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Abstract

Innovative improvements in the area of Human-Computer Interaction and User Interfaces have en-
abled intuitive and effective applications for a variety of problems. On the other hand, there has
also been the realization that several real-world optimization problems still cannot be totally auto-
mated. Very often, user interaction is necessary for refining the optimization problem, managing
the computational resources available, or validating or adjusting a computer-generated solution.

This thesis investigates how humans can help optimization methods to solve such difficult prob-
lems. It presents an interactive framework where users play a dynamic and important role by pro-
viding hints Hints are actions that help to insert domain knowledge, to escape from local minima,
to reduce the space of solutions to be explored, or to avoid ambiguity when there is more than one
optimal solution. Examples of user hints are adjustments of constraints and of an objective function,
focusing automatic methods on a subproblem of higher importance, and manual changes of an ex-
isting solution. User hints are given in an intuitive way through a graphical interface. Visualization
tools are also included in order to inform about the state of the optimization process.

We apply the User Hints framework to three combinatorial optimization problems: Graph Clus-
tering, Graph Drawing and Map Labeling. Prototype systems are presented and evaluated for each
problem. The results of the study indicate that optimization processes can benefit from human
interaction.

The main goal of this thesis is to list cases where human interaction is helpful, and provide an ar-
chitecture for supporting interactive optimization. Our contributions include the general User Hints
framework and particular implementations of it for each optimization problem. We also present a

general process, with guidelines, for applying our framework to other optimization problems.






CHAPTER 1

Introduction

1.1 Motivation

With the technological revolution that marked the last century, there was a general feeling that
technology would soon be able to automate almost all kind of activities performed by humans. The
concept of amaid robot(such as Rosie, the maid robot in the cartoon show “The Jetsons”) is a
representative example of people’s expectations at that time. In fact, during the last fifty years of
the twentieth century, technology did replace humans in many activities, such as the jobs in the
automobile industry]2§.

However, a new century has begun, and many automatic tools expected to exist by this time
(including Rosie) remain as intangible gdaldn contrast to the technological predictions in the
last century, we have now realized that several real-world problems are much more difficult than
they seemed. Some of these difficulties appear in Atrtificial Intelligence, and in Image and Nat-
ural Language Processing; they are often associated with pattern recognition problems involving
image, voice and video content. Another group of difficult problems comes under the heading of
Combinatorial Optimizatiof this is the focus of this thesis.

A broad variety of techniques have been developed for Combinatorial Optimization problems.
They include heuristic strategies dependent on the problem, Dynamic Programi@inm{eger
Programming 84, 140, 16§, and meta-heuristic methods — such as Greedy heuristics, Simulated
Annealing P, 107, Tabu Search8, 79|, Genetic Algorithms 81], GRASP B5, 66] and Asyn-

chronous TeamsAfl, 42, 159 181]. Although a considerable amount of research has been done

A small step towards a hard-worker and low-waged housekeeper has been made by researchers from MIT. It consists
of a robot for cleaning floors called Roomba, which is available commercially since 2002. Information about Roomba
can be found atttp://www.roombavac.congndhttp://www.time.com/time/roomba/

2An optimization problem consists of finding the maximum or the minimum of a function defined on some domain.
Furthermore, the solution of the problem usually has to satisfy a set constraints. The problem is sa@htbibatorial
if the domain if finite. A more detailed definition of a combinatorial optimization problem is given in Seztloh
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in this area, many combinatorial optimization problems that have practical applications in the real
world cannot yet be tackled satisfactorily via a fully automatic approach. Examples are bin-packing
problems for the garment industr89], steel, wood and glass cutting processis, [vehicle rout-

ing problems @], and timetabling 18, 83, 139, 197, 199. The immediate reason for this lies in the
computational complexity of these optimization problems. In the early 70’s, GikH{arp [103

and Levin [L25 formulated an important theory that defines some problems as belonging to classes
calledNP-hardand NP-complete This means that such problems are very difficult, and it is un-
likely that they can be solved optimally in polynomial tifné\s well as computational complexity,

there are many other factors in the real world that contribute to the difficulty of a problem:

e The problem can be dependent on subjective domain knowledge. The domain knowledge

may be difficult to express formally and may vary from person to person.

e Some characteristics of the problem may be unknown; in this case, the problem is poten-
tially dynamic, since its objectives and constraints may need adjustment as the optimization

progresses.

e The problem may include multiple objectives and constraints; optimizing only one of these
aspects can be already an NP-hard problem; the challenge is then to consider all objectives

and constraints simultaneously, and to find compromise solutions in conflicting situations.

¢ In general the problems studied in science are simplified models of real-world problems. As
a consequence, most optimization methods available in the scientific literature do not handle

all objectives and constraints that appear in practical cases.

¢ Finally, existing hardware technology (CPU power and memory size) may not be sufficient
to deal with complex problems that contain several objectives or constraints, or have a large
number of variables. Even when powerful computation resources do exist, they may be too

expensive to acquire.

Complex problems, presenting one or more of the aspects above, are quite common in our
daily life. Consider for example the job performed by a travel agent when an employee of a major
company has to meet several customers in different cities in order to provide support or training for

its products. The employee has to decide with the travel agent a flight itinerary that starts from his

3For more details about the theory of Computational Complexity, see Garey and JoRfjson [



1.1 Motivation 3

or her current location, passes by each of the costumers’ cities, and finally returns to the starting
point. The company usually specifies some basic criteria for guiding this decision process: the
usual rules are that the trip has to be as cheap as possible, and that the employee should not stay
away for a long period of time. If the time allocated for serving each customer is fixed, and if
they can be visited in any order, then the problem consists of minimizing the duration and the cost
of the flights. This involves a number of different flight options in the case that more than one
airline provides routes between the customers’ locations; moreover, the airlines may have flights
on different days of the week and with distinct time schedules. Figjurshows an example of

a hypothetical network describing flights between six cities (labeled fdoto F'); each flight is
represented by a line connecting two cities. The lines are labeled with the duration (in hours) and
the cost of the flights. The duration represents the total flight time, from boarding to arrival and
including intermediate stops in some cities not included in the diagram. Choosing the best itinerary
for such a trip is in fact solving th&raveling Salesman Proble(SP) 6] with two objectives.

The objectives are to minimize the sum of the costs and the sum of the durations of the chosen
flights. The TSP is a well known problem, and is NP-hard even for a single objective. Satisfying

two objectives simultaneously is a more difficult problem.

Figure 1.1: Duration and costs of flights between cities.

We can see that the problem to be solved by the employee and the agent is computationally
difficult. Nevertheless, its entire complexity has not yet been discussed. Rather, we have only men-
tioned the company’s interests and the basic knowledge about the costs and durations of flights.
Many other elements are commonly involved in flight itineraries. For instance, some airlines may
offer special discounts if a return ticket or a package of two consecutive flights is bought. In ad-

dition, the employee may have special requests such as: to give preference to flights that include
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meals in the basic package, or to fly with an airline that has a specific frequent flyer program.

Conflicts can also exist between the objectives; for example, shorter flights may imply higher
costs. Consequently several compromise solutions exist, and the employee may decide subjectively
on which option to take. As an example of a subjective decision, some employees may prefer to
save the company’s money by taking cheaper flights, which start early in the morning and have
many connection stops.

Note that, if there is an emergency situation during the trip such that the employee has to prolong
the stay in a particular city, then the itinerary should be amended without canceling all future flights.

Because of the enormous number of conditions and possibilities, many real-world combinatorial
optimization problems still depend heavily on humans (in the “travel agency” problem above, the
agent does most of the work). Computers can be used to search for possible initial solutions, but it
is the human element that evaluates possibilities, recommends changes, and adjusts and approves
the final solution.

In recent years, there has been an increasing interest in interactive tools for optimization meth-
ods. This is partially due to developments in User Interfaces, more generally in the area of Human-
Computer Interaction, which now can provide intuitive and effective environments for interaction
with a variety of applications. Human interaction in this context is beneficial since it provides a
way of refining or adjusting the optimization problem to match the user’s desires, or of managing
the computational resources available. There are also well-known differences between human and
machine skills for problem-solving, which can be exploited by human interaction. Computers, for
example, are suitable for intensive computation, where many solutions can be created and numer-
ically evaluated. Humans, on the other hand, are skilful in identifying patterns that differentiate
good from bad solutions.

The need for having humans involved in optimization tasks was discussed by Donald Edward
Knuth during his lecture in the Graph Drawing Conference in f9@@Berkeley [145. Knuth said:

“l also like to be able to tune things up later... .| would urge all of you who are outputting the
results of your graph drawing, not to just output a postscript file, but ideally you could output a file
in a higher level language (and Metapost is the best | know), so that your users will be able to take
that file and make slight refinements if they like afterwards, and rather easily.”

Later, when talking about drawings of tree structures, which are frequently used in his famous

A video of Knuth’s talk, “Graph Drawing from a User’s Perspective”, can be obtained from the Mathematical Science
Research Institute, at Berkeley-CA, USA. 3agp://www.msri.org/index.htnibr more information.
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series of book3 he Art of Computer Programmirid11, 113 117, Knuth emphasized that:

“One system for drawing trees is not going to solve all the problems. Each one seems to have
its own little thing that. . . If you didn’t care about quality then you could get by with something that
is totally automatic. But my idea is always to try to make something ninety-nine percent automatic,
and then you can have fun with the other one percent. You get this self-satisfaction if you've added
something and you haven't wasted a great deal of time on the extra thing. So | like people who
design systems as if they are going to be fully automatic, but then they should also leave hooks
so that people can toil with them easily afterwards; because visual aesthetics are something that |
don’t think we are ever going to totally quantify.”

Knuth’s comments on Graph Drawing show that it is exactly the type of complex optimization
problem for which humans are still necessary. Therefore, he proposes that computational systems
should be extended to support human interaction, allowing manual improvement of solutions when

the algorithms cannot do it by themselves.

1.2 Aims

In this thesis we investigate the issues raised by Knuth, and show human interaction can contribute

to optimization processes. More precisely, we investigate the following questions:

In what circumstances is human intervention necessary?

Can human interaction be done during runtime in order to improve the optimization?
e What is the best architecture for achieving this goal?

Are fully-automatic optimization methods still useful in an interactive environment? If so,

what methods are more suitable and how can they be adapted to support interactive facilities?

For answering these questions we present an architecture that we ¢édthidints framework
In our framework, users can control an optimization process by provhdimg which are changes
to the objectives and constraints of the problem, and direct control of the optimization process.
Such changes allow the users to include domain knowledge, escape from local minima, eliminate
ambiguous situations or speed up the optimization process.

Itis important to note that many optimization systems that support human interaction implement

this feature as a post-processing step in a sequential approach. Eiguwteows the traditional
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framework with post-processing — which is also what Knuth has suggested: firstly an automatic
method is applied, and then the human improves the computer-generated solution via a manual

adjustment.

Optimization . Improved
Problem |—» pMethO i |—»| Solution —>—> sﬁution

Figure 1.2: Post-processing improvement of a solution for an optimization problem.

The User Hints framework is different from the post-processing model, since it considers a
stronger relation between the user, the automatic tool and the solution been improved.1Rgure
presents a general description of the User Hints framework. The automatic method acts as an
improvement algorithm; not only can it be executed on the initial stage of the optimization (in order
to produce a good initial solution), but can also be re-applied to improve solutions modified by the
user. The users interact with the solution, the optimization method, and with the description of the
problem. (Note that in the traditional post-processing framework the user can still return to the
initial stage and change the problem or replace the optimization method; however, this implies a
new optimization processing that does not take into consideration improvements done by the user

on the previous solution.)

Optimization | =——pp
Method 4—

/

Figure 1.3: A general diagram of the User Hints framework.

Problem Solution

l

We investigate the potential of the User Hints framework by applying it to some combinatorial
optimization problems. We did not consider the “travel agency” problem. Instead, we approached
three other more familiar problems: Graph Clustering, Graph Drawing and Map Labeling.

1.3 Research Methodology

The research methodology used during this work consisted of the following steps:

1. Investigating optimization problems that can benefit from human interaction.
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2. Defining a general interactive framework for optimization.

3. Building prototype systems to test interaction facilities. This involves:

(a) building specific interactive frameworks;

(b) building systems in the application domain.
4. Evaluating these systems using:

(a) domain experts,
(b) controlled experiments, and/or

(c) quality parameters.

5. Refining the general interactive framework based on the experience with the systems, and

developing guidelines for applying it to other problems.

1.4 Contributions

The objective of this thesis is to investigate whether human interaction can help to produce high
guality solutions in optimization processes. We present a framework for this goal, and describe
derivations of it for three case studies. The case studies show how user hints, automatic methods
and visualization tools can be put together for Graph Clustering, Directed Graph Drawing and for
Map Labeling. The main advantages and disadvantages of the User Hints framework arise from the
experiments done with our prototype systems.

The specific contributions of the thesis are listed below:

e A general architecture for human interaction in optimization processes.

e An approach for including user hints in Graph Clustering. This was our first study of user
hints and we applied the lessons learned from our experience with Graph Clustering in other

case studies.

e An approach for incorporating user-defined layout constraints§@euswith the Sugiyama
method, for drawing directed graphs. Focus consists of restraining the scope of the method

to work only on a selected part of the optimization problem.
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¢ A new genetic algorithm for drawing directed graphs; this algorithm supports layout con-
straints and focus; it implements a design for the solution representation and for the evolu-

tionary operators that yields good drawing solutions.

e For the Map Labeling case, an approach for focus that constructs a new labeling problem

based on selected elements (features and labels) of the map.

¢ A recursive operation that computes the maximum set of elements of a cartographic map that

may need to be relabeled in order to improve the label position of a particular feature.

e A process and intuitive guidelines for applying the User Hints framework to other optimiza-

tion problems.

The results in this thesis can benefit researchers and system developers in the case study areas, as
well as in major fields such as Human-Computer Interaction and Combinatorial Optimization. The
discussions made throughout the thesis together with the guidelines given in the General Remarks
Chapter provide sufficient material for implementing User Hints frameworks for other optimization
problems. For the Graph Drawing and the Map Labeling problems, the thesis already includes a

good interactive approach that can be used as a starting point for future extensions.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows: Chappepvides a background on previous
interactive approaches for optimization. Chag@éntroduces the User Hints framework. Chapter
4 discusses the application of user hints to the problem of clustering graphs. Chaptestigates
how our framework can be used to improve drawings of directed graphs with the Sugiyama Method.
Chapter6 extends the graph drawing investigation by presenting a genetic algorithm that supports
layout constraints and focus. Chaptepplies the User Hints framework to the problem of labeling
point-features in maps. Chapt@rdiscusses additional issues related to user interaction, presents
a process and guidelines for applying our approach to optimization problems, and discusses ex-
tensions to the framework. Chapfdraws our general conclusions and proposes suggestions for
future research.

The thesis also has two appendices: Apperdpresents two interactive tables that we built for

experimenting with human interaction — the tables are based @pthmization tabledeveloped at
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MERL, Boston B]; AppendixB describes the content of the CDROM included with the thesis. It

also explains the user interface of our prototype systems.



CHAPTER 2

Background

This thesis concerns user interaction with optimization processes. The thesis uses well established
concepts in Graph Theory, Combinatorial Optimization, Human-Computer Interaction and Infor-
mation Visualization; brief introductions to these areas are given in Seztlon

The remainder of this chapter describes examples of systems and approaches that involve col-
laboration between humans and computers working together to solve problems. Of course many
thousands of systems involving human-computer collaboration have been designed since the advent
of computers. We have restricted our attention to those which have some implications for the thesis.

In Section2.2 we discuss human interaction in three general categories: Computer Aided
Graphics Design, Information Retrieval and Mixed Initiatives.

In Section2.3, we are more specific: we consider approaches and systems in which humans
collaborate with optimization algorithms.

Section2.4 brings the background together by summarizing the roles usually performed by
humans and computers in interactive systems, and presenting two main goals for having human

interaction in optimization processes. This leads to the development of the User Hints framework.

2.1 Basic Concepts

2.1.1 Graphs

A graph is a mathematical model widely used to describe relationships between entities. The defi-
nitions below follow the terminology used i23, 179.
A (undirected grapht G = (V, E) consists of a finite set aferticesl” and a finite set oédges

E. An edgee € FE is an non-ordered paitu, v) of vertices ofl/. We say that: andv in V" are

!Also calledgeneral graph
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adjacentor neighborsf there is an edge = (u,v) € E. In that case, we also say thais incident
to v andv, and thatu andv are theendpointsof e. Thedegreeof a vertexu € V' is the number of
edges inE incident tou. A loopis an edge with one endpoint.

A pathfrom a vertexu to a vertext in G = (V, E) is a sequencéu = v, (vo, v1), v1, (v1,v2),
ooy (Uk—1,v), vg = t) Where(v;, v;41) are edges of (fori =0,1,...,k—1)andvy,...,v; are
vertices ofl/. Without loss of generality, we can omit the edges in the sequence. When a path has
both extreme vertices the samg & vy), itis calleda cycle Thelengthof a path is the number of
edges in the sequence. The (graph theoreigtancebetween two vertices andv in the graph is
given by the shortest path fromto v.

A graphG is connectedf there is a path between all pairs of distinct vertieesndv in G.

A graphG’ = (V'  E') is asubgraphof G = (V, E) if V' C V andE’ C E. The subgrapld’
is aninduced subgrapbf G if, for all e = (u,v) € Ewithu,v € V',e € E'.

A treeis a connected graph that has no cycles.

Similarly, adirected graphG = (V, E), consists of a finite sét’ of vertices and a set' of
directed edges witlorderedpairs of vertices ofi’. An edgee = (u,v) € E is said to be an
outgoing edgdrom u and anincoming edgeo v. Note that the the term@:, v) and(v, u) define
two different edges in a directed graph, while they represent the same edge in an undirected graph.
For a vertexw € V, we represent the number of incoming edges tay indeg w), and the number
of outgoing edges fromv by outdedw). The total) degreeof w is indegw)+outdedw). A vertex
is asourceif it has no incoming edge; it is sinkif it has no outgoing edge.

The concepts of path and graph connectivity are similar for both undirected and directed graphs.

2.1.2 Combinatorial Optimization

We use notations fron¥[fl, 86, 13§ in this section.
In general, aroptimization problencan be described as maximizing abjective function
f : D — % subjected to a saf’ of constraints onD, where D is thedomainor search space
of the problem. This definition describesraximization problerna minimization problenis sim-
ilar. An optimization problem isnulti-objectiveif it has two or more objective functions to be
maximized/minimized.
The optimization problem isombinatorialif the domainD is finite. The elements ab are
in general multidimensional vectors that represent variables of the problem. We often refer to the

elements ofD informally assolutionsof the problem.
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LetS € D be the set of all vectors that satisfy the constraint s€t The problem is said to be
feasibleif S # (); otherwise, the problem isfeasible All elements ofS arefeasible solutionso
the problem. An element € D isinfeasibleif « ¢ S. Theglobal optimunmor optimal solutionis
a solutionz* € S such thatf (z*) > f(y) forall y € S.

Many optimization methods proceed by changing an initial solution to another solution by a va-

riety of operations. A collection of operations é@his elementaryf it has the following properties:

(a) If y € D can be obtained from € D by an elementary operation, theran also be obtained

from y by an elementary operation.

(b) Given any twar, y € D there is a finite sequence of elementary operations which converts

into y.

The elementary operations define a connected géaplihose vertices are membersdfand
whose edges join members bflinked by an elementary operation. Different sets of elementary
operations define different graphs. Sometimes, the resolution of an optimization problem is repre-
sented as a searchdnfor an optimal solution.

TheneighborhoodV (z) of a solutionz € D given by an elementary operation is the set of all
vertices adjacent to in the graphz defined by the operation.

A local optimumis a solutionr € S such thatf(z) > f(y) forally € N(x)(S.

Let 2* be the optimal solution (or one of the optimal solutions) for the problem. A valaér
is anupper boundf ¢ > f(z*); itis alower boundf ¢ < f(x*).

There are two basic approaches for solving a combinatorial optimization problem: the problem
can be solved either exactly — that is, an optimal solution is computed using an exact method- or
approximately — a heuristic is used to compute an approximate solution. If the problem is NP-hard,
then exact methods may demand an exhaustive exploration of the search space. Heuristic strategies,
on the other hand, can generate a solution in a feasible amount of time, but in general provide no
guarantee of finding the optimal solution.

Next we describe four meta-heuristic methods for solving optimization problems — Greedy
heuristics, Hill Climbing, Simulated Annealing, and Genetic Algorithms— and an exact technique,
Integer Linear Programming. Hill Climbing, Simulated Annealing and Genetic Algorithms are
types oflocal improvement techniquesthey start with a feasible solution for the problem and try

to improve it by performing elementary operations.
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Greedy Heuristics

Greedy heuristics construct a solution to a problem by following two main rules:

¢ At each stage of the construction of the solution, the alternatives are analyzed locally and the

best choice is taken.

e Previous alternatives are not reconsidered as the heuristic progresses.

An example of a greedy heuristic is Kruskal's algorithm for computing the minimum spanning
tree of a graph37].
Greedy algorithms are in general quite fast, but they have the drawback of not being able to

escape from local minima.

Hill Climbing

Hill Climbing (also calledGradient Descent methdik an iterative algorithm that tries to improve

an existing solution by elementary operations. If an operation leads to a better solution, then the
current solution is replaced by the new one; otherwise, another operation is tried. This process
repeats until no further improvement is possible.

There are a number of variations of the Hill Climbing method. For example, the elementary op-
erations can be based on random changes of the solution or on heuristic strategies. The method can
also apply the first operation that causes improvement of a solution, or analyze several operations
and execute the one that causes the greatest improvement.

Hill Climbing presents the same advantages and disadvantages of Greedy heuristics.

Simulated Annealing

Simulated Annealin¢SA), proposed by Kirkpatrickt al. [107], is a type of Hill Climbing based

on the principles of Statistical Mechanicds3h. The method aims to escape from local minima by
applying an idea similar to th@nnealingprocess, in which liquids are cooled down until assuming

a homogeneous form. If the cooling is sufficiently slow, then the molecular structure of the liquid
has time to organize itself, resulting in the form of a crystal, which is associated with a state of
minimum energy. However, if the annealing is too fast, then the system (liquid) takes an amorphic

form that represents a local minimum.
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The method simulates the annealing process by starting with a high temperaturé valiig
and decreasin@ slowly. For every temperatufE, it applies a sequence of movements in order to
change the state of the system. New states are obtained in the neighborhood of the current state by
random elementary operations. The main rule is that the probability of the system to change from a

state with energy, to a new state with energly is given by:

_E2-FE1

1.

p=min{l,e

This function implies that the system always moves to a new state when F;. Otherwise,
the new state is accepted with probabijityFigure2.1 shows the Simulated Annealing algorithm.
The value ofK, the initial temperature and the rate in whithdecreases, among other parameters,

have to be chosen carefully.

1. Choose an initial configuration o for the system and a temperature 7=T.
2. Repeat K times
(a) Choose a new configuration ¢’ from the neighborhood of o.

(b) Let £ and E” be the energy functions (measuring the costs) for oe
o’, respectively; if Random < e =" then do o « o .

3. Decrease T.

4. If a stop condition is reached (for example, if T is too small) then stop;
otherwise, go to step 2.

Figure 2.1: The Simulated Annealing algorithm.

Constraints can be treated in many ways. One possibility is to consider only solutions that are
feasible during the optimization processing. Another approach is to allow infeasible solutions to be
generated, but penalize the non-satisfaction of a constraint in the objective function.

Simulated Annealing can be applied to solve optimization problems in general. It is expected

to provide very good results, but may demand a considerable amount of runtime.

Genetic Algorithm

Genetic algorithmsd1] are improvement methods based on Darwin’s Theory of Natural Selection.
They are characterized by a cyclic process in which a population of individuals (or chromosomes)
evolve. The method consists of three basic steps, which are repeated until a stop condition is

reached:
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1. Selection of a subpopulation of individuals from the initial population based on their fitness

(defined by a fitness function).

2. Execution ofgenetic operator®n the selected individuals in order to generate a population
of offsprings. The operators are usually classified as mutations and crossovers. A mutation
creates a new individual by copying an existing one and changing part of its structure; a
crossover operator produces new individuals by combining parts of two or more existing

individuals. The mutation and crossover concepts are related to elementary operations.

3. Replacement of the previous population with the new population.

Genetic algorithms have been applied to many optimization problems, including the9ZSP [
121, 134, 183 and the Bin-packing problen®B, 126, 156, 158. Their main advantages are the
ability to explore several regions of the solution space simultaneously, and the high suitability for
parallel and distributed processing. Nevertheless, genetic algorithms also demand much processing
time.

Another problem, that is common for Genetic Algorithms and Simulated Annealing, is that

these methods in general do not offer a guarantee about the quality of their final solutions.

Integer Linear Programming

Integer Linear ProgrammingILP) is considered the most efficient general technique for solving
combinatorial optimization problems in an exact way. The constraints and the objective of an
optimization problem are formulated in ILP mathematically as a set of linear functions. A general

form of an ILP problem with variables andn constraints is:

Maximizecizy + coxo + ... + chxn,

subject to:
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a11x1 + a1ors + ... + apxy < by

ag1 1 + asTo + ... + agpx, < by

Am1Z1 + AmaT2 + ...+ AT < by

T1,T9,...,&n >0
x;, i =1,2,...,n are non-negative integers (*),
wherec;, a;; andb; are constants, ang; are variables of the problem, for= 1,2,...,n
andj = 1,2,...,m. The formulation above without the integrality constraints (*) characterizes a

continuous problem that is referred to only alsimear Problem(LP). This is usually solved using
the simplex methodl4d.

Two popular methods for ILP af@ranch-and-BounéndBranch-and-Cut Branch-and-bound
computes an implicit enumeration tree of LP problems. The tree starts with a single vertex con-
taining a relaxed version of the original ILP problem without the integrality constraints (*). The
method executes as follows: for each veriexf the tree, which consists of a LP problem, the
method analyze® by computing its optimal solutioX and verifying whether it is necessary to
branch the tree o®. The value of the objective functiofi X') defines a bound for the original
ILP problem. The solutiorX is checked for a non-integer variabtg 1 < ¢ < n. If all variables
in X are integer, then the ILP problem is already solved. Otherwise, if the bound definBd by
is worse than the best bound found so far, then the vértexremoved from the tree. If none of
the two previous condition are satisfied, theéms divided into two subproblemsg?; and P,. These
problems have the same objective function and constrairs ofit include a new bound condition:

P, is assigned a constraimt < |v|, and P, is assigned a constraimt > |[v| + 1, wherew is the
value ofx; in the optimal solution forP. The problemsP; and P, are then added to the tree as
child vertices ofP, and the branch process is repeated to another vertex not yet analyzed.

Branch-and-cut is a combination of the Branch-and-bound method weitittiag planes algo-
rithm. Thecutting planes techniqueonsists of iteratively adding special constraints to a LP prob-
lem in order to get an integer solution. The Branch-and-Cut method tries first to solve a relaxed

(LP) version of the ILP problem by using cutting planes. If an integral solution is obtained, then
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the problem is considered solved. Otherwise, the algorithm branches as in the Branch-and-Bound
method and repeat the same process.

The downside of using the ILP technique is that the optimization problem has to be formulated
as a set of linear functions. In many cases, such functions are not adequate to describe the problem.

Even when they are adequate, it can be difficult to model the problem as an ILP.

2.1.3 Human-Computer Interaction and Usability Studies

Human-computer interaction has been studied for quite a while, and today helpful guidelines exist
for the development of interactive systems. One of the main general aims is to build systems that
are “user friendly”. Shneidermari7]] suggests, however, replacing the term “user friendly” by

some clearer and more measurable human-factor goals:

1. Time to learn- minimizing the amount of time necessary to learn to use the system.

2. Speed of performance reducing the amount of time necessary to perform a task with the

system.
3. Rate of errors by users minimizing the rate of errors when performing tasks.

4. Retention over time improving learning, so that users still remember how to use the system

after a long time without operating it.

5. Subjective satisfaction increasing user’s satisfaction with the system.

These goals can be achieved by adopting principles that have been successfully applied in many

systems:

1. Implementing consistent and compatible ways for the user to enter data into the system and

for the system to display data.
2. Allowing frequent users to use shortcuts to speed up their main actions.

3. Reducing theshort-term memory logdhat is the amount of information that the users have
to remember when performing a task with the system. This can be done by adding extra

information to the interface in order to help the users.

4. Offering informative feedback for the users’ actions.



2.1 Basic Concepts 18

5. Preventing the users making serious errors or helping them to correct the problem without

having to redo the entire work.
6. Permitting easy reversal of actions.

There are several types of systems regarding interaction styles. Shneidéifipdigcusses
some examples of styles: menu selection, form filling, command-language based approaches, nat-
ural language and direct manipulation. Here we focus on direct manipulation.

Direct manipulation implements a visual representation of the problem to be solved by the user,
so that he or she can perform tasks by directly manipulating objects. The main features of this
approach are: (1) a continuous representation of the objects and actions of interest; and (2) the use
of physical actions such as clicking on buttons and dragging and dropping objects on the screen,
instead of using complex syntax commands. Furthermore, direct manipulation allows incremental
reversible operations that have an immediate visible effect on the object of interest. Examples of
Direct-Manipulation systems include text editors, electronic spreadsheets, computer-aided design
(CAD) systems, games and geographic information systems.

A benefit in using direct manipulation pointed out by Shneiderman is that novice users can learn
basic functions quickly by playing with the system, or through a demonstration by a more experi-
enced user. Intermittent and frequent users also benefit from the approach as it makes operational
concepts easy to remember and allows fast execution of tasks. Moreover, users receive immedi-
ate feedback of their actions, and can change the direction of their activity if these results are not
positive.

There are, however, problems with the direct manipulation approach, which are related to the

use of a visual representation:

e The representation may be too large and take more than the visible screen space to be properly

displayed. Therefore, repetitive and annoying scrolling of the visualization may be necessary.

e The visual representation may be meaningful for the designer of the system, but not to the

final user.

e The representation may also be misleading; for example, the user may understand its general

meaning, but may incorrectly interpret how to interact with it.

e Direct interaction with the visual representation may not be as efficient as typing a command

for some particular problems.
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Despite these problems, direct manipulation still appears as a more natural and easy-to-remember
interaction style than other approaches such as menu selection and command typing. This is the
case for most of the interactive systems discussed in the next sections. Direct manipulation can also
be combined with other approaches when good visualizations for some objects of interest cannot
be found.

All interactive systems involve tasks that must be performed by the user, as well as tasks that are
to be executed by the computer. Animportant issue for the designer of such systems is to find a good
balance between automation and human control. Shneiderman recommends simplifying the user’s
role by eliminating human action when no judgment is required, and avoiding repetitive, tedious,
and error-prone tasks. Instead, the user should concentrate on creative tasks, critical decisions,
strategic planning, and on coping with unexpected situations. The computer, on the other hand,
should be used to manipulate large volumes of data, to execute repetitive preprogrammed action
reliably, to monitor and control well pre-specified events, and to execute complex mathematical and
logical operations.

The design of an interactive system must be tested to verify whether it attends the human-factor
goals specified previously. The system can be tested not only after implementation, but also in
much earlier stages of its development in order to aid with the choice and validation of design
solutions. Tichy 184 comments that many Computer Science papers (including publications in
Software Engineering) have unsupported claims; he proposes that computer scientists should do
more experimentation.

Several approaches exist for evaluating a system; examples are pilot studies of design solutions
and rapid prototyping. System evaluation can be done through interviews and group discussions,
surveys, and controlled human experiments.

Evaluation based on human experiments follows methodologies from psychology. The basic
steps for this type of experiments involve stating a testable hypothesis, building a well controlled
setup, measuring the aspects of interest with a significant number of subjects, and analyzing the
results using statistics.

Sometimes large human experiments are not possible because the application depends on expert
domain knowledge, and expert users are unwilling or not available in a sufficient number. Nielsen
[144] suggests an evaluation technique for this situation cdldistic evaluation

Heuristic evaluation is a systematic inspection of a user interface design for usability problems.

The evaluation is performed by a small number of evaluators who examine the interface and try
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to identify good and bad aspects of it, according to a list of recognized usability principles. Each
individual evaluator inspects the interface separately; only after that are they allowed to communi-
cate and aggregate their findings. The best number of evaluators depends on the application, but
it has been recommended to use about five and at least three persons. An individual evaluation
section usually takes between one to two hours. The results of the examinations can be recorded
in written reports by each evaluator, or by an observer who is present in the sessions and annotates
the comments vocalized by the evaluators. The observer can also assist with the operation of the
system (this may be necessary when the system is not fully implemented, or when the interface is
too complex and the evaluator has no time to be trained to use it). Furthermore, the observer must
answer evaluators’ questions about the functioning of the system.

Some studies have shown that domain experts identify more usability problems than novice
users. Moreover, evaluators that are not only domain experts but are also experienced with the

evaluation of systems have provided much better feedback.

2.1.4 Information Visualization

Information Visualization is an emerging area that studies ways of amplifying cognition of ideas,
processes, and phenomena through visual representations. Techniques from this area can be used
either to communicate information or to create and discover it.

There are many techniques for Information Visualization and we do not intend to cover them
in this thesis. For a good survey of the field, we recommend the books ofefald [31] and
Spence174. We only illustrate a few approaches in order to show how broad and fascinating this
area is. Most information visualization techniques explore visual aspects such as dimensionality,
color, object size and shape, and animation or dynamic changes of visual representation. Some
ideas involve concepts of direct manipulation, where users can rotate, move or select objects on the
screen in order to gain a better understanding of a phenomenon or concept.

A typical example of dimensionality is a 3D visualization of a mathematical function based on
two variables (see Figui22). This visualization supports understanding of mathematical concepts
such as continuity and minimum value. The user may also change the view point in order to see
regions of the graphics that are currently occluded.

Color and other graphical properties such as size and shape can be employed to classify objects
and to emphasize information that requires immediate attention of the user. Eigusteows an

example where color is used to discriminate regions and periods of the year where bush fires are
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Figure 2.2: 3D plot of a mathematical function, created using MATLAB — Mathworks Inc.

more common in Australia.

Another interesting visualization technique is given by a simple combination of vertical lines
in a structure calle®arallel Coordinategsee illustration in Figur@.4). Parallel Coordinates are a
good approach for interactively searching for objects with many attributes.

These are just a few examples of techniques for Information Visualization. Another approach,
that is also very popular, consists of modeling the object or problem of interest as a graph, and then
producing a drawing of the graph. This approach has been studied extensively in an independent

area hamegraph Drawing We discuss Graph Drawing in more details in Chapter

2.2 Human Interaction in Related Areas

This section presents the breadth of activities in human-computer collaboration, by describing ex-
amples of its applications for three general areas.

We start with the area of Computer Aided Design, where we introduce categories of interactive
paradigms for graphical-object modeling. Examples of interactive systems that fall into some of
these categories are presented.

Next we describe systems that exploit human interaction in Information Retrieval. Users are al-

ready an essential element of information retrieval processes. We show, however, that user feedback
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vertical axis, so that aspects referring to the same car are connected by lines. The visualization was filtered
interactively for emphasizing characteristics of cars produced in Europe. (Picture obtained with the Java
Applet athttp://www.cs.uta.fi/"hs/pceCourtesy of Harri Siirtola.)
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can also be exploited to provide more effective search and filtering services.

Finally, we present an approach called “Mixed Initiatives”, that offers principles for combining
user actions with tasks performed by “intelligent agents”. This approach has been successfully
applied for the development of effective user interfaces.

The systems described in this section gives us an idea of how broad the field of human-computer
collaboration can be. The concepts and principles introduced are also useful, since they provide

directions for the development of interactive systems for combinatorial optimization.

2.2.1 Computer Aided Design

Kochhar, Marks and Friedelllll4] classify paradigms for graphical-object modeling into six cat-
egories. These categories represent different degrees of automation in which design decisions are
taken and implementation details for the design are defined. Such classification, even though pro-
posed for graphical modeling, is also useful in this thesis since it helps to distinguish between
several other types of interactive systems. The categories provided by Kattdiaranges from
completely manual to completely automated paradigms. In the latter cases, the degree of automa-
tion is more flexible, as the user can dynamically adjust the system to have a higher or lower control

of the design process. The categories of interactive paradigms are listed below:

1. Fully Manual — The user has control over the entire modeling process and is responsible for

all design decisions. The system implements support for mainly low-level operations.

2. Constraint-based — the modeling is based on constraint satisfaction with the system satisfying
constraints related to the domain knowledge of the application. The user is responsible for all
design decisions, but his or her actions are limited by the system so that constraints are not
violated. A typical example of the constraint-based paradigm is an application for interior
design: the user defines the layout of objects representing furniture by moving them around
on the screen; the user movements are, however, constrained by the system in order to prevent
overlapping of objects. The Constraint-based paradigm can be exploited in another way:
the system starts with little or no information about the design at all, and tries to satisfy
constraints that are entered incrementally by the user. The modeling task happens with the
user defining constraints that describe the characteristics of the design, while the system
produces a design solution that satisfies all user constraints. An example of such system is

described later in this section.



2.2 Human Interaction in Related Areas 24

3. Critic-Based — The design is still done manually by the user; however, the system helps the
modeling task by identifying portions of the graphical objects that may need improvement.
Critic agents are directly invoked by the user or can be automatically activated by the system

to provide criticisms about constraint violation or low-quality aspects of the current design.

4. Improver-Based — this is a step further to the critic-based paradigm. In this case, the system
is not only capable of identifying flaws in the user-generated design, but can also improve it.

An example of an improver-based system is described in this section.

5. Fully Automated — In a fully manual modeling, the system is responsible completely for the
overall design or for the details of the design solution. The user is in general passive in this

approach.

6. Cooperative CAD (CCAD) — This is new type of paradigm proposed by Kochar and others.

In a CCAD approach the user provides a partial design and lets the system create alternative
solutions for certain open portions of the design. The user can then browse the solutions,
and choose one that better matches his or her expectations. The design can be refined con-
tinuously by having the user perform manual adjustment of the computer-generated solution,
or running the system again to produce alternative solutions for other design aspects. The
CCAD paradigm allows a dynamic adjustment of the degree of automation, as the system
can be used in either a fully manual approach or a fully automated approach. An example of
the CCAD paradigm is thBesign Gallerymethodology, which is also described at the end

of this section.

Next, we present three examples of interactive systems and approaches that fit in the categories

above.

A Drawing Beautifier

Bolz [24] introduces éeautifierfor drawings that is integrated into a graphical editor. The beauti-

fier is an improver-based subsystem that implements an extensible knowledge base about graphical
problems. It inputs sketches produced by the user and solves problems such as gaps, oblique lines,
and misalignments. Figu&5illustrates the processing executed by the system described by Bolz.
Figure2.5a) is an initial drawing and Figur2 5b) is its improved version, after the beautification

process. The system offers several options to the user: the beautifier can be activated manually or
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Figure 2.5: The beautification of a drawing. Figure (a) is the initial drawing and (b) is the improved version
after the beautification. Courtesy of Dieter Bolz.

can be set to run automatically after a period of time. The user can undo and redo improvements
executed by the beautifier, as well as concentrate the beatification process on a particular region
of the drawing. Moreover, the user can set and adjust the parameters that control the beautifier
(for example, the maximal angle between two oblique lines that characterizes a graphical problem)
dynamically. If the user desires, he or she can request the system to automatically estimate the
parameters for the beautifier based on an analysis of the current drawing. The system is also ca-
pable of showing both the previous and the new drawing simultaneously in an overlapping way.

This visualization facilitates the changes made by the beautifier. A similar beautification system is

presented in194.

Constrained Graph Drawing Using Springs

Ryall, Marks and Shiebedp5 166 present an interactive constraint-based graph drawing system
calledGLIDE that uses force-directed placement based on the spring algo&ffimThe system

works as follows: a graph is modeled as an energy system composed of springs connecting every
pair of vertices; a method for iterative quadratic optimization is set to continuously compute a
layout that corresponds to a state of minimal energy. While the optimization method is running,
the user can adjust the drawing according to his or her desires by adding constraints to the model.
Constraints in this system are call@Fs(Visual Organization Featur@sThey include a variety of

layout criteria such as: showing two vertices close to each other, showing an edge as an orthogonal
line, constraining a group of vertices to have the same horizontal or vertical coordinate, etc. VOFs
are implemented within the system as extra springs that are added to the original energy model.

The system solves theses constraints by searching for a new state that minimizes the energy of
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Figure 2.6: GLIDE: an interactive constraint-based system for drawing graj#.[ Figure (a) is a snapshot
of the system with an initial graph drawing. Figure (b) shows the VOFs been applied to the drawing. Courtesy
of Joe Marks.

the entire set of springs (the original springs of the graph plus the constraint springs). The user
may move vertices manually during runtime to help the system to escape from configurations that
represent local minimal. Figuiz6 shows a graph drawing and VOF constraint&inlDE. VOFs

are represented by special graphical objects such as bars and circles on the screen.

Design Galleries

Marks et al. [129 introduceDesign Gallery an approach for designing computer graphics and
animations that follows the model of a CCAD system. The approach is based on a good balance
between design activities executed by the computer and the user. The computer is responsible for
two processedispersiorandarrangementlin the dispersion process, a spectrum of representative
design images or animations are automatically generated by varying a set of tuning parameters.
This can be very time consuming and is usually executed off-line. During the arrangement process,
the generated solutions via dispersion are organized according to some distance metric, and are
presented to the user in the form of a graphical gallery. Figufshows two examples of Design
Gallery interfaces — for light selection and placement, and for designing animations of a particle
system. The interfaces display thumbnails of several design solutions obtained by the dispersion
process. The thumbnails are arranged so that solutions with similar properties are shown close to
each other in the gallery as much as possible. Large views of the solutions can be obtained by
clicking on them. The task performed by the user in this approach is simplified to focusing the
parameters for exploration, and choosing the solutions from the gallery that they like most. Design

Gallery was also applied to the problem of drawing general grafjhEigure2.8 shows a snapshot
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Figure 2.7: Design Gallery interfaces for (a) light selection and placement and for (b) particles system ani-
mation [L29. Courtesy of Joe Marks.

Figure 2.8: SMILE: a Design Gallery system for Graph Drawing.[Courtesy of Joe Marks.

of SMILE, a Design Gallery system for Graph Drawing.

In the following sections we present examples of interactive systems and approaches to other
problems. Some of the examples can be classified as belonging to one of the categories described
previously. However, most commonly they will share attributes of two or more categories.

Not all configurations of interactive systems, however, are relevant to this thesis. In the informa-
tive article “Machines that learn from hints3]|, for example, Abu-Mostafa describes applications
of neural networks to real-world problems. The term “hints” is used to refer to representative input
data that is chosen by the user in order to train a neural network. In another article, “Exploring
component-based representations — the secret of creativity by evolutignBlentley shows how
computational evolution can be used to generate creative designs for problems that appear in Ar-

chitecture and Engineering. The approach consists of having the user define the basic rules and
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properties that describe a physical object; an evolutionary algorithm is then used to build the object
by exploring alternative design solutions. An example is given where a system creates paper objects
that fall as slowly as possible. Even though interesting, both approaches are usually based on a se-
guential process, where human interaction happens only in the initial stage for setting up the system
and or for inputting data. After that, the system runs automatically, without human interference for

a long period of time. Such systems are not within the scope of this thesis

2.2.2 Systems for Information Retrieval

Paraphrasing Ingwersefd]: " Information Retrievatovers problems relating to the effective stor-
age, access, and searching of information required by individuals”. In Information Retrieval ap-
plications, a system usually has to recover all relevant information from a database that matches
a query defined by a user. This is necessary for example when searching books and magazines in
libraries, and for finding material on the Internet using Web search engines. Human interaction
is an essential part of the process of retrieving information. Interaction allows the user to review
the search process in order to reduce the number of retrieved documents, or to include information
that is relevant but that was not covered by the initial query. Human interaction in this domain can
be done using a few techniques such as defining a list of keywords for the search, and possibly
combining keywords using boolean rules. The search mechanisms may retrieve all information that
matches exactly the user query, or the best-matching information. The latter approach is considered
to be more effective. Another form of interaction that has been shown to be effecRedegance
Feedback In this approach the user marks some documents as being relevant; the system then ex-
pands the query using this information. The relevance feedback is given either explicitly — with the
user directly marking the documents— or implicitly — with the system assuming relevance based on
some operations done by the users such as viewing the whole document or printing it. The expan-
sion of the query can also be done automatically or manually. In an automatic approach the system
includes (or removes) keywords from the query based on the content of the relevant documents. In
a manual process, keywords recovered from the relevant documents are presented to the user, who
decide whether they should be included in the query.

Koenemann and BelkirOp] have done research to determine how a relevance feedback com-

ponent impacts the information seeking behavior and effectiveness of novice searchers in an in-

%Bentley also refers to some interactive systems where humans guide the evolutionary process by playing the role of
a fitness function. This approach is discussed in Se&idri
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teractive environment. They developed four versions of an interactive system where users have a
gradually increasing control of a relevant feedback tool. In the simplest version of the system, users
can only perform searches with keywords; no relevance feedback is available. In the most complex
version, the users can select some documents as relevant and decide as to how these documents
should affect the query for the next search. Experiments with the systems showed that users clearly
benefited from the opportunity to revise queries in an interactive process. Moreover, users in the
most interactive version of the system need fewer iterations to achieve results comparable to, or
better than the other less interactive conditions. These conclusions suggested that interfaces for
Information Retrieval should be designed to support interactive collaboration between the users and
search engines for formulation and reformulation of search queries.

Another interactive problem that comes from a subarea of Information Retrieval is talled
formation Filtering which also deals with the selection of information that matches some criteria
specified by the user. Information filtering is necessary, for example, for detecting important incom-
ing messages that should be seen immediately by the readers or, on the other extreme, for filtering
and deleting undesirable e-mails such as spam and hoaxes. Human interaction in filtering systems
borrow the same technigues from Information Retrieval. Basically, the users can specify keywords
and rules that describe the characteristics of messages expected to be filtered. Another interaction
is to have the users rating a few messages, and let the system try to predict the rate of every unread
article by comparing them with the rated samples.

Kilanderet al. [106 investigated techniques for filtering electronic messages in a project called
IntFilter. The project was restricted to deal with messages from the Internet Usenet News, and
involved the development of several prototype systems for testing filtering techniques. Their last
prototype, called PEFNARrivate Filtering News Agetallowed users to label messages that they
considered relevant. The labels were names describing user-defined categories. After an initial
labeling, the filter in PEFNA measured the distance between each unread article and the categories,
by comparing words in the article with the content of the labeled messages. These measurements
were then used to sort the articles, so that the readers could visualize which ones are more related to
the defined categories (such articles would appear at the top of a sorted list for a chosen category).

The IntFilter project was discontinued in 1997 without the implementation of many planned
features. However, Kilander and the other researches presented in their final work 1€&gprt [

a few ideas that emerged from the experiments with the prototype systems. They realized that

making automatic filters to match the human knowledge in textual analysis is quite difficult. Natural
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Language is complex and a simple word comparison (which does not consider the semantic of
the text) is not capable of correctly classifying all articles. On the other hand, the researchers
perceived that ordinary people are good at making intuitive decisions based on whatever information
is available. They then suggested that computer power and human skill should be exploited in
a more appropriated way. Rather than having the system automatically delete messages that are
considered irrelevant by the filter or perform actions based on a possibly important message, the
users should still be responsible for these decisions. The roles of the system should be to sort
and display information about the messages, in order to provide the users with sufficient clues to
support their decision-making process. As a conclusion, Kilander and his colleagues proposed
that new visualizations should be investigated in future research. The aim would be to identify
good visualizations, which display the main properties of categories of texts and help readers to

distinguish between them.

2.2.3 Mixed Initiative Systems

The Mixed-Initiativeapproach 90] combines the capabilities of several agents so that each agent
can contribute with the task that it performs best to solving a problem. It is possible to have agents
consisting only of automated processes. However, the usual setup is a combination of intelligent
automated services provided by computer agents with direct manipulation done by human agents.
The main characteristic of Mixed Initiative is that tinétiative (that is, the control of the interaction)
changes between agents over time; while an agent is having has the initiative, the others assist
it. The agents may also work independently and assist each other when asked. Moreover, the
agents may dynamically adjust their interaction style and roles when necessary, to best address the
problem. The interaction between agents is described as a dialogue. Natural language dialogs are
recommended when one of the agents is a human.

Mixed Initiative interaction has been applied to planning and scheduling prob&h& 173.

Horvitz [94] presents principles for effective integration of automated services with direct ma-

nipulation interfaces in Mixed-Initiative systems. Some of these principles are:
¢ Providing automated services that effectively contribute to achieve the user’s goals.
e Considering uncertainty about the user’s goals and exploiting it.

e Employing dialog to resolve key uncertainties.



2.3 Interactive Optimization 31

¢ Considering the cost and benefits of performing an automated action based on the status of

the user’s attention, and deciding about the best time to execute the action.
¢ Allowing the user to directly invoke and terminate an automatic action.

¢ Including automatic tools that can be used by the user to refine automatically-generated re-

sults.
e Maintaining working memory of recent interactions.

e Allowing the system to continuously improve its effectiveness by observing the user and

learning the user’s goals and needs.

An example of a Mixed-Initiative interface is the LookOut proje@d][ which implements
automated scheduling services on Microsoft Outlook. LookOut offers semi-automatic services that
help to create appointments based on email messages. The system parses an email message and
identifies patterns that suggest important events. Calendar appointments are then automatically
proposed for these events, according to an estimation about the users goals and needs. The system
learns by working with the users, so that the type of messages that are filtered and the level of
automation can be dynamically adjusted. A strong emphasis is put on a natural dialog between
the user and the system, which occurs via dialog boxes with textual information, a graphical agent,

voice messages and speech recognition.

2.3 Interactive Optimization

The interactive systems and approaches described in the previous section deal with problems in
which combinatorial optimization processes could be present, but they were not the main focus
of attention. In the present section, we investigate approaches which explicitly combine human
interaction with optimization algorithms in order to solve combinatorial optimization problems.
Several examples of interactive systems for combinatorial optimization are presented.

We first describe some “old” systems — from 1988 and 1995 — that already indicated that
human-computer interaction could be a promising way to address the difficulties of real-world op-
timization processes.

Arnold and Scott9] presented in 1988 an interactive maze router for a VLSI layout editor. The

router allowsgraphical hintsspecified by the users. Two types of hints are availatfdacesand
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magnets Fences are boundary areas of the layout that cannot be crossed. They designate regions
inside which a route has to stay or define areas that must not be invaded. Magnets are objects that
attract routes. Human-computer collaboration in this system happens as follows: the user specifies
hints to suggest a path to the router. The system then automatically generates a path with minimum
length that does not cross any fence and passes as near to the magnets as possible. Since fences
restrict the possibilities of routing the path, one of its side-effects is to reduce processing time
necessary to compute a high quality solution.

Bachmann](] and Koltze [L15 designed interactive systems for scheduling city services in the
German city of Passau. These systems implement algorithms for testing the feasibility of interactive
user decisions and computing assignments by a weighted greedy heuristic on a selected portion of
the data. The user interacts with the systems by selecting a subset of the not yet scheduled data for
optimization, and making assignments by hand. The user’s assignments receive highest priority and
are not overruled or undone by any algorithm.

One of the systems was used by Professor Franz J. Brander#&jirgp [reduce the number
of bus drivers needed. The schedules produced interactively were better than previous handmade
assignments and better than results obtained by fully automatic algorithms.

It is possible, even probable, that other similar systems were developed (and continue to be
designed) in-house by some industries. Unfortunately, it seems that there was no interest in gen-
eralizing the main concepts in those applications. In fact, only recently — in the last five years —
the concepts of human-computer interaction for optimization problems have been investigated by
researchers in a systematic way. Many studies have been done in parallel with our User Hints re-
search by independent groups. These studies revive familiar terms such as “human-in-the-loop”
and “user control”, or propose new expressions, such as “human guidance”, to describe the role that
a user can play in an interactive environment. Despite the differences in terminology, they have
the common aim of providing a more systematic way for integrating human skills with automatic
methods in combinatorial optimization processes; our approach has the same goal.

Next we describe examples of related studies. They share many features with our User Hints

framework.

2.3.1 Interactive Evolutionary Approaches

Interactive optimization using evolutionary algorithms (such as Genetic Algorithms) has been in-

vestigated recently. The most common approach is to have the user performing the role of a fithess
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Figure 2.9: Interactive Evolutionary Computation where the user performs the fitness function.

function. This is illustrated in Figur2.9.

Rosete-Sarezet al. [163], Jacobsend9], and Barbosat al. [12] present systems for drawing
graphs that learn the user’'s aesthetic criteria. These systems use genetic algorithms to generate
a population of drawings based on a dynamic multi-objective fitness function. Aesthetic criteria
for graph drawing can be highly subjective and difficult for the user to describe precishlyy
solution for such a situation is to allow the user to interact with the genetic algorithm in order to tune
the fitness function in an intuitive way. Instead of applying the genetic algorithm to a specific task,
the user only indicates whether it is on the right path by providing an additional evaluation of the
computer-generated drawings. The system described by Jacobsen, for example, tries to minimize a
weighted function of seven aesthetic criteria: showing few edge crossings, presenting high angular
resolution between lines, and displaying as many symmetries as possible (these aesthetic criteria
are common in many approaches for drawing gragl8.[ The genetic algorithm runs for a small
number of iterations and gets feedback from the user. Basically, it displays the best eight drawings
currently produced — one drawing for each one of the seven aesthetic criteria, and the best drawing
according to the total weighted function—, and the user provides scores between 0 to 9 for each
drawing. The system then uses the scores to adjust the importance of the aesthetic criteria in the
weighted fitness function. For instance, giving high scores to drawings with few edge crossings
increases the weight of the edge crossing criterion in the fitness function. The process repeats until
the genetic algorithm produces a drawing whose quality matches the user’s expectations. Note that
the main goal is to create a desirable drawing, rather than learning a general fithess function that can

be employed for new graph drawing problems. The fithess function computed during the interactive
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process may or not be suitable for other graphs

One advantage in using genetic algorithms for interactive optimization is that it naturally pro-
duces several alternative solutions for evaluation. Moreover, genetic algorithms are flexible in
handling a considerable number of different objectives and constraints. A survey of interactive

evolutionary algorithms that follow the approach described above is presented by Te8@gi [

2.3.2 Haptic Hints

Bayazitet al. [13, 14] present an interactive framework for motion planning that aggregates el-
ements of human-computer collaboration, haptic devices and visual representations. The general
motion planning problem consists of finding a sequence of configurations — that we refer here to
as apath — that takes an object form an initial state (or locatiep)}o a final state (or location)
sy, while avoiding collision with obstacles. The object can be any element such as a robot or a
robot arm. The problem is complex when there is a large number of configurations to explore, and
when the path depends on some ‘critical’ configurations that are difficult to find. On the other hand,
solutions for these cases may be intuitive for a user given that a visual representation is provided.

The framework exploits the user’s knowledge by displaying a 3D representation of the object
and the environment in which it is inserted. The user can manually move the object by using a
PHANTOM haptic device 131]. Force feedback is employed to indicate collision between the
object and obstacles.

The role of the user in the framework is to provide ‘haptic hints’, that is, a complete path
or partial paths for critical situations, by using the haptic device and the 3D representation. The
paths may contain collision, however, they describe an approximate solution for the problem. The
computer’'s role is to take the user-created paths and to connect and improve them in order to produce
a complete collision-free path.

Figures2.1Q(@) and (b) present examples of motion planning problems investigated by Amato
et al. Figure2.1Qb) is theflangeproblem, in which the aim is to insert a curved pipe into a circular

opening of a fixed object. The picture shows a configuration extracted from a user-generated path.

3Mendonca 40] investigates learning a fithess function and some control parameters of a Simulated Annealing for
future use. The learning process happens by having the user improve a drawing and inputting it to a general Simulated
Annealing; the general Simulated Annealing extracts the quality attributes of the drawing and uses them for adjusting a
weighted objective function and for tuning the control parameters. Later the user can call another Simulated Annealing
that employs the learned elements for improving a handmade drawing. M&8pfesents a more elaborate learning
process that applies genetic programming for evolving complex objective functions; this approach is based on samples
of good and bad drawings previously entered by the user, and is much closer to an automatic model than to an interactive
approach.
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(b)

Figure 2.10: Examples of problems for the Haptic Hints framework. Tlamgeproblem (a) and thalpha
puzzleproblem (b) from L3]. Courtesy of Nancy Amato and Osman Bayazit.

In the configuration the pipe collides with the rectangular object; however, the system can improve
this solution by pushing the pipe down. Fig@d(a) is a more difficult problem — thedpha puzzle
problem — where the two twisted tubes have to be separated (one tube is fixed). The figure shows a
configuration with a narrow passage found by the system by improving a user-generated solution.
Experiments with the framework showed that haptic hints allowed more complex problems to be
solved and in a much faster way than could be done by a fully automatic motion planning method.
The Haptic Hints framework was designed for motion planning problems that involve a 3D
modeling of the environment. We believe that the framework could possibly be extended to deal
with problems on a 2D representation whose solutions can be represented by a path. The haptic
device may be useful to provide a sense of constraint violation as feedback to the user actions. Note
that the work of Amato has similarities with the problem treated by Arnold and Scott in their maze
router for VLSI layout (discussed at the beginning of Secd). Despite some differences, both
approaches deal with the problem of computing a path and use interactive techniques to suggest an

approximate path to an automatic method.

2.3.3 Human-Guided Search

A general approach for human interaction is the cooperative paradigtumbBin-Guided Search
(HuGS) B, 110 170Q. This paradigm is quite similar to our User Hints framework, and was devel-
oped about the same time. We describe it in detail.

The first version of HUGS was calldduman-Guided Simple Sear¢hr HUGSS) and was in-
troduced by Andersoet al. [8]. It was considered the first appearance of a general interactive

approach for solving optimization problems that aggregates many ideas simultaneously such as
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having the human perform an active role, focus of optimization methods, manual changes, and con-
trolling of the execution time of a search method. The HUGSS paradigm divided the optimization
process into two main subtasks carried out by different entities. The computer was responsible for
finding local minima using a simple Hill Climbing search, while the user worked on escaping from
local minima and leading the search towards better solutions. The approach was successfully ap-
plied to thecapacitated-vehicle-routing-with-time-windoWSVRTW) problem. In simple terms,

this problem consists of defining routes that leave from a central depot, pass by customers at fixed
geographical locations and return to the origin point. Each route is assigned to a truck; moreover,
each customer has to be served by exactly one truck, and the service has to be executed within a
time window. The optimization problem is to compute the minimum number of routes that serve
all customers according to their time constraints, and present minimum total length. Anderson and
others developed a system for the CVRTW problem where the user can perform three main interac-
tive actions: manually changing an existing solution; focusing two Hill Climbing algorithms (based
on exhaustive search) on a particular area of the solution; and reverting to an earlier solution. The
focus of action consists of setting search priorities for each customer and/or defining how deeply the
automatic search should be executed. Three levels of priority — low, medium and high — are defined,
so that only high-priority customers can be reassigned by the search algorithms to a different route,
and this movement has to be done to routes that have no low-priority customers. A visualization
of the solution under improvement provides immediate feedback to the user. Pictlishows a
snapshot of the system.

Human experiments with the interactive system were carried out and showed that human guid-
ance using simple local-improvement methods could provide much better solutions than an un-
guided search. Moreover, the results were comparable to the ones produced by state-of-the-art
methods for the CVRTW problem. Another advantage that was realized was that their interactive
approach could be used to manage infeasible instances of the problem quite well, without need-
ing to change the algorithms implemented in the system. The experiments involved a special table
with a large screen area. This table and the ones that we built for our project are described in the
AppendixA.

The HUGSS paradigm was applied to other optimization problems, such as Job Shop scheduling
and Graph Patrtitioning, with the development of interactive systems. For the Graph Partitioning

problent, for example, a system was implemented where users could help automatic methods to

A definition of the Graph Partitioning (or Graph Clustering) problem is given in Chdpter
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Figure 2.11: The HuGSS system for the Capacitated-Vehicle-Routing-with-Time-Windows protdem [
Courtesy of Joe Marks.

improve graph partitioning solution$24]. Among the interactive actions, the users could manually
move vertices between partitions, choose an appropriate partitioning method to run, and focus the
method on a portion of the graph.

A more detailed investigation of the HUGSS paradigm was done later for the CVRTW problem,
where the researchers analyzed several aspects regarding human-computer collab@thtiohd
investigation showed that the focus mechanism did contribute to improving the quality of the so-
lutions. It was also noted that users had different strategies for working with the system. This
suggested that using a collaborative approach, involving a group of people, could lead to better
results. Two other interesting findings of the research were that users could focus the search on
effectively promising regions of the problem, and could stop the execution of search algorithms
when no significant improvement could be obtained.

In 2002, the original HUGSS paradigm was extended by Kaal. [109 to include a tabu-
search method. Experiments were conducted for four optimization problems, to know: (1) the
edge-crossing minimization problem for drawing layered graphs, (2) a variant of the TSP problem
where there is no requirement to visit every location, (3) a simplified version of the protein-folding
problem, and (4) a Jobshop scheduling problem. Experiments using the paradigm demonstrated
that a human-guided tabu search could produce better results than an unguided version of the same

method (with the tabu search running on the entire problem for a considerable amount of time with-
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out human interference). The experiments also showed that the guided tabu search outperformed
the simple guided Hill Climbing methods (based on an exhaustive search) used in the first HUGSS
paradigm.

Since the results with the tabu search were promising, the extended approach was renamed
Human-Guided Search framework (HUG$1{] — without the term “Simple”, which referred to a
simple Hill Climbing search. A toolkit for using HUGS for other optimization problems is presented
in[110.

The new HuGS framework includes the original Hill Climbing methods and the tabu search.

The main interactive actions that can be performed by the users are:

e Manual changes of the current solution.
¢ Invoking, monitoring, and halting a search for a better solution.

e Focusing the search by defining three levels of mobility (low, medium and high) for the
elements of the problem. The search is aimed to change the attributes of high-mobility ele-
ments; medium-mobility elements can only be changed to service changes of high-mobility

ones; low-mobility elements are never modified.

e Reverting to a previous or pre-computed solution.

2.3.4 Other Approaches

In this section we present a few other examples of interactive approaches. They are restricted to
more specific problem domains.

Louis and Tang 127 present an interactive divide-and-conquer approach for the Traveling
Salesman Problem using a genetic algorithm. In their approach, d@kedinteractive Genetic
Algorithm), the user divides the cities of a TSP into smaller disjoint clusters. This operation is
executed visually with a graphical interface, as shown in Figut&a). The system then considers
each cluster a separate TSP problem, and solves it independently by running a genetic algorithm.
The solutions produced for the independent TSPs — that is, a tour for each cluster — are displayed
on the screen (see FigukelAb)). Finally, the user combines the sub-tours in order to create a
solution for the entire set of cities. The combination can be performed either manually or by a
semi-automatic process. In the manual approach, the user combines tours directly by connecting

or disconnecting cities. In the semi-automatic process, the user selects a promising group of cities
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Figure 2.12: The Interactive Genetic Algorithm (IGA) approach?[]: (a) the user divides the cities into
clusters; (b) sub-tours are computed for all clusters independently by using a genetic algorithm, and (c) the
user combines the sub-tours to produce a global TSP solution.

belonging to two adjacent tours; the system then runs an exhaustive search on the chosen cities
for finding the best way of reconnecting these elements, so that the length of the combined tour
is minimized. An example of combined tour is presented in Figuiec). The IGA approach
was compared against the same genetic algorithm running automatically on the whole set of cities.
Experiments with benchmark data showed that the IGA could produce better tours for medium and
large problem instances, and that it needed much less processing time to find good solutions for
the largest problems. Louis and Tang suggest that their approach can be applied to other visually
decomposable problems, and can use other types of optimization methods.

Pu and Lalannel22 150, 151, 157 investigate the use of interactive algorithm visualizations
for solving design problems, mostly for processes that can be represented by constraint satisfaction
problems. They developed a number of visualizations that provide the user with an impression of
the complexity of the space of solutions. The visualizations also help to identify the search strategy
employed by different constraint satisfaction algorithms. An example visualization presented by

Pu and Lalanne is th&aleidoscopeview, illustrated in Figure2.13 This visualization shows
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Figure 2.13: The Kaleidoscope Visualizatioi22.

the internal state of a search algorithm by using color patterns. The whole space of solutions is
displayed as a circle, composed of concentric rings. Each ring is associated with a variable. A
sector of a ring represents an assignment of a value to a variable. If the assignment does not
violate any constraint, then the sector is painted in black; otherwise, it is shown with a specific
color related to the violated constraint (in Figuzel3 there are three variables, to x3, and

three constraintsgl, ¢2 and ¢3; each constraint has a different color). The circle is gradually
constructed, by having a search algorithm defining assignments for the values and evaluating the
satisfaction of the constraints. If an assignment violates a constraint, then the search automatically
discards this path and tries another solution. This is shown by an incomplete section that only
has some inner rings painted. A continuous sequence of black sectors from the inner ring to the
outer ring represents a feasible solution. Several aspects of the problem can be discovered with the
Kaleidoscope visualization. The user can see, for example, whether there are many or few feasible
solutions, whether the search concentrates on a region of the space or is well spread, and whether
there is a constraint that is more difficult to satisfy than the others. Different search algorithms
are expected to present different visual patterns. Based on visualizations such as this, the user
can choose the best algorithm for a particular situation, or change the problem dynamically (for
example, removing or relaxing a constraint), so that a good design solution is found.

The list of domain specific interactive approaches described above is not exhaustive. Other ex-
amples include timetabling using constraint logic programm@y§2, 139, simulation of physical
processeslo(, and model checking in specific logicg]].

Katchabawet al. [104, 119 present an approach that is not closely related, but needs to be
mentioned here. The aim of the approach is not to solve an optimization problem in an explicit

and intensive way, but rather managing the allocation and usage of computational resources such
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as CPU power, memory, and disk and network bandwidths. The interesting point of the approach is
that it uses the term “user hints” for describing the users’s interests and activities in a multi-tasking
environment. These user hints can be a variety of interactive actions such as minimizing, restoring,
covering and uncovering windows. An architecture is presented for collecting user hints and using
them to reallocate computational resources. For instance, if the user covers a window with another
program window, then the system may detect this operation and automatically reduce the number
of CPU cycles allocated to the former application (if it is not a critical process). As a consequence,

the window that has the immediate focus of attention of the user receives a higher priority.

2.4 Summary of Human-Computer Collaboration

All systems and general approaches described in the previous sections implement concepts of
human-computer collaboration. They divide a problem into subtasks and responsibilities that are
assigned to humans and to computers. The success of these approaches hinges exactly on the right
choice of which tasks and roles are more suitable for humans, and which ones are better performed
by automatic processes.

The tasks usually assigned to computers are:

e computing an initial solution of good quality to a problem. This is useful for well formulated

problems that involve many variables to be set and/or a large solution space.

e Generating several alternative solutions, in cases where there are a number of equivalent

possibilities and the system is not capable of effectively distinguishing between them.

e Improving an existing approximated solution, or completing partial solutions created by the

user.
e Adjusting an existing solution in order to satisfy new constraints added by the user.

e Restricting the user’s actions so that some important constraints already implemented in the

system are not violated.
e Evaluating the quality of user-generated solutions numerically.

¢ Providing (visual, haptic, etc.) feedback to the user. Feedback can be information about the
quality of the current solution, the state of the optimization process and evaluation of the

operations performed by the user.
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On the other hand, humans are commonly allocated to:

e Dynamically adding, removing and adjusting constraints and objectives related to the domain

of the problem.

e Evaluating the results produced by the system; for example, giving scores to computer-

generated solutions.
e Providing examples of good solutions, so that the system can learn from these samples.

e Creating an initial approximate solution by hand, or a partial solution that can be improved

by the system to produce a better one.

e Manually improving a solution. This is useful in cases where the improvement is intuitive to

the human, but cannot be done effectively by an automatic process.
e Tuning, activating and stopping an optimization method when necessary.

¢ Identifying critical parts of the problem to be solved, and focusing an optimization method

on these parts. This is a way of reducing the solution space to be explored by the method.

In fact, the need for having humans in the optimization process is due to a “gap” between what
current automatic methods can achieve and what we would like them to achieve. In the Interactive
Evolutionary systems presented in Sectb8.], for example, the gap is in the objective function,
which is not clearly defined priori. The task performed by the user aims to clarify this function
by scoring proposed solutions. In the vehicle-routing system using the HUGS paradigm, in contrast,
the objective function is well defined, but the optimization method merely seeks local optima and
does not find sufficiently good solutions. The user’s role in this case is to guide the method towards
a global minimum, through a better control of the optimization process. We can generalize these
“gaps” by saying that human-computer interaction in combinatorial optimization problems has two

major goals:

e Refining the optimization problemthat is, inserting domain knowledge into the system so
that it better represents the user’s interests or the real-world problem to be solved. This can
be done by adjusting the set of constraints and the objectives of the problem. Such adjust-
ment can be done directly (as in the Constrained Graph Drawing Using Springs presented

in Section2.2, where the user manually specifies layout constraints) or indirectly (as in the



2.4 Summary of Human-Computer Collaboration 43

User Interaction Goals in
Combinatorial Optimization Problems

y

Refining the Problem/ Helping Convergence to
Inserting Domain Knowledge Optimal Solutions
Adjusting Focusing the
constraints optimization
and the Evaluating o Creating an on critical
objective computer- N initial parts of the
function generated Providing L Choqsmg, approximated problem.
solutions. sample of Maﬁuélly .tun}ng, d solution or a
solutions. improving a activating an partial solution.
stopping an
pre-computed optimization
solution. method.

Figure 2.14: User actions classified according to the two major goals.

Interactive Evolutionary systems in Secti®:8.1, where the user provides scores or samples

of solutions, and the system uses this information to tune an objective function).

e Helping convergence to optimal solutionrdelping the system to obtain better solutions to
a given problem, and/or produce solutions of a high quality in much faster ways. This is
the goal of the Haptic Hints approach, the HUGS paradigm, and most of the other systems
presented in SectioR.3. Such a goal considers a fixed objective function and a fixed set of

constraints.

In Figure2.14, we present the relationship between the user actions and these two goals, as it
has been defined by the approaches described in this chapter.

Note that some interactive actions are helpful for both goals. Moreover, the figure does not
show all possible links: we know that some user actions linked only to one goal may also be useful
to the other goal in particular applications. For example, temporarily relaxing constraints can be
helpful to improve convergence to better solutions.

Another important element in interactive systems is the existence of visualization tools, which
must provide interactive facilities and visual feedback for the users. All systems studied in this

section make use of some sort of visualization tool.



CHAPTER 3

The User Hints Framework

This chapter presents our interactiyser Hints frameworkor Combinatorial Optimization Prob-
lems. The framework aims to achieve the two major interactive goals described in S&dfion
refining an optimization problem and improving convergence. This is achieved via a combina-
tion of features from Human-Computer Interaction, Combinatorial Optimization, and Information

Visualization.

3.1 The Elements of the Framework

Figure3.1shows a diagram of the User Hints framework. The framework involves nine elements:
(1) a user who is a domain expert, (2) a set of objectives (that is, objective functions) and (3) a set
of constraints that compose a combinatorial optimization problem, (4) a module with optimization
methods, (5) a solution that is currently being improved, calleadvitiking solution(this is simply
an assignment of values to the variables of the problem), (6) a quality function (not represented in
the picture) that measures the quality of a solution, (Best solution agerthat saves internally
the best working solution computed so far, (8) a visualization tool, and (9) a visualization created
by the visualization tool that provides feedback about the working solution and the state of the
optimizatiort. The connection between the elements of the framework is represented by arrows.
Dashed arrows indicate dependencies that we often consider implicitly in customized versions of
this diagram in the next chapters.

An optimization process using the User Hints framework consists of setting the objectives and
having the user interact with the elements of the framework in order to produce a solution of good

quality. More precisely, the optimization process works as follows:

INote that we use the term visualization to cover all kinds of perceptual feedback, including nonvisual kinds such as
sound and haptics.
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Figure 3.1: The User Hints framework.

(a) Aninitial working solution is automatically created, and the visualization tool is initialized to
provide a visualization of this solution. The best solution agent is also activated, and it saves

a copy of the initial solution as the best solution.

(b) The system then waits for an action of the user, who is the controller of the optimization.
The user can either interact with the visualization tool to choose a different visualization, or
give hintsto the optimization process. Hints are adjustments aiming to refine the problem
by inserting domain knowledge, to reduce the space of solutions to be explored, to escape
from local minima, or to immediately produce a better solution. Such hints may change the

working solution.

Any change of either the working solution, the constraints or the objectives automatically
triggers the visualization tool and the best solution agent. When triggered, the visualization
tool redraws the picture of the working solution. The best solution agent, on the other hand,
compares the quality of the working solution with the quality of the best solution (saved

internally), and updates the best solution if necessary.

The quality of a solution is determined by the quality function, which considers objectives
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and constraints of the problem.

Moreover, whenever the best solution is updated, the best solution agent triggers the visual-

ization tool to provide an immediate feedback to the user about this event.

(c) Atthe end of the optimization process, the best solution is considered the final solution of the

problem.

This process repeats until the user is happy with the result.

3.1.1 Types of Hints

We consider three main types of user hints:

¢ Adjustment of objectives and constrairtasers can change the objective function as well as
add new constraints or remove existing ones. This is useful for inserting domain knowledge

into the problem after starting the optimization process.

e Focus of an optimization methedthe idea is to focus the action of the optimization method
on particular areas of the problem that need major improvement. Focus is implemented by
allowing the users to select a subset of variables of the problem, and then running the opti-
mization method to change only this subset; the remaining variables are kept fixed. Since the
complexity of solving a sub-problem is in general smaller than that of the whole problem,

using this type of hint helps to reduce the solution space.

e Manual changes- all optimization aspects that are not covered by constraints and focus can
be managed by manual changes. This is useful, for example, when the user sees simple
modifications of the solution that can lead to a significant improvement in quality. Manual

change is allowed by directly altering the working solution.
Beside these types of hints, the user can also perform three other actions:

e Recovering the best solutienthe user calls the best solution agent to replace the working

solution with the best solution.

e Setting the best solutionathe user calls the best solution agent to save the working solution
as the best solution. The current best solution is replaced even if it has a higher quality than

the working solution.
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¢ Controlling the optimization modulethe user can control the optimization module by choos-
ing a different optimization method to be used, directly stopping the execution of an optimiza-

tion method that was left running, or adjusting some tuning parameters of the method.

The last three interactive actions are considered indirect types of hints, since they only effect
the optimization process when combined with the main types of hints.

Next we describe details of some of the elements of the User Hints framework.

3.1.2 Constraints and Feasibility

The framework can start with some basic constraints from the problem domain, and allow the user
to adjust the constraint set on the fly. The optimization methods and the user work to create a
solution that satisfies the constraints.

Two approaches exist for controlling the satisfaction of a constraint:

e Allowing infeasible solutions to be generated, which temporarily violates the constréiist
is useful, for example, when it is more natural to improve a solution by temporarily violating
some constraints than by working only on the feasible solution space. The user may create
an infeasible solution by performing manual changes of a feasible solution, or by adjusting
the constraint set. In the latter case, a new constraint added to the constraint set is violated by

the current working solution or by the best solution.

e Always satisfying the constrainin this case, user actions such as manual changes and con-
straint adjustments are not permitted if they imply infeasible solutions. Another possibility is
to allow such user operations, but immediately and automatically post-processing the work-

ing and the best solution to guarantee feasibility.

The best choice of the possibilities above depends on the optimization problem, the nature of

the constraint, and on the type of human interactions that is intended in the framework.
3.1.3 The Initial Solution
The initial solution can be created in one of the following ways:

e Using a simple algorithm to produce a trivial solution or a random solution, possibly an

infeasible one.
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¢ Using a good constructive method from the literature that provides an initial solution of high

quality.

e Creating a trivial or random solution, and automatically improving it by calling an optimiza-

tion method implemented in the framework.

e Recovering a pre-computed solution that has been saved.

3.1.4 Quality Function

The quality function computes the quality of a solution based mainly on the objectives of the prob-
lem. If infeasible solutions are allowed, then the quality function may also measure constraint

violation by assigning higher quality values to feasible solutions than to infeasible ones.

3.1.5 Optimization Methods
Any type of optimization method can be used in the framework. These include:

e Non-improvement methods — start with the constraints and the objectives of the problem,
and produce a solution. Examples are constructive methods such as some problem-specific

heuristics and greedy heuristics, and Integer Linear Programming (ILP) technigues.

e Improvement methods — input an initial solution, and improve it according to the set of con-
straints and objectives. Examples are some local-improvement meta-heuristics such as Hill

Climbing, Simulated Annealing, and Genetic Algorithms.

Ideally the optimization methods should compute solutions that optimize the quality function of
the framework. However, methods that implement simpler objective functions or consider a smaller
subset of the constraints may also be applied, when no better algorithm is available.

All optimization methods in the framework must be adapted to support focus. This means that
they will only change the values of variables that were selected by the user.

Moreover, the methods should allow a cyclic (iterative) improvement of the working solution.
Such a cycle is naturally obtained when using improvement methods. It can also occur by combin-
ing any method with the focus mechanism in order to change only a particular area of the solution.
Finally, the cycle may be formed by using the quality of the current working solution as a bound to
the quality of every new solution. This last option can be useful, for example, in branch-and-bound

algorithms for solving ILP problems.
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3.1.6 The Visualization Tool

The Visualization tool has two functions: providing feedback of the optimization process to the
user, and allowing the user to directly change the elements of the framework.

The first function is performed by offering:

¢ A picture of the working solution — the picture must emphasize the quality of this solution by
using different colors or shapes; this can present constraint violation and objectives that are

poorly achieved.

e Numerical information about the quality of the best solution and of the working solution, for

comparison.

¢ Indication that the optimization method is currently running. This can be done by showing a
progress bar, or by replacing the working solution with samples of the intermediate solutions

being produced by the method.

¢ Indication that the best solution was updated with a new working solution of better quality.

The second function of the visualization tool is concerned with supporting direct manipulation.
Instead of having the user changing the working solution or adjusting constraints via a complex
textual interface, the visualization tool must support direct manipulation of the visualization for
this ain?. Selection of variables for focusing, for instance, may be implemented by allowing the
user to click on graphical objects that represent these variables. Immediate feedback is necessary to
indicate that the user action was performed. For the focusing case, the visualization may respond
to user clicks by changing the color of the objects that were selected.

The user must also be able to interact with the visualization tool in order to change the visual-
ization (in case more than one visualization is available) or to adjust it, such as zooming in or out,
and hiding or showing elements of the picture.

Note that the visualization tool is a critical element of the framework, since the user identifies
guality aspects of the solution, and decides what action to perform next, based on the feedback that

he or she receives from this tool.

2This implies that the user interaction with the elements of the framework, represented by arrows leaving the user in
Figure3.1, occurs in fact through the visualization tool.
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3.1.7 Work Modes

The framework supports human-computer task division in a number of different work modes that

match the interaction paradigms presented in Se&idri:

¢ Fully manual optimization- the user creates a solution for the optimization problem by per-

forming only manual changes. The optimization methods are not executed.

e Fully automatic optimizationr- An optimization method is automatically activated by the
framework to improve the initial solution over a period of time. All variables of the problem
are selected, so that the method works on the entire solution. Optionally, the user can be

responsible for activating the method, but he or she does not perform any other task.

e Manual post-processing this is a step further from the fully automatic approach, where the

user improves the automatically-generated solution by performing manual changes on it.

¢ Improvement-based optimizatiefthis approach is the opposite of a manual-postprocessing.
Here, the user firstly produces a solution by hand, and then calls an optimization method to

improve the whole solution.

e Constraint-based optimization the user changes the constraint set, and calls the optimiza-
tion method to adjust the working solution in order to satisfy new constraints. A different
approach is to allow the users to perform only manual changes, but restricting their actions

so that a predefined set of constraints is not violated.

e Collaborative optimizationr- This integrates the possibilities described above plus all other
resources of the framework (such as the focus mechanism). The user can change a solution
manually, adjust the constraint set and the objectives, and choose, focus, execute and stop an
optimization method. The collaborative mode is characterized by having the user performing
direct changes of the solution or the problem together with executions of the optimization

methods.

These work modes are not defined explicitly in the framework; rather, they are general paradigms
that can be adopted intuitively by the user. We are, however, more interested in motivating the user
to adopt the collaborative mode, where a combination of human skills with computational process-

ing may provide better results.
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An interesting point to note here is that the framework always provides some help to the user,
independently of how he or she approaches the optimization. This help comes mainly in the form
of a continuous visualization of the state of the optimization process. Moreover, the best solution
agent helps the user by filtering, signalizing and saving the best solution generated so far, so that
the user can return to this solution if necessary.

Another point is that some elements of the framework have a high degree of autonomy and can
execute tasks in parallel with the user. These elements are shown by rounded boxes i.Eigure
For instance, it may be possible to have an optimization method improving a part of the working

solution, while the user is manually changing another part.

3.2 Comparison with Other Approaches

In this section we compare other approaches for interactive optimization presented in Ghapter
the User Hints framework.

Interactive Evolutionary Systenf8(, as introduced in Sectio8.3.1, share with the User
Hints framework the goal of refining the optimization problem. However, such systems define quite
a passive role for the user, who must provide inputs to the optimization method when requested. The
user does not have direct control of the constraints and objectives of the problem; rather, he or she
indirectly adjusts these elements by acting as a fithess function or by providing handmade sample
solutions. Moreover, little support exists for helping convergence; direct control of the execution of
the optimization methods is in general not considered important.

In Haptic Hints[13, 14], the user’s task is to help convergence. The user plays an active role
by creating an approximate or partial handmade solution, which is directly used by the system to
produce the final solution to the problem. These features are also included in the User Hints frame-
work®. The difference is that the Haptic Hints approach has been proposed for motion planning
problems, while our framework is for optimization problems in general. Haptic Hints also does
not offer a general focus mechanism; focus on a particular region of the problem is done indirectly

by providing approximate and partial paths. Furthermore, Haptic Hints puts emphasis on having

3Note that the concept of a partial solution can be modeled in our framework. One possibility is to define a solution
as consisting of two sets: a set of variables of the problem that were already assigned a value, and a set of variables that
have not yet been initialized. Constructive optimization methods could be used to move variables from the second to the
first set by assigning values to them. In this case, a precondition for feasibility of a solution could be to have all variables
assigned a value — that is, the second set would be empty. Another approach is to define a special value, so that variables
assigned to such value are considered not initialized. This second configuration is similar to the approach that we use in
the Chapter for selective labeling of point features in maps.
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the users interacting at the begin of the optimization process. The user does not interfere with the
improvement process of the handmade solutions and cannot add constraints during processing time.

Human-Guided SearcHuGS) [B] is quite close to our framework. It implements the same
basic principles of focus and control of the optimization method as in the User Hints framework.
However, there are some differences.

One difference is that HUGS offers a more refined version of the focus mechanism, based on
three levels (low, medium and high) of mobility for elements of the problem. On the other hand, we
establish only two conditions for focusing on variableslectedandunselecteaonditions, which
are equivalent in many cases to high and low mobilities, respectively.

HuGS also emphasizes the ability to return to previously computed solutions, saved in a history
list, as one of their main interactive resources. We implement a similar feature, but it is proposed
as an active agent that identifies and saves the best solution, allowing the user to recover or replace
it afterwards. The idea of an active agent that oversees all solutions produced by the user or the
optimization methods, and promptly feedbacks the user when there is an improvement of the best
solution is conceptually different from a passive history. A point to note is that, at the moment, our
agent saves only one solution; an extension for the agent is proposed in $6tbthis thesis.

The main difference between the HUGS and the User Hints framework, however, is that HUGS
aims to help convergence, while our framework is for both convergence and problem refinement
tasks. Also, early versions of HUGS used a simple Hill Climbing heuristic, and was extended later
to include tabu search. We have not restricted, in contrast, the type of algorithm that can be used.
In fact, we present interactive systems that implement problem-dependent heuristics, Hill Climbing
methods, Simulated Annealing, and Genetic Algorithms.

Despite the differences, all interactive approaches described above are relatively new, and are
currently evolving to incorporate new features. Undoubtedly they will share many successful ideas
in the future. The study of Interactive Optimization is only in its formative stage; the main contri-

bution of our research is to provide more experience to help consolidate the area.

Nomenclature

Note that the term “hints” has been used by a number of authors (in Haptic HB)t$4], in the
Maze router presented by Arnold and Scéit pnd in a resource management approach for multi-
tasking operating system&(Q4, 119). These hints have a common characteristic: they are inputs

that control the optimization process indirectly. In some cases, the hints are information obtained
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by the system in observing the user and trying to identify his or her intentions. In other situations,
hints are explicitly provided by the user, but they roughly approximate or give incomplete clues
about final solution to be produced.

In contrast to this kind of indirect action, the users of the systems described in this thesis directly
control the optimization process.

In the following chapters, we present approaches for specific optimization problems based on

the User Hints framework.



CHAPTER 4

User Hints for Graph Clustering

This chapter presents our first investigation of the User Hints framework. We apply the framework
for the Graph Clustering Problem, which is a NP-hard optimization problem that arises in many
applications. An interactive Graph Clustering prototype system based on user hints is described.

For being a preliminary study, the Graph Clustering case is quite simple and does not explore all
possibilities of the interactive framework. The prototype also lacks some major resources that would
improve its efficiency and effectiveness — it may not produce good clustering solutions even for
some simple graphs. Nevertheless, the study allowed us to identify promising interactive facilities
and paved the way for future applications of the User Hints framework. The main lessons we
learned are discussed here.

This chapter is organized as follows: Sectibd introduces the Graph Clustering problem;
Section4.2 presents the interactive framework for Graph Clustering based on user hints; Section
4.3 describes a prototype system developed for experimenting with the framework; finally, Section

4.4discusses the use of the system and the lessons we learned with it.

4.1 Graph Clustering

Graph clustering, also known as Graph Partitioning, aims to divide the set of vertices of a graph into
disjoint subsets (clusters or partitions) while minimizing the connection between vertices in distinct
sets and satisfying some constraints. Formally, a clustefinfa graphG = (N, E) (where N

is a set of weighted vertices arfd is a set of weighted edges) is a partition @finto disjoint
subsets (called clusterd), , Ns,...N. There are a number of clustering problems, each with the
following form: find a clusteringS of GG, subject to some constraints, such that a measure of the
intercluster edges (that is, edges v) with w € N;, v € Nj, i # j) is minimized. The variants of

the problem come from choosirig the constraints, and the measure of the intercluster edges. For
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example, a common variant is to fix the numbeof clusters and impose a “balance” on the size
of the clusters. This problem is callédway partitioning[69]. Whenk = 2, we have a special
case known abisectionor bipartitioning. Several other kind of constraints can be specified for the
problem, such as to limit the maximum weight of the vertices in each cluster.

Almost all variations of the graph clustering problem are NP-Hard (even the bisection case
[73)); therefore, heuristics are the most used methods for providing clustering solutions.

Graph Clustering has several applications. It is necessary, for example, in distributed and par-
allel processing12(q for dividing a large set of tasks into subsets so that each one can be allocated
to a different processor; here tasks are seen as vertices of a graph and the dependencies between
the tasks are modeled by edges; the aim is to assign tasks to each processor in order to achieve a
balanced load and to minimize the communication between pairs of processors.

Another application of clustering is in VLSI desighl{ a circuit is divided into blocks with few
connections between them via clustering methods, thus reducing the complexity of dealing with the
whole structure.

Finally, Graph Clustering is also important in Software Engineering, where it is used to divide
huge programs into packages with high internal “cohesion” , and with loose “coupling” with other
packages. In this application, Graph Clustering methods can be applied on the flow graph of the
program, on a call graph, on a control flow graph, or on any one of the many graphs used in
object-oriented design. Many clustering methods have been used for this purpose; see, for example,
[117, 157, 18€]. Graphs arising from legacy code are particularly interesting for clustering for two

main reasons:

e Program comprehensionHuman understanding of legacy software is a problem that has
become critical in recent years. A legacy system often consists of thousands of interdependent
functions, and the human must understand these dependency relations. Clustering reduces the
amount of information to be understood, and allows the human to think in terms of higher-

level architectural dependencies rather than at the function level.

e Re-factoring.Code that has been maintained, updated, adjusted and ported over a period of
several years has a tendency to lose the elegant structure that it once had. Clustering the code

units (terms, functions, or files) can suggest new structures for the code.

In general, clustering is important for all kinds of problems where either the size of the graph is

big and has to be reduced, or some inherent structure of the graph can be discovered by looking for
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coherent parts.
There are several methods for solving Graph Clustering problems. Some of the most popular

ones are:

e Meta-heuristics: these include greedy strategies (for example: Kerninghan-Lin algorithm
[109, Fiduccia-Mattheyses algorithn6§], and Sanchis’ algorithm169), Simulated An-
nealing LOQ, Tabu Searchl6(, and Genetic Algorithms30, 167, 193.

e Spectral partitioning: partitioning a graph according to the eigenvalues of the incidence ma-

trix can be very effective (a review of spectral partitioning algorithms is gives,i6J]).
¢ Flow methods: identify minimum “cuts” in the graph, on which a clustering can be based.

¢ Integer linear programming methods: it is fairly straightforward to encode the quality require-
ments and the constraints of a clustering problem in a linear fashion, and then use methods

from integer linear programming#§, 87].

4.2 An Interactive Framework for Graph Clustering

In the literature of Graph Clustering human interaction is not strongly integrated with automatic
clustering methods. In general, human interaction happens before running the methods — in order
to define a clustering problem— or after the execution — to refine the problem when it needs adjust-
ments. In the latter case, the method is usually re-executed on the modified problem to produce a
new clustering solution, and the previous solution is discarded.

In this section we present a flexible interactive framework where users incrementally refine
a graph clustering problem and improve an existing clustering solution. Note that most of the
clustering algorithms presented in Sectibfiare heuristics and, therefore, there is a place for users
to improve approximate solutions. At runtime, the users can visualize the current clustering and

re-execute a clustering algorithm. The users perform two tasks:

1. Insertion of domain knowledgéhe visualization of the current clustering may lead the user to
believe that, although it satisfies the current constraints and has a good value for the objective
function, it is not “right” in the domain context. The user must give the algorithm a hint to
move toward a solution that is correct in the domain context. As an example, suppose that

the vertices represent modules of a software system, and the edges represent data-sharing
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relationships between the modules. The user may know that two specific modules share data
in a way that is not captured by the formal graph model extracted from the source code, and
may use this knowledge by forcing these two specific vertices into the same module. As
another example, the user may see that the constraints on cluster size are too tight to result in

a clustering with good cohesion; in this case the user can relax the constraint.

2. Guidance of the searchhe user may see that the algorithm is spending a considerable amount
of time in small adjustments of a cluster with very poor cohesion, or that it is not improving
the clustering at all. In those cases, it is possible to perform many interactive actions in order

to help the algorithm to improve the clustering.
The user can do these tasks by giving hints to the system in two main ways:

e Adjusting constraints constraints are an essential part of clustering, as we saw in the defini-
tion of thek-way partitioning problem in the previous section. However, for strong user in-
volvement we need to allow not only the definition of constraints prior the clustering process,
but also allow dynamic adjustment of constraints at run-time (adding new constraints, remov-
ing old constraints, or changing the importance of a constraint). By changing the constraints
at run-time, the user can guide the algorithm to converge to a different solution. Simple ex-
amples of global constraints that can be specified are: minimum and maximum numbers of
clusters, bounds on the number of vertices in each cluster, and limits on the variation of the
clusters size. There can also be local constraints, for example: having two particular vertices

a andb always in the same cluster, or in different clusters.

¢ Direct manipulation-the user can directly operate on the clustering by destroying an existing
cluster or merging two clusters. Destroying a bad cluster and forcing the algorithm to re-

assign its vertices to other clusters is a way of moving out of a local minimum.

Another type of hint that is not so intuitive as the previous ones, but that can be helpful is
to choose a different clustering method. The user selects a more appropriate clustering algorithm
whenever the current method cannot improve the quality of the actual solution. In this case, the user
may even decide to run the algorithm on the whole clustering or focus it just on part of the clustering
solution that shows poor quality. Several algorithms may be available such as the ones presented

in Sectiond.1 Algorithms that work with a wide range of constraints and can support continuous
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improvement of a solution are, however, more suitable for the job. Meta-heuristic methods are
promising candidates.

Our User Hints framework for Graph Clustering follows the diagram in Figuigin the pre-
vious chapter. We assume that the user supplies hints through a graphical interface. The interface
has to be implemented in a way that it facilitates user interaction and provides a meaningful visual-
ization to the user.

The framework consists of six elements: a graplto be clustered, an objective functioh a
setC of constraints, a clusterin§ of GG, a vectorQ that measures the quality 6faccording toO
andC, and a visualizatior® of S. The dependence between these elements as well as the order in
which they are set are shown in Figutd. The framework involves three steps (also shown in the

figure):

1. Setup or adjustment stepthe user defines the graphand specifie®) andC. These ele-

ments can be adjusted later if necessary.

2. Clustering step- a clusteringS is produced (or improved, if it already exists) by invoking a
graph clustering algorithm. The algorithm aims to minimi2zeand to satisfyC'. After the

processing, the qualit§ of the clustering is computed.

3. Visualization step- a visualizationP of the clustering is then automatically created. The
visualization also uses the attributes of the veQdo highlight to what exten$ satisfies the

constraints and the objective function.

G 0O,C 1. Setup/adjustment
‘‘‘‘‘‘‘ v i

S N Q 2. Clustering
-------- 2

P 3. Visualization

Figure 4.1: The elements and the steps involved in the User Hints framework for Graph Clustering.

These steps are executed sequentially at the first time, so that all elements of the framework
are created. The user can then re-execute step 1 or 2, or review the whole processing in order to
improve the clustering. Note that this may be necessary if the initial clustering is not the global

optimum for the problem, or if it is not feasible (that is, it does not satisfy all constraint§.in
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It may also be the case that the user has specified the constraint set improperly and, therefore, the
clustering solution is not what he or she was expecting.

Human interaction, aiming to improve the clustering, can be done by adjustimgdirectly
changingS through the interface. Any modification of these elements fofzasd P to be recom-
puted to reflect the changes.

Note that some steps in the framework can be executed in parallel, as suggested irBskgtion
For example, the user can adjust the constraint set while the clustering algorithm is running; this

should alter the clustering computation instantly.

4.3 The ClusterHints System

In order to experiment with the framework we developed a system called ClusterHints (EFigure
shows a snapshot). The system implements some of the features described in the previous section.

Its main resources are:

e a graphical user interface for setting global constraints;

e two clustering algorithms, a Simulated Annealing and a stochastic Hill Climbing method,

that allow dynamic changes of the constraint set;

e avisualization tool that shows drawings and measures of the clustering solution.

The focus facility and the best solution agent were not implemented.

Next we explain details of the ClusterHints system.

Constraints

The system supports a $6t= (C1,Cy, ..., Cs) of five constraints. Eact;, 1 < i < 5, consists

of a pair(l;, w;) of numbers, wherg; is the value of the constraint, and represents its impor-

tance. The constraint importance is a real number between 0 and 1, with 1 representing the highest
importance, and 0 meaning that the constraint is not considered in the optimization. The yalues
1=1,2,...,5, depend on the meaning of the constraints, which are described as follpvesid

C5 define the minimum and the maximum numbers of clusters, respectively, to be produced during
the clustering processing;; andC} are limits on the minimum and maximum sizes of every cluster

(they impose an upper and lower bound on the number of vertices inside a clustet}; fordes
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Figure 4.2: The ClusterHints system for Graph Clustering.

a balance of the clusters’ sizes, by defining the size of the largest cluster divided by the size of the
smallest cluster to be smaller than a given factor (specified oyThe user can change the value

and the importance of the constraints through a panel in the interface.

Initial Clustering

The system automatically creates an initial clustershfpr a graphG specified by the user. The
initial clustering is a trivial solution that consists of one single cluster containing all vertices of the

graph. The quality and a visualization of the clustering are also automatically computed.

Quality of the Clustering

The quality of a clustering is a vectorQ(S) = (L(S), f1(S), f2(5), f3(S), fa(S), f5(S)), where
L(S) represents the objective function and gives the number of edges between vertices in distinct
clusters, and;(S), 1 < i < 5, are functions that measure the satisfaction of the constr@jnts
(l;,w;) € C. Letk be the number of clusters #, S = (N1, Na, ..., N), then the functiong; are

defined as:

e f1(S)=max(0,l; — k)



4.3 The ClusterHints System 61

o f2(S) =maz(0,k —ls)
o f3(5) = Zj:l,Q,‘..,k maz(0,l3 — |Nj|)

o fi(S) = Zj:l,Q,‘..,k maz (0, | N;| — l4)

=12,k ([N
o f5(5) = max(0, ;”;ijllj;(("]v;")) —1I5) * (1+ %), whereX andY are the numbers of

clusters with smallest and greatest size, respectively.

Instead of usingy directly to measure the quality of a clusterifg we compute a weighted
functione(S) involving the constraints and the objective function:
w; * fi(S)
€(S) = b+ O(S) + 25 s
whereb is a constant, sufficiently small for making the constraints always more important than the
objective functionO(S). The objective function in this case computes the number of intercluster
edges. The parameteks, fori = 1,2,...,5, are the largest values that can be defined0%).

Small values ot(S) are associated with high quality clusterings.

Executing a Clustering Algorithm

A panel of the graphical interface allows the user to start, pause, resume, and terminate a clustering
algorithm. The algorithm can be the Simulated Annealing and the Hill Climbing method. Both
algorithms work iteratively on the elements of the framework specified in the previous section.
They basically inputz, O, C, S and@, try several improvement steps, and updétand( if a

better clustering solution is found. The processing repeats for a fixed number of iterations, based
on the size of the graph. A progress bar indicates how much processing is left.

The code for a single iteration of the stochastic Hill Climbing algorithm is presented below:
1. 8« S;

2. n+—k;

3. Repeat: times:

a) ChangeS’ randomly;

b) If €(S") < €(S) thenS «— S’; else ife(S’) > €(S) then undo the previous change$f
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The parametek is the number of clusters ifi before executing the loop at line 2. A change
of S is made by transferring a group of vertices from one cluster to another randomly. The transfer
may also create a new cluster or delete an existing one.

The Simulated Annealing is similar to the Hill Climbing, except that it accepts worse solutions
during its internal loop. Nevertheless, the clusterihgg only updated if a better solution is com-
puted. The algorithm uses a varialilerepresenting an annealing temperature that decreases over
time by a rater. The initial value ofl” and the rate- are set when the user activates the Simulated

Annealing. Each iteration of the algorithm works as follows:

1. 5 S:

2. n+—k;

3. Repeat: times:
a) z — ¢(9);

b) ChangeS’ randomly;

c) If €(5") < ¢(S) thenS « S’; else ifrandom(0..1) > exp(—(e(S") — z)/T) then undo

the previous change of'.

4. T «—T/r;

Giving Hints

The user can use the control panel on the left-hand side of the screen in order to adjust the values
l; andw; for every constraint’; € C. Note that this is done in a very intuitive way, so that the
user does not have to worry about the details of the funetlmging optimized. It is also possible to
merge two or more clusters, or to break a large cluster down into single vertices. If the user makes
any change when the clustering algorithm is running, then the next iteration of the algorithm will

work on the newly modified data.

Visualizations

The interface offers feedback to the user through three main visualizations:

e a histogram chart that shows how many clusters existfior some size values;
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e a scatter-plot graphic showing the size of each clustét; iand

e a drawing of the graph implied by the clustering — the system buildistering graph
Gs = (Vs, Eg), whereVy is a set representing the clustersSinandEg is a set of weighted
edges between pairs of clusters. The clustering graph is constructed as follows: every cluster
N € S'is assigned to a unique vert& € Vs, for every distinct pair of clusterd; and N;
in S, if N; andNV; contain vertices of the original gragghthat are connected by an edge, then
an edggVy,, Viv,) is inserted intdZs. The weight of every edge:, v) € Eg is given by the
number of intercluster edges connecting vertices of the original graph assigned to the clusters
represented by andv. A modified version of the spring algorithrd7] is used to produce
a drawing of the clustering graph. Clusters are drawn as circles; the size of each circle is
proportional to the number of vertices in the cluster. Each circle is assigned an integer which
uniquely identifies the cluster. ThE, Y -positions of the center of the circles are defined so
that pairs of clusters connected by an edge are drawn closer to each other on the picture, and

their distance is based on the weight of the edges.

These visualizations are illustrated in Figdr8 They also highlight some aspects of constraint
satisfaction by using colors or drawing other elements on the picture. For example, the histogram
chart and the scatter-plot graphic show dotted lines (see Figus@g and4.3(b)) representing the
minimum and maximum limits on the size of the clusters. The graph drawing picture (BigcH
paints the borders of clusters whose sizes are out of the desired limits in red color. These simple
graphical attributes call the user’s attention to problems with the current clustering solution.

The user can swap between these three views in order to to visualize different aspects of the
clustering.

The graphical interface also includes two other types of visualizations, which are quite simple:

e A textual area with the history of the main clustering solutions produced by interacting with
the system (manually merging or breaking cluster, or changing the constraints) or by running
a clustering algorithm. The history shows the value,dhe number of intercluster edges, the

number of clusters and whether the clustering satisfies all constraints or not.

e A status bar at the bottom of the interface displays a brief description of the quality of the
clustering being improved by a clustering algorithm (this is important particularly for the

Simulated Annealing, since intermediate solutions and the temperature value are not shown
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in the other types of visualization).

In general, the processing of the algorithms is indicated by continuously updating the visualiza-
tion whenever a new good clustering solution is produced. If the screen is not updated for a long

time, this may indicate that the system has reached a local minimum and requires user intervention.

4.4 Remarks

This section discusses some lessons learned by experimenting with the interactive system. We
performed clustering tasks with graphs containing 40 to 1000 vertices; these included randomly-
generated graphs, and graphs that had a clear structure such as grids and trees. Different combina-
tions of constraints were tried on the size, balance and number of the clusters. The constraints were
sometimes conflicting. We also experimented with the facility of manually merging and breaking
clusters when the system could not improve a clustering, in order to escape from a local minimum.
Interaction with the system (changes of the constraints and of the clustering) was done in two ways:
after the algorithm had complete the execution, and during run time.

The interactive facilities and the visualizations implemented in the prototype showed some ben-

efits:

e Adjusting the constraint set was useful in cases where the system could not satisfy a partic-
ular constraint without sacrificing the remaining ones. Some successful approaches for this
problem were to temporarily deactivate a subset of the constraints (by setting thaines
to zero), decreasing the-values of the constraints that were intuitively less important, and
relaxing the problem by creating easier constraints to solve (for instance, defining a wider

range for the size of the clusters).

e Allowing the user to start and stop the clustering algorithms manually at any time provided
more control of the optimization task. It was possible to re-execute the algorithms to improve
a clustering when the specified number of iterations was not sufficient to produce the desired
solution; moreover, the algorithms could be stopped when there were still many iterations to

complete, but the rate of improvements being made on clustering was not significant.

e Each visualization allowed the user to identify different properties of clustering. With the
graph drawing visualization, for example, it was possible to understand the connectivity be-

tween the clusters; thick edges in this visualization also indicated pairs of clusters that could
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(©)

Figure 4.3: Three visualizations of a clustering: (a) a histogram chart, (b) a scatter-plot graphic, and (c) a
clustering graph drawing.
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possibly be improved. The histogram provided a better understanding of how the size of
the clusters varies, and offered an intuitive visualization of the satisfaction of the cluster-size
constraints. The scatter-plot provided a more detailed view than the histogram, by identifying

clusters for each size.

e The visualizations are intuitive media for humans to perform selection or manual changes of
clusters. In the current version of the system we allowed the user to select clusters by clicking
on their related circles in the graph drawing visualization. Other visualizations, however, can
offer more interesting ways of interacting with a clustering solution. The system could, for
instance, allow selection of a group of clusters with the same size simultaneously when a bar
of the histogram chatrt is clicked. Another interactive feature that can be implemented is to
allow the user to manually transfer a histogram bar to a different locatainX -axis of the
chart; this would cause the associated clusters to be re-clustered (and possibly combined with

other selected clusters) in order to create new clusters withssize
Despite the positive aspects above, the prototype showed two major drawbacks:

e It was difficult to implement support for multiple constraints. We could not successfully de-
velop a flexible clustering method (that allowed inclusion of new elements) that was able to
solve all constraints in an effective and efficient way. In many cases, the methods struggled
even with simple size constraints, for which a trivial arbitrary division of the graph in a fixed
number of clusters would provide a feasible solution quickly. This problem is more critical
for the Simulated Annealing, since changes in the set of constraints can demand a completely
different annealing schedule. We believe that the solution for this difficulty is to use a more
robust automatic method for constraint solving. A good candidate it dlgeangian Re-
laxation [77], which can adjust the weights of constraints, similarly to what the user does
via interaction with the system. Another possibility is to the implement a pool of clustering
methods from the literature without any change, and then applying the methods to specific
problems according to the need (for instance, bisection algorithms could be used to reduce

the coupling between pairs of clusters).

e While the visualizations offered interesting clues about the quality of the clustering solutions,
it was difficult to follow the improvements made by the algorithms. Even small changes of

the clustering could result in big changes of the visualization. The view that was less sensitive
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(b)

Figure 4.4: A visualization of a graph partitioning solution using Springs (frah24]). Figure (b) is a
focused view with only two clusters. Courtesy of Joe Marks.

to this problem was the histogram chart.

4.4.1 Related Work

An initial work on interactive graph clustering, that we encountered during the development of the
User Hints prototype, was the research of Lesh, Marks and Patrigti2dlijased on the HUGSS
paradigm. This work was mentioned briefly in Sectib®.3 The strongest part of the research is a
novel visualization that provides the user with an impression of the cohesion between vertices of a
graph and their assigned clusters. The visualization is a graph drawing produced using a variation of
the spring method. The drawing is generated by modeling vertices as masses, and replacing every
edge by a spring that pushes or pulls a pair of vertices according to the edge weight. Additional
springs connect every vertex to a hub representing a cluster. The hubs are described graphically as
stars and are distributed along a circumference. Colors are used to identify the association between
vertices and clusters. Moreover, a circle around each star indicates the number of vertices assigned
to that particular cluster. Figure4(a) illustrates this visualization. It is possible to change the view
to display only two clusters, what allows a more detailed analysis of the clustering solution; see an
example in Figuret.4(b). The user can interact with the visualization by manually reassigning a
vertex to a different cluster, or running a graph partitioning method on the whole graph or on a pair
of clusters.

The visualization is interesting since it provides a clue about the cohesion between vertices and

their clusters. This is obtained by mapping general attributes of the clustering solution to euclidian
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proximities between elements of the drawing. For instance, vertices that are connected to many
other vertices in different clusters may appear far away from their hubs, therefore, indicating a
weak attachment to their associated clusters.

Unfortunately, human experiments done by Lesh, Marks and Patrignani with a benchmark set
— the ISPD Circuit Benchmark sui6]— did not result in significant improvements of the cluster-
ing solutions 123. The experiments showed that users could choose valid pairs of clusters for
improvement, but the overall gain was minimal when compared to the initial quality of the solu-
tions obtained by using traditional non-interactive clustering methods. One explanation for this was
that the current clustering methods available in the literature already provide very good results. A
second explanation was that the benchmark data consisted of thousands of vertices, which had no
meaning for the users; consequently, domain knowledge was not available to help the users find
better partitions.

Since the experiments done by Lesthal. indicated a limited space for improving graph clus-
tering solutions, we decided not to do any further investigations of the User Hints framework for
this problem (for example, we did not include a focus facility and we did not implement better
algorithms). Rather, we moved on to two other optimization problems that are more promising for

human intervention. We discuss these problems in the following chapters.

4.4.2 General Conclusions

The work presented here helped us to realize some benefits of having user hints and paved the way
for the design of interactive framewaorks for other problems. The main conclusions of the research

are that:

e Multiple visualizations help to understand and to interact with an existing clustering solu-
tion; however, a good visualization — that not only shows the structure of the clustering, but
also allows an incremental comprehension of how the solution is improved by optimization

methods — is difficult to design.

e User hints are better employed in harder optimization problems, where constraints change
dynamically and the user’s desires are difficult to express in terms of a precise objective
function, among other characteristics. For the traditional graph clustering problem, heuristics

already exist that can provide good results.
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The prototype that we developed serves as a toy for learning how constraints affect a graph
clustering solution. More complex constraints may be included for this aim, such as forcing some
vertices with a particular attribute to be placed in the same cluster. Nevertheless, finding other

practical and realistic applications for the prototype may be a problem.



CHAPTER 5

User Hints for Directed Graph Drawing

In this chapter we apply the User Hints framework to the problem of drawing directed graphs. We
investigate three kinds of hints: focus on a region of the drawing that needs improvement, insertion
of layout constraints, and manual changes to the drawing. The framework is evaluated for the goal
of helping convergence. The optimization method we use is based on the Sugiyama method.

Part of this study was presented in the Graph Drawing Conference 28Darid at the Aus-
tralian Symposium on Information Visualizatiof?].

This chapter is organized as follows. Sectfintroduces the Graph Drawing Problem. Sec-
tion 5.2 explains the need for having user interaction in Graph Drawing applications. S&c3ion
presents our framework based on user hints, which incorporates focus and layout constraints into the
Sugiyama method. An interactive graph drawing system that follows the framework is described in
Sectionb5.4. Sections.5presents a pilot study of the system involving human experiments. Finally,

Section5.6 draws some remarks about the interactive graph drawing framework.

5.1 Graph Drawing

Graph Drawing is an emerging research area with strong applications in Information Visualization.
The general framework used in Graph Drawing is illustrated in Figute A graph represent-
ing relationship between a group of entities (vertices) is input to a graph drawing algorithm. The
algorithm then produces a visual representation of the vertices and the edges of the graph.

The main aim of Graph Drawing is to produce “nice” visualizations, that help to understand the
relationship between the vertices. For example, Figu2eshows two drawings of the same graph,
describing links between files accessible from the web site of the Information Visualization Group

at The University of Sydnéy The second drawing is certainly more understandable and easier to

The URL of the web site ittp://www.it.usyd.edu.au/visual
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G=(V.E)
V={V1,V2,V3,V4,Vs} Graph
E:{(\;th), (\;1,V5), |:> Drawing |:>
(v2,v3), (V2,v4), Alsorith

(Vo). (V3%8). gorithm
(v3,V5), (V4,V5)}

Figure 5.1: The general graph drawing framework.

follow than the first one.

Figure 5.2: A random and a spring-based drawing of the graph structure of the Information Visual-
ization Group web site and related pages. The graph was produced usihgnki@Gheckersoftware
(http://linkchecker.sourceforge.ngt/

In this chapter we concentrate on directed graphs. Drawings of such graphs appear in many
different domains, including science books, magazines, technical manuals, and in software appli-
cations for helping designing, managing, exploring and learning processes. When a graph contains
only a few vertices and edges, it can be drawn easily by hand. However, as the number of vertices
and edges increases, a manual drawing approach becomes very time consuming and difficult to
manage. The solution to this problem is to make use of automatic techniques, which embed some

user-desirable aesthetic criteria and apply layout algorithms to find aesthetically pleasing drawings.
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A comprehensive study of aesthetic criteria and techniques for graph drawing is presedd in [
Some aesthetic criteria commonly used for drawing directed graphs siewwfew edge crossings

to present few bends on the edd@escase the edges are allowed to curve; otherwise, they are drawn
as straight lines), tdisplay symmetryand tominimize the area necessary for the drawiitgs also
desirable teshow a uniform orientation for the edgésr example, having them pointing downward

as much as possible. Even though the concept of “niceness” is inherently subjective, it has been

shown that these criteria help to improve readability of the diagra®d.[

5.2 User-Interaction Suitability

Many graph drawing methods have been developed to produce drawings of graphs that satisfy
aesthetic criteria, such as the ones described above. Unfortunately, the satisfaction of most aesthetic
criteria usually involves NP-hard problems. The aesthetics may also conflict, that is, there may be no
optimum solution for two criteria simultaneously. As a consequence, most graph drawing methods
are heuristics that work reasonably fast, but may result in poor quality drawings. Even amongst
papers in Graph DrawingdB, 177, 178 182, one can find drawings that are produced in a few
seconds, but present many edge crossings, edge bends or no symmetry. For instance, drawings of
the Unix System Family tree that appear in many papers show at least one edge ctb&gini [

is interesting to note that this graph is upward planar.

There are several approaches for dealing with the weakness of automatic graph drawing meth-
ods. The most popular one is to apply an automatic method for generating an initial drawing, and
then improve the drawing manually. In many cases, the user can easily recognize part of the drawing
that needs to be improved, and define strategies for producing a better layout. This is a common way
of creating a winning drawing for th@raph Drawing Contedt20, 27, 28]. In general, the winners
use a graph drawing method to produce a reasonably good initial layout, and manually change the
automatically-generated drawing in order to satisfy additional aesthetic criteria (including aspects
related to domain knowledge) that the method does not consider.

Another alternative approach is to develop better (and more complex) algorithms that consider
several rules about how vertices and edges of a graph should be drawn. Meta-heuristics seem to
provide a promising technique in this case, due to their flexibility in dealing with many aesthetic
criteria, and ability in exploring large areas of the solution sp&&e43, 187. The use of Simu-

lated Annealing for drawing general grap88[39] is the most remarkable example of satisfaction
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of several aesthetic criteria using a meta-heuristic method. However, it is not clear that better algo-
rithms will ever eliminate the need for having users perform some post-processing improvement.
There is always a graph instance for which the fast algorithms will not produce the best solution,
since the space of solutions is too large to be adequately searched in a reasonable amount of time.
Moreover, it is common to have many equally good layouts for the same graph, where the decision
about which one to take is subjective or domain dependent. Even when some subjective aspects can
be modeled as objective functions and constraints inside a flexible algorithm, it is difficult to ensure
that all user preferences were considered, and that they imply no ambiguity by leading to a single
“optimum” solution. Furthermore, it may be difficult to ensure that a particular algorithm is capable

of finding such a solution. In the most extreme situation the user is still important for validating the
result produced by an automatic method or for selecting between a number of good drawings.

The need for human intervention in graph drawing was well indicated by Donald E. Knuth in
his lecture in the Graph Drawing Conference in 1996 (see Chdaptethe report of the Graph
Drawing Contest in 1999f] also mentions this issue and motivates the development of interactive
systems. We quote here part of the conclusion of the report:

“As in past years, most of the winners combined automated and manual techniques to great ef-
fect. Given this distinct pattern in how graph-drawing software is used, it is perhaps surprising that
few systems have been designed to give explicit support to this kind of human-computer cooperative
design. A future graph-drawing contest may therefore include an interactive-editing category.”

In the next section we propose an interactive approach for improving drawings of directed
graphs by having users providing hints. User interaction is aimed at helping the method to escape
from local minima and to produce good solutions directly. We consider the problem of drawing
directed graphs since it appears in many real applications and involves several difficulties. The

popular method of Sugiyaret al. [178 is used as our basic optimization method.

5.3 An Interactive Graph Drawing Framework

As described in Chapt&user hints should help to refine a problem and to improve convergence. In
the scope of this chapter, user hints help graph drawing algorithms to search for high quality graph

drawings according to a fixed set of aesthetic criteria.
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Types of Hints

We consider three kinds of hints for directed graph drawing:

e Focus.The user can focus the drawing algorithms on some vertices of a drawing of a graph.
In general, after running a graph drawing algorithm we get a reasonably good layout, but with
some areas presenting poor quality according to a set of desired aesthetic criteria. The focus
mechanism allows the user to reapply the graph algorithms only on those areas. The position

of the vertices that are not focused is not changed.

e Layout Constraints. Layout constraints are useful for helping the system to improve bad
quality aspects of a drawing, or for removing ambiguity about where to draw some vertices.
We have adopted two kinds of layout constraiffigp-DownandLeft-Right The Top-Down
constraint defines aabove-relatiorbetween two vertices andv, such that: has to appear
somewhere above in the drawing. Similarly, thé.eft-Rightconstraint defines aan-the-

left-relationbetween two vertices.

¢ Manual Changes. Other drawing aspects that are not easily controlled by focus and layout
constraints can be fixed by manual changes. The user performs manual changes only on
vertices by moving them to a different position of the drawing. Changes on edges can be done
by moving their related vertices. The mechanism of manual changes is already commonly
used in graph drawing activities as part of a post-processing and fine-tuning step. However,
here we have a much more powerful tool, since changes in a drawing may drive the system

out of a local minimum toward a better solution.

The User Hints framework for graph drawing is shown in Figbu® Arrows with a capitalized
label represent hints given by the user. Note that all types of hints are direct or indirect inputs to an
optimization method. The optimization method consists of improvement algorithms that work on
an existing drawing of a graph.

The drawing activity is executed as follows: the optimization method automatically creates an
initial working solution; then the user starts an iterative process where it is possible to perform
manual changes to this drawing, specify layout constraints and re-execute the method on a focused
area. When re-applied, the optimization method creates a new layout that may or may not be
better than the previous one. The framework, however, keeps the best drawing computed so far by

using the best solution agent as defined in Chaptétvery new drawing created is analyzed and
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compared to the best drawing. If the new drawing is better than the current best one, then the best

drawing is immediately updated.

Visuali
yk

gt CHANGE FOCUS and Constraints
Solution Execute
(Graph Drawing) ™ Input
Input
Aesthetics
Best Solution Optim. Method Tnput
Agent Output (Graph Drawing Graph
algorithms) Structure

Figure 5.3: The interactive framework for Graph Drawing.

The system provides the user continuous feedback about its state by showing qualitative at-

tributes of the current drawing.

5.3.1 The Sugiyama Method

For the purpose of drawing directed graphs, we use an optimization method based on the Sugiyama
method L7§. The Sugiyama method draws a graph on a set of horizontal lines d¢ajlers The
method consists of four stepsd, 178:

1. Cycle Removalthis is a pre-processing step that reverses some edges of the graph in order
to make it acyclic. The Cycle Removal step is usually done by solvingeleeback Arc Set

problem[43].

2. Layer Assignmentin this step, the vertices of the graph are assigned to layers, so that the
edges show a uniform orientation (they point downwards). When an @dg¢ spans one
or more layers, it is replaced by a set of edges, ),(n1, n2), ... (ni,ni+1),(nk, v), where
then;,i = 1,2...k, are new vertices calledummy verticesThe problem of minimizing the
height — and possibly the width — of the drawing is also considered here by choosing a proper

layer assignment.

3. Crossing Reductiarin this step, the vertices in each layer are re-sorted in order to reduce the

number of edge crossings.
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4. Horizontal Coordinate Assignmenin this step, theX'-coordinate of each vertex is defined
so that the resulting drawing shows straight edges as much as possible, has few edge bends
and is not very wide. All edges changed in the Cycle Removal step are also reversed to their

original orientation in this step.

The Sugiyama Method involves several NP-hard probletik fuch as thé-eedback Arc Set
problem in the Cycle Removal step, and the crossing minimization done in the second step. The

crossing minimization is NP-hard even for only two layefs][

5.3.2 Implementing User Hints in the Sugiyama Method

We preserve the general structure of the Sugiyama method and adjust each step to support focus
and layout constraints. Focus has two effects: it limits the action of the graph drawing algorithms to
the focused vertices and it defines special constraints that “freeze” the non-focused vertices. Thus,
given a graphG = (V, E), we focus on a selected sétC V, by running the Sugiyama method
only on A. The X,Y-coordinates of the vertices i — A are kept fixed. On the other hand,
layout constraints are modeled either as extra edges added to the graph or as normal constraints
that impose an ordering to the vertices. Layout constraints can be defined only for real vertices, not
dummy vertices. Some similar kinds of constraints for the Sugiyama method are investigated in
[118 and [22].

For simplicity, in the rest of this chapter we use the tasetected verteto mean a vertex in the
selected sefl, andfixed vertexfor a vertex inl’ — A. The drawing is constructed on an infinite
grid of integer coordinates. The rows of the grid represent layers. A shit lalyers is labeled
L1, Ls, ... L, starting from bottom to top. We use the notatigno indicate the layer assigned to
a vertexv, with [, € {L1, Lo, ..., Lg}. The way in which we implement focus and constraints is
slightly different for each step of the Sugiyama method. Next, we explain this implementation in

detail.

Cycle Removal

In the Cycle Removal step, the focus mechanism has no effect. Cycles involving selected vertices
and fixed vertices are treated equally (Left-Right constraints also do not affect the cycle removal).
Top-Down layout constraints, however, have a great impact on the final result of this step.

As an example of how important layout constraints are, consider a graph composed of a cycle
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with four vertices,a, b, c andd. There are four basic ways of drawing this cycle such that the
number of downward edges is maximum (optimal). These drawings are shown in the B-4faje

to (d). Without constraints, the four drawings are equivalent according to the number of downward
edges. However, if the user prefers to have the veartdxawn above the vertex and inserts a
Top-Down constraint froma to ¢, then this operation reduces the number of optimal solutions to
two, shown in Figure$.4(a) and (b). If the user inserts another Top-Down constraint, tréond,

then this leaves us with a single optimal solution, Figbