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ABSTRACT 

 

Four tumour active trinuclear complexes: DH4Cl: [{trans-PtCl(NH3)2}2µ-{trans-

Pd(NH3)2(H2N(CH2)4NH2)2]Cl4, DH5Cl: [{trans-PtCl(NH3)2}2µ-{trans-

Pd(NH3)2(H2N(CH2)5NH2)2]Cl4, DH6Cl: [{trans-PtCl(NH3)2}2µ-{trans-

Pd(NH3)2(H2N(CH2)6NH2)2]Cl4,  DH7Cl: [{trans-PtCl(NH3)2}2µ-{trans-Pd(NH3)2-

(H2N(CH2)7NH2)2]Cl4 and one dinuclear complex DHD: [{trans-PtCl(NH3)2}µ-

{H2N(CH2)6NH2}{trans-PdCl(NH3)2]Cl(NO3), have been prepared and characterised based 

on elemental analyses, IR, Raman, mass and 1H NMR spectral measurements. For the 

trinuclear complexes, the synthesis has been carried out using a step-up method branching 

out from the central palladium unit. A purity of about 95% has been obtained by repeated 

dissolution and precipitation. The activity against human cancer cell lines including ovary 

cell lines:  A2780, A2780cisR, A2780ZD0473R, non small lung cell line: NCI-H640 and 

melanoma: Me-10538 have been determined based on MMT assay. Cell uptakes, DNA-

binding have been determined for ovary cell lines:  A2780, A2780cisR.  The nature of 

interaction with pBR322 plasmid DNA and ssDNA has been studied for trinuclear complexes 

DH4Cl, DH5Cl, DH6Cl and DH7Cl and the dinuclear complex DHD. Interaction of DH6Cl 

with adenine and guanine has also been studied by HPLC. The compounds are found to 

exhibit significant anticancer activity against cancer cell lines especially ovarian cancer cell 

lines: A2780, A2780cisR and A2780ZD0473R. DH6Cl in which the linking diamine has six 

carbon atoms is found to be the most active compound. As the number of carbon atoms in the 



 ix 

linking diamine is changed from the optimum value of six, the activity is found to decrease, 

illustrating the structure-activity relationship. The increase in uptake of the trinuclear 

complexes in A2780 cell line with the increase in size of the linking diamine coupled with 

the low molar conductivity values found for the solutions of the compounds suggest that the 

compounds would remain in solution as undissociated ‘molecules’ and hence could cross the 

cell membrane by passive diffusion. Much lower resistance factors for the all the 

multinuclear compounds including DHD as applied to A2780cisR cell line, as compared to 

that for cisplatin, suggest that the compounds are able to overcome multiple mechanisms of 

resistance operating in the cell line. All of the multinuclear complexes are expected to form 

long-range interstrand GG adducts with DNA, causing irreversible global changes in the 

DNA conformation but unlike cisplatin do not cause sufficient DNA bending to be 

recognized by HMG 1 protein. Increasing prevention of BamH1 digestion with the increase 

in concentration of the multinuclear compounds also provide support to the idea that the 

compounds because of the formation of a  plethora of interstrand GG adducts are able to 

cause irreversible changes in DNA conformation. The results of the study show that indeed 

new trinuclear tumour active compounds can be found by replacing the central platinum unit 

in BBR3464 with other suitable metal units. 
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CHAPTER ONE 

1. LITERATURE REVIEW 

1.1. INTRODUCTION 

1.1.1. CANCER 

Cancer may be defined as a disease or a group of diseases in which the cells divide and 

multiply without control, have the capacity to metastasise in the body, destroy healthy tissue, 

and endanger life (Salmon and Santorlli 1987; Cooper 1992a). It is one of the major causes of 

death in many countries of the world (McGrew and McGrew 1985; Salmon and Santorelli 

1987). 

A tumour or a neoplasm is any group of cells, which may be either benign or malignant 

(Cooper 1993). Neoplasms that have only the characteristic of encapsulated localized growth 

are classified as benign. On the other hand neoplasms with characteristics of invasiveness 

and the capacity to metastasise are classified as malignant (Calman et al. 1980). The term 

malignancy should be limited to refer to malignant neoplasm only (Pitot 1986). Thus only 

malignant tumours are called cancer.      

Diagnosis of cancer is achieved through the integration of clinical history, microscopic 

appearance of tumour including X-ray appearance in the case of bone and breast tumours and 

microscopic examination (Jass 1999). 
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Differential diagnosis of benign and malignant tumours usually involves obtaining a tissue 

specimen by biopsy surgical excision or exfoliative cytology. The commonly diagnosed 

cancers in men are prostate, lung, colon, urinary bladder and the most common cancers in 

women are the breast, colon, lung, and then the ovary and uterus.  

Cancer can be classified histologically into one of three main groups:  

Carcinomas: These are of endodermal or ectodermal origin and constitute approximately 

90% of all human cancers such as the lung, stomach and intestine or from glands such as the 

breast and prostate.  

Sarcomas: These are rare in human and begin in connective tissue such as muscle, bone, 

tendons and cartilage. 

Leukaemias and lymphomas: These constitute about 8% of all human cancers and arise from 

the blood forming cells and cells of lymph system (Calman et al. 1980; Murphy et al. 1997).    

Within cancers of the same organ there may be marked variations in the histological 

appearance. For example, lung cancer can be divided into adenocarcinomas, squamous 

carcinoma, small cell and large cell carcinomas. Skin cancers can be divided into basal cell 

carcinomas, squamous cell carcinomas and melanomas. 

Also there can be marked variations in the degree of cellular differentiation. Leukaemia 

commonly is one of four types: acute myelocytic leukaemia (AML) and chronic melocytic 

leukaemia (CML), acute lymphocytic leukaemia (ALL) and chronic lymphocytic leukaemia 

(CLL) (Ruddon 1995). These differences in histological classification and the degree of 
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cellular differentiation may determine the treatment protocol used, especially with 

chemotherapeutic agents. 

Cancers are also classified based on the extent of tumour progression. The classification is 

based on a system called TMN system developed by the International Union Against Cancer 

and American Joint Committee on Cancer. In the abbreviation ‘TMN’, T defines the primary 

tumour, N indicates the involvement of regional lymph nodes and M indicates the absence or 

presence of metastases (Rubin 1973; Rubin and Cooper 1993). The system describes how far 

cancer has spread anatomically, what is important in planning treatment and in evaluating 

result of treatment. 

An understanding of the normal cell cycle and behavior of cancerous cells is necessary in 

order to comprehend how chemotherapy destroys cells, in particular how compounds such as 

cisplatin effects the cancer cells in the dividing state.        

Normal cell cycle consists of two overall phases: division and interphase. Division comprises 

both nuclear division (mitosis M) and cell fission. Before cell division can occur, the cell 

must double its mass and duplicate all its contents. This period of growth in the cell cycle is 

referred to as interphase. Interphase makes up ninety percent of the total cell cycle and 

consists of three phases: gap phase G1 which is between M phase and S phase, a synthesis 

phase S in which the DNA content of the cell is doubled and the chromosomes are replicated 

and a second gap phase G2 which is between S phase and mitosis (Alberts 2002).  

1.1.2. CAUSES OF CANCER 

Some forms of cancer may be inherited; the defective genes are passed down from parents to 

their children (Stoler 1991; Cavenee and White 1995). Family history has long been 



 4 

recognized as an important risk factor for the majority of common cancer such as breast, 

colon, ovarian and prostate cancer (Phillips 1999). 

Some other cancers are caused by outside factors eg cigarette smoking.  Tobacco is estimated 

to be responsible for about 2.6% of total world burden of death (Bishop 1999a; Burton and 

Giles 1999) and a key factor in causing about 30% of all cancers (Pratt 1994). Smoking is a 

risk factor not only for lung cancer but also for cancers of mouth, pharynx, larynx, 

oesophagus, urinary bladder, pancreas, liver and kidney (Doll and Peto 1981; Doll 1996).    

Some other risk factors include unhealthy dietary habits (especially high fat intake and 

alcohol use), viral infection, ultraviolet radiation, exposure to large doses of radiation from 

medical X-rays, hormone replacement therapy and exposure to some chemicals such as 

arsenic, asbestos, nickel, chromium, cadmium and vinyl chloride.     

1.1.3. TREATMENT OF CANCER 

The principle in cancer treatment is to cure the cancer patient with minimal functional and 

structural impairment (Rubin et al. 1993). 

There are three main methods of cancer treatment, which are: (1) surgery, (2) radiation 

therapy and (3) chemotherapy.  The actual choice of the method of treatment depends on the 

type of cancer and its developmental stage.  

The rate of survival is better when the disease is localised to primary site. Once regional 

spread has occurred survival rate goes down, and decreases dramatically once distant 

metastasis has occurred (Pratt 1994). 
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Surgery in combination with radiation therapy and chemotherapy is still the best method of 

treatment in most of the cancer cases.    

1.1.3.1. SURGERY 

It is the first line treatment against cancer depending on its stage of development, location 

and type of the tumour. Surgical removal of the tumour at an early stage in the cancer often 

can cure it completely except for some tumour locations like brain tumour. Surgical resection 

of malignant primary tumour may cure or control the tumour depending on whether or not all 

of the cancer cells have been removed. 

Unfortunately, about 70% of cancers have already metastasized by the time of diagnosis and 

therefore cannot be cured by surgery alone (Cooper 1992b). In spite of that, surgery remains 

the most effective method of treatment for patients with solid tumour. 

1.1.3.2. RADIATION 

Radiation therapy involves the use of ionising radiation to kill cancerous cells. It is usually 

used for the treatment of localized tumours, both benign and malignant. The primary target of 

radiation is deoxyribonucleic acid (DNA) (Dizdaroglu 1992).  

This kind of therapy like chemotherapy does not have the ability to distinguish between the 

cancer cells and normal cells and because of that it shows significant toxicity.  

Radiation therapy can be used alone in different kinds of tumour including early stage head 

and neck cancers (Lee  et al. 1993), Hodgkin’s disease (Farah et al. 1988) and cervical cancer 

(Perez et al. 1986).  
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Radiation therapy has also been used in combination with surgery and/or chemotherapy to 

eliminate cancer cells that have invaded normal tissue post-operative or during surgery.  

The three treatment methods can be used together in many cases. A good example is locally 

advanced breast cancer (Bonadonna et al. 1990). In general, the effectiveness of radiation is 

enhanced when it is used in combination with either surgery or chemotherapy or both. A 

better example is cervix cancer where radiation plus cisplatin has improved survival for early 

stage cancer. 

1.1.3.3. CHEMOTHERAPY 

The modern chemotherapy treatment began in the late 1940s mainly with purine and 

pyrimidine analogues and the research in this area continues to provide the best action, more 

effective but less toxic drugs. Chemotherapy is different from surgery and radiation. It is a 

systemic treatment because the chemotherapy drugs enter the blood stream, are distributed 

throughout the body and can attack cancer cells wherever they are in the body. Numerous 

compounds have been developed, but at present there are only a limited number of anticancer 

drugs in clinical use. Cytotoxicity of these drugs is often due to the damage caused to DNA 

or interference with DNA synthesis. Most of the anticancer drugs that are in use today are 

non-selective in their mechanism of action (Ratain and Ewesuedo 1999). Often, they can 

have similar effects on both normal and cancer cells, thus producing a number of side-effects, 

which include nausea, vomiting, diarrhea, anaemia, ineffective blood clotting, suppression of 

immune system, hair loss and toxicity to specific organs such as kidney, bladder, liver and 

heart. Most of the side effects are dose dependant (Bishop 1999b). Notable examples of 

successes with chemotherapy include the treatment of Burkitt’s lymphoma, Hodgkin’s 
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disease, acute lymphocytic leukaemia, chorio carcinoma, ovarian cancer and testicular cancer 

(Cooper 1992b; Pratt 1994). 

Chemotherapy is often administered before or after local therapy with surgery or radiation. 

This form of therapy shows a definite benefit in a subset of patients with breast cancer and 

colorectal cancer (O'Connell et al. 1988). The use of two or more drugs with different 

mechanisms of action in combination offers a more effective method of treatment as it 

reduces the chances of the development of drug resistance (Wittes and Goldin 1986) which is 

one of the major problems in anticancer chemotherapy. Drug resistance is usually mediated 

through more than one pathways including gene amplification, dcreased drug uptake, 

increased efflux, detoxification and decreased engagement of apoptosis.  The selection of 

standard chemotherapy combination regimes to treat individual patients is based upon tumour 

histology and extent of disease (Chabner 1990). 

Anticancer drugs can be classified based on whether they interfere with DNA synthesis or 

cause damage to DNA. Anti-metabolite drugs interfere with DNA synthesis. Examples are 5-

fluorouracil, methotrexate and tomudex. Other drugs interfere with cell division. For 

example, L-asparaginase bacterial enzyme inhibits cell growth by depleting circulating L-

asparagin, thus inhibiting protein synthesis. Some other drugs, which act by damaging DNA, 

include alkylating agents such as cyclophosphamide, melphalan, and platinum compounds 

such as cisplatin and carboplatin (Miller et al. 1992; Clarke and Rivory 1999).  

 Drugs that interact with DNA can be divided into several classes based on the nature of 

interaction. Some drugs interact with DNA non-covalently such as intercalation (e.g. 

daunorubicin) or groove binding (e.g. distamycin A).  Some other drugs such as cisplatin and 
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mitomycin C form covalent adducts with DNA. A third class binds to DNA and subsequently 

causes the breakage of DNA backbone (e.g bleomycin) (Yang et al. 1999). 

Electrochemotherapy is a new method of treatment that consists of a combination of a 

chemotherapeutic agent and pulsed electric field. The electrical field destabilizes cell 

membranes, allowing increased movement of the molecules into the cell (Jaroszeski et al.  

1997; Heller et al. 1999).   

In addition to the three approaches to cancer treatment described above, there are a number 

of new treatment methods still under clinical trials. Two examples are immunotherapy and 

bone marrow transplants.  

1.1.4. STRACTURE OF DNA 

Since the subject of present research is platinum-based tumour active compounds that bind 

covalently with DNA (as a result of which DNA conformations are changed), it is 

appropriate to have a brief look at the structure of DNA. The word DNA stands for 

deoxyribonucleic acid. It is the molecule of heredity that stores the genetic information. It is a 

long molecule made by joining together of many deoxyribonucleotide subunits. Each 

nucleotide in DNA is composed of a molecule of 2’-deoxyribose (S), a nucleobase (NB), and 

an inorganic phosphate (P).  Figure 1.1 gives a symbolic representation of the structure of a 

nucleotide. 



 9 

 

 
      NB  
 
 
 
 
 

P   S  P 
 

Figure 1. 1  Representation of a nucleotide 

 

The four bases found in DNA are adenine (A), guanine (G), thymine (T) and cytosine (C). 

These are also known as nucleobases. Adenine and guanine are derivatives of purine whereas 

thymine and cytosine are derivatives of pyrimidine. The following figure gives the structures 

of purine and pyrimidine. 
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Figure 1. 2  Structures of purine and pyrimidine 
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The following figure gives the structures of adenine, guanine, thymine and cytosine. 
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CH3
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Figure 1. 3  The structures of adenine (A), guanine (G), thymine (T) and cytosine (C) 

 

In DNA, C1 of a 2’-deoxyribose is linked to N1 of a pyrimidine base or N9 of a purine base. 

A phosphate group joins two adjacent 2’-deoxyribose units by phosphodiester bonds. Each 

2’-deoxyribose in turn is joined to two phosphates through its C3’ and C5’ centres so that in 

each DNA strand the sugar at one end has 5’ hydroxyl group free and that at the other end 

has 3’ hydroxyl group free.  
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Figure 1. 4  Representation of a polynucleotide chain 

 

DNA usually exists in the form of a doub le helix in which two polynucleotide chains run in 

opposite directions. The bases in the double helix are always linked in pairs: adenine with 

thymine by two hydrogen bonds and guanine with cytosine by three hydrogen bonds (Figure 

1.5). 
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Figure 1. 5  The hydrogen bonding, between adenine and thymine, and between guanine and 
cytosine. 

 

DNA has been found to exist in a number of forms (A to E and Z). These forms are 

distinguished by a number of pa rameters: (1) the number of base pairs that occupy each turn 

of the helix, (2) the pitch or angle between each base pair, (3) the helical diameter and (4)-  

the handedness of double helix  (right or left). 

B form of DNA is most common. It exists as a right-handed double helix. It has a length of 

3.4 nm per turn and within a single turn 10 base pairs exist. The width is 2.0 nm.  
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Figure 1. 6  Representation of double helical DNA. 

               

B-DNA has two different kinds of grooves called major and minor grooves. These grooves 

have different width and depth. The major groove is deeper than the minor groove. These are 

a consequence of glycosyl bonds between the sugars and bases in a given base pair being not 

directly opposite to each other.  



 14 

Proteins can interact with B DNA through its grooves - specifically with exposed atoms of 

nucleotides. This interaction is usually mediated through hydrogen bonds (Stryer 1988; 

Granner 1990). 

1.1.5. METALS IN CHEMOTHERAPY 

The history of medicine shows that metal compounds were used extensively in the medical 

therapy. For example, antimony compounds were used as emetics and in the treatment of 

tropical disease, whereas bismuth compounds were used as dermatological antiseptics 

(Asperger and Centina-Cizmek 1999).  

It is well known that many metals are essential for physiology of the human body and 

compounds of the essential elements eg iron can be used as therapeutic drugs. Vanadate and 

vanadyl ions have potential as insulin mimetic agents in the treatment of human diabetes 

mellitus (Melchior et al. 1999; Thompson et al. 1999). 

For several decades manic-depressive psychoses have been treated with lithium salt (Lithium 

carbonate). The Li+ ion is therapeutically valuable because it counteracts both phases in the 

typically cyclic course of this disorder (Birch and Philips 1991). 

Figure 1.7 highlights the thirty elements that are believed to be essential for life. A number of 

inorganic compounds, which are non-essential according to the present knowledge, are used 

in chemotherapy.  
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Fr Ra                 

Figure 1. 7  The thirty highlighted elements believed essential to life (Bowser 1993) 

Chemotherapy involves the use of drugs to injure an invading organism ideally without 

causing any injury to the host. This definition covers antibacterial, antiviral and anticancer 

agents (Farrell 1999) and would cover a lot of the compounds based on nonessential elements 

that are used in chemotherapy. The greatest success of inorganic chemotherapy is the advent 

of cisplatin and its analogue carboplatin, their adoption into clinical use and the number of 

tumour active compounds based on platinum that are currently under clinical trials. The 

details of platinum based anticancer drugs are given in chapter 2. 

Following the success of cisplatin and similar platinum-containing anticancer drugs, a large 

number of complexes of other metals also have been studied and in several cases subjected to 

clinical trial. The compounds that have reached the clinical trial include compounds of 

germanium such as carboxyethylgermanium, gallium salts such as gallium chloride and 

titanium compounds such as budotitane (Keppler and Vogel 1996) 

Compounds of other metals that have been investigated as anticancer drugs include those of 

ruthenium, gold, copper, cobalt, palladium, rhodium and tin. In general palladium(II) 

compounds are far more labile than their platinum counterparts and therefore less tumour 

active and more toxic. However, some palladium complexes such as [Pd(meorot)(trans-

dach)] have been reported to show activity close to that of cisplatin (Buckley 1994). In 
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another study of platinum and palladium compounds containing ligands: ß-carboline 

alkaloids, pyrazoles, DMSO and ferrocenylphosphines, it was found that: (1) cis-palladium 

compounds were more active than the corresponding platinum compounds and (2) palladium 

compounds were more active in the trans- form than in the cis-form (al-Allaf and Rashan 

2001). Two dinuclear palladium(II) complexes, {[Pd(en)Cl]2(bpse)}(NO3)2 and 

{[Pd(en)Cl] 2(bpsu)}(NO3)2 have also been reported to show  greater activity than cisplatin 

against the HCT8 cell line (Zhao et al. 1998a).   

It will be seen later than the antitumour properties of platinum compounds are attributable to 

a great extent to the slow kinetics of their ligand displacement reactions. In that respect, 

ruthenium complexes behave like platinum complexes although ruthenium compounds are 

generally found to be slightly less reactive than the corresponding platinum compounds. 

Thus, it is logical to expect that ruthenium compounds also should display antitumour 

activity (Van Houten et al. 1993). Ruthenium complexes are found mainly as ruthenium(II) 

and ruthenium(III) in aqueous solution. In both the oxidation states, the metal ion is found to 

be in an octahedral geometry. Like platinum(II), ruthenium ions have a high affinity for 

nitrogen and sulfur donor ligands. During the last two decades, ruthenium complexes with 

diverse coordination environments have shown promising results in the biological field not 

only as antitumour agents but also as NO scavengers and immunosuppressive agents. 

Ruthenium(III) complexes are generally more inert than the corresponding ruthenium(II) 

complexes. It is believed that the inert, and therefore inactive ruthenium(III) complexes act as 

pro-drugs which are activated by reduction in situ to the corresponding more active 

ruthenium(II) species. Ruthenium(III) species may be expected to be reduced more easily in 

tumour masses which are generally considered as reducing, hypoxic environments compared 
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to surrounding more aerated tissues. Therefore larger amounts of reactive ruthenium(II) 

species might be generated in tumour tissues so that selective cytotoxicity may be produced 

against solid tumours (Clarke 1993) 

 Ruthenium(III) and ruthenium(II) complexes such as trans-RuCl2(DMSO)4, 

(DMSO)2H[trans-RuCl4(DMSO)2 and trans-Him[RuCl4(im)2] were extensively studied for 

their anticancer activity. Some of the ruthenium complexes show activity against several 

cancer cell lines with a spectrum of activity different from that of cisplatin (Clarke 1993; 

Keppler et al. 1993; Mestroni et al. 1993; Sava 1994; Pieper et al. 1999). The Ru(III) 

complex salt Na[trans-Ru(Im)Me2SO)Cl4](NAMI) was found to inhibit selectively 

spontaneous lung metastases in a model of solid metastasing tumour MCa mammary 

carcinoma of CBA mice (Sava et al. 1992; Sava 1994). Compared to cisplatin, it was found 

to be less active in inhibiting primary tumour growth. It is currently under a clinical trial 

(Zhang and Lippard 2003). 

Gold complexes are also known for their use in the treatment of primary chronic 

polyarthritis. The most important antirheumatics gold complexes are gold(I) sodium 

thiomalate (myochrysin), gold(I) thioglucose (solgano l), trisodium bis(thiosulphato) aurate(I) 

and 2,3,4,6-tetrakis-O-acetyl-1-thio-β-D-glucopyranosato-S(triethylphosphine)gold(I) 

(auranofin) (Asperger and Centina-Cizmek 1999). 

As stated earlier, some of gold complexes show antitumour activity e.g. 

triphenylphosphine(8-thiotheophyllinato)gold, which is found to be active against several 

tumour cell types (Show III 1999). 
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Since this project deals with new multinuclear tumour active compounds containing both 

platinum and palladium centres, it is appropriate to review first the current state of the 

development of platinum-based anticancer drugs. 
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CHAPTER TWO 

2. PLATINUM BASED ANTICANCER 
DRUGS 

Platinum is a third row transition metal that has eight electrons in the outer d sub 

shell. Palladium and nickel, which occupy the second and first transition series, have a 

similar configuration of outer electrons.  

Platinum has two dominant oxidation states +2 or +4, designated as Pt(II) and Pt(IV) 

respectively. It can be found in the +5 and +6 oxidation states as well. In Pt(II) 

complexes, the coordination number of platinum is usually four and it has a square 

planar geometry. 

The complexes of Pt(IV) have coordination number of six in an octahedral 

configuration.  Both Pt(II) and Pt(IV) complexes can have cis- and trans-

configurations. Platinum coordination complexes represent a unique and an important 

class of antitumour agents (Reed 1990) one of which namely cisplatin has been used 

in chemotherapy for more than 30 years. Cisplatin is considered to be the parent 

compound among tumour active platinum complexes.  
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2.1. CISPLATIN 

As stated in chapter 1, two commonly used platinum-based anticancer drugs are 

cisplatin and carboplatin. Cisplatin is cis-diamminedichloroplatinum(II), abbreviated 

also as cis-DDP. It is the first inorganic antitumour drug used in clinics (Drobnik 

1983) and is one of the most widely used and successful drugs in cancer 

chemotherapy (Pil and Lippard 1997; Bierbach et al. 1999). It was first described by 

Michele Peyrone in 1895 (Kelland 1993). More than a century later, the compound 

was coincidentally discovered as an anticancer drug by Barnett Rosenberg in 1964 

when he examined the effect of an electric field on bacterial growth (Rosenberg et al. 

1965; Rosenberg et al. 1967). He found that there was a strong filamentous growth 

but no cell division. Platinum electrodes used in the experiment produced (in presence 

of ammonium chloride) a number of Pt(II) and Pt(IV) compounds including cisplatin, 

that inhibited cell division causing the bacteria to become long and filamentous 

(Rosenberg et al. 1969). This accidental discovery led him and his associates to 

synthesize some simple platinum complexes and examine their antitumour activity. In 

1971 the first clinical use of cisplatin was initiated (Hill et al. 1971) and now it is 

widely used for cancer treatment (Loehrer and Einhorn 1984). 

Today cisplatin is routinely used alone or in combination with other anticancer drugs 

for the treatment of cancers of lung, ovary, testes and bladder (Di Blasi et al. 1998). 

More about the development of cisplatin as anticancer drug will be considered later in 

section 2.1.2. 
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2.1.1. CHEMISTRY OF CISPLATIN 

As stated earlier, cisplatin (also known as cis-DDP) is cis-

diamminedichloroplatinum(II). It is a simple inorganic neutral, square planar complex 

containing platinum(II) bonded to two non- labile ammonia ligands and two labile 

chloro ligands oriented in a cis-configuration. The labile ligands are also known as the 

leaving groups whereas the non- labile ligands are also known as the carrier ligands. 

Transplatin (also known as trans-DDP) also has the same ligands but in a trans-

geometry. The chemical structures of cisplatin and transplatin are shown in figure 2.1.  

Pt Cl

Cl

H3N

NH3

Pt NH3

Cl

H3N

Cl  

 

Figure 2. 1   Structures of cisplatin and transplatin 

 

Whereas cisplatin is active compound against a wide variety of tumours, transplatin is 

inactive but toxic (Lippert 1996). This is believed to be associated with the difference 

in reactivity of the two compounds. Transplatin is found to be more reactive than 

cisplatin so that ligand displacement reactions would be faster for transplatin than for 

cisplatin. The two compounds may also differ in the nature of adducts formed with 

DNA. Whereas both cisplatin and transplatin can form monofunctional adducts 

   Cisplatin  (cis-DDP)                                 Transplatin (trans-DDP) 
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almost at the same rate, they differ in the rate of closure of the monofunctional 

adducts (faster for cisplatin than transplatin) and in the actual types of bifunctional 

adducts formed. Cisplatin monofunctional adducts can close to form 1,2- intrastrand 

bifunctional crosslinks (Milkevitch et al. 1997) and transplatin monofunctional 

adducts can close mainly to form interstrand bifunctional cross links. For this reason, 

a great deal of effort has been placed on discovering the specific proteins that 

recognize cisplatin-DNA complexes and examining how the interaction of these 

proteins with the complexes might lead to cell death (Pil and Lippard 1997).  Figure 

2.2 illustrates the formation of different bifunctional adducts by cisplatin and 

transplatin.  
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Figure 2. 2  Bifunctional adducts on DNA of cisplatin (top) and transplastin (bottom) 
[Based on (Farrell 1996)]  

 

As stated earlier, the antitumour activity of cisplatin and other platinum-based 

anticancer drugs is attributed to a great extent to the kinetics of ligand displacement 

reactions (Berners-Price and Appleton 2000). The primary target of cisplatin is the 

nitrogen centres in the nucleobases of DNA. It is believed that the bonds between the 

metal ion and the nitrogen centres of nucleobases are sufficiently long-lived to 
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interfere with the process of cell division or to trigger other intracellular mechanisms 

that recognize irreparable damage to cells. On the other hand, the compounds should 

be sufficiently reactive for the injected drug to undergo in a relatively short period of 

time a sequence of reactions that allows the “leaving groups” present initially on the 

compound to be replaced by nitrogen centres in nucleobases.  

 Cisplatin is a relatively inert molecule that does not directly react with molecules in 

the biological systems that bind to platinum through nitrogen or oxygen donor 

centres. It enters the cell by both passive diffusion (Jamieson and Lippard 1999) and 

carrier-mediated transport (Andrews and Howell 1990; Gately and Howell 1993; 

Andrews 1994). Recently cisplatin has also been found to enter cells by active 

transport mediated by the copper transporter Ctr1P in yeast and mammals (Ishida et 

al. 2002). Cisplatin in aqueous solution is slowly hydrolyzed in which the two labile 

chloride ligands are progressively replaced by water molecules in a rather 

complicated manner (Orton et al. 1993) to produce cis-[PtCl(H2O)(NH3)2]+ and cis-

[Pt(H2O)2(NH3)2]2+ (Figure 2.3). Depending on the pH of the solution, the bound 

water molecules may deprotonate to produce hydroxo complexes. The first step of 

hydrolysis is the rate-determining step (t1/2 = 1.9 h) in the reaction of cisplatin with 

DNA(Gelasco and Lippard 1999) as the positively charged aqua species are more 

reactive than the neutral molecule and react readily with donor nitrogen ligands such 

as nucleobases. Although the high chloride ion concentrations (> 100 mM) present in 

blood plasma and extracellular fluid  would prevent the hydrolysis of cisplatin, once it 

crossed the cell membrane such reactions can occur easily since chloride 

concentration in the intracellular fluid is much lower (about 4 mM).  

Thus, activated aqua species are produced within the cell, and these then react with 

nucleobases (Bloemink and Reedijk 1996). 
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Figure 2. 3  Hydrolysis of cisplatin in aqueous solution.[Based on Berners-Price et al 
and El-Khateeb et al (El-Khateeb et al. 1999; Berners-Price and Appleton 2000)] 

 

On a simple level, cisplatin causes apoptosis by covalent binding with nucleophilic 

sites on guanine present in all DNA in the cancer cells (Jamieson and Lippard 1999). 

Once cis-[Pt(H2O)(NH3)2]+ is formed, binding occurs mainly at N7 position of 

guanine followed by N7 position of adenine and then N3 position of cytosine (Mansy 

et al. 1973; Rahn 1984). It has been suggested that in vivo the positively charged cis-

[Pt(H2O)(NH3)2]+ ion diffuses to the polynegatively charged DNA and then rapidly 

migrates along the helix to the preferred dGpdG binding sites (Dunham et al. 1998). 
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Binding of cisplatin to G-N7 leads to stability due to the large intrinsic basicity of G-

N7 and the additional stablization produced by the formation of hydrogen bond 

interaction between the coordinated water molecule and G-O6 unlike that in the case 

of adenine where repulsive interaction is produced (Arpalahti 1996) figure 2.4. 

                 
N

N

NH

N+

NH2Pt

H3N

H3N

O

H

H

N

NH

NH

N

NH2

O

H

Pt

H3N

H3N O

H

 

Figure 2. 4  Hydrogen bonding stabilization in guanine and destabilization in adenine 

 

As stated earlier, cisplatin monofunctional adducts close mainly to form intrastrand 

bifunctional adducts. The actual adducts formed are intrastrand dGpdG (60-65%) and 

intrastrand dApdG (20-25%), intrastrand dGpXpdG (5-6%), where p stands for 

phosphate and X stands for a deoxyribonucleotide and interstrand GG (Fichtinger-

Schepman et al. 1982; Fichtinger-Schepman et al. 1985; Eastman 1986, 1987). It can 

be seen that intrastrand dGpdG and dApdG adducts together account for about 90% of 

the total adducts. 

The structure of platinated DNA is significantly distorted, resulting in a decrease in 

melting temperature (Hermann et al. 1979), shortening (Cohen et al. 1979), 

unwinding (Macquet and Butour 1978) and even some local denaturation of the DNA 

(Scovell and Capponi 1982). 
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Because cisplatin and its analogues were found to be tumour active but transplatin and 

its analogues were found to be inactive, it was suggested that to be tumour active 

platinum compounds need to satisfy the following requirements, which are known as 

the classical structure activity relationships (Connors et al. 1979).  

• Complexes should be neutral 

• A cis geometry is required with general formula cis-PtX2(amine)2 for Pt(II) 

compounds and cis-PtX2Y2(amine)2 for Pt(IV) compounds. 

• The complexes should have two anionic leaving groups of intermediate 

binding strength such as Cl- and oxalate. 

• The complexes should have two non- leaving groups (also called carrier 

ligands) that are usually primary or secondary amines (but not tertiary 

amines as they cannot form hydrogen bonds with nearby bases). 

Even with such relatively broad requirements, it was found that at least four series of 

compounds that violated the above structure-activity relationship could be tumour 

active (Farrell 1993). For example, compounds with a trans-geometry and multiple 

metal centres (that have structures very different from that of cisplatin), have also 

been found to be tumour active. Because of a different nature of interaction with 

DNA, such compounds are expected to have a different spectrum of activity. These 

‘rule breaker’ platinum compounds will be considered more fully later in the chapter.   

2.1.2. USES AND LIMITATIONS OF CISPLATIN 

As stated earlier, cisplatin is one of the most potent and widely used anticancer drugs 

that show activity against slow-growing as well as the rapidly-growing tumours. 
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However, it has a number of side effects and also cancer cells can have intrinsic 

resistance to the drug or develop resistance due to the continued use of cisplatin. 

2.1.2.1. USES OF CISPLATIN 

Cisplatin is administrated intravenously, diluted in physiological saline every 3-4 

weeks at doses from 50-120 mg/m2 (Kelland 2000b). The drug has been shown to be 

more effective when given regionally (Howell et al. 1983). As stated earlier, cisplatin 

is an effective drug against a wide variety of cancers when given alone or in 

combination with other anticancer drugs. It is highly effective against testicular and 

ovarian cancers (Hay and Miller 1998); it has greater than 90% cure rate in testicular 

cancer (Zhang and Lippard 2003). Cisplatin is also used to treat other kinds of cancers 

such as non small cell lung cancer, head, neck, cervix, bladder, oesophageal, breast as 

well as some paediatric malignancies (Hill et al. 1971; Higby et al. 1974; Von Hoff 

and Rozencweig 1979; Loehrer and Einhorn 1984; Highley and Hilary Calvert 2000). 

Some of the drugs that can be given in combination with cisplatin are 5-fluorouracil 

(Esaki et al. 1992), arabinofuranosylcytosine (Swinnen et al. 1989) and aphicicolin 

andhydroxyurea (Masuda et al. 1990). There is a broad consensus that cisplatin 

together with paclitaxel provides a significant advantage in the treatment of advanced 

ovarian cancer (Adams et al. 1998) over the use of the drugs alone. As stated in 

chapter one, cisplatin as some other anticancer drugs can exert synergistic effect also, 

when used in combination with radiotherapy.  

Both acquired and intrinsic resistances to cancer chemotherapeutic agents limit the 

cure rates (Scanlon et al. 1989). 
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2.1.2.2. LIMITATION OF CISPLATIN 

As stated earlier, cisplatin is one of the most widely used and successful drugs in 

cancer chemotherapy, but it has a number of limitations including severe toxicity, 

development of resistance, poor and low activity against some kinds of cancers and 

poor solubility (Eastman 1991; Kim et al. 1994; Bloemink and Reedijk 1996).  

Drug resistance 

One of the most significant limitations toward the successful treatment of tumour with 

platinum compounds including cisplatin is the development of resistance in tumour 

cells (Johnson et al. 1993). Some cancer cells have intrinsic resistance to cisplatin and 

others develop resistance to its continued use (Scanlon et al. 1989). Cisplatin 

resistance can operate by a number of mechanisms. The three major mechanisms in 

cisplatin resistance are stated below. Two or more of these mechanisms operate 

together in most resistant cells. 

