review for boron in 

silica can be found in Ghezzo and Brown [153]. The diffusion coefficients reported in 

the survey are much smaller than those reported for optical fibres and it is noted that 

the values greatly depend on the boron concentration of the sources. Data from a more 

recent study in boron diffusion through a thin silica layer by Mathiot et al [154] is 

plotted in Figure 4-8 for comparison. The discrepancy between the coefficients can be 

explained by the different processing techniques of SiO2 thin films [120]. It can be 

concluded that further studies would be required for boron diffusion in optical fibres, 

although rough estimates can be made based on the current values as long as the boron 

concentration is within the range reported. (For PANDA fibre boron level is typically 

20mol%.) 
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Figure 4-8. Arrhenius plot for boron diffusion in silica reported in literature. 
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4.1.3.5 Phosphorus 

The literature for phosphorus diffusion in optical fibres is even scarcer. Phosphorus 

diffusion in MCVD fibres was studied by Fleming and Kurkjian [127] and diffusion 

coefficients were reported at temperature range from 1200 to 1950°C, see Figure 4-9. 

Due to lack of other studies, a data set from studies in semiconductors [155] for a thin 

oxide film is shown in the figure for comparison. It can only be concluded that the 

mobility of phosphorus seems to be lower than the other dopants, Ge, F and B. 

However even this conclusion must be made with caution as the result for Ge mobility 

by Fleming and Kurkjian [127] was much smaller than that reported in other studies. 
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Figure 4-9.  Arrhenius plot for phosphorus diffusion in silica reported in literature. 

 

 

4.1.3.6 Diffusion during fibre drawing 

There are very few publications dealing with the effect of the fibre drawing process on 

dopant diffusion. Germanium diffusion during drawing was observed by Hersener et al 

[6] who looked at the drawing induced changes of the GeO2 profile in the neck-down 

of the drawn preform. No quantitative analysis was made but diffusion was observed as 

smoothing of the so-called ‘ripples’ characteristic in Ge-doped layers made by MCVD 

type process, see Figure 4-10. Germanium and erbium diffusion during drawing was 

studied by Pugh et al [7-9], but no diffusion was observed in the fibres. A Ge-doped 

elliptical core fibre was found to have altered ellipticity to that of the preform in a study 

conducted by Huntington et al [101], however no further study was conducted to 
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determine the cause of the change. Phosphorus has been reported to diffuse during 

drawing in highly phosphorus-doped silica fibres by Bubnov et al [156], the study 

however focussed on preform fabrication and not many details are given of the drawing 

related changes. 

 

As opposed to dopant diffusion from within the core, impurity diffusion towards the 

core (from the jacketing tube) has been studied by Iino et al [150, 157]. Their study 

found that sodium and potassium were diffusing to the centre during drawing but that 

no aluminium diffusion was observed. Diffusivities for some impurities found in silica 

have been listed in Table 4-2. Alkali ions typically diffuse faster than the dopants used 

in optical fibres and aluminium has a diffusion coefficient in the order of glass network 

formers.  

 

Due to the lack of drawing condition details in all the above references, it is difficult to 

compare the findings or to conclude any effects of drawing conditions other than that 

changes in dopant distribution have been observed during drawing. A qualitative 

comparison can be made on the mobility of various dopants by extrapolating the 

individual diffusion data to draw temperatures, see Figure 4-11. On the upper range of 

drawing temperatures fluorine has highest mobility followed by germanium and boron. 

On the lower range of temperatures the mobility of fluorine and boron is comparable 

whilst boron has the higher value. Phosphorus has the lowest mobility, but due to lack 

of measurement data to confirm this, it must be taken with caution. Boron was also 

found to have a diffusion coefficient depending on concentration and this will affect 

the relative mobilities.   

 

 

Figure 4-10. GeO2 profile of doped preform and neck-down Ref. [6].   
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Table 4-2. Diffusivities for some impurities found in silica at 1000°C [118, 120].7 

Ion Na K Ca Al 
D m2/s 7.9×10-10 1×10-12 2×10-12 1×10-17 

 

0.00040 0.00042 0.00044 0.00046 0.00048

-34

-32

-30

-28

B [137]Ge [137]

F[146]

P [127]

ln
(D

[m
2 /s

])

1/T [K-1]

2500 2400 2300 2200 2100
 Temperature [K]

 

Figure 4-11. Arrhenius plot for various dopants extrapolated to draw temperatures from selected 

references.  

 

4.1.3.7 Summary 

Diffusion of most of the frequently used dopants in specialty optical fibres has been 

studied in the past. The most common dopants studied were germanium and fluorine. 

Very few papers were available on diffusion of other dopants such as boron, 

phosphorus and rare-earths. Diffusion data reported for fluorine in silica was by far the 

most consistent throughout the studies. Some scatter occurred but was explained by the 

increased mobility of fluorine in the presence of phosphorus. Significant scatter was 

reported for germanium, even within a study, although some agreement between 

different studies was found.  

 

It is clear that although diffusivity information is readily available for all of the most 

important dopants, the data is scattered or too sparse. This complicates the selection of 

the most reliable and applicable results. The variations in the published data reflect both 

                                                 
7 Note that 1000°C is much lower than the drawing temperature for silica. Unfortunately values at higher 
temperatures were not available in literature. 
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the limitations of the measurements used and the different fibre designs employed. The 

fibre samples in these studies vary in dimension, dopant concentration level, codoping 

and processing technique. The heat treatments vary from the use of splicer arcs to 

microburners and ovens. All of the above affect the accuracy of the results. In spite of 

the scattered diffusivity data, important qualitative observations were obtained, showing 

the importance of concentration dependence for boron and the effects of codoping on 

germanium and fluorine diffusion.  

 

Very few studies have been made on the effects of the drawing process. Although 

reported diffusivities are very small, the fibres are drawn at very high temperatures. The 

times that the fibres are exposed to the heat in the furnace are very small which 

minimises diffusion, however some speciality fibres are drawn at speeds which are 

orders of magnitude slower than for the standard telecommunication fibres, thus 

increasing the dwell time inside the furnace. 

 

The present study builds on past studies of dopant diffusion in silica optical fibres and 

specifically develops the area of dopant diffusion during the fibre-drawing step. Special 

consideration was given to reliable dopant concentration measurements in optical fibres 

and the selection of suitable fibre designs to observe diffusion.     

 

4.2 Methods 

The methods are described in detail in Chapter 3 and are only briefly summarised here. 

The fibre designs used for the diffusion study are shown in Figure 4-12. For dimensions 

and refractive index profiles see Section 3.1.1 on page 31. Three types of designs were 

used for Ge doped fibres: (a) Ge-doped core, (b) 1-ring-Ge-doped and (c) 3-ring-Ge-

doped fibre. Both symmetric and asymmetric Ge-doped cores were studied. The 1-ring-

Ge-doped design was adopted in order to improve the homogeneity of the refractive 

index profile along the preform length and to remove any effects of cladding dopants. 

The 3-ring-Ge-doped fibre had varying germanium concentration for each ring. This 

design was specifically made to improve the etching and AFM technique. Fluorine 

diffusion study was carried out on a pure silica core multimode fibre with F doped 

cladding. The Ge-doped preforms were fabricated using the MCVD technique. The 

Ge-doped core preforms had a SiO2-P2O5-F cladding, whereas the ring designs had 

pure silica regions with no other dopants. The F-doped preform was supplied as a 
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standard product (Fluosil®) manufactured by plasma outside deposition. The drawing 

conditions for each preform are described with the relevant results, Section 4.3.  

 
          (a)             (b)     (c)        (d) 

Figure 4-12. Schematic of the Ge-doped (a) core, (b) 1-ring and (c) 3-ring fibre design (d) F-

doped fibre. 

 

Table 4-3 summarises the measurement techniques used for the samples. The preforms 

were characterised radially and longitudinally with a refractive index profiler before the 

drawing to determine the homogeneity of the preform. When appropriate, tomographic 

computations were used to check radial homogeneity of the preforms. Chemical 

analysis was carried out by EDS for Ge-doped and WDS for F-doped samples for one 

section of each preform. The obtained dopant concentration profiles provided the 

required molar concentrations for the diffusion calculations as well as the initial 

concentration profile for comparisons with fibre samples.   

 

The measurement of the fibre dopant profiles proved to be the most challenging task in 

studying the diffusion effects. No technique was found to give direct dopant 

concentration and submicron spatial resolution, consequently various techniques were 

used to confirm findings. Refractive index profiling, atomic force microscopy and 

electron microscopy techniques were all used to characterise the fibres, for detailed 

description see Section 3.3.  

Table 4-3. Summary of fibre designs and characterisation techniques used in the diffusion study 

Fibre type Preform 
code1 

 

Nominal fibre 
diameter (µm) 

Preform 
characterisation 

technique 

Fibre 
characterisation 

technique 
Ge-doped core fibre SS 125,800 RIP, EDS AFM, EDS 
Ge-doped asymmetric 
core fibre SA 125 RIP, EDS AFM, EDS 

1-ring-Ge-doped fibre 1R 125 RIP, EDS RIP, AFM 
3-ring-Ge-doped fibre 3R 125 RIP, EDS RIP, AFM 
F-doped cladding, 
pure silica core fibre F 110 RIP, WDS RIP, AFM 
1SS=Step-index Symmetric, SA=Step-index Asymmetric, 1R=one Ring, 3R=three Ring, F=F-

doped 
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The notation for fibre samples follows that of the preform code listed in Table 4-3. For 

example, sample code 1R_125_1 is a fibre drawn from preform 1R to a fibre diameter 

of 125µm and has sample number of 1. Each sample is drawn from a section of the 

preform and is typically given a preform position in mm together with the draw conditions. 

This value is measured as the longitudinal distance from the preform tip prior to 

drawing. The beginning of each draw would thus correspond to preform position 0. 

 

4.3 Results 

The study of diffusion during drawing proved to be more complicated than first 

anticipated. Challenges were encountered in finding suitable fibre design, drawing 

conditions and in measuring preform and fibre samples. The results are therefore 

reported in chronological order whereby the reader can follow the necessary steps 

required to finally quantify diffusion during drawing. This structure also enables a 

logical presentation of the improvements made in the various areas together with the 

relevant results. Note that a more detailed discussion on the measurements can be 

found in Chapter 3. Figure 4-13 gives the structure of the result section for the 

germanium diffusion study. Table 4-4 provides a summary of all the experiments, and 

can be used together with the figure to give an overview of the results sections. The 

sections are divided according to the different fibre designs. For each section, first the 

preform measurements are discussed and draw conditions presented. The fibre 

measurements are then presented and their implications for dopant diffusion discussed. 

The fluorine diffusion results follow the germanium study in Section 4.3.4.  

 

 
CORE 

1-RING 

3-RING 

Diffusion 
observations 

Improvements in 
methods 

Inconclusive 
results within 
experimental error 

Diffusion detected 
qualitatively 

Diffusion detected 
quantitatively 

• Preform homogeneity 
• Tomographic RIP 
• Single dopant fibre design 
• Drawing experiment 

optimised for diffusion 

• Etching and AFM 
technique improved 

Fibre design 

 

Figure 4-13. Structure of the Ge diffusion results section. 
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Table 4-4. Summary of the main results and draw conditions used in the experiments  

Preform Nominal 
Fibre 

Diameter 
(µm) 

Main Result Temperature 
 
 

(°C) 

Preform 
Feed Rate 
(mm/min)

Draw 
Speed 

 
(m/min) 

125 No diffusion detected 1890-2020 2-9 30-170 SS 

800 Results inconclusive within 
experimental error 

1900-2100  2-7 1-4 

SA 125 Results inconclusive within 
experimental error 

15601 1 20 

1R 125 Diffusion detected 1800-2100 0.5-2 10-35 
3R 125 Diffusion detected 1800-2100 0.5 10 
F 110 Diffusion detected 1900-2100 0.04-0.2 2-10 

1Different furnace used, absolute temperature not comparable to other experiments 

 

4.3.1 Ge-doped core fibre 

The first experiment was performed on a fibre design which was selected on the basis 

of being both simple and commonly used in industry. The PF1 pigtailing fibre has a 

relatively high germanium concentration in the core, thus increasing the chances for 

diffusion detection. The preform was drawn into the usual 125µm fibre diameter and to 

a special 800µm diameter. The capabilities of the measurement techniques were not yet 

established conclusively at the time, therefore a fibre with relatively large diameter 

(800µm) was drawn which could be analysed using SEM, avoiding spatial resolution 

limitations. Draw conditions were chosen based on the typical ranges used for the 

optical fibre drawing at OFTC. The fibres were drawn under various temperatures and 

draw speeds (Table 4-5).  

 

Although diffusion could not be conclusively measured during this experiment, the 

following presentation of the results demonstrates the problems in studying dopant 

diffusion in optical fibre drawing and illustrates how these problems were overcome. 

This first section emphasises more the methods used than the diffusion phenomena, 

which is demonstrated and discussed in Sections 4.3.2 to 4.3.4. This section presents the 

results as follows: 

 

• Preform homogeneity using RIP and EDS measurements 

• Comparison of different drawing conditions using etching and AFM and EDS 

measurements 

• Comparison of fibres to preform 
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Table 4-5. Draw conditions for SS samples 

Fibre Diam 
(µm) 

Sample Draw 
Temperature1 

(°C) 

Preform 
Feed Rate 
(mm/min) 

Draw 
Speed 

(m/min) 

Tension 
 

(g) 

Preform 
Position 
(mm) 

1 1980 1.6 30 10 290 
2 1890 1.6 30 40 330 
3 1840 1.6 30 90 350 
4 1970 5.3 100 40 430 
5 2010 8.5 160 40 470 

SS 125 

6 2020 9.0 170 40 500 
1 2100 1.7 0.8 - 50 
2 2000 1.7 0.8 - 70 
3 1900 1.7 0.8 - 90 
4 1900 7.3 3.5 - 130 
5 2000 7.3 3.5 - 170 

SS 800 

6 2100 7.3 3.5 - 220 
1Draw temperature is measured by pyrometer from the back of the heating element, not the 

preform. Measurement has ±20°C accuracy and repeatability ±6°C. 
 

 

4.3.1.1 Preform homogeneity 

In Table 4-5 the corresponding preform longitudinal position is shown for each fibre 

sample. Numerous draw conditions could be studied during each fibre draw, 

eliminating variations between preforms. However, Samples SS_125_1 and 6 are 

sourced from relatively distant sections of the preform and longitudinal 

inhomogeneities become an issue when comparing the samples. Figure 4-14 shows the 

preform outer diameter, core diameter (computed using equivalent step-index, ESI, 

method) and their ratio along the length of the preform measured with a refractive 

index profiler. As the fibre diameter is controlled during the draw, it is the ratio of outer 

to core diameter that is important in order to obtain constant fibre core diameter.  

 

The draw sections are shown in Figure 4-14. For these sections the ratio of the outer 

diameter to the core diameter varied by less than 4%. As the core diameter is computed 

using an ESI model it does not reflect the shape of the core profile. In order to look 

more closely at the preform homogeneity, several preform RIPs were compared. Figure 

4-15 shows the preform core RIP at three different longitudinal positions 

corresponding to Samples SS_125_1, 2 and 6. As can be seen from the figures there is a 

variation in the peak refractive index difference. As the standard RIP computation 

assumes cylindrical symmetry, the asymmetry seen in the RIPs might not be presented 
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correctly. However, it can be concluded that there is a difference between the RIPs and 

that some asymmetry is present.   

 

In addition to longitudinal variation, it is possible to have cross-sectional variation in 

the preform. Figure 4-16 compares the refractive index profiles for the core of the 

preform at the 500mm longitudinal position corresponding to Sample SS_125_6 at 

three different angles. This comparison shows that not only is there longitudinal but 

also cross-sectional variation in the preform. For the 800µm fibre draw the 

corresponding preform core refractive index profiles for Samples SS_800_1, 4 and 6 are 

shown in Figure 4-17. Although some variation is present it is less than for the SS_125 

fibre draw section. In order to determine the asymmetry, tomographic RIP should be 

computed for the preform. Unfortunately the tomographic capability was not available 

prior to drawing of the preform. 
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Figure 4-15. Preform core RIP in three different longitudinal positions, SS_125_1, 2 and 6. 
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Figure 4-16. Preform core RIP at single position, 500mm, for three angular positions, 0°, 216° and 

288°. 
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Figure 4-17. Preform core RIP in three different longitudinal corresponding to SS_800_1, 4 and 6. 

 

The preform section at the 260mm position was also analysed using EDS on SEM. 

Figure 4-18 shows a BSE image of the preform cross-section. The core looks 

symmetric, more so than that which is shown in the RIPs. In the centre of the core a 

Ge-depleted area is shown with another small depleted ring surrounding the centre. 

Note that the “star-burst” shape core edge sometimes results from the MCVD process 

and is studied in [158]. Figure 4-19 shows the GeO2 concentration profile measured 

using EDS compared to the corresponding preform RIP. The RI profiler does not 

resolve the small Ge-depleted ring in the final profile but this feature could cause an 
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error in the selection of the core centre, which would then translate into the final RIP as 

asymmetry. Also the central Ge-depleted dip is much deeper than resolved by the RI 

profiler. The core outer edge follows the concentration profile well. 

 

 

 

Figure 4-18. BSE image for SS preform using SEM. White line indicates the EDS line scan 

position.  
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Figure 4-19. GeO2 concentration profile of SS preform compared to the corresponding RIP 
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4.3.1.2 SS 125µm fibre 

The 125µm fibres were measured using two methods (i) etching and AFM technique 

and (ii) EDS on TEM. For clarity, comparison of only three fibre samples is shown 

here. Samples SS_125_1 with a high draw temperature of 1980°C and SS_125_2 with a 

low draw temperature of 1890°C were chosen as they would present the greatest 

difference in the profile due to diffusion. Sample SS_125_6 was chosen to compare the 

effect of drawing speed. The draw conditions are presented for these samples in Table 

4-6.  

 

Table 4-6. Draw conditions for Samples SS_125_1, 2 and 6 

Sample Draw 
Temperature 

(°C) 

Preform 
Feed Rate 
(mm/min) 

Draw 
Speed 

(m/min) 

Tension 
(g) 

Preform 
Position 
(mm) 

SS_125_1 1980 1.6 30 10 290 
SS_125_2 1890 1.6 30 40 330 
SS_125_6 2020 9.0 170 40 500 

 

 

Figure 4-20 shows the AFM profiles for Samples SS_125_1, 2 and 6. All the samples 

show the deep Ge-depleted centre and also the small ring surrounding it. Sample 

SS_125_6 has a much lower peak height than the other samples. To illustrate the 

challenges of AFM data analysis three profiles are plotted for Sample SS_125_2 taken at 

different angles 0, 45 and 90° across the core in Figure 4-21. There is some variation in 

peak height but mostly in core width. Figure 4-22 shows the reason for this. In Figure 

4-22 the data is presented in two-dimensions. The intensity of the colour represents the 

height of the sample. During scanning the sample has moved slightly resulting in what 

seems to be an oval core (~20% ovality). When line profiles are taken at different 

angles, the data is correspondingly broader or narrower depending on the angle. In this 

case the AFM data for Sample 2 is not reliable in spatial dimensions. The cause of the 

drift was later removed by modifying the way the fibres were attached to the sample 

holder. The lower peak height of Sample SS_125_6 was not however explained by the 

sample drift. The noise seen in Figure 4-21 (at 45° and 90°) is due to variation in the 

baseline height from scan to scan.8 This feature is typical for an AFM image and is 

                                                 
8 An AFM image is constructed from multiple scan lines. The tip (or sample) moves back and forth in the 
fast scan direction after which it moves an increment perpendicular to this direction. The profile at 0° is 
smooth as it comprises data from only a single scan. 
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removed by a flattening process found in standard AFM software. The line height 

variation is also seen in the raw AFM data in Figure 4-22. 
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Figure 4-20. Core profiles for  SS_125_1, 2 and 6 using the etching and AFM method.  
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Figure 4-21. AFM core profiles for Sample SS_125_2 taken at 0, 45 and 90° angles. 

 

Figure 4-22. 2D presentation of the AFM data for Sample SS_125_2. The bright speck near the 

core edge is a contamination particle. 
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In parallel with the AFM measurements TEM was also attempted to determine the 

germanium concentration profiles in the fibre samples. Figure 4-23 shows 

concentration profile measured using EDS for Samples SS_125_1, 2 and 6. Again 

Sample SS_125_6 shows lower peak concentration than the other samples. Only one 

scan for each sample is shown in Figure 4-23 as it was found that the scan locations in 

the sample could not be accurately determined9. No further comparison was made with 

the TEM data as uncertainties in the position of the line scans caused substantial 

decrease in the spatial resolution of the data. It was also shown later that ion beam 

thinning preferentially removed germania, thus affecting the concentration profile. For 

further discussion see Section 3.3.3.2. 

 

As a final comparison, each of the 125µm fibre samples was compared with the 

preform RIP corresponding to the section from which the fibres were drawn. Figure 

4-24 shows the comparison for Samples SS_125_1, 2 and 6. Each of the figures has the 

same scaling and it can be concluded that the maximum peak height follows reasonably 

the corresponding preform profile for each sample indicating that the changes in the 

fibres are due to preform non-homogeneity. Although the RI profiler does not resolve 

fully the Ge-depleted dip in the centre nor the ring surrounding it, it is likely that these 

features change along the preform length. Due to the preform inhomogeneities and the 

challenges in fibre measurements, no drawing induced change in the profiles was 

conclusively detected.   
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Figure 4-23. Core profile comparison for SS_125_1, 2 and 6 measured using EDS on TEM  

                                                 
9 The scan width was limited to ~2µm and thus scans spanning the width of the core were not possible. 
Due to the difficulty in positioning, the scan SS_125_1 did not reach as far into the core centre.  
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(c) 

Figure 4-24. Comparison of preform RI and fibre AFM profile for (a) Sample SS_125_1, (b) 2 and 

(c) 6.  
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4.3.1.3 SS 800µm fibre 

In an attempt to mitigate the problems in fibre measurements, fibres with very large 

cores were drawn. The 800µm fibres were drawn at various draw temperatures and 

speeds. Five samples (Table 4-7) were chosen to study the following effects on 

diffusion: (i) effect of temperature at low preform feed rate (SS_800_1 and 2), (ii) effect 

of temperature at high preform feed rate (SS_800_4 and 6) and  effect of preform feed 

rate at constant temperature (SS_800_2 and 5). The fibres were analysed with EDS on 

SEM to obtain GeO2 concentration profiles across the core.  

 

Figure 4-25 shows the GeO2 concentration profiles across the core for the samples. The 

error bars represent the interaction volume of the measurement. The concentration 

measurement at the point is an average of the volume resulting in larger errors when 

greater gradients exist. A free hand line is drawn through the points to guide the eye. 

Figure 4-25 (a) shows the comparison between fibres drawn at the lower draw speed of 

0.8m/min at 2000°C and 2100°C. Figure 4-25 (b) shows the profiles for draw speeds of 

3.5m/min and temperatures 1900° and 2100°. Figure 4-25 (c) shows the Samples 2 and 

5 drawn at the same temperature of 2000°C but at different draw speeds. No significant 

differences between the profiles can be seen within the measurement accuracy, except 

for Samples SS_800_4 and 6 (Figure 4-25 (b)) where the central Ge-depleted region has 

higher Ge concentration, possibly indicating increased Ge diffusion at 2100°C 

compared to 1900°C. Finally Sample SS_800_4 is compared with the preform profile 

both measured with EDS on SEM, Figure 4-26. The preform sample was taken 

relatively close to the section drawn into the fibre sample. The most noticeable 

difference is that the central Ge-depleted dip has higher Ge content in the fibre, 

indicating possible diffusion of Ge during drawing. Despite the large core (30µm), the 

interaction volume hinders the detection of draw-induced changes. As with SS_125 

samples the preform inhomogeneity could result in the changes observed in the Ge-

depleted centre region.  

Table 4-7. Draw conditions for Samples SS_800_1, 2, 4, 5 and 6 

Sample Draw 
Temperature 

(°C) 

Preform 
Feed Rate 
(mm/min) 

Draw  
Speed 

(m/min) 

Preform Position 
(mm) 

SS_800_1 2100 1.7 0.8 50 
SS_800_2 2000 1.7 0.8 70 
SS_800_4 1900 7.3 3.5 130 
SS_800_5 2000 7.3 3.5 170 
SS_800_6 2100 7.3 3.5 220 
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(c) 

Figure 4-25. EDS GeO2 concentration profiles for SS_800 effect of temperature (a) at low feed 

speed and  (b) at high feed speed and (c) effect of feed speed. Only one experiment set per figure 

has error bars for clarity. The interaction volume is same for each point. 
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Figure 4-26. Comparison SEM profiles of Sample SS_800_4 and preform sample. Preform scaled 

to fibre dimensions. The width of the error bar of the preform measurement corresponds to the 

size of the label.  

 

4.3.1.4 Asymmetric-core fibre 

In order to verify whether asymmetry in a Ge-doped core would be affected by 

diffusion, a preform that had a Ge-doped core with high asymmetry was drawn (Sample 

SA_125). The fibre sample was drawn at a draw speed of 20m/min, preform feed rate 

of 1.1mm/min at 1560°C using the modified tower. The furnace temperature is not 

comparable with the other tower but the draw tension was 65g, a bit higher but 

comparable to the tension employed in the other draws. 

 

Figure 4-27 shows a BSE image acquired with SEM of the asymmetric preform core. 

The drawn line indicates the radial position of the measured GeO2 concentration 

profile. Figure 4-28 shows SEM and RIP scans, showing the large variation in the peak 

germanium content. It should be noted that the tomographic RIP was measured at a 

different position to the preform SEM section and the preform section drawn into 

fibre. However it is shown here to demonstrate the similar asymmetry found in the RIP 

as compared to SEM. The central dip is much smaller in the RIP and this could be due 

to the limitations of RIP measurement or longitudinal variation of the dip along the 

preform.  
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Figure 4-27. BSE image performed on SEM of the asymmetric preform core with the line 

indicating the diameter with maximum asymmetry. 
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Figure 4-28. Preform SEM and tomographic RIP along the diameter with maximum asymmetry 

 

Comparison of the preform EDS and fibre AFM profile is show in Figure 4-29.The 

index dip in the centre of the core is slightly less than that of the preform and the 

asymmetry seems greater in the preform. These may indicate that some profile 

alteration has occurred during drawing. The exact relationship with the etching depth 

and Ge-concentration could not be determined for this sample limiting the 

comparability of the profiles. 
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Figure 4-29. Comparison of fibre core profiles for Sample SA_125 (etching and AFM) and 

preform GeO2 concentration profile (EDS on SEM). 

 

In conclusion, due to the difficulties in measuring an asymmetric structure, where exact 

profile position is essential for comparisons and preform longitudinal variations are 

likely (unfortunately tomographic profiling was not available prior to drawing), no 

diffusion or viscous deformation could be observed. It can however be noted that 

significant asymmetry prevails in the fibre drawn at these specific conditions. Although 

not much was learned of diffusion in this experiment, the asymmetric fibre proved to 

be very useful for highlighting the challenges in the various analysis techniques.  

 

4.3.1.5 Summary 

Due to the longitudinal and radial fluctuations in the preform composition and the 

limitations of the measurement techniques, no conclusive results were obtained for 

drawing induced changes in the profile. The experiments however highlighted the 

problems in studying such changes and resulted in valuable information as to the 

improvements required in both experimental set-up and measurement techniques. 

These improvements are listed below, most of which were implemented in the 

following studies presented in Sections 4.3.2, 4.3.3 and 4.3.4. 
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Experimental techniques: 

• Preform homogeneity must be improved. 

• Fewer draw conditions should be used to minimise preform length used. 

• A draw condition should be chosen, which maximises diffusion e.g. higher 

temperature and lower draw speed. 

• A single dopant fibre design should be used to eliminate the effect of cladding 

dopants. 

 

Measurement techniques: 

• A tomographic RIP should be used to verify radial homogeneity and improve 

resolution. 

• Etching depth should be correlated to dopant concentration, as it is not linear. 

• Single dopant design should be used in order to remove the effect of other 

dopants on the etching process in the etching and AFM technique. 

• Sample drift should be eliminated from the AFM measurement. 

• TEM sample preparation reduced the germanium content of the samples and 

cannot be used for the study unless improvements are made in the preparation 

process. 

• EDS on SEM has too limited spatial resolution even for large diameter fibres. 

• An alternative fibre measurement technique should be used to verify findings 

made from etching and AFM technique, such as high-resolution fibre RIP.  

 

 

4.3.2 1-ring-Ge-doped fibre 

A Ge-doped ring design was selected to improve the longitudinal homogeneity of the 

preform. In the ring design the central dip resulting from the depletion of germanium 

during collapse was removed by depositing a thick layer of pure silica in the centre of 

the core prior to collapse. Draw conditions were carefully selected according to 

diffusion rates estimated from the literature and the number of samples were minimised 

so that the corresponding preform locations for the samples were as close together as 

possible, thereby maximising the comparability of the samples. Three different draw 

conditions were chosen (Table 4-8). Sample 1R_125_1 and 1R_125_2 were drawn at 
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very low speed, namely 10m/min with temperatures of 1800°C and 2100°C. Based on 

estimated results it was expected that at 1800°C minimal diffusion would occur but that 

at 2100°C some diffusion would be evident. Sample 1R_125_3 was drawn at high 

temperature but at a faster speed of 35m/min. Due to the faster speed less diffusion 

was expected than Sample 1R_125_2 as the sample spends less time in the hot-zone. 

 

First the homogeneity of the preform was checked. Figure 4-30 shows the cladding ring 

dimensions along the preform length (measured from the preform RIPs). The draw 

section is shown in the figure. The longitudinal variation for cladding OD was <0.5% 

and variation in ring dimensions by less than 3%. The ratio of cladding OD to ring OD 

varied less than 1%. To look in more detail at the preform RIPs for the sections from 

which the samples were drawn, refer to Figure 4-31. This figure shows the refractive 

index profile at two different positions corresponding to the beginning and end of the 

draw section. The RIPs are almost identical. 

Table 4-8. Draw conditions for Ge-doped ring fibre 1R_125 

Sample Nominal 
Diameter 

(µm) 

Furnace 
Temperature 

(°C) 

Preform Feed 
Rate 

(mm/min) 

Draw Speed 
(m/min) 

Preform 
Position 
(mm) 

1R_125_1 125 1800 0.5 10 240 
1R_125_2 125 2100 0.5 10 210 
1R_125_3 125 2100 1.8 35 190 
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Figure 4-30. Longitudinal homogeneity of the Ge-ring preform, 1R. 



 116

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ef

ra
ct

iv
e 

in
de

x 
di

ffe
re

nc
e

Radius [mm]

 240mm
 190mm

 

Figure 4-31. Preform RIP at positions 240 and 190mm corresponding to Samples 1R_125_1 and 3. 

 

To check the cross-sectional homogeneity a tomographic RI profiling was used. The 

two-dimensional contour plot of the RIP is shown in Figure 4-32, where it can be seen 

that the preform is symmetric. In addition to this a tomographic RIP at an arbitrary 

angle is compared with an RIP assuming circular symmetry in Figure 4-33. The 

tomographic profile shows a more symmetric profile than the profile computed 

assuming circular symmetry. The presumably artificial asymmetry can be created in the 

computation of the RIP when the centre of the core is not located accurately. The 

profiles match relatively well and as the tomographic profile shows high symmetry it is 

concluded that the cross-sectional homogeneity is very good for the preform. The small 

peak in the outer part of the ring resulted from the preform manufacturing phase 

(Section 3.2.1.1) and proved to be useful in comparing the different fibre samples.  

 

To determine the germania concentration profile SEM was used. Figure 4-34 shows the 

BSE image of the preform core. Comparison of the EDS line-scan and preform profile 

is shown in Figure 4-35. The peak on the outer edge is resolved with both methods, 

although SEM measures higher Ge content of this peak. This discrepancy may be due 

to the stress profile of the ring design resulting from the different thermal expansion 

coefficients of pure silica and the doped ring altering the RI (see Appendix I).     
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Figure 4-32. Tomographic RI contour plot of the preform 1R. Colour represents refractive index 

change and X and Y are positions in mm.   
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Figure 4-33. Preform RIP with symmetric assumption and tomographic profile for 1R.  
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Figure 4-34. BSE image of the preform 1R. The cracks shown in the image are due to the cutting 

of the sample owing to high stresses resulting from the relatively high Ge content. EDS line scan 

measurement position shown as a white line. 
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Figure 4-35. Preform SEM profile and RIP comparison for 1R.  
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The drawn fibres were analysed by etching and AFM and high-resolution RI profiler.  

Figure 4-36 shows the AFM profile for Samples 1R_125_1 and 1R_125_2, which were 

drawn at 10m/min and 1800°C and 2100°C, respectively. It can be seen that substantial 

broadening of the features has resulted at the higher of the two temperatures most 

likely due to diffusion. Figure 4-37 shows the inner edge of the Ge-doped ring for 

Samples 1R_125_1, 2 and 3 again showing broadening for the higher temperature 

samples. Sample 1R_125_3 was drawn at high temperature but the draw speed was 

increased from 10m/min to 35m/min corresponding to a preform feed rate increase 

from 0.5mm/min to 1.8mm/min. This results in the preform travelling a distance of 

10mm in 5.6min instead of 20min in the furnace. Correspondingly a 125µm fibre 

spends 0.3s instead of 1.2s travelling a distance of 0.2m. This reduced dwell time of the 

preform and fibre in the furnace should result in less diffusion. As expected Sample 

1R_125_3 exhibits less diffusion than Sample 1R_125_2. However, due to higher 

temperature, Sample 1R_125_3 has diffused more than Sample 1R_125_1. Not 

surprisingly it can be concluded that diffusion occurs during high temperature drawing 

and that not only temperature but also the duration of exposure to heat affects the 

amount of diffusion.  
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Figure 4-36. Fibre AFM profile for Samples 1R_125_1 and 2. 
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Figure 4-37. AFM profiles of the inner edge of the ring for Samples 1R_125_1, 2 and 3. 
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To confirm the results a high-resolution fibre refractive index profiler (Section 3.3.1.2) 

was used to analyse the fibre samples. Figure 4-38 shows the comparison between the 

refractive index profiles of the Samples 1R_125_1, 2 and 3. Although the resolution of 

the fibre refractive index profiler is less than the AFM, the diffusion is still evident from 

the comparison. The ring inner edge comparison is shown in Figure 4-39. Here the 

resolution limitations are significant and differences between the samples are not so 

obvious, although consistent with the AFM profiles.  

2 3 4 5 6 7 8 9

0.000

0.005

0.010

0.015

0.020

0.025

Measurement
repeatabilityR

ef
ra

ct
iv

e 
in

de
x 

di
ffe

re
nc

e

Radius [µm]

 1R_125_1 (1800°C, 10m/min)
 1R_125_2 (2100°C, 10m/min)
 1R_125_1 (2100°C, 35m/min)

 

Figure 4-38. Fibre RIPs of Samples 1R_125_1, 2 and 3.  
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Figure 4-39. Fibre RIPs of Sample 1R_125_1, 2 and 3, inner edge of the ring.  
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Finally the preform and fibre samples were compared. The comparison between the 

preform EDS profile and etched fibre profiles is shown in Figure 4-40. The fibre drawn 

at colder temperature shows similar inner peak shape as that of the preform whereas 

the hotter sample is more diffused. There is some discrepancy between the shape of the 

preform and fibre samples, which is most likely due to inaccuracy in determining the 

etching depth relation to concentration as relatively high HF concentration was used.  

The corresponding RIPs for preform and fibre samples are compared in Figure 4-41, 

showing that for the low temperature sample the shape of the small peak is similar to 

that of the preform RIP confirming the findings with previous comparison. The 

preform RI is higher at the ring but lower for the small dip on the outer edge. These 

differences may be due to different stress profiles of the preform and fibre. It has been 

shown that axial stress is released at cleaved fibre ends (and a couple of microns into 

the glass) [159]. If any stresses would prevail, the fibres would have ‘frozen-in’ 

viscoelasticity at high draw tension [68].  
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Figure 4-40. Comparison of preform SEM and fibre Samples 1R_125_1 and 2 measured with 

AFM. (n is the etching reaction order used, refer to Section 3.3.2.4.). Preform concentration error 

is 0.2mol% and spatial resolution 0.004mm. Statistical fibre concentration error from etching 

analysis is <1% for lower concentration range and <0.01% for higher concentration range.10 Fibre 

spatial resolution is in order of tens of nanometers. 

                                                 
10Note that the accuracy of the AFM and etching method depends on the correct determination of the 
etching reaction order, which for this sample is questionable due to the uncertainties of the etching 
process at the time. The relative comparison of the fibre samples is however reliable as etching 
conditions were identical. 
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Figure 4-41. Comparison of preform and fibre RIP of Samples 1R_125_1 and 2.  

 

In order to determine whether the differences in fibre profiles are due to diffusion, 

computations were performed using the measured profiles. It is shown in Chapter 6 

that diffusion during drawing results in the measured profile change although the 

discrepancy remains with the preform concentration profile and etched fibre profiles. 

For more accurate diffusion computations the relationship with etching depth and 

dopant concentration was determined for the 3-ring fibre (Section 3.3.2.4) and 

experimental results presented in the next section (4.3.3)   

 

4.3.3 3-ring-Ge-doped fibre 

In order to quantify diffusion the relationship with etching depth and germanium 

concentration had to be established. The 3-ring design was chosen as the most suitable 

for the task. Each ring was doped with a different amount of germanium giving three 

concentrations against which the etching depth could be determined. For details see 

Section 3.3.2.4. The preform longitudinal homogeneity was expected to be an issue due 

to the relatively complex design and only two fibre samples were drawn to ensure their 

proximity in the preform. The fibres were drawn at 10m/min with a furnace 

temperature of 1800°C and 2100°C.  

Table 4-9. Draw conditions for 3-ring fibre 3R_125 

Sample Nominal 
Diameter 

(µm) 

Furnace 
Temperature 

(°C) 

Preform Feed 
Rate 

(mm/min) 

Draw Speed 
(m/min) 

3R_125_1 125 1800 0.5 10 
3R_125_2 125 2100 0.5 10 
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Only 20mm of preform was consumed during drawing. The preform RIPs 

corresponding to the fibre samples are shown in Figure 4-42. The profiles are almost 

identical and the refractive index level for each ring is the same in both longitudinal 

positions. To study the radial homogeneity a tomographic RI measurement was 

obtained at the position corresponding to Sample 3R_125_1. A 2D plot of the RIP is 

shown in Figure 4-43. There are no deformations in the ring shapes. Figure 4-44 shows 

tomographic RIPs taken at four angular positions. There is no significant variance in 

the inner most ring, however the refractive index difference varies about 10% for the 

mid and outermost ring. To determine the GeO2 concentration profile EDS on SEM 

was used. A BSE image of the preform is shown in Figure 4-45. The concentration 

profile is compared with the tomographic RIP in Figure 4-46. The concentration 

variance in each ring corresponds to the number of MCVD layers in the preform 

fabrication. Note that the RI profiler does not resolve these layers but they are seen in 

the micrograph taken with optical microscope in Figure 4-47. If the refractive index is 

scaled to match the outermost ring a large difference is seen in the inner-most ring and 

some difference in the middle ring. The thermal stress in the preform can cause about 

8×10-4 increase for 9mol% Ge-doped fibre core due to compressive stress in the doped 

core [67]. This agrees with the middle ring. The difference is larger for the highly doped 

inner ring, which is consistent with increased difference in thermal expansion 

coefficients.   

1 2

0.000

0.009

0.018

R
ef

ra
ct

iv
e 

in
de

x 
di

ffe
re

nc
e

Preform radius [mm]

 Preform position 180mm
 Preform position 160mm
 Preform position 140mm

 

Figure 4-42. Preform RIPs corresponding to fibre samples 3R_125_1 and 2.  
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Figure 4-43. Tomographic RI contour plot of the preform 3R. Colour represents refractive index 

and X and Y are positions in mm.  
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Figure 4-44. Preform tomographic RIPs for 3R at four angular positions, 90°, 45°, 135° and 180°. 
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Figure 4-45. BSE image of the preform 3R. The lines indicate measured line scans for each ring. 
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Figure 4-46. GeO2 concentration profile measured using EDS in SEM and RIP for preform 3R.  
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Figure 4-47 Optical micrograph of preform 3R showing the layer structure of the outer rings. 

 

The fibres were analysed by the etching and AFM technique and RI profiler. The raw 

AFM profile for the fibres is shown in Figure 4-48. HF concentration of 5vol% was 

used. The difference of the profiles is evident for the inner-most ring with highest Ge 

concentration. The fibre that was drawn at hotter temperature has etched less indicating 

a lower Ge concentration. The difference in the two outer rings is not so clear. Figure 

4-49 show the profiles for each ring after transforming the raw data to represent GeO2 

molar concentration (3.3.2.4). The innermost peak shows broadening of the profile, 

which very much resembles change originated from dopant diffusion. It is possible that 

the middle ring also has undergone some change at the higher temperature, however 

this change is within the 10% variance found in the preform. The outermost ring seems 

to have changed the least if at all implying no significant diffusion.     
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Figure 4-48. AFM profiles (raw data) of Samples 3R_125_1 and 2. HF concentration was 5 vol%. 
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Figure 4-49. Transformed AFM profiles of (a) the inner ring, (b) mid and (c) the outer ring of 

Samples 3R_125_1 and 2.  
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The fibre RIPs are shown together with the preform RIP in Figure 4-50. The greatest 

difference between the fibre samples is seen in the innermost ring, which is consistent 

with the etched fibre profiles. The peak refractive index is higher for the sample drawn 

at a colder temperature. Note that the innermost ring has a full width at half maximum 

of only 1.5µm making accurate RI profiling difficult. No significant change is seen in 

the width of the peak within the measurement accuracy. The preform RI is higher for 

all the rings but most significantly for the inner most ring. As with the comparison of 

the 1-ring preform (1R) this can be explained by release of the axial stress when the 

fibres were cleaved. Note however that when the fibre RI for the silica centre is set to 

zero the cladding RI is negative. If no axial stress is present the RI should be same as 

that of the centre. It must be noted that the focus for fibre RIP was difficult to adjust 

and could result in some error. If stresses are present, the reduced RI may be due to 

draw induced mechanical stress, as the outer cladding would solidify first, bearing most 

of the tensile stress [67, 68]. 

 

It can be concluded that there is significant change between the samples drawn at 

different temperatures. It is shown in Chapter 6 that dopant diffusion during draw 

accounts for the change in profile of the innermost ring. The diffusion coefficient for 

Ge is obtained using the etched fibre profiles and preform concentration profiles in 

Section 6.4.2.    
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Figure 4-50. Fibre RIPs of Samples 3R_125_1 and 2 and preform RIP. The symbols for fibre 

measurements present the standard deviation of the RI for each measurement set.  
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4.3.4 F-doped cladding pure silica core fibre  

Fluorine diffusion during drawing was studied using the same techniques as for Ge 

diffusion. A silica core, fluorine-doped cladding, preform was drawn at four different 

drawing conditions (Table 4-10) to a nominal diameter of 110µm. Due to the very slow 

speed (2m/min) the diameter controller was not used and diameter varied in Samples 

F_112_2 and F_130_4. The preform was analysed with the RI profiler and chemical 

analysis was acquired using WDS on EPMA. The fibres were analysed using etching 

and AFM technique and RI profiling. Note that for comparisons the 112 and 130µm 

samples were scaled to 110µm. 

 

Only 30mm of preform was used during drawing. The preform was not pre-treated 

prior to drawing (for example by fire polishing) to avoid any thermal processing. The 

homogeneity was expected to be excellent as the preforms are commercially produced. 

The refractive index profiles along the length of the preform are shown in Figure 4-51. 

A tomographic 2D RI plot is shown in Figure 4-52 and corresponding radial scans at 5 

angles in Figure 4-53. Note that although the core-cladding interface is shown as 

rounded, this is an artefact resulting from the very steep RI gradient of the step-index 

profile ([77], Section 3.3.1.1). This is evident from the fluorine concentration profile 

measured using WDS on EPMA (Figure 4-54), where the change from average cladding 

fluorine concentration of 4.3w% to pure silica occurs within 30µm. This corresponds to 

0.1µm in 110µm diameter fibre. On the outer edge of the preform the RIPs show a 

fluorine-depleted region. Although the width of this region is difficult to define due to 

the inaccuracy of the profile, importantly this feature stays constant both in longitudinal 

and radial comparisons of the preform. The WDS profile shows the first measurement 

point as having F concentration of 2.9w%, which is 30% less than the average cladding 

concentration. The fluorine concentration varies in the cladding from 3.9 to 4.7w%. 

The variance seems to correspond to the layered structure resulting from the preform 

fabrication process [160].  

Table 4-10. Draw conditions for F-doped cladding pure silica core fibres 

Sample Diameter 
(µm) 

Furnace 
Temperature 

(°C) 

Preform Feed 
Rate 

(mm/min) 

Draw Speed 
(m/min) 

F_110_1 110 1900 0.2 10 
F_112_2 112 1900 0.04 2 
F_110_3 110 2100 0.2 10 
F_130_4 130 2100 0.04 2 
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Figure 4-51. Five RIPs at 10mm intervals along the length of the preform with F-doped cladding.  

 

Figure 4-52. Tomographic 2D RI plot of the preform F. 
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Figure 4-53. RIPs for preform with F-doped cladding at 5 different angular positions  
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Figure 4-54. Fluorine concentration profile measured using WDS in EPMA.  

 

The etched fibre profiles are shown in Figure 4-55 and Figure 4-56. At both 10m/min 

and 2m/min the fibre drawn at hotter temperature shows similar changes in the 

profiles. At hotter temperature the F-depleted region in the outer edge of the fibre has 

etched less indicating lower F concentration. At the core-cladding interface the slope of 

the interface is reduced for the fibre drawn at hotter temperature. Both changes indicate 

higher mobility of fluorine, both towards the core and out of the fibre. The effect of 

draw speed at constant temperature is shown in Figure 4-56. For both temperatures 

when the draw speed is reduced, the same changes are seen as explained above. The F-

depleted region has lower F content and the core-cladding interface has reduced slope. 

As no 3-ring structure (or equivalent) was available for fluorine-doped fibre, the 

relationship of etch-depth to F content could not be established, and no quantitative 

diffusion comparison could be carried out with the samples.  

 

To confirm the changes in profiles the fibres were also measured with the RI profiler. 

Similar comparisons presented for the etched samples were made for fibre RIPs and are 

shown in Figure 4-57 and Figure 4-58. The profiler does not resolve the F-depleted 

region in the outer edge of the fibre but shows the change in core-cladding interface 

slope. The trends are similar to those shown with AFM profiles. 
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Figure 4-55. AFM profiles of (a) high draw speed samples F_110_1 and F_110_3, (b) low draw 

speed samples F_112_2 and F_130_4. Data scaled to 110µm diameter fibre.  
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Figure 4-56. AFM profiles of (a) low temperature samples F_110_1 and F_112_2, (b) high 

temperature samples F_110_3 and F_130_4. Data scaled to 110µm diameter fibre.  
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(b) 

Figure 4-57. RIPs of (a) high draw speed samples F_110_1 and F_110_3, (b) low draw speed 

samples F_112_2 and F_130_4. Data scaled to 110µm diameter fibre. Note that F_130_4 was 

etched to reduce the fibre outer diameter. Note that the peak at the core-cladding interface is 

believed to be a measurement artefact resulting from the high refractive index of the oil 

compared to the cladding. The peak does not appear in the AFM measurements. It is believed 

that this artefact does not affect the conclusions as they agree well with the results from AFM 

measurements.  



 135

 

-60 -58 -56 -54 -52 -50 -48 -46 -44

-0.01

0.00

0.01

0.02

silica

F-doped 
cladding

oil

1900°C, 10m/min
1900°C, 2m/min

R
ef

ra
ct

iv
e 

in
de

x 
di

ffe
re

nc
e

Radius [µm]

 
(a) 

 

 

-60 -58 -56 -54 -52 -50 -48 -46 -44

-0.02

-0.01

0.00

0.01

0.02

silica

F-doped 
cladding

oil

2100°C, 10m/min
2100°C, 2m/minR

ef
ra

ct
iv

e 
in

de
x 

di
ffe

re
nc

e

Radius [µm]

 
(b) 

 

Figure 4-58. RIPs of (a) low temperature samples F_110_1 and F_112_2, (b) high temperature 

samples F_110_3 and F_130_4. Data scaled to 110µm diameter fibre. Note that F_130_4 was 

etched to reduce the fibre outer diameter.  
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To compare all four draw conditions, the etch depth of the F-depleted region on the 

outer edge of the fibre and the slope of the core-cladding interface are plotted in Figure 

4-59 and Figure 4-60. The lowest F concentration in the edge of the fibre is for fibre 

drawn at 2100°C and 2m/min. The slope of the core-cladding interface is lowest for 

this sample as well. The highest F concentration in the edge of the fibre is for the 

sample drawn at 1900°C and 10m/min. This correlates with diffusion, which is 

increased at higher temperatures and at lower draw speeds due to increased dwell time 

in the furnace. Note that the trend in slope is the same measured both with AFM and 

RIP. The magnitudes of change are different which is not surprising as the etching 

depth is unlikely to be linear with fluorine concentration. 

20

40

60

80

100

120

2100°C
2m/min

2100°C
10m/min

1900°C
2m/min

1900°C
10m/min

 Draw condition

E
tc

h 
de

pt
h 

[n
m

]

de
pt

h

 

 

 

Figure 4-59. AFM etch depth measurements of the peak at the outer edge of the fibre.  
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Figure 4-60. Cladding-core edge slope measurements from AFM and RI profiles.  
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Finally the fibre profile measured using the etching and AFM technique for the least 

diffused sample F_110_1 was compared to the concentration profile of the preform 

(Figure 4-61). Any conclusions from the comparison must be taken with caution, as it is 

unlikely the etching depth is linearly dependent on the concentration. The fibre cladding 

F content variation seems to follow that of the preform and the F-depleted region on 

the edge is of same magnitude. The inner edge of the fibre seems diffused compared to 

the preform. It is plausible that the mobility of the fluorine is different in the outer edge 

of the fibre to that inside the fibre. This may be possible for example if the removal 

mechanism of fluorine from the fibre edge affects the diffusion profile. If this were the 

case, then the furnace atmosphere may have an effect. Factors such as selection of 

furnace gas, the amount of oxygen and humidity in the gas as well as the furnace 

temperature may affect the surface chemistry on the preform and fibre. The diffusion 

towards the core is unaffected by these factors but would be affected by the quality of 

the silica, i.e. OH and impurity content. 
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Figure 4-61. Preform F profile compared to fibre AFM profile for Sample F_110_1.  



 138

 

4.4 Discussion 

4.4.1 Ge and F diffusion 

Dopant diffusion experiments were carried out by drawing preforms into fibres using 

various draw conditions. The preform and fibre samples were characterised using 

various techniques including RI profiling, X-ray microanalysis and the etching and AFM 

technique. Modification of the profiles was found to occur during drawing for both 

germanium and fluorine doped fibres under high draw temperature (2100°C) and low 

draw speeds (<40m/min). The profile change was characterised by reduced peak 

dopant concentration and broadening of the profile indicating dopant diffusion as the 

source of the change.  

 

At low draw temperature (1800°C) germanium doped fibre profiles were found to have 

insignificant change. The draw speed was found to affect the profile alteration by 

having a greater effect at slower speeds. This is consistent with diffusion-induced 

change where at slower speeds the preform and fibre are exposed to high temperature 

for longer times during drawing. The profile change was not similar in all parts of the 

fibre. For the 3-ring Ge-doped fibre the outer ring with low Ge concentration had very 

little or no change in profile even at extreme draw conditions. In terms of diffusion, this 

could be due to either a temperature gradient in the cooling fibre or concentration 

dependent diffusion coefficient.  

 

The fluorine doped fibre profile was found to alter even at the low temperature of 

1900°C. The fluorine was found to be mobile in both the outer and inner surface of the 

cladding. At both interfaces the broadening of the profile indicated diffusion-based 

mobility. The broadening occurred progressively from sample to sample from low 

temperature and faster draw speed to higher temperature and slow draw speed. It is 

possible that the diffusion in the outer edge of the cladding is altered by a mechanism 

by which the fluorine is removed from the preform and fibre surface. This surface 

chemistry may be affected by the furnace atmosphere as well as the temperature. 
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4.4.2 Limitations of the measurement techniques 

Although the major challenges for the diffusion measurements were overcome during 

this study, there are some limitations to both the fibre refractive index measurement 

and the etching and AFM technique. Both residual stress and silica fictive temperature 

have been shown to affect the refractive index. These effects presumably both arise 

from the change in density of silica. The effects have been widely studied and reported 

in the literature (see Ref. [161] and Appendix I). The etching and AFM technique 

however is more recent and such effects are not fully established yet, although no such 

effects have been found significant to date in the etching and AFM technique [162]. A 

brief discussion is provided below on the possible effects and implications on the 

results of the current study. 

 

The fictive temperature of glass is determined by the thermal history of the glass. In 

particular, the cooling rate affects the fictive temperature. For silica the higher the 

cooling rate the higher its fictive temperature [163]. During drawing, depending on the 

drawing temperature and the drawing speed, the cooling rate can change, causing the 

fibres to have different fictive temperatures. It has been shown that silica with different 

fictive temperature exhibits a different refractive index and a different HF etching rate 

[164]. Hence it is possible that the fictive temperature affects the profiles obtained by 

the etching and AFM method and the refractive index profiles. 

 

The cooling rates for the fibres used in the diffusion study were estimated using the 

heat transfer calculations (see Chapter 6). Due to the low draw speed used for all the 

samples, the cooling rate is about 2500°C/s, a relatively moderate rate in terms of 

typical fibre drawing. This cooling rate differs by no more than a few tens of °C/s 

between the fibre samples so that the change in fictive temperature resulting from the 

difference in cooling rates is insignificant. Due to this relatively moderate cooling rate 

the temperature dependence of the density is also insignificant [165]. A typical range of 

fictive temperatures measured for optical fibres with varying manufacturing methods 

are 1600-1700°C [166]. It is expected based on the above arguments that the fictive 

temperature of the fibres does not significantly vary. There have also been reports on 

radial fictive temperature gradients in Ge-doped core silica fibres [167, 168]. However, a 
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study by Kim and Tomozawa [166] which re-examined the earlier results showed that 

such gradients did not occur in fibres . 

 

Although it is unlikely that the fibres used here exhibit significantly different fictive 

temperatures, it must be noted for future studies that if the fictive temperatures of the 

samples are significantly different, this may cause an increased error in measurement of 

both RI and differential etching rate. For example a 300°C higher fictive temperature 

increases the RI by 3×10-4 for high purity synthetic (F300) silica glass [161]. For fluorine 

doped silica the effect was found to be less. Similarly it has been shown that a 300°C 

higher fictive temperature increases the HF etching rate of silica (natural) by about 30% 

[164]. This however does not indicate any trend for differential etching rates of doped 

samples. Most importantly it has been shown by Zhong and Innis [81] that the dopant 

concentration has the dominant contribution for differential etching rate. They found 

that fibres manufactured with various methods and conditions and dopant 

concentrations showed that differential etching rate was dependent on the dopant 

concentration irrespective of the fibre type or manufacturing method (thus fictive 

temperature and stress state) and a consistent relationship could be established for the 

dopant concentration and the differential etching rate.      

 

In summary it has been shown that significant profile change can be induced during 

drawing. In order to prevent such change or use it to advantage, the effects of draw 

parameters such as furnace temperature, drawing speed and preform diameter must be 

known. Based on the experimental results presented in this chapter, diffusion 

computations were carried out. The diffusion coefficient for germanium in silica was 

estimated and was subsequently used to calculate diffusion effects on the fibre 

compositional profile using thermal history data from heat transfer calculations. These 

simulations allowed studying of the diffusion effect of the different draw parameters. 

The techniques and results are presented in Chapter 6.   
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CHAPTER 5 GEOMETRY CONTROL OF PHOTONIC 

CRYSTAL FIBRES 

5.1 Background 

Photonic crystal fibres and their guiding properties were presented in the Background 

Chapter 2 in Section 2.2.5. As was discussed, the guidance of light and optical 

properties of the fibre depend on the geometry of the air structure surrounding the 

core. PBG fibres are specifically vulnerable to structural inhomogeneities because the 

guidance is based on a structure where high periodicity with tight dimensional 

tolerances is required to form the band gaps [32, 169-172]. Photonic crystal fibres that 

guide light based on the so called average index effect tolerate geometrical changes 

better, however properties such as micro and macro-bending losses and dispersion are 

affected significantly by fine adjustments in the geometry [46, 173, 174]. Accurate 

control of the properties of these fibres also requires fine control of the geometry and 

therefore of the fabrication process.  

 

A few studies have used theoretical modelling in trying to understand the basic single 

capillary drawing process. Fitt et al. [11] studied capillary drawing theoretically and 

derived analytical relationships between draw parameters and capillary geometry. 

Stability in capillary drawing has also been studied [175, 176]. In photonic crystal fibres 

where multi-capillary drawing is critical, Deflandre [12] made a theoretical study on hole 

deformation in the neck-down region of a drawn photonic crystal fibre with an 

hexagonal hole pattern. Although the above studies give useful qualitative results, the 

necessary approximations for both analytical and numerical studies greatly limit their 

quantitative usefulness in practice.  

 

Although numerous papers on photonic crystal fibres briefly describe the fabrication 

process and mention the importance of various draw parameters in obtaining the 

required structure, there are very few papers that discuss in detail aspects of the 

fabrication process itself. The fabrication of various air-silica structures has been 

discussed by Knight et al. [70] who give practical guidelines for obtaining desired 

parameters such as air-filling fraction and hole separation based on experimental results. 
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They suggest that the main draw parameter controlling the air structure is the drawing 

temperature and note that due to surface tension forces the maximum obtainable air-

fraction reduces as the fibre dimensions are reduced. Drawing temperature was also 

used in a study by Bennett et al [177] to control the air-filling fraction.  

 

The lack of details in the literature makes it difficult to compare these studies with the 

results of this thesis. However, Fitt et al [11] have provided an in depth study on 

capillary drawing, of which selected findings will be provided here. Fitt et al [11] used 

mathematical modelling to study the capillary drawing process. In capillary drawing a 

large diameter annular cross-section tube is drawn into a capillary tube. The capillary 

drawing process is the most simplified case of PCF drawing process. Since the PCF 

structure typically contains tens or even hundreds of holes, it is not expected that 

modelling of the capillary draw will provide comparable quantitative results. However 

some of the findings may apply at least qualitatively for a single hole in a PCF structure. 

The experimental results in this thesis will be discussed in relation to the theoretical 

findings of Fitt et al [11] when relevant.  

 

 

 

Figure 5-1. Schematic diagram of the capillary drawing process 
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In their study Fitt et al [11] constructed a fluid mechanics model using asymptotic 

analysis with assumptions specific to capillary drawing. The governing equations 

derived by Fitt et al [11] are shown in Eq. (22) to (25), see also Figure 5-1. Following the 

authors’ notations, the derivatives are denoted by subscripts. These equations are the 

leading-order equations derived from the Navier-Stokes and convection-diffusion 

equations where the main assumption exploited is that the radius of the capillary is 

much smaller than the characteristic length of the neck-down (r L). Since the 

derivation of these equations is lengthy and out of the scope of this thesis, it is not 

presented here. The details can be found in Ref. [11]. A more detailed background for 

the use of fluid dynamics modelling in the area of optical fibre drawing can be found in 

Chapter 6, Section 6.1 and 6.2.  
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where t is time, z is distance along the axis of capillary, r1 and r2 are the inner radius and 

outer radius of the capillary, v is velocity, ρ is density, g is acceleration due to gravity, µ 

is viscosity, p0 is pressure difference between internal hole pressure and atmosphere and  

ξ is surface tension. In Eq. (25) cp is heat capacity, T is temperature, Ta is ambient 

temperature, k is thermal conductivity, σ is Stefan-Bolzmann constant, 'ε  is material 

constant involving emissivity and h is heat transfer coefficient. 

 

The findings listed below are based on the above equations together with assumptions 

and initial and boundary conditions relevant to each case. The major assumptions are 

listed below together with the findings. The equations are only presented when they are 
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used in this thesis. The derivation of the equations is not presented here since it is 

lengthy. Details can be found in Ref. [11].  

 

Findings by Fitt et al [11]: 

� Order of magnitude of terms in the governing equations, Eq. (22)-(24), for 

capillary drawing were analysed. The relative importance of inertial, gravitational 

and surface tension is shown by the non-dimensional parameters: 
2

,     ,     f

f f f

LV gL L
V R V

ρ ρ ξ
µ µ µ

 

L is the characteristic hot-zone length (10-50mm), Vf is the characteristic draw 

velocity (10-300m/min) and Rf is the typical drawn capillary size (0.1-10µm 

single hole in PCF and 0.1-2mm in cane draw). Typical material parameters for 

silica are ρ = 2200kg/m3, µ = 104-105 Pas and ξ = 0.3N/m. From the 

comparison of the above non-dimensional parameters, it can be seen that 

viscosity effects are always important, inertial effects are negligible and 

gravitational effects are significant, especially when large diameter capillaries are 

drawn. The analysis also showed that in many draw regions surface tension and 

viscous effects compete. Internal hole pressurisation is similarly characterised by 

the following parameter: 

0

f

Lp
V µ

 

p0 is the pressure difference of the hole pressure to atmospheric pressure (up to 

10kPa). The non-dimensional parameter Lp0/Vf µ has to be of order of unity for 

hole internal pressurisation effects to be significant. 

� In the absence of surface tension and internal hole pressurisation, the hole does 

not experience any collapse or expansion, hence preserving the initial outer to 

inner diameter ratio.  

� When the assumption is made that surface tension has a very small effect (but 

that such effect is still present) and thus the viscous effects dominate, the 

equations predict that the degree of hole collapse depends on the ratio of 

surface tension and viscosity, ξ /µ. The analysis further predicts that under 

these assumptions the hole collapse is more sensitive to the preform feed speed 
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than the draw speed. As the glass viscosity depends on temperature, the hole 

collapse is sensitive to the temperature as well. Hole collapse is encouraged by 

low viscosity (high temperature), slow feed rate and long hot-zone. Note that in 

this analysis an isothermal assumption was made and inertial, gravitational and 

hole pressurisation effects were ignored.  

� If inertia, gravity and surface tensional effects are ignored for the isothermal 

case, the qualitative finding can be made, that the sensitivity to internal hole 

pressurisation is increased with long hot-zone, low viscosity and slow feed rate.  

� When both surface tension and internal hole pressurisation are taken into 

account, sensitivity of the process to internal hole pressurisation can be 

estimated. By assuming a relatively small hole and ignoring inertia and 

gravitation for isothermal drawing, following sensitivity parameter S was derived 

by Fitt et al. [11]. 

             
( )logID p f p

LS
r V V V

ξ
µ

= ,     (26) 

where rID is initial tube inner radius and Vp is preform feed rate, see Figure 5-1. 

When S 1 internal hole pressurisation may be a suitable means of control, but 

if S 1 the system is highly sensitive to pressurisation and control may not be 

feasible. It can be seen from Eq. (26) that the parameter S is more sensitive to 

the preform feed rate than the drawing speed. Since the hot-zone length is 

typically fixed and the surface tension of silica is constant, the sensitivity factor 

then depends only on the viscosity of glass (i.e. the drawing temperature), initial 

hole diameter, preform feed rate and the draw ratio Vf / Vp. The sensitivity 

parameter increases for lower drawing temperature, smaller hole size, lower 

preform feed rate and smaller draw ratio. Some examples of S values for 

different sets of parameters are shown in Table 5-1. 

Table 5-1. Sensitivity parameter for typical drawing range for a hole diameter of 1.5mm, 

Vf 190m/min, Vp 3mm/min and T 1930°C. 

Draw speed 0.2×Vf Vf 1.6×Vf    1. 
S 1.9 0.4 0.2 
Feed rate 0.2×Vp Vp 1.6×Vp    2. 
S 1.9 0.4 0.2 
Draw temperature T-100°C T T+200°C 

   3. S 0.1 0.4 3.7 
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One of the main assumptions in the above analysis is that the problem is isothermal. 

Although the effect of temperature may be taken into account in the glass viscosity, the 

radial and axial temperature gradients are ignored. It is shown in Chapter 6, Heat and 

mass transfer simulations of the fibre drawing process, that significant temperature gradients can 

exist during fibre drawing process making this assumption invalid. It is however 

acknowledged that without certain assumptions, obtaining analytical correlations is 

impossible and that such correlations may prove to be valuable in studying the effects 

of PCF drawing.  

 

The analysis of Fitt et al [11] implies that the main parameter governing hole collapse is 

the ratio of surface tension to viscosity. There is not much data on the surface tension 

of silica but it is typically considered not to vary significantly with temperature. 

However, as silica viscosity greatly depends on temperature, it is clear that furnace 

temperature is one of the main draw parameters affecting hole collapse. It is also 

important then to find out the effect of other draw parameters and the preform 

structure on temperature profile during the fibre drawing process. This is specifically 

looked at in Chapter 6. The preform feed rate was noted as playing an important role in 

the hole collapse, more so than e.g. drawing speed. In experimental studies it must be 

remembered that preform feed rate will also have an effect related to time exposed to  

temperature and change of viscosity. Perhaps the most interesting implication of the 

analysis is the use of preform internal pressure to control the hole dimensions. 

Although Fitt et al [11] do not directly recommend using pressurisation as a means of 

controlling PCF structures, they recognise that this may prove to be useful under 

limited draw conditions.  

 

There is an additional issue which is not discussed in detail in the paper by Fitt et al [11]. 

If a force balance in the direction normal to the surface is applied over an element in 

the neck-down of a capillary with cylindrical symmetry it can be seen that the capillary 

dimensions depend on the rate of change of the thickness of the capillary wall along the 

drawing direction[178]. This will be affected greatly by the neck-down shape, i.e. the 

curvature of both the inner and the outer surface of the capillary. In solid fibre drawing, 

the neck-down has been shown  to depend on most of the drawing parameters, such as 



 147

the preform feed rate, the drawing temperature, preform and fibre dimension and the 

draw speed (see Chapter 6).   

 

In this thesis the use of the above-discussed parameters on controlling the hole 

structure of a PCF was studied experimentally. More specifically the use of draw 

temperature, preform feed rate and preform internal pressure was examined as a means 

of controlling the geometry during the fibre drawing process. Capillary-stacked 

preforms with a solid core were used in this work although one milled hollow core 

preform was used for comparison. The capillary stacking itself was found to be 

extremely important and Section 5.3.1 is dedicated to capillary draw experiments that 

resulted in ability to fabricate the high precision capillaries necessary for successful 

fibres. The results of the fibre geometry control experiments are presented in Sections 

5.3.2 to 5.3.5. 

 

5.2  Methods  

The preform fabrication methods for PCFs were described in Chapter 3, Section 3.2.1.2 

and the fibre drawing process and equipment in Section 3.2.2. The draw experiments 

and sampling technique are discussed in more detail below and the measurements are 

briefly reviewed in Section 5.2.2; a full description of the measurement techniques can 

be found in Section 3.3.  

 

5.2.1 Experiments 

Table 5-2 gives a summary of the various parameters studied and the effects observed 

in both the capillary drawing and the fibre drawing experiments. The parameters 

studied can be divided into two categories, (i) draw parameters and (ii) structural 

parameters. Draw variables included the process variables that can be changed during 

drawing and directly relate to the drawing process. Structural variables relate to the 

preform and fibre structures and geometric dimensions. The most important process 

variables i.e. draw temperature, preform feed speed and preform pressure effects were 

studied. In studying the effect of structural variables the effects of milled vs. capillary 

structure, cladding and capillary dimensions were considered. Majority of the preforms 

were fabricated by the capillary stacking method but one milled preform was included 

in the study. 
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The effects of the draw and structural variables on various aspects of final fibre 

geometry were studied. Depending on the aim of the particular experiment, the 

geometric properties such as hole diameter, spacing of the holes and size of the 

interstitial holes were measured. To study structural homogeneity, stack deformations 

were observed in addition to the above-mentioned properties. Homogeneity along the 

length of the fibre was judged by measuring the diameter variation during draw, 

geometric property changes along the length and attenuation of the fibres at various 

lengths. The above-mentioned experiments also revealed the structure dependant 

sensitivity to process variables, which is of utmost importance when optimal process 

conditions are chosen. The experimental conditions are described in detail before each 

result is presented. 

 

 

Table 5-2. Summary of variables and effects studied in capillary and PCF draw experiments 

 Capillary Fibre 
Draw variables 
studied 

Draw temperature 
Furnace gas flow 
Tube internal pressure 

Draw temperature 
Preform feed rate 
Preform internal pressure 

Structural 
variables 

Tube dimension 
Variation in tube dimension 

Preform structure 
        -type (milled/capillary) 
        -cladding and capillary 
         dimensions 
Fibre diameter 
Capillary stacking quality 

Effects observed 
on 

Inner diameter 
Diameter variations 
 

Hole diameter 
Air fraction 
Stack deformations 

 

 

To cover all the above-mentioned experiments 14 PCF preforms were fabricated. Each 

draw variable effect with a specific preform structure was typically studied on a single 

draw. For example the draw temperature would be changed to various values during 

one draw. Using a single preform for a set of draw conditions guaranteed that changes 

from preform to preform arising e.g. from the stacking process or different capillary 

batch being used, would not affect the results. However, sometimes the experiments 

required more than one preform and hence care was taken to copy the preform 

structure for each consecutive experiment. The preforms are identified with a preform 

number, which is presented with the related experimental conditions and results. 
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5.2.2 Measurements 

In order to determine the drawing induced changes in the final fibre structure the fibre 

samples were analysed using various methods. An optical microscope was used for the 

majority of the samples. For more precise images and analysis AFM and SEM were 

used. A York FK11 cleaver was used to cleave the fibre samples to ensure a clean and 

level cross-section cut. Inspection with the optical microscope and AFM did not 

involve any further preparation, however the SEM imaging required a conductive 

coating. Once the images were obtained of the fibre samples, image analysis software 

was used to determine the various geometric characteristics such as hole size, core size, 

hole spacing and any deformations occurring for each sample and correlated with the 

corresponding draw conditions. As will be discussed in Section 5.3.5 the hole size can 

vary depending on its radial position. For the results presented in this chapter the hole 

size is determined as the average hole size in the second row of holes from the core 

unless otherwise stated. Preform structure was documented carefully with cladding and 

capillary material and dimensions during the stacking process and images were taken 

with a digital camera when necessary. For detailed description of the measurement 

equipment, procedure and the sample preparation refer to Chapter 3, Section 3.3. 

 

5.3 Results 

5.3.1 Capillary drawing 

The importance of the fabrication of the capillaries themselves, which are used as 

building blocks for PCF preforms has already been discussed in Sections 3.1 and 3.2. 

Significant effort was made to improve the capillary fabrication technique as well as to 

understand the effects of draw variables on capillary dimensions and quality. As the 

capillaries are a simplified version of a PCF it was also a good starting point to begin 

the study by looking at the geometry control of the capillaries.  

 

The capillary properties that can be changed during drawing are the capillary outer 

diameter (OD) and inner diameter (ID), which determine the capillary thickness. Note 

that the ratio of the outer and inner diameter can be changed during drawing by 

controlling the collapse and expansion of the structure. When the ratio of outer to inner 

diameter, OD/ID, is greater than the original tube OD/ID ratio, partial collapse has 

occurred during drawing. When the ratio is smaller than the original tube OD/ID, 
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expansion has occurred during drawing. In addition to the nominal dimensions of the 

capillary at any one point, the variation of these properties along the length of the 

capillary is extremely important to obtain good stacking in the preform. 

 

The draw variables that affect the capillary dimensions are the same as those in PCF 

drawing, namely, draw temperature, feed rate, draw speed and pressure. There are 

typically however some restrictions of these variables in comparison to fibre drawing. 

In this study, for example, the capillary collection during draw was done manually11, 

which limited the maximum capillary draw speed to about 3m/min. The draw capstan 

can also be a limiting factor, as for very thick capillaries ~10mm or more, a special heat 

resistant wheel surface is required and issues with grip and glass weight would have to 

be solved. This limits the size of the capillaries. These factors in turn limit the preform 

feed rate and for this practical reason the main draw variable that was used to control 

the structure was the furnace temperature.  

 

5.3.1.1 Control of OD/ID ratio 

The control of the wall thickness of the capillary in addition to diameter is of great 

importance, as the capillary wall thickness will define the range of air fractions possible 

in the PCF. As the OD/ID ratio describes the air-fraction of the capillary it is 

frequently used to report the results here. The wall thickness of the capillary together 

with OD or ID relates to this ratio as shown by Equation (27). 

 

   2
2

OD OD ID t
ID OD t ID

+
= =

−
     (27) 

 

As was discussed in the introduction the viscosity plays a major role in defining the 

capillary dimensions during draw. The tube internal pressure can either prevent or aid 

collapse depending on the pressure difference in the inside and outside of the 

tube/capillary. Temperature affects the viscosity and hence changes the viscous forces. 

On one hand it might be desirable to prevent any collapse during draw, which can be 

accomplished by simply maximising the viscous forces by using as low temperature as 

possible. On the other hand it can be useful to be able to control the capillary OD/ID 
                                                 
11 In standard fibre drawing the fibre is collected automatically on a spool by a take-up rewinder. The 
diameter of the capillaries (1-3mm) does not allow bending and hence collection on a spool, instead the 
capillaries are cut into short lengths and collected manually. 



 151

ratio as a single starting tube can be used to manufacture a range of capillary 

thicknesses.  

 

Figure 5-2 shows an experiment where temperature was changed from 1850°C to 

2030°C and the OD/ID ratio measured whilst keeping the outer diameter constant at 

2mm. The nominal OD/ID ratio of the original tube is marked as a horizontal line on 

the graph. It is seen that as temperature is increased the tube collapses more hence 

increasing the OD/ID ratio. No internal tube pressurisation was used during the 

experiment.  
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Figure 5-2. OD/ID change of a capillary with draw temperature. The nominal tube OD/ID 

marked as a solid horizontal line. 

 

The OD/ID variation along the drawn capillary length was also measured and 

compared with the tube OD/ID variation. The OD diameter control is discussed in the 

next section and the OD/ID results are summarised in Table 5-3. Two different tube 

sizes were used, 17x12mm and 30x10mm. In both cases the standard deviation is 

significantly worse for the capillary OD/ID than for the tube. In addition to variations 

in the starting tube diameter and thickness, other external factors affect the collapse of 

the capillary during draw and can make the OD/ID variation of the capillary worse. In 

order to control the variation of OD/ID internal pressure should be controlled as well 

as the wall thickness measured on-line during drawing. This was not implemented 

during this study, as such a measurement device was not readily available. Given that 

the tube is of excellent quality having minimal variation of both the OD and ID, 
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acceptable quality capillary can be made when external disturbances during draw are 

minimised.  

 

Table 5-3. Comparison of OD/ID variation of tube and capillary 

Tube ODxID 
(mm) 

Tube Capillary 

 Average 
OD/ID 

SD 
(%) 

Average 
OD/ID 

SD 
(%) 

17x12 1.42 0.01 1.45 0.28 
30x10 3.07 0.16 3.00 1.25 

 

 

5.3.1.2 Diameter control 

The longitudinal outer diameter variation is as important as the control of the capillary 

OD/ID ratio. In order to have good capillary stack in the PCF preform, outer diameter 

variation must be minimised. There are several sources of diameter variation as is 

known from conventional fibre drawing, such as variations in the preform, draw 

variables, mechanical vibrations and furnace gas flows [179-186]. In addition to these 

effects, the tube internal pressure must also be considered for capillary drawing. The 

capillary diameter was controlled with a conventional PID controller, where the 

diameter was measured below the furnace and the pulling capstan speed adjusted 

accordingly. The main sources of capillary diameter variation were studied and are 

presented below. 

 

First the starting tube diameter variation was compared with the capillary diameter 

variation. If the tube variations were translated directly to capillary diameter, the 

variation along 1mm of 25mm diameter tube would spread over 160mm of 2mm 

diameter capillary. However, the diameter variation of the tube will affect the neck-

down shape and the furnace gas flows hence affecting the drawing dynamics. Numerical 

studies have shown that even few percent changes in preform diameter can be 

amplified in the final fibre [187].  

 

In the experiments the tube diameter variation was compared to the capillary diameter 

variation for four different tube sizes, 17x12mm, 30x10mm and 20x17mm and 

25x19mm tubes. Table 5-4 shows a summary of the statistics of diameter variation of 

tube and capillary for each tube size. PID control parameters were kept the same for all 
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the tubes. The drawing conditions were kept as similar as possible, although the 

temperature and feeding speed had to be adjusted due to the dimensional differences of 

the tubes. 

 

Table 5-4. Comparison of tube diameter variation to the capillary diameter variation 

Tube  Tube Capillary 
ODxID 
(mm) 

Average (mm) SD 
(%) 

Average 
(mm) 

SD 
(%) 

 OD ID OD ID OD OD 
17x12 17.02 11.95 0.07 0.07 2.00 0.08 
30x10 29.99 9.76 0.06 0.07 2.50 0.06 
20x17 20.01 16.95 0.25 0.27 2.00 0.14 
25x19 24.79 18.82 0.02 0.02 2.05 0.06 

 

The diameter variance in the selected tubes varied considerably from tube to tube. The 

tubes 17x12 and 30x10 had a medium level variation of SD<0.1% and the 

corresponding capillary diameter SD was very similar, 0.06-0.08%. This showed that the 

drawing did not significantly increase nor decrease SD of the outer diameter of the 

capillaries. Tube 20x17 had relatively large SD of the diameter, 0.25%. The 

corresponding capillary diameter SD was 0.14%. This is worse than for the tubes 17x12 

and 30x10, however the capillary diameter variation could be improved during the draw. 

The best quality tube in terms of the diameter variation was the 25x19 with SD of 

0.02%. The capillaries drawn from this tube had a higher diameter variation with SD of 

0.06%, which is the same as that for the 30x10 tube. This indicates that it is difficult to 

obtain a better diameter variation than 0.06% even if the tube quality is better with the 

current draw set-up. 

 

Figure 5-3 shows the diameter variation along the length of the capillary during draw 

for the tube 17x12 measured on-line. The graph contains data along 20m of drawn 

capillary. The frequency of the diameter variation is much greater than that of the tube, 

which is characteristic also for fibre drawing. In conclusion the capillary diameter 

variation can be controlled to an extent during drawing, however the tube diameter 

variations are likely to reflect in one way or another in the capillary diameter and it is 

preferable only to use the best quality tubing when capillary diameter is of great 

importance. If required the individual capillaries can be sorted according to their 

diameter variation manually and hence very high precision capillaries can be selected. 
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A number of other possible sources of diameter variation were examined. Due to the 

much thicker capillary diameter compared to the usual fibre diameters, the furnace gas 

flows were expected to have different optimal settings. Figure 5-4 shows the diameter 

variation along the length of the capillary during draw at the standard 2 litres/min used 

for fibres and the new optimal gas flow, 4 litres/min, for capillary drawing. The 

minimum diameter variation was improved from ±7µm to < ±3µm. 
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Figure 5-3. Capillary outer diameter variation during draw of tube 17x12mm. 

 

The changed gas flow was the gas feed into the lower part of the furnace below the hot-

zone. In order to keep the gas velocity similar in the lower part of the furnace compared 

to fibre draw, one would have expected a lower volumetric flow feed due to the 

significantly larger dimensions of the tube lower neck-down and the final capillary 

diameter. Instead, the optimal flow was larger. This could be explained by a stabilising 

effect of the resulting cooling of the capillary due to the higher gas flow. A 125µm fibre 

cools down faster due to the smaller volume of glass per unit length as opposed to a 

2mm diameter capillary, hence requiring less gas flow to have a similar effect. A thick 

capillary also better withstands higher gas velocities due to reduced flexibility so that 

any vibrations associated by high gas velocities are avoided. 
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Figure 5-4. Outer diameter variation of capillary drawn from 17x12 tube at bottom iris gas flow of 

(a) 2 lpm and (b) 4 lpm.  

 

Other possible source for high frequency diameter variation could be the diameter 

controller itself if not tuned properly. A test was conducted where the capillary diameter 

was monitored with and without the diameter control. A section of the draw was 

selected where the draw was stabilised and all other external disturbances minimised. It 

was found that the diameter variation was very good even without control, however an 

improvement on both the range and SD of the diameter was achieved when the 

controller was on, see Table 5-5. Naturally the benefits of diameter control are much 

greater when a disturbance is introduced to the system. 
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Table 5-5. Statistical summary of capillary diameter with control off and on 

(µm) Control off Control on 
Mean 1000.9 1000.4 
SD 0.69 0.60 
Range 3.5 2.7 

 

In order to provide an inert atmosphere inside the tube during drawing the tubes were 

pressurised and the pressure controlled during drawing. Table 5-6 shows the 

comparison of diameter variation when draw was done under atmosphere without 

pressure control and under an inert gas with controlled pressure. There are no 

significant differences between the different draws. With pressurisation the relative 

capillary diameter range is slightly higher than that of the tube. However, as both the 

outer diameter variation and the thickness variation is higher for Tube 2 than for Tube 

1 used for the atmospheric draw, this is most likely the source for the increased 

variation. Tubes were from same batch with nominal dimensions of 25x19mm. 

 

Table 5-6. Comparison of capillary diameter variation under atmosphere and with tube 

pressurisation 

Diameter Tube1 
 

(mm) 

Capillary from Tube 1, 
under atmosphere 

(mm)  

Tube2 
 

(mm) 

Capillary from Tube 
2, with pressurisation 

(mm)  
Mean OD 24.79 2.0499 25.11 2.0510 
SD % 0.02 0.06 0.08 0.09 
Range % 0.3 0.3 0.3 0.4 
Thickness SD % 2 - 3 - 

 

 

As a result of the experiments on capillary diameter control, the capillary drawing 

process was improved to an extent that capillaries with diameter control an order of 

magnitude better than commercial capillaries could be manufactured. A commercial and 

in-house fabricated capillary diameter measurement along the length of a typical 

capillary is shown in Figure 5-5. In a summary, in order to minimise capillary diameter 

variation the starting tube diameter variations have to be minimised, on-line diameter 

control used and furnace gas flows optimised. The tube pressurisation did not improve 

diameter control as such but is essential in order to obtain low water content and 

contamination free capillaries. The pressurisation can also potentially be used to control 

the thickness of the capillaries providing an on-line measurement is setup. 
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Figure 5-5. Diameter variation in a commercial and in-house fabricated capillary along the 

length measured off-line using LaserMike diameter measurement system. 

 

5.3.2 Draw temperature 

In a similar manner as for the capillary draws, the temperature affects directly the 

collapse conditions in the PCF by changing the viscous forces within the preform and 

fibre structure. A number of draw experiments were made to determine the 

temperature effect on the air structure. Table 5-7 lists the preforms used with the 

structural variables and temperature range used.  

 

Six capillary-stacked preforms were chosen and one milled preform. The capillary-

stacked preforms all had the same cladding tube, 25x19mm, except for ASC021, which 

had a 21x17mm tube. Capillary OD/ID ratio was typically 1.3, with exception of 

ASC005, which had ratio of 1.4, and ASC021 with ratio of 1.2. Both low quality and 

high quality  materials were tested. Fibres were drawn to a standard diameter of 125µm 

and a smaller diameter of 100µm. One preform was drawn into a larger diameter of 

500µm. Feed rate was kept to a constant except for one test point where a higher value 

was employed (ASC014). The large diameter draw also had a higher feed rate. Internal 

pressure was kept constant and at the same nominal value when the preform had the 

same structure, except for ASC005 where the preform was open to atmosphere. 

Temperature ranged from 1860 to 1970°C, where typically 5°C, 20°C and 30°C change 

was studied. In Figure 5-6 a typical hole size change with decreasing temperature can be 

seen in a sequence of optical micrographs taken of fibre samples drawn with different 

temperatures. As the temperature is decreased the hole collapse is less. 
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Table 5-7. List of preforms and draw conditions for temperature experiment 

Preform 
code 

Capillary  
OD/ID 

Material Fibre  
diam. 
(µm) 

Feed  
rate 

(mm/min) 

Temperqture3 
range 
(°C) 

ASC0052 1.4 LQ1 125 2.5 1880-1900 
ASC010 1.3 LQ1 125 2.7 1930-1970 
ASC012 1.3 F300 100 2.7 1920-1940 
ASC014 1.3 F300 100 3.9 1930-1960 
ASC019 1.3 F300 500 8.0 1950-1955 
ASC021 1.2 F300 100 3.0 1915-1920 
ASM0012 milled LQ1 125 2.7 1860-1880 

1LQ=low quality (natural quartz), 2Tube not pressurised, 3Element temperature measurement 
has ±20°C accuracy and repeatability ±6°C.12 

 
 

 
        (a)         (b)       (c) 

Figure 5-6. Sequence of optical micrographs of fibre samples (ASC014) drawn at decreasing 

temperatures (a)1950°C, (b)1940°C (∆T to (a) is –10°C) and (c)1930°C (∆T to (a) is –20°C).  

 

Figure 5-7 shows the hole size vs. the draw temperature for all the fibres listed in Table 

5-7 except for ASC019 which was drawn at 500µm. Surprisingly it was found that for all 

fibres drawn to 100µm or 125µm irrespective of the preform structure, material, draw 

temperature range or preform feed rate exhibited same rate of hole size vs. draw 

temperature of 0.057±0.01µm/°C amounting to 1.1±0.2µm increase change of hole 

size for a 20°C decrease in temperature. This observation is of course within the 

measurement error, which is quite high.  The fitted lines have been drawn across the 

entire temperature range. This is to guide the eye and is not expected to hold true in the 

physical sense. A linear relationship applies only to a limited range of temperatures at 

each experiment set. If temperature is increased high enough the holes collapse and this 

has been observed to happen within a relatively small temperature range. For example 

fibre ASC010 had holes fully collapsed at temperature of 1970°C while holes where still 

                                                 
12 The accuracy and repeatability values are those reported by the manufacturer and apply to the 
measurements from draw to draw. It has been experimentally observed that the temperature change 
within a single draw reflects better repeatability than that reported by the manufacturer. 
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open with dimeter above 3µm at 1960°C. The hole collapse from 3µm diameter occurs 

thus over only 10°C. If temperature is decreased low enough the hole dimension 

determined by the preform structure is obtained and hole expansion will only occur if 

for example, pressure inside the preform is increased.  

 

The range at which this useful temperature response can be obtained varies from 

preform to preform as seen in Figure 5-7. In the remainder of this chapter this range 

will be called the optimal temperature range13. Preform feed rate seems to play an important 

role if results from ASC012 and ASC014 are compared. The preforms are otherwise 

identical but preform feed rate is higher for ASC014 resulting in increased hole size. 

Due to lack of data points it is highly speculative to state the effect of fibre diameter or 

capillary OD/ID ratio.  
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Figure 5-7. Hole size vs. draw temperature. Fitted lines drawn with same gradient of 

0.057µm/°C. Feed rate (mm/min) and fibre diameter (µm) shown as Vp/Df beside each 

experiment set.  

 

It must also be noted that the temperature is measured from the heating element and 

has repeatability error of 6°C. Furthermore the milled preform ASM001 had smaller 

preform diameter, which would affect the preform temperature. The important point to 

extract from the data is the strikingly similar hole diameter response to temperature 

                                                 
13 The optimal temperature range is defined here as the drawing temperature range at which the holes 
stay open in a stable manner and where the minimum temperature is limited by the strength of the fibre. 
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change irrespective of the varied parameters such as quality of silica used, milled or 

capillary technique, preform feed rate and fibre diameter.    

 

To further look at the possible effect of fibre diameter, ASC019 was drawn to a much 

larger diameter, 500µm. Two different temperatures were used and a 5°C change in 

temperature resulted in a 1.9µm change in hole diameter. This results in a much higher 

response rate of 0.38µm/°C. This would indicate that a large difference in diameter 

affects the rate of change, but it must be noted that the preform feed rate is also much 

higher, 8mm/min. It is interesting to note though that the relative change in diameter is 

10%, which agrees much better with the other data. Further experiments would 

however be required to confirm this.  
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Figure 5-8. Hole size vs. draw temperature. Large diameter draw ASC019 shown with data from 

Figure 5-7. 

 

It can be summarised that hole size for fibres drawn to 100-125µm diameter with a 

modest range of preform feed rates and variation in preform structure exhibit a 

constant response to draw temperature within their optimal draw temperature range of 

about 20°C. Such behaviour can be considered very useful in terms of controlling the 

hole dimensions; the same controlling scheme can be used for various preform 

structures as long as the optimal temperature range is known. In relation to the 

theoretical modelling presented by Fitt et al [11] the following can be observed. The 

viscosity plays an important role and hole dimensions can be altered by changing the 

temperature. Viscosity is known however to depend on temperature according to Eq. 

(28) [188].  

 



 161

7.24 26900/10 Tµ − −= ,      (28) 
 

where temperature T is in Kelvin and µ in Pas. Although the relationship is by no 

means linear, for a small temperature range such as 20°C at about 1900°C (typical draw 

temperature) a linear approximation can be done, perhaps partly explaining the hole size 

response to temperature. As predicted by the theoretical analysis, preform feed rate 

plays an important role in hole collapse. This was further explored experimentally and 

results presented in the next section.  

   

Although temperature seems like an ideal way to control the hole size, the response 

times to a control variable must also be taken into account. The drawing experiments 

show that the temperature effect is not instantaneous. Due to the relatively large mass 

of glass and gas in the drawing furnace, it can take a long time to stabilise the heat 

transfer after the furnace temperature is changed. For the preform diameter range of up 

to 30mm the stabilisation typically takes from a few minutes up to 10min depending on 

the magnitude of the change and the absolute temperature. This amounts to hundreds 

of metres of fibre, which clearly indicates that temperature is not the most suitable 

means of on-line hole diameter control, as this results in substantial fibre scrap length. 

Temperature is, however, a suitable means of adjusting the hole diameter and hence the 

air-fraction of the fibre when a single size fibre is required to be drawn from a preform. 

  

5.3.3 Preform feed rate 

Preform feeding rate changes the temperature of the preform and fibre inside the 

furnace by changing the time the preform dwells in the hot-zone. The faster the 

preform is fed, the shorter the time it spends inside the hot furnace, hence reducing the 

exposure to the furnace temperature. Via the effect on temperature the preform feed 

rate will affect the viscosity distribution in the preform neck-down and the hole 

collapse. The theory of capillary drawing also predicts that the hole collapse is sensitive 

to preform feed rate even at isothermal conditions [11]. There is thus a possibility of 

using the feed rate to control the air-structure of a PCF in a manner similar to the use 

of furnace temperature.  

 

Table 5-8 lists the preforms used to study the effect of preform feed rate. Three 

preforms were used for the experiments of which one was a milled preform. ASC001 
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and ASC014 had the same outer cladding but ASC001 had thicker capillaries and was 

drawn open to atmosphere. ASC001 and ASM001 were drawn to 125µm and ASC014 

to 100µm diameter. For all preforms the fibre hole diameter increased with increasing 

preform feed rate as shown in Figure 5-9 (a) and (b). Although fewer data are available 

than for the draw temperature experiments it can be noted that the hole size change 

rate with feed rate is not constant. As the fibres were drawn at very different feed rate 

regions and the preform structures were different their comparison is very difficult. It 

can be concluded however that feed rate affects the hole diameter significantly and 

should be taken into account when optimal drawing conditions are established. The 

relative hole diameter change vs. preform feed rate is shown in Figure 5-9 (b). It is 

noted here that within the error, fitted lines can be drawn that intersect at about feed 

rate of 2mm/min and relative hole diameter of 0.4. It is not intuitively clear what this 

means in physical terms and further studies are necessary. It has been experimentally 

noticed that if preform is fed at very low feed rate, which results in full collapse, a small 

increase in feed rate will cause a large change in hole diameter initially. The practical 

limit for minimum feed rate has evolved to about 2.0mm/min by experience, and may 

be related to the intercept around this value.  

 

In summary, the preform feed rate can be used to control the hole geometry although 

the response of hole diameter change varies greatly with draw conditions and/or 

preform structure. It was also found that the preform feed rate had a strong effect on 

radial hole size gradient, which increased with increasing feed rate. This is discussed in 

Section 5.3.5.  The effect of preform feed rate to stabilise also takes a long time and is 

comparable to the stabilisation time of a draw temperature change. The preform feed 

rate thus does not seem ideal as a mechanism for hole size control.  

 

Table 5-8. List of preforms and draw conditions for preform feed rate experiment 

Preform code Capillary 
OD/ID 

Material1 Fibre 
diam. 
(µm) 

Temperature 
 

(°C) 

Feed rate range 
(mm/min) 

ASC0012 1.4 LQ 125 1900 2.2-2.5 
ASC014 1.3 F300 100 1940 3.9-5.4 
ASM0012 milled LQ 125 1840 2.65-3.5 

1LQ=low quality (natural quartz), 2No pressure control used. 
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Figure 5-9. Hole diameter increase with increasing preform feed rate (a) absolute diameter in µm 

and (b) relative diameter change (the largest hole diameter). 

 

5.3.4 Pressure control 

Even though the furnace temperature and the preform feed rate can be used to control 

the hole collapse, the degree of control was never satisfactory until preform internal 

pressure control was introduced. Figure 5-10 shows a cross-section of a typical fibre 

with and without the preform internal pressure control. The preform structure was 

similar for both fibres with four rings of capillaries stacked into a 25x19mm tube.  

 

Without the pressure control the structure become irregular especially between the air-

structure and the outer cladding. The air inside the preform gets hot as the furnace is 
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heated thus expanding and changing the gas pressure. As the conditions change 

continuously during the draw, that is, the top end of the preform gets closer to the top 

of the furnace, the temperature distribution and the pressure in the air structure may 

never stabilise. The air-fraction is typically greatest between the hexagonal capillary 

stack and the solid cladding due to the fill capillaries, thus making the control of the 

structure even more difficult due to the uncontrolled air pressure. The radial 

temperature gradient may play a role as well because outer parts of the preform and 

fibre are at higher temperature. Using solid fills and filling all the spaces between the 

hexagonal air-structure and the cladding or alternatively by using hexagonal cladding 

would improve this, but nevertheless the pressure control is essential to fully control 

the air-structure. 

 

   
        (a)         (b) 

Figure 5-10. Optical micrographs of a typical fibre cross-section (a) without (ASC005) and (b) 

with a preform pressure control (ASC026). Fibre diameter is 125µm for both fibres. 

 

Table 5-9 lists the preforms and draw conditions used in the pressure control 

experiments. Ten preforms were drawn with varying structure, fibre diameter and draw 

conditions. It is important to note that the pressurisation system was changed in the 

middle of the experiment series to gain more accurate pressure control. Preforms 

ASC010 to ASC014 were drawn using the old system and preforms ASC16 to ASC26 

were drawn using the new system. ASC015 was drawn using both systems for 

comparison. As the old pressurisation system was very different in terms of control 

principle and had a different type of pressure sensor located at a different position in 

the system, the pressure change listed in the Table 5-9 and in the related figures are not 

comparable with the new system. This has been taken into account so that no 

quantitative results with the old system are compared with those of the new system.   
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The pressure control by itself is not sufficient to control the structure, but both 

temperature and preform feed rate have to be within an optimal range. This is 

demonstrated in Figure 5-11 where optical micrographs of fibres drawn with various 

conditions are shown. Figure 5-11 (a) and (b) show fibres drawn at too high a 

temperature. When the pressure is also high the holes expand too much distorting the 

entire air-structure. When the pressure is low the holes collapse fully. Figure 5-11 (c) 

and (d) show fibres drawn at optimal temperature range using the same pressure as in 

Figure 5-11 (b). The holes are open and the structure is uniform. Working at the high 

temperature end of the optimal range gives a low air fraction fibre, whereas working at 

the low temperature end of the range gives a high air fraction structure. 

 

 

 

Table 5-9. List of preforms and draw conditions for preform pressure control experiments 

Preform 
code 

Capillary 
OD/ID 

Material Fibre 
diam. 
(µm) 

Feed rate  
 

(mm/min) 

Temperature  
 

(°C) 

Pressure 
change 
(kPa) 

ASC010 1.32 LQ 125 1.0-2.7 1930-1970 51 

ASC012 1.32 F300 100 2.7 1920/1930 51 

ASC014 1.32 F300 100 4.4 1940 31 

ASC015 1.18 LQ 100 4.0 1910 31 / 0.1 
ASC016 1.18 F300 100 2.7 1910 0.2 
ASC017 1.23 F300 100 2.7 1910 0.4 
ASC019 1.32 F300 500 8 1950 1.0 
ASC020 1.23 F300 125 3.5 1900 0.4 
ASC021 1.23 F300 100 3 1915 0.7 
ASC026 1.32 F300 125 3.9 1930 0.3 
ASC030 1.32 F300 100 2.7 1910 0.6 

1A different pressurisation system was used and changes are not comparable to the results with 
new system. 
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Figure 5-11 (e) and (f) show fibre cross-sections drawn at too low a preform feed rate. 

The preform is exposed to the temperature too long and gets hot enough to cause full 

air-structure collapse. An unfavourable change in neck-down shape is also suspected as 

even at very high pressure the air-structure cannot be opened, Figure 5-11 (f). Images 

(g) and (h) show the same fibre drawn at higher feeding speeds using the same pressure 

and temperature setting. The air-structure is uniform and the air-fraction is changed at 

different preform feed rates. The pressure sensitivity factor S (Eq. (26)) derived by Fitt 

et al [11] is calculated for each condition in Figure 5-11. Qualitatively the factors agree in 

that S is reduced for lower temperature and higher feed rate. However the sensitivity 

factor is never much larger than unity as predicted from the theory for conditions 

where pressure control is not suitable.  

 

In summary, it is important to operate at the optimal temperature and feed rate range 

when pressure control is used. The optimal ranges vary with the preform structure and 

more importantly depend on the control capability of the pressurisation system. If the 

pressure can be controlled with better accuracy the optimal range for temperature and 

feeding speed is greater.  

 

The above experiment was done using the old pressure control system. To compare the 

capabilities of the old and the new pressure control system, a preform stacked with very 

thin capillaries (ASC015) was fabricated and drawn using both systems. Thin walled 

capillaries were chosen as they were found to be more sensitive to the pressure change 

as will be discussed in Section 5.3.4.2. Temperature and feed speed were held constant 

during these experiments. Figure 5-10. shows optical micrographs of two fibre cross-

sections drawn with the old system with pressure adjusted by the smallest possible step 

the resulting in air-fraction of <10% and 70%. Fibres with air-fractions in between 

these values were easily attained using the new pressure control system, an example is 

shown in  Figure 5-10(c). A pressure change step size of 0.1kPa could be attained 

providing a better control even for high air-fraction preforms.  
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Temperature too high, 
1970°C 

(a) 
p=+3kPa 

(b) 
p=-1kPa 

S=2.1 

Optimal temperature, 
p=-1kPa 

(c) 
T=1960°C 

(d) 
T=1930°C 

S=2.0 and 1.2 

 

Feed rate too low, 
1.0mm/min 

(e) 
p=-1kPa 

(f) 
p=+4kPa 

S=3.5 

Optimal feed rate 
p=-1kPa 

(g) 
Vp=2.7mm/min 

(h) 
Vp=2.2 mm/min 

S= 1.2 and 1.6 

 

Figure 5-11. Pressure control at too high temperature (a) and (b), at optimal temperature range 

(c) and (d), at too low preform feed rate (e) and (f) and at optimal preform feed rate (g) and (h).  

S is pressure sensitivity factor from Fitt et al [11]. Experiment was done with ASC010 and 

pressure is relative to atmosphere. 
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As discussed previously both temperature and preform feed rate had to be optimal for 

pressure control to be effective. Based on this it should be asked whether the pressure 

also has an optimal range. Naturally it can be concluded that if pressure is too low the 

structure collapses and if it is too high it expands and distorts and finally breaks the 

fibre at high enough pressure. In addition to these obvious extremes it was found that a 

combination of low pressure and very low temperature resulted in the holes becoming 

flattened instead of keeping their round shape. This is shown in Figure 5-13. The effect 

was found to be more severe with low-air fraction preforms. The same phenomenon 

was observed with capillary draws.  

 

 

   
       (a)         (b)      (c) 

Figure 5-12. ASC015 fibre cross-sections drawn with old pressure system with (a) small and (b) 

large pressure and (c) a ‘medium’ air-fraction obtained by the new pressure system.  

 

 

    
(a)     (b) 

Figure 5-13. Hole collapse with (a) moderate pressure and temperature (ASC021), and (b) low 

temperature and pressure (ASC015). Core diameter is ~15µm. 
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Another unwelcome effect of pressurisation was an unstable regime found at higher 

pressures. Figure 5-14 shows a draw log of on-line fibre diameter and draw speed 

measurements. The diameter was controlled by a PID controller, which adjusted the 

draw speed accordingly. The large fluctuations in the draw speed indicate an unstable 

fibre structure for which the diameter controller is compensating. When the pressure 

was adjusted to a lower level, the draw speed stabilised significantly. The pressure was 

controlled within 0.1kPa accuracy at the top of the preform for both conditions, which 

indicates that the instability occurs in the neck-down region. Due to this instability an 

upper pressure limit exists that can be used in controlling the fibre structure. This limit 

is dependent on preform structure and draw conditions. 
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Figure 5-14. Fibre diameter and draw speed during draw of ASC016 showing unstable geometry 

regime at high pressure and stabilisation at lower pressure setting.  

 

5.3.4.1 Control of hole diameter and pitch 

The main objective in controlling preform internal pressure is to be able to (i) prevent 

unwanted deformations of the air-structure and (ii) to adjust the hole diameter and air-

fraction. Figure 5-15 shows an experiment where the pressure was used to change the 

hole diameter and the air-fraction. The fibre was drawn down to 100µm diameter and 

pressure changed whilst keeping the draw temperature and feed rate constant. Figure 

5-15(a) shows the hole diameter change with pressure change14. A 0.6kPa pressure 

increase increased the hole diameter from 2.0µm to 2.9µm. Within the measurement 

                                                 
14 For each figure the reference pressure is chosen as the lowest pressure used in the experiment set i.e. 
the pressure change is always positive. 
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error the change is linear. Figure 5-15(b) shows the corresponding change in the hole to 

pitch ratio d/Λ and the silica bridge thickness (d-Λ). For an increase in pressure of 0.6 

kPa d/Λ increased from 0.3 to 0.4 and d-Λ decreased from 5.2 to 4.7µm. It appears that 

whilst d/Λ changes linearly, (Λ-d) may decrease exponentially, although measurement 

error in this case is too high (d/Λ=±0.05, (Λ-d)=±0.5 ) to make conclusive findings.  

 

Figure 5-16 shows hole diameter change with change in pressure for four different 

fibres drawn at different drawing conditions and diameters. ASC017 and ASC021 were 

made using thinner capillaries (OD/ID=1.23) than preforms ASC026 and ASC030 

(OD/ID=1.32). Within the experimental error the change rate is estimated as 

2.3µm/kPa. This seems to apply irrespective of the temperature, feed rate or diameter 

of these samples. Experiments were also done with fibre drawn to 500µm diameter with 

significantly higher feed rate (8mm/min). The change rate was 2.5µm/kPa within the 

experimental error, indicating insensitivity to the draw parameters.   
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Figure 5-15. (a) Hole diameter vs. pressure change and (b) change in d/Λ and Λ-d for 100µm 

fibre drawn at 1910°C and feed rate of 2.7mm/min (ASC030). 
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Figure 5-16.  Hole diameter vs. pressure change for fibres drawn at different draw conditions. 

 

It would seem obvious that draw parameters such as temperature and preform feed rate 

would affect the rate of diameter change with pressure via the effect on viscous forces. 

At higher temperature the viscous forces are reduced thus enhancing the effect of 

pressure. Surface tension forces depend both on the structure of the fibre and the 

dimensions of the preform. As the temperature distribution within the preform and the 

fibre is also affected by the air fraction of the design and the cladding dimensions, the 

pressure effect dependence on furnace temperature is further complicated. Although it 

has already been shown that effectiveness of the preform internal pressure control 

greatly depends on draw temperature and feed rate, the above results indicate that once 

operating at the optimal range, the hole diameter response to pressure change is 

relatively constant for fibres with similar structure and hole size.  

 

5.3.4.2 Structural sensitivity to pressure 

To further look at the pressure sensitivity issues the effect of the preform structure was 

studied by using stacks with different capillary wall thickness. The hole diameter change 

with pressure for a preform made with thin capillaries ,OD/ID=1.23 (ASC017), and for 

a preform made with thick capillaries, OD/ID=1.32 (ASC030) is replotted in Figure 

5-17. Although the relatively large measurement error allows lines with the same 
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gradient to be fitted in the two measurement sets, it appears that the structure with 

thinner capillaries is more sensitive to pressure change. This is also supported by an 

observation that a fibre with very thin capillaries, OD/ID=1.18, was found to be 

extremely sensitive to pressure (see Figure 5-10) and significant deformation of the 

holes occurred during the draw. It is possible that this can be improved by optimising 

other draw parameters such as temperature and preform feed rate or by using more 

accurate pressure control.   

 

The effect of the outer cladding was also looked at. Figure 5-18 shows two fibres with 

otherwise identical structure but with different outer cladding thickness. ASC017 had a 

cladding tube 25x19mm and ASC021 21x17mm. The cladding tube does not affect the 

hole diameter change significantly.  
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Figure 5-17. Relative holes size vs. pressure change for fibres with stacked capillaries with 

OD/ID ratio of 1.23 and 1.32 (ASC017 & ASC030). Both fibres drawn at 1910°C and 2.7mm/min. 
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Figure 5-18. Hole diameter vs. pressure change for fibres with thick (25x19) and thin (21x17) 

outer cladding. ASC017 drawn at 1910°C and 2.7mm/min and ASC021 at 1915°C and 3.0mm/min 
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The majority of the preforms were fabricated by leaving the interstitial holes between 

the  capillaries open. This allows fibres to be fabricated with either these interstitial 

holes open or collapsed during the draw. Two preforms with the same structure, 

ASC021 and ASC020, were drawn with different draw conditions so that ASC021 did 

not have any interstitial holes and ASC020 retained the interstitial holes open and the 

effect of pressure was studied. Figure 5-19 shows the relative hole size change for these 

fibres with increasing pressure. The interstitial holes compete with the main holes in 

expansion resulting in decrease of the hole diameter with increased pressure. This 

points out a limitation of the pressure control with fibres when interstitial holes are 

required in the structure. 
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Figure 5-19. Relative hole size change with pressure for fibre with and without interstitial holes. 

 

Although preform internal pressure control did not provide as large a change in hole 

diameter as draw temperature, the hole diameter can be tuned during the fibre drawing 

stage using pressure control to obtain the required geometrical dimensions for the fibre. 

One of the advantages in using the pressure is the fast response of the structure to 

pressure changes compared to draw temperature or feed rate changes. When operating 

at an optimal range the structural response to pressure was of the order of a minute. 

Great care must be taken when choosing the correct pressure ranges, as the sensitivity 

of a very thin capillary preform may be greater than that of a preform made with thicker 

capillaries. This can be used to advantage. When fine-tuning of  dimensions is required 

a preform with thicker capillaries is more suitable, whereas when larger range of 

dimensional changes are sought, a thinner capillary preform can be used. It is noted that 

the use of pressure has its limitations, especially for the higher air fraction structured 

fibre designs in terms of retaining an ordered structure. 
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5.3.5 Cross-sectional hole size gradients 

During the experiments it was noted that in some fibres a radial hole gradient was 

observed where the holes closer to the outer cladding were smaller. Figure 5-20 shows 

the hole diameter gradient across fibres drawn at three different draw conditions. Both 

the preform feed rate and the drawing temperature affect the hole size gradient. It is 

believed that this gradient results from a radial temperature gradient in the structure. As 

the preform is heated from the outside the structure closer to the cladding gets hotter 

and results in more collapsed holes.  

 

In order to control the temperature gradient it is important to understand the heat 

transfer during fibre drawing. This is dealt with in Chapter 6 where results from heat 

transfer simulations are presented. It will be shown that the temperature gradient across 

the preform is substantially larger for an air-structured preform compared to that in a 

solid preform. It will also be shown that the cross-sectional temperature gradient varied 

strongly depending on the preform feeding rate. By making use of the existing 

temperature gradients in the air-silica structure, pressure control may be used to 

preferentially collapse holes in the outer rings of the structure. If temperature gradients 

need to be avoided, there exists an upper limit for preform feed rate and an optimal 

range for temperature hence limiting their use for controlling the hole structure. 
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Figure 5-20. Relative hole diameter (relative to hole at row no. 2) across the cross-section of the 

fibre drawn at different draw conditions. X-axis shows the row number, 1 is the innermost row of 

holes and 4 is the outermost row of holes.  
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5.4 Discussion 

As is the case with conventional silica fibre fabrication the PCF characteristics depend 

on the preform structure. Although the air structure allows greater change in the 

structure during drawing than for conventional fibres, the fibre is typically only as good 

as the preform it was drawn from. In the capillary-stacked fibres it was found that 

stringent dimensional specifications for both the cladding tube and the capillaries were 

required in order to fabricate good quality fibres. The capillary dimensions were found 

to reflect both the characteristics of the starting tube and the capillary drawing process. 

By optimising the capillary drawing process and introducing a tube internal pressure 

control good quality capillaries were manufactured providing high precision building 

blocks for the preform stack. 

  

Due to the hole structure the fibre geometry can be more readily changed during 

drawing than conventional solid silica fibres. The holes can collapse, expand and 

deform depending on the drawing parameters. This makes the PCF fabrication more 

difficult but also offers greater flexibility in the various structures that can be fabricated 

from one preform design. In order to achieve this, suitable control parameters must be 

identified. The literature review revealed that the most common control parameter used 

during drawing was the drawing temperature. A theoretical study on capillary drawing 

by Fitt et al [11] also recognised the importance of preform feed rate on hole collapse 

and the possibility of using tube internal pressure for controlling the hole size. These 

three draw parameters, namely draw temperature, preform feed rate and preform 

internal pressure, were studied experimentally in this thesis for their suitability for 

geometry control of PCFs.  

 

Hole size control by draw temperature was found to exhibit a relatively constant hole 

diameter response over a moderate range of feed rates, fibre and preform diameters and 

preform structures. The temperature range at which this behaviour occurred was 

dependent on  the draw conditions and preform structure. This uniform hole size 

response would indicate that draw temperature is an ideal candidate for controlling the 

hole size. The stabilisation times for a draw temperature change however were found to 

be very long, up to tens of minutes, which is not acceptable for on-line control when 

fast response times are required.   
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A relatively large change in hole size during drawing was also achieved by adjusting the 

preform feed rate. The hole size change rate varied however, greatly depending on the 

draw conditions and possibly the preform structure. Unless this behaviour can be 

predicted accurately the feed rate may not be the most suitable control mechanism for 

PCF drawing. The findings however point out that the feed rate must be carefully 

chosen when different preform structures and sizes are drawn. Both feed rate and 

temperature were found to affect the radial hole size gradients believed to result from a 

temperature gradient during the draw. This is discussed in more detail in Chapter 6.  

 

Preform internal pressure was found to have by far the fastest response in the fibre 

geometry. This is a very attractive feature when on-line control is considered. Some 

limitations were however discovered in using the preform internal pressure control. The 

pressure control was useful only when operating at optimal draw conditions. This was 

also predicted by the theoretical study of Fitt et al [11] although calculated sensitivity 

values only agreed qualitatively. Low enough draw temperature and high enough 

preform feed rate were required for obtaining a suitable geometry control. Once these 

were established an upper limit for pressure was found above which the geometry 

control became unstable. These limitations resulted in a somewhat smaller range of hole 

sizes than could be achieved by preform internal pressure control. The hole size 

response to a given pressure change at different drawing conditions was found to be 

relatively constant although preform structures with thin capillaries were found to be 

more sensitive to pressure. Taking into account the advantages and limitations, pressure 

control seems suitable for finer adjustments of the geometry and specifically promising 

in on-line control where fast response times are essential. The limitations can possibly 

be removed or at least the operating range increased by having a more precise control 

of the pressure. 

 

 

 



 177

 

CHAPTER 6 HEAT AND MASS TRANSFER SIMULATIONS 

OF THE FIBRE DRAWING PROCESS 

6.1 Background 

6.1.1 Introduction 

Most of the draw-induced changes in optical fibres are dependent on the thermal 

history that the drawing process imposes on the fibre. As shown in Chapter 4, dopant 

diffusion depends on the temperature and exposure time during the drawing. Chapter 5 

showed the importance of draw parameters in PCF fabrication, where the hole 

deformation is greatly affected by the viscosity dependence on temperature. The optical 

and mechanical properties of the fibre can also be altered by residual stresses (Appendix 

I), viscous deformation, defect centres [64, 65, 189, 190] and varying fictive 

temperatures [191, 192] that result from this high temperature process.  

 

Although experimental studies are essential, they are often time consuming and costly. 

In addition, it is sometimes impractical or impossible to carry out required 

measurements. For example, great difficulties were faced in the measurement of 

diffusion during this study. It was also determined that on-line measurement of preform 

neck-down temperatures was impossible without affecting the temperature distribution. 

Theoretical analysis can offer a fast and cost-effective means of studying complicated 

problems and give insight to the phenomena that govern the fabrication processes. This 

is why in addition to the experimental analysis, theoretical heat and mass transfer 

analysis was also applied to the optical fibre drawing process.  

 

The thermal history of a material depends on the heat and mass transfer processes 

involved and the thermal and mechanical properties of the material. Heat can be 

transferred in three modes, by conduction, convection and radiation. Heat conduction 

is typically the dominant mode of heat transfer in solids and depends on the spatial 

temperature gradient and the heat conductivity of the material. Heat transfer by 

convection arises from the movement of fluid and is important when gases are 

involved. Heat transfer by radiation is different from the other two in that it depends 

on the absolute temperature of the objects not temperature differences. Radiation 
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usually dominates in high temperature processes and its magnitude is determined by the 

surface characteristics of the objects such as emissivity and absorbance as well as the 

‘view’ that the surfaces have of each other. For detailed description of the heat transfer 

processes see [122, 193]. Due to the high temperatures and speeds involved, all three 

modes of heat transfer are important during the optical fibre drawing process [194, 

195]. 

 

Figure 6-1 shows a schematic of the heat transfer phenomena during fibre forming. The 

preform is heated radiantly in a cylindrical furnace. The furnace temperature of about 

2000°C causes the viscosity of the glass to drop dramatically and together with the 

pulling force cause the preform to neck down into a fibre. Outside the furnace, the 

fibre is exposed to room temperatures or cooling tubes. Large geometrical changes 

occur within the relatively short (50-100mm) neck-down15 region where the diameter 

changes from tens of millimetres down to 0.1mm fibre. Typical draw-down ratios range 

from 100 to 200, but can be up to 1000 in long-haul fibre fabrication. It results from 

the mass conservation that the velocity of the glass in the preform is of the order of 1-

20mm/min and the velocity of fibre four or even five orders of magnitude higher. 

These large changes in temperature, dimensions and velocity make the heat and mass 

transfer processes during drawing complicated and the relative magnitude of the three 

modes of heat transfer vary accordingly along the length of the preform and fibre.       

 

Figure 6-1. Heat transfer phenomena during drawing process. 

                                                 
15 In some literature the neck-down region is divided into two (i) upper part which is called neck-down 
and (ii) lower part which is called draw-down. Here neck-down is used to refer to both unless otherwise 
stated.   
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Looking at the material parameters for silica glass also tells us about the heat transfer 

characteristics. The heat conductivity of silica is about 2 W/mK at 2000°C [188] which 

is low compared to metals (400W/mK for copper [122]) but high compared to air, 

(0.003W/mK [122]), or for example polymers (PMMA=0.2W/mK [196]). Due to the 

relatively low heat conductivity, there exist considerable radial thermal gradients in the 

preform stage of drawing, which however diminish when the fibre achieves its minute 

dimensions. Specific heat capacity defines the amount of heat required to raise the 

temperature of 1 kg of material by 1°C. The specific heat capacity of silica is about 1000 

J/kgK at 2000°C. This is much higher than for metals (copper 385 J/kgK) but 

comparable with air and PMMA. The density of silica is about 2200 kg/m3, which is 

low compared to metals (copper 8900 kg/m3) but higher than PMMA polymer (1200 

kg/m3). This means the volumetric heating and cooling of silica is faster than PMMA 

but slower than metals. Most of these material parameters are highly temperature 

dependent for silica, which will also affect the relative magnitudes of modes of heat 

transfer due to the large temperature variations in the fibre forming process. The 

characteristics of radiation transfer for silica are discussed in Section 6.1.2.2. 

 

The complex nature of the heat transfer processes in fibre drawing together with 

temperature dependent material properties make an analytical approach to the fibre 

drawing problem very difficult if not impossible. During the past decade computational 

resources have become abundant making a numerical approach to the problem 

attractive. In this chapter numerical heat and mass transfer analysis is used to study the 

effect of draw variables and preform structure, both in doped silica and air structured 

optical fibres. First a literature review is provided for work in the area of numerical 

analysis of optical fibre drawing. Subsequently details of the model used for this work 

are presented, followed by the simulations, results and discussion. Dopant diffusion is 

further studied using the results from the heat transfer simulations and draw 

experiments and finally an example of diffusion effects on non-zero dispersion-shifted 

fibre is presented.  

 

6.1.2 Literature review 

Numerical simulations have been used to study the optical fibre drawing process since 

the late 1960’s when Glicksman [16] was the first to study the glass spinning and fibre 

cooling process. He showed that analytical predictions were inaccurate in describing the 
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heat and mass transfer in the fibre-forming region and showed the importance of 

radiation heat transfer and convection in this region. For the next two decades 

numerous papers were published [13-15, 180-182, 184, 197-204] exploring issues such 

as fibre cooling, laser drawing and instabilities during drawing. Due to the limitations in 

computational resources, many assumptions had to be made in these early numerical 

studies, which made them applicable only to a specific problem or region of fibre 

drawing. However these studies demonstrated the usefulness and the possibilities of 

such numerical analyses in the fibre drawing process.  

 

Even today, simplification of the drawing problem is necessary in order to speed up the 

calculations and minimise computational costs. The most common simplifications are 

presented below. The literature from the past decade can then be reviewed in light of 

this, leading to the assumptions made here. The fibre drawing problem can be divided 

into several sub problems, see Figure 6-2. Based on the physical aspects (Figure 6-2(a)), 

drawing can be divided into two consecutive stages: 

 

1. Fibre formation and heat transfer inside the furnace 

2. Cooling of the fibre after the furnace.  

 

The heat transfer problem is very different in the two areas and great simplifications 

can be made if one is only interested in aspects of fibre cooling. The various materials 

taking part in the drawing problem have very different heat transfer characteristics and 

the problem could be divided into heat and mass transfer in  

1. glass  

2. gas  

3. furnace.  

If the study is only interested in the gas flow patterns inside the furnace the other two 

materials can in some circumstances be omitted.   

 

In terms of the computational aspect (Figure 6-2(b)) either  

1. steady-state or  

2. transient problem is solved.   

If time-dependency is not a matter of interest, then steady-state calculations are 

appropriate. However, for example, when studying fibre diameter control, one has to 
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solve the transient equations. If the mass transfer does not affect the heat transfer, or 

vice versa, then only one of them needs to be solved, greatly simplifying the problem. 

For example when the neck-down shape of the preform is known a priori, only heat 

transfer equations need be solved. When both are solved simultaneously the problem is 

called coupled or conjugated.  

 

The computational problem can be further divided according to the number of spatial 

variables. For example in 1-dimensional heat transfer, temperature varies only in one 

direction. In fibre drawing this could be the longitudinal direction. The 2-dimensional 

problem is typically axisymmetric in fibre drawing, where the variables change in 

longitudinal and radial directions but stay constant around the axis of symmetry. 

Various combinations of these subdivisions can be used and are not limited to the ones 

listed here. Typically the computational time and the difficulty in convergence increase 

with the number of problems that are simultaneously solved. Within recent years it has 

become possible to merge most of these subdivisions into one large computational 

problem. The term fully coupled problem is used in this text to describe such 

computations.  

(a) Physical division  

 
                 (i)             (ii) 

(b) Computational division 

 

1. Steady-state problem 1. Mass transfer problem  1. 1-dimensional 
2. Transient problem  2. Heat transfer problem  2. 2-dimensional 
         3. 3-dimensional 

     (iii)    (iv)     (v)  

Figure 6-2. Examples of subdividing the draw problem by a) physical or b) computational 

aspect.  
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6.1.2.1 Neck-down formation 

The flow of glass can be described by momentum and continuity equations. If radial 

velocity gradients are assumed insignificant, 1-dimensional calculations are sufficient. In 

the fibre drawing problem the axial (draw directional) velocity changes are much greater 

than radial, however 2-dimensional computations have been done to study the effect of 

this assumption [194, 195, 205, 206]. Rosenberg et al [205] and Papamichael and 

Miaoulis [194] showed that radial velocity gradients exist in the neck-down region and 

that the 2-dimensional model provides a more accurate neck-down profile. The former 

study was however isothermal and a latter study assumed temperature independent 

material properties of glass, except for viscosity. Choudhury et al [207] and Lee and 

Jaluria [195, 206] showed that the radial velocity gradients are very small, giving a 

maximum difference between the centre and surface velocity of only 1.5%-2.5%. In 

their simulations the corresponding maximum surface to core temperature difference 

was ~30°C [195] and ~220°C [206]. Also Choudhury and Jaluria [17] point out in their 

analysis that it is more important to take into account the 2-dimensionality in heat 

transfer than in glass flow. In the present work the glass flow was assumed to be 1-

dimensional, however a 2-dimensional model was used for heat transfer.  

 

The shape of the neck-down depends on the forces acting on the preform and fibre. 

The following force balance can be written for the cross-section of the neck-down at an 

axial position for 1-dimensional case [204]. 

  

T g I eF F F F F Fµ ξ+ = + + +      (29) 
 

where FT is the draw tension and Fg gravitational force both aiding the neck-down 

formation. Fµ is the viscous force, Fξ force due to surface tension, FI is inertial force 

and Fe shear force exerted by external fluid. A number of studies show that the inertial 

and surface tensional forces and the shear force due to external gas are not significant 

and can be ignored [17, 208, 209]. It is seen then from Equation (29) that the 

gravitational force aids the pulling force and that the viscous force plays a major role in 

neck-down formation. In the present work also, Fξ, FI and Fe are ignored. The 

temperature dependence of viscosity couples the neck-down formation to the heat 

transfer equations.   
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The effects of drawing parameters on the neck-down shape have been studied by the 

above researchers. The neck-down shape is mainly determined by the temperature 

distribution and the viscosity dependence on temperature [17, 183, 207, 209, 210]. 

When the draw speed is increased the change in temperature profile causes the neck-

down to start further down the furnace [17, 207, 209]. If the mass flow-rate is kept 

constant but preform or fibre radius changed, the neck-down shape is very similar. 

However, if drawing velocity is kept constant but preform radius changed (i.e. preform 

feeding rate changed) the necking shapes are different [207]. Furnace temperature 

profile is an important factor in determining the temperature profile of the glass and 

thus affects the neck-down shape drastically [17]. Other heat transfer related parameters 

that affect the neck-down shape include the heat transfer coefficient on the surface of 

the glass which is affected by the gas flows in the furnace. Neck-down shape is shown 

to be affected by the gas flow velocities and gas inlet positions  [17, 208]. The preform 

structure would affect the neck-down shape only if the structure were composed of 

large regions with considerably different viscosities [18, 209]. 

 

6.1.2.2 Heat transfer 

In the past decade numerous studies have emerged on computational analysis of the 

heat transfer during fibre drawing. Radiation was found to be the dominant mode of 

heat transfer early on [16, 182, 184, 199, 204, 211] and new methods for calculating 

radiation are being developed [212]. The most common model used for radiation 

transfer between  glass and furnace is the enclosure model [17, 194, 195, 207-209]. This 

model includes an enclosure of surfaces that participate in the radiation heat transfer. 

The fraction of radiation leaving one surface and reaching another surface depends on 

the geometrical orientation of the surfaces with respect to each other. A detailed 

description of this method and application to the drawing problem can be found in 

Refs. [193, 213]. Using the enclosure model Lee and Jaluria [213] studied the effect of 

different pre-set neck-down shapes on the radiative heat transfer. They showed that the 

neck-down shape significantly altered the heat flux between the geometry of the 

preform and that in order to provide accurate simulations the neck-shape profile should 

be solved coupled with the heat transfer equations. In the current work this approach is 

followed and the conjugated problem solved where the enclosure model is used for 

radiation heat transfer between glass and furnace. 
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The radiation heat transfer must be also considered inside the glass. To simplify the 

computations the Rosseland approximation [193] is typically applied within the glass 

[17, 194, 195, 207-209]. As the resulting diffusion equation is like a heat conduction 

equation, this greatly simplifies the computation of radiative heat transfer within the 

glass. The Rosseland approximation is only valid when a medium is optically thick and 

temperature gradients are moderate. The effect of this approximation for heat transfer 

during drawing was studied by Nicolardot and Orcel [18]. The so called “zonal method” 

has been used in recent work by Yin and Jaluria [214, 215] who found that the radiative 

heat flux is strongly influenced by the radial temperature variation within the preform 

but that if this temperature variation is small, the optically thick approximation gives 

good results. Liu et al [20, 212] used a Fresnel interface approach to calculate the 

radiation transfer but found that the differences in temperatures to the diffusion 

approximation were only 1-2%. In order to simplify the computations the Rosseland 

approximation is used in the present work.  

 

Another important mode of heat transfer is the convection transfer between the 

surrounding gas and the glass surface. Inert gas is used in the fibre-drawing furnace to 

prevent contamination of the hot preform-glass surface. Typical gases used are argon or 

nitrogen, which are blown through a number of inlets into the furnace. The flow 

configuration can be either cocurrent or countercurrent relative to fibre draw direction. 

The feed rates of gases, feed position configurations and properties of the gas all affect 

the thermal processes in the furnace. Particularly in high-speed drawing or at high gas 

feed rates, convection transfer from fibre to gas is greatly affected.  

 

In order to compute the heat transfer coefficient required for convection transfer the 

velocity field of the gas must be known. Computing the velocity field in the gas inside 

the furnace greatly increases the computational time and complicates the model, thus 

typically a prescribed heat transfer coefficient is used on the glass-gas boundary. The 

effect of the magnitude of the coefficient has been studied by Choudhury et al [17, 207] 

and Lee and Jaluria [195]. The value for the heat transfer coefficient ranged from 50-

300W/m2K dating back to the work of Paek and Runk in 1978 [14]. The studies show 

that the selection of the coefficient affects the temperature distribution and neck-down 

profile, but only towards the end of the neck-down. The velocity fields in the gas were 

computed coupled with the heat transfer equation by Choudhury et al [17, 208, 210, 
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216] and Yin and Jaluria [215] showing that the heat transfer coefficient depends on the 

gas velocity and becomes significant at high gas flows, draw speeds and near the gas 

inlets and depends on the direction of gas flow. The gas flow patterns themselves have 

been a subject of some studies [217-220]. In order to simplify the present study gas 

flows are not computed. Since the draw velocities in specialty fibre drawing are 

considerably slower than the velocities used in the above simulations the importance of 

convective heat transfer is even smaller. However it should be noted that this 

assumption may cause inaccuracies in the produced temperature profiles. 

 

Most of the studies presented here have assumed a prescribed temperature profile along 

the furnace wall. Choudhury et al [17, 207] and Lee and Jaluria [195] showed that for 

different furnace wall temperature profiles the necking shape and temperature 

distribution were considerably different. If the temperature profile of the furnace can be 

reliably measured, a prescribed temperature profile can be assigned to the model. 

However, if such measurements are not available or a new furnace design is being 

considered, then the temperature profile should be computed within the model. Such 

an approach has been used by Nicolardot and Orcel [18] and Cheng and Jaluria [21]. In 

the current work the structure of the furnace is included in the heat transfer calculations 

and no prescribed temperature profiles are used inside the furnace. 

 

Another important source of heat during drawing, which has not been discussed above, 

is viscous dissipation in glass. Viscous dissipation arises from the velocity differences in 

glass and also changes due to temperature dependence of glass viscosity. It has been 

shown that viscous dissipation has an effect on the temperature distribution [206]. 

However, the effect is significant mostly in the exit fibre temperature. The velocity 

gradients also are more significant at high-speed drawing. The same study showed that 

it is also important that the temperature dependency of the material properties is taken 

into account. The most important is the viscosity of the glass, but also thermal 

conductivity and specific heat capacity are functions of temperature in glass. The 

current work takes into account the temperature dependency of the material properties 

for glass but viscous dissipation is ignored to simplify calculations and is justified by the 

low draw speeds used.  
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There are areas of heat and mass transfer computations in fibre drawing that have not 

been discussed above. A number of studies have modelled heat transfer during cooling 

of the fibre [15, 179, 217, 219, 221-223]. The discussed work also only involved studies 

made for the steady-state process, which is the subject of the current work. However 

numerous studies have been made in transient computations for the fibre drawing 

process [19, 180-184, 186, 187, 201, 224, 225] and more specifically in the area of 

drawing process control [203, 226-230]. 

 

As discussed in Chapter 5, Section  5.1, there are very few studies done on drawing of 

fibres with air-structures. A model that would take into account all the above-

mentioned heat transfer effects, neck-down formation and the deformation of the 

internal air-material structure would be very complicated and three-dimensional 

simulations would be required. Deflandre [12] reported simulation of a PCF drawing 

where heat transfer was also taken into account. No details were however given of the 

parameters and only one simulation result was shown. It was evident from the 

simulation that issues with heat transfer caused a higher deformation rate of the holes 

close to the surface of the fibre. One of the aims of this thesis is to study the effects of 

the air-material structure on the heat transfer during the drawing process. Two-

dimensional heat transfer simulations were carried out as a full three-dimensional model 

with deformation accounted for was outside the scope of this thesis. The results are 

reported in Sections 6.3.6 and 6.3.7.  

 

6.2 Fluid dynamics computations 

6.2.1 Model description 

The model includes the preform, the furnace and the gas surrounding the preform, 

Figure 6-3. The furnace is composed of a graphite heating element with heat source and 

insulator structure to represent the real furnace structure. The model is extended below 

the furnace, to include a cooling part for the fibre. The neck-down shape is calculated 

for the preform, where 1-dimensional flow is assumed. A 2-dimensional axisymmetric 

heat transfer equation is solved in the preform, the furnace and the gas. Simulations are 

steady state and temperature dependent.  
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Figure 6-3 shows the model geometry and typical dimensions. The properties for each 

material are given in the Appendix III. Temperature dependence for glass viscosity, 

conductivity and specific heat capacity were taken into account. Gas properties were 

taken as those of argon. The conductivity was temperature dependent and other 

properties constant at the mean temperature of the furnace.  

 

 

 

 

 

Figure 6-3.  Fibre drawing and furnace model geometry. 
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6.2.2 Governing equations 

As discussed in the Background Section 6.1 the heat transfer in the furnace is a complex 

system. The shape of the preform neck-down depends on the temperature profile and 

affects the view factors for radiation heat transfer, therefore the conjugate problem is 

solved. The nomenclature used in this chapter is listed in Table 6-1. The equations (30, 

33-35) and (41-42) can be found for example in text books by Bejan [122] and Siegel 

and Howell [193].  

Table 6-1. Nomenclature for Section 6.2. 

G     Gebhardt factor  
H      Internal heat generation, J/m3s 
L      Length of the model, m 
T      Temperature, K 
S      Surface area, m2 
cp      Specific heat capacity, J/kgK 
g      Acceleration of gravity, m/s2 

k      Heat conductivity, W/mK  
n      Normal to the surface or refractive index 
q      Heat flux, W/m2  
r      Radial coordinate, radius m 
v      Velocity, m/s 
z      Axial coordinate, length m 
 
α     Absorption coefficient, m-1 
ε      Emissivity  
η     Kinematic viscosity, m2/s 
µ     Dynamic viscosity, Pas 

ρ     Density, kg/m3 
σ     Stefan-Boltzmann constant 
 
Subscript 
c        Conduction 
e        External fluid 
ext     External 
f         Fibre 
g        Gravity 
I         Inertia 
i         Surface participating in radiation 
k        Surface participating in radiation  
p        Preform 
r         Radiation 
T        Tension 
ξ         Surface tension 

 

6.2.2.1 Heat equations 

The steady state axisymmetric heat equation for the preform is expressed as [122]: 

   

1 0p z r
T T T Tc v v k rk
z r z z r r r

ρ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (30) 

 

For the preform the radiative energy reaching a point (r,z) in the preform is computed 

using the Rosseland approximation, Equation (31), giving the ‘effective’ conductivity of 

the glass, Equation (32) [14]. n is here the refractive index of glass. 

 

( )
2

2 44
3r
nq Tσ
α

= ∇       (31) 

 
2 316

3c
n Tk k σ

α
= +                                                (32) 



 189

 

 

The heat equation for the insulation, the graphite and the gas is [122]:  

 

1 0T Tk k
z z r r r

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
    (33) 

 
 
The furnace heating element includes a heat source, giving  

 

1T Tk k H
z z r r r

ρ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
,    (34) 

 
where H is the internal heat generation (J/m3s) [122]. A typical value of 18 kJ/m3s was 

used in simulations.  

 

6.2.2.2 Neck-down profile calculation   

The velocity distribution in the neck-down region is calculated from the momentum 

equation, Equation (35). Surface tension, inertial or shear stress from external gas are 

not taken into account as the contribution is insignificant [17]. 

 

2 23 vr gr
z dz

µ ρ∂ ∂⎛ ⎞ = −⎜ ⎟∂ ⎝ ⎠
,     (35) 

 

For incompressible and one dimensional flow the continuity equation yields: 

 
2 2

p pr v r v= ,       (36) 

 

 

For calculating the neck-down profile Equations (35) and (36) were combined to give 

 

13 v g
z v dz v

η∂ ∂⎛ ⎞ = −⎜ ⎟∂ ⎝ ⎠
      (37) 
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A transformation of variables, as shown in Equation (38), was performed to obtain 

Equation (39). As the effect of gravity is small, Equation (39) becomes almost linear 

and is thus easier to solve. 

 

( ) ( )logf z v z=       (38) 

 

3 ff ge
z dz

η −∂ ∂⎛ ⎞ = −⎜ ⎟∂ ⎝ ⎠
      (39) 

 

 

For the neck shape calculations the preform radius, fibre radius and draw speed are 

given. Typical values are 
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      (40) 

 

6.2.3 Boundary and initial conditions 

The furnace is water-cooled and thus enables the use of the Dirichlet boundary 

condition for the external furnace walls, where the temperature is set to 289K. The 

temperature at the top of the preform is also set to 500K. The enclosure model was 

used to account for radiation heat transfer [193]. A diffuse gray radiation boundary 

condition [193] is applied to the enclosure consisting of the furnace inner wall, irises 

and the preform-fibre surface. The discrete version of the boundary condition gives 

Equation (41). See Appendix III for the calculation of Gebhardt, Gik, and view factors. 

Emissivity for the preform-fibre surface is dependent on the radius of the preform-

fibre, as is taken from Myers [184] and Homsy and Walker [13].  
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     (41) 

where n is component normal to the surface. 
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For a fibre surface in the cooling section below the furnace, idealized radiation cooling 

is included as this part is not within the enclosure. The external temperature is set to 

298K. A number of convection heat transfer coefficients were tested from literature 

[216], however the shape of the neck-down was found to correlate with experiments 

better when convection was neglected.  

 

( )4 4
ext

Tk T T
n

σε∂
− = −

∂
,                                                        (42) 

where n is component normal to the surface. 

 

In the symmetry line of the model the following applies: 

0T
r

∂
=

∂
       (43) 

 

Boundary conditions for Equation (39) are 

( ) ( )
( ) ( )

ln

0 ln

p

f

f L v

f v

=

=
      (44) 

 

where L is the length of the model and 0 is at the bottom of the fibre as in Figure 6-3. 

The preform velocity vp and fibre draw velocity vf are predefined. The velocity of the 

glass is set to zero and the temperature is set to 1000K for the entire computation 

domain as the initial conditions. 

 

6.2.4 Numerical scheme 

A computational software package ELMER [231] was employed to solve the coupled 

partial differential equations. The equations were discretised using the finite element 

method. Stabilization was used for the convection-dominated heat equation [232]. The 

view factors, needed for the diffuse-gray radiation modelling, were computed for each 

pair of boundary elements participating in radiation, by numerical integration. From the 

view factors the Gebhardt factors could be determined by solving a set of linear matrix 

equations. The radiation boundary condition was linearized by an explicit iteration 

scheme for the first few iterations and thereafter fully implicit Newton iteration was 

employed.  
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The matrix equations resulting from the finite element discretisations were solved with 

a band matrix solver from LAPACK based on LU decomposition. To reduce the 

execution time reverse Cuthill-McKee bandwidth optimisation was employed before 

the direct solver. The coupled set of equations was solved iteratively until the solution 

fulfilled simultaneously the convergence criteria of all the equations. After a new neck-

down profile was obtained the mesh was readjusted with linear mapping and new view 

factors for radiation heat transfer were calculated. To ensure convergence, relaxation 

was used with a relaxation factor of 0.7. Typically 5 to 12 iterations were required for 

the heat equation and only 1-2 iterations for the neck-down iteration. Around seven 

coupled iterations were required to obtain a fully consistent solution. As the 

computational domain included the furnace structure and the gas in addition to the 

preform, a nonuniform grid was employed. Denser mesh was applied in areas where 

greater changes in gradients of the variables were expected. The mesh consisted of 3500 

bilinear elements. With this mesh typical simulation took around 135 CPUs on a single 

processor of SGI Origin 2000 computer. 

 

6.2.5 Experimental validation 

The simulated neck-down shape was compared with an experimentally produced neck-

down. For the simulation the draw parameters, such as the drawing temperature, 

preform and fibre diameter and the draw speed were matched to those of the 

experiment. The resulting neck down shape from the fibre drawing experiment was 

measured using a preform diameter measurement gauge and compared to the calculated 

shape.  

 

As can be seen from Figure 6-4 the neck-down profiles match well considering that the 

furnace structure has been simplified for the simulations and that the material 

properties of glass used in the simulations are taken from literature and could be 

different for the actual preform. Simplifications performed in the computational model 

relating to viscous dissipation and 1-dimensional flow of glass could explain the 

discrepancies. The drawing tension was also calculated for simulations and compared 

well with the typical range of real tensions measured during draw. No material or heat 

transfer parameters were changed according to experimental results, nor did the 

numerical scheme contain any artificial constants that would have been adjusted to 



 193

match the experimental data. Material properties were taken from published 

measurements when available as referred in Appendix III. 
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Figure 6-4. Comparison of simulated and measured neck-down for 12mm diameter preform at 

draw speed of 0.4m/s.  

 

6.3 Heat transfer simulation results 

The following sections present the heat transfer results from fibre drawing simulations. 

First the effects of draw parameters such as furnace temperature and drawing speed are 

presented, then the heat transfer in a solid preform structure is considered, including 

the effect of preform diameter and the presence of a highly doped core. The influence 

of furnace structure is also studied by considering two different structures. The 

structures are simplified models of furnaces from different suppliers. Finally the effect 

of air-structures in preforms is studied including a study of heating microstructured 

polymer optical fibre preforms.  

 

Figure 6-5 shows a typical temperature field in the preform and furnace during drawing 

of silica fibres. The maximum temperature in the glass is experienced in the neck-down 

region where the preform forms into fibre. The neck-down occurs at the same 

longitudinal position as the position of the heating element. The preform entering the 

furnace heats up and a slight radial thermal gradient is observed in the preform. The 

fibre cools down as it exits the hot-zone and is radially almost uniformly heated. Note 
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that this computed temperature field together with the computed neck-down shape and 

glass velocities are then used in Section 6.4 to estimate dopant diffusion during drawing.  

 

Note that the results are mostly presented with graphs where the studied variable such 

as temperature is the y-axis and the longitudinal coordinate (z) the x-axis, see Figure 6-7 

for an example. The length (z) and the radius (r) always correspond to the coordinates 

given in Figure 6-3. The top of the preform is in the right hand side of the figure and 

the bottom of the model (i.e. fibre) are in the left had side of the figure. To show the 

position relative to the neck-down, the radius of the neck-down is drawn as a dotted 

line using the second y-axis. Only neck-down for one of the cases in each figure is 

drawn for clarity. The case of the neck-down drawn is indicated in the figure caption.  

 

 

Figure 6-5. Temperature contour plot, 12mm diameter preform, draw speed of 3.0m/s, x-axis has 

been scaled by 2 and gas temperature hidden for clarity. Temperature in K. Note orientation and 

dimensions as in Figure 6-3. 
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6.3.1 Drawing temperature 

To study the effect of drawing temperature, the furnace heat source was varied from 18 

to 20 kJ/m3s. Preform diameter was 12 mm and drawing speed 0.4 m/s. As the heat 

source was increased, the hot zone element temperature increased from 1860°C to 

2060°C and the fibre tension decreased from 70g to 10g. The necking started slightly 

earlier for hotter temperatures, as seen in Figure 6-6. The difference however is not 

large. Figure 6-7 shows the preform and fibre centre temperature along the length. The 

maximum temperature in the preform increased 140°C due to heat source increase. The 

difference in neck-down temperature for the two cases was 150°C and for the fibre 

temperature difference was 65°C. The shape of the temperature profile along the length 

stays similar between the cases. Note that the “kink” in the temperature profiles at a z-

position of about 0.18m is a local artefact of the boundary conditions between the 

furnace and the bottom iris and does not significantly affect other parts of the model.  

 

Figure 6-8 shows the difference between glass surface and core temperatures along the 

length of the preform and fibre. For the element temperature of 2060°C, the preform 

surface is 11°C hotter than the core. The fibre core is 4°C hotter than fibre surface. 

These are similar to the lower temperature.  
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Figure 6-6. Neck-down shape at two different furnace temperatures.  
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Figure 6-7. Core temperature along the length of the model at different draw temperatures. The 

neck-down profile is for the case of 18kJ/m3s. 
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Figure 6-8. Surface to core temperature difference along the length of the preform-fibre at 

different draw temperatures. The neck-down profile is for the case of 18kJ/m3s. 
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6.3.2 Feed and draw speed 

Simulations for a 12mm diameter preform were performed at two different speeds, at a 

“low” speed of 0.4m/s and a “high” speed of 3m/s. As the preform and fibre diameter 

(12mm and 125µm) were kept constant the corresponding preform feed rate was 2.6 

and 19.5mm/min and mass flows were 0.7 and 4.8g/min. As noted in the literature 

[17], if the mass flow is held constant, the neck-down profile is very similar, although 

the fibre or preform diameter is changed. However change in mass flow will cause 

change in the neck-down shape. This is also seen in Figure 6-9, where the neck-down 

for higher draw speeds is slightly more elongated and starts further down the hot-zone.  

 

The effect of draw speed on core temperature can be seen in Figure 6-10. For the same 

hot-zone temperature, the fibre at the exit of the furnace is hotter for higher draw 

speed, as is expected. Also the fibre is considerably hotter well below the furnace. It is 

noted that although an increase in draw velocity increases the fibre temperature at a 

particular position, the cooling occurs more quickly [209]. Above the neck-down region 

the preform temperature is 240°C colder at higher draw speed. This may be part of the 

reason why PCFs retain their structure better at higher preform feed rates.     

 

Figure 6-11 compares the differences in surface temperature to core temperature along 

the length of the model. The difference is substantial for higher draw speed just above 

the neck-down, being 65°C more than at slow speed. In the lower neck-down region 

and the fibre, the difference between high and low speed is not significant, amounting 

to 3°C degrees.  

 

The considerable surface to core temperature difference in the upper neck-down region 

and just above neck-down shows the importance of draw speed for speciality fibres 

with large doped areas as well as air-silica-structure fibres, where changes in structure 

are more likely due to radial temperature gradients. Due to the extremely strong 

temperature dependence of the viscosity, surface to core temperature differences of this 

magnitude could affect the residual stresses of specialty fibres with heavily doped 

regions. Radial velocity differences in doped areas could also arise, given that the 

viscosity of the different regions were considerably different.  
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Figure 6-9. Neck-down profiles at different draw speeds.  
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Figure 6-10. Core temperature along the length of the model at different draw speeds. The neck-

down profile is for the case of 0.4m/s. 
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Figure 6-11. Surface to core temperature difference along the length of the preform-fibre at 

different draw speeds. The neck-down profile is for the case of 0.4m/s. 

 

6.3.3 Preform diameter 

The effect of preform diameter was simulated with two preform sizes, 12mm and 

24mm diameter, this being a typical range of diameters used in specialty fibre 

fabrication. The furnace heating was adjusted (by changing the heat generation term H 

in Eq. (34)) to give similar neck-down glass temperatures. Figure 6-12 shows the neck-

down profiles for the two preform sizes at two draw speeds. For both sizes the neck-

down for faster speed occurs later. For both speeds the necking is more elongated for 

the smaller preform. This is because the smaller preform and neck-down stays hotter 

longer. This is shown in the temperature profile comparison in Figure 6-13. For the 

slower speeds the smaller preform is about 190°C hotter above the neck down region 

and 120°C colder in the cooling fibre.   

 

Figure 6-14 shows the difference in surface temperature to core temperature along the 

length of the preform and the fibre. For the thicker preform the surface to core 

temperature difference is higher than for the thinner preform just above the neck-

down. The draw speed does not have much effect on this difference. A distinctive 

surface to core temperature difference increase is seen for thicker preforms just above 

the neck down region. Being so sharp and situated in the fibre formation region this 

should be studied further as it can also influence the fibre diameter fluctuations. Again 
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this could also cause radial flow in the glass with highly doped regions or unwanted 

deformation in PCFs due to large temperature gradient. The fibre diameter also affects 

the neck-down and temperature distribution and is discussed in the Refs. [17, 209]. As 

most fibres are drawn to the “standard” 125µm, no further simulations were made in 

this study. 
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(b) 

Figure 6-12. Neck-down profiles for profiles for preform diameters of 12mm and 24mm at draw 

speeds of 0.4 m/s and 3.0 m/s (a) absolute and (b) normalised (to preform radius). 
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Figure 6-13. Core temperature profiles for preform diameters of 12mm and 24mm at draw speeds 

of 0.4 m/s and 3.0 m/s.  
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Figure 6-14. Surface to core temperature difference along the length of the preform-fibre for 

preform diameters of 12mm and 24mm at draw speeds of 0.4 m/s and 3.0 m/s.  

 

6.3.4 Doped core 

A simulation was performed for a preform structure with 4mm core diameter and 

12mm outer diameter. The results were compared with a homogeneous preform 

structure with no core. The material properties for the core were estimated for a GeO2 

doped silica, where the doping level was 20 mol%. These are listed in Appendix III. 

The relatively large core size was chosen to emphasise the effect. An ideal step index 

profile was assumed. Simulations were performed for two draw speeds, 0.4m/s and 3.0 

m/s.   
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The effect of the doped core was found to be very small. The temperature difference of 

the centre of the preform with no core and GeO2 doped core was 0.5°C above the neck 

down and –0.2°C for the fibre part at draw speed 0.4m/s. At higher speed, 3.0 m/s, the 

differences were slightly larger, for just above neck-down 3°C and in fibre 0.2°C. In 

order to affect the heat transfer, the doped area should have considerably different 

material properties. Typically in MCVD the doping levels are restricted resulting in 

relatively modest changes in thermal properties. The viscosity changes between silica 

doped with different species could be significant and affect the radial flow of glass and 

deformation of the refractive index profile under certain conditions. In this case a 3-

dimensional draw model should be applied to study such effects.   

 

6.3.5 Furnace design 

Two different furnace designs were modelled to see the effect on temperature 

distribution when the furnace maximum temperature was kept the same. The two 

furnaces designs (A and B) represented two production furnaces made by different 

manufacturers. The main differences in mechanical design was that Furnace B used an 

extension tube below the furnace and the cooling water circulation was slightly different 

and more efficient in the top part of  Furnace B. Furnace B also had a larger inner 

diameter (see Table 6-2 for typical dimensions).  

 

Simulations were performed for each design using a 12mm diameter preform and 

drawing speed of 0.4m/s. The neck down shape was different for the two furnaces, 

being slightly more elongated for Furnace A, Figure 6-15. This can be accounted for by 

the longer hot-zone. Figure 6-16 shows the core temperature profile along the length 

for Furnace A and B. The results showed that when the heating element maximum 

temperature was set equal for both furnaces, the preform core temperature above the 

neck-down was about 300°C lower for Furnace B. This was expected, as the cooling 

circulation is more efficient in this part compared to Furnace A.  

Table 6-2. Furnace dimensions 

[cm] Furnace A Furnace B 
Diameter 3 4 
Hot-zone length 5 4 
Above hot-zone 10 14 
Below hot-zone 3.5 14 
Element length 14 18 
Extension tube length 0 20 
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The fibre temperature below the furnace was 90°C hotter for Furnace B, which is due 

to the effect of the extension tube. The different temperature profile could affect the 

hole deformation during PCF draw, as collapse will differ at the different diameters of 

the neck-down. If the temperature profile along the neck-down is very different the 

final collapse behaviour would be altered. Due to slow draw speed the surface to core 

temperature differences are not large for either furnace. Furnace B has slightly higher 

thermal gradient being about 9°C in the preform and only 2°C in the fibre. 
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Figure 6-15. Comparison of neck-down profile for Furnaces A and B.  
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Figure 6-16. Preform and fibre core temperature along the length of Furnace A and B. 

 



 204

6.3.6 Air-silica structures 

To study the effect of air structures, simulations were performed for two air-silica 

structures; an air core structure and air-silica layered structure, see Figure 6-17. A 

simulation was performed where a 12mm diameter preform had a 4mm diameter air 

core. Simulations with the air core structure showed that the effect of an air core was 

not very big when the results were compared to that of the solid core simulation. The 

draw speed was kept at 0.4 m/s. Figure 6-18 shows the temperature difference of the 

solid core to the air core along the length of the model. It is seen that the air core fibre 

cools down slower giving a temperature difference of only 2°C at the exit of furnace 

and about 20°C difference 14cm below the furnace. These are fairly small differences 

and there was no significant difference in the preform temperatures. 

 

 

 

 

 

 (a)            (b) 

Figure 6-17. Diagram of air silica structures, (a) an air core structure and (b) air layered preform 

structure, shaded areas are silica. 
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Figure 6-18. Solid core to air core temperature difference along the length of the model. 
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As the geometry of the model is restricted to axisymmetric structures, rings of holes 

were replaced by a layered air silica structure when modelling a more complicated air 

structure. A solid 1mm radius core was surrounded by two air layers each 1mm in 

thickness and separated by 1mm solid silica layer, see Figure 6-17 (b). Overall diameter 

was 12mm. If the holes are closely spaced a layered structure will give a fairly good 

estimation of the real geometry. Figure 6-19 shows the temperature contour plot of the 

model, where the ring structure effect can be seen as increased radial temperature 

gradients.  

 

Figure 6-19. Temperature contour plot of air silica layered preform at draw speed of 3 m/s, x-axis 

has been scaled by 4. Temperature in K. Dimensions and axis as in Figure 6-3. 
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Figure 6-20. Surface to core temperature difference for solid and air layered structures. 
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Figure 6-20 shows the comparison between surface and core temperatures for both 

solid and ring structured preforms at slow, 0.4 m/s, and high, 3m/s, speeds. It is clearly 

seen that the air rings have an insulation effect on the core, and that at higher speeds 

this effect is greater. At 3 m/s the surface to core temperature difference is 190°C 

above the neck-down region for the ring structure and 75°C for solid structure. The 

fibre core is 16°C higher than the surface for the ring-structured fibre and for solid 

structure 5°C for draw speed of 3.0m/s. The differences are less at slower speeds.  

 

6.3.7 Effect of air fraction on heating of microstructured polymer optical fibre 

preforms 

During the course of the present study, heat transfer simulations for microstructured 

polymer optical fibre (MPOF) preforms were also conducted. Although material 

properties for silica, which is the focus of this work, differ greatly from those of 

polymer, the issues of heat transfer are similar for both. MPOFs are fabricated in a 

similar manner to silica PCFs in that air holes are introduced to the preform, which is 

then drawn down to fibre using a drawing tower. The effect of air holes on heat 

transfer in MPOF fabrication is as important as in silica PCF fabrication. Due to the 

material properties of PMMA (polymethylmethacrylate), which is typically used for 

MPOFs [38], the furnace temperatures are much lower (160-250°C) but draw rates can 

be comparable to that of specialty silica fibre. Although the findings of the study with 

MPOF heating might not directly apply to silica PCF heating, the underlying physics is 

the same and thus is of interest to the current work.   

 

6.3.7.1 Introduction  

Due to advantages such as low manufacturing cost and increased material flexibility, 

polymer has been recognized as a suitable material for certain PCFs [38, 233] and a 

number of studies have since been conducted in the area [38, 39, 234]. In order to 

manufacture microstructured fibres with the required optical properties, it is essential to 

retain the designed air-structure of the preform stage. The presence of air holes within 

the polymer will affect the temperature of the preform during the heating process. Heat 

transfer in solid polymer preforms has been studied by Reeve et al [235-237]. These 

studies provide a detailed investigation of the polymer preform heating process, 

however they cast no light on the effects that internal preform structures have on the 

heat transfer.  
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Preform heating is one of the most important steps in the polymer fibre fabrication 

process, due to the potential distortion that can be introduced when exposing the 

structure to high temperatures. Such heating is further complicated when internal air-

structures are introduced into the preform. A two-dimensional conductive heat transfer 

model with surface radiation was used in simulating the transient heat transfer in 

MPOF preforms, with the results compared to those for a solid preform.  

 

6.3.7.2 Model description 

A 2-dimensional model was used where the preform was assumed to be infinitely long. 

The model allowed for an arbitrary hole pattern in the preform. The air-structure design 

chosen for this study was an hexagonal arrangement of holes with three rings 

surrounding a solid core, as shown in Figure 6-21. An infinite cylinder of polymer was 

assumed with an outer diameter of 50 mm and 72 air holes positioned in an hexagonal 

pattern. The geometries differ in that the air fraction of the air-structured section is 0.4 

for Preform A, 0.7 for Preform B and 0.1 for Preform C. These differences were 

achieved by keeping the hole positions in the same place but varying the hole diameter 

from 2.0 mm (A) to 2.6 mm (B) to 1.0mm (C). Note that for comparative purposes, a 

‘solid case’ was also simulated by assigning polymer properties to the holes, without 

changing either the hole geometry or the finite element meshing. 

 

 

 
 

Figure 6-21.  Schematics representations of the model geometry for the two-dimensional infinite 

cylinder with air-structured air fractions of (a) 0.4,  (b) 0.7, and (c) 0.1.  
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Heat transfer within the preform was assumed to occur by conduction only, for which 

the time dependent conduction equation is expressed in Equation (45), 

 

( )p
Tc k T
t

ρ ∂
= ∇ ⋅ ∇

∂
                                    (45) 

 

The boundary condition at the surface of the preform is given by Equation (46). A 

constant heat transfer coefficient, h, was used while the external temperature, Text, was 

set to the measured furnace air temperature, 130°C. The initial temperature within the 

entire polymer rod was set to 24°C, that is, at the ambient value external to the furnace. 

Radiative heat transfer from the external surface was taken into account via a constant 

surface emissivity ε. Note that σ is the Stefan-Boltzmann constant. The contribution of 

‘internal’ radiative heat transfer within the polymer rod was neglected.  

 

( ) ( )4 4
ext ext

Tk h T T T T
r

σε∂
− = − + −

∂
                           (46) 

 

The polymer properties were taken as those of PMMA and the gas properties as those 

of air. The physical properties for both are listed in Table 6-3. The thermal conductivity 

for PMMA was adjusted to fit the experimental results, as no measured data were 

available for the specific grade of PMMA material used in this study. This adjusted 

value is of the same order of magnitude as that reported in the literature (0.19 W/mK) 

for other grades of PMMA [196]. An estimated (from engineering correlations) value of 

8 W/m2K was used for the external heat transfer coefficient. 

 

Table 6-3. Material properties for PMMA and air 

Material PMMA Air 
Density ρ [kg/m3] [196] 1170 0.93 
Specific heat capacity cP [J/kgK] [196] 1380 1010 
Thermal conductivity k [W/mK] 0.15 0.032 
Emissivity ε  [236] 0.96 - 

 



 209

Variable time step sizes were used - from 0.5s at the beginning where the temperature 

changes were the greatest, to 400s as the preform moved towards thermal equilibrium, 

totalling some 130 steps for a heating period of five hours. Due to the complex air hole 

structure, a non-uniform grid was employed. As an example, the mesh for Preform A is 

shown in Figure 6-22 consisting of  an unstructured mesh of 6700 bilinear elements. 

For the axisymmetric model, a uniform structured mesh with quadrilateral elements was 

used consisting of 1000 elements. A typical simulation for the axisymmetric model was 

55 CPU seconds on a single processor SGI Origin 2000 computer. For the 2-

dimensional infinite length model case (with its larger number of elements), 300 CPU 

seconds were required on the same computer. 

 

For this study, the numerical results were compared with those for an analytical solution 

of an infinite cylinder, with a homogeneous cross-sectional structure. The results agreed 

well, provided small enough time steps were used. The effects of alternative meshing 

were also tested by simulating a two-dimensional infinite cylinder with one air-layer 

using both unstructured and structured meshes. The results were found to be identical 

for both cases. 

 

 

Figure 6-22. Unstructured mesh used for Preform A. The mesh used for the air holes is shown as 

an inset.  
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6.3.7.3 Results and Discussion 

A temperature contour plot for Preform A after 30 minutes of heating is shown in 

Figure 6-23. The contours in the air-structured region show the effect of the holes on 

the temperature profile. The radial temperature profiles as a function of time are plotted 

in Figure 6-24 for both the solid cylinder case and for Preform A. Significant 

differences between the solid and structured cases are evident after five minutes of 

heating. The temperature in the outer part of the preform rises, relative to the solid 

case, as the air holes act as a heat barrier. Note however that the entire structured 

preform heats up faster than the solid case. Such behaviour was somewhat unexpected, 

as it was initially felt that the presence of the air holes would slow down heat transfer 

into the central region of the preform. The results indicate that the relatively low 

thermal capacity of the air (which means that the heat transfer across the holes is always 

essentially at pseudo steady-state) together with the fact that the structured preform 

contains less polymer than the solid case, resulted in a faster dynamic response in the 

central portion of the structured preform than expected. 

 

Figure 6-25 shows the corresponding experimental results (Appendix IV) comparing 

the heating of the solid rod and the structured Preform A. The experimental data 

confirms the findings of the simulations in that the structured preform heats up faster 

than the solid preform. 

 

 

Figure 6-23. Simulated temperature contour plot for Preform A at time 30min,  

contour lines every 5°C. 
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Figure 6-24. Simulated radial temperature profiles across the preform at different heating times, 

comparison of the solid rod and Preform A. Vertical lines show the position of the air-hole 

structure within the preform.  

 

 

Figure 6-25. Experimental heating results.  Radial temperature profiles across the preform at 

different heating times: comparison of the solid rod and Preform A. 
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Figure 6-26 shows the simulated heating-up phases for the three structured preforms 

and the solid case. After only five minutes, differences between the preforms start to be 

seen. The outer part of the preform heats up faster for all the structured preforms when 

compared to the solid case, such that a higher air fraction results in faster heating. The 

centre of the preform heats up faster than the solid case for all the structured preforms 

except for Preform C which had the lowest air fraction. After 20 minutes heating, the 

centre of Preform C is 1°C lower than the solid case. This result indicates that there 

exists an air fraction below which the effect of greater thermal resistance of the air 

structure exceeds the effect of lower thermal mass and results in slower heating of the 

preform centre.  

 

 

 

Figure 6-26. Radial temperature profiles at different heating times, comparison of the air-

structured Preforms A, B, and C with air fractions 0.4, 0.7, and 0.1, respectively. 
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Both the solid and the structured preforms reached the furnace temperature after about 

2.5hr of heating. This is a relatively long time in production terms and illustrates the 

basic problem with this type of heating where the outer part of the preform will reach 

the fibre draw temperature before the central part. This situation can result in 

deformation of the structure with the hotter outer part drawing at a different rate to the 

cooler inner part. In order to minimise such potential problems, alternative heating 

schemes can be employed to provide uniform, symmetric heating. Other types of 

heating methods such as infrared or microwave heating may be advantageous. 

 

It can be concluded that depending on the air fraction of the structured preform its 

centre can heat up either faster or slower than the centre of a solid preform. At higher 

air fractions (here 0.4 and 0.7) the structured preform heated up faster than the solid 

preform due to the effect of reduced thermal mass being greater than the effect of the 

thermal resistance of the air holes. At a lower air fraction (here 0.1) the centre of the 

preform heated up more slowly than the solid preform centre.  

 

The hexagonal hole pattern used distorted the temperature profile only slightly 

compared with the radially symmetric case. This distortion was greater for the higher air 

fraction, indicating that preforms with highly asymmetric hole structures and a high air 

fraction could experience radially asymmetric temperature profiles. In order to produce 

structured optical fibres with undistorted structures the heating process must be 

optimised so that any asymmetries are minimised. A heat transfer model such as that 

used in this study can be used both in optimising the preform heating conditions and 

also as a tool in designing the heating furnace.  

 

6.3.8 Effect of air-fraction - comparison simulation with silica 

To verify that the above results apply also to the heating of a silica preform, 

comparative simulations were performed. The air-structure chosen was that of Preform 

A. The model used was identical to the case presented above for polymer in both 

construction of the mesh, selection of equations and the type of boundary and initial 

conditions. The material parameters were chosen for silica and can be found in 

Appendix III. The furnace temperature (Text,) was set at 1900°C.  



 214

 

Figure 6-27. Simulated temperature contour plot for silica material with geometry of Preform A 

heated for 6.6min, with contour lines every 55°C. Radiation is not included. External temperature 

was set at 1900°C.  

 

Figure 6-27 shows a simulated temperature contour plot when the structured preform 

has been heated up for 6.6min. The air holes cause a similar distortion of the 

temperature contours (compared to the solid case where they are axisymmetric) as was 

seen in the case of structured polymer preform heating in Figure 6-23. Figure 6-23 is 

the polymer equivalent of Figure 6-27. The simulations show that silica heats up much 

faster than polymer. In the above case after just 6.6min the temperature difference 

between the core and the preform surface is about 25% of the external temperature. As 

seen in Figure 6-23 a difference with similar magnitude is achieved after 30min of 

heating for polymer. This is more clearly seen in Figure 6-28 where it takes only 28min 

to reach equilibrium temperature in the case of the structured silica preform heating, 

whereas the structured polymer preform takes at least 2.5hr.  

 

The effect of radiation heat transfer was studied by simulating two cases; one with ideal 

radiation (emissivity 0.9) and the other without radiation heat transfer. Figure 6-28 

shows the surface and the core temperatures during heating up. With radiation transfer 

included the preform heats up much faster and reaches equilibrium temperature after 

approximately 15min of heating. The case including radiation is expected to be closer to 

reality.  
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Figure 6-28. Simulated temperature during heating up of a structured silica preform comparing 

simulations with and without radiation heat transfer. Heating curves shown at the surface and 

centre of the preform. 

 

 

 

To compare the solid preform heating to a structured preform, simulations were also 

done for a solid rod. The comparison is presented in Figure 6-29. Similar to the 

polymer case, the structured preform (Preform A) heats up faster than the solid rod. 

(Figure 6-24 is the polymer equivalent of Figure 6-29.) This confirms that although 

silica heats up much faster than polymer the effect of air holes in the structure is similar. 

The radial temperature profiles for the simulations with radiation effects included are 

presented in Figure 6-30. The results are similar, with the exception of faster heating at 

the preform surface. The overall heating was also faster. 
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Figure 6-29. Simulated radial temperature profiles across the silica preform at different heating 

times. The solid rod and Preform A are compared. Radiation is not included. Structured preform 

is shown with dashed line and solid case with solid line. At times 30s and 10s the solid case is 

identical to the structure case. 
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Figure 6-30. Simulated radial temperature profiles across the structured silica preform (Preform 

A) at different heating times. Radiation included. 

 

6.4 Simulations of Ge diffusion in silica 

6.4.1 Diffusion computations 

In order to estimate dopant diffusion during drawing, a program was written to solve 

the diffusion equation. Diffusion was assumed to occur according to Fick's law, 

Equation (47) [121]. The diffusion coefficient was assumed to be independent of 
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concentration but dependent on temperature according to the Arrhenius equation, 

Equation (48). The fibre profiles studied were circularly symmetric and diffusion was 

assumed to happen in the radial direction only. As the diffusion coefficient is dependent 

on temperature, the variation in temperature along the preform, neck-down and fibre 

had to be taken into account.  

 

The 1-dimension, cylindrical, diffusion equation is presented in Equation (47).  

  
2

2

1c c cD
t r r r

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠

      (47) 

 

where D is the diffusion coefficient [m2/s], c is dopant concentration [mole-fraction], r 

is radius [m] and t is time [s]. 

 

expO
ED D
RT

⎛ ⎞= −⎜ ⎟
⎝ ⎠

      (48) 

 

where T is temperature [K], DO is pre-exponential term [m2/s], E is activation energy 

[J/mol] and R is the gas constant [J/(molK)]. 

 

The differential diffusion equation was converted into an approximate finite-difference 

equation and solved numerically (Appendix V). Depending on the case, the temperature 

was either assumed constant or varied according to the appropriate heat transfer 

situation for the current simulation. When diffusion was simulated for the entire length 

of the furnace, from preform to fibre, the temperature distribution was obtained from 

the heat and mass transfer simulations described in Section 6.3. In this case, the 

geometry was divided into finite lengths along the z-axis (longitudinal) for which the 

glass velocity and radius of the glass was taken from the heat transfer simulations and 

used in the calculation of the computational parameters for the diffusion program. 

Diffusion was then computed at each position and the calculated profile read in as the 

initial profile for the next z-position.  

 

When the diffusion coefficients are known for the dopants, the expected diffusion can 

be simulated using thermal history data. The calculation of diffusion coefficient for 
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germanium in silica from the draw experiments is presented below. The derived value is 

then used for various draw conditions using the data from the heat transfer simulations, 

Section 6.3. The diffusion results are then used to demonstrate the effect on dispersion 

of a dispersion compensating fibre. Since only germanium diffusion has been simulated, 

a discussion on diffusion of other dopants based on literature values is given in the light 

of the present findings.  

 

6.4.2 Calculating the diffusion coefficient for germanium from experiment 

To determine the diffusion coefficient for germanium in silica, the experimental results 

from the 3-ring Ge-doped fibre (3R) draw were used (Section 4.3.3). As the diffusion 

coefficient depends on temperature, diffusion data for a number of temperatures would 

be required in order to determine both the pre-exponential diffusion coefficient, D0 and 

the activation energy, E. As the draws were only performed at two furnace 

temperatures, and at the low temperature no significant diffusion occurred, only the 

pre-exponential diffusion coefficient was derived and an activation energy of 310 

kJ/mol was taken from the literature [137]. The longitudinal temperature, velocity and 

radius profiles from the heat transfer simulations, Section 6.36.2, were produced using 

parameters from the experimental draw conditions and used in the diffusion 

simulations. The preform initial GeO2 concentration profile for the simulations was 

taken from preform microanalysis measurements. The innermost ring in the 3-ring 

structure was used to determine the pre-exponential diffusion coefficient D0. 

 

Figure 6-27 shows the measured fibre GeO2 molar concentration profile against the 

initial and simulated profile for diffused fibre. The best fit was found using coefficient 

D0 of 2.4×10-6m2/s, which agrees with the coefficient determined by Yamada and 

Hanafusa  [137]. The effect of different D0 values on the diffused profile is shown in 

Figure 6-32. An error of about ±0.1×10-6m2/s can be estimated for the calculations, 

although the error of the temperature profile and the neck-down shape simulations is 

very difficult to establish. Using the determined value for D0, simulations were also 

performed for the fibre drawn at 1800°C and are shown in Figure 6-33. There is hardly 

any diffusion observed at this temperature as also shown in the simulation. 
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Figure 6-31. Measured, initial and simulated profile for the innermost ring of 3R fibre drawn at 

2100°C and 10m/min draw speed.  
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Figure 6-32. Simulated profile at different values of the pre-exponential coefficient Do.  
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Figure 6-33. Measured, initial and simulated profile for the innermost ring of 3R fibre drawn at 

1800°C and 10m/min draw speed. 
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Diffusion simulations were also made for the Ge-doped single ring fibre profile (1R). 

Figure 6-34 shows the comparison between the measured and simulated profile. There 

is some discrepancy on the shape of the profile. This was noticed when the measured 

preform profile (corresponding to initial profile here) was compared with the etched 

fibre profile (Section 4.3.2) and is probably due to the high etchant concentration, 

where the exact relation of etching depth to germania concentration could not be 

determined. The amount of diffusion however correlates well with the simulated result. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.00

0.05

0.10

0.15

0.20

G
eO

2 m
ol

e-
fr

ac
tio

n

Radius [µm]

 Initial profile
 Simulated profile

 Measured profile

 

Figure 6-34. Measured, initial and simulated profile of 1R fibre drawn at 2100°C and 10m/min 

draw speed.  
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Figure 6-35. Measured, initial and simulated profile for the outermost ring of 3R fibre drawn at 

2100°C and 10m/min draw speed.  
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When diffusion simulations were compared to the outermost ring of the 3R fibre, an 

interesting point was noticed. In the high temperature samples the measured profile 

showed features from the preform that were diffused according to the simulations, see 

Figure 6-35. The initial profile shows the MCVD layer structure where the number of 

Ge concentration peaks corresponds to the number of MCVD layers in the ring. This 

structure is still seen in the measured fibre profile although not as distinctive. The 

computed profile is smooth due to the resulting dopant diffusion. There are three 

possible explanations for this; (i) there is a high enough temperature gradient radially in 

the preform and fibre to cause different diffusion rates, (ii) an impurity from the 

cladding tube has diffused into the outer ring and affected Ge diffusion or (iii) the 

diffusion coefficient depends on GeO2 concentration.   

 

Since the outer layer is less diffused, this means that the temperature should be lower in 

the outer part of the fibre at a given axial position. This can only be possible during 

draw when the fibre is cooling down, since the surface cools down first. In the heating 

phase, the surface is always hotter than the core due to the heating technique used. 

During cooling the centre of the fibre would stay hotter longer than the outer surface 

causing more diffusion in the centre. Diffusion simulations were done to calculate the 

required temperature difference between the layers to cause the diffusion differences. 

This temperature gradient was held for the entire length of the drawn fibre giving a 

conservative estimate of the temperature difference required. A 150°C temperature 

difference was found to be necessary to cause the reduced diffusion. Since the inner and 

outermost layers are just 6µm apart (10% of cladding radius), the temperature gradient 

should be much larger across the fibre. Heat transfer simulations also show that at a 

10m/min draw speed, the differences between surface and core temperature are only a 

few degrees. It therefore seems unlikely that different radial cooling rates could have 

caused the reduced diffusion. 

 

Impurity diffusion from the cladding tube is possible as very high temperature and slow 

drawing speed were used. It is known that diffusion of impurities such as Na  [150] is 

much higher than dopant diffusion. It is also possible that diffusion of such impurities 

would not have reached the inner-most core. Studies from Kirchhof et al [135, 149] 

show however, that all co-dopants caused higher diffusion rates for germania. This 

would speak against the hypothesis of the impurity diffusion effect.  
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It seems most likely that the reduced diffusion in the outer layer is due to the diffusion 

coefficient being concentration dependent. At lower germanium concentration the 

diffusion coefficient would be lower resulting in a less diffused profile as observed in 

the experiments. To verify this a number of experiments would be required, where for 

example fibres with different Ge concentrations are heated at various temperatures and 

the diffusion measured. This will be left for future studies. In the following diffusion 

simulations the diffusion coefficient is assumed independent of concentrations and 

coefficients for Arrhenius equation are those that matched the experiments at 20-

30mol% GeO2 concentrations. 

 

6.4.3 Diffusion along the neck-down 

In order to determine where most of the diffusion occurs in the neck-down region, 

diffusion was calculated at three positions along the neck-down. Figure 6-36 shows the 

resulting dopant profiles scaled to fibre dimension for neck-down diameters 17, 8 and 

2mm, where 17mm is the preform diameter. For each position the initial profile was 

assumed to be that of a step-index core and only diffusion at that position was taken 

into account. Temperature was assumed to be 2000°C and fibre draw speed 10m/min. 

The differences in speed resulting from the neck-down process were calculated for 

fixed fibre draw speed. Although the preform is exposed to the high temperature longer 

than other parts of the neck-down the diffusion is insignificant due to the long radial 

distance. However, significant change to the profile can be seen in the 8 and 2mm neck-

down positions.  
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Figure 6-36. Diffusion of  Ge (simulation) during the neck-down for draw speed 10m/min and 

draw temperature 2000°C.  
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Figure 6-37. (a) Diffusion of Ge (simulation) during fibre drawing stage after neck-down for 

~5.4µm diameter doped core, (b) diffusion in a 0.5µm narrow doped ring for similar conditions 

 

Figure 6-37 shows the diffusion simulation result for a fibre with a ~3µm radius core. 

The diffusion was calculated for a fibre only. The initial profile was chosen to represent 

the already diffused profile to reflect the diffusion from the neck-down. Slight 

broadening of the profile is observed and it can be concluded that most of the diffusion 

occurs in the neck-down region of the fibre draw and cannot be omitted when 

estimating diffusion.  

 

6.4.4 Effect of different draw conditions on germanium diffusion 

The effect of various draw conditions on diffusion was studied for a step index profile 

using the thermal history data computed in Sections 6.3.1 to 6.3.5. A high NA fibre 

design was chosen to maximise the diffusion effect. The GeO2 concentration of the 

core was taken as 35 mol% and core diameter 3µm chosen. This design is applicable in 

high NA Ge-doped fibres where high non-linearities are required. 

 

The diffusion at different furnace temperature and draw speeds is shown in Figure 6-38 

and Figure 6-39. The parameter range is typical for specialty fibre drawing thus the 

resulting diffusion would represent the maximum change expected during draw. As 

expected higher furnace temperature and slower speed increase the degree of diffusion. 

The relative effects of change in draw speed and temperature are comparable in 

magnitude. In order to minimise diffusion, the fibres should be drawn at lower 
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temperatures and higher speeds. Frequently fibres are drawn at a specific tension, which 

is kept constant from draw to draw. This is good practice since it gives more accurate 

measurement of glass temperature than the furnace element temperature. It must be 

noted however that diffusion is also affected by the neck-down shape and drawing 

speed and thus tension may not be an appropriate indication for diffusion at least on its 

own. To demonstrate that it may be possible to have more diffusion at higher tension 

two simulation results are shown in Figure 6-40. The fibre which has been drawn at 

higher tension diffuses more. Note that different maximum glass temperature and draw 

speed were used for each simulation. The increased diffusion in the higher tension draw 

results from the significantly smaller draw speed which increases exposure time of the 

preform and fibre in the hot-zone. 
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Figure 6-38. The effect of drawing temperature (simulated) on Ge-diffusion in a high NA fibre. 
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Figure 6-39. The effect of draw speed on Ge-diffusion (simulated). 
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Figure 6-40. Example of a case (simulated) where higher tension resulted in increased diffusion. 

 

The effect of preform diameter on diffusion is shown in Figure 6-41. The draw speed 

(0.4m/s) and the maximum glass temperature were kept constant (1980°C). Due to 

changed preform diameter the corresponding preform feed rate was decreased for the 

larger preform and the temperature profile changed accordingly, Figure 6-13. The 

temperature profile in the neck-down region, where most diffusion occurs, is very 

similar and no significant differences in diffusion are found. 
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It was shown in Section 6.3.5 that furnace design had a significant effect on the 

temperature profiles of the preform and fibre. Diffusion simulations for fibres drawn in 

the different furnaces are shown in Figure 6-42. Furnace temperature, draw speed and 

preform and fibre diameter were same for both cases. The fibre drawn in Furnace A 

diffused more. This is explained by the longer hot-zone of Furnace A which alters the 

temperature profile along the neck-down to enhance diffusion, Section 6.4.3.  
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Figure 6-41. Effect of preform diameter (simulated) on Ge-diffusion in fibre drawing. 
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Figure 6-42. Effect of furnace geometry (simulated) on Ge-diffusion in fibre drawing  
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6.4.5 An example of diffusion effect on dispersion 

As an example to illustrate how dopant diffusion during drawing can affect the optical 

properties of the fibre, dopant diffusion was simulated for a NZ-DSF resembling 

Corning's LEAF fibre. LEAF fibre is designed to give large effective area (~72µm2) by 

introducing a ring with increased RI surrounding the core. The large effective area 

reduces significantly the non-linearity of the fibre. The concentration profile was 

simplified and assumed to be a binary mixture of SiO2 and GeO2. The draw conditions 

were chosen to enhance the degree of diffusion. Draw temperature of 2050°C, draw 

speed 10m/min, preform diameter 16mm and fibre diameter 125µm were used. Figure 

6-43 shows the profile before (scaled to fibre dimensions) and after draw.  

 

The dispersion was then simulated for both of the profiles, see Figure 6-44. The 

computational technique used is described in Ref. [238]. There is about 10% change in 

dispersion for the diffused fibre, and the dispersion slope is only slightly modified. The 

zero dispersion wavelength is shifted from 1458nm to 1451nm. The difference is 

insignificant for this type of fibre. However, it can be seen that dopant diffusion will 

reduce the peak RI of both the core and the ring. For a highly doped non-linear 

dispersion shifted fibre with high dopant level and small effective area the diffusion 

effects would be further enhanced. In addition to this for these types of fibre (w-type) 

both change in the RI of the RI-increased and the RI-reduced ring and their ratio will 

significantly affect the dispersion properties [239]. 
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Figure 6-43. Simulated diffusion effect on the dopant concentration profile of a NZ-DSF. 
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Figure 6-44. Simulated diffusion effect on the dispersion of a NZ-DSF. Solid line is before the 

draw and broken like after the draw.   

 

 

 

6.4.6 Diffusion of other dopants in silica 

The focus of the diffusion simulations was on germanium diffusion in silica as it could 

be verified experimentally. The findings however also apply to other dopants and even 

impurity diffusion during drawing, although the magnitude of diffusion will depend on 

the particular diffusion parameters for that element. To summarise the diffusion effects 

of other dopants compared to that of germanium, Figure 6-45 shows the Arrhenius plot 

for various elements in silica found in literature. These values are also given in Section 

4.1.3. Within the temperature range typically used for drawing it can be said that boron 

diffusion would most likely show very similar behaviour for germanium. According to 

Ref. [127], phosphorus would not diffuse as readily and fluorine diffuses faster at 

drawing temperatures and this was also confirmed experimentally. If the activation 

energy in the Arrhenius equation is very different in the range of drawing temperatures, 

it is possible the relative importance of draw parameters to diffusion is changed. 
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Figure 6-45. Arrhenius plot for dopant diffusion in silica reported in literature, Na, Al [150], Ge,B 

[137], P [127], F [146] . 

6.5 Discussion 

A detailed numerical study of the transport phenomena in the fibre drawing process has 

been conducted. The heat transfer simulations showed that drawing parameters, 

preform structure and external factors such as furnace design affect the heat transfer 

and the resulting neck-down shape and temperature distribution in the preform and 

fibre. It was found that the draw speed and preform diameter had significant effects on 

radial and longitudinal temperature distributions, while change in the hot-zone 

temperature did not alter the shape of the longitudinal temperature profile and affected 

the radial surface-to-core temperature difference only slightly. 

 

As the furnace structure was included in the model, different structural designs could be 

compared. It was found that the furnace structure had major effects on both 

longitudinal and radial temperature distributions in the preform and fibre. The effect of 

a GeO2 doped core was found not to be significant and a similar size air core had only a 

slight effect on the temperature distribution. An air-silica layered structure, however, 

produced a different temperature distribution, where the air layers acted as insulators. It 

was also shown that depending on the air-fraction of an air-structured MPOF preform 

the preform heated either slower or faster than a solid preform, indicating the 

importance of the air-structure in heating schemes. Comparison simulations with a 

preform with an air-silica structure produced similar results except that the heating up 

was about five times faster compared to MPOF. 
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The results from the heat transfer simulations have been used to compute germanium 

diffusion during drawing. First the pre-exponential diffusion coefficient, D0, for 

germania in silica was determined from the experimental results using an activation 

energy of 310 kJ/mol taken from the literature [137]. It was found that this agreed with 

the value found by Yamada and Hanafusa [137] being 2.4×10-6 m2/s. It is also possible 

that the diffusion coefficient for germanium depends on concentration; however 

further studies are required to verify this. 

 

Diffusion was found to occur mostly in the neck-down region of the drawing process, 

although in the simulation some of the diffusion also occurred in the fibre. Furnace 

temperature and draw speed had comparable effects on diffusion, in that hotter 

temperatures and slower speeds resulted in greater degree of diffusion. The diameter of 

the preform was found not to affect diffusion significantly at slow speeds. The furnace 

structure was found to affect the magnitude of diffusion possibly due to a changed 

longitudinal temperature profile. To minimise diffusion low temperatures and high 

speeds should be used. This was also verified experimentally (see Chapter 4).  

 

The above general results also apply to other dopants in silica, however if the diffusion 

parameters are very different the relative importance of draw parameters could be 

different. It is also noted that since dopants have different diffusion characteristics and 

co-doping often affects these [135, 149] useful alteration of index profiles during 

drawing can be achieved by using several dopants to create the index profile. Once the 

diffusion characteristics are known for each species, simulations such as those carried 

out in this work can be made to determine optimal drawing conditions. It was also 

demonstrated how diffusion during drawing can alter the optical properties of the fibre 

such as dispersion. Although the altered dispersion characteristics were insignificant for 

the application of the NZ-DSF fibre (LEAF), non-linear fibres with small core size and 

high dopant concentration are expected to be more sensitive to such profile change.    

 

It is concluded that computational fluid dynamics provides a useful tool for 

investigating the complex heat and mass transfer processes during the specialty optical 

fibre fabrication process and that subsequent results give insight into the means by 

which optical properties can be changed during fibre drawing.   
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CHAPTER 7 CONCLUSIONS AND FURTHER WORK 

In this thesis changes during drawing in geometry of two different types of optical fibre 

have been studied, namely doped silica fibres and PCFs. In the more conventional silica 

optical fibres changes in dopant profile were investigated in germanium and fluorine 

doped silica preforms. Dopant mobility was studied by drawing preforms with different 

drawing conditions and analysing the dopant profiles before and after draw. Geometry 

control during drawing of PCFs was studied experimentally by drawing PCF preforms 

under different drawing conditions. The change in air-silica structural geometry was 

measured and related to the draw parameters. Numerical heat and mass transfer 

computations were used to complement the experimental studies. The effects of the 

different drawing parameters on diffusion were simulated for the doped preforms and 

the effects of the air-structure on heat transfer were studied in the case of PCF 

fabrication. 

 

7.1 Dopant diffusion during fibre drawing 

The experimental results showed that a change in dopant profile was induced in both 

germanium and fluorine doped fibres during drawing. Not surprisingly, the change was 

more noticeable at higher temperatures and at lower drawing speeds. Germanium 

diffusion during drawing has been observed in the past by Hersener et al [6], however 

claims that germanium does not diffuse during drawing have been published by Pugh et 

al [9] in a more recent study. Insuffucient details of the drawing conditions were given 

in either of these two studies to make further comparison with the findings in this 

thesis.  

 

Theoretical dopant diffusion computations were performed and agreed well with the 

experimental germanium and refractive index profiles of a 17mol% GeO2-doped ring in 

a multi-ring structured fibre. Germanium diffusivity was calculated based on this sample 

and is in agreement with measurements obtained by Yamada and Hanafusa [137]. Rings 

with lower concentration of GeO2 (8 and 4mol%) appeared to be less diffused than 

estimated by the computations. This could be due to a concentration dependent 

diffusion coefficient or a greater radial temperature gradient of the preform and fibre 

during drawing than was computed with the heat transfer calculations.  
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Fluorine diffusion was studied experimentally by drawing pure silica core multimode 

fibre with a fluorine-doped cladding. Results showed qualitatively that fluorine in the 

cladding appeared to migrate both into the pure silica core and outwards towards the 

cladding outer surface and be removed from the fibre at the surface. Quantitative 

results were not obtained as the reaction order for etching of fluorine doped silica was 

not available. The results however showed that both drawing temperature and preform 

feed rate had significant and comparable effects on fluorine diffusion, as predicted by 

the simulations for germanium dopant diffusion. 

 

The effects of different drawing parameters on diffusion were studied using numerical 

heat and mass transfer simulations and the diffusion coefficient determined for 

germanium in silica. The diffusion was found to occur mostly in the neck-down region. 

It was found that the extent of diffusion was governed both by temperature and 

preform feed speed, where hotter temperatures and slower feed speeds resulted in more 

diffusion. Preform diameter did not significantly affect the diffusion whereas the 

furnace structure was found to affect the magnitude of diffusion due to changed 

temperature profiles along the length of the preform and fibre. Diffusion during 

drawing has not been studied in detail in the past, however several heat transfer studies 

of the drawing process have been conducted. The effects of draw variables such as 

temperature, feed rate, preform diameter and furnace structure on the temperature 

distribution and neck-down shape generally agreed with the findings in this thesis.  

 

Although the findings agree with previously reported results where quantitative results 

are available and reasonable agreement between theory and experiments has been 

shown, there are some limitations to this study. Measurements of fibre dopant profiles 

posed a great challenge and eventually a relatively recent technique, employing etching 

and Atomic Force Microscopy, was chosen to profile the fibres. This technique offers 

spatial resolution previously inaccessible, but involves an etching step that complicates 

the interpretation of the results. Great care was taken to obtain reliable etching reaction 

data, however there is a possibility that drawing induced stresses and glass fictive 

temperature could increase the measurement error. The theoretical heat and mass 

transfer calculations are another possible source of inaccuracies in the determination of 

the Ge diffusion coefficient. The drawing process involves complicated and interrelated 
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heat transfer phenomena and some assumptions are always necessary in numerical 

computations. The computations were validated with experimental results when 

possible, but due to difficult measurement conditions the available validation data is 

limited.  

 

The drawing process has been optimised in the past for standard long-haul 

telecommunication fibre with a view to obtaining low transmission losses, high fibre 

strength and high production speed. For specialty fibres with high dopant concentration 

and multi-doped structures, diffusion effects cannot be ignored. Specialty fibres are 

frequently drawn at significantly lower drawing speeds and wider range of draw 

tensions, which further increase the likelihood of substantial diffusion effects. 

Combined with more stringent requirements for accurate profile control, it is essential 

to consider the draw conditions in terms of diffusion and other structural changes. 

Diffusion can be suppressed by using low draw temperatures and higher drawing 

speeds. The findings in this study also imply that draw tension, often used to establish 

proper drawing conditions, is not appropriate in diffusion control, but that both 

preform feed rate and draw temperature have to be considered. When diffusion 

parameters for all dopants in the fibre are known, diffusion during drawing can also be 

used to advantage. It is possible to induce a required refractive index profile change in 

the fibre during drawing by carefully adjusting the draw parameters and using a suitable 

initial preform profile. As short lengths of fibre are commonly used in specialty fibre 

products, the ability to produce fibres with varying profiles from one preform can be a 

great benefit to the manufacturer. 

 

In order to fully benefit from this study, detailed knowledge of the diffusion behaviour 

of various dopants must be known. The qualitative findings in this study can be applied 

to dopants other than germanium and fluorine, however once detailed diffusion 

parameters have been established, quantitative calculations can be made to achieve 

maximum advantage from diffusion control. Germanium diffusion was considered in 

greatest detail in this study and some evidence was obtained of a concentration 

dependent diffusion coefficient. Such behaviour has already been reported for dopants 

in silica [149]. Conclusive results were not obtained for germanium in this respect and 

further studies should be carried out. There are several studies of dopant diffusion in 

optical fibres, however these studies lack consistency in terms of heating methods and 
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measurement techniques employed. Often the exact fibre composition is not known, 

complicating the task even further. A study concentrating on dopant diffusion in silica 

as a physical phenomena, rather than from an application point of view, with carefully 

chosen heating methods and specifically manufactured preform and fibre samples, 

together with reliable measurement techniques would be highly desirable. To maximise 

success of a dopant diffusion study, processes that complicate such a study should be 

removed. For example by using large samples difficulties in chemical analysis could be 

avoided and by using an optimised furnace with proper on-line temperature 

measurements, the complications of application specific processes such as fusion 

splicing, tapering or drawing can be removed. Diffusion in preform and fibre samples 

could be studied separately to obtain data from draw induced structural effects. These 

studies would then complement the studies presented here on the drawing process.  

 

7.2 Control of photonic crystal fibre geometry during drawing 

The effects of various drawing parameters on the geometry of PCFs were studied and 

are reported in this thesis with a focus on controlling the structure during drawing. 

Drawing temperature, preform feed rate, preform internal pressure and preform 

structure were all found to have an effect on the hole dimensions. Draw temperature 

and preform feed rate had a comparable effect on the hole structure and a relatively 

large range of air-fractions could be fabricated by adjusting the temperature or the 

preform feed rate. The response of the hole diameter (whilst keeping the fibre diameter 

constant) to change in draw temperature was surprisingly similar to that seen in 

different preforms drawn at various speeds and diameters. A linear relationship was 

found in the fibre structures studied here when operating at a temperature range where 

holes were not collapsed more than 60-80%. In contrast, the response to change in 

preform feed rate was found to depend strongly on other draw conditions and the 

preform structure. Radial hole size gradient was also more pronounced with faster feed 

rates.  

 

A more modest change (but still about 1.5 times the hole diameter) in the air fraction 

was induced by a change in preform internal pressure. Despite the smaller change in 

hole size internal preform pressure was found to be a superior control mechanism in 

terms of response speed. Change in both draw temperature and preform feed rate took 

several minutes, if not tens of minutes, to stabilise whereas pressure change stabilised 
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significantly faster, enabling on-line control. Past literature recognises the use of draw 

temperature as the main control parameter for air-structures of PCFs, however no 

details are given. A theoretical study by Fitt et al [11] considered pressure control in 

capillary drawing but focussed on the upper (‘explosion’) and lower (total collapse) 

limits of pressure, not actual fine-tuning of the structures. Their study concluded that 

pressure might have limited use for control; this is in slight disagreement with the 

current study where pressure has been shown to be a useful control parameter. It is 

recommended here that drawing temperature is used as the means by which the hole 

dimensions are preset for the draw and preform feeding rates kept constant and in a 

suitable range from draw to draw. Preform internal pressure can then be used as an 

additional control whereby the fine-tuning of the hole size is obtained during the 

drawing.  

 

In addition to the experimental study the effect of the air-structure on heat transfer has 

been studied employing fluid dynamics computations. It was found that during drawing 

air-structures acted as heat barriers to radial heat transfer from surface to the core of 

the fibre. More detailed simulations on heating of air-structured preforms revealed that 

the preforms heated up either slower or faster than solid preforms depending on the 

air-fraction in the preform. This is an important finding and implies that when 

fabricating fibres with different air-structures the optimised drawing conditions must be 

carefully considered.  

 

As with the diffusion study there are limitations in the study of PCF drawing. Because 

of the great number of samples required for conducting the study, the majority of the 

fibre samples were measured using a relatively simple optical microscope available on-

site. This is reflected in the relatively large error bars in the figures and places 

constraints on interpretation of the trends. Availability of a more accurate technique 

such as AFM on-site would greatly help in conducting any further studies.  

 

Whereas drawing temperature measurement and preform feeding units are standard 

equipment in the drawing tower and known techniques are employed, preform internal 

pressure control systems are not available as standard on the drawing towers. Since 

there are several ways pressure can be controlled and various types of pressure sensors 
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and locations can be used, the results presented here may not apply to all pressure 

control systems. This should be kept in mind when applying the findings of this thesis.    

 

Due to the quite recent renewed interest into air-structures in optical fibres there are 

still plenty of areas requiring research and development in PCF fabrication. This thesis 

has studied the effects of the main draw parameters and focussed on  hexagonally 

packed hole structure in fibres with reasonably low air-fractions. Some fibre designs 

require much higher air-fractions (e.g. PBG fibres) and further study should be carried 

out with regard to fabrication of these types of fibres. On-line measurement of the hole 

structure should also be considered and would enable a more detailed investigation of 

geometry control of these fibres. Internal pressure control in the preform during 

drawing seems promising but further study should be undertaken into its effects on 

matters such as high frequency fluctuations and other structural changes (e.g. surface 

properties).  

 

Overall in this study, some of the key changes that can occur during drawing of 

specialty fibres have been identified. This is, I believe, the first comprehensive study of 

diffusion during fibre drawing and the first comprehensive study of effects of drawing 

parameters on PCFs. In conventional silica fibres dopant diffusion plays an important 

role and both germanium and fluorine diffusion were shown to alter the fibre profiles. 

Whilst diffusion can be minimised by low draw temperatures and fast drawing speeds, 

there is also a possibility to use dopant diffusion to advantage in creating modified 

profiles during drawing. In PCFs the drawing-induced changes are much greater due to 

the presence of a hole structure. It was shown that additional control mechanisms are 

required to fabricate geometries with high precision. More specifically, the preform 

internal pressure control was found to be suitable for fast on-line control and the 

drawing temperature was found to provide a constant hole size response in a relatively 

large draw condition space. Numerical simulations of the heat and mass transfer during 

drawing showed the importance of both draw temperature and preform feed rate on 

the transfer processes as well as the complex effect of preform air-fraction on the 

temperature profile. It is anticipated that the results presented in this thesis will be 

useful both in avoiding problems in fabrication of specialty fibres and in providing new 

controls for making better and novel fibres.  
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APPENDIX I:    STRESS-INDUCED INDEX PROFILE CHANGE 

This appendix presents a literature review of the stress-induced index profile change. 

 

1. INTRODUCTION 
As a result of the manufacturing of optical preforms and fibres thermal and mechanical 

stresses develop in the structure. For example when an optical preform with a core and 

a cladding is cooled down from the processing temperature, thermal stresses develop 

due to differences in thermal expansion coefficients of the core and the cladding, when 

one is doped more heavily than the other. Also differences in viscosity of the core and 

the cladding will create additional stresses as well as differences in Young’s modulus 

and Poisson’s ratio. Under these stresses the core and cladding can become optically 

anisotropic. This is known as stress birefringence or photo-elastic effect and is well 

understood and documented in the literature.  

 

Basically, under tensile stress the refractive index of the material will decrease and under 

compressive stress increase. Stresses resulting from manufacturing steps such as 

preform fabrication, fibre drawing and other thermal processing can be readily 

calculated based on structural mechanics [121, 240]. At first most of the studies were 

concentrating on the thermal stresses in optical preforms and fibres, but later it was 

realized that the drawing process introduced additional mechanical stresses which had a 

major effect on certain fibre structures and a number of studies resulted about 

mechanically induced residual stresses for different fibres.  

 

The three major stress-inducing mechanisms are 1) thermal stresses, 2) hydrostatic 

pressure, 3) mechanically induced stresses. Thermal stresses arise due to mismatch of 

expansion coefficients of different regions in the preforms and fibres. Thermal stresses 

arising from preform manufacture and fibre drawing are very similar and the same 

methods can be used to estimate them. For accurate estimations the different setting 

temperatures have to be taken into account [241]. Stresses due to hydrostatic pressure 

are generated in regions where certain material components behave elastically but 
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others are still fluid. If the core is still fluid when the cladding is solidified, the fluid core 

with no free surfaces exerts a hydrostatic tension on the cladding on cooling. 

Mechanically induced stresses are due to the drawing process, namely the drawing 

tension. Mechanically induced stress is related to cross-sectional areas, elastic moduli 

and viscosities of different regions in the fibre. When the pulling force is released a 

frozen-in stress remains. The final residual stresses in the fibre are the superposition of 

the stresses due to the above mechanisms. More details are given in [242] and [15].  

 

2. THERMAL STRESSES 
Based on thermal stress calculations in a simple fibre structure with core and cladding, 

Brugger [240] concluded that if the thermal expansivity of the core is much larger than 

that of the cladding the cut-off wavelength will be changed due to the stress effect on 

refractive index difference. By assuming constant material properties but differences in 

thermal expansion coefficients he obtained an equation to estimate the effect and 

concluded that unless the expansivities of the two media differ by a much larger 

amount than the refractive indices, the thermal stress effect can be neglected. This is 

true based on the assumption of the same material properties, other than expansion 

coefficient, of the two media. However if the setting temperatures, i.e. viscosities, are 

different for the two media then the solidification at different temperatures has to be 

taken into account.  

 

This was recognized by Scherer [243] who took into account in his thermal stress 

calculations the fact that the setting point, Ts, below which glass behaves elastically, is 

different for the core and the cladding. In a case where the core has a lower setting 

temperature it still remains fluid when the cladding sets. As the thermal expansion 

coefficient for fluid is about three times greater than for solid, additional stress develops 

in the core. Scherer [244, 245] and Scherer and Cooper [246] calculated thermal stresses 

taking into account the viscoelastic behaviour of the problem, where they also noted 

that for the fibre drawing process, due to cooling rates, fibres behave elastically at 

temperatures well above the annealing range. Scherers analysis [244] for graded index 

fibres showed that as a result of the core setting later than the cladding the axial stresses 

increase less than for the fully elastic case, but that radial and circumferential stresses 

are greater. For step index fibres he concluded` that as the stresses start to develop as 
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early as 600°C before the annealing point, the real stresses would be 20-50% larger than 

those calculated in his analysis.  

 

The effect of different dopants was also studied by Scherer [245] based on differences 

in thermal expansion coefficient. In his analysis he concluded that thermal stresses are 

higher in P2O5 doped fibres compared to GeO2 doped glass due to two factors a) the 

thermal expansion coefficient is larger for P2O5-doped fibres when the refractive index 

is matched to be the same as in GeO2 doped fibres and b) doping with P2O5 reduces the 

setting temperature rapidly while GeO2 has little effect. Both of the above mentioned 

causes, Scherer reports, also apply for B2O3 doped regions, thus concluding that thermal 

stresses in a GeO2 doped core are minimized by having a B2O3 –doped ring 

surrounding the core.  

 

A measurement technique for measuring stresses in optical preforms and fibres was 

presented by Chu and Whitbread [247]. They measured the retardation of the 

components of the polarized light ray emerging from the preform or fibre in an index 

matching fluid. For the measurements of thermal stresses they used two preforms, one 

having a P2O5 doped core and the other a GeO2 doped core surrounded by a B2O3 

doped ring, both manufactured by the MCVD process. For both cases the thermal 

stresses were compressive for the cladding, while the cores and the ring had tensile 

stresses. Stress measurements were also conducted by Bachmann et al [248] who used 

the same measurement technique as describe by Chu and Whitbread [247]. In their 

study they found that thermal stresses due to GeO2 doping increased linearly as the 

doping level increased, however for fluorine they reported a non-linear behaviour which 

they believed to be due to a complex relationship between thermal expansion 

coefficient of fluorine doped silica, temperature and concentration. 

 

3. Mechanical stresses 

The first studies of drawing-induced residual stresses in optical fibres were done for 

fibres manufactured with rod in tube method. Paek and Kurkjian [15] and then later 

Rongved, Kurkjian and Geyling [249] studied the fibre drawing effect on stresses for 

clad fibres with harder core and softer outer cladding. Paek and Kurkjian [15] showed 

that by drawing (18m/min) fibres at different pulling tensions, 4-80g, the residual 

stresses in the cladding changed from compressive to tensile or the opposite if cladding-
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core materials were switched. Their experiment showed that the mechanically induced 

stresses are significant and cannot be neglected.  

 

Based on a similar analysis, compressive cladding stresses were studied by Rongved, 

Kurkjian and Geyling [249]. The motivation for their study was to enhance the 

compressive cladding residual stresses in the fibre in order to improve its mechanical 

properties. They concluded that in order to maximise mechanically induced stresses the 

pulling force must be large or the viscosity difference between the core and the cladding 

be large. In addition to structural analysis they measured axial stresses in fibres using a 

polariscope to determine the relative retardation for a ray normal to the fibre axis and 

tangential to the core. Their fibre design had a silica core of 110µm with a 4µm 

borosilicate cladding and the pulling tension used was very high, 680g. In their analysis 

the different setting temperatures of the core and cladding were not taken into account 

but the annealing temperature of the softer glass was used as was the case in reference 

[15].  

 

Residual stresses in a single mode silica core fibre were studied by Hibino et al [250-

252]. Their fibre had a pure silica core with a fluorine doped cladding. The fibre was 

drawn with low tension of 5g and high tension of 85g at draw speed of 30m/min. The 

residual stresses in fibres were measured by photoelastic CT (computer tomography) 

method and refractive index measurements were also conducted. Their stress analysis 

assumed that the thermal stresses can be neglected due to the small cross-sectional area 

of the core. They also assumed that the radial refractive index change is mainly due to 

the axial stress. This is true when radial and hoop stresses are much smaller than the 

axial stress. Their refractive index profile comparison of the fibres showed a 50% 

decrease in the refractive index difference of the core and the cladding for the fibre 

pulled at 85g tension compared to the one pulled at 5g tension. The calculated and 

measured residual stresses show a much higher tensile stress in the core, which causes 

the decreased refractive index of the core. To check this, the fibres were annealed and it 

was reported that the additional tensile stress in the core was released after 10min at 

1000°C. The cut-off wavelength was also measured for the two fibres and showed a 

decrease from 1400nm to 900nm when the pulling tension was increased from 16g to 

80g [251]. This behaviour was reported to be similar to fibres with different fluorine 

concentrations, the cut-off decrease rate being similar with increased tension. They also 
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measured a GeO2 doped fibre and found no cut-off shift in a range of 16 to 80g. In 

another publication by Hibino et al [252] they propose a new evaluation of residual 

stresses and viscosity from Brillouin gain spectra.  

 

Fibres with doped cores were studied by other groups. Chu and Whitbread [247] 

measured stresses in fibres. Their fibre design had a GeO2 doped core surrounded by a 

B2O3 doped ring made by the MCVD process. The preforms were drawn with 32g 

tension and Chu and Whitbread found that the cladding stress had changed from 

compressive to tensile due to pulling-induced stresses. The average stress in the core 

was changed from tensile to compressive. Due to the more viscous cladding, it absorbs 

most of the stresses from pulling and when these are relieved the core stresses become 

compressive to comply with the equilibrium condition in the fibre.  

 

Bachmann et al [242] studied two different fibre designs, one with a GeO2 doped core 

where the doping level was changed gradually but in a few steps, and another with a 

fluorine doped core. In both cases the viscosity was lower in the core as opposed to the 

previously mentioned studies. Thermal stresses in the preforms were earlier published 

in Ref. [248]. Their structural analysis assumed constant setting temperature and 

Young’s modulus and Poisson’s ratio were kept constant. However their analysis was 

more complicated as they took into account not two but N number of layers in a fibre. 

In their experiments they drew fibres with different dopant concentrations at 5-

60m/min and 1900-2100°C temperatures and changed the drawing tension between 5-

100g. They concluded from measurements and analysis that the stress levels in different 

layers were constant thus representing the refractive index profile plot, i.e. if 

concentration was constant with radius, then stress level was constant for that region. 

The stress was found to change linearly with draw tension, such that in the cladding the 

stress increased when pulling tension was increased, causing the compressive cladding 

stress to change to tensile for high pulling tensions. For the core this was the opposite. 

This behaviour was the same for all concentrations. They also found that the stress was 

only dependent on draw tension and not temperature. GeO2 doped core fibres were 

also studied by Tajima et al [253], who measured the viscosities of Ge-doped fibres in 

order to produce viscosity matched fibres to avoid residual stresses from the drawing 

process.  
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For F-doped fibres, Bachmann et al [242] found that the drawing process always 

enhanced the stress difference between F-doped material and the quartz substrate tube. 

The behaviour of stress with F concentrations was not however linear and Bachmann et 

al [242] suggested a concentration dependent hysteresis of the thermal expansion 

coefficient of fluorine doped glass. The results might however be also due to the fact 

that Young’s modulus of fluorine doped silica shows a non-linear decrease as a function 

of fluorine concentration as measured by Hibino et al [251]. 

 

A more complex fibre structure was studied by Hermann et al [254].  They studied a 

dispersion flattened single mode fibre drawn at different tensions. The fibre had a GeO2 

doped core surrounded by alternating fluorine and GeO2 doped rings. Refractive index 

profile measurements were done for both preforms (York P102) and fibres (RNF 

technique) to observe the stress induced refractive index change. The measurement set-

up for fibre refractive index profiling caused limitations on resolution and thus only 

effects on cladding vs. substrate tube were studied. The fibres were drawn at tensions of 

50g, 120g and 240g. They concluded that the cladding to substrate tube refractive index 

difference increased, changing from negative to positive for higher tensions. The stress 

measurements showed that the tensile stress in the substrate tube increased with the 

draw force while the core and the cladding became more compressive. This was due to 

the substrate tube taking most of the draw force as the core and the cladding were still 

fluid. 

 

The effects of depressed inner cladding on residual stresses in the core were studied by 

Park et al [241]. The fibre had a GeO2 doped core with fluorine doped inner cladding. 

In their structural analysis they took into account the different setting temperatures of 

each layer when evaluating the thermal stresses. They concluded that the depressed 

inner cladding did not have a substantial effect on the stresses in the core. 

Unfortunately they could not measure the drawing induced mechanical stresses due to 

resolution limitations on their measurement equipment.    

 

All the above-mentioned studies used fibre design with cylindrically symmetric profiles. 

Stress-induced birefringent single-mode fibres are made by introducing asymmetry in 

the fibre. Especially fibres with two refractive index pits in either side of the core and 

elliptical core designs have been of special interest in structural stress calculations. The 
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first such calculation was published by Okamoto et al [255]. As the fibre structures were 

not cylindrically symmetric, analytical methods could not be used, thus the finite 

element method was used in their calculations. In their analysis they calculated modal 

birefringence in elliptical core fibres as a function of ellipticity. For elliptical core fibres 

they concluded that for small refractive index differences (0.2-0.4%) the stress induced 

birefringence was greater than the geometrical anisotropy, however, for index 

differences higher than 1.5% the geometrical anisotropy becomes greater than the stress 

induced. They also analysed the so called side-pit fibre which had P-doped core with B-

doped side pits and concluded that the numerical results agreed well with measured 

results.  

 

Later on Hayata et al [256, 257] used a similar finite element method to analyse a bow-

tie fibre. In addition to thermal residual stress calculations they also did a modal analysis 

of the fibre. Elliptical core and bow-tie fibres were also studied by Wong [258] who 

considered the effects of different fictive temperatures of the different regions in the 

fibres. Stress analysis is widely used in other industries and a multitude of commercial 

calculation packages can nowadays be bought to analyse e.g. thermal or load induced 

stresses.  

 

There are some other publications not so relevant but closely relating to drawing and 

optical fibres. For example stress analysis has been used in optimisation of coating 

properties of optical fibres [259] and drawing of polymer optical fibres [260]. Stresses 

induced in fluoride glasses during drawing have been studied [261] and stress induced 

changes from diametral stress in optical fibres have been reported in Ref. [262].     
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APPENDIX II:    TRANSMISSION ELECTRON MICROSCOPY 

SPECIMEN PREPARATION 

The following describes a detailed preparation of TEM specimens from optical fibres 

developed by Mr Adam Sikorksi of the Electron Microscopy Unit (EMU), the 

University of Sydney and is modified from the Ref. [263]. 

 

1. BACKGROUND 
Conventional cross-sectional methods of preparation are not suitable due to the 

geometry of the specimens and the small size of the core. Another option would be to 

use a Focused Ion Beam (FIB) system, which has been very successful in a number of 

difficult specimen preparation situations. However, preparing specimens < 100 nm in 

thickness and suitable for high resolution compositional analysis is very difficult with 

FIB, primarily because of the surface damage layers produced by the implantation of 

the Ga ions. In this work we apply tripod polishing, a method mainly used for site-

specific specimen preparation in the semiconductor industry, to prepare thin cross 

sectional specimens of optical fibres. 

 

2. METHOD 
One approach to preparing a cross-section specimen would be to prepare a specimen 

from a single fibre. However, due to the small size of the fibres, handling of one piece 

is quite difficult. In this work we built a block with several pieces of fibre sandwiched 

between supporting pieces of Si wafer. This block was then tripod polished, ensuring 

the cross-section passed through the central 3µm core. Final ion milling to electron 

transparency was done with a Gatan precision ion polishing system16 (PIPS). The flow 

chart in Figure 1 shows the major steps in going from the as-given optical fibre to a 

final longitude cross-section specimen ready for TEM and suitable for high-resolution 

microanalysis. Each step is described in detail below. 

 

 

 

                                                 
16 Ar ions are used in PIPS. 
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Figure 1. Flow chart of specimen preparation. 

 

1. Remove acrylic coat. The acrylic coating was removed by simply soaking in 

acetone for 10 minutes and then removing by hand. Sectioning of small pieces 

was done with a razor blade.  

2. Build the block. Next, a block was built containing several fibres sandwiched 

between 2mm x 2mm x 0.5mm Si pieces, cleaved from an Si wafer (see Figure 

2). The block was bonded together using G1 epoxy, cured at 800°C for 20 

min. After the block was completed the front and back of the block were 

ground and polished. A smooth face is important in the later steps as it helps 

to monitor the progress of further grinding. At this stage diamond papers of 

30, 9, 3, 1µm were used progressively and the specimen was fixed on the 

tripod polisher stage with crystal bond glue (melting point 1200°C) on a hot 

plate. 

Si 

Si 

 

Figure 2. Optical fibres sandwiched between silicon wafers and bonded in G1 glue. 

 

3. Grind and polish first side. The specimen was then removed from the 

tripod polisher stage and reattached with Si wafer down. The tripod polisher 

legs are adjusted so that the specimen surface is in the same plane as the legs. 

This is done by placing the tripod polisher, specimen down, on a glass plate 

and adjusting the legs until there are no gaps between the surface of the 

specimen and the glass plate. The tripod legs are then turned by 15 microns in 

  

  
TEM  
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acrylic coat 
and section 
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block and 
grind face 
and back 

Grind and 
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Ion beam 
thinning 
PIPS 



 265

opposite directions. This means that when the specimen is ground it will be 

ground at an angle to produce a wedge, see Figures 3. The specimen is then 

ground and polished with diamond papers as before, monitoring progress 

with an optical microscope, until the core is reached. 

0.5° 

 

Figure 3. Wedge angle on specimen after legs on tripod are adjusted for angled grinding.  

 

4. Grind and polish second side. The specimen was removed from the tripod 

stage using a hot plate and carefully cleaned in acetone before proceeding. 

During polishing of the second side, the specimen becomes very thin and 

prone to fracture. It has been found that gluing the specimen on a piece of Si, 

rather than directly on the Pyrex tripod stage, makes polishing of the second 

side easier. The Si base is actually ground as part of the wedge and, as it is 

much easier to grind Si than Pyrex, it seems to protect the thin specimen, 

causing less fracture. A piece of Si wafer, 5 mm x5 mm x 0.5 mm, was 

attached to the tripod stage with superglue. After 10 min the superglue had set 

sufficiently to hold the Si. The tripod stage, with the Si on the top, was then 

fixed in the tripod polisher. Alignment was done on the glass plate to give one 

plane between the Si top surface and the back tripod legs, as was done with 

the first side. The Si was ground with 30µm diamond paper until the entire 

surface of the Si had been ground. A thin layer of superglue was applied to the 

Si and the specimen fixed, with the previously polished side down (Figure 4), 

and left overnight to ensure the superglue is completely set. The tripod 

polisher legs are turned 30µm in opposite directions to produce a wedge 

shape on the specimen during grinding, see Figure 4. Grinding and polishing 

of the second side is done, using on 30, 9, 3, 1µm diamond papers, until the 

3µm core was reached. The final thickness of the sample was around 5-10µm. 
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pyrex specimen stage

Si 
b

polished  
first side 

Si
0.5° 

1° 

 

Figure 4. Wedge angle on specimen for angled grinding of second side after adjustment of tripod 

polisher legs. 

 

5. Removing specimen from tripod stage. After the second side is completed 

the specimen is very thin and breaks easily when removed from the stage. To 

protect the specimen from damage and to ease handling, a Cu “notched” slot 

grid was fixed to the specimen before removal. Notched Cu grids are a Cu-Be 

alloy, are twice the thickness of regular grids and can be easily cut. Before 

attaching the grid, the specimen is thoroughly cleaned in ethanol and a thin 

layer of superglue applied around the specimen to fill in any gaps and left for 

15min to dry. The grid was cut to open it up on one side to face the ion guns 

during ion milling. A small amount of M-bond 610 epoxy was applied to the 

specimen, the grid fixed to the top, and then cured at 100°C for 20min. After 

curing, the specimen was placed in an acetone bath, for several hours or 

overnight, to separate the specimen with the attached grid from the Si and 

Pyrex stage. 

6. Ion beam thinning. The PIPS was then used for final thinning to electron 

transparency. The milling was done using single sided modulation with the 

guns set with one at +8° and the other at -8°. Milling was done at 4 kV and 

with a stage rotation of 3 rpm. Final milling took around 4 hours.  
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APPENDIX III:    MATERIAL PARAMETERS FOR SILICA AND 

VIEW FACTOR CALCULATIONS 

1. MATERIAL PARAMETERS 
See Table 6-1 on page 184 for nomenclature. 

Table 1. Material properties 

Properties Glass Gas [264] Graphite Insulation 
Density ρ [kg/m3]  2200 0.4 2250 2200 
Conductivity k [W/mK] Eq.(51) Eq. (55) 20.0 1.0 
Heat capacity cP [[J/kgK] Eq.(50) 520 2000 1000 
Emissivity ε  Eq. (53) N/A 0.9 0.9 

 

Viscosity of silica [188]: 

 

269007.24
10 Tµ

⎛ ⎞
⎜ ⎟
⎝ ⎠
− +

=       (49) 
 

 

Specific heat capacity of silica [188]: 

 

( )0.11945 0.0031350.0 1p
Tc e −= −     (50) 

 

 

Heat conductivity of silica: 
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where an, b, and c are fitted constants [195]. The following values were used:  
11 9 4

1 2 3

4
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d is calculated from Equation (52) as presented in Equation (32), [14]. 
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The average absorption coefficient, α, 4cm-1 was used [184]. Emissivity for glass 

depends on the preform/fibre radius [184].  

 
( )( )1.2 2.0 400.00.885 1 reε − × × ×= × −     (53) 

 

For the 20 mol% GeO2 doped core specific heat capacity is [265]: 

 

( )
( )

0.11945 0.003

0.454 0.002

0.8 1350.0 1

0.2 770.0 1

p
T

T

c e

e

−

− −

= × −

+ × −
    (54) 

 
and density, ρ = 2150 kg/m3 [118]. Heat conductivity was taken as that of silica, as no 

material data was found for GeO2 doped silica. 

 

Heat conductivity for gas [264]: 

 
9 2 5 38.0 10 4.7 10 4.8 10k T T− − −= − × + × + ×    (55) 

 

2. GEBHARDT AND VIEW FACTORS 
Gebhardt factors shown in Equation (41) can be computed from Equation (56) 

 
1( ( ) )G F I I E F E−= − −      (56) 

 

where F is the view factor matrix and E a diagonal matrix of surface emissivities. A 

view factor between two surface patches of a geometrical model is defined as 

 

2

cos cos1
i j

i j
ij ij j iA A

i

F H dA dA
A s

θ θ
π

= ∫ ∫     (57) 

 
where A is area of the patch i or j and θi  and θj the angles between the normals of the 

surfaces at given points and s the distance between the points. Hij is the visibility 

function and shading is taken into account. 
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APPENDIX IV:    HEAT TRANSFER EXPERIMENT WITH 

MPOF PREFORM  

The following text is an extract from Ref. [266] by Lyytikäinen et al. The 

experimental work was carried out by J. Zagari at OFTC, and was part of his M.Sc. 

[267] for the University of Sydney. 

 

In order to validate the heat transfer modelling work in Section 6.3.7, experiments 

were conducted with MPOF preforms. These preforms were prepared from a 5cm 

diameter piece of extruded PMMA with a length of 140mm. Both a solid and an air-

structured preform were used. The air-structure was the same as that for Preform A 

shown in Figure 6-21 with 2mm diameter holes extending throughout the entire 

length. A convection type furnace was used in these experiments, with the preform 

suspended in a metal cylinder hung within the furnace chamber and hot air blown in 

via a ring of holes situated near the centre of the metal cylinder, Figure 1(a). T-type 

thermocouples were embedded in the preform to measure the temperature at 

various positions during the heating-up process, see Figure 1(b). The thermocouple 

holes extended down some 70mm to the position of the ‘hot-zone’ created by the 

hot air inlets. The airflow through the holes was restricted by blocking them at both 

ends of the preform. The heating was very efficient in that the furnace air 

temperature reached its set value in two minutes, from room temperature. A 

temperature lower than the usual PMMA draw temperature was used so that the 

preform did not deform while being heated. The oven temperature was set at 130°C 

while the preform was heated up over a period of two hours.  

 
(a)        (b) 

Figure 1. (a) Heating experiment set-up, preform inside the furnace. (b) Cross-section of the 

preform showing thermocouple positions (filled circles).  
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Figure 2 shows a comparison between simulated and measured data for air-

structured Preform A at a position 2mm from the preform surface and in the centre 

of the rod. In the initial modelling work radiative heat transfer from the surface was 

ignored, however it soon became apparent that this mode of heat transfer could not 

be omitted. After inclusion of the thermal radiation term, the simulated 

temperatures showed good agreement with the measured values. Again it must be 

noted that the thermal conductivity of the polymer was adjusted such that the 

simulated data (after radiative heat transfer was included) matched the experimental 

data as closely as possible. No other parameters were adjusted. The measured 

temperatures steadied out to a lower temperature than the oven air temperature, as 

can be seen from Figure 2. This was felt to be due to the finite length of the 

preform, which was not taken into account in the simulations that assumed an 

infinitely long cylinder. 

 

Figure 2. Measured vs. simulated data for MPOF preform. 

 

Figure 3 shows temperature contour plots at 2, 3 and 4hr from an axisymmetric 

model, where the finite length of the preform was taken into account [266]. As can 

be seen from Figure 3 there is hardly any change between 3 and 4hr of heating while 

the top half of the preform has steadied out to a lower temperature than the furnace 

temperature of 130°C. These simulation results showed that the measured lower 

steady-state temperature was almost certainly due to heat loss from the preform top 

end which was exposed to a lower air temperature. The initial heating-up phase (that 
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is, well before the temperatures began to approach their equilibrium values), 

however, agreed well with the two-dimensional infinite cylinder model, which could 

thus be used to study the effect of air structures on heat transfer in MPOF’s. 

 

 

Figure 3. Temperature contour plot of the axisymmetric model after 2, 3 and 4 hr of heating.  
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APPENDIX V:    DIFFUSION COMPUTATIONS 

The diffusion problem involved solving the partial differential equation (47) 

numerically. The equation is coupled to the temperature via the temperature 

dependence of the diffusion coefficient, Equation (48). Diffusion was assumed to 

occur only in the radial direction and so a 1-dimensional cylindrical equation can be 

used. The differential diffusion equation was converted into an approximate finite-

difference equation. The algorithm is derived by expanding c(r, t+∆t) and c(r+∆r, t) 

in a Taylor series. The program was written in FORTRAN77 using an example code 

eqheat.f from Landau [268], as a starting point. An analytical solution to a steady-

state cylindrical 1D diffusion equation with constant diffusion coefficient, constant 

“dopant source” in the middle and zero concentration on the surface [121] was used 

to verify the code. 

 

The list below describes the calculation sequence of the program. 

 

 

 

1. Define material parameters for Arrhenius equation 

2. Define computational parameters e.g. ∆r, ∆t 

4. Define initial concentration profile and boundary conditions 

5. Loop over z (longitudinal sections) 

• Read fibre temperature, draw speed and radius for zi –
position 

• Calculate diffusion coefficient and maximum number of 
time iterations from glass velocity, ∆z and ∆t 

6. Loop over time 

 7. Loop over space 

• Calculate new concentration profile 

8. Recycle values, new becomes old 

9. Stop after max number of iterations done 

10. Calculate scaling factor for profile (as preform necks-down) 

11. Stop after all z done. 
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