• Decreased cellular accumulation of cisplatin, limiting the formation of drug-

DNA adducts. The decrease in cellular accumulation is generally due to 

changes in membrane properties (Kawai et al. 1990) that may lead to changes 

in cisplatin transport and/or efflux. Decreased level of platinum accumulation 

has been reported in several different cell lines having acquired cisplatin 

resistance (Eastman and Schulte 1988; Gately and Howell 1993; Chu 1994). It 

has been suggested this was due to decreased drug uptake rather than 

enhanced drug efflux.  It may be noted that cisplatin can cross the cell 

membrane by both passive diffusion and carrier-mediated transport (Gately 

and Howell 1993). Whereas the entry into the cell is more likely to be due to 

passive diffusion, the efflux out of the cell is more likely to be carrier-
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mediated since the aquated forms of cisplatin produced inside the cell are 

positively charged. Increased efflux of cisplatin was observed in cisplatin-

resistant cell line in vitro (Fujii et al. 1994). In multidrug-resistant cell lines it 

has been found that a P-glycoprotein acts as a pump and prevents the 

accumulation of drugs in the cell (Gottesman and Pastan 1993). Shen et al 

reported that the loss of folate binding protein was associated with decreased 

cellular accumulation of cisplatin (Shen et al. 1998).  

• Cytosolic inactivation due to binding with various platinophiles including 

sulfur-containing molecules such as glutathione (GSH) and metallothionine 

(MT) (Reedijik and Teuben 1999), thus preventing binding of cisplatin with 

DNA. Increased glutathione level has been found in some cisplatin-resistant 

cells (Perez et al. 1990; Mistry et al. 1993). Cisplatin forms a 2:1 complex 

with GSH that can be eliminated from the cell by an ATP-dependent 

glutathione export pump (Ishikawa and Ali-Osman 1993). Like GSH, 

metallothionein (MT) is also involved in the deactivation of cisplatin. MT is 

believed to be involved in detoxification of heavy metal ions inside the cell 

(Chu 1994). Elevated levels of MT have been found in some cisplatin-resistant 

cells (Kelley and Rozencweig 1989). In fact, regulation of intracellular levels 

of sulfur-containing compounds appears to be important for eliminating some 

features of resistance of tumour cells to platinum drugs (Zhang et al. 2001). 

• Increased DNA repair making the cell more resistant to cisplatin (Masuda et 

al. 1988; Masuda et al. 1990; Johnson et al. 1994). Cisplatin-DNA adducts 

may be removed due to hydrolysis of phosphdiester bonds on both sides of the 

lesion following which the DNA is repaired.  Mismatch repair (MMR) plays 

an important role not only in drug resistance but also in maintaining the 
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integrity of the genome. Expression of MMR proteins is found to be 

associated with the sensitivity of mammalian cells to an ever increasing range 

of DNA-damaging agents including platinum-based anticancer drugs (Fink et 

al. 1998). Thus increased DNA repair may be due to the presence of certain 

proteins such as XPE-BF that recognizes many DNA lesions including those 

induced by UV radiation and cisplatin (Patterson and Chu 1989; Hwang and 

Chu 1993). Levels of XPE-BF were found to increase early in the 

development of cisplatin resistance (Chu 1994). Another example of DNA 

repair proteins is ERCC1-XPF, which is a heterodimer. It is believed to cut the 

strand on the 5’ side of the damage and the XPG protein incises on the 3’ side 

(Gibson 1997). On the other hand the high mobility group (HMG-domain) 

proteins, play an important role in cisplatin activity. Most of the HMG-domain 

proteins have the capacity to bind with cisplatin-DNA adducts (specifically to 

1,2d(GPG)-cisplatin intrastrand cross- link) and prevent the repair mechanism 

(Zamble and Lippard 1999).     

Toxicity 

The second major limitation of cisplatin is its toxicity. These include renal 

dysfunction, nausea and vomiting, peripheral neuropathy, auditory impairment, 

mylosuppression, visual impairment and pancreatitis (Screnci and McKeage 1999; 

Highley and Hilary Calvert 2000). The dose- limiting nephrotoxicity of cisplatin 

almost prevented its development as anticancer drug until a solution in terms of 

forced hydration was suggested (Cvitkovic et al. 1977; Hayes et al. 1977). Hydration 

before and after, with or without mannitol is now routinely used to reduce 

nephrotoxicity (Weiss and Christian 1993). Even then glomerular filtration rate can 

decrease by 25% or more. 
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To reduce the toxic side effects of cisplatin and to widen the spectrum of activity, 

thousands of cisplatin analogues have been prepared by varying the nature of leaving 

groups and the carrier ligands. However, only a few drugs have reached the clinical 

trial and the rest of these have been discarded due to lack of advantage over cisplatin. 

When the nature of the leaving groups was modified, it was possible to make changes 

in toxicity profile of the compounds but no changes in the spectrum of activity could 

be achieved eg carboplatin which has 1,1-cyclobutanedicarboxylate as the leaving 

groups is found to be less toxic than cisplatin (van der Vijgh 1991). More about 

carboplatin will be considered in the next section. When the nature of the leaving 

groups was changed, it was possible to cause a limited change in the spectrum of 

activity eg oxaliplatin which has DACH (1,2-diaminocyclohexane) carrier ligand is 

found to be active against colorectal cancer whereas cisplatin and carboplatin are not 

(Misset et al. 2000). More about oxaliplatin will be considered in the next section.  

 Since all the cisplatin analogues generally form similar adducts with DNA that 

translate often into a similar spectrum of activity, it has been suggested that to have a 

spectrum of activity markedly different from that of cisplatin we need to develop 

compounds that would have novel chemical structures and biological properties. One 

such class of compounds are dinuclear and trinuclear platinum complexes. Before we 

consider polynuclear platinum compounds, we will review the development of 

cisplatin analogues and related compounds which are commonly known as second 

and third generation drugs. 

 



 33 

2.2. SECOND AND THIRD GENERATION 
MONONUCLEAR PLATINUM BASED 
ANTICANCER DRUGS 

As stated earlier, because of the limitations of cisplatin, many platinum compounds 

have been synthesized (Kelland 1993; Hay and Miller 1998) by changing the nature 

of the leaving groups and that of the carrier ligands.  In the development of platinum 

compounds which are commonly known as second generation platinum drugs, the 

primary goal was to reduce the toxic side effects and to a lesser extent widen the 

spectrum of activity (Kelland et al. 1995). So far more than 23 cisplatin analogues 

have been tested in cancer patients but most were found to be unsuitable for further 

development because of poor aqueous solubility, formulation difficulties or severe 

toxicity (Kelland 1993). As noted earlier, the nature of the leaving groups plays a key 

role in determining the toxicity profile whereas that of the carrier ligand plays a 

dominant role in determining the spectrum of activity. Compounds with very labile 

ligands such as nitrate are found to be toxic rather than anticancer active as these may 

be deactivated before entry into cell. Compounds with strongly coordinating ligands 

such as SCN- are also found to be inactive as these may not be replaced by 

nucleobases in DNA. Compounds with moderate labile ligands such as chloride and 

carboxylate are found to display higher antitumour activity (Bloemink and Reedijk 

1996).  

During the last thirty years, thousands of cisplatin analogues have been prepared by 

varying the nature of the leaving and the non- leaving groups. When the nature of the 

leaving groups was modulated it was possible to reduce toxicity but not the spectrum 

of activity. When the structure of carrier ligands was modified, it was possible to 

achieve a limited change in the spectrum of activity eg oxaliplatin which has a DACH 
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(1,2-diaminocyclohexane) carrier ligand is found to be active against colorectal 

cancer. The search for a less toxic drug based on the modification of the leaving 

groups at the Institute of Cancer Research in the U.K led to the development of 

carboplatin (Harrap 1995), which is [cis-diammine-1,1-

cyclobutanedicarboxylateplatinum(II)]. It is now routinely used as alternative to 

cisplatin. It has a similar spectrum of activity to that of cisplatin but with reduced 

toxicity (van der Vijgh 1991). 

In general cisplatin and its second generation analogues are administrated 

intravenously whereas third-generation compounds such as JM216 and ZD0473 can 

be administrated orally allowing a greater flexibility in dosing and increase in the 

potential use in palliative care (Barnard et al. 1999).  

2.2.1. CARBOPLATIN   

Carboplatin is cis-diammine-1,1-cyclobutanedicarboxylatoplatinum(II) abbreviated as 

CBCD (figure 2.5). 
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Figure 2. 5  Structure of carboplatin 

 

As stated earlier, carboplatin was developed in the Institute of Cancer Research in the 

U.K. The development of the drug was actually a collaborative effort between 

Johnson Matthey (JM) and Institute of Cancer Research (ICR). It entered into clinical 
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trial in 1981(Kelland 2000a). Carboplatin is the only analogue of cisplatin that is 

approved worldwide for clinical use (Ozols 1992). Carboplatin and cisplatin have 

been shown to form identical type of adducts with DNA (Perez 1998). The 

cyclobutanedicarboxylate ligand found in carboplatin is less labile than the chloride 

ligands present in cisplatin. This makes carboplatin less toxic but because of the 

presence of the same carrier ligands as in cisplatin activity is retained (Calvert et al. 

1992; Lebwohl and Canetta 1998). Carboplatin has significantly less neurotoxicity 

and nephrotoxicity than cisplatin (Goddard et al. 1994 122) so that there is no need 

for hydration, facilitating its use in out-patients setting. Nausea and vomiting are also 

reduced compared to that in cisplatin (O'Dwyer et al. 1999).  However 

myelosuppression is increased which is the dose-limiting toxicity of carboplatin 

(Blommaert et al. 1995). Carboplatin has now replaced cisplatin in many clinics, on 

the basis of its broadly similar spectrum of activity and reduced toxicity (Judson and 

Kelland 2000) and has emerged as the first- line treatment of choice for patients with 

advanced ovarian cancer (Kelland  et al. 1999). Carboplatin can be given alone or in 

combination with other drugs. Combination of carboplatin with paclitaxel has been 

found to reduce carboplatin- induced thrombocytopenia and potentiate their activity 

against urothelial cancer (Lebwohl and Canetta 1998; Judson and Kelland 2000). 

2.2.2. CISPLATIN ANALOGUES 

Several analogues of cisplatin or carboplatin that belong to the second and third 

generation of platinum compounds have been synthesized and studied in pre-clinical 

trial. Only a handful of these compounds entered the clinical trial and most of these 

have been discarded due to lack of advantage over cisplatin or caboplatin. The 

chemical structures of some of these compounds are shown in figure 2.6 
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Figure 2. 6  Chemical structures of cisplatin analogues in clinical trial 

    

2.2.2.1. NEDAPLATIN (245-S) 

Nedaplatin is cis-diammine(glycolato-0,0’)platinum(II). This is a water soluble 

platinum compound that was synthesized by Shionogi Pharmaceutical Company of 

Osaka, Japan in the mid 1980s and is registered for use in Japan (Judson and Kelland 

2000). The compound has a novel structure involving a glycolate ring bound to 

platinum atom as a bidentate ligand. Phase II studies have shown that nedaplatin has a 
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spectrum of activity similar that of cisplatin but with lower nephrotoxcitiy (Akaza et 

al. 1992). Myelosuppression associated with thrombocytopenia is the dose- limiting 

toxicity of nedaplatin  (Akaza et al. 1992; Kelland 1993). 

2.2.2.2.  TETRAPLATIN (ORMAPLATIN)   

Tetraplatin also known as ormaplatin is tetrachloro-(dl-trans)-(1,2-

diaminocyclohexane)platinum(IV). It is one of the DACH complexes that entered 

clinical trial. Like cisplatin and carboplatin, tetraplatin has to be administered 

intravenously. Tetraplatin was found to overcome cisplatin-resistance in murine L120 

tumour (Goddard et al. 1991). In other studies on different human tumour cells with 

acquired resistance to cisplatin it was found that tetraplatin shared either partial or full 

cross-resistance with cisplatin (Hills et al. 1989; Kelland  et al. 1992; Meijer et al. 

1992; Mellish et al. 1993). The clinical trial of tetraplatin has been abandoned during 

phase I clinical trial due to its severe neurotoxicity (Figg et al. 1997). 

2.2.2.3. OXALIPLATIN  

Like tetraplatin, oxaliplatin is also a DACH containing platinum drug but unlike that 

in tetraplatin, platinum in oxaliplatin is in +2 oxidation state. Oxaliplatin is (1,2-trans-

diaminocyclohexane)oxalatoplatinum(II). It was first synthesized by Kidani in 1978 

(Kidani et al. 1980) and developed in Europe, primarily in France (Mathe et al. 1985). 

Several studies have shown that oxaliplatin with its slowly reacting leaving group 

(namely the oxalate) reduces the nephrotoxicity compared to that of cisplatin (Mathe  

et al. 1989). Neurotoxicity is the only major dose- limiting toxicity associated with 

oxaliplatin (Extra et al. 1990). The nature of binding of oxaliplatin with DNA is found 

to be similar to that of cisplatin but the rate of formation of intrastrand adducts is 
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lower (Saris et al. 1996). The actual number of DNA adducts formed by oxaliplatin is 

also found to less than that formed by cisplatin (Woynarowski et al. 1998). 

Oxaliplatin has been found to be active aga inst advanced colorectal cancer (Barefoot 

2001) both as single agent (Becouarn et al. 1998) and in combination with flurouracil  

(Levi et al. 1994; Rixe et al. 1996). In contrast, cisplatin and carboplatin essentially 

have no activity against colorectal cancer (Misset et al. 2000). Oxaliplatin was also 

found to be active against a number of cisplatin- and carboplatin-resistant tumour 

cells (Rixe  et al. 1996). Thus the development of oxaliplatin provides a clear example 

of change in toxicity profile and spectrum of activity due to a combination of changes 

in the leaving groups and the carrier ligands. 

Recently it has been found that oxaliplatin is more potent than cisplatin in induction 

of apoptosis (Faivre et al. 2003). Oxaliplatin is currently registered for use in 

advanced colorectal cancer in United States, Europe, Asia and Latin America (Faivre 

et al. 2003).    

2.2.2.4. IPROPLATIN 

Iproplatin is cis-dichloro-trans-dihydroxo-bis(isopropylamine)platinum(IV), also 

known as CHIP and JM6. It was selected for clinical evaluation on the basis of its 

improved therapeutic index. In preclinical studies, it showed activity to cisplatin-

responsive tumours (Foster et al. 1990). Myelosuppression is the dose- limiting 

toxicity of iproplatin similar to that for carboplatin (Lebwohl and Canetta 1998). 

However, in phase III clinical trials, it was found to be more toxic and less active than 

carboplatin. Further development of iproplatin was abandoned because of its lower 

activity as compared to carboplatin (Trask et al. 1991).   
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2.2.2.5. ENLOPLATIN 

Enloplatin is 1,1-cyclobutanedicarboxylato-0’,0’tetrahydro-4H-pyran-4,4-dimethyl 

amine-N,N’pla tinum(II). The compound is highly water soluble. It entered the phase I 

clinical trials. Myelosuppression and nephrotoxicity were found to be the dose-

limiting toxicity of enloplatin. However further development of enloplatin was 

abandoned because of nephrotoxicity and low activity (Lebwohl and Canetta 1998).  

2.2.2.6. LOBAPLATIN  

Lobaplatin is 1,2-diaminomethylcyclobutane-platinum(II)- lactate. It is a water soluble 

platinum(II) compound. Lobaplatin was developed in Germany and evaluated in other 

parts of the world and is currently used in China (Welink et al. 1999). In phase I trials 

it was found that thrombocytopenia was the dose-limiting toxicity of lobaplatin and 

no nephrotoxicity was noted (Kelland 1993). Lobaplatin has shown antitumour 

activity with incomplete cross-resistance in human gastric, testicular, lung and ovarian 

cancer xenografts (Gietema  et al. 1993a; Gietema et al. 1993b). Both in phase I and 

phase II clinical trials lobaplatin demonstrated activity against esophageal, breast, 

head and neck, small lung and ovarian cancers (Welink et al. 1999).  

2.2.3. ORALLY ACTIVE PLATINUM DRUGS 

Like cisplatin and carboplatin, all the second generation platinum based anticancer 

drugs are administered by intravenous infusion. When given orally, cisplatin and 

carboplatin are found to be less toxic but also less active (Kelland 2000a).  It was 

stated earlier that oxaliplatin had a somewhat different spectrum of activity and 

toxicity profile as compared to that for cisplatin and carboplatin but like cisplatin and 

carboplatin the drug can only be given intravenously. Thus the structure of oxaliplatin 

was modified to obtain orally active compounds (Kizu et al. 1996). The aim of a 
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continued collaborative program between Johnson Matthey (JM) and Institute of 

Cancer Research (ICR) has also been to develop an orally active platinum drug that 

would have activity at least comparable to cisplatin and toxicity similar to that of 

carboplatin. Currently, a number of orally active platinum compounds are under 

clinical trials (Figure 2.7).  
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Figure 2. 7  Chemical structures of MJ335 and the orally active compounds MJ216, 
AMD473 and C5-OHP-Cl 

2.2.3.1. JM216 

JM216 is bis(acetato)ammine-dichloro(cyclohexylamine)platinum(IV). It is given 

orally rather than by intravenous injection. The compound has been developed by 
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Bristol-Myer Company in collaboration with JM and ICR (Kelland 1993). It differs 

from cisplatin and carboplatin in the sense that it is a platinum(IV) compound rather 

than platinum(II). This feature makes JM216 more stable, which could be important 

in its passage through the gastrointestinal tract. JM216 is also found to be more 

lipophilic than other platinum drugs, a feature that may aid its absorption through the 

membranes of the gastrointestinal wall. It is however believed that as in the case of 

other platinum(IV) compounds, platinum is reduced from IV to II state before it 

interacts with DNA (Kelland 2000a).  

JM216 entered clinical trial in 1992 (McKeage et al. 1995). In phase I trials, it was 

found that myelosuppression was the dose-limiting toxicity of the drug (McKeage et 

al. 1997). The antitumour activity of JM216 is equivalent to that of cisplatin and 

carboplatin (Barefoot 2001). JM216 could replace cisplatin for combined radio-

chemotherapy treatment (Amorino et al. 1999).  

2.2.3.2. JM335       

JM335 is trans-ammine(dichlorocyclohexylamine-dihydroxo)platinum(IV). It 

provides an example of compounds that break the classical structure activity 

relationships. It is a rationally designed complex that forms a different spectrum of 

adducts with DNA (Kelland et al. 1999). It showed comparable activity to its cis-

isomer and cisplatin against ADJ/PC6 plasmacytoma, L1210 and CH1 ovarian 

cancers (Perez et al. 2000) and was found to induce apopotosis in CH1 cell line 

(O'Neill et al. 1996). Early study with JM335 suggested that in vitro it succeeded in 

circumvention of acquired cisplatin resistance against some cell lines including 

41McisR and CH1cisR (Kelland et al. 1994). 
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2.2.3.3. ZD0473 

ZD0473 formerly known as AMD473 or JM473 is cis-amminedichloro(2-

methylpyridine)platinum(II). It entered phase I clinical trials in 1997 at the Royal 

Marsden NHS Trust Hospital under the auspices of the UK Cancer Research 

Campaign. It is a novel platinum compound that has been designed to overcome 

acquired or intrinsic resistance to cisplatin (Judson and Kelland 2000). It has been 

suggested the bulkier methylpyridine ligand would increase steric hindrance so that 

the substitution reaction pathway is shifted more towards a dissociative rather 

associative mechanism. Thus the compound would have reduced susceptibility to 

inactivation by elevated intracellular thiol concentrations (Kelland 1999). As stated 

earlier, inactivation of cisplatin by GSH or MT is one of the common mechanisms of 

cisplatin resistance. ZD0473 was found to be less reactive than cisplatin towards 

thiourea and methionine (Holford et al. 1998a). However it was found that ZD0473 

shares some mechanisms of resistance with cisplatin in A2780 cell line including 

reduced drug transport, increased GSH level and loss of MLH1 DNA mismatch repair 

(Holford et al. 2000). In vitro studies show that the antitumour activity of ZD0473 lies 

in between that of cisplatin and carboplatin (Holford et al. 1998b).  ZD0473 has been 

found to show significant activity against four lung cell lines: PC-14/CDDP, PC-

9/CDDP,SBC-3/CDDP and H69/CDDP that are resistant to cisplatin (Kawamura-

Akiyama et al. 2002). The compound is also found to be quite active against 41McisR 

ovarian cell line that is resistant to cisplatin (Judson and Kelland 2000), indicating 

that ZD0473 has been able to overcome multiple mechanisms of resistance operating 

in the cell line. Preclinical studies showed that the dose- limiting toxicity of ZD0473 

was myelosuppression similar to that of carboplatin (Raynaud et al. 1997). Phase I 
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clinical study also confirmed that the dose- limiting toxicity of ZD0473 was bone 

marrow suppression (Judson and Kelland 2000). 

2.2.3.4. C5-OHP-Cl 

With the aim of obtaining orally active derivatives of oxaliplatin, different compounds 

having the general formula: trans,cis,cis-[Pt(IV)(OCOCnHn+1)2(oxalate)(1R,2R 

cyclohexanediamine)] were prepared by Kidani et al, (Kizu et al. 1996). The trans-

bis(n-valerato)(1R,2R-cyclohexanediamine)(oxalate)platinum(IV) code named C5-

OHP-Cl was found to be the one that was most absorptive  and most active (Kizu et 

al. 1998). It was found to be more effective than cisplatin in different tumour models 

(e.g L1210 leukemia and LMFS sarcoma) (Saegusa et al. 2001). 

The following figure summarizes the development of different platinum-based tumour 

active compounds as a result of a cooperative program between Johnson Mathey and 

Institute of Cancer Research in the U.K. 

Pt

Cl

Cl

H3N

H3N

Pt

H3N

H3N

OCO

OCO
N

CH3

Pt

H3N Cl

Cl

Pt

H3N

NH2

Cl

Cl

OCOCH3

OCOCH3

 (JM335)

  CISPLATIN               CARBOPLATIN                              JM216                          AMD473 

    1971                                 1981                                               1992                            1997 

Nephrotoxicity                                                                     Oral drug                     Must circumvent

Nausa/vomiting            Myelosuppression                            Myelosuppression        acquired and/or                               

Neurotoxicity                                                                                                           intrinsic cisplatin

                                                               Improved quality of life                           resistance         
 

Figure 2. 8  Summary of the ICR/JM platinum drug program from carboplatin to 
ZD0473 (Based on  Kelland (Kelland 2000a)) 
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2.3. MULTINUCLEAR PLATINUM COMPOUNDS 

In the previous section we have reviewed the development of second and third 

generation platinum-based anticancer drugs. It was found that changes in toxicity 

profile of the compounds could be achieved by changing the nature of the leaving 

groups whereas modulation of the carrier ligands could cause a limited change in the 

spectrum of activity.  However, it is found that all cisplatin analogues generally form 

similar adducts with DNA that often translate into a similar spectrum of activity. 

Thus, it was suggested by Farrell that for platinum drugs to have a spectrum of 

activity very different from that of cisplatin, the compounds need to have structures 

distinctly different from that of cisplatin (Farrell 1993). Dinuclear and trinuclear 

platinum complexes represent a new class of tumour active compounds with 

structures and properties (including biological ones) distinctly different from those of 

cisplatin. The understanding that cisplatin acts by delivering the cis-[Pt(NH3)2] moiety 

to DNA provided a rationale fo r systematically altering the structure of the platinum 

coordination sphere to arrive at altered activity/toxicity profiles (Farrell et al. 1999). 

As stated earlier, while only one analogue of cisplatin namely carboplatin entered full 

clinical use world wide, a number of other analogues such as oxaliplatin, ZD0473, 

JM216 and lobaplatin are being evaluated in Phase I and Phase II clinical trials. A 

number of other platinum-based compounds, such as tetraplatin and iproplatin, that 

previously entered clinical trials, are no longer under development, because of 

unacceptable toxic side effects, insufficient efficacy or a limited spectrum of activity. 

Attempts to design new platinum complexes with comparable antitumour activity but 

no cross-resistance with cisplatin and carboplatin led to development of a number of 

polynuclear platinum complexes (Perego et al. 1999a). In a recent review, Wheate et 
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al, summarise the development over the last 15 years of multinuclear platinum 

complexes as anticancer agents (Wheate and Collins 2003). 

 

2.3.1. DINUCLEAR PLATINUM COMPLEXES 

The dinuclear motif that was first reported in 1988 consisted of two cis-[Pt(NH3)2] 

units linked together by a flexible diamine chain (Farrell et al. 1988; Farrell et al. 

1990b). Systematic variation of the coordination sphere, chain length and steric 

effects within the linkers by Farrell and co-workers produced a wide range of possible 

structures some of which are given in figure 2.9. In terms of the adducts formed in 

DNA, the dinuclear complexes can be diverse ranging from being bifunctional to 

tetrafunctional binders to DNA. It was found that among the dinuclear complexes, the 

so-called 1,1/t,t series (where 1,1 indicate the presence of one chloro ligand on each 

platinum unit and the letter ‘t’ stands for trans-geometry) gave consistently higher 

antitumour activity in cisplatin-resistant cells (Farrell and Spinelli 1999; Farrell 

2000).  It was also found that the length of diamine chain played an important role in 

the activity of the compounds. The 1,1/t,t compound with two platinum units linked 

by 1,6-diaminohexane was found to be much more active than the other dinuclear 

compounds (Menta et al. 1999). As the length of the linking diamine was increased 

above six or decreased below six, the activity of the compound was found to decrease. 
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Figure 2. 9  Structures of different classes of dinuclear Pt(II) complexes and the 
trinuclear compound BBR3464 

Cisplatin binds to DNA, forming mainly monofunctional adducts and bifunctional 

intrastrand adducts. DNA-DNA interstrand GG cross- links and DNA-protein 

crosslinks are produced to a much lesser extent with cisplatin. Inhibition of DNA 

synthesis and transcription is believed to be a consequence of Pt-DNA adducts 
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formation. In contrast, the predominant DNA binding mode of dinuclear platinum 

compounds is DNA-DNA interstrand cross- linking where one Pt coordination sphere 

binds to one DNA strand (Farrell 1995). The extent of interstrand cross- linking is 

dependent on the exact structure of the compound. At [drug] : DNA binding ratio (in 

terms of phosphate) ri > 0.025 the 1,1/t,t compounds were found to produce 

significantly more interstrand cross- links than their 2,2/c,c counterparts (where 2,2/c,c 

indicate the presence of two chloro ligands in cis-geometry on each platinum unit). 

The other difference between 1,1/t,t and 2,2/c,c compounds is that whereas for 2,2/c,c 

complexes the extent of overall binding with DNA increases linearly with the increase 

in Pt concentration, for 1,1/t,t complexes the extent of interstrand binding rises to a 

maximum and then falls off. It may be noted that for the dinuclear complexes, the 

formation of DNA-DNA cross- linking requires the presence of only one substitution-

labile Pt-Cl bond on each Pt centre. Tetrafunctional 2,2/c,c dinuclear complexes have 

the ability to produce DNA-protein ternary cross- links and interhelical DNA-DNA 

cross- links, where two double helices are linked together (Buning et al. 1997). 

Table 2.1 compares the in vitro cytoxicity of dinuclear and mononuclear platinum 

compounds in a human ovarian tumour panel (Farrell et al. 1999).  
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Table 2. 1  Comparison of in vitro cytotoxicity of dinuclear and mononuclear 
platinum compounds in a human ovarian tumour panela (Farrell et al. 1999) 

Compound HX/62 SKVO-3 PXN/94 41MCisR 41M CH1CisR CH1 

[{Pt(mal)(NH3)}2 

NH2(CH2)4NH2] 

44.5a 

±  3.5 

20.8 

± 3.7 

9.9 

± 2.8 

4.3 (3.1)b 

± 1.4 

1.4 

± 0.44 

2.4(4.4) 

± 0.44 

0.54 

± 0.03 

[{PtCl(NH3)}2 

NH2(CH2)4NH2]2+ 

46 

± 14.7 

57 

± 8.8 

14.3 

± 1.8 

5.1(0.71) 

± 0.78 

7.2 

± 0.33 

6.3 (2.4) 

± 4.2 

2.6 

± 1.4 

Cisplatin 12.6 

± 1.5 

4.4 

± 1.4 

3 

± 0.57 

1.4(6.1) 

± 0.1 

0.23 

± 0.03 

0.67(6.7) 

± 0.1 

0.1 

± 0.014 

Carboplatin 70 

± 7 

38 

± 9 

31 

± 5 

10.4(2.8) 

± 0.9 

3.7 

± 0.4 

4.2(4.2) 

± 0.2 

1 

± 0.2 

a ID50 (µM) and b RF is resistance factor 

Relative toxicity in hypoxic tissue provides an example of differences in biological 

activity that may exist among dinuclear complexes. It is known that tumours often 

have regions of hypoxia as a result of poor vascularization. As the cells are deprived 

of oxygen they may become resistant to radiotherapy and also to some forms of 

chemotherapy. As stated earlier, a common mode of treatment against cancer is to 

combine chemotherapy with radiation. Whereas radiosensitization and toxicity of the 

drug are found to be greater in hypoxic than aerobic cells as applied to cisplatin 

(Matthews et al. 1993) and 2,2/c,c dinuclear compounds in the form of malonates 

(Skov et al. 1998), the bifunctional 1,1/t,t and 1,1/c,c complexes do not display any 

such selectivity.  According to Matthews et al, DNA-protein cross- linking may be an 

important determinant in hypoxic toxicity (Matthews et al. 1993). It can be seen that 

the hypothesis is supported by the above results. In vivo studies in human ovarian 
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carcinoma IGROV-1 show that the dinuclear compounds are more potent and less 

toxic than carboplatin at equivalent dose. No toxicity is observed at doses up to 80 

mg/kg (Farrell et al. 1999).  Elevated activity in cisplatin-resistant cells, and in some 

cases different spectrum of activity, suggest that the dinuclear platinum drugs have a 

potentially different mechanism than that proposed for cisplatin-analogues.  

A commonly observed feature of cellular resistance to cisplatin is decreased cellular 

accumulation of the drug in the resistant cell line than in the parent one. The cellular 

accumulation of carboplatin and dinuclear complexes did not show change (Farrell et 

al. 1999). 

In addition to the dinuclear platinum compounds described by Farrell and co-workers, 

other investigators such as Broomhead and co-workers also prepared dinuclear 

compounds but using 4,4’-dipyrazolylmethane as the linker instead of aliphatic 

diamines used by Farrell and co-workers (Broomhead et al. 1992; Broomhead et al. 

1993). Zaho et al prepared dinuclear platinum complexes with dipyridyl linkers, 

which showed activity against L1210 cell line similar to or less than that of cisplatin. 

However, the compounds were found to be more active than cisplatin against 

cisplatin-resistant cell line HCT8. (Zhao et al. 1998a, 1998b). Azole-bridged 

dinuclear platinum(II) complexes [{cis-Pt(NH3)2}2(µ-OH)-(µ-pz)][NO3]2 and [{cis-

Pt(NH3)2}2(µ-OH)-(µ-1,2,3-ta)][NO3]2 were prepared by Kemedo et al. These 

compounds showed much higher activity than that of cisplatin against MCF7 and 

EVSA-T (breast cancer), WIDR (colon cancer), IGROV (ovarian cancer), M19 

(melanoma), A978 (renal cancer) and H226 (non small cell lung cancer (Komeda et 

al. 2000). Wheate et al have prepared a number of multinuclear compounds linked 

with the 4,4’-dipyrazolylmethane (dpzm) ligand including dinuclear platinum 

complex (di-Pt) and trinuclear platinum complex (tri-Pt), which are analogues of 
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BBR3005 and BBR3464  (Wheate et al. 2001). Figure 2.9 shows the chemical 

structure for some of the dinuclear complexes. 

2.3.2. TRINUCLEAR Pt(II) COMPLEXES 

Trinuclear platinum complexes may be considered as a logical progression from the 

dinuclear compounds.  Farrell and his associates as well as other researchers (Rauter 

et al. 1997; Farrell and Spinelli 1999; Wheate et al. 2001) have prepared and studied a 

number of trinuclear complexes based on platinum. A number of these complexes 

have been found to be highly active against both murine and human cancer cell lines. 

A notable example of trinuclear platinum complexes is BBR3464 that contains the 

trinuclear cation: [{trans-PtCl(NH3)2}2{µ-trans-Pt(NH3)2(NH2(CH2)6NH2)2}]4+ and 

for which the balancing anions can be nitrate or chloride. For simplicity of discussion, 

references to BBR3464 are commonly used to mean the trinuclear cation rather than 

the neutral molecule. Thus BBR3464 consists of three trans-platinum units joined 

together by two 1,6-diaminohexane chains (Figure 2.9). As described later, the 

compound showed a very high activity against a large number of cisplatin-resistant 

cancer cell lines. The compound entered clinical trials during 1998 (Pratesi et al. 

1999; Judson and Kelland 2000).  The following table summarizes the cytotoxicity 

and antitumour activity of a number of dinuclear compounds, the trinuclear compound 

BBR3464 and cisplatin in murine leukaemia LX-1 human tumour xenograft. 
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Table 2. 2  Cytotoxicity and antitumour activity of polynuclear platinum complexes in 
murine leukaemia sensitive (L1210) and resistant to cisplatin (L1210/cis-DDP) and in 
LX-1 human tumour xenograft (data adapted from Farrell (Farrell 2000)) 

 In vitro IC50 (µg/mL) In vivo  

(L1210/cis-DDP only) 

In vivo LX-1 

Compound L1210 L1210/cis-
DDP 

    Dose 
(mg/kg/d) 

 T/C%   Dose 
(mg/kg/d) 

TWI% 

BBR3537 0.76 4.40 2 100 _ _ 

BBR3571 0.042 0.0062 0.25 261 0.25 83 

BBR3535 0.55 1.1 1 161,178 0.7 85 

BBR3610 0.0012 0.0011 0.025 457 _ _ 

BBR3611 0.0005 0.00041 0.006 256 _ _ 

BBR3005 2.3 1.8 4.5 133 3 60 

BBR3464 0.116 0.093 0.25 239,389 0.3 73 

Cisplatin 0.9 8.3 6 110 4 38 

IC50:  inhibiting concentration 50% of cellular growth after 48 h of drug exposure 

TWI:  tumour weight inhibition 

T/C:  median survival time of treated mice/median survival time of control X 100 

 

As stated earlier, BBR3464 has been found to be highly active against a number of 

cisplatin-responsive and cisplatin-resistant cancer cell lines. The compound is able to 

circumvent inherent and acquired cisplatin-resistance in vitro and in vivo in a panel of 

human adult tumour models (Manzotti et al. 2000; Riccardi et al. 2001). It exhibits 

complete lack of cross-resistance in U2-OS/Pt (Perego  et al. 1999a). The high level of 

antitumor activity in cisplatin-resistant cancer cell lines suggests that BBR3464 is 

able to overcome the multiple mechanisms of cisplatin resistance (Perego  et al. 

1999a; Pratesi et al. 1999). BBR3464 shows very high activity against cisplatin-



 52 

sensitive murine leukemia (L1210) and has complete lack of cross-resistance in 

(L1210/CDDP)(Di Blasi et al. 1998). 

p53 is a tumour suppressor protein that is involved in the control of cell cycle, DNA 

repair and apoptosis (Brabec and Kasparkova 2002). According to Farrell a plausible 

explanation for the hypersensitivity of human tumours with mutant p53 to BBR3464 

is that apoptosis induced by the drug is not mediated by p53. This is in contrast to 

apoptosis induced by cisplatin which is believed to be mediated by p53 (Kasparkova  

et al. 2001). The result supports the idea that antitumour activity of BBR3464 is 

mediated by a mechanism different from that of cisplatin and other classical platinum-

based anticancer compounds (Farrell and Spinelli 1999; Pratesi et al. 1999; Farrell 

2000). But the cellular determinants responsible for the activity of BBR3464 remain 

largely unknown (Colella et al. 2001).  

Table 2.3 shows the cytotoxicity of cisplatin and BBR3464 in human tumour cell 

lines with different p53 status or expression based on (Pratesi et al. 1999). 
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Table 2. 3    Cytotoxicity of cisplatin and BBR3464 in human tumour cell lines with 
different p53 status or expression  

                                                 IC50  (µg/mL) (±SD) 

 Cisplatin BBR3464 

Cell line 

(tumour type) 

P53 status 1 h 72 h 1 h 72 h 

A2780 

(ovarian 
carcinoma) 

Wild-type  1.2± 
0.03 

0.06±0.01 0.032±0.001 0.012±0.004 

A2780/CP 

(ovarian 
carcinoma) 

Wild-type 35±2.8 0.73±0.2 2.0±0.2 0.29±0.2 

IGROV-1 

(ovarian 
carcinoma) 

Wild-type 4.3±1.3  8.0±2.8  

U2-OS 

(osteosarcoma) 

Wild-type  2.4±0.1  1.7±0.01  

SW626 

(ovarian 
carcinoma) 

Mutant 

(codon273) 

6.3±3.0  0.08±0.03  

SAOS 

(osteosarcoma) 

Null 3.0  0.1±0.01  

POGB 

(SCLC) 

Mutant 

(codon282) 

 0.25±0.07  0.009±0.006 

A431 

(cervical 
carcinoma) 

Mutant 

(codon273) 

10.4±3  3.1±1.8  
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 In general, the interaction with DNA of polynuclear platinum complexes is different 

from that of mononuclear platinum drugs (Farrell 2000). BBR3464 and other 

polynuclear complexes were designed to form long-range interstrand and intrastrand 

DNA crosslinks (Manzotti et al. 2000). The long-range interstrand crosslinks formed 

by BBR3464 are not recognized by HMG domain protein (Zehnulova et al. 2001). 

Also the rate of binding of the polynuclear complexes is found to be different from 

that of mononuclear complexes. For example, trinuclear compound BBR3464 binds to 

DNA more rapidly than cisplatin and the dinuclear compound BBR3005. BBR3005 

forms more of shorter-range interstrand cross links than BBR3464. (Brabec et al. 

1999).  

From phase I and phase II clinical trials, it was found that the dose- limiting toxicity of 

BBR3464 was neutropenia and diarrhoea. However, the compound had no significant 

nephrotoxicity or neurotoxicity (Judson and Kelland 2000).  

A number of dinuclear and trinuclear compounds using 4,4’-dipyrazolylmethane 

(dpzm) as the bridging ligand were prepared by Wheate et al (Wheate et al. 2001) 

(Figure 2.9). The compounds show lower activity than their analogues BBR3005 and 

BBR3464, which is attributed to the rigid nature of the dpzm ligand (Wheate et al. 

2001).  According to Wheate at al (Wheate and Collins 2003), the following structure-

activity relationships applying to polynuclear platinum(II) complexes emerged from 

the systematic study of Farrell and his associates (Roberts et al. 1999a; Farrell 2000) 

and other researchers (Wheate et al. 2001).  

1. 1,0,1/t,t,t  complexes are more active than their 1,0,1/c,t,c or 1,0,1/t,c,t 

homologues (where the numerals 1,0,1 indicate the number of chloride 
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ligands bonded to platinum centres and the letters ‘t’ and ‘c’ stand for 

trans- and cis- respectively). 

2. The presence of one or two central -NH2- groups appears to be essential to 

provide compounds with high toxicity and potency. 

3. The length of linker chains also appears to play a key role in determining 

activity. Maximum activity is found for a certain length so that activity 

decreases when the length of the linker chain is either increased or 

decreased above or below the optimum value. This is found to be true for 

both spermine family of complexes where the central positive charge is 

provided by a protonated amine and trinuclear complexes where the 

central charge is provided by a metal centre. 

It is generally accepted that cis-[Pt(NH3)2(Cl)(H2O)]+, formed by hydrolysis of one 

Pt-Cl, pre-associates with DNA (Wang et al. 2001; Wheate and Collins 2003) before 

binding to specific nucleobases in DNA. Wheate at al point out that since pre-

association is stabilized largely by electrostatic forces, the pre-association of cationic 

multinuclear platinum complexes with DNA would be even stronger and therefore 

more important. It has been suggested that the pre-association of multinuclear 

platinum complexes with polyanionic DNA will significantly affect the rate and site 

of platination because an inc reased local concentration will increase the probability of 

a covalent interaction at these sites. Also, pre-association may induce a local 

conformation change in the DNA that may influence binding at a specific site. 

As stated earlier, BBR3464 consists of three trans-platinum units connected together 

by two 1,6-diaminohexane chains. Only the two terminal platinum units in BBR3464 

undergo covalent binding (mainly interstrand) with DNA whereas the central 
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platinum unit undergoes only noncovalent interactions such as hydrogen bonding and 

electrostatic interactions (Farrell and Spinelli 1999). It was hypothesized that although 

replacement of the central platinum unit with other suitable metal units may not 

significantly alter the covalent interactions of the terminal platinum units, it may have 

subtle effects on the noncovalent interactions such that anticancer active compounds 

with different spectrum of activity may result (Daghriri et al. 2001). The very high 

activity of BBR3464 means that the therapeutic window of the drug is likely to be 

very narrow. It may be noted that the clinical trials of BBR3464 have been stopped 

due to significant toxicity namely neutropenias, diarrhoea and nausea.  It is quite 

possible that when the central platinum unit of BBR3464 is replaced by other suitable 

metal units, the resulting compounds may be active but not as potent as BBR3464 so 

that their therapeutic window would be wider.  The present study deals with such 

heteronuclear compounds. The aims of the study are the following: 

(1) To prepare and characterize polynuclear complexes containing both 

platinum and palladium centres. 

(2) To determine the activity of the compounds against human cancer cells 

including cell uptake and binding with DNA. 

(3)  To study the nature of interaction with plasmid and genomic DNA 

and nucleobases.  

(4) To investigate the structure-activity relationship in the designed 

trinuclear complexes relating to the length of the linker diamine. 

The majority of the complexes are modeled on BBR3464 in which the central 

platinum unit has been replaced by the corresponding on palladium unit and the 

length of the linking diamine has been varied to contain from four to seven carbon 
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atoms. All of the compounds are found to be active (with different levels of activity) 

against a number of cancer cell lines.  
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   CHAPTER THREE 

3. EXPERIMENTAL 

3.1. SYNTHESES OF COMPOUNDS 

3.1.1. MATERIALS 

Analytical grade concentrated ammonia solution, sodium hydroxide, potassium 

iodide; concentrated hydrochloric acid and methanol were purchased from Ajax 

chemicals, Auburn NSW, Australia. Ethanol, acetone, diethyl ether were purchased 

from APS chemicals, Australia. Potassiumtetrachloroplatinate(II), potassium 

tetrachloropalladate(II), cadaverine (1,5-diaminopentane) dihydrochloride, putrescine 

(tetramethylene diamine) dihydrochloride, 1,6-diaminohexane, 1,6-diaminohexane 

dihydrochloride, N-Boc-1,6-diaminohexane, 1,7-diminoheptane, 2,2’ 

oxybis(ethylamine) dihydrochloride, N-(2-aminoethyl)-1,3-diaminopropane, silver 

nitrate, triethyl amine, dimethyl formamide (DMF), dimethyl sulfoxide (DMSO),  

dichloromethane, trans-diamminedichloropalladium(II) [transpalladin] and trans-

diamminedichloroplatinum(II) [transplatin], were obtained from Sigma-Aldrich Pty 

Ltd, NSW, Australia and used as received without further purification. 

Transplatin and transpalladin were also prepared in our laboratory.  
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3.1.2. PREPARATION OF TRANSPLATIN AND TRANSPALLADIN 

3.1.2.1. PREPARATION OF TRANSPLATIN 

Transplatin was prepared based on the general methods of Kauffman (Kauffman and 

Cowan 1963) and Dhara (Dhara 1970). The Kauffman method was found to give a 

better yield. The following is a description of the synthesis of transplatin according to 

the Kauffman method. 

2 mmol of potassium tetrachloroplatinate(II) dissolved in 15 mL of mQ water was 

mixed with 0.5 mL of concentrated HCl. The mixture was heated to boiling, to which 

2 mL of concentrated ammonia was slowly added with stirring. It was then cautiously 

evaporated with stirring to reduce the volume to about 3 mL. 80 mL of 6 M 

hydrochloric acid was added to the resulting pale yellow solution. The volume of the 

mixture was reduced to about 6 mL by heating with stirring at 60oC on a hot plate. 

During evaporation, the mixture first became turbid then clear. Yellow precipitate of 

transplatin was formed on standing. After being cooled to 0ºC for 15 min, the 

precipitate of transplatin was collected at the pump, washed first with ice cold water 

and then with acetone. It was recrystallized from 0.1 M HCl.  

3.1.2.2. PREPARATION OF TRANSPALLADIN 

 Kauffman’s method with slight modification was used to prepare transpalladin. 

Briefly potassium tetrachloropalladate(II) (1 mmol) was dissolved in 8 mL of mQ 

water and heated for 10 min at 60 ºC. 2 mL of concentrated aqueous ammonia was 

slowly added to the solution with stirring. 40 mL of 6 M HCl was added to the 

resulting pink solution and the mixture was stirred for 2 h at 40-50 ºC. The orange 
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precipitate was filtered and washed twice with ice cold water followed by that with 

methanol. 

3.1.3. SYNTHESES OF TRINUCLEAR COMPOUNDS 

As stated earlier, in this project a number of trinuclear complexes based on BBR3464 

have been prepared, which are [{trans-PtCl(NH3)2}2 µ-{trans-Pd(NH3)2-(H2N 

(CH2)4NH2)2]Cl4 (code named DH4Cl), [{trans-PtCl(NH3)2}2 µ-{trans-Pd(NH3)2-

(H2N (CH2)5NH2)2]Cl4 (code named DH5Cl), [{trans-PtCl(NH3)2}2 µ-{trans-

Pd(NH3)2-(H2N (CH2)6NH2)2]Cl4 (code named DH6Cl) and [{trans-PtCl(NH3)2}2 µ-

{trans-Pd(NH3)2-(H2N(CH2)7NH2)2]Cl4 (code named DH7Cl). The complexes have 

been prepared by replacing the central platinum unit with the corresponding 

palladium unit. In addition, the dinuclear complex [{trans-PtCl(NH3)2}µ-

{H2N(CH2)6NH2}{trans-PdCl(NH3)2]Cl(NO3) (code named DHD), in which a 

transplatinum unit and a transpalladin unit are linked together by 1,6-diaminohexane, 

has also been synthesized. 

In the case of trinuclear complexes, the size of linking diaminoalkyl chains have been 

varied to contain from 4 to 7 carbon atoms and the complexes have been prepared 

generally in the chloride form. The trinuclear complexes have been prepared by using 

step-up method of synthesis branching out from the central palladium unit. The 

procedures used were based on the method described by Farrell and co-workers for 

the synthesis of dinuclear complexes (Qu and Farrell 1992;Qu et al.1992). 

However, the exact methods used have been varied to arrive at optimum yield and 

purity. This was required because the compounds in this project are trinuclear (rather 

than dinuclear) and also because palladium and platinum differ in their reactivities. It 
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should be noted that generally palladium complexes are much more labile than 

platinum complexes (Matilla et al. 1994).  

3.1.3.1. PREPARATION OF DH6Cl 

The method for the synthesis of DH6Cl is given first as it was the first compound 

prepared and studied. It will be seen later that it is also the most active compound. 

In DH6Cl, two transplatinum units are linked to the central palladium unit by two 1, 

6-diaminohexane chains. Thus, it is possible (in principle) to synthesize DH6Cl 

starting from one of the terminal units or the central unit. In actual fact, branching out 

from the central unit only gave reproducible results and the attempted syntheses 

starting with one of the terminal units always gave a mixture of the products. After 

many trials with different methods (Farrell et al. 1990a; Qu et al. 2000), the following 

procedure was used for the synthesis of DH6Cl. 

1 mmol of transplatin (0.3 g) was dissolved in 20 mL of DMF to which was added 

0.99 mmol of silver nitrate (0.1682 g). The mixture was stirred at room temperature 

for 24 h in the dark (Rauter et al. 1997; Zhao et al. 1998b). The mixture was then 

centrifuged at 5500 rpm for 30 min (Meroueh et al. 2000) to remove precipitate of 

AgCl. The supernatant was collected and kept at -16ºC. 

A suspension of 0.5 mmol (0.106 g) of transpalladin in 10 mL of DMF was gently 

heated with stirring at 30-40 ºC for about 30 min. 

1 mmol of 1,6-diaminohexane was dissolved in 4 mL of DMF to which 1 mL of 1 M 

HCl was added dropwise with stirring. The diamine solution was stirred for a further 

15 min. It was then added to transpalladin suspension dropwise with stirring within 30 

min of preparation. A yellow solution with some white precipitate was produced. 
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Stirring was continued for about 3 h following which 0.5 mL of 1 M NaOH was 

added with stirring to the mixture. The stirring was continued for a further 30 min to 

result into a clear light yellow solution. 

The transplatin filtrate (1 mmol) that was prepared earlier and kept at -16°C, was then 

added to the light yellow solution with stirring at 40 ºC. Stirring was continued for a 

further 1 h. Then 70 µL of triethyl amine was added dropwise with stirring to the 

mixture. Stirring was continued for a further 1 h at the same temperature. The mixture 

was stirred for 48 h at room temperature. 

The solution was filtered to remove any unreacted materials. The volume of the 

filtrate was reduced to 4 mL by using a vacuum concentrator consisting of Javac 

DD150 Double stage High Vacuum Pump Savant RVT 4104 Refrigerated Vapor Trap 

and Savant Speed Vac 110 Concentrator, and filtered again. 40 mL of 

dichloromethane was added to the concentrated solution. The mixture was left 

standing at 5 ºC for 6 h. 

The light yellow precipitate produced was collected by filtration at the pump, washed 

first with ice cold water, then with methanol and finally with ethanol. It was then air 

dried.  To improve purity, the crude product was recrystallized from DMF-methanol 

mixture. The weight of the final product was 0.258 g giving a yield of 49.4 %. Molar 

conductivity (? ) at 0.0625 mM = 19.0 ohm-1cm2mol-1. The steps in synthesis are 

shown in Figure 3.1 
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Figure 3. 1.  Scheme for the synthesis of DH6Cl (Only the tetrapositive cation of 
DH6Cl is shown in the scheme, the valencing anions namely 4Cl- are not shown). 

 

3.1.3.2. PREPARATION OF DH4Cl 

The method for the synthesis of DH4Cl was adopted from Farrell’s procedures for the 

syntheses of dinuclear platinum(II) complexes (Farrell et al. 1990a; Farrell et al. 

1990b; Qu and Farrell 1992). Essentially, the method is similar to that used for the 

synthesis of DH6Cl except that 1, 4-diaminobutane was used as the linking diamine 

instead of 1, 6- diaminohexane used in the preparation of DH6Cl.   
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1 mmol of transplatin (0.3 g) was dissolved in 20 mL of DMF to which was added 

0.99 mmol of silver nitrate (0.1682 g). The mixture was stirred at room temperature 

for 24 h in the dark. The mixture was then centrifuged at 5500 rpm for 30 min at the 

end of which the supernatant was collected, and kept at -16ºC. 

A suspension of 0.5 mmol (0.106 g) of transpalladin was made in 10 mL of mQ water 

and gently heated with stirring for 30 min at 30-40 ºC. 

1 mmol (0.161 g) of tetramethylene diamine dihydrochloride (Putrescine 

dihydrochloride), dissolved in 3 mL of mQ water, was added to transpalladin 

suspension dropwise with stirring. The colour of the mixture changed first to light 

yellow and then cloudy yellow. 

1 mmol of triethyl amine (140 µL) was added dropwise with mixing to the yellow 

solution, 0.5 mmol was added first followed by the addition of another 0.5 mmol after 

30 min. The colour of the solution changed to light yellow. The mixture was stirred 

for 2 h at 40 ºC on a hot plate. 

1 mmol (0.3 g) of transplatin supernatant (that was prepared earlier) was added to the 

above mixture to produce a yellow cloudy mixture. The mixture was stirred for 4 h at 

the same temperature (40 ºC). 

It was stirred for further 48 h at room temperature. The mixture was filtered to remove 

any of the unreacted materials. The volume of the filtrate was reduced using the 

vacuum concentrator to about 8 mL. 40 mL of dichloromethane was then added to the 

concentrated solution. The mixture was then left standing at 5 ºC for 3 h.  The light 

yellow precipitate was collected at the pump, washed first with dichloromethane, then 

with ice cold water and finally with methanol. DH4Cl was found to be soluble in 

warm water and hence ice cold water was used for washing. The resulting light 



 65 

yellow solid was left in air to dry. The weight of the final product was 0.252 g giving 

a yield of 51.0 %. Molar conductivity (? ) at 0.0625 mM = 16.0 ohm-1cm2mol-1. The 

steps in synthesis are shown in Figure 3.2 
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Figure 3. 2. Scheme for the synthesis of DH4Cl (Only the tetrapositive cation of 
DH4Cl is shown in the scheme, the valencing anions namely 4Cl- are not shown). 

 

3.1.3.3. PREPARATION OF DH5Cl 

1 mmol of transplatin (0.3 g) was dissolved in 20 mL of DMF to which was added 

0.99 mmol of silver nitrate (0.1682 g). The mixture was stirred at room temperature 

for 24 h in the dark. The mixture was centrifuged at 5500 rpm for 30 min to separate 
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the precipitate of AgCl at the end of which the supernatant was collected and kept at -

16ºC in two equal portions. A suspension of 0.5 mmol (0.106 g) of transpalladin, 

made in 10 mL of mQ water, was heated with gentle stirring at 40 ºC for about 30 

min. 0.5 mmol of 1,5-diaminopentane dihydrochloride (cadaverine dihydrochloride) 

dissolved in 1 mL of mQ water was added to transpalladin suspension followed by the 

addition of 0.5 mmol of NaOH. The mixture was stirred for further 1 h at room 

temperature. Another 0.5 mmol of cadaverine dihydrochloride was dissolved in 1 mL 

of mQ water and mixed with 0.5 mmol of NaOH. The cadaverine-NaOH mixture was 

then added to the transpalladin diamine mixture. The resulting mixture was stirred for 

6 h at room temperature. A clear light yellow solution was obtained, to which 0.5 

mmol of transplatin filtrate was added and the mixture was stirred for 15 min. 0.5 

mmol of NaOH was added to the mixture. Stirring was continued for 2 h at 40 ºC. 

Another 0.5 mmol of NaOH was added to the mixture. Then the second 0.5 mmol of 

transplatin filtrate was added. The mixture was stirred for 4 h at 40 ºC and then for 48 

h at room temperature. It was then filtered to remove any unreacted materials. Then 

the volume of the filtrate was reduced to about 4 mL using the vacuum concentrator 

followed by filtration again. 20 mL of methanol was added to the filtrate. The mixture 

was left standing at 5 ºC for 12 h. The light yellow precipitate produced was collected 

at the pump. The precipitate was washed first with ice cold water, then with methanol 

and finally with ethanol. The precipitate was air dried. The weight of the final product 

was 0.163 g giving a yield of 32.1%. Molar conductivity (? ) at 0.0625 mM = 8.0 

ohm-1cm2mol-1. The steps in synthesis are shown in Figure 3.3 
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Figure 3. 3    Scheme showing the steps in the synthesis of DH5Cl (Only the 
tetrapositive cation of DH5Cl is shown in the scheme, the valencing anions namely 
4Cl- are not shown). 
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3.1.3.4. PREPARATION OF DH7Cl 

The method used to prepare DH7Cl was essentially similar to that used to prepare 

DH6Cl, with slight modification. 

0.5 mmol of transplatin (0.3 g) was dissolved in 10 mL of DMF to which was added 

0.49 mmol of silver nitrate (0.0832 g). Another 0.5 mmol of transplatin (0.3 g) was 

dissolved separately in 10 mL of DMF and reacted with 0.49 mmol of silver nitrate. 

The mixtures were stirred at room temperature for 24 h in the dark. 

The mixtures were centrifuged at 5500 rpm for 30 min, at the end of which the 

supernatants were collected and stored at 5ºC. 

A suspension of 0.5 mmol (0.106 g) of transpalladin, made in 10 mL of DMF, was 

gently heated with stirring at 30-40 ºC for about 30 min. 

0.5 mmol of 1,7-diaminoheptane (0.065 g) was mixed with 1.5 mL of mQ water and 

the mixture was acidified with 0.5 mL of 1 M HCl. It was stirred for 30 min. A 

second 0.5 mmol of 1,7-diaminoheptane was similarly treated. 

The first acidified diamine portion (0.5 mmol) was added to transpalladin suspension 

to obtain a clear yellow solution. The mixture was stirred for 30 min and then the 

second acidified diamine portion (0.5 mmol) was added. The mixture was stirred for 2 

h at room temperature. 

0.5 mL of 1 M NaOH was added to the mixture to get a lighter clear yellow solution. 

It was then stirred for 15 min.  
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Then, first 0.5 mmol of transplatin filtrate was added with stirring at 50-60ºC. After 

15 min the yellow solution became slightly cloudy and then clear. The mixture was 

stirred at 40-50C for 2 h. 

At this point, another 0.5 mmol of transplatin filtrate was added while the mixture was 

stirred at 50ºC.  

Then 70 µL of triethyl amine was added dropwise with stirring, following which the 

mixture was stirred first for 1 h at 50ºC and then for 48 h at room temperature. 

The solution was filtered to remove any unreacted material. The volume of the filtrate 

was reduced to about 5 mL using the vacuum concentrator. 

20 mL of methanol was added to the filtrate to form a yellow precipitate. The mixture 

was left standing at 5 ºC for 12 h to produce more of the precipitate. The light yellow 

precipitate was collected at the pump, washed first with ice cold water then with 

methanol and finally with ethanol. The precipitate was air dried. The weight of the 

final product was 0.158 g giving a yield of 39.5 %. Molar conductivity (? ) at 0.0625 

mM = 19.2 ohm-1cm2mol-1. 

3.1.3.5. PREPARATION OF DHD 

As stated earlier, DHD is a dinuclear compound composed of a transplatin unit and a 

transpalladin unit connected together by 1,6-diaminohexane. It can be seen that 

cation: [{trans-PtCl(NH3)2}µ-{H2N(CH2)6NH2}{trans-PdCl(NH3)2] present in DHD 

is dipositively charged. In the following method used for the synthesis of DHD, the 

cation is found to be balanced by one Cl- and one NO3
- ion. Unlike DH4Cl, DH5Cl, 

DH6Cl and DH7Cl where only the terminal platinum centers bind covalently with 

DNA, both platinum and palladium centres in DHD are expected to bind covalently 
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with DNA and thus it was considered important to see whether anticancer activity was 

retained in DHD. The compound was prepared as follows: 

0.75 mmol of transplatin (0.225 g) was dissolved in 18 mL of DMF to which was 

added 0.710 mmol of silver nitrate (0.121 g). The mixture was stirred at room 

temperature for 24 h in the dark. The mixture was then centrifuged at 5500 rpm for 30 

min to separate precipitate of AgCl. The supernatant was collected and kept at -16ºC. 

A suspension of 0.7 mmol (0.148 g) of transpalladin, made in 10 mL of DMF, was 

gently heated with stirring at 30-40 ºC for about 30 min. 

0.7 mmol of 1, 6-diaminohexane dissolved in 3 mL DMF was added dropwise to 

transpalladin suspension to obtain first a clear yellow solution that afterwards turned 

slightly cloudy. The solution was stirred for 5 h at room temperature. 

 Transplatin filtrate (0.75 mmol) was added to the mixture followed by the addition of 

90 µL of triethyl amine. The mixture was stirred for 3 h at 45 ºC to result into a clear 

yellow solution that contained tiny amounts of precipit ate. Stirring was continued for 

further 45 h at room temperature.    

The solution was filtered to remove any unreacted materials. The volume of the 

filtrate was reduced to 4 mL by using the vacuum concentrator. 40 mL of 

dichloromethane was added to the concentrated solution. The mixture was left 

standing at 5 ºC for 6 h. 

The resulting yellow precipitate produced was collected by filtration at the pump, 

washed first with ice cold water, then with methanol and finally with ethanol. It was 

then air dried. 
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 To improve purity, the crude product of DHD was dissolved in 25 mL of DMF and 

filtered. The volume of the filtrate was reduced to 4 mL by using the vacuum 

concentrator and 50 mL of dichloromethane was added to the concentrated solution. It 

was then left standing at room temperature for 3 h. The bright yellow precipitate of 

DHD was collected at the pump, washed with ice cold water, methanol and ethanol. 

The weight of the final product was 0.198 g giving a yield of 60.5 %. Molar 

conductivity (? ) at 0.0625 mM = 16.0 ohm-1cm2mol-1. The steps in synthesis are 

shown in Figure 3.4 
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Figure 3. 4  Scheme showing the steps in the synthesis of DHD (Only the dipositive 
cation of DHD is shown in the scheme, the valencing anions namely Cl- and NO3

- are 
not shown). 
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[{trans-PtCl(NH3)2}2µ-{cis-PdCl2(H2N(CH2)6NH2)2]Cl2 (code named DH1Cl) 

This was the first compound that was accidentally prepared because of the use of the 

wrong starting material namely potassium tetrachloropalladate instead of 

transpalladin. The compound was found to have activity similar to that of cisplatin. 

Briefly the method of preparation was as follows. 1 mmol (0.372 mg) of potassium 

tetrachloropalladate was dissolved in 7.5 mL mQ water to which 0.25 mL of 

concentrated HCl was added with stirring. The mixture was heated on a hot plate to 

about 90 °C for about 5 min after which the temperature was reduced to 60oC. About 

5 mmol of 1,6-diaminohexane was slowly added with stirring to the mixture. Stirring 

was continued for about 4 h. to obtain a clear yellow solution. The volume of the 

mixture was then reduced to about 6 mL by evaporation at 40oC. 25 mL of 6 M HCl 

was then added. The volume of the mixture was reduced to about 10 mL by 

evaporation at 40oC. A suspension of 1 mmol of transplatin in mQ water was added to 

the mixture with stirring. The mixture was then heated for one h at 50 °C following 

which another 1 mmol of transplatin suspension in mQ water was added. The mixture 

was stirred for 12 h at the same temperature. It was then left standing over night in the 

dark at room temperature. The precipitate of DH1Cl was collected at pump and 

washed with ice cold water. The impure product was recrystallized from 0.1 M HCl.  
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3.2. CHARACTERIZATION OF COMPOUNDS 

3.2.1. MICROANALYSIS 

Carbon, hydrogen, nitrogen and chloride were determined using the Micronalytical 

facility available at the School of Chemistry, Australian National University. Carlo 

Erba 1106 automatic analyzer was used for the determination of C, H and N contents 

and Cl was determined by titration with standardized mercuric nitrate. 

Platinum and Palladium were determined by graphite furnace atomic absorption 

spectrophotometry (AAS) using the Varian SpectrAA20 plus Atomic Absorption 

Spectrophotometer with GTA-96 Graphite Furnace Tube Atomiser, available in the 

School of Biomedical Sciences, The University of Sydney. A variant of standard 

addition technique was used (Rothery 1991). 

For the determination of platinum and palladium by AAS, 1 mg of sample was 

dissolved in 2 mL of DMF (or DMSO) and volume was made up to 100 mL with 0.1 

M HCl in a volumetric flask. The solution was further diluted with 0.1 M HCl 

depending on the metal content. The furnace conditions were essentially the same as 

those given in Varian manual (Knowles 1988).  

A diluted Pt standard (490 ppb) was prepared from the more concentrated platinum 

atomic absorption standard solution (980 µg Pt/mL in 5% HCl), obtained from Sigma. 

0.5 mL of 980 ppm Pt standard solution was diluted to 100 mL with 0.1 M HCl to 

obtain 100 mL of 4900 ppb Pt solution. 20 mL of the 4900 ppb Pt solution was 

diluted to 200 mL with 0.1 M HCl to give 200 mL of 490 ppb Pt standard solution. 
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Likewise, a 60 ppb Pd standard was made by diluting the 1000 ppm palladium atomic 

absorption standard solution obtained from Mallinckrodt Specialty Chemicals Co. 0.5 

mL of 1000 ppm Pd standard solution was diluted to 100 mL with 0.1 M HCl to 

obtain 100 mL of 5000 ppb Pd solution. 20 mL of the 5000 ppb Pd solution was 

further diluted to 200 mL with 0.1 M HCl to obtain 200 mL of 500 ppb Pd solution. 

30 mL of 500 ppb Pd solution was diluted to 250 mL with 0.1 M HCl to obtain 250 

mL of 60 ppb Pd standard solution. 

To get ready for use in AAS analysis, all the glasswares were filled with 20% v/v HCl 

for 2 d, with 20% v/v HNO3 for further 2 d and then rinsed with distilled water.  

Tables 3.1 to 3.6 give the AAS conditions used for the determination of platinum and 

palladium contents. 
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Table 3. 1.  Furnace operating conditions for the determination of platinum 

Step No Temperature 

(Cº) 

Time 

(sec) 

Gas Flow 

(L/min) 

Gas type Read 

Command 

1 85 20 3.0 Normal No 

2 90 30 3.0 Normal No 

3 95 20 3.0 Normal No 

4 120 30 3.0 Normal No 

5 400 2 3.0 Normal No 

6 800 2 3.0 Normal No 

7 1000 5 3.0 Normal No 

8 1200 1 3.0 Normal No 

9 1200 2 0 Normal No 

10 2700 1.3 0 Normal Yes 

11 2700 1 0 Normal Yes 

12 2700 2 3.0 Normal No 
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Table 3. 2.  Instrument parameters for the determination of platinum 

Instrument mode Absorbance 

Calibration mode Standard addition 

Lamp position 1 

Lamp current 8 mA 

Slit width 0.2 nm 

Wavelength 265.9 nm 

Sample introduction Sampler automixing 

Time constant 0.05 

Measurement time 1 (sec) 

Replicates 2 

Background correction On 
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Table 3. 3.  Sampler parameters used in AAS to determine platinum 

 Standard (µL) Sample 
(µL) 

Blank 
(µL) 

Total volume 
(µL) 

Blank --------- --------- 30 30 

Addition 1 2 2 26 30 

Addition 2 4 2 24 30 

Addition 3 6 2 22 30 

Addition 4 8 2 20 30 

Addition 5 10 2 18 30 

Sample ----- 2 28 30 
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Table 3. 4.  Furnace operating conditions for the determination of palladium 

Step No Temperature 

(Cº) 

Time 

(sec) 

Gas Flow 

(L/min) 

Gas type Read 

Command 

1 85 20 3.0 Normal No 

2 90 30 3.0 Normal No 

3 95 20 3.0 Normal No 

4 120 30 3.0 Normal No 

5 400 2 3.0 Normal No 

6 800 2 3.0 Normal No 

7 1000 5 3.0 Normal No 

8 1200 1 3.0 Normal No 

9 1200 2 0 Normal No 

10 2700 1.3 0 Normal Yes 

11 2700 1 0 Normal Yes 

12 2700 2 3.0 Normal No 
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Table 3. 5.  Instrument parameters for the determination of palladium 

Instrument mode Absorbance 

Calibration mode Standard additions 

Measurement mode Peak height 

Lamp position 2 

Lamp current 5 mA 

Slit width 0.2 nm 

Wavelength 244.8 nm 

Sample introduction Sampler automixing 

Time constant 0.05 

Measurement time 1 (sec) 

Replicates 2 

Background correction On 
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Table 3. 6.  Sampler parameters used in AAS to determine palladium 

 Standard (µL) Sample (µL) Blank (µL) Total volume 

(µL) 

Blank --------- --------- 30 30 

Addition 1 2 2 26 30 

Addition 2 4 2 24 30 

Addition 3 6 2 22 30 

Addition 4 8 2 20 30 

Addition 5 10 2 18 30 

Sample ----- 2 28 30 

  

Figures 3.5 and 3.6 give the typical standard-addition graphs applying to platinum and 

palladium respectively. 

 



 81 

 

Figure 3. 5  Typical standards addition graph for platinum 

 

 

Figure 3. 6  Typical standards addition graph for palladium  
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Calculating percentage yield 

Since 0.5 mmol of transpalladin at the maximum could produce 0.5 mmol of the 

compound, the theoretical yield = 0.5 x 10-3x MW (compound). 

Thus, % yield = (actual yield / theoretical yield) x 100 

3.2.2. MOLAR CONDUCTIVITY 

The molar conductivity values of DH4Cl, DH6Cl, DH7Cl and DHD in solution in 1:1 

mixture of DMF and water were determined from the measurements of conductivities 

at concentrations: 1 mM, 0.5 mM, 0.25 mM, 0.125 mM and 0.0625 mM, using 

PW9506 digital conductivity meter. For DH5Cl, the solutions were made in DMF 

only since the compound although soluble in DMF, is insoluble in the mixture of 

DMF and water. The molar conductivity (Λ) was calculated as ?  = k/c where k is the 

conductivity and c is the concentration (Atkins 1998).    

3.2.3. SPECTRAL STUDIES 

3.2.3.1. INFRARED SPECTRA 

Infrared spectra were collected using a Bruker IFS66 spectrometer equipped with a 

Spectra-Tech Diffuse Reflectance Accessory (DRA).  The spectrometer is equipped 

with the following: an air-cooled DTGS detector, a KBr beamsplitter with a spectral 

range of 4000 to 650 cm-1.  The instrument was run under vacuum during spectral 

acquisition.  Spectra were recorded at a resolution of 4 cm-1, with the co-addition of 

128 scans and a Blackman-Harris 3-Term apodisation function was applied.  Prior to 

analysis the samples were mixed, and lightly ground, with finely ground 

spectroscopic grade KBr.  The spectra were then manipulated using the Kubelka-
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Munk mathematical function in the OPUS  software to convert the spectra from 

reflectance into absorbance. 

3.2.3.2. RAMAN SPECTRA 

Raman spectra were collected using a Bruker RFS100 Raman spectrometer equipped 

with the following: an air cooled Nd:YAG laser emitting at a wavelength of 1064 nm; 

and a liquid nitrogen cooled germanium detector with an extended spectral band range 

of 3500 to 50 cm-1.  180° sampling geometry was employed.  Spectra were recorded 

at a resolution of 4 cm-1, with the co-addition of scans at a laser power of 0.130 mW 

for all the samples except for DH7Cl and DH6Cl was 0.065 mW, because these two 

samples were burned at 0.130 mW. 

All the samples were scanned at 100 except the dinuclear compound DHD scanned at 

20.     A Blackman-Harris 4-Term apodisation function was applied and the spectra 

were not corrected for instrument response.   

3.2.3.3. MASS SPECTROMETRY 

Mass spectrometry is a highly useful technique to identify the structure of organic 

compounds. In this technique the sample is vaporised under high vacuum and the 

vapour is bombarded by a high energy electron beam to undergo fragmentation and 

producing ions of varying sizes. These ions are first accelerated by an electric field 

and then deflected by a magnetic field. The amount of deflection of an ion depends on 

it’s mass/charge ratio (m/z) (Faust et al. 1992). 

Solutions of DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD, made in 10% DMF and 90% 

methanol, were sprayed into a Finnigan LCQ ion trap mass spectrometer.  The flow 
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rate was 0.2 ml/min consisting of 50% methanol and 50% water. The ions observed 

were in positive ion mode.  

3.2.3.4. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (NMR)  

Nuclear magnetic resonance spectroscopy (NMR spectroscopy) is one of the most 

widely used techniques that are used to identify compounds and to determine the 

structures of molecules. NMR spectroscopy is frequently divided into several 

categories which include: high resolution mode on homogenous mixture, high power 

mode on highly relaxing nuclei which exhibit broad liner or polymers, magic angle 

spinning and 3D NMR imaging of solution to a resolution of ~ 1 am. 

Many functional groups can be identified by their 1H chemical shift spectrum. The 

protons which are bonded to heteroatoms can be identified in 1H NMR spectrum by 

using deuterium exchange (Silverstein et al. 1991). 

 1H NMR was used in this project to identify the functional groups. Samples of the 

trinclear compounds DH4Cl, DH5Cl, DH6Cl, DH7Cl and dinuclear compound DHD 

were dissolved in deuterated DMSO except DH4Cl which was dissolved in deuterated 

DMF and prepared in 5 mm high precision Wilmad NMR tube. Bruker DPX400 

spectrometer was used with frequency of 400.2 MHz. Spectra were referenced to 

internal solvent residues and all the spectra were recorded at 300 K (± 1 K). 

Temperatures quoted for acquisition were approximate and obtained from the 

uncalibrated variable temperature unit.   
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3.3. BIOLOGICAL ACTIVITY 

3.3.1. MATERIALS 

Three human ovarian carcinoma cell lines: A2780, A2780cisR and A27800ZD473R were 

used in this study. A2780, A2780cisR and A27800ZD473R were obtained from CAMR 

centre for Applied Microbiology & Research. The cell lines were produced as 

follows. Parent cisplatin-sensitive cell line A2780 was derived from an untreated 

ovarian cancer patient (Hamilton et al. 1984; Behrens et al. 1987). Cisplatin-resistant 

cell line A2780cisR was developed by chronic exposure of parent cisplatin-sensitive 

A2780 cell to increasing concentrations of cisplatin (Behrens et al. 1987; Masuda et 

al. 1988). A2780ZD0473R cell line was developed by in vitro exposure of parent 

cisplatin-sensitive A2780 cell to increasing concentrations of drug from 0.5 to 12.5 

µM for a period of 7 months (Holford et al. 2000).   

Large cell lung carcinoma cell line NCI-460 was obtained from the Global Bio-

Source Centre ATCC in freeze medium. The NCI-H460 cell line was derived by 

A.F.Gazdar in 1982 from the pleural fluid of a patient with large cell cancer of lung 

(the cells express was easily detectable by p53 mRNA at levels comparable to normal 

lung tissue, and exhibited no gross structural DNA abnormalities) (Banks-Schlegel et 

al. 1985; Takahashi et al. 1989).  

Melanoma cell line Me-10538, is a primary tumour cell line derived from human 

melanoma (Larizza et al. 1989). 

 All the above cell- lines were stored under liquid nitrogen at Royal Prince Alfred 

Hospital, Sydney.  
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Fetal calf serum, 5X RPMI 1640, 200 mM L-glutamine and 5.6% sodium bicarbonate 

were obtained from Thermo Trace Pty Ltd Melbourne, Australia. Trypsin, Hepes, 

Dulbecco,s phosphate buffered saline powder, 3-[4,5-dimethylthiazol-2yl]-diphenyl 

tetrazoliume bromide (MTT) and dimethyl sulfoxide were obtained from Sigma-

Aldrich Pty Ltd, NSW, Australia. 96 well culture clusters, flat bottom with lid were 

obtained from Edward Keller, and 25 cm2 culture flasks were obtained from Crown 

Scientific. Microplate reader BIO-RAD Model 3550 was used to read the optical 

density of each well. 

3.3.1.1. PREPARATION OF MEDIUM 

The medium used for cell culture studies was mainly 10% fetal calf serum 

(FCS/RPMI 1640). One litre of the medium was prepared by mixing the following 

components together: 200 mL of (5X RPMI 1640), 100 mL of fetal calf serum (FCS), 

20 mL of 20 mM hepes, 20 mL of 0.11% bicarbonate, 10 mL of 2 mM glutamine and 

0.5 mL of saturated NaOH. Sterile water was used to make up the volume to one litre.   
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Table 3. 7 Constituents of the medium (FCS/RPMI 1640) 

                        2%      5%      10% 

5x RPMI 1640   200 mL   200 mL   200 mL 

FCS   20 mL   50 mL   100 mL 

Hepes   20 mL   20 mL   20 mL 

Bicarbonate   20 mL   20 mL   20 mL 

Glutamine   10 mL   10 mL   10 mL 

Sat. NaOH   0.5 mL    0.5 mL   0.5 mL 

Volume of sterile water   729.5 mL 699.5 mL 649.5 mL 

                     

3.3.1.2. PHOSPHATE BUFFERED SALINE (PBS) PREPARATION 

The materials required to prepare PBS were: PBS powder as supplied by Sigma, 1 M 

HCl, 1 M NaOH and mQ water. One litre of PBS was prepared according to the 

following procedure: 900 mL of mQ water at 15-20 ºC was transferred to 1 L 

volumetric flask followed by the addition of PBS powder while the mixture was 

gently stirred. The original package was rinsed with a small amount of mQ water to 

remove any traces of PBS powder. The pH of the medium was adjusted to 7.2- 7.5 

and more mQ water was added to bring the volume of the solution up to the mark. 

The solution was immediately sterilized by filtration using a membrane with porosity 

of 0.22 microns. The final pH of the solution was found to be 7.2.    

3.3.1.3. TRYPSIN PREPARATION 

To prepare 100 mL of trypsin, the following procedure was followed: 
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0.02 gm of disodium salt of ethylene diamine tetraacetic acid (EDTA) was dissolved 

into 1 mL of sterilized water in a 100 mL sterilized bottle to which 10 mL of 2.5% 

trypsin was added and the volume was made up to 100 mL with PBS. 

3.3.1.4. HEPES PREPARATION 

1 M of hepes solution was prepared first which was then diluted to 20 mM by using 

sterile water. To make 100 mL of 1 M hepes, 23.83 g of hepes powder was dissolved 

in 90 mL sterile water in a 100 mL volumetric flask. Then the volume was made up to 

the mark by adding more sterile water. 

3.3.1.5. CELLS RECOVERY FROM LIQUID NITROGEN  

Before the cell was taken from liquid nitrogen tank, new flasks, tubes and reagent 

were placed in the Laminar flow hood after swabbing it with 70% alcohol. The vials 

containing the cell lines were taken from the liquid nitrogen tank and placed in a 

water bath at 37 ºC until half of the liquid thawed. The vials were swabbed with 70% 

alcohol then the cells were transferred into a labeled 10 mL sterile tube containing 9 

mL of 10% RPMI 1640 culture medium. The tubes were then centrifuged for 3 min at 

2500 rpm after which the medium was removed. 2 mL of fresh medium was added to 

the cells in each tube and then the cell suspensions were transferred into pre- labeled 

flasks each containing 8 mL of fresh medium. The flasks were incubated in an 

atmosphere of 5% CO2 and 95% air at 37 ºC.  

3.3.1.6. CELL SUBCULTURE 

When the concentration of the cells exceeds the capacity of the containing medium 

then the cell growth ceases or is greatly reduced. When that happens, the medium 



 89 

must be changed or we need to subculture. Subculture involves removal of the 

medium, dissociation of the cells in the monolayer with trypsin, dispersion of cells in 

medium, counting of cells and then dilution (Freshney 2000).  

The following procedure was followed in subculture:  

The hood was swabbed with 70% methanol. Then the required materials were placed 

in the hood. The flasks containing the cell lines were taken from the incubator and 

examined carefully under microscope for any sign of contamination or deterioration. 

The medium was removed from the flasks and discarded. The flasks were then 

washed with 2 mL of PBS. The PBS that was used for washing was removed and 

discarded. 1 mL of trypsin was added to each flask. The flasks were placed into an 

incubator at 37 ºC for 2-3 min. The flasks were removed from the incubator and the 

suspensions of the cells were examined on inverted microscope. 9 mL of 10% RPMI 

1640 culture medium was added to each flask making the total volume 10 mL. 9 mL 

of suspension was removed and the cells contained in the suspension were counted by 

using hemocytometer. Depending on the cells count and condition, the 9 mL 

suspension could be used for seeding or was discarded if the cells were found to be 

unhealthy.    

3.3.1.7. CELL COUNT           

A hemocytometer was used for counting cells. The coverslip and the surface slide of 

the hemocytometer chambers were cleaned with 70% alcohol. The coverslip was then 

placed on the counting area. Cell suspension was mixed thoroughly and 20 µL of the 

cell suspension was collected and transferred immediately to the edge of each of the 

two chambers of the hemocytometer.  
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The hemocytometer was then placed on the microscope stage. A 10X objective was 

selected and focused on the grid lines in the chamber. The slide was moved to the 

central area of the grid which is bounded by three parallel lines and has an area of 1 

mm2. The cells lying in this area were counted. If fewer than 100 cells were found in 

the area, four squares surrounding the central square were counted and the results 

averaged. 

3.3.1.8. STORAGE OF THE CELL LINES    

When healthy cells entered the late log growth phase, cells were ready to be stored, 

for which the following procedure was used. Each of the monolayer cell lines was 

treated with trypsin and suspended in 9 mL of 10% RPMI 1640 culture medium. The 

suspension was removed and the cells contained in the suspension were counted. The 

cell suspension was centrifuged at 2500 rpm for 3 min. The medium was then tipped 

off and resuspended in 1 mL of 10% of DMSO. 1 mL of each cell suspension was 

transferred into a 2 mL pre- labeled NUNC vial. The vials were placed into 

polystyrene foam box surrounded by cotton wool and stored at -70 ºC for 48-72 h. 

After that the vials were removed from the foam box and transferred to the liquid 

nitrogen tank. 

3.3.2. MTT ASSAY 

MTT reduction assay is one of the best methods used to determine drug cytotoxicity, 

using unfixed cells for cell growth and viability. MTT assay shows a good correlation 

between spectrophotometric absorbance and the cell number (Mosmann 1983). 
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MTT is 3-(4, 5-dimethylthiazol -2-yl)-2, 5-diphenyltetrazolium bromide. It is a yellow 

water soluble dye that is converted to insoluble purple formazen product by 

mitochondrial dehydrogenates of living cells only. 

To make a stock solution of 5 mg/mL MTT, 0.02 g of MTT was dissolved in 2 mL 

sterile PBS (pH 7.2). This was stored in the dark at 4 ºC unless used as prepared. It 

was found to last for 3 weeks. 

MTT assay protocol 

The steps in MTT assay were as follows: 

• Monolayer culture was trypsinized to produce cell suspension to which growth 

medium was added. 

• The suspension was centrifuged for 5 min at 200 g to pellet the cells. 

• The cells were suspended in growth medium and counted using 

hemocytometer. 

• The cells were diluted to 2.5-50 x 103 cells/mL depending on the growth rate 

of the cell lines. 

• The cell suspension was transferred to a petri dish. Using a multichannel 

pipette, 100 µL (200 µL in the case of adherent cells) was added to each well 

of the flat-bottomed 96-well plate in quadruplicate for each drug dose and 

control. The central 10 columns of the plate were used. 100 µL of growth 

medium was added to each well in column 1 and 12 to provide the blank for 

the plate reader, maintain the humidity and minimize the ‘edge effect, 

• The plate was incubated in humidified atmosphere at 37 ºC for 24 h.  
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• Serial dilutions of the cytotoxic drugs were prepared in growth medium. 

• 100 µL of the cytotoxic drug was added to the cell. Four wells for each drug 

concentration and 100 µL of fresh growth medium was added to the cell 

controls. 

• The mixtures of cells and drugs were then incubated in humidified atmosphere 

at 37 ºC for 3 d. 

• Before the assay, MTT stock solution was diluted in serum free RPMI-1640 

medium to give a final concentration of 1 mg/mL. Then it was filtered through 

a 0.22 µm membrane to remove any blue formazan product. 

• At the end of the drug exposure period, the medium was removed and 50 µL 

of 1 mg/mL MTT was placed in each well followed by incubation for a period 

of 4 h to 8 h at 37 ºC. 

• MTT was aspirated and the remaining MTT-formazan crystals were dissolved 

by adding 150 µL of DMSO to each well. 

• The plate was shaken gently for a few minutes until a purple colour appeared. 

Then the absorbance of each well was read in an ELISA plate reader set at 540 

nm within 1 h of adding DMSO. 

• The % of living cells was calculated as follows:    

                                        Absorbance of sample - Absorbance of DMSO 

     % of living cells =                                                                                       x 100 

                                        Absorbance of control - Absorbance of DMSO  

       (Carmichael et al. 1987; Freshney 2000) 
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3.3.3. CYTOTOXICITY   

The cytotoxicity of designed complexes DH1Cl, DH6Cl, DH4Cl, DH5Cl, DH7Cl and 

DHD were evaluated in comparison to that of cisplatin on several human tumour cell 

lines including ovary cell lines:  A2780, A2780cisR, A2780ZD0473R, non small lung cell 

line: NCI-H640 and melanoma cell line (Me-10538) based on MTT assay. All cell 

lines were recovered from liquid nitrogen, grown as monolayers in RPMI 1640 

medium containing 10% (v/v) fetal calf serum and 1% of L-glutamine. Growing 

cultures were maintained in a humidified atmosphere consisting of 5% CO2 and 95% 

air at 37 ºC. Contamination of cell culture by mycoplasma is one of the major 

problems in tissue culture which can cause extensive changes (McGarrity et al. 1984). 

Accordingly Regular checks were carried out for mycoplasma by DNA fluorescent 

staining method, using fluorochrome DAPI (Hessling et al. 1980; Kotani and 

McGarrity 1985). The cell lines were sub-cultured two times every week. 

As the compounds differed in activity, the actual concentrations used to test activity 

needed to be varied from one compound to another. For DH1Cl, DH6Cl and cisplatin, 

50 µM stock solutions were serially diluted to give nine concentrations ranging from 

0.25 to 50 µM in one set and from 0.05-25 µM in another set.  Further dilution of 

solutions of DH6Cl, DHD and cisplatin was carried out to give five concentrations 

ranging from 0.02 to 12.5 µM (For DHD, activity was tested only for these 

concentrations). 

For DH4Cl, DH5Cl and DH7Cl, activity was tested for the concentrations ranging 

from 0.1 to 62.5 µM. The compounds were dissolved in 1mL DMF, volume adjusted 

to 5 mL with culture medium which was then sterilized by filtration through a 0.22 

µm membrane. DMSO was not used to make solution of compounds as it was found 
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that the activity of platinum compounds decreased when dissolved in DMSO (Tonew 

et al. 1984; Miller et al. 1999).  

The cell lines grown in the culture flasks were trypsinized and 100 µL of medium 

containing between 5x103and 1x105 cells per well were seeded into 96 well 

microplate. Cells were incubated for 24 h to allow the cell to attach. 

Solutions of compounds at various concentrations were added to the wells containing 

the cells (100 µL/well) in quadruplicate. The plates were incubated for three days at 

the end of which the medium was discarded and 50 µL of freshly prepared MTT was 

added to each well. The plates were incubated for 4-5 h at 37 ºC. Then MTT was 

removed and 150 µL of DMSO was added to each well. Within one hour of addition 

of DMSO, the absorbance was measured at 540 nm. The data were plotted as % of 

living cells against drug concentration, from which the IC50 value was determined. 

The IC50 value is defined as the inhibitory drug concentration causing a 50% reduction 

of absorbance and hence a 50% reduction of the surviving cell number as compared to 

that of untreated control (Perego et al. 1999b). 

In the case of DH6Cl, DH4Cl, DH5Cl and DH7Cl, IC90 values (the drug 

concentrations causing a 90% cell kill) were also determined. 

3.4. CELLULAR PLATINUM UPTAKE AND DNA 
BINDING 

3.4.1. MATERIALS 

For cell uptake and DNA binding studies, two human ovarian carcinoma cell lines: 

cisplatin-sensitive A2780 and cisplatin-resistant A2780cisR were used.  These were 

described earlier (section 3.3.1). Triton X-100 (t-Octylphenooxypolyethoxyethanol) 
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was obtained from Sigma-Aldrich Pty Ltd, NSW, Australia and commercially 

available DNA purification kit (JETQUICK Blood DNA Spin kit/50) was obtained 

from Astral Scientific Pty Ltd, Australia.  

3.4.2. DRUG ADDITION AND CELL TREATMENT  

The cell uptake and DNA binding in 4 h were evaluated for trinuclear and dinuclear 

complexes: DH6Cl, DH5Cl, DH4Cl, DH7Cl, DHD in which cisplatin was used as 

reference. For cisplatin and DH6Cl, cell uptake and DNA binding in 2 h were also 

evaluated as applied to the cell lines: A2780 and A2780cisR. For DH4Cl, whereas cell 

uptake in 2 h was determined for both cell lines:  A2780 and A2780cisR, DNA binding 

in 2 h was determined only for A2780 cell line. The method used for cell treatment 

was a modification of that described by Di Blasi et al (Di Blasi et al. 1998)  

The cell lines: A2780 and A2780cisR were subcultured at 10x105 cells/mL in 25 cm2  

tissue culture flasks each containing 10 mL of 10% FCS/RPMI 1640 medium. The 

flasks containing the cells (labeled to give the name of the compound and the time of 

the experiment) were incubated at 37°C for 24 h.  

Solutions of compounds were added to the culture flasks containing exponentially 

growing cells in 10 mL of 10% FCS/RPMI 1640 culture medium at a cell density of 

1x106cells/mL and to achieve a drug concentration of 50 µM. 

At the end of drug exposure (2 or 4 h), the cell monolayers were washed immediately 

with 1 mL of PBS followed by trypsinization with 1 mL of trypsin.  Then 9 mL of 

FCS/RPMI 1640 medium was added. 

The cells were counted and then the cell suspensions were centrifuged at 3500 rpm for 

2 min at 4 ºC. The cells were washed three times with ice-cold PBS. The pellets were 
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stored at -20 ºC until assayed for platinum and palladium contents. At least three 

independent experiments were preformed for the determination of both cell uptake 

and DNA binding. 

3.4.3.  CELL UPTAKE 

The cell pellets were suspended in 0.5 mL of 1% triton X-100 (dissolved in mQ 

water), held on ice and then sonicated using Unisonics sonicater for 30 min in order to 

lyse the cells (Farrell et al. 1992; Roberts et al. 1999b) . 

The total intercellular platinum and palladium contents were determined by graphite 

furnace AAS using the technique of standard addition. Because of a lower 

concentration, sample volume was increased to 4 µL or 8 µL instead of 2 µL used in 

microanalysis (section 3.2.1) and often multiple injections were required. Platinum 

and palladium contents were calculated as nmoL Pt per 2x106 cells and nmoL Pd per 

2x106 cells respectively. 

3.4.4. PLATINUM DNA BINDING 

Because of a small sample volume and the need for multiple injections, generally 

samples were analyzed only for platinum. The procedure used was as follows. 

Following the incubation of cells with compounds for 2 and 4 h, the high molecular 

weight DNA was isolated and purified from cell pellet using commercially available 

kit JETQUICK Blood DNA Spin Kit/50. The protocol used was a modification of that 

used by Bowtell (Bowtell 1987) 

The stored cell pellets were suspended in PBS to give a final volume of 200 µL, 

mixed with 10 µL of RNase A and incubated for 4 min at 37 ºC. After incubation, 25 

µL of Proteinase K and 200 µL of Buffer K1 which contained guanidine 
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hydrochloride and a detergent were added and incubated for 10 min at 70 ºC. This 

was followed by addition of 200 mL of absolute ethanol and mixed very thoroughly to 

prevent any precipitation of nucleic acids due to the production of local high 

concentrations of ethanol. 

The samples were each transferred to a JETQUIK micro-spin column with a 2 mL 

receiver tube and centrifuged for 1 min at 10,600 rpm to pass through the column 

silica membrane. The flowthrough was discarded. The samples in the column were 

washed by applying 500 µL buffer KX (containing high-salt buffer, capable of 

removing residual contaminations which may effect downstream applications 

supplied with the kit) and centrifuged for 1 min at 10,600 rpm. Again the flowthrough 

was discarded. The Micro-Spin unit with the receiver tube was re-assembled and 

washed with 500 µL of buffer K2 and centrifuged for 1 min at 10,600 rpm. Buffer K2 

is a low-salt buffer that changes the high-salt conditions on the silica membrane. The 

flowthrough was discarded following which the sample columns and the empty 

receiver tube were centrifuged again for 2 min at the full speed of 13,000 rpm. The 

column receiver was replaced by 1.5 mL reaction tube and the DNA in the column 

was eluted from the membrane with 200 µL of 10 mM Tris-HCl buffer (pH 8.5). 

The elution buffer was pre-warmed to 70 ºC and pipetted directly into the centre of 

the silica membrane. The spin columns were incubated for 5 min at room temperature 

after application of the elution buffer and centrifuged subsequently for 2 min at 

10,600 rpm. DNA content and DNA purity was determined spectrophotometerically 

by using Varian Cary IE UV-Visible spectrophotometer. The purity of DNA was 

estimated by calculating the ratio between the absorbance values at 260 nm and 280 

nm (A260/  A280) (Di Blasi et al. 1998) and the DNA concentration was calculated 

according to  the following equation.  
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Concentration = Absorbance at 260 nm x dilution factor x 50 ng/µL  

 Platinum contents were determined by AAS using Varian SpectrAA-20 plus with 

GTA 96 facility. Because the amount of Pt that was bound to DNA was very small, 

sampler parameters again needed to be varied as compared to those used in 

microanalysis and cell uptake. For example, 16 µL samples were used instead of 2, 4 

or 8 µL. 

3.5.  INTERACTION WITH DNA  

Because the activity of platinum based anticancer drugs is believed to be associated 

with their interaction with DNA, the nature of interaction of the designed compounds, 

cisplatin and transplatin with pBR322 plasmid DNA and salmon sperm DNA was 

studied using gel electrophoresis. BamH1 digestion was also carried out to get further 

insight into the nature of conformational change of pBR322 plasmid DNA.   

3.5.1. MATERIALS 

Salmon sperm DNA (ssDNA) was obtained from Fluka, Switzerland and Sigma-

Aldrich, NSW, Australia; pBR322 plasmid DNA (0.05 mg/mL in buffer consisting of 

1 mM Tris-HCl at pH 7.5, 1 mM NaCl and 1 mM EDTA) was obtained from ICN 

Biomedicals, Ohio, USA. Trizma base, Trizma-HCl, disodium salt of ethylene 

diamine tetraacetic acid, boric acid, acetic acid and ethidium bromide were obtained 

from Sigma, USA.  Agarose was obtained from ICN Australia. Restriction enzyme 

(BamH1), 10X digestion buffer and Polaroid black-and-white print film type 667 

were obtained from Sigma, Australia.   
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3.5.1.1. PREPARATION OF 50X TAE STOCK SOLUTION AND TAE 

WORKING SOLUTION BUFFERS 

TAE is one of the commonly used buffers for DNA gel electrophoresis. To make 250 

mL of 50X TAE buffer solution, 4.65 g of Na2EDTA, 60.55 g of Tris base and 14.275 

mL of glacial acetic acid were required. The components were dissolved in a 

minimum volume of mQ water followed by the addition of more mQ water in order to 

bring the volume up to 250 mL. 40 mL of 50X TAE buffer solution was then diluted 

with mQ water to give 2000 mL of working TAE buffer solution. 

3.5.1.2.  GEL PREPARATION 

To make 250 mL of 1% agrose gel, 2.5 g of agrose powder was added to abut 100 mL 

TAE buffer. More TAE buffer was added to make the volume 250 mL. The mixture 

was boiled in microwave for 1 min, swirled to mix and boiling was continued for 

another 4 min. Agrose solution was cooled for a few minutes. 60 µL of ethidium 

bromide was added to the gel and mixed (Stellwagen 1998). Then the gel was gently 

poured into the tray with comb placed in position, left at room temperature for 40 min 

to solidify. 

3.5.1.3. SALMON SPERM DNA PREPARATION    

A stock solution DNA was dissolved in 0.05 M Trizma buffer at pH 8.0. 250 mL of 

the buffer was prepared by dissolving 1.11 g of Trizma-HCl, and 0.663 g of Trizma 

base in mQ water. It was then sterilized by passing through 0.22 µm Millipore filter. 

10 mg and 15 mg respectively of salmon sperm DNA were dissolved in Trizma buffer 

to give 10 mL stock solutions of the DNA at concentrations 1 mg/mL and 1.5 mg/mL 

respectively. DNA solutions were stored at -17ºC until used.     
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3.5.2. INTERACTION BETWEEN pBR322 PLASMID DNA AND 

THE HETRONUCLEAR COMPLEXES.    

Plasmids are circular duplex, heavy molecular weight DNA ranging in size from two 

kilo bases to a few hundred kilo bases. Plasmid DNA is normally found in a 

supercoiled form commonly known as form I DNA. During isolation nicking by 

nucleases, chemical treatment, or mechanical shear, can cause strand breaks, 

producing singly-nicked open circular form (called form II DNA) and doubly-nicked 

open chain (called form III DNA)  (Cantor and Schimmel 1980). Electrophoresis in 

agarose or polyacrylamide gels is a well established method used to separate the three 

forms of plasmid DNA (Mickel et al. 1977).   

In an applied electric field, the DNA, being negatively charged due to the phosphate 

backbone, will migrate through the gel from the negative to positive electrodes. The 

three forms of plasmid DNA differ in the rate of migration through the gel. Form I 

being supercoiled and compacted, travels fastest. The flexible and relaxed circular 

Form II DNA has the lowest migration rate whereas the linear Form III DNA has the 

intermediate migration rate. 

                                

Form II

Form III

Form I

Direction of migration
 

Figure 3. 7  Migration of the three forms of plasmid DNA in gel 
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Besides strand breakage, the unwinding of the supercoiled plasmid DNA can also be 

brought about by intercalation and covalent binding of compounds to nucleobases in 

DNA. For example, supercoiled form I plasmid DNA can change from negatively 

supercoiled form I through relaxed circular form I to positively supercoiled form I. 

This change in DNA conformation is reflected as a change in mobility through the 

gel. It will be considered later that like BBR3464, multinuclear Pt-Pd-Pt complexes 

form long range interstrand GG adducts with DNA, causing long range changes in 

DNA conformation. 
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Figure 3. 8  Schematic representation of the unwinding of supercoiled plasmid DNA 
from negatively supercoiled form I through relaxed circular form to positively 
supercoiled form I 

The plasmid-binding assay is a rapid in vitro technique that can be employed to study 

the interaction of platinum compounds with DNA. The assay involves the use of 

plasmid DNA and restriction enzymes. BamH1 is one of these restriction enzymes 

which hydrolyse the phosphodiester bond between adjacent guanines in DNA strands 

producing form II and ultimately form III DNA. When platinum compounds bind to 

the nucleotides adjacent to the recognition sequence, DNA may undergo 

conformational change or distortion such that cutting of the phosphodiester bond may 

be prevented. It will be seen later that as increasing concentrations of multinuclear 

complexes bind to DNA, BamH1digestion of plasmid DNA is increasingly prevented. 

Negatively supercoiled DNA 

Relaxed DNA 

Positively supercoiled DNA 
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3.5.2.1. INTERACTION BETWEEN COMPOUNDS AND pBR322 PLASMID 

DNA:  ELECTROPHORETIC ASSAY 

1 mM stock solution of cisplatin, transplatin and multinuclear complexes (DH4Cl, 

DH5Cl, DH6Cl, DH7Cl and DHD) (5 mL in each case) were prepared by dissolving 

appropriate amounts of the compounds in 1 mL of DMF followed by addition of  mQ 

water to give a total volume of 5 mL. To dissolve DH5Cl, pH was first increased to 

10 with 0.1 M NaOH and then reduced to 7. The solutions of the compounds were 

serially diluted to give the concentrations: 0.025 mM, 0.035 mM, 0.05 mM, 0.075 

mM, 0.1 mM, 0.15 mM, 0.2 mM and 0.3 mM.  

To 1.2 µL of pBR322 plasmid DNA, was added 1 µL of solutions of the compounds 

(DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD, cisplatin and transplatin) at eight different 

concentrations. The total volume was made up to 20 µL by adding 17.8 µL of mQ 

water so that the concentrations of the compounds in the mixtures were: 1.25 µM, 

1.875µM, 2.5 µM, 3.75 µM, 5.0 µM, 7.5 µM, 10 µM and 15 µM. The DNA blank was 

made by adding 18.8 µL mQ water to 1.2 µL of pBR322 plasmid DNA. 

The samples including the DNA blank were incubated for 4 h on a shaking water bath 

at 37 ºC in the dark. At the end of incubation, the reaction was quenched by rapid 

cooling to 0 ºC. The samples were thawed then mixed with 4 µL of marker dye (0.25 

% bromophenol blue and 40% of sucrose). 18 µL of each sample was loaded onto 1% 

agrose gel made in TAE buffer that contained ethidium bromide (0.5 mg/mL). The gel 

was stained in the same buffer (Onoa and Moreno 2002). 

Electrophoresis was carried out in TAE buffer containing ethidium bromide at 100V 

for 3 h at room temperature. The bands of the plasmid DNA were viewed under short 



 104 

wave UV light using the BIO-RAD Trans illuminatorIEC1010 and photographed with 

Polaroid camera (orange filter) using Polaroid black-and-white print film, type 667. 

3.5.2.2. INTERACTION OF COMPOUNDS AND PBR322 PLASMID DNA 

IN PRESENCE OF BamH1 RESTRICTION ENZYM E DIGESTION. 

As stated earlier, BamH1 is a restriction endonuclease that hydrolyses the 

phosphodiester bonds. BamH1 is known to recognize the sequence G/GATCC and 

hydrolyse the phosphodiester bond between adjacent GG sites (Roberts et al. 1977). 

Supercoiled form I pBR322 plasmid DNA contains a single restriction site for BamH1 

that converts the supercoiled form I and singly nicked circular form II to linear form 

III DNA (Sutcliffe 1979). The procedures used to make drug-plasmid DNA mixtures 

were identical to those described previously. However, only the following five drug 

concentrations: 1.875 µM, 2.5 µM, 5.0 µM, 10 µM and 15 µM were used for DH4Cl, 

DH5Cl, DH6Cl, DH7Cl and DHD. For cisplatin, in addition to these concentrations, 

20 µM was also used. The mixtures were first incubated for 4 h on water bath at 37 

ºC. The samples were then treated with BamH1 according to the procedure described 

by Sambrook  (Sambrook et al. 1989) with some modifications as stated below. 

Samples after incubation were treated with BamH1 (10 units µL-1). To each 20 µL of 

the incubated drug-DNA mixtures was added 3 µL of 10X digestion buffer followed 

by the addition of 0.2 µL of  BamH1 (2 units). The mixtures were left in shaking 

water bath at 37 ºC for 1 h at the end of which the reaction was stopped by rapid 

cooling. The samples were thawed and treated as described previously in section 

3.5.2.1. The gel was subsequently stained with ethidium bromide and the bands of the 

plasmid DNA were viewed under short wave UV light and photographed with 

Polaroid camera (orange filter) using Polaroid black-and-white print film, type 667. 
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3.5.3. INTERACTION WITH SALMON SPERM DNA  

Salmon sperm DNA (ssDNA) is a low molecular weight genomic DNA, ranging in 

size from 0.6 to 0.8 kilo base. Unlike plasmid DNA (which can exist in three forms), 

ssDNA can exist only in one form and thus its electrophoretogram has only one band.  

The following procedure was used to investigate the interaction of multinuclear 

complexes with ssDNA by electrophoric assay. Whereas the concentration of the 

ssDNA was kept constant, that of the compounds was varied to have the values: 0.05 

mM, 0.075 mM, 0.1 mM, 0.15 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.6 mM, and 0.8 mM.  

To 2 µL of ssDNA (1 mg/mL), was added 2 µL of solutions of the compounds 

(DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD, cisplatin and transplatin) at nine different 

concentrations. The total volume was made up to 20 µL by adding 16 µL of mQ water 

so that the concentrations of the compounds in the mixtures were: 5 µM, 7.5 µM, 10 

µM, 15 µM, 20 µM, 30 µM, 40 µM, 60 µM and 80 µM. DNA blank was made by 

adding 18 µL mQ water to 2 µL of ssDNA. The mixtures were first incubated for 4 h 

on a water bath at 37 ºC. The samples were thawed and treated as described 

previously in section 3.5.2.1. Electrophoresis was carried out also in TAE buffer 

containing ethidium bromide at 85V for 2.5 h at room temperature and ssDNA bands 

were viewed under short wave UV light and photographed with Polaroid camera 

(orange filter) using Polaroid black-and-white print film, type 667. 
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3.6. INTERACTION BETWEEN DH6Cl AND 
NUCLEOBASES                                                           

High pressure liquid chromatography also known as high performance liquid 

chromatography (HPLC) provides a highly sensitive and convenient method to 

investigate the binding between platinum-based anticancer drugs and nucleobases, 

nucleosides, nucleotides and DNA (Berners-Price and Appleton 2000). In a typical 

reverse phase HPLC experiment, appropriate choice of column, mobile phases, pH, 

flow rate, gradient, ion-pairing agent etc. would allow each adduct between a 

platinum drug and a nucleobase or nucleotide (eg guanine or AMP) to be eluted with 

a characteristic retention time. Determination of the platinum content of time peak 

fraction by graphite furnace AAS and nucleobase (or nucleotide) content by UV-

visible spectrophotometry makes possible the calculation of the binding ratio between 

the drug and the nucleobase (or the nucleotide) applying to the fraction. Provided 

appropriate conditions are chosen, HPLC would offer an efficient method of 

purification of a drug or drug-nucleobase (or drug-nucleotide) adduct. Purified 

adducts can be structurally characterized by single crystal x-ray diffractometry (if 

suitable crystals can be grown) and/or by NMR spectroscopy. In this study, HPLC has 

been used to determine the binding ratio between the most active compound DH6Cl 

and the nucleobases guanine and adenine. As the multinuclear cations of DH4Cl, 

DH5Cl, DH6Cl and DH7Cl, have two labile chloro ligands, all of them are expected 

to form 1:2 (drug : NB) adducts where NB stands for guanine or adenine.  

3.6.1. MATERIALS 

Ammonium acetate and acetic acid were obtained from APS chemicals, Australia; 

HPLC grade methanol was obtained from Mallinckrodt, USA. All other chemicals 

including adenine and guanine were obtained from Sigma, USA.  
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3.6.2. HPLC METHOD 

1 mL of 5 mM solution of DH6Cl dissolved in DMF was diluted to 5 mL with mQ 

water to give 1 mM DH6Cl solution. Equal volumes of 1 mM solution of DH6Cl and 

2 mM solution of NB (guanine or adenine) were mixed together and incubated at 

37°C in a shaking water bath for 24 h. To dissolve guanine in mQ water, pH was 

increased to about 10 by adding a tiny drop of 0.1 M NaOH. After incubation, 5-10 

µL of each of the mixtures and appropriate components was injected separately into a 

Waters HPLC system, consisting of a Waters 600 controller, a Waters 600 pump, a 

Waters 746 data module, a Waters Dual ? absorbance detector and Waters C18 5 µm 

symmetry column with internal diameter of 3.9 mm and length of 150 mm. The 

wavelength was set at 260 nm. 

The mobile phase consisted of 5 % methanol and 95% of ammonium acetate (0.1 M at 

pH 5.5) with a flow rate of 1 mL/min. The retention times of the peaks applying to the 

mixtures and the components were recorded and the peak fractions applying to the 

mixtures collected.  

3.6.3. BINDING RATIO      

As stated earlier, to determine the binding ratio between DH6Cl and nucleobases 

(guanine and adenine), the peak fractions of the mixtures were analyzed for 

nucleobase or nucleotide content by using Cary IE UV-visible spectrophotometer set 

at 260 nm and for platinum content by graphite furnace AAS. 0.025 mM solution of 

Guanine and adenine was used to determine molar absorptivity at 260 nm. Using the 

appropriate molar absorptivity value, the concentration of nucleobase in the fraction 

was calculated. From the values of platinum and nucleobase contents, the Pt : NB 

(where NB stands for nucleobase) ratio was calculated.  
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CHAPTER FOUR 

4. RESULTS 

4.1. CHARACTERIZATION OF COMPOUNDS 

As stated before, in this project five trinuclear complexes (DH4Cl, DH5Cl, DH6Cl, 

DH7Cl and DH1Cl) and one dinuclear compound (DHD) were prepared and 

investigated for their antitumour activity and interaction with DNA. 

4.1.1. COMPOSITION 

The stoichiometries of the compounds were determined based on elemental analyses. 

C, H, N and Cl were determined using the facility of Micro-analytical Unit at 

Australian National University, School of Chemistry. Platinum and palladium were 

determined by graphite furnace AAS. 

4.1.1.1. DH4Cl 

DH4Cl is [{trans-PtCl(NH3)2}2µ-{trans-Pd(NH3)2(H2N(CH2)4NH2)2]Cl4. It has the 

following structure. 

Pt

NH2H3N

NH3Cl

Pd

NH3NH2

H3N NH2

 (CH2)4

Pt

ClH3N

NH3H2N (CH2)4

     
                                     Cl4

 

Figure 4. 1  Structure of DH4Cl 

Formula: C8H42N10Cl6Pt2Pd 
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 Molar mass:  987.779 g mol-1  

Percentage yield: 51.0 % 

The percentage composition of DH4Cl is given in Table 4.1.   

Table  4. 1  The percentage composition of DH4Cl 

Element Calculated (%) Found (%) 

C 9.7 11.0 

H 4.3 4.1 

N 14.8 14.0 

Cl 21.5 21.5 

Pt 39.5 40.0 

Pd 10.8 10.9 

4.1.1.2. DH5Cl 

DH5Cl is [{trans-PtCl(NH3)2}2µ-{trans-Pd(NH3)2(H2N(CH2)5NH2)2]Cl4. It has the 

following structure.   

Pt

NH2H3N

NH3Cl

Pd

NH3NH2

H3N NH2

 (CH2)5

Pt

ClH3N

NH 3H2N (CH2)5

     
                                     Cl4

 

Figure 4. 2  Structure of DH5Cl 

Formula: C10H46N10Cl6Pt2Pd  

Molar mass: 1015.832 g mol-1  
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Percentage yield: 32.1 %  

The percentage composition of DH5Cl is given in Table 4.2.   

Table  4. 2  The percentage composition of DH5Cl 

Element Calculated (%) Found (%) 

C 11.8 12.0 

H 4.6 3.9 

N 13.8 11.8 

Cl 20.9 23.3 

Pt 38.4 40.0 

Pd 10.5 10.2 

4.1.1.3. DH6Cl  

DH6Cl is [{trans-PtCl(NH3)2}2µ-{trans-Pd(NH3)2(H2N(CH2)6NH2)2]Cl4. It has the 

following structure.  

Pt

NH2H3N

NH 3Cl

Pd

NH3NH2

H3N NH2

 (CH2)6

Pt

ClH3N

NH3H2N (CH2)6

                          Cl4  

 

Figure 4. 3  Structure of DH6Cl 

Formula: C12H50N10Cl6Pt2Pd 

Molar mass: 1043.885 g mol-1 

Percentage yield: 49.4 %  
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The percentage composition of DH6Cl is given in Table 4.3.   

Table  4. 3  The percentage composition of DH6Cl 

Element Calculated (%) Found (%) 

C 13.8 12.6 

H 4.8 4.2 

N 13.4 13.0 

Cl 20.4 20.8 

Pt 37.4 36.0 

Pd 10.2 10.8 

4.1.1.4. DH7Cl 

DH7Cl is [{trans-PtCl(NH3)2}2µ-{trans-Pd(NH3)2-(H2N(CH2)7NH2)2]Cl4. It has the 

following structure. 

Pt

NH2H3N

NH3Cl

Pd

NH3NH2

H3N NH2

 (CH2)7

Pt

ClH3N

NH 3H2N (CH2)7

     
                                     Cl4

 

Figure 4. 4  Structure of DH7Cl 

Formula: C14H54N10Cl6Pt2Pd 

Molar mass: 1071.938g mol-1 

Percentage yield: 39.5 % 

 The percentage composition of DH5Cl is given in Table 4.4.   



 112 

Table  4. 4  The percentage composition of DH7Cl 

Element Calculated (%) Found (%) 

C 15.7 17.2 

H 5.1 5.2 

N 13.1 12.1 

Cl 19.8 20.1 

Pt 36.4 35.7 

Pd 9.9 10.4 

4.1.1.5. DHD 

DHD is [{trans-PtCl(NH3)2}µ-{H2N(CH2)6NH2}{trans-PdCl(NH3)2]Cl(NO3). It is   a 

dinuclear complex made by joining together of a transplatin unit and a transpalladin 

unit by a molecule of 1, 6- diaminohexane and in which the balancing negative ions 

are Cl- and NO3
-. It has the following structure. 

Pt

NH3Cl

NH2H3N

Pd

ClH3N

H2N NH3 (CH
2
)

6

                               
Cl(NO

3
)

                                             

 

Figure 4. 5  Structure of DHD 

Formula:  C6H28N7Cl3O3PtPd  

Molar mass:  654.188 g mol-1  

Percentage yield: 60.5 % 
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 The percentage composition of DHD is given in Table 4.5.  

Table  4. 5  The percentage composition of DHD 

Element Calculated (%) Found (%) 

C 11.0 12.3 

H 4.3 4.1 

N 15.0 14.0 

Cl 16.3 17.1 

Pt 29.8 29.7 

Pd 16.27 15.60 

4.1.1.6. DH1Cl 

DH1Cl is [{trans-PtCl(NH3)2}2µ-{cis-PdCl2(H2N(CH2)6NH2)2]Cl2. It has the 

following structure. 

 

Pt

NH2(CH2)6Cl

ClH3N

Pd

Cl

NH2

Cl

NH2

Cl
2
 

Pt

Cl(H2C)6H2N

NH3Cl
 

Figure 4. 6  Structure of DH1Cl 

Formula: C12H44N8Cl6Pt2Pd 

Molar mass: 1009.8 

Percentage yield: 50.5 % 

The percentage composition of DH1Cl is given in Table 4.6.  
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Table  4. 6  The percentage composition of DH1Cl 

Element Calculated (%) Found (%) 

C 14.3 12.5 

H 4.4 3.9 

N 11.1 11.8 

Cl 21.1 23.3 

Pt 38.6 40.0 

Pd 10.5 10.2 

 

DH1Cl was the first compound that was accidentally prepared because of the use of 

the potassium tetrachloropalladate instead of transpalladin as the starting material for 

the central unit. Besides determination of stoichiometry of the compound by 

elemental analysis, only studies on its cytotoxicty were carried out. Thus, no other 

studies relating to cell uptake, binding with DNA were done for the compound. 

4.1.2. SPECTRAL STUDIES 

The IR, Raman, mass and 1H NMR spectra of the compounds were taken in order to 

assist in the characterization of the compounds. 

4.1.2.1. IR, RAMAN, MASS AND 1H NMR SPECTRA OF DH4Cl 

The IR and Raman spectra of DH4Cl are given in figure 4.7 and 4.8 followed by 

listings of selected bands where the letters ‘s’, ‘m’, ‘w’, ‘br’ and ‘d’ denote 

respectively strong, medium, weak, broad and doublet. The assignments of the bands 

are given in discussion (chapter 5).  
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The mass and 1HNMR spectra of DH4Cl are given in figure 4.9 and 4.10. Selected 

peaks values of DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD mass spectrum (m/z) and 

the values of 1H NMR spectrum of these compounds are listed in table (4.7).   
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Figure 4. 7  IR spectrum of DH4Cl 

Selected IR bands of DH4Cl: 

3302s, 3209m, 2931w, 2850w, 2544w, 1709w, 1581m, 1456w, 1379w, 1290s, 

1038w, 972w, 806m, 754w, 494w. 
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Figure 4. 8 Raman spectrum of DH4Cl 

Selected Raman bands of DH4Cl: 

3209w br, 2899w, 2856w, 2092w, 1445w, 1441w, 1293w, 1046w, 747w, 533s, 486w, 

322s, 290w, 213s, 83s. 
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Figure 4. 9  Mass spectrum of DH4Cl 
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Figure 4. 10  1H NMR spectrum of DH4Cl 

4.1.2.2. IR, RAMAN, MASS AND 1H NMR SPECTRA OF DH5Cl 

The IR and Raman spectra of DH5Cl are given in figures 4.11 and 4.12. Listings of 

selected bands of IR and Raman spectra are given below. The mass and 1HNMR 

spectra of DH5Cl are given in figures 4.13 and 4.14.  
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Figure 4. 11  IR spectrum of DH5Cl 

Selected IR bands of DH5Cl: 

3267s, 3222s, 3145m, 2951w, 2927m, 2856w, 2266w, 1577m, 1448w, 1392w, 

1292m, 1190m, 1074s, 1014w, 966w, 843w, 804w, 714 w d, 482w, 418w. 
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Figure 4. 12  Raman spectrum of DH5Cl 
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Selected Raman bands of DH5Cl 

3221w, 3146w, 2916m, 2855w, 1576w, 1441w, 1190w, 1077w, 841w, 683w, 533m, 

488m, 419w, 307w, 294s, 195m, 83m. 
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Figure 4. 13  Mass spectrum of DH5Cl 
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Figure 4. 14  1H NMR spectrum of DH5Cl 

4.1.2.3. IR, RAMAN, MASS AND 1H NMR SPECTRA OF DH6Cl 

The IR and Raman spectra of DH6Cl are given in figures 4.15and 4.16. Listings of 

selected bands are given below. The mass and 1HNMR spectra of DH6Cl are given in 

figures 4.17 and 4.18.  
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Figure 4. 15  IR spectrum of DH6Cl 

 

Selected IR bands of DH6Cl 

3950w br, 3255s br, 3211s, 2925s, 2854m, 1745m, 1576s, 1336s, 1049s d, 995s, 825s, 

723m, 619w, 503m, 442w. 
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Figure 4. 16  Raman spectrum of DH6Cl 

 

Selected Raman bands of DH6Cl:   

3217w, 2903m, 2855m, 1441w, 1190w, 1051s, 859w, 716w, 596w, 533s, 322s, 295w, 

209m, 81s  
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Figure 4. 17  Mass spectrum of DH6Cl 

1.52.02.53.03.54.04.55.05.5 ppm

DH6Cl

 

Figure 4. 18  1H NMR spectrum of DH6Cl 
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4.1.2.4. IR, RAMAN, MASS AND 1H NMR SPECTRA OF DH7Cl 

The IR and Raman spectra of DH7Cl are given in figure 4.19 and 4.20. Listings of 

selected bands of IR and Raman spectra are given below. The mass and 1H NMR 

spectra of DH7Cl are given in figure 4.21 and 4.22.  

 

1331

403

501

721

806

995
1038

1290

1583

2852

2925

3138

3219

3302

2549
2355

20812040

1743

1074

573

0

0.5

1

1.5

2

2.5

200 700 1200 1700 2200 2700 3200 3700 4200

Cm -1

A
b

so
rb

an
ce

 

Figure 4. 19  IR spectrum of DH7Cl 

Selected IR bands of DH7Cl: 

3302s, 3219s, 3138m,  2925m, 2852w, 2355w, 2081w, 2040w, 1743w, 1583m, 1331s 

br,  1290s, 1074w, 1038w, 955w, 806m d, 721 w, 573w, 501w, 403w 
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Figure 4. 20  Raman spectrum of DH7Cl 

Selected Raman bands of DH7Cl 

3213w br, 3140w, 2900w, 2855w, 1599w, 1439w, 1296w, 1188w, 1044m, 712w, 

596w, 533s, 322s, 213s,  83s 
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Figure 4. 21  Mass spectrum of DH7Cl 

5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

DH7Cl

 

Figure 4. 22  1H NMR spectrum of DH7Cl 
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4.1.2.5. IR, RAMAN, MASS AND 1H NMR SPECTRA OF DHD 

The IR and Raman spectra of DHD are given in figures 4.23 and 4.24. Listings of 

selected bands of IR and Raman spectra are given below. The mass and 1HNMR 

spectra of DHD are given in figures 4.25 and 4.26.  
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Figure 4. 23  IR spectrum of DHD 

Selected bands of IR spectra of DHD 

3975w br, 3290s, 3213s br, 3140s, 2924s, 2852m, 2353w, 1743m, 1576s, 1288s br, 

1194m, 1068m d, 993s, 823s d, 725m, 575w, 501w d, 420w. 
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Figure 4. 24  Raman spectrum of DHD 

Selected Raman bands of DHD:   

3213w d, 2897m, 2856m, 1595w, 1439w, 1192w, 1044m, 708w, 589w d, 533s, 405w, 

322s, 311w, 211s, 83s. 
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Figure 4. 25  Mass spectrum of DHD 
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Figure 4. 26  1H NMR spectrum of DHD
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Table  4. 7  Selected mass and 1H NMR spectral peaks for DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD 

Compound Mass spectrum peaks values (m/z) 1H NMR 

DH4Cl EIS-MS (DMF) (m/z: M = 988); (M – 2Cl + H  = 917); (M - 4Cl - NH3- 5H = 824); (M - 4Cl -3NH3 = 
795); (M - 4Cl - 5NH3 = 761); Cl(NH3)2Pt-µ-{NH2(CH2)4NH2}Pd(NH3)2 = 493;  ClPt 
{NH2(CH2)4NH2} = 319;   ClPd(NH3){NH2(CH2)4NH2} = 248. 

1H NMR DMF δ ppm: 3.9 (br, due to NH 
bonded to Pt and NH bonded to Pd).; 3.7 
(due to CH2) 2.8 (CH2); 2.0 (due toCH2). 

DH5Cl EIS-MS (DMF) (m/z: M = 1015); (M - 2Cl = 944); (M - 4Cl - NH3 - H = 855); (M - Pt - 2NH3 - 4Cl - 
2H = 642); (NH2)2Pt-µ-{NH2(CH2)5NH2}Pt(NH2) = 540;  Cl(NH3)2Pt-µ-{NH2(CH2)5NH2}Pd(NH3)3  = 
524;  Cl(NH2)Pt-µ-{NH2(CH2)5NH2}Pd(NH2)2 = 487;  (NH2)2Pt-µ-{NH2(CH2)5NH2}Pd(NH3) = 451; 
(Pd{NH2(CH2)5NH2} + H ) = 211. 

1H NMR DMSO δ ppm: 4.4 (br, due to 
NH3); 4.0 (due to NH2); 3.6 (CH2); 2.4 
(CH2); 2.2 (CH2); 1.6 (?); 1.3 (CH2).  

DH6Cl EIS-MS (DMF) (m/z: M = 1043); (M - 2Cl = 972); (M - 4Cl - 3NH3 = 851); Cl(NH3)-Pt-µ-
{NH2(CH2)6NH2}Pt(NH3)(NH2){NH2(CH2)6NH2} = 707;  Cl(NH2)2 Pt -µ-{NH2(CH2)6NH2}Pd Cl 
(NH3) (NH2)  = 553; (NH3)2Pt-µ-{NH2(CH2)6NH2}Pd(NH3)Cl  = 504; Cl(NH3) (NH2)Pt 
{NH2(CH2)6NH2} = 380; Pt{NH2(CH2)6NH2}= 311; (Pd{NH2(CH2)6NH2} + H)  = 223. 

1H NMR DMSO δ ppm: 5.1 (due to NH3); 
4.4 (due to NH2); 4.0 (due to CH2); 3.6 
(br, impurity ?); 2.4 (due to CH2); 1.6 (due 
to CH2); 1.3 (due to CH2). 

DH7Cl EIS-MS (DMF) (m/z: M = 1072); (M -Cl + 3H = 1040); (M - 4Cl - NH3 - 4H = 909); Cl(NH3)Pt-µ-
{NH2(CH2)7NH2}Pt(NH3)2{NH2(CH2)7NH2} = 736;  (Cl(NH3)Pt-µ-
{NH2(CH2)7NH2}Pt(NH3){NH2(CH2)7NH2} + H)  = 720; Cl2(NH2)Pt-µ-{NH2(CH2)7NH2}Pd(NH2)Cl2 
= 606; Pt-µ-{NH2(CH2)7NH2}Pd(NH3){NH2(CH2)7NH2} = 577;  ClPt(NH3)2-µ-
{NH2(CH2)7NH2}Pd(NH2) = 530; ClPt(NH3)2{NH2(CH2)7NH2} = 395, ClPd{NH2(CH2)7NH2} = 273;  
(Pd{NH2(CH2)7NH2} + H)  = 237. 

1H NMR DMSO δ ppm: 4.4 (due toNH3); 
4.2 (due toNH2); 4.0 (NH2); 3.6 (d, CH2); 
2.4 (CH2); 1.9 (d, CH2); 1.6 (t, due CH2); 
1.4 (d, impurity ?); 1.3 (CH2).  

DHD EIS-MS (DMF) (m/z: (M = 654); Cl2Pt-µ-{NH2(CH2)6NH2}Pt(NH3)Cl2 +2H) = 667;  (M - NO3 +  H 
=592); (Cl3Pt-µ-{NH2(CH2)6NH2}Pt(NH3)2(NH2CH2) + 4H) = 590; (Cl(NH3)2Pt-µ-
{NH2(CH2)6NH2}PdCl(NH3)2 - H) = 555; Cl(NH2)2Pt-µ-{NH2(CH2)6NH2}PdCl(NH3)(NH2) = 553;  
(Cl(NH3)2Pt{NH2(CH2)6NH2} - H) = 380, Cl(NH3)Pt{NH2(CH2)6NH2} = 364. 

1H NMR DMSO δ ppm: 4.4 (br, NH3); 4.0 
(d, NH2); 3.6 (d,CH2); 2.4 (CH2); 1.9 
(CH2); 1.6 (d, CH2); 1.3 (d, CH2). 
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4.2. CYTOTOXICITY  

The cytotoxicity of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DH1Cl, DHD and cisplatin 

against several human tumour cell lines including ovary cell lines:  A2780, A2780cisR, 

A2780ZD0473R, and non small lung cell line: NCI-H640 and melanoma:  (Me-10538) 

has been determined using MTT reduction assay. The concentrations of the 

compounds were varied from 0 to the value required for ninety percent cell kill.  

For DH1Cl, DH6Cl and cisplatin, 50 µM stock solution was serially diluted to give 

nine concentrations ranging from 0.25 to 50 µM in one set and from 0.125-25 µM in 

another set. Further dilution of solutions of DH6Cl, DHD and cisplatin was carried 

out to give five concentrations ranging from 0.02-12.5 µM.  

From the three sets of results obtained the values at following concentrations: 0.01 

µM, 0.05 µM, 0.125 µM, 0.25 µM, 1.25 µM, 6.25 µM, 12.25 µM, 25 µM, were 

plotted to give the survival curves from which the IC50 and IC90 values were 

determined. For DH4Cl, DH5Cl, and DH7Cl, activity was determined only at five 

concentrations ranging from 0.05 µM to 31.25 µM and for DHD it was determined for 

five concentrations ranging from 0.01 µM to 6.25 µM.  

Tables 4.8 to 4.12 give percentage cell survival values as applied to A2780, 

A2780cisR, A2780ZD0473R, NCI-H640 and Me-10538 cell lines when the cells were 

treated with increasing concentrations of the compounds DH6Cl, DH1Cl and 

cisplatin. The IC50 values are also given in the tables. In these tables (as in those for 

the other compounds), the mean and the standard deviations of at least three replicates 

are given. Figures 4.27 to 4.31 give the corresponding cell survival curves.    
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Table  4. 8  The cell survival rate as a percentage of the control for the ovary cell line 
A2780, when the cells were treated with DH6Cl, DH1Cl and cisplatin 

% Cell Survival Rate Concentration of 
compound (µM) 

Cisplatin  DH6Cl  DH1Cl  

0.01 101.1 ± 8.4 75.7  ± 6.0 96.5   ± 8.5 

0.05 93.8   ± 8.1 49.9  ± 4.5 77.4   ±  9.9 

0.125 80.8   ± 7.5 41.2  ± 2.3 68.9   ±  8.9 

0.25 56.4   ± 4.8 26.5  ± 3.6 54.8   ± 5.8 

1.25 20.8   ± 3.2 12.6  ± 4.1 35.1   ±  6.9 

6.25 8.1     ± 1.0 7.7    ± 5.4 16.7   ± 5.6 

12.5 5.6     ± 0.8 5.5    ± 1.1 8.2     ±  1.0 

25.0 3.3     ± 0.3 2.0    ± 1.0 5.0     ± 1.0 

IC50 0.4   ± 0.08 0.05 ± 0.006 0.5   ± 0.1 
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Figure 4. 27  Survival curve for the ovary cell line A2780 when treated with 
increasing concentrations of DH6Cl, DH1Cl and cisplatin. 
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Table  4. 9    The cell survival rate as a percentage of the control for the ovary cell line 
A2780cisR, when the cells were treated with DH6Cl, DH1Cl and cisplatin 

% Cell Survival Rate Concentration of 
compound (µM) 

Cisplatin DH6Cl  DH1Cl  

0.01 102.5 ± 8.9 89.4   ± 6.3 95.6   ± 8.4 

0.05 98.5   ± 6.0 78.9   ± 1.8 86.9   ± 5.1 

0.125 93.6   ± 6.9 70.1   ± 8.1 79.7   ± 4.6 

0.25 85.6   ± 6.2 49.9   ± 2.2 67.1   ± 8.5 

1.25 75.5   ± 4.1 37.9   ± 4.2 51.6   ± 2.7 

6.25 33.8   ± 5.0 21.1   ±  3.0 29.5   ± 7.7 

12.5 28.3   ± 3.7 14.3   ±  2.1 15.9   ±  4.8 

25.0 25.3   ± 2.9 3.2    ±  0.9 4.7    ± 1.1 

IC50 4.4    ± 0.2 0.3   ±  0.01 1.8  ±  0.4 
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Figure 4. 28   Survival curve for the ovary cell line A2780cisR when treated with 
increasing concentrations of DH6Cl, DH1Cl and cisplatin 
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Table  4. 10   The cell survival rate as a percentage of the control for the ovary cell 
line A2780ZD0473R when the cells were treated with DH6Cl, DH1Cl and cisplatin 

% Cell Survival Rate 
Concentration (µM) 

Cisplatin  DH6Cl  DH1Cl  

0.01 101.8  ± 6.9 78.3   ± 7.8 94.6   ± 8.4 

0.05 92.8    ± 7.9 71.6   ± 9.3 88.2   ±  7.7 

0.125 85.5    ± 8.7 67.0   ± 0.6 72.1    ± 10.8 

0.25 78.0    ± 7.3 47.4   ± 5.5 69.9   ± 9.8 

1.25 40.8    ± 6.2 34.2   ± 4.2 53.5   ± 7.3 

6.25 17.1    ± 3.9 19.3   ± 2.7 31.4   ± 6.5 

12.5 11.6      ± 1.0 16.7   ± 1.4 17.7   ± 5.4 

25.0 8.1      ± 1.1 5.4       ± 3.2 7.9     ± 2.8 

IC50 1.0     ± 0.1 0.2   ± 0.01 1.8     ± 0.3 
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Figure 4. 29  Survival curve for the ovary cell line A2780 ZD0473R when treated with 
increasing concentrations of DH6Cl, DH1Cl and cisplatin 
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Table  4. 11   The cell survival rate as a percentage of the control for the melanoma 
cell line Me-10538, when the cells were treated with DH6Cl, DH1Cl and cisplatin 

% Cell Survival Rate Concentration of 
compound (µM) 

Cisplatin  DH6Cl  DH1Cl  

0.01 101.3  ± 6.5 92.5   ± 0.9 98.6   ± 8.8 

0.05 98.1    ± 9.4 82.0   ± 5.6 90.0   ± 5.1 

0.125 92.5    ± 5.2 76.3   ± 4.6 87.6   ± 5.9 

0.25 85.2    ± 5.4 68.9   ± 5.5 80.0   ± 7.4 

1.25 74.5    ± 7.4 38.3   ± 2.5 53.6   ± 4.2 

6.25 44.7    ± 5.7 17.8   ± 1.3 26.4   ± 2.5 

12.5 23.2    ± 4.5 13.8   ± 2.1 18.6   ± 3.0 

25.0 13.8      ± 0.8 5.4     ± 0.7 9.2     ± 5.0 

IC50 5.0     ± 0.7  0.9    ± 0.04 2.0     ± 0.2 
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Figure 4. 30  Survival curve for melanoma cell line Me-10530 when treated with 
increasing concentrations of DH6Cl, DH1Cl and cisplatin 
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Table  4. 12  The cell survival rate as a percentage of the control for non small lung 
cell line NCI-H460, when the cells were treated with DH6Cl, DH1Cl and cisplatin 

% Cell Survival Rate Concentration of 
compound (µM) 

Cisplatin  DH6Cl  DH1Cl  

0.01 102.4  ± 4.8 92.6    ± 3.8 98.8   ± 1.0 

0.05 92.8    ± 7.1 86.6    ± 3.8 95.4   ± 2.7 

0.125 83.2    ± 9.6 74.5      ± 5.9 91.4   ± 6.9 

0.25 75.1    ± 6.8 71.0    ± 3.1 85.2   ± 6.7 

1.25 34.1    ± 3.8 45.1    ± 5.2 70.4   ± 7.6 

6.25 17.9    ± 4.1 26.2    ± 7.9 45.7   ± 3.2 

12.5 12.3    ± 1.7 21.1    ± 2.1 30.0   ± 6.5 

25.0 8.0      ± 1.1 7.8      ± 1.4 8.0     ± 1.7 

IC50 0.9 ± 0.07 1.0  ± 0.07 5.1       ± 0.5 
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Figure 4. 31  Survival curve for the non small lung cell line NCI-H460 when treated 
with increasing concentrations of DH6Cl, DH1Cl and cisplatin 
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From the above results (Tables 4.8 to 4.12 and Figures 4.27 to 4.31), it appears that  

DH6Cl is more active than cisplatin against all of the cell lines except NCI-H460 

against which it shows activity similar to that of cisplatin. It will be seen later that 

DH6Cl is in fact the most active compound among all the compounds synthesized and 

studied in this project. When activity of DH6Cl is compared with that of DH1Cl it is 

found that DH6Cl is more active than DH1Cl against all the cell lines. DH1Cl is 

found to be more active than cisplatin against the cell lines A2780cisR and Me-10538. 

It is found to have activity similar to that of cisplatin against A2780 and A2780ZD0473R 

cell lines and a lower activity than cisplatin against non small lung cell line NCI-

H640.  

 Tables 4.13 to 4.17 give percentage cell survival values as applied to A2780, 

A2780cisR, A2780ZD0473R, NCI-H640 and Me-10538 cell lines when the cells were 

treated with increasing concentrations of the compounds DH4Cl, DH5Cl and DH7Cl. 

The IC50 values are also given in the tables. Figures 4.32 to 4.36 give the 

corresponding cell survival curves.  
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Table  4. 13  The cell survival rate as a percentage of the control for the ovary cell line 
A2780, when the cells were treated with DH4Cl, DH5Cl and DH7Cl 

% Cell Survival Rate Concentration of 
compound (µM) 

DH4Cl  DH5Cl  DH7Cl  

0.05 95.9      ± 3.7 94.9       ± 5.6 89.1       ± 7.5 

0.25 72.5        ± 5.8 89.3       ± 9.0 73.4       ± 7.0 

1.25 69.0      ± 2.8 72.9       ± 8.6 43.4       ± 4.4 

6.25 24.7      ± 6.8 21.6       ± 3.7 25.9       ± 2.7 

31.25 1.6        ± 1.6 1.2         ± 0.5   1.9        ± 0.02 

IC50 3.2       ± 0.2 3.4        ± 0.4 1.0        ± 0.1 
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Figure 4. 32  Survival curve for the ovary cell line A2780 when treated with 
increasing concentrations of DH4Cl, DH5Cl and DH7Cl 
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Table  4. 14  The cell survival rate as a percentage of the control for the ovary cell line 
A2780cisR, when the cells were treated with DH4Cl, DH5Cl and DH7Cl 

% Cell Survival Rate Concentration of 
compound (µM) 

DH4Cl  DH5Cl  DH7Cl  

0.05 89.4      ± 5.0 91.6       ± 8.9 81.3        ± 4.9 

0.25 78.8      ± 3.2 78.7       ± 4.0 78.1        ± 1.5 

1.25 70.3      ± 2.1 67.0       ± 6.6 65.3        ± 8.9 

6.25 29.7      ± 5.2 37.8       ± 4.9 26.9        ± 3.9 

31.25 1.0        ± 0.1 2.2         ± 0.9 2.5          ± 0.4 

IC50 3.7        ± 0.3 4.0         ± 0.3 1.8          ± 0.4 
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Figure 4. 33  Survival curve for the ovary cell line A2780cisR when treated with 
increasing concentrations of DH4Cl, DH5Cl and DH7Cl 
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Table  4. 15  The cell survival rate as a percentage of the control for the ovary cell line 
A2780ZD0473R, when the cells were treated with DH4Cl, DH5Cl and DH7Cl 

% Cell Survival Rate Concentration of 
compound (µM) 

DH4Cl  DH5Cl  DH7Cl  

0.05 98.0        ± 4.8 88.9       ± 10.2 86.3        ± 8.5 

0.25 95.2      ± 6.0 82.2       ± 8.8 83.8        ± 8.4 

1.25 84.2      ± 4.2 73.4       ± 2.8 74.6        ± 4.7 

6.25 42.0      ± 4.7 37.3       ± 9.5 41.1        ± 0.9 

31.25 1.9        ± 0.3 3.5         ± 2.4 2.4          ± 0.3 

IC50 5.3        ± 0.4 4.5        ± 0.7 4.9          ± 0.2 
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Figure 4. 34  Survival curve for the ovary cell line A2780ZD0473R when treated with 
increasing concentrations of DH4Cl, DH5Cl and DH7Cl 
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Table  4. 16  The cell survival rate as a percentage of the control for the melanoma 
cell line Me-10538, when the cells were treated with DH4Cl, DH5Cl and DH7Cl 

% Cell Survival Rate Concentration of 
compound (µM) 

DH4Cl  DH5Cl  DH7Cl  

0.05 92.6        ± 3.8 96.4       ± 6.4 88.8        ± 4.6 

0.25 90.8        ± 4.9 93.9       ± 4.6 77.7        ± 6.1 

1.25 78.2        ± 5.9 78.1       ± 5.6 58.6        ± 8.6 

6.25 47.9        ± 2.1 48.6       ± 7.7 26.7        ± 5.5 

31.25 10.0          ± 2.2 1.7         ± 0.3 2.2          ± 0.6 

IC50 5.9          ± 0.3 5.4        ± 0.9 2.5          ± 0.8 
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Figure 4. 35  Survival curve for the melanoma cell line Me-10538 when treated with 
increasing concentrations of DH4Cl, DH5Cl and DH7Cl 
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Table  4. 17  The cell survival rate as a percentage of the control for the non small 
lung cell line NCI-H460, when the cells were treated with DH4Cl, DH5Cl and DH7Cl 

% Cell Survival Rate Concentration of 
compound (µM) 

DH4Cl  DH5Cl  DH7Cl  

0.05 82.0        ± 3.9 87.5       ± 5.6 92.0        ± 4.7 

0.25 77.2        ± 4.4 85.5       ± 5.4 80.9        ± 4.9 

1.25 71.2        ± 6.4 73.3       ± 4.5 68.2        ± 6.0 

6.25 66.5        ± 5.9 57.0       ± 8.9 38.6        ± 3.1 

31.25 5.5          ± 2.4 5.0         ± 2.6 3.9          ± 1.2 

IC50 12.6        ±1.6 9.2         ± 2.6 4.3          ± 0.5 
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Figure 4. 36  Survival curve for the non small lung cell line NCI-H460 when treated 
with increasing concentrations of DH4Cl, DH5Cl and DH7Cl  

 

The results given in tables 4.13 to 4.17 and figures 4.32 to 4.36 show that DH4Cl and 

DH5Cl are less active than cisplatin against all the cell lines. DH7Cl is found to be 

less active than cisplatin against A2780, A2780ZD0473R and NCI-H640 cell lines but 
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more active than cisplatin against A2780cisR and Me-10538 cell lines. DH7Cl is found 

to be more active than DH4Cl and DH5Cl against all the cell lines except 

A2780ZD0473R against which it shows activity similar to that of DH4Cl and DH5Cl.  

Tables 4.18 and 4.19 give percentage cell survival in A2780, A2780cisR, 

A2780ZD0473R, NCI-H640 and Me-10538 cells when the cells were treated with 

increasing concentrations of DHD and cisplatin. Figure 4.37 gives the corresponding 

cell survival curves.  

Table  4. 18  The cell survival rate as a percentage of the control for the ovary cell 
lines A2780, A2780cisR and A2780ZD0473R, when the cells were treated with DHD and 
cisplatin 

% Cell Survival Rate 

A2780 A2780cisR A2780ZD0473R 

Concentration 
of compound 

(µM) 

Cisplatin DHD Cisplatin DHD cisplatin DHD 

0.01 101.1±8.4 91.8 ± 6.0 102.5 ±8.9 95.9  ±1.0 101.8 ±6.9 96.9  ± 1.9 

0.05 93.8 ± 8.1 76.6 ± 6.9 98.5 ± 6.0 95.9 ± 1.0 92.8  ± 7.9 78.2   ± 
7.2 

0.25 56.4 ± 4.8 44.9 ± 4.7 85.6  ± 6.2 62.2 ± 5.5 78.0  ± 7.3 54.9  ± 8.7 

1.25 20.8 ± 3.2 31.2 ± 8.7 75.5  ± 4.1 45.4 ± 5.0 40.8  ± 6.2 34.3  ±4.9 

6.25 8.1  ± 1.0 9.0  ± 5.3 33.8  ± 5.0 25.4 ± 5.4 17.1  ± 3.9 16.0  ± 6.5 

IC50 0.44±0.08 0.25±0.05 4.4  ± 0.2 0.96±0.09 1.0   ± 0.1 0.47 ± 
0.08 

 



 144 

Table  4. 19  The cell survival rate as a percentage of the control for the non small 
lung cell line NCI-H640 and melanoma Me-10538, when the cells were treated with 
DHD and cisplatin 

% Cell Survival Rate 

Me-10538 NCI-H460 

Concentration of 
compound (µM) 

Cisplatin DHD Cisplatin DHD 

0.01 101.3  ± 6.5 98.1   ± 1.3 102.4  ± 4.8 92.9    ± 2.0 

0.05 98.1    ± 9.4 93.7   ± 4.0 92.8    ± 7.1 85.5     ± 3.5 

0.25 85.2    ± 5.4 82.6   ± 4.4 75.1    ± 6.8 71.9    ± 5.3 

1.25 74.5    ± 7.4 59.6   ± 6.9 34.1    ± 3.8 63.4    ± 6.0 

6.25 44.7    ± 5.7 27.5   ±  4.6 17.9    ± 4.1 40.9    ± 6.5 

IC50 5.0    ± 0.7 2.7    ± 0.6 0.9      ± 0.07 4.2       ± 0.9 
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Figure 4. 37  Survival curve for the cell lines: A2780, A2780cisR, A2780ZD0473R, NCI-
H640 and Me-10538 treated with increasing concentrations of DHD. 
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Table 4.18 and 4.19 and the figure 4.37 show that DHD is more active than cisplatin 

against all of the cell lines except NCI-H460 against which it is found to be less active 

than cisplatin. 

4.2.1. ACTIVITY SUMMARY 

Table 4.20 summarizes the activity of all of the compounds (DH4Cl, DH5Cl, DH6Cl, 

DH7Cl, DH1Cl, DHD and cisplatin) in terms of their IC50 values and resistance 

factors (RF). 

Table  4. 20  IC50 values and resistance factors (RF) for DH4Cl, DH5Cl, DH6Cl, 
DH7Cl, DH1Cl, DHD and cisplatin against the cell lines: A2780, A2780cisR, 
A2780ZD0473R, Me-10538 and NCI-H640 

IC50 (µM) ± SD and resistant factors 

compound A2780 A2780cisR RF A2780 ZD0473R Me-10538 NCI-H460 

DH4Cl 3.2  ± 0.2 3.7  ± 0.3 1.1 5.3  ± 0.4 5.9  ± 0.3 12.6 ± 1.6 

DH5Cl 3.4  ± 0.4 4.0  ± 0.3 1.2 4.5  ± 0.7 5.4  ± 0.9 9.2  ± 2.6 

DH6Cl 0.048±0.006 0.25 ±0.01 5.2 0.23   ± 0.01 0.87 ± 0.04 1.0  ± 0.07 

DH7Cl 1.03  ± 0.1 2.9 ± 0.5 2.8 4.9  ± 0.2 2.5  ± 0.8 4.3  ± 0.5 

DHD 0.25   ± 0.05 0.96 ±0.09 3.8 0.47   ± 0.08 2.7  ± 0.6 4.2  ± 0.9 

DH1Cl 0.49  ± 0.1 1.8  ± 0.4 3.7 1.8  ± 0.3 2.0  ± 0.2 5.1 ± 0.5 

cisplatin 0.44   ± 0.08 4.4  ± 0.2 10.0 1.0  ± 0.1 5.0  ± 0.7 0.93 ± 0.07 

 

It can be seen that among all the multinuclear compounds including DHD, DH6Cl has 

the lowest IC50 for all the cell lines indicating that DH6Cl is the most active 

compound. DH6Cl is found to be about nine times as active as cisplatin against the 

human ovary cell lines A2780. DHD is also found to be more active than cisplatin 
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against A2780 cell line whereas DH1Cl has activity similar to that of cisplatin. All 

other compounds are found to be less active than cisplatin. The actual order of activity 

of the compounds against A2780 cell lines is: DH6Cl > DHD > cisplatin = DH1Cl > 

DH7Cl > DH4Cl and DH5Cl. 

For the cisplatin-resistant cell line A2780cisR, it is found that DH6Cl is about 

seventeen times as active as cisplatin, DHD nearly five times as active as cisplatin and 

DH1Cl about two times as active as cisplatin. All other compounds DH4Cl, DH5Cl 

and DH7Cl are also found to be marginally more active than cisplatin. The actual 

order of activity of the compounds against A2780cisR cell line is: DH6Cl > DHD > 

DH1Cl > DH7Cl >DH4Cl = DH5Cl > cisplatin. The resistance factors for DH4Cl, 

DH5Cl, DH6Cl, DH5Cl, DH7Cl, DHD, DH1Cl and cisplatin as applied to the ovary 

cell lines A2780 and A2780cisR are respectively 1.1, 1.2, 5.2, 2.8, 3.8, 3.7 and 10.0. It 

appears that all of the multinuclear compounds have resistance factors lower than that 

of cisplatin. 

For A2780ZD0473R cell line, DH6Cl is found to be about four times as active as 

cisplatin, and DHD about two times as active as cisplatin. All other compounds 

(DH4Cl, DH5Cl, DH7Cl and DH1Cl) are found to be less active than cisplatin. The 

actual order of activity of the compounds against A2780ZD0473R cell line is: DH6Cl > 

DHD > cisplatin > DH1Cl > DH5Cl = DH7Cl > DH4Cl. For the melanoma cell line 

Me-10538, DH6Cl is found to be six times as active as cislatin whereas DHD and 

DH7Cl are found to be nearly two times as active as cisplatin. DH1Cl is nearly 2.5 

times as active as cisplatin. The other two compounds (DH4Cl and DH5Cl) are 

slightly less active than cisplatin against the cell line. For the non small lung cell line 

NCI-H460, DH6Cl is found to have activity similar to that of cisplatin. All the other 
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compounds (DH4Cl, DH5Cl, DH7Cl, DHD and DH1Cl) are found to be less active 

than cisplatin. 

Table 4 .21 gives the IC90 values (i.e. drug concentration required for 90% cell kill) 

for the multinuclear compounds DH4Cl, DH5Cl, DH6Cl and DH7Cl as applied to the 

cell lines: A2780, A2780cisR, A2780ZD0473R, NCI-H640 and Me-10538. The IC90 

values for cisplatin are not given in the table 4.21 since the values of cisplatin could 

be   determined only against three cell lines A2780, A2780ZD0473R and NCI-H640 and 

not for the other two cell lines A2780cisR and Me-10538 as the IC90 values were 

greater than the highest concentration used. For the cell lines A2780, A2780ZD0473R 

and NCI-H640, the IC90 values for cisplatin were 5.5 µM ± 0.3, 20.6 µM ± 0.6 and 

19.3 µM ± 3.2 respectively.  

Table  4. 21  IC90 for DH4Cl, DH5Cl, DH6Cl and DH7Cl against the cell lines: 
A2780, A2780cisR, A2780ZD0473R, Me-10538 and NCI-H640 

IC90 (µM) ± SD, cell lines 

compound A2780 A2780cisR A2780 ZD0473R Me-10538 NCI-H460 

DH4Cl 21.0   ± 2.9 22.9   ± 1.9 26.2   ± 0.5 30.9  ± 0.8 29.7  ± 0.6 

DH5Cl 20.2   ± 1.9 25.9   ± 0.9 25.6   ± 1.8 26.6  ± 0.9 28.4   ± 1.5 

DH6Cl 3.6     ± 0.8 17.2  ±1.3 20.1   ± 1.4 17.7  ± 2.6 23.2   ± 1.1 

DH7Cl 22.1   ± 1.8 23.4   ± 0.9 26.3   ± 0.2 22.8  ± 2.2 26.8   ± 0.8 

 

Based on the IC90 values also, it appears that DH6Cl is the most active compound. 

The variations in activities of the compounds from one cell line to another and due to 
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a change in the size of the linking diamine or due to whether the compound is 

dinuclear or trinuclear will be discussed in chapter 5. 

4.3. CELL UPTAKE AND DNA BINDING     

As stated before, the cell uptake and DNA binding in 4 h were determined for the 

multinuclear complexes: DH6Cl, DH5Cl, DH4Cl, DH7Cl, DHD in which cisplatin 

was used as the reference. For DH6Cl and cisplatin, cell uptake and DNA binding in 2 

h were also evaluated as applied to the cell lines: A2780 and A2780cisR. For DH4Cl, 

whereas cell uptake in 2 h was determined for both cell lines:  A2780 and A2780cisR, 

DNA binding in 2 h was determined only for A2780 cell line.  

4.3.1. CELL UPTAKE 

Generally, the cellular accumulation of platinum has been used as a measure of the 

cell uptake of compounds. Since the multinuclear complexes contain both platinum 

and palladium, the determination of palladium levels also should provide an 

equivalent measure of the drug uptake provided the compounds (more exactly the 

multinuclear cations) remain essentially intact before entry into the cell. A departure 

from the expected value for the molar ratio of Pt and Pd uptake (2 : 1 for DH4Cl, 

DH5Cl, DH6Cl and DH7Cl and 1 : 1 for DHD) can be taken as a measure of the 

extent of decomposition of the compounds. Thus in this study, cell uptake of 

palladium in 4 h was also determined to provide a measure of the extent of 

decomposition of the compounds.  

Cellular uptakes of platinum and palladium were calculated as nmol Pt per 2x106 cells 

and nmol Pd per 2x106 cells respectively. Table 4.22 and figure 4.38 give the Pt cell 

uptake in the human ovary cell lines: A2780 and A2780cisR in 4 h as applied to 
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DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and cisplatin. Table 4.23 gives the Pt cell 

uptake in 2 h in A2780 and A2780cisR cell lines as applied to DH6Cl, DH4Cl and 

cisplatin. Figure 4.39 gives the change in Pt cell uptake in 2 to 4 h in A2780 and 

A2780cisR cell lines as applied to DH6Cl, DH4Cl and cisplatin. Table 4.24 and figure 

4.40 give the Pd cell uptake in the human ovary cell lines: A2780 and A2780cisR in 4 h 

as applied to DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD. 

Table  4. 22  Pt cell uptake as nmol Pt per 2x106 cells in 4 h in A2780 and A2780cisR 
as applied to cisplatin, DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD  

Compound A2780 

nmol Pt/2x106cells 

S.D.             A2780cisR  

nmol Pt/2x106cells 

S.D. 

Cisplatin 0.048 ± 0.004 0.028 ± 0.005 

DH4Cl 0.404 ± 0.025 0.261 ± 0.058 

DH5Cl 0.499 ± 0.058 0.250 ± 0.027 

DH6Cl 0.527 ± 0.038 0.757 ± 0.043 

DH7Cl 0.676 ± 0.040 0.286 ± 0.036 

DHD 0.160 ± 0.036 0.272 ± 0.010 
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Figure 4. 38  Pt cell uptake as nmol Pt per 2x106 cells in A2780 and A2780cisR cells in 
4 h as applied to cisplatin, DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD 

 

Table  4. 23  Pt cell uptake as nmol Pt per 2x106 cells in A2780 and A2780cisR in 2 h 
as applied to cisplatin, DH4Cl and DH6Cl  

Compound A2780 

nmol Pt/2x106cells 

S.D.         A2780cisR  

nmol Pt/2x106cells 

S.D. 

Cisplatin 0.039 ± 0.004 0.006 ± 0.002 

DH4Cl 0.222 ± 0.008 0.150 ± 0.010 

DH6Cl 0.344 ± 0.067 0.235 ± 0.012 
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Figure 4. 39  Pt cell uptake in A2780 and A2780cisR at 2 h and 4 h as applied to 
DH4Cl, DH6Cl and cisplatin  

It is found that for all the multinuclear compounds DH4Cl, DH5Cl, DH6Cl, DH7Cl 

and DHD, the platinum cell uptake in A2780 and A2780cisR cell lines is much greater 

than that for cisplatin. The actual order of the platinum cell uptake in A2780 cell line 

is: DH7Cl > DH6Cl > DH5Cl > DH4Cl > DHD > cisplatin. 

In A2780cisR cell line the order of the platinum cell uptake is: DH6Cl > DH7Cl > 

DHD > DH4Cl > DH5Cl > cisplatin. It should be noted that for DH6Cl and DHD, 

platinum cell uptake in the cisplatin–resistant cell line A2780cisR is found to be greater 

than that in the cisplatin–responsive cell line A2780. For all other compounds, Pt cell 

uptake is found to be less in A2780cisR cell line than in A2780 cell line. From tables 

4.22, 4.23 and figure 4.39, it appears that whereas the platinum cell uptake of DH4Cl 

and cisplatin reaches saturation level in about 2 h, that of DH6Cl continues to increase 

with time and more so in A2780cisR cell line than in A2780 cell line. It should be 

noted whereas cisplatin has one Pt per unit, all of the trinuclear compounds has two Pt 

per unit. 
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Table  4. 24  Pd cell uptake as nmol Pd per 2x106 cells in 4 h in A2780 and A2780cisR 
as applied to DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD 

                                                                                                                                                                                                                                       
Compound 

A2780 

nmol Pd /2x106cells 

S.D.             A2780cisR
 A2780 

Nmol Pd /2x106cells 

S.D. 

DH4Cl 0.183 ± 0.016 0.156 ± 0.047 

DH5Cl 0.226 ± 0.029 0.118 ± 0.024 

DH6Cl 0.309 ± 0.061 0.402 ± 0.071 

DH7Cl 0.289 ± 0.043 0.130 ± 0.042 

DHD 0.120 ± 0.011 0.219 ± 0.041 
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Figure 4. 40  Pd cell uptake as nmol Pd per 2x106 cells in A2780 and A2780cisR cells 
in 4 h as applied to DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD 

It is found that the order of palladium cell uptake in A2780 cell line is: DH6Cl > 

DH7Cl > DH5Cl > DH4Cl >DHD indicating that the highest palladium uptake occurs 

in the case of DH6Cl. It has been noted earlier that the highest platinum uptake occurs 
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in the case of DH7Cl, which is slightly less than DH6Cl in case of palladium cell 

uptake.  

In A2780cisR cell, palladium uptake is highest for DH6Cl with the order of uptake of 

palladium in A2780cisR cell line being DH6Cl > DHD > DH4Cl > DH7Cl >DH5Cl. 

When the uptake of palladium in A2780 cells is compared to that in A2780cisR cells, it 

is also found that uptake of palladium in the cisplatin-resistant cell line is greater than 

that in the cisplatin-responsive cell line for DH6Cl and DHD and lower for DH4Cl, 

DH5Cl and DH7Cl. It has noted earlier that platinum uptake is also greater in 

A2780cisR cell line than in A2780 cell line for DH6Cl and DHD but not for DH4Cl, 

DH5Cl and DH7Cl. The results will be discussed in chapter 5. 

Table 4.25 gives the molar ratio of the platinum and palladium cell uptake as applied 

to DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD. 

Table  4. 25  Molar ratio of the platinum and palladium cell uptakes in A2780 and 
A2780cisR for DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD 

nmol Pt per 2x106 /nmol Pd per 2x106 Compounds 

A2780 A2780cisR 

DH4Cl 2.2 1.7 

DH5Cl 2.2 2.1 

DH6Cl 1.7 1.8 

DH7Cl 2.3 2.2 

DHD 1.3 1.2 
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It is found that the molar ratio of the cellular uptakes of platinum and palladium is 

close to the expected values of 2:1 in the case of DH4Cl, DH5Cl, DH6Cl and DH7Cl 

and 1:1 in the case of DHD. The result may also suggest the occurrence of a partial 

damage of the compounds. A more detailed discussion of the results will be given in 

chapter 5. 

4.3.2. DNA BINDING 

Table 4.26 and figure 4.41 give the level of platinum-DNA binding expressed as 

nanomoles of Pt per milligram of DNA in A2780 and A2780cisR cells achieved in 4 h 

for the compounds DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and cisplatin. Table 4.27 

gives the platinum binding in 2 h for DH4Cl in A2780 cells and for DH6Cl and 

cisplatin in both A2780 and A2780cisR cells. Figure 4.42 gives the change in platinum-

DNA binding (expressed as nmol Pt per mg DNA) from 2 to 4 h in A2780 and 

A2780cisR cell lines as applied to DH6Cl and cisplatin and in A2780 cell line only as 

applied to DH4Cl.  
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Table  4. 26    Level of Pt-DNA binding (expressed as nmol Pt per mg DNA ) in 4 h 
in A2780 and A2780cisR cells as applied to cisplatin, DH4Cl, DH5Cl, DH6Cl, DH7Cl 
and DHD 

Compound A2780 

nmol Pt /mg DNA 

S.D.             A2780cisR
 A2780 

nmol Pt /mg DNA 

S.D. 

Cisplatin 0.195 ± 0.068 0.110 ± 0.011 

DH4Cl 0.181 ± 0.005 0.292 ± 0.046 

DH5Cl 0.867 ± 0.197 0.831 ± 0.127 

DH6Cl 3.643 ± 0.474 1.828 ± 0.127 

DH7Cl 1.427 ± 0.330 0.580 ± 0.046 

DHD 0.418 ± 0.104 0.302 ± 0.033 
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Figure 4. 41  Level of Pt-DNA binding expressed as nmol Pt per mg of DNA in 
A2780 and A2780cisR cells in 4 h as applied to cisplatin, DH4Cl, DH5Cl, DH6Cl, 
DH7Cl and DHD 
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Table  4. 27  Level of Pt-DNA binding in 2 h (expressed as nmol Pt per mg of DNA) 
in A2780 and A2780cisR cells as applied to DH6Cl and cisplatin and in A2780 cells 
only as applied to DH4Cl 

Compound A2780 

nmol Pt/mg DNA 

S.D         A2780cisR  

nmol Pt/mg DNA 

S.D 

Cisplatin 0.106 ± 0.014 0.000 ± 0.000 

DH4Cl 0.264 ± 0.038   

DH6Cl 1.901 ± 0.182 1.374 ± 0.445 
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Figure 4. 42  Pt-DNA binding in A2780 and A2780cisR in 2 h and 4 h as applied to 
cisplatin, DH6Cl and in A2780 as applied to DH4Cl  

It is found that for all the compounds except DH4Cl, the level of platinum-DNA 

binding is less in the cisplain-resistant cell line A2780cisR than in the cisplatin-

responsive cell line A2780. It is also found that for all the multinuclear compounds 

except DH4Cl, the level of platinum-DNA binding is greater than that of cisplatin in 
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both A2780 and A2780cisR cells. For DH4Cl, the value in A2780 cells is slightly less 

than that for cisplatin but significantly greater than that for cisplatin in A2780cisR 

cells. The actual order of the level of platinum-DNA binding in A2780 cell line is: 

DH6Cl > DH7Cl >DH5Cl > DHD > cisplatin = DH4Cl and in A2780cisR cell line it is: 

DH6Cl > DH5Cl >DH7Cl > DHD > DH4Cl > cisplatin. 

It is found that for DH4Cl, the level of platinum-DNA binding decreases with the 

time from 2 to 4 h but that of DH6Cl continues to increase in both A2780 and 

A2780cisR cells (more so in A2780 cells). For cisplatin also, the level of platinum-

DNA binding is found to increase with the time but not as much as that for DH6Cl 

(especially applying to A2780 cells). It should be noted that the binding of cisplatin 

with DNA in A2780cisR cells in 2 h could not be determined as it was below the 

detection threshold. 

4.3.3. GEL ELECTROPHORESIS 

Gel electrophoresis was used to investigate the conformational change and damage 

caused to both non-genomic DNA (pBR322 plasmid DNA) and genomic DNA 

(salmon sperm DNA) due to their covalent binding with the compounds. 

4.3.3.1. INTERACTION WITH PBR322 PLASMID DNA 

Figure 4.43 gives the electrophoretograms applying to the interaction of pBR322 

plasmid DNA with increasing concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, 

DHD and cisplatin from 1.25 µM to 15 µM.  
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Figure 4. 43  Electrophoretograms applying to the interaction of pBR322 plasmid 
DNA with increasing concentrations of (a) DH4Cl, (b) DH5Cl, (c) DH6Cl, (d) 
DH7Cl, (e) DHD and (f) cisplatin 

Lane 1 in the electrophoretograms applies to untreated pBR322 plasmid DNA to serve 

as a control, lane 2 blank, lanes 3 to 10 apply to plasmid DNA interacted with 

increasing concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and cisplatin 
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(lane 3: 1.25 µM, lane 4: 1.88 µM, lane 5: 2.5 µM, lane 6:  3.75 µM, lane 7: 5 µM, 

lane 8: 7.5 µM, lane 9: 10 µM, lane 10: 15 µM). Cisplatin serves as a reference.  

One highly prominent band corresponding to form I and a weak band were observed 

in unreacted pBR322 plasmid DNA. In addition, a weak frontal band was also 

observed in unreacted pBR322 plasmid DNA. As the plasmid DNA was allowed to 

interact with the increasing concentration of the compounds, the mobility of both the 

DNA bands increased but at different rates such that the separation between the two 

bands decreased. In fact, the two bands coalesced into one band at the concentration: 

15 µM in the case of DH4Cl and DH6Cl and 10 µM in the case of DH7Cl. Coalescing 

of the two bands did not occur in the case of DH5Cl, DHD and cisplatin. As pBR322 

plasmid DNA interacted with increasing concentrations of the compounds, besides the 

change in mobility changes in intensity of the DNA bands were also observed. At low 

concentrations of the compounds, the intensity of the weak band was found to be 

greater than in unreacted pBR322 DNA but at higher concentrations of the 

compounds there was a progressive decrease in intensity of the band such that it was 

not observable at concentration of DH5Cl = 10 µM, and concentration of DHD = 3.75 

µM. Generally, the intensity of the prominent band found in unreacted pBR322 

plasmid DNA also decreased with the increase in concentration of the compounds. 

4.3.3.2. BamH1 DIGESTION 

BamH1 digestion combined with gel electrophoresis was used to gain further insight 

into the binding of the compounds with pBR322 plasmid DNA. BamH1 is a 

restriction enzyme that is known to recognize the G/GATCC and hydrolyse 

phosphodiester bond between adjacent guanine sites (Roberts et al. 1977) pBR322 

plasmid DNA contains a single restriction site for BamH1(Sutcliffe 1979) that 
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converts pBR322 plasmid DNA supercoiled form I and single nicked circular form II 

to linear form III DNA. However, when platinum compounds at increasing 

concentrations bind to guanines in the DNA, BamH1 digestion may be increasingly 

prevented.   

 Figure 4.44 gives the electrophoretograms applying to incubated mixtures of pBR322 

plasmid DNA and varying concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD, 

and cisplatin that were digested with BamH1 for a period of 1 h at 37ºC before they 

were subjected to electrophoresis. The concentrations of the compounds were varied 

from 1.87 µM to 15 µM and in case of cisplatin a still higher concentration (namely 

20 µM) was used, whilst that of the DNA was kept constant. 

Lane 1 applies to the untreated pBR322 plasmid DNA digested with BamH1, lane 2: 

blank, lanes 3 to 7: apply to pBR322 plasmid DNA interacted with increasing 

concentrations of compounds (1.87 µM, 2.5 µM, 5 µM, 10 µM, 15 µM respectively) 

followed by BamH1 digestion, lane 8: blank and lane 9 applies to untreated and 

undigested pBR322 plasmid DNA. When unreacted pBR322 plasmid DNA was 

digested with BamH1, only one band corresponding to form III band was observed. In 

the untreated and undigested pBR322 plasmid DNA, generally two bands 

corresponding to form I and form II were observed.  
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Figure 4. 44  Electrophoretograms applying to the incubated mixtures of pBR322 
plasmid DNA and varying concentrations of compounds: (a) DH4Cl, (b) DH5Cl, (c) 
DH6Cl, (d) DH7Cl, (e) DHD and (f) cisplatin, followed by their digestion with  
BamH1 
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When the incubated mixtures of pBR322 plasmid DNA and increasing concentrations 

of DH4Cl ranging from 1.87 µM to 15 µM were digested with BamH1 (Figure 4.44 

a), three bands corresponding to forms I, II and III were observed for concentrations 

of DH4Cl ranging from 1.87 µM to 2.5 µM, two bands corresponding to forms I and 

II were observed at concentration of DH4Cl = 5 µM, and only one band 

corresponding to form I was observed at concentration of DH4Cl = 10 µM. 

In the case of DH5Cl (Figure 4.44 b), forms I, II and III bands were observed for 

concentrations of DH5Cl ranging from 1.87 µM to 2.5 µM above which only form I 

band was observed whose mobility increased sharply with the increase in DH5Cl 

concentration. 

 In the case of DH6Cl (Figure 4.44 c), three bands corresponding to forms I, II and III 

were observed for concentrations of DH6Cl ranging from 1.87 µM to 2.5 µM. Forms I 

and II bands were observed for concentrations of DH6Cl ranging from 5 µM to 10 µM 

and only form I band was observed at concentration of DH6Cl = 15 µM. In the case of 

DH7Cl (Figure 4.44 d), three bands corresponding to form I, II, III were observed at 

concentration of DH7Cl = 1.87 µM, two bands corresponding to forms I and II were 

observed for concentrations of DH7Cl ranging from 2.5 µM to 10 µM and only the 

form I band was observed at concentration of DH7Cl = 15 µM. In the case of DHD 

(Figure 4.44 e), three bands corresponding to form I, II, III were observed at 

concentrations of DHD ranging from 1.87 µM to 2.5 µM, and two bands 

corresponding to forms I and II were observed at concentrations of DHD ranging 

from 5 µM to 15 µM. In the case of cisplatin (Figure 4.44 f), three bands 

corresponding to forms I, II, III were observed for concentrations of cisplatin ranging 

from 1.87 µM to 5 µM, two bands corresponding to forms I and II were observed for 
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concentrations of cisplatin ranging from 10 µM to 20 µM as one more concentration 

of cisplatin was added. Table 4.28 summarises the above results. 

Table  4. 28 Bands observed in the incubated mixtures of pBR322 plasmid DNA and 
varying concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and cisplatin 
followed by BamH1 digestion 

[Drug] in µM Drug 

0 1.87 2.5 5 10 15 20 

DH4Cl III I, II, III I, II, III I, II I I - 

DH5Cl III I, II, III I, II, III I I  - 

DH6Cl III I, II, III I, II, III I, II I I - 

DH7Cl III I, II, III I, II I, II I, II I - 

DHD III I, II, III I, II, III I, II I, II I, II - 

cisplatin III I, II, III I, II, III I, II, III I, II I, II I, II 

       

4.3.3.3. INTERACTION BETWEEN THE COMPOUNDS AND SALMON 

SPERM DNA (ssDNA) 

Salmon sperm DNA is a double-stranded genomic DNA having molecular mass 

ranging from 0.6 to 0.8 kilo base. 

Figure 4.45 gives the electrophoretograms applying to the incubated mixtures of 

ssDNA and varying concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD, and 

cisplatin ranging from 5 µM to 60 µM. 
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(e)                                                                  (f) 

Figure 4. 45  Electrophoretograms applying to the interaction of ssDNA with 
increasing concentrations of (a) DH4Cl, (b) DH5Cl, (c) DH6Cl, (d) DH7Cl, (e) DHD 
and (f) cisplatin 



 165 

In the electrophoretograms (a), (b), (c) and (e), lane 1 applies to untreated ssDNA as 

control, lane 2 blank, lanes 3 to 10 apply to ssDNA interacted with increasing 

concentrations of DH4Cl, DH5Cl, DH6Cl and DHD (lane 3: 5 µM, lane 4: 7.5 µM, 

lane 5: 10 µM, lane 6:  15 µM, lane 7: 20 µM, lane 8: 30 µM, lane 9: 40 µM, lane 10: 

60 µM). In electrophoretograms (d) and (f), lane 1 applies to untreated ssDNA, lanes 

2 to apply ss DNA interacted with increasing concentrations of DH7Cl and cisplatin 

(lane 2: 5 µM, lane 3: 7.5 µM, lane 4: 10 µM, lane 5:  15 µM, lane 6: 20 µM, lane 7: 

30 µM, lane 8: 40 µM, lane 9: 60 µM).   

A single band was observed in both untreated and reacted salmon sperm DNA. In 

general, as the concentration of the compounds was increased the intensity of the band 

was found to decrease. The mobility of the band also decreased slightly with the 

increase in concentration of the compounds. The change in mobility and intensity was 

found to be least in the case of DHD and cisplatin and most prominent in the case of 

DH6Cl.   

4.4. INTERACTION BETWEEN DH6Cl AND 
NUCLEOBASES 

4.4.1. HPLC 

As stated in chapter four, 1 mM solution of DH6Cl was mixed with an equal volume 

of 2 mM solution of guanine or adenine following which the mixtures were incubated 

for 24 h at 37°C in a shaking water bath. 5 µL of each of the incubated mixtures was 

injected into the HPLC system as was done for the solutions of DH6Cl and the 

nucleobases. 
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The retention times of the main peaks with the detector set at ? = 260 nm for the 

mixtures and the components are shown in table 4.29. 

Table  4. 29  The retention times of the main peaks with the detector set at ? = 260 nm 
for the mixtures and the components 

Reactant A Reactant B Retention 

time (min), 

major peak  1 

Retention 

time (min), 

major peak  2 

Retention 

time (min), 

minor  peak   

Adenine None 6.13 - - 

Guanine None 3.10 - - 

None DH6Cl 2.67 3.91  

Adenine DH6Cl 2.83 3.72 2.98 

Guanine DH6Cl 2.69 3.65 2.99 

 

4.4.2.  BINDING RATIO 

The two major peak fractions in the incubated mixtures of DH6Cl and adenine had the 

retention times of 2.83 and 3.72 min and those in the incubated mixtures of DH6Cl 

and guanine had the retention times of 2.69 and 3.65 min. To determine the Pt : NB 

binding ratio, the peak fractions were collected and their platinum and nucleobase 

contents were determined by graphite furnace AAS and UV-visible 

spectrophotometry respectively.  The minor peak fraction at 2.98 min found in the 
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incubated mixture of DH6Cl and adenine and that at 2.99 min found in the incubated 

mixture of DH6Cl and guanine could not be collected because of a small separation 

from the neighbouring peaks.  

Table  4. 30  Pt : NB binding ratios of the major peaks in the incubated mixtures of 
DH6Cl with adenine and guanine 

Mixture / 

retention 

time 

Absorbance 

of  the 

fraction at 

260 nm 

Concentration of 

NB in the fraction   

(mol L-1) 

Pt content 

in the 

fraction 

(ppb) 

Pt 

concentration 

(mol L-1) 

Pt : NB 

DH6Cl + 

Adenine / 

3.72 min 

0.0308 0.000002265 22 0.00000169 0.75 

DH6Cl + 

Adenine / 

2.83 min 

0.1844 0.00001356 5 0.00000038 0 

DH6Cl + 

Guanine / 

3.65 min 

0.01186 0.000001467 17 0.000001307 0.90 

DH6Cl + 

Guanine / 

2.69 min 

0.0868 0.00001074 6 0.00000046 0 
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The molar extinction coefficient (e) for guanine adenine at 260 nm were found to be 

8080 and 13596 respectively. 
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CHAPTER FIVE 

5. DISCUSSION 

In this study, a number of multinuclear complexes containing platinum and palladium 

had been prepared, characterized based on elemental analyses and spectral 

measurements, and evaluated for their activity against cancer cell lines. The cell 

uptake, extent and nature of binding with DNA of the compounds had also been 

determined. 

5.1. CHARACTERIZATION OF COMPOUNDS 

The trinuclear complexes: DH4Cl, DH5Cl, DH6Cl and DH7Cl and the dinuclear 

compound: DHD were synthesized using step up method of syntheses (starting with 

transpalladin) and characterized by elemental analyses, IR, Raman, mass and 1H 

NMR spectral studies. 

In the case of trinuclear complexes, the size of the linking alkyl diamine was varied to 

contain from four to seven carbon atoms. In the case of DHD, the linking diamine was 

1,6-diaminohexane. Although the methods of syntheses of the compounds (given in 

chapter 3) were essentially the same, the actual method used varied in detail 

depending on the size and state (i.e. whether used as a free base or in the form of 

hydrochloride) of the diamine and whether the compound was dinuclear or trinuclear. 

It was found that the size of the diamine influenced the solubility of the trinuclear 

compounds. Whereas DH4Cl in which the linking diamine was 1,4-diaminobutane is 
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soluble in water, DH6Cl (in which the linking diamine was 1,6-diaminohexane) and 

DH7Cl (in which the linking diamine was 1,7-diaminoheptane) are insoluble in water. 

DH6Cl is soluble in DMF and DH7Cl is almost soluble in DMF. DH5Cl (in which the 

linking diamine was 1,5-diaminopentane) is soluble in pure DMF but not in mixture 

of DMF and water. However, the solubility of DH5Cl in water increased significantly 

as the solution was made basic (pH = 10). DHD is insoluble in water but soluble in 

DMF. Although in both DHD and DH6Cl, the linking diamine was 1,6-

diaminohexane, it is found that DHD was more soluble in DMF than DH6Cl. This 

could be due to a difference in size of the molecules and the number of metal centres.  

All of the compounds were found to be soluble in DMSO. It was observed by Farrell 

and co-workers (Farrell et al. 1990b; Farrell 1995) that the solubility in water of 

dinuclear compounds can be increased by replacing the chloride leaving group with 

water-solubilizing groups such as  malonate. However the potency of malonate 

compounds was found to be lower than that of chloride containing compounds 

(Roberts et al. 1989; Kraker et al. 1992).  

5.1.1. ELEMENTAL ANALYSES 

The result of elemental analysis show that the purity attained for DH4Cl was about 

ninety five percent with a yield of fifty one percent. The purity of DH5Cl was about 

ninety three for which the yield was about thirty two percent. The purity of DH6Cl 

was about ninety five percent with a yield of about forty nine percent. The purity of 

DH7Cl was about ninety five percent with a yield about forty percent. For the 

dinuclear compound (DHD), the purity was about ninety five percent with a yield of 

about sixty percent. It can be seen that the yield was lowest for DH5Cl and DH7Cl. 

For the two compounds, repeated dissolution and precipitation were carried out to 

improve the purity. Even after repeated precipitation, none of the compounds could be 
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obtained in a state of extremely high purity. The major problem with repeated 

dissolution and precipitation to increase purity was that of progressively decreasing 

yield. Other investigators also found that it was difficult to obtain multinuclear 

complexes (especially trinuclear ones) in a state of high purity. One reason for the 

relatively low purity could be that some other compounds were formed at the same 

time. For example, in the synthesis of trinuclear complexes, some dinuclear and 

mononuclear complexes could also be formed. The linking diamine being a bidentate 

ligand, can easily form a chelate with a metal ion, thus producing mononuclear 

complexes (Qu and Farrell 1992; Farrell 1995). Another reason for relatively low 

purity could be due to co-precipitation of other molecules such as DMF or 

dichloromethane. Further purification of the compounds could have been attempted 

by using other physical methods such as high pressure liquid chromatography (Rauter 

et al. 1997) or by chromatography on a silica gel (Quiroga et al. 1999)  

 

5.1.2. SPECTRAL STUDIES 

5.1.2.1. INTERPRTATION OF IR AND RAMAN SPECTRAL DATA 

The interpretation of the bands observed in IR and Raman spectra has been based 

mainly on published spectra (Silverstein et al. 1991; Nakamoto 1997)   

DH4Cl 

IR 

The bands at 3302 and 3209 cm-1 are believed to be due to N-H stretch that are in 

agreement with previously published values (Broomhead et al. 1992; Zhao et al. 

1998b). The bands at 2931 and 2850 cm-1 are due to asymmetrical and symmetrical 
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CH2 stretching vibrations. The bands at 1709, 1581 and 1456 cm-1 are believed to be 

due to N-H bending vibrations whereas those at 1379 and 1290 cm-1 are due to C-H 

bending vibration. The band at 1038 cm-1 is due to CH2 wagging. The band at 972  

cm-1 is believed to be due to C-C stretch. The bands at 806 and 754 cm-1 are believed 

due to N-H wagging. The band at 494 cm-1 is due to Pt-N stretching vibration. 

Raman 

The band at 3209 cm-1 is due N-H stretching vibration whereas those at 2899 and 

2856 cm-1 are believed to be due to C-H stretching vibrations. The bands at 1445, 

1441 cm-1 are due to N-H bending vibrations. The band at 1293 cm-1 is believed to be 

due to C-H wagging vibration. The band at 1046 cm-1 is due to C-C stretch. The band 

at 747 cm-1 is due to the C-H out of plane bending vibration. The band at 533 cm-1 is 

due to Pt-N stretching vibration that is in agreement with the previously published 

value of 535 cm-1 (Ali et al. 1999) and  that at 486 cm-1 is due to Pd-N stretching 

vibration. The band at 322 cm-1 is due to Pt-Cl stretching vibration, that is in 

agreement with previously published values ranging from 319 to 350 cm-1 (Farrell et 

al. 1990a; Broomhead et al. 1992; Qu et al. 1992; Schuhmann et al. 1995; Onoa et al. 

1999). The band at 213 cm-1 is due to Pt-N and Pd-N bending vibrations. The band at 

83 cm-1 is believed to be associated with lattice mode 

DH5Cl 

IR 

The bands at 3267, 3222 and 3145 cm-1 are due to N-H stretch whereas those at 2951, 

2927 and 2856 cm-1 are due to CH2 stretching vibrations. The bands at 1577, 1448, 

1392 and 1292 cm-1 are due to N-H bending vibrations whereas those at 1190, 1072 

and 1014 cm-1 are due to CH2 bending vibrations. The band at 966 cm-1 is believed to 
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be due to C-C stretch. The band at 804 cm-1 is believed due to N-H wagging. The 

band at 714 is due to C-H out of plane bending vibration. The bands at 482 and 418 

cm-1 are due to Pt-N and Pd-N stretching vibrations. 

Raman 

The band at 3221 and 3146 cm-1 are due N-H stretching vibration whereas those at 

2916 and 2855 cm-1 are believed to be due to C-H stretching vibrations. The band at 

1441 cm-1 is due to N-H bending vibration. The band at 1077 cm-1 is due to C-C 

stretch. The band at 683 cm-1 is due to C-H out of plane bending vibration. The band 

at 533 cm-1 is due to Pt-N stretch and that at 488 cm-1 is due to Pd-N stretch. The 

bands at 307 and 294 cm-1 are due to Pt-Cl stretching vibrations whereas that at 195 

cm-1 is due to Pt-N and Pd-N bending vibrations. The band at 83 cm-1 is believed to be 

associated with lattice mode. 

DH6Cl 

IR 

The band at 3950 cm-1 is believed to be due to aliphatic C-H stretch combination 

band. The bands at 3255 and 3211 cm-1 are due to N-H stretch whereas those at 2925 

and 2854 cm-1 are due to CH2 stretching vibrations. The bands at 1745 and 1576 cm-1 

are due to N-H bending vibrations whereas that at 1336 cm-1 is due to C-H bending 

vibration. The band at 1049 cm-1 is due to CH2 wagging. The band at 995 cm-1 is 

believed to be due to C-C stretch. The bands at 825, 723 and 619 cm-1 are believed 

due to N-H wagging. The bands at 503 and 488 cm-1 are due to Pt-N and Pd-N 

stretching vibrations. 
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Raman 

The band at 3217 cm-1 is due N-H stretching vibration whereas those at 2903 and 

2855 cm-1 are believed to be due to C-H stretching vibrations. The band at 1441 cm-1 

is due to N-H bending vibration. The band at 1190 cm-1 is believed to be due to C-H 

bending vibration whereas that at 1051 cm-1 is due to CH2 wagging. The band at 716 

cm-1 is due to N-H wagging. The bands at 596 and 533 cm-1 are due to Pt-N and Pd-N 

stretching vibrations. The band at 322 cm-1 is due to Pt-Cl stretching vibration 

whereas that at 209 cm-1 is due to Pt-N and Pd-N bending vibrations. The band at 81 

cm-1 is believed to be associated with lattice mode 

DH7Cl 

IR 

The bands at 3302, 3219 and 3138 cm-1 are due to N-H stretch whereas those at 2925 

and 2852 cm-1 are due to CH2 stretching vibrations. The bands at 1583, 1331 and 

1290 cm-1 are due to N-H bending vibrations whereas those at 1074 and 1038 cm-1 are 

due to CH2 bending vibrations. The band at 995 cm-1 is believed to be due to C-C 

stretch. The band at 806 cm-1 is believed due to N-H wagging. The band at 721 cm-1 is 

due to C-H out of plane bending vibration. The bands at 501 and 403 cm-1 are due to 

Pt-N and Pd-N stretching vibrations. 

Raman 

The bands at 3213 and 3140 cm-1 are due N-H stretching vibrations whereas those at 

2900 and 2855 cm-1 are believed to be due to C-H stretching vibrations. The band at 

1599 cm-1 is due to N-H bending vibration. The band at 1296 cm-1 is believed to be 

due to C-H wagging vibration. The band at 721 cm-1 is due to N-H wagging. The 
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bands at 596 and 533 cm-1 are due to Pt-N and Pd-N stretching vibrations. The band at 

322 cm-1 is due to Pt-Cl stretching vibration whereas that at 213 cm-1 is due to Pt-N 

and Pd-N bending vibrations. The band at 83 cm-1 is believed to be associated with 

lattice mode. 

DHD 

IR 

The band at 3975 cm-1 is believed to be due to aliphatic C-H stretch combination 

band. The bands at 3290 and 3213 cm-1 are due to N-H stretch whereas those at 2924 

and 2852 cm-1 are due to CH2 stretching vibrations. The bands at 1743 and 1576 cm-1 

are due to N-H bending vibrations whereas that at 1288 cm-1 is due to C-H bending 

vibration. The band at 1068 cm-1 is due to CH2 wagging. The band at 993 cm-1 is 

believed to be due to C-C stretch. The bands at 823 and 725 cm-1 are believed due to 

N-H wagging. The bands at 501 and 420 cm-1 are due to Pt-N and Pd-N stretching 

vibrations. 

Raman 

The band at 3213 cm-1 is due N-H stretching vibration whereas those at 2897 and 

2856 cm-1 are believed to be due to C-H stretching vibrations. The band at 1439 cm-1 

is due to N-H bending vibration. The band at 1192 cm-1 is believed to be due to C-H 

bending vibration whereas that at 1044 cm-1 is due to CH2 wagging. The band at 708 

cm-1 is due to N-H wagging. The bands at 589 and 533 cm-1 are due to Pt-N and Pd-N 

stretching vibrations. The band at 322 and 311 cm-1 are due to Pt-Cl and Pd-Cl 

stretching vibrations that are in agreement with previously published value for Pd-Cl 

stretching vibration ranging from 304 to 319 cm-1 (Zhao et al. 1998a; Zhao et al. 
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1999). The band at 211 cm-1 is due to Pt-N and Pd-N bending vibrations. The band at 

83 cm-1 is believed to be associated with lattice mode 

5.1.2.2. MASS AND 1H NMR SPECTRAL ANALYSES 

The mass and 1H NMR spectra of DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD were 

given in chapter 4 (Figures 4.9, 4.12, 4.15, 4.18, 4.21 and Table 4.7). The assignment 

of the peaks and related discussions are given in this section. It is found that the mass 

spectra of the compounds are characterized by the presence of a large number of 

peaks. This is due to the many ways in which the molecules (all of which are large 

and flexible) can fragment and also the fragments can rejoin in situ. Some peaks in the 

mass spectra may correspond to more than one species. The interpretation of bands 

observed in mass and 1H NMR has been based on published spectra (Silverstein et al. 

1991; Berners-Price and Sadler 1996; Gottlieb et al. 1997; Macomber 1998). 
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Mass spectrum of DH4Cl  

It can be seen that the mass spectrum of DH4Cl has a small peak with m/z equal to 988 

that corresponds to M+. The presence of M+ peak indicates that in solution in the mixture 

of 10% DMF and 90% methanol, DH4Cl can exist as undissociated ionic aggregates. The 

molar conductivity value of solution of DH4Cl in 1:1 mixture of DMF and water also 

shows that the compound remains largely undissociated in the solution. Other solutions of 

multinuclear complexes namely DH5Cl, DH6Cl, DH7Cl and DHD were also found to 

have low molar conductivity values again suggesting that the compounds remained 

largely undissociated in solution in 1:1 mixture of DMF and water (or in DMF in the case 

of DH5Cl).  

The peak with m/z = 917 corresponds to (M – 2Cl + H), that at 824 corresponds to (M – 

4Cl – NH3 -5H), that at 795 corresponds to (M – 4Cl – 3NH3), that at 761 corresponds to 

(M – 4Cl – 5NH3), that at 493 corresponds to Cl(NH3)2Pt-µ-{NH2(CH2)4NH2}Pd(NH3)2, 

that at 319 corresponds to ClPt{NH2(CH2)4NH2} and that at 248 corresponds to 

Cl(NH3)Pd{NH2(CH2)6NH2}. It can be seen that the peaks observed in the mass spectrum 

of DH4Cl provide support for its suggested structure.  

1H NMR spectrum of DH4Cl  

It can be seen that 1H NMR spectrum of DH4Cl gives a broad proton resonance with 

chemical shift value of 3.9 ppm. This is believed to be due to NH2 and NH3 bonded to Pt 

and Pd. The peaks at δ = 2.0 and 2.8 ppm are believed to be due to CH2 protons away 

from NH2 group whereas that at δ = 3.7 ppm is believed to be due CH2 protons adjacent 

to NH2 group. Two small broad peaks at δ = 2.3 and 2.4 ppm could be due to some kind 

of impurity that has not been characterized. 
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Mass spectrum of DH5Cl  

A small peak observed in the mass spectrum of DH5Cl with m/z = 1015 corresponds to 

M+, that at 944 corresponds to (M – 2Cl), that at 855 corresponds to (M – 4Cl – NH3 – 

H), that at 624 corresponds to (M – Pt – 2NH3 – 5Cl – 2H), that at 540 does not directly 

correspond to any molecular fragment of DH5Cl. It may be due to (NH2)2Pt-µ-

{NH2(CH2)5NH2}Pt(NH2) formed in situ. The peak with m/z = 524 corresponds to 

Cl(NH3)2Pt-µ-{NH2(CH2)5NH2}Pd(NH3)3.  The peak with m/z = 487 may be due to 

Cl(NH2)Pt-µ-{NH2(CH2)5NH2}Pd(NH2)2, that at 451 corresponds to (NH2)2Pt-µ-

{NH2(CH2)5NH2}Pd(NH3). The peak with m/z = 211 may be due to (Pd{NH2(CH2)5NH2} 

+ H ). It can be seen that the peaks observed in the mass spectrum of DH5Cl provide 

support for the suggested structure of DH5Cl. A more conclusive proof of the structure of 

the compound may be obtained when we combine the above results with 1H NMR 

spectral data and molar conductivity value. 

1H NMR spectrum of DH5Cl  

The 1H NMR spectrum of DH5Cl gives a broad proton resonance with chemical shift 

value of 4.4 ppm. This is believed to be due to NH3 protons.  The other broad peak at δ = 

4.0 ppm is believed to be due to NH2 protons. The sizes of the peaks at δ = 4.4 and 4.0 

ppm appear to be in the ratio of the number of NH3 and NH2 protons (18:8). The peak at 

δ = 3.6 ppm is believed to be due to CH2 protons adjacent to NH2 group whereas those at 

δ = 2.4 and 2.2 ppm are believed to be due CH2 protons away from the NH2 group. The 

peaks at δ = 1.3 ppm is due to the protons that lie in the middle of the carbon chain.  The 

small peak at δ = 1.6 ppm may be due some impurity present.  
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Mass spectrum of DH6Cl  

The mass spectrum of DH6Cl has a small peak with m/z = 1043 that corresponds to M+. 

The peak with m/z = 972 corresponds to (M – 2Cl), that at 851 corresponds to (M – 4Cl – 

3NH3). The peak at 707 corresponds to Cl(NH3)-Pt-µ-

{NH2(CH2)6NH2}Pt(NH3)(NH2){NH2(CH2)6NH2} which is believed to be formed in situ 

from joining of fragments. The peak with m/z = 553 corresponds to Cl(NH2)2 Pt -µ-

{NH2(CH2)6NH2}PdCl(NH3)(NH2).  The peak at 504 may be due to (NH3)2Pt-µ-

{NH2(CH2)6NH2}Pd(NH3)Cl and that at 380 corresponds to Cl(NH3)(NH2)Pt 

{NH2(CH2)6NH2}. The peak at m/z 311 may be due to Pt{NH2(CH2)6NH2}.  The peak at 

223 corresponds to (Pd{NH2(CH2)6NH2} + H). It can be seen that the peaks observed in 

the mass spectrum of DH6Cl provide support for the suggested structure of the 

compound. Once again, a more conclusive proof for the structure may be obtained when 

the above results are combined with other 1H NMR, IR and Raman spectral data, molar 

conductivity value and elemental composition. 

1H NMR spectrum of DH6Cl  

The 1H NMR spectrum of DH6Cl gives a broad proton resonance with chemical shift 

value of 5.1 ppm. This is believed to be due to NH3. The other broad resonance at δ = 4.4 

ppm is believed to be due to NH2. The peak at δ = 4.0 ppm is believed to be due to 

protons of CH2 group that is adjacent to NH2. The peaks at δ = 2.4 and 1.6 ppm are 

believed to be due CH2 protons away from the NH2 group. The peak at δ = 1.3 ppm is due 

to the protons of CH2 groups that lie in the middle of the carbon chain. The broad peak at 

δ = 3.6 ppm may be due to some impurity that has not been characterized. The 1H NMR 

results of DH6Cl appear to be similar to those for DH5Cl. 
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Mass spectrum of DH7Cl  

A small peak observed in the mass spectrum of DH7Cl with m/z = 1072 corresponds to 

M+.  The small peak with m/z = 1040 corresponds to (M – Cl + 3H), that at 909 may be 

due to (M – 4Cl – NH3 – 4H), that at 736 may be due to Cl(NH3)Pt-µ-

{NH2(CH2)7NH2}Pt(NH3)2{NH2(CH2)7NH2} which is believed to be formed in situ from 

joining of fragments. The peak at 720 may be due to (Cl(NH3)Pt-µ-

{NH2(CH2)7NH2}Pt(NH3){NH2(CH2)7NH2} + H) (formed in situ from joining of 

fragments), that at 606 corresponds to Cl2(NH2)Pt-µ-{NH2(CH2)7NH2}Pd(NH2)Cl2. The 

peak at 577 may be due to Pt-µ-{NH2(CH2)7NH2}Pd(NH3){NH2(CH2)7NH2}, that at 530 

may be due to ClPt(NH3)2-µ-{NH2(CH2)7NH2}Pd(NH2), that at 395 may be due to 

ClPt(NH3)2{NH2(CH2)7NH2} and the peak at 273 is due to ClPd{NH2(CH2)7NH2}. The 

peak with m/z = 237 corresponds to (Pd{NH2(CH2)7NH2} + H). It can be seen that the 

peaks observed in the mass spectrum of DH7Cl provide support for its suggested 

structure. Once again, a more conclusive proof for the structure may be obtained when the 

results are combined with other data such as those obtained from IR, Raman and 1H NMR 

spectra and elemental composition. 

1H NMR spectrum of DH7Cl  

The 1H NMR spectrum of DH7Cl gives a broad proton resonance with chemical shift 

value of 4.4 ppm. This is believed to be due to NH3 protons. The peak at 4.2 ppm is 

believed to be due to NH2 that is bonded to Pt.  The peak at δ = 4.0 ppm is believed to be 

due to NH2 that is bonded to Pd. The peak at δ = 3.6 ppm is believed to be due to CH2 

protons adjacent to NH2 group whereas those at δ = 2.4, 1.9 and 1.6 ppm are believed to 

be due CH2 protons away from the NH2 group. The peaks at δ = 1.3 ppm is due to protons 

of CH2 group that lies in the middle of the carbon chain. The peak at δ = 1.4 ppm may be 
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due to some impurity that has not been characterized. The results are to some extent 

similar to those for DH5Cl and DH6Cl. 

Mass spectrum of DHD  

The peak observed in the mass spectrum of DHD with m/z = 654 corresponds M+, that at 

667 may be due to Cl2Pt-µ-{NH2(CH2)6NH2}Pt(NH3)Cl2 + 2H) (a structure that can be 

formed in situ from joining of fragments), that at 592 may be due to (M - NO3 +  H), that 

at 590 due to (Cl3Pt-µ-{NH2(CH2)6NH2}Pt(NH3)2(NH2CH2)  + 4H ), that at 555 

corresponds to (Cl(NH3)2Pt-µ-{NH2(CH2)6NH2}PdCl(NH3)2 – H), that at 553 corresponds 

to Cl(NH2)2Pt-µ-{NH2(CH2)6NH2}PdCl(NH3)(NH2),  that at 380 may be due to 

(Cl(NH3)2Pt{NH2(CH2)6NH2} – H) and that at 364 may be due to 

Cl(NH3)Pt{NH2(CH2)6NH2}.  It can be seen that peaks observed in the mass spectrum of 

DHD provide support for the suggested structure for the compound. In particular, it 

clearly indicates the existence of multicentred cation. 

1H NMR spectrum of DHD  

The 1H NMR spectrum of DHD gives a broad proton resonance with chemical shift value 

of 4.4 ppm. This is believed to be due to NH3 protons. The peak at δ = 4.0 ppm is 

believed to be due to NH2 protons. The peak at δ = 3.6? ppm is believed to be due to CH2 

protons adjacent to NH2 group whereas those at δ = 2.4, 1.9 and 1.6 ppm are believed to 

be due CH2 protons away from the NH2 group. The peak at δ = 1.3 ppm is due to the 

protons of CH2 groups that lie in the middle of the carbon chain.  
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5.2. ACTIVITY OF COMPOUNDS 

The multinuclear complexes code named: DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and 

DH1Cl were synthesized, characterized and evaluated for their activity aga inst human 

ovary cell lines: A2780, A2780cisR, A2780ZD0473R, melanoma cell lines:  Me-10538 and 

non small lung cell line: NCI-H460, using the MTT reduction assay. The cell uptake and 

the extent of binding with DNA had also been determined. 

All of the compounds were found to show significant antitumour activity, especially 

against cisplatin-resistant ovary cancer cell line A2780cisR. Table 4.20 gives a summary of 

the activity of the compounds in terms of their IC50 values and resistant factors.  

Among the multinuclear compounds, DH6Cl was found to be the most active compound 

– about nine times as active as cisplatin against the human ovary cell line A2780. DHD 

was also found to be more active than cisplatin against A2780 cell line whereas DH1Cl 

had activity similar to that of cisplatin. All other compounds were found to be less active 

than cisplatin against A2780 cell line. The actual order of activity of the compounds 

against A2780 cell line was: DH6Cl > DHD > cisplatin = DH1Cl > DH7Cl > DH4Cl ≈ 

DH5Cl. For the trinuclear compounds DH4Cl, DH5Cl, DH6Cl and DH7Cl, as the number 

of carbon atoms present in the linking diamine was decreased below six (eg in DH5Cl and 

DH4Cl) and increased above six (as in DH7Cl), activity was found to decrease. As stated 

in chapter 2, it was found that the 1,1/t,t compound with two platinum units linked by 1,6-

diaminohexane was found to be much more active than the other dinuclear compounds 

(Menta et al. 1999) obtained by varying the chain length and/or the nature of the 

coordination geometry. The dinuclear compound DHD of the present study met both 

these requirements for optimum activity except that one of the platinum centres had been 

replaced by the corresponding palladium unit. 
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DHD was found be more active than cisplatin against A2780 cancer cell line. The two 

important factors that determine the activity of multinuclear platinum complexes are: (1) 

the size of the linking diamine and (2) the flexibility of the diamine linker that allows the 

formation of a plethora interstrand adducts of varying sizes. It has been reported that 

multinuclear platinum complexes with 4,4’-dipyrazolylmethane (dpzm) ligand had lower 

activity than BBR3464, although dpzm has approximately the same length as 1,6-

diaminohexane (the linker in BBR3464). This was explained to be due to the lower 

flexibility of the dpzm ligand (Wheate et al. 2001). According to Qu et al the flexibility of 

the linking diamine allows the formation of a plethora of interstrand GG adducts dictated 

by the sequence of the bases in the DNA (Qu et al. 2003), thus providing an answer as to 

why the multinuclear complexes with flexible diamines are found to be more active than 

the ones with non-flexible linkers. This point will be further discussed later in the chapter.  

As to why the activity of the trinuclear complexes changes with the change in length of 

the linking diamine, molecular modeling calculations have been carried out to investigate 

the effects of binding of multinuclear cations with the DNA. The results of the ana lysis 

will be presented later in the chapter. 

When we compare the activity of DH6Cl with that of BBR3464 in A2780 cell line, it 

appears that BBR3464 is more active than DH6Cl (at least 2.6 times as active as DH6Cl) 

(Farrell 2000). It should however be noted that different exposure times used for the 

determination of IC50 values for the two compounds - 2 h in case of BBR3464 and 72 h in 

case of DH6Cl - leave some uncertainly in the indirect comparison made via cisplatin, 

since unlike BBR3464 and DH6Cl, cisplatin is expected to react at a much slower rate.  

The IC50 value will go down as the time of exposure is increased. This means that the 

difference in activity between cisplatin and trinuclear compounds would be more 
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pronounced when the period of exposure was shorter. The lower activity of DH6Cl as 

compared to that of BBR3464 means that the therapeutic window of DH6Cl may be 

greater than that for BBR3464. This could be highly desirable since the extremely high 

activity of BBR3464 means that the compound has a very narrow therapeutic window. As 

stated earlier, BBR3464 was in the phase II clinical trials (Davies et al. 2002) before it 

was stopped because of high toxicity. Neutropenia is found to be the dose-limiting 

toxicity of BBR3464 that leads to diarrhea and nausea (Judson and Kelland 2000; Wheate 

and Collins 2003). 

For the cisplatin-resistant cell line A2780cisR, DH6Cl was found to be about seventeen 

times as active as cisplatin, DHD nearly five times as active as cisplatin and the other 

trinuclear compounds were also found to be marginally more active than cisplatin. The 

actual order of activity of the compounds against A2780cisR cell line was: DH6Cl > DHD 

> DH1Cl > DH7Cl >DH4Cl = DH5Cl > cisplatin. Thus, all of the multinuclear 

compounds have resistance factors lower than that of cisplatin. Much higher activity of 

DH6Cl and DHD (as compared to cisplatin) in ovary cell lines (especially cisplatin-

resistant cell line A2780cisR) suggests that the two compounds had been able to overcome 

multiple mechanisms of cisplatin resistance that might be operating in A2780CisR cell line, 

including decreased uptake, elevated glutathione level and increased DNA repair (Perez 

1998; Reedijik and Teuben 1999; Brown 2000). Although DH4Cl, DH5Cl and DH7Cl 

were found to be less active than DH6Cl and DHD (against A2780 and A2780cisR cell 

lines), the compounds had lower resistant factors than DH6Cl and DHD. This means that 

the decrease in activity in going from A2780 to A2780cisR cell lines is less pronounced in 

the case of DH4Cl, DH5Cl and DH7Cl than in the case of DH6Cl and DHD. The results 

suggest that DH4Cl, DH5Cl and DH7Cl can overcome the mechanisms of platinum drug 

resistance. 
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Although, DH6Cl was found to be less active than BBR3464 in A2780 cell line, it was 

found to be more active than BBR3464 in A2780cisR cell line. When the period of 

incubation was seventy two hours, BBR3464 was reported to be 2.52 times as active as 

cisplatin (Pratesi et al. 1999) whereas in the present study it was found that DH6Cl was 

seventeen times as active as cisplatin. The results suggest that DH6Cl is able to overcome 

resistance in A2780cisR cell better than BBR3464.  

For A2780ZD0473R cell line, DH6Cl was found to be about four times as active as cisplatin 

and DHD about two times as active as cisplatin. All other compounds (DH4Cl, DH5Cl, 

DH7Cl and DH1Cl) were found to be less active than cisplatin. The high activity of 

DH6Cl and DHD in A2780ZD0473R cell line as compared to cisplatin also indicates the two 

compounds were better able to overcome multiple mechanisms of ZD0473 resistance 

operating in the cell, including decreased cell uptake and DNA binding, increased 

glutathione level, loss of DNA mismatch repair gene hMLH1 and increased expression of 

the anti-apoptotic protein Bc12 (Holford et al. 2000). It may be noted that the activity of 

DH6Cl and DHD in A2780ZD0473R cell line is less than tha t in A2780cisR cell line, which 

may be a consequence of different mechanisms of resistance operating in A2780cisR and 

A2780ZD0473R cell lines. Determination of cell uptake and platinum-DNA binding in 

A2780ZD0473R cell line for DH6Cl and ZD0473 would provide useful information. 

For the melanoma cell line Me-10538, DH6Cl was found to be about six times as active 

as cisplatin. DH1Cl, DHD, DH7Cl were found to be about two times as active as 

cisplatin. DH4Cl and DH5Cl were found to be less active than cisplatin. The higher 

activity of DH6Cl, DH1Cl, DHD and DH7Cl in Me-10538 cell line as compared to that 

for cisplatin may mean that the compounds are better able to overcome resistance that is 

operating in the cell line. 
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For the non small lung cell line NCI-H460, the most active multinuclear compound was 

once again DH6Cl whose activity was found to be comparable to that of cisplatin. All of 

other multinuclear compounds (DH4Cl, DH5Cl, DH7Cl, DHD and DH1Cl) were found to 

be less active than cisplatin, indicating that compounds were unable to overcome cisplatin 

resistance present in the cell line. 

Besides IC50 value, IC90 value (which may be defined as the drug concentration required 

for ninety percent cell kill) may also be a relevant parameter in evaluating the use of a 

drug in cancer therapy (Table 4.21). When we consider the IC90 values also it is found 

that DH6Cl is the most active compound in all cell lines (especially in A2780 cell for 

which the IC90 value of DH6Cl was found to about one sixth of that of other trinuclear 

compounds). For the other cell lines namely A2780cisR, A2780ZD0473R, Me-10538 and 

NCI-H460, the difference in IC90 values of DH6Cl and the rest of the multinuclear 

compounds was less pronounced. 

5.3. CELL UPTAKE AND BINDING WITH DNA                 

Since the anticancer activity of platinum drugs is believed to be due their binding with 

nucleobases in DNA, knowledge of the cell uptake of the compounds is considered to be 

important as the extent of DNA binding and cell uptake could be to be correlated. It 

should however be noted that the cell uptake per se may not give a quantitative measure 

of the extent of DNA binding and hence the activity, as platinum drugs may be 

deactivated due to their binding with cellular platinophiles such as glutathione (Gibson 

2002; Najajreh et al. 2003) before they have a chance to bind with DNA. Nevertheless, it 

has been reported that there was a decrease in uptake in cells that were resistant to 

platinum drugs (Gately and Howell 1993; Mellish et al. 1995; Perego et al. 1999b).  
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5.3.1. CELL UPTAKE 

As stated in chapters 3 and 4, cell uptake and DNA binding of the multinuclear 

compounds were investigated as applied to the human ovary cell lines A2780 and 

A2780cisR only, in which the cellular accumulation of platinum was used as a measure of 

the cell uptake of compounds. However, the compounds being multinuclear containing 

both platinum and palladium centres, the determination of platinum level alone does not 

provide any information on the stability or the occurrence of decomposition of the 

compounds. Thus in this study, cell uptake of palladium in 4 h was also determined to 

provide a measure of the extent of decomposition of the compounds.  

5.3.1.1. PLATINUM UPTAKE 

Figures 4.38, 4.39 and tables 4.22, 4.23 give the Pt cell uptake in the human ovary cell 

lines: A2780 and A2780cisR for DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD together with 

that for cisplatin. Figures 5.1 and 5.2 give a summary of the results (together with IC50 

values and levels of DNA binding) on a relative scale as compared to cisplatin. 
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Figure 5. 1  The IC50 values, cell uptake and DNA-binding of DH4Cl, DH5Cl, DH6Cl, 
DH7Cl and DHD relative to cisplatin as applied to the A2780 cell line 
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Figure 5. 2  The IC50 values, cell uptake and DNA-binding of DH4Cl, DH5Cl, DH6Cl, 
DH7Cl and DHD relative to cisplatin as applied to the A2780cisR cell line 

 

It was found that for all the multinuclear compounds DH4Cl, DH5Cl, DH6Cl, DH7Cl and 

DHD, the platinum uptake in A2780 and A2780cisR cell lines was much greater than that 

for cisplatin. It was reported that the platinum cell uptake in A2780 cell line was greater 

(than that for cisplatin) for both the dinuclear compound BBR3571 and the trinuclear 

compound BBR3464 (Farrell 2000). 

Since as noted earlier, all of the trinuclear compounds except DH6Cl and DHD were 

found to be less active than cisplatin against A2780 cell line, the results illustrate that the 

cell uptake per se may not necessarily give an indication of the level of the antitumour 

activity of the compounds. As noted earlier, platinum compounds could be deactivated 

within the cell by a number of means (eg due to binding with sulfur containing ligands 

such as glutathione and metallothionein present in the cell) (Reedijik and Teuben 1999) 

before they had chance to bind with DNA. Thus a clearer picture about activity may result 

when the level of platinum-DNA is considered. 
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The actual order of the platinum cell uptake in A2780 cell line was: DH7Cl > DH6Cl > 

DH5Cl > DH4Cl > DHD > cisplatin, indicating that as the number of carbon atoms 

present in the linking diamine chain was increased, the uptake of the drug in A2780 cell 

also increased. Since the multinuclear cations are highly charged, one would expect their 

transport across the cell membrane to be carrier-mediated. On the other hand, that the cell 

uptake was found to increase with the increase in the size of the linking diamine (eg with 

the increase in the lipophilicity of the diamine), suggests that the multinuclear cations 

might be crossing the cell membrane by facilitated diffusion. It is possible that the 

multinuclear cations get bound to the hydrophobic pocket of the carrier molecules in 

which the interaction between linking diamine and the hydrophobic pocket plays a key 

role. Study of the cell uptake as a function of drug concentration may provide further light 

on the matter. Alternatively, the compounds might be crossing the cell membrane by 

passive diffusion provided the compounds remained undissociated before they crossed the 

cell membrane. Low molar conductivity values found for 0.0625 mM solutions of DH4Cl, 

DH5Cl, DH6Cl, DH7Cl and DHD (16.0, 8.0, 19.0, 19.2 and 16.0 ohm-1cm2mol-1 

respectively) made in 1:1 mixture of DMF and water (or in DMF in the case of DH5Cl) 

suggest that the compounds persist largely as undissociated ionic aggregates in solution in 

DMF and water mixture. In the cell culture, cell uptake and DNA binding studies, the 

compounds were first dissolved in a small amount of DMF before being diluted with the 

culture media. If the compounds remained undissociated in such situations, it would 

provide a simple explanation as to why the cell uptake of the compounds increased with 

the increase in the size of the linking diamine. Thus, as the number of carbon atoms 

present in the linking diamine increase, the polarity of the molecule decreases and 

consequently the rate of passive diffusion and therefore cell uptake increase. It should be 

noted that the degree of dissociation of the compounds into polynuclear cations and 
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chloride anions (and nitrate in the case of DHD) and further hydrolysis of polynuclear 

cations is likely to increase with in the cell because of a lower chloride concentration and 

further dilution of the compound effectively with polar water molecules. A highly 

significant effect of the dissociation and the hydrolysis would be to enhance the 

attraction, pre-association and covalent binding between the polynuclear cations and the 

DNA.  The increase in molar conductivity values with the decrease in concentration of the 

compounds (obtained by dilution even with 1:1 mixture of DMF and water or with DMF 

alone), as shown in the figure below provides support to the idea that degree of 

dissociation would increase with dilution. 
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Figure 5. 3  The change in molar conductivity values for solutions of polynuclear 
compounds with the change in concentration. 

 

The order of the platinum uptake in A2780cisR cell was: DH6Cl > DH7Cl > DHD > 

DH4Cl > DH5Cl > cisplatin, which was in line with that of the activity of the compounds 
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against the cell line. It should be seen that for DH6Cl and DHD, platinum cell uptake in 

the cisplatin-resistant cell line A2780cisR was greater than in the cisplatin-responsive cell 

line A2780. This finding is in conflict with previous studies applying to BBR3464 and 

other multinuclear platinum complexes where it was found that the accumulation of 

platinum was reduced in the resistant cell lines L1210/DDP and U2-OS/Pt (Di Blasi et al. 

1998; Perego et al. 1999b; Roberts et al. 1999a; Wheate et al. 2001). The increased 

uptake of DH6Cl and DHD in A2780cisR cell line than in A2780 cell line might be due to 

reduced efflux. It was stated earlier that one of the possible mechanisms of resistance to 

cisplatin is associated with increased efflux of the drug from the cell. Thus increased 

accumulation of DH6Cl and DHD in A2780cisR cells than in the parent cell line indicates 

that the compounds have been able to overcome the mechanism of resistance associated 

with increased efflux. On the other hand, the reduced uptake of DH4Cl, DH5Cl and 

DH7Cl in A2780cisR cell line than in A2780 cell line could mean that the compounds have 

not been able to overcome such resistance. 

Although the IC50 values (on a scale relative to cisplatin) of all the multinuclear 

compounds were found to be lower in A2780cisR cell than in A2780 cell (Figures 5.1 and 

5.2), on an absolute scale the values were higher in the resistant cell line than in the 

sensitive cell line (Table 4.20). This means that: (1) all the multinuclear compounds are 

less active against the resistant cell line: A2780cisR than the parent cell line: A2780, and 

(2) the decrease in activity in going from the parent cell line to the resistant cell line is 

less pronounced in the case of multinuclear complexes than that in cisplatin (suggesting 

that the compounds have been to overcome partially the mechsnisms of resistance 

operating in A2780cisR cell line). 
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The results suggest that other mechanisms of resistance besides reduced uptake (some of 

which may be increased deactivation of the drugs due to their binding with cellular 

platinophiles and increased DNA repair) might be operating in A2780cisR cell as applied 

to the multinuclear compounds. 

Time course experiments (Figure 4.39) showed that whereas the cell uptake in terms of 

platinum of DH4Cl and cisplatin reached saturation in about 2 h that of DH6Cl continued 

to increase with time and more so in A2780cisR cell line compared to A2780 cell line. 

Further experiments involving longer periods of time would be needed to find out 

whether saturation could at all be achieved for DH6Cl. It should however be noted an 

increase in cellular uptake with the increase in time (in some cases over a period of up to 

48 h) was reported for dinuclear and trinuclear platinum complexes for a number of cell 

lines including L1210 and U2-OS (Di Blasi et al. 1998; Roberts et al. 1999b; Wheate et 

al. 2001). 

5.3.1.2. PALLADIUM UPTAKE 

Since the multinuclear complexes contain both platinum and palladium, the determination 

of palladium levels also should provide an equivalent measure of the drug uptake, 

provided the compounds remain essentially intact before their entry into the cell. A 

departure from the expected value for the molar ratio of Pt and Pd uptake (2:1 for DH4Cl, 

DH5Cl, DH6Cl and DH7Cl and 1:1 for DHD) can result only if the compounds break 

down in solution, separating platinum and palladium centres. It should however be noted 

that the agreement between the observed and the expected molar ratios of Pt and Pd does 

not eliminate the possibility of such breakdown. For example, if the breakdown occurred 

outside the cell but the components containing Pt and Pd accumulate wthin the cell at the 

same net rate, the observed ratio would match the expected one. Conversely, if the 
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compounds broke down within the cell and if the components escaped from the cell at the 

same rate, the observed molar ratio would again match the expected one.  

Table 4.25 gives the observed molar ratios of Pt and Pd cell uptakes in 4 h in A2780 and 

A2780cisR cell lines. It is found that as applied to A2780 cell line, the molar ratios of Pt 

and Pd cell uptake for DH4Cl, DH5Cl, DH6Cl, DH7Cl and  DHD were respectively 2.2 ± 

0.3, 2.2 ± 0.5, 1.7 ± 0.5, 2.3 ± 0.5 and 1.3 ± 0.4. For the A2780cisR cell line, the 

corresponding values are 1.7 ± 0.9, 2.1 ± 0.6, 1.9 ± 0.4, 2.2 ± 1 and 1.2 ± 0.3. Although in 

most cases, the observed ratios are found to differ from the expected ones, the deviations 

are not considered to be significant as they lie in all cases within one standard deviation 

from the expected values. The random scatter (rather than a systematic trend) observed in 

the values of Pt : Pd molar ratios indicates that the departure is actually an artifact of the 

limitation of the measurements. As discussed earlier, solutions of all the compounds were 

found to have low molar conductivity values indicating that compounds remained 

essentially intact in solution.  

5.3.2.     PLATINUM DNA BINDING  

As stated earlier, cell uptake per se may not give a true measure of the activity of a 

platinum drug. Since the anticancer activity of platinum-based drugs is believed to be 

associated with their binding with DNA, a better understanding of the activity of the 

drugs may be obtained when we consider the extent of binding of Pt with DNA. 

Tables 4.26, 4.27 and figures 4.41, 4.42 give the extent of platinum-DNA binding in 

nanomoles Pt per mg DNA in A2780 and A2780cisR cell lines for the compounds: DH4Cl, 

DH5Cl, DH6Cl, DH7Cl, DHD and cisplatin. 
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It was found that for all the compounds including cisplatin, the level of platinum-DNA 

binding was less in the resistant cell A2780cisR than in the responsive cell line A2780, in 

line with their lower activity in the resistant cell line.  The results are in agreement with 

the previously published values in which it was found that the lower activity of BBR3464 

in U2-OS/Pt cell line as compared to that in U2-OS cell line corresponded to a lower level 

of Pt-DNA binding in the former than in the latter (Perego et al. 1999a).  

The actual order of Pt-DNA binding in A2780 cell line was DH6Cl > DH7Cl >DH5Cl > 

DHD > cisplatin = DH4Cl and that in A2780cisR cell line was DH6Cl > DH5Cl > DH7Cl 

> DHD > DH4Cl > cisplatin. It should be seen that for the trinuclear complexes: DH4Cl, 

DH5Cl, DH6Cl and DH7Cl, the order of Pt-DNA binding in A2780 cell line was mostly 

in line with that of the activity of the compounds against the cell line except for DH5Cl 

(which although dissolved readily in DMF, produced cloudiness when water was added 

and became clear only when the mixture was made basic with NaOH). In the case of 

A2780cisR cell line also, the order of activity of the trinuclear complexes DH4Cl, DH5Cl, 

DH6Cl and DH7Cl was found to be generally in line with that of the Pt-DNA binding 

level (except for DH5Cl). Since the trinuclear complexes differ in length between the two 

terminal centres (this point will be further considered later in the chapter), they all are 

expected to form long-range adducts and hence cause similar but not identical 

conformational changes in DNA. Thus, an increase in the level of Pt-DNA would mean a 

greater number of interstrand adducts and consequently a greater conformational change 

in DNA resulting into a greater activity. 

For the dinuclear complex DHD, although the level of Pt-DNA binding was found to be 

lower than that for DH5Cl, DH6Cl and DH7Cl, it was found to have a greater activity 

than all the trinuclear complexes except DH6Cl against both A2780 and A2780cisR cell 
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lines. This is believed to be due to a difference in the exact nature of binding of the 

compounds with DNA – whereas in the case of trinuclear complexes covalent binding 

with DNA involves the two terminal Pt centres with the central palladium unit undergoing 

only noncovalent interactions such as hydrogen bonding and electrostatic interaction, in 

the case of DHD both platinum and palladium centres are likely to be involved in 

covalent interactions. The other difference between the trinuclear complexes (eg DH6Cl) 

and the dinuclear complex DHD is expected to be in the percentage of long-range 

interstrand adducts because of a difference in their lengths. The trinuclear complexes 

(DH4Cl, DH5Cl, DH6Cl and DH7Cl) having longer lengths than the dinuclear complex 

DHD, are likely to form more of long-range interstrand adducts than DHD. This idea is in 

line with the observation made by Brabec et al while considering the DNA binding of 

dinuclear and trinuclear platinum complexes (Brabec et al. 1999). Dinuclear platinum 

complexes were reported to be more effective than BBR3464 at inhibiting ethanol 

induced B → A transition in CT DNA which was considered to be due a greater 

percentage of interstrand adducts formed by the dinuclear complexes (McGregor et al. 

1999). 

It was reported that dinuclear compound BBR3005 overall formed more interstrand 

adducts than the trinuclear compound BBR3464 (Brabec et al. 1999) although it had a 

lower activity than BBR3464. It should also be noted that Wheate et al (Wheate et al. 

2001) designed two multinuclear complexes containing rigid linkers that were capable of 

forming long-range interstrand adducts and yet displayed significantly lower activity than 

BBR3464 that has flexible linkers. Flexible linkers would allow the formation of a 

plethora of interstrand adducts of different sizes that appear to translate into a higher 

activity. 
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That cisplatin did not fit the activity and platinum-DNA binding orders for the A2780 cell 

line (ie although DNA binding level for cisplatin was less it was found to be more active 

than DH7Cl, DH5Cl and DH4Cl), is not totally unexpected when we note that the nature 

of binding of cisplatin with DNA is likely to be different from that of multinuclear 

compounds.  Cisplatin forms mainly intrastrand GG (Eastman 1987), AG (Fichtinger-

Schepman et al. 1985) and a small amount of GXG adducts (Brabec 2000) but, as stated 

earlier, multinuclear complexes in the present study are expected to form mainly long-

range interstrand GG adducts (similar to those formed by BBR3464) (Brabec et al. 1999). 

Whereas 1, 2-bifunctional binding of cisplatin would cause mainly local bending of DNA, 

the long-range interstrand adducts formed by multinuclear compounds would cause long-

range distortion of DNA in which the conformations of the intervening bases not directly 

involved in the cross-link were also altered (Qu et al. 2003). According to Farrell and 

Spinelli (Farrell and Spinelli 1999), DNA binding of multinuclear platinum complexes is 

characterized by flexible, non-directional DNA adducts and a greater percentage of 

interstrand to intrastrand adducts and the ability to induce conformational changes in the 

DNA from B to A and from B to Z forms.  Whereas B to A conformational changes 

induced by electrostatic interactions (eg those caused by Co(NH3)6
3+) were found to be 

reversible, B to A and B to Z conformational changes caused by multinuclear platinum 

compounds were found to be irreversible, as these were induced by covalent binding 

(McGregor et al. 2002).  

The bending induced in DNA by binding of cisplatin is recognized by high-mobility 

group domain (HMG) proteins and this recognition is believed to be the pathway for 

processing and differential repair of cellular cisplatin-DNA adducts (Jamieson et al. 1999; 

Jamieson and Lippard 1999). However it is found that in the formation of long-range 

interstrand adducts by BBR3464, DNA is not sufficiently bent to be recognized by HMG 
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1 protein (Zehnulova et al. 2001). Instead, the long-range cross- links are very effective in 

inducing B to A or B to Z transformations. Cellular alkaline eluation studies have shown 

that the interstrand cross links formed by BBR3464 persist over time, suggesting a lack of 

DNA repair (Roberts et al. 1999a; Roberts et al. 1999b). It has been suggested that the 

induction of Z-DNA within the cell would have serious consequences with regard to 

transcription and DNA replication. Qu et al (Qu et al. 2003) reported that in the formation 

of 1,4-GG octamer, the syn conformation was induced in the adenine moieties not just 

within the strand bounded by the two platinum binding sites but also those at the end of 

the strand. They found that Waston-Crick pairing was essentially maintained and that the 

central linker was situated in the minor groove of the DNA. The authors point out the 

cooperative nature of the B to Z transformation lends itself easily to the delocalization of 

the lesions beyond the binding site. It was suggested that the factors that might contribute 

to the delocalization would include the linking of the two separated platinating sites and 

the presence of the charge and electrostatic interactions introduced after incorporation of 

BBR3464 into the oligonucleotide. The contacts between the lipophilic backone of 

BBR3464 and DNA may be especially effective in displacing water from within DNA 

and thus facilitating conformational transitions. All of the above discussion could equally  

apply to the multinuclear complexes of the present study. It has been suggested 

(McGregor 1999) that in canonical poly (dGdC).poly (dGdC), polynuclear platinum 

complexes can form a plethora of intra- and interstrand cross links. Molecular mechanics 

calculations using HyperChem 7 (Hypercube 2002) show that when fully stretched, the 

lengths of DH4Cl, DH5Cl, DH6Cl and DH7Cl but with the chlorides replaced by 

nitrogens are respectively 2.10 nm, 2.41 nm, 2.8 nm and 2.85 nm. It is found that in the 

double stranded B DNA, the interstrand N7 (guanine) to N7 (guanine) distances are: G (1) 

to G (6): 1.59 nm, G (1) to G (7): 1.93 nm, G (1) to G (8): 2.28 nm, G (1) to G (9): 2.68 
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nm, G (1) to G (10): 2.97 nm and G (1) to G (11): 3.29 nm. It can be seen that when fully 

stretched the best match between the length of the molecule and the interstrand N7 

(guanine) to N7 (guanine) distance occurs for DH6Cl. This point will be further discussed 

in section 5.4.1.1 when we consider the interaction of the compounds with pBR322 

plasmid DNA. 

The higher activity of the multinuclear complexes (especially DH6Cl) as compared to 

cisplatin in A2780cisR may indicates the ability to overcome DNA repair mechanisms. It 

has been suggested that BBR3464 overcomes multiple mechanisms of cisplatin resistance 

including alterations in DNA mismatch repair (Perego et al. 1999a; Perego et al. 1999b).  

BBR3464 induces a cellular response different from that of cisplatin resulting into 

somewhat different modes of cell death (Servidei et al. 2001). Flow cytometric 

experiments showed that BBR3464 was able to induce a persistent block of OAW42 and 

OAW42MER cells in the G2M phase, whereas cisplatin caused an initial accumulation of 

cells in the S phase followed by an increase in the G2M cell fraction in both cell lines 

(Orlandi et al. 2001).  

Based on molar conductivity values it was concluded earlier that all of the multinuclear 

complexes in the present study remained essentially undissociated in 1:1 mixture of DMF 

and water. However, this may not be true in biological fluids where the presence of a 

large volume of water (which is much more polar and has a much larger dielectric 

constant) will serve to dilute the solutions of the compounds and reduce the influence of 

the organic solvent. This means that like BBR3464 the compounds DH4Cl, DH5Cl, 

DH6Cl, DH7Cl and DHD may be dissociated into ions in solution in biological fluids. 

If this were so, the high charge on DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD cations as 

in the case of BBR3464 (+ 4 charge) and BBR3005 (+ 2 charge) would facilitate their 
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rapid binding with DNA. It was reported that t1/2 (ie the half time of the bind ing reaction 

of the compound with DNA), was 40 min for BBR3464, 200-300 min for dinuclear 

BBR3005 and 4 h for cisplatin (Brabec et al. 1999), indicating that the trinuclear platinum 

complex was considerably faster than dinuclear complex or cisplatin in binding with 

DNA. It was suggested that the rapid binding of BBR3464 could affect sequence 

specificity - the high charge could lead to initial electrostatic interactions (very different 

from those found in small molecules such as cisplatin and the alkylating agents) that led 

to enhanced sequence specificity. It is generally accepted that cis-[Pt(NH3)2(Cl)(H2O)]+, 

formed by hydrolysis of one Pt-Cl bond, pre-associates with DNA (Wang et al. 2001; 

Wheate and Collins 2003) before binding to specific nucleobases in DNA. Wheate at al 

(Wheate and Collins 2003) point out that pre-association with DNA would be even 

stronger and therefore more important in the case of cationic multinuclear platinum 

complexes since it is stabilized largely by electrostatic forces.  It has been suggested that 

the pre-association of multinuclear platinum complexes with polyanionic DNA will 

significantly affect the rate and site of platination because the increased local 

concentration achieved through pre-association will increase the probability of a covalent 

interaction at these sites. Also, pre-association may induce a local conformational change 

in DNA that may influence binding at a specific site. 

The above idea may be equally applicable to the interaction of the multinuclear 

complexes: DH4Cl, DH5Cl, DH6Cl and DH7Cl with DNA.    
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5.4. INTERACTION WITH DNA AND NUCLEOBASES 

5.4.1. INTERACTION WITH DNA 

As stated in the previous section, multinuclear complexes DH4Cl, DH5Cl, DH6Cl, 

DH7Cl and DHD are expected to form long-range interstrand adducts with DNA, 

resulting into conformational changes in the DNA. When the conformation of DNA is 

changed, its mobility through a gel may also be altered. Thus the interaction between 

trinuclear compounds (DH4Cl, DH5Cl, DH6Cl, and DH7Cl), dinuclear compound (DHD) 

and cisplatin with non-genomic pBR322 plasmid DNA and genomic salmon sperm DNA 

were investigated using gel electrophoresis. BamH1 digestion was used to gain further 

insight into the binding of the compounds with pBR322 plasmid DNA. The results of the 

studies were given in Chapter 4. 

5.4.1.1. INTERACTION WITH pBBR322 PLASMID DNA  

Plasmid DNA is normally found in compact supercoiled form but during isolation, 

chemical treatment or mechanical shear, breaks can be introduced allowing the DNA to 

relax and form an open circular form (Cantor and Schimmel 1980).  

 Thus, pBR322 plasmid DNA can exist in three forms: supercoiled form I, singly nicked 

circular form II and doubly nicked liner form III. DNA being negatively charged due to 

the phosphate backbone will migrate through the gel from the negative electrode to 

positive electrode. The supercoiled form I migrates at the fastest rate; the singly nicked 

circular form II has the lowest migration rate whereas the doubly nicked linear form III 

DNA has the intermediate migration rate.  

The electrophoretograms applying to the interaction of pBR322 plasmid DNA with 

increasing concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and cisplatin ranging 
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from 1.25 µM to 15 µM were given in figure 4.43. The molar ratios (ri) between pBR322 

plasmid DNA (in terms of phosphate) and the compounds were: 0.0133, 0.02, 0.07, 0.040, 

0.053, 0.080, 0.107, and 0.16.   

Unreacted pBR322 plasmid DNA gave a highly prominent band corresponding to 

supercoiled form I and a weak band corresponding to singly-nicked form II. In some 

cases, a weak frontal band was also observed in untreated pBR322 plasmid DNA. When 

the DNA was allowed to interact with increasing concentrations of the compounds, 

changes in DNA bands in terms of both intensity and mobility took place. 

The presence of a small amount of DH4Cl, DH5Cl, DH6Cl and DH7Cl was found to be 

sufficient to cause a large increase in the intensity of the form II band (as compared to 

that found in the untreated DNA). On the other hand, at high concentrations of 

compounds the intensity of both form I and form II bands was found to decrease. The 

initial sharp increase in the intensity of the form II band in the presence of a small amount 

of the drugs points to DNA damage in which form I plasmid DNA is changed to form II 

DNA. The decrease in intensity at high concentrations of compounds is due to a partial 

breakdown of DNA caused by the covalent binding of the compounds. 

As pBR322 plasmid DNA was allowed to interact with the increasing concentration of the 

compounds, the mobility of both forms I and II plasmid DNA bands increased but at 

different rates such that the two forms co-migrated at the highest concentration (namely 

15 µM; ri = 0.16) in the case of DH4Cl, DH6Cl and 10 µM in the case of DH7Cl. 

Coalescing of the form I and form II bands however did not occur in the case of DH5Cl, 

cisplatin and DHD, indicating that for the three compounds the difference in the increase 

in mobility of the two bands with the increase in concentration of the compounds was less 

marked as compared to that in DH4Cl, DH6Cl and DH7Cl.  The separation between form 
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I and form II bands became less distinct in the interaction of pBR322 plasmid DNA with 

DH5Cl - a streaking band was observed in which form II band could not be seen at 

concentration of DH5Cl = 10 µM (ri = 0.107). At the highest concentration (namely 15 

µM), the intensity of the form I band also was greatly reduced and its mobility increased.  

The results suggest that DH5Cl had been able to cause a greater damage to the DNA than 

the other multinuclear compounds. It may be noted that unlike DH4Cl (which was found 

to be soluble in water) and DH6Cl and DH7Cl (which were found to be soluble in DMF 

and in mixture of water and DMF), DH5Cl dissolved neither in water nor in mixture of 

water and DMF unless the solution was made basic (pH 10) with NaOH. 

The increase in mobility of the DNA bands with the increase in concentration of the 

compounds is believed to be due a change in conformation of the DNA (both supercoiled 

form I and singly nicked form II) brought about by covalent binding between the 

nucleobases in the DNA and the platinum centres of the compounds. It has been noted 

earlier that whereas cisplatin because of the formation of mainly intrastrand GG and AG 

adducts (Stehlikova et al. 2002) causes a local bending of the DNA, multinuclear 

complexes (because of the formation of long-range interstrand adducts that affect the 

conformation of the intervening bases as well as those outside of the binding sites) cause 

a long-range conformational change in DNA. Thus, irreversible A → Z and B → Z 

transitions were found to be introduced by multinuclear platinum complexes (Farrell et al. 

1995; McGregor et al. 2002). 

When pBR322 plasmid DNA was allowed to interact with increasing concentrations of 

the dinuclear complex DHD (that has a trans-platinum and a trans-palladium unit linked 

together by 1,6-diaminohexane), it was found that (as in the case of trinuclear complexes) 

the presence of a small amount of the compound caused a sharp increase in the intensity 
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of the form II band as compared to that in the unreacted DNA. However, as the 

concentration of DHD was increased above 3.75 µM, there was a progressive decrease in 

the intensity of the band such that it totally disappeared at concentration of DHD = 7.5 

µM. A less marked decrease in intensity of the form I band also was observed with the 

increase in concentration of DHD above 3.75 µM, such that the form I band disappeared 

only at a much higher concentration, namely 15 µM. The results show that a greater 

damage to pBR322 plasmid DNA was caused by DHD than trinuclear complexes. As 

stated earlier, although both dincuclear and trinuclear platinum complexes form mainly 

interstrand adducts with DNA, Pt-DNA binding in the two cases differ significantly – 

whereas dincuclear complexes produce a greater percentage of shorter-range interstrand 

adducts, the trinuclear complexes produce a greater proportion of long-range adducts and 

that the total number of interstrand adducts would be greater in the case of dinuclear 

complexes than in the case of trinuclear complexes (Brabec et al. 1999; Wheate et al. 

2001). 

When pBR322 plasmid DNA was allowed to interact with increasing concentrations of 

cisplatin, although the mobility of both form I and form II bands increased slightly, the 

coalescing of the bands did not occur. At concentration of cisplatin = 15 µM (ri = 0.16), 

the form II band disappeared, indicating the occurrence of DNA damage. As discussed 

earlier, the nature of binding of cisplatin with DNA is different from that applying to its 

binding with multinuclear compounds – whereas cisplatin forms mainly intarstrand 

bifunctional Pt(GG) and Pt(AG) adducts (Stehlikova et al. 2002) multinuclear complexes 

form a range of interstrand adducts. It was also noted earlier that this difference in 

binding produces different conformational changes in the DNA and different extent of 

DNA damage at higher concentrations. 
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As stated earlier, the change in mobility of the pBR322 DNA bands as a result of its 

interaction with multinuclear compounds is believed to be due to interstrand ladder- like 

binding of multinuclear cations primarily with the GG sites of DNA. It was also noted 

that the high flexibility of the ‘molecules’ would allow the formation of a plethora of 

different interstrand adducts of varying lengths, dictated by the sequence of nucleobases. 

As stated earlier, Qu et al reported that in the formation of 1,4-GG interstrand adduct by 

BBR3464 with the self complementary 5’-d(ATG*TACAT)2-3’ octamer the syn 

conformation was induced in the adenine moieties not just within the strand bounded by 

the two platinum binding sites but also those at the end of the strand. They found that 

Watson-Crick pairing was essentially maintained and that the central linker was situated 

in the minor groove of the DNA. The authors pointed out that the cooperative nature of 

the B to Z transformation would lend itself easily to the delocalization of the lesions 

beyond the binding site. It was suggested that the factors that might contribute to the 

delocalization would include the linking of the two separated platinating sites and the 

presence of charge and electrostatic interactions introduced after incorporation of 

BBR3464 into the oligonucleotide. The contacts between the lipophilic backbone of 

BBR3464 and DNA might be especially effective in displacing water from within DNA 

and thus facilitating conformational transitions. It has been suggested that in canonical 

poly(dGdC).poly(dGdC), polynuclear platinum complexes can form a plethora of intra- 

and interstrand cross links (Qu et al. 2003).  

Like BBR3464, DH6Cl as well the other trinuclear compounds (DH4Cl, DH5Cl and 

DH7Cl) may form a number of interstrand GG adducts of varying lengths. It was noted 

earlier that when adducts of maximum possible lengths were formed, a slight lengthening 

of DNA strands would occur in the case of DH6Cl and a more pronounced change 

(lengthening or shortening) in the case of DH5Cl, DH4Cl and DH7Cl. To explore 
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whether the difference in lengths of the multinuclear cations could also cause a difference 

in non-covalent interactions between the ‘molecules’ and DNA, the optimised 

multicentred cations of DH6Cl and DH5Cl were positioned so as to form interstrand 

bifunctional GG adducts with the double stranded DNA fragment d(GGGGGGCCCCCC) 

(Figures 5.4 and 5.5). 

 

 

Figure 5. 4  Docking between DH6Cl and double-stranded DNA fragment 
d(GGGGGGCCCCCC) showing that DH6Cl cover a distance of over nine nucleotides 

 

 

 

Figure 5. 5  Docking between DH5Cl and double-stranded DNA fragment 
d(GGGGGGCCCCCC) showing that DH5Cl cover a distance of over eight nucleotides 
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 It is found that the central palladium unit is better positioned within helix (avoiding short 

repulsive contacts), in the case of DH6Cl than in the case of DH5Cl. The findings are 

similar to those observed for multinuclear palladium complexes [{trans-PdCl(NH3)2}2µ-

{trans-Pd(NH3)2(H2N(CH2)6NH2}2]Cl4 and [{trans-PdCl(NH3)2}2µ-{trans-

Pd(NH3)2(H2N(CH2)5NH2}2]Cl4 (Huq et al. 2003).  

5.4.1.2. BamH1 DIGESTION 

As stated in chapter 4, BamH1 digestion combined with gel electrophoresis was used to 

gain further insight into the nature of binding of the polynuclear compounds with pBR322 

plasmid DNA. BamH1 is a restriction enzyme that is known to recognize the G/GATCC 

and hydrolyse the phosphodiester bond between adjacent guanine sites (Roberts et al. 

1977). pBR322 plasmid DNA contains a single restriction site for BamH1 (Sutcliffe 

1979) that converts supercoiled form I and singly nicked circular form II pBR322 plasmid 

DNA to linear form III DNA. However, when platinum compounds at increasing 

concentrations bind to guanines in the DNA, BamH1 digestion may be increasingly 

prevented. 

Figure 4.44 gives the electrophoretograms applying to the incubated mixtures of pBR322 

plasmid DNA and varying concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD and 

cisplatin that were digested with BamH1 for 1 h before the mixtures were loaded onto the 

gel. Table 4.28 gives a summary of the bands observed. 

When the incubated mixtures of pBR322 plasmid DNA and increasing concentrations of 

DH4Cl ranging from 1.87 µM to 15 µM (ri ranged from 0.02 to 0.16) were digested with 

BamH1, three bands corresponding to form I, II, III were observed for concentration of 
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DH4Cl ranging from 1.87 µM to 2.5 µM. When concentration of DH4Cl was 5 µM (ri = 

0.053), forms I and II bands were observed and when concentration of DH4Cl was = 10 

µM (ri = 0.107), only form I band was observed. In the case of DH5Cl, form I, II, III 

bands were observed for concentrations of DH5Cl ranging from 1.87 µM to 2.52 µM 

above which only form I band was observed whose mobility increased sharply with the 

increase in concentration of DH5Cl. In the case of DH6Cl, three bands corresponding to 

form I, II, III were observed for concentrations of DH6Cl ranging from 1.87 µM to 2.50 

µM. Forms I and II were observed for concentrations of DH6Cl ranging from 5 µM to 10 

µM and only form I band was observed at concentration of DH6Cl = 15 µM. In the case 

of DH7Cl, three bands corresponding to forms I, II and III were observed at concentration 

of DH7Cl = 1.87 µM, two bands corresponding to form I and II were observed for 

concentrations of DH7Cl ranging from 2.5 µM to 10 µM and only the form I band was 

observed at concentration of DH7Cl = 15 µM. In the case of DHD three bands 

corresponding to form I, II, III were observed for concentrations of DHD ranging from 

1.87 µM to 2.5 µM and two bands corresponding to forms I and II were observed for 

concentrations of DHD ranging from 5 µM to 15 µM. In the case of cisplatin, three bands 

corresponding to forms I, II and III were observed for concentrations of cisplatin ranging 

from 1.87 µM to 5 µM, two bands corresponding to forms I and II are observed for 

concentrations of cisplatin ranging from 10 µM to even 20 µM. In the case of pBR322 

plasmid DNA that was not treated with the compounds but digested with BamH1, only 

form III band was observed. 

When arranged in the decreasing order of prevention of BamH1 digestion, the compounds 

were: 

DH7Cl > DH5Cl > DH6Cl > DH4Cl > DHD > cisplatin. 
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For untreated pBR322 plasmid DNA, BamH1 digestion at the specific GG site was not 

prevented thus producing only form III DNA. It is clear that in the presence of increasing 

concentrations of the compounds, there was a corresponding increase in prevention of 

BamH1 digestion. Thus, the observance of forms I, II and III at 1.87 µM of all the 

compounds indicates that BamH1 digestion has been partially but not totally prevented. 

The observe that only the supercoiled form I band at 10 µM in the case of DH4Cl and at 

15 µM in the case of DH6Cl and DH7Cl indicate total prevention of BamH1 nicking at 

the specific GG site. It should be noted that the total prevention did not happen in case of 

DHD even at the highest concentration used (15 µM) although the form II band became 

much weaker in intensity. In the case of cisplatin, total prevention of BamH1 cutting did 

not occur even at 20 µM indicating that cisplatin was less efficient than the multinuclear 

complexes in preventing BamH1 digestion. These results also support the idea that 

whereas cisplatin-DNA binding causes a local distortion of the DNA, interstrand binding 

between multinuclear complexes and the DNA causes a more global change in the 

conformation of the DNA. Previously published results showed that dinuclear platinum 

compounds were more effective than cisplatin in inhibiting the cutting of DNA by 

restriction endonuclease (Farrell et al. 1988). 

5.4.1.3. INTERACTION WITH ssDNA 

Figure 4.40 gives the electrophoretograms applying to the incubated mixtures of ssDNA 

and varying concentrations of DH4Cl, DH5Cl, DH6Cl, DH7Cl, DHD, and cisplatin 

ranging from 5 µM to 60 µM. 

A single band was observed in both unreacted and reacted salmon sperm DNA. As the 

concentration of the drugs was increased, it was found that both the intensity and the 

mobility of the band decreased. It was also found that the results were slightly different 
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from one compound to another. For example, it was found that the decrease in mobility 

with the increase in concentration was less pronounced in the case of DHD and cisplatin 

(least in the case of cisplatin). The decrease in mobility is believed to be due to covalent 

binding of the compounds with DNA, causing an increase in its molecular mass and a 

decrease in its overall negative charge. The decrease in intensity of the band indicates the 

occurrence of DNA damage brought about by the covalent binding. It may be noted that a 

decrease in intensity would also be observed if the binding of the compounds with DNA 

caused a decrease in DNA fluorescence unlike that in the binding of DNA with Ag+ 

where an increase in DNA fluorescence was reported (Hossain and Huq 2002). A smaller 

decrease in mobility with the increase in concentration in the case of DHD and cisplatin 

as compared to that in the case of DH4Cl, DH5Cl, DH6Cl and DH7Cl may also be seen 

to illustrate the difference in the nature of binding of the compounds (multinuclear 

compared to mononuclear cisplatin, trinuclear compounds compared to dinuclear DHD). 

As stated earlier, different types of binding may bring about different types of 

conformational change in the DNA that may manifest itself as a change in mobility 

through the gel. The change in mobility may also be a consequence (at least in part) of 

different molecular sizes of the compounds. 

5.4.2. INTERACTION BETWEEN DH6Cl AND NUCLEOBASES 

Like BBR3464, trinuclear complexes DH4Cl, DH5Cl, DH6Cl and DH7Cl all have one 

labile chloride ligand bonded to each of the two terminal platinum centres so that each of 

the two terminal platinum centres can form only one covalent bond with nuclebases in 

DNA. Based on the number of labile chloride ligands present, the trinuclear complexes 

would be expected to form 1 : 2 adducts with nucleobases for which the Pt : NB binding 

ratio would be 1 : 1. In this study HPLC has been used to determine the binding ratio 
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between the most active trinuclear complex DH6Cl and nucleobases adenine and guanine. 

It was noted earlier that HPLC provides a highly sensitive and convenient method to 

investigate binding between platinum-based anticancer drugs and nucleobases, 

nucleosides, nucleotides and DNA (Berners-Price and Appleton 2000). It is believed that 

the binding mode of the other trinuclear complexes DH4Cl, DH5Cl, DH7Cl with 

nucleobases would be similar to that of DH6Cl.  

The retention time of adenine, guanine and DH6Cl were found to be 6.13, 3.10 and 3.91 

min respectively. The second peak observed in the chromatogram of DH6Cl having the 

retention time of 2.67 min is believed to be due to DMF. When DH6Cl was allowed to 

interact with adenine, there were two major peaks in the chromatogram of the incubated 

mixture having the retention times of 2.83 and 3.72 min. In addition, there was a small 

peak that had the retention time of 2.98 min. The Pt : NB binding ratio of the peak having 

the retention time of 3.72 min was found to be 0.75. The peak at 2.83 min did not have 

any significant platinum. The observed UV absorbance at 260 nm for the fraction with 

retention time of 2.83 min might be due to DMF rather than adenine. The departure of the 

observed binding ratio (0.75) from the expected value of 1 : 1 may be considered to mean 

that the binding between DH6Cl and adenine had not gone to completion. It may be noted 

that like BBR3464, DH6Cl (and other trinuclear complexes of the present study) are more 

likely to bind to N7 centre of guanine rather than N7 centre of adenine. When DH6Cl was 

allowed to interact with guanine, again there were two major peaks in the chromatogram 

of the incubated mixture, having the retention times of 2.69 and 3.65 min. In addition, 

there was a small peak that had the retention time of 2.99 min as was found in the 

incubated mixture of DH6Cl and adenine. The Pt : NB binding ratio for the peak at 3.65 

min was found to be 0.90 (a value that is much closer to 1 than 0.75). The results show 

that binding of DH6Cl with guanine to form 1 : 2 (DH6Cl : NB) adduct is more complete 
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than its binding with adenine. Further experiments on the interaction of DH6Cl with a 

mixture of adenine and guanine, would show whether the compound indeed has a 

preference to bind to guanine than adenine, as is considered to be the case in its reaction 

with DNA.  
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CHAPTER SIX 

6. CONCLUSION 

Cancer is one of the leading causes of death all over the world. Chemotherapy is one of 

the three methods of cancer treatment used alone or in combination with the other two 

methods namely surgery and radiation therapy.  Although cisplatin and its analogue 

carboplatin are two of the most commonly used anticancer drugs, the compounds have a 

number of side effects and a limited spectrum of activity because of inherent or acquired 

resistance. In an attempt to reduce the side effects and widen the spectrum of activity, 

thousands of cisplatin analogues have been prepared by varying the nature of the leaving 

groups and that of the carrier ligands. Some of the designed complexes are indeed found 

to have reduced side effects and to some extent a different spectrum of activity. Unlike 

cisplatin and carboplatin (that have to be adminstreated intravenously), some of the 

designed complexes (e.g. ZD0473) can be taken orally. In spite of the tremendous 

progress made in altering toxicity profile, as stated earlier, only a limited advancement 

had been made in altering the spectrum of activity. Thus, presently attention is also given 

to ‘rule breaker’ platinum compounds and compounds of other metals such as those of 

ruthenium with the aim of arriving at tumour active compounds with very different 

spectra of activity. Dinuclear and trinuclear platinum complexes represent one such class 

of compounds. Although the exact mechanism of action of platinum-based anticancer 

drugs remains unknown, it is believed to be associated with their binding with DNA. 

Whereas cisplatin and its analogues form mainly monofunctional and instrastrand 

bifunctional adducts with guanine and adenine, dinuclear and trinuclear platinum(II) 
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complexes are expected to form a plethora of long-range interstrand adducts with 

guanine. Intrastrand bifunctional adducts cause a local bending of the DNA strand. Long-

range interstrand adducts cause a global change in the conformation of DNA. Differences 

in the nature of binding with DNA of dinuclear and trinuclear platinum(II) complexes as 

compared to that of cisplatin and its analogues, mean that that the compounds may be 

able to overcome multiple mechanisms of resistance that apply to cisplatin. Thus, the 

dinuclear complexes have been found to be highly active against a number of cisplatin-

resistant cell lines. 

A notable example of trinuclear complexes is BBR3464 that is found to be highly active 

against a large number of both murine and human cancer cell lines. BBR3464 consists of 

three trans-platinum units joined together two by 1,6-diaminohexane chains (Figure 2.9). 

As described later, the compound showed very high activity against a large number of 

cisplatin-resistant cancer cell lines. Since only the two terminals platinum units in 

BBR3464 undergo covalent binding (mainly interstrand) with DNA whereas the central 

platinum unit undergoes only noncovalent interactions such as hydrogen bonding and 

electrostatic interactions (Farrell and Spinelli 1999), it was hypothesized that although 

replacement of the central platinum unit with other suitable metal units might not 

significantly alter the covalent interactions of the terminal platinum units, it might have 

subtle effects on the noncovalent interactions such that anticancer active compounds with 

different spectrum of activity could result (Daghriri et al. 2001). Hence the present project 

in which a number of polunuclear complexes based on platinum and palladium have been 

synthesized, characterized and quantified for their antitumour activity including cell 

uptake, level and nature of binding with DNA. Four of the compounds (DH4Cl, DH5Cl, 

DH6Cl and DH7Cl) were based on BBR3464 in which the central platinum unit had been 

replaced by a corresponding palladium unit and length of the linking diamine had been 
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varied to contain from four to seven carbon atoms. In addition, a dinuclear complex 

(DHD) in which a trans-platinum unit and a trans-palladium unit are connected together 

by 1,6-diaminohexane and another trinuclear complex (DH1Cl) in which two terminal 

trans-platinum units and a central cis-dicloropalladium unit are connected together by two 

1,6-diaminohexane chains had been prepared. All of the compounds show significant 

activity against human ovarian cell lines:  A2780, A2780cisR, A2780ZD0473R. DH6Cl is 

found to be the most active compound. It has the lowest IC50 for all the cell lines. DH6Cl 

is found to be about nine times as active as cisplatin against the human ovary cell lines 

A2780, about seventeen times as active as cisplatin against A2780cisR cell line, and about 

four times as active as cisplatin against A2780ZD0473R cell line. The next most active 

compound is the dinuclear complex DHD which is found to be about two times as active 

as cisplatin against A2780 cell line, about four times as active as cisplatin against 

A2780cisR cell line and about two times as active as cisplatin against A2780ZD0473R cell 

line.  For the melanoma cell line Me-10538, DH6Cl is found to be six times as active as 

cislatin and DHD is found to be nearly two times as active as cisplatin. The resistance 

factors for DH4Cl, DH5Cl, DH6Cl, DH5Cl, DH7Cl, DHD, DH1Cl and cisplatin as 

applied to the ovary cell lines A2780 and A2780cisR are respectively 1.1, 1.2, 5.2, 2.8, 3.8, 

3.7 and 10.0 indicating that all of the compounds are better able to overcome cisplatin 

resistance in A2780cisR cell line than cisplatin. The observation that among the four 

BBR3464-based trinuclear compounds (DH4Cl, DH5Cl, DH6Cl and DH7Cl), DH6Cl (in 

which the linking diamine has six carbon atoms) has the highest activity against all of the 

cell lines (A2780, A2780cisR, A2780ZD0473R, NCI-H640 and Me-10538) is in agreement 

with the structure-activity relationship formulated for polynuclear platinum-based drugs.  

When uptake of DH4Cl, DH5Cl, DH6Cl and DH7Cl in A2780 cell line is considered, it is 

found that the uptake increases with the increase in the number of carbon atoms present in 
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the linking diamine chains. This observation coupled with low molar conductivity values 

observed for the solutions of the compounds in 1:1 mixture of DMF and water or in pure 

DMF, provide support to the idea that the molecules of the compounds (more precisely 

undissociated ionic aggregates) are able to cross the cell membrane by passive diffusion. 

It may be noted that as the number of carbon atoms present in the linking diamine 

increases, the lipophilicity of the molecule increases and hence the increase in the rate of 

diffusion with the increase in the size of the molecules. Time course experiments on cell 

uptake for all the trinuclear compounds (done only for DH4Cl and DH6Cl in this study) 

would provide more light on the matter. When uptake of DH4Cl, DH5Cl, DH6Cl and 

DH7Cl in A2780cisR cell line is considered, it is found that the uptake is highest for 

DH6Cl (which is about three times that of the other trinuclear compounds). When uptakes 

in A2780 and A2780cisR cell lines are compared, it is found that for DH6Cl the uptake in 

the cisplatin-resistant cell A2780cisR is greater than that in the cisplatin-sensitive cell line 

A2780, whereas the converse is true for the other trinuclear compounds. That DH6Cl 

rather than DH7Cl has highest uptake in A2780cisR cell line, could be the result of reduced 

efflux of DH6Cl so that net accumulation of platinum is highest for the compound. The 

results suggest that DH6Cl had been better able to overcome mechanisms of resistance 

operating in A2780cisR cell line, especially the one that is associated with the increased 

efflux from the cell. For the dinculear compound DHD also, it was found that the uptake 

in A2780cisR cell line was greater than that in A2780 cell line. As in the case of DH6Cl, 

this may be the result of reduced efflux. Since the anticancer activity of polynuclear 

platinum complexes is believed to be associated with the formation of a plethora of 

interstrand GG adducts causing global changes in the conformation of DNA, the extent of 

binding of DH4Cl, DH5Cl, DH6Cl, DH7Cl and DHD with cellular DNA was determined 

as applied to A2780 and A2780cisR cell lines. It was found that for all the compounds 
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including cisplatin, the level of platinum-DNA binding was less in the resistant cell line 

A2780cisR than in the responsive cell line A2780, in line with their lower activity in the 

resistant cell line.  The results are in agreement with the previously published values in 

which it was found that the lower activity of BBR3464 in U2-OS/Pt cell line as compared 

to that in U2-OS cell line corresponded to a lower level of Pt-DNA binding in the former 

than in the latter (Perego et al. 1999a). It should be seen that for the trinuclear complexes: 

DH4Cl, DH5Cl, DH6Cl and DH7Cl, the order of Pt-DNA binding in A2780 and 

A2780cisR cell lines was mostly in line with that of the Pt-DNA binding level. An increase 

in the level of Pt-DNA would mean a greater number of interstrand adducts and 

consequently a greater conformational change in DNA resulting into a greater activity. 

For the dinuclear complex DHD, even though the level of Pt-DNA binding was found to 

be lower than that for DH5Cl, DH6Cl and DH7Cl, it was found to have a greater activity 

than all the trinuclear complexes except DH6Cl against both A2780 and A2780cisR cell 

lines. This may be due to a greater tendency to form interstrand adducts by dinuclear 

complexes than their trinuclear counterparts. It may be noted that dinuclear platinum 

complexes were reported to be more effective than the trinuclear complex BBR3464 at 

inhibiting ethanol induced B → A transition in CT DNA which was considered to be due 

a greater percentage of interstrand adducts (McGregor et al. 1999) formed by the 

dinuclear complexes. 

Interaction between trinuclear compounds (DH4Cl, DH5Cl, DH6Cl, and DH7Cl), 

dinuclear compound (DHD) with pBR322 plasmid DNA and salmon sperm DNA 

combined with BamH1 digestion showed that all of the compounds were able to cause 

global changes in the conformation of DNA. As a result, mobility of DNA bands through 

the gel was found to change. Also an increase in prevention of cutting of pBR322 plasmid 
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DNA by BamH1 with the increase in concentration of the compounds was observed. 

These observations also, may be considered to support the idea of formation of a range of 

interstrand GG adducts (dictated by the sequence of nucleobases) between the 

polynuclear compounds and the DNA, thus inducing global changes in its conformation. 

Binding of the compounds with DNA was also found to cause DNA breakdown 

especially at high concentrations of compounds. This is believed to be the result of 

covalent binding.  

Molecular modeling analyses show that the central palladium unit in DH6Cl is better 

positioned within helix (avoiding short repulsive contacts) than that in DH4Cl, DH5Cl 

and DH7Cl, indicating that DH6Cl would be able to bind to DNA more strongly than the 

other trinuclear complexes. 

HPLC results show that DH6Cl binds more strongly with guanine than adenine forming 

1 : 2 (drug : NB) adduct, in line with the idea that the polynuclear complexes are expected 

to bind to N7 centres of guanine in the DNA. 

Finally, it can be seen that the present study gives support to the idea that new tumour 

active polynuclear compounds could be found by replacing the central platinum centre in 

BBR3464 with other suitable metal centres. 

What is next? 

It is clear that some of the compounds of the present study show significant activity 

against a number of cancer cell lines such that the most active compound namely DH6Cl 

has the potential to develop into an anticancer drug. The next step would be to determine 

the toxicity profile of the lead compound using suitable animal models eg human 

xenograft mouse models. 
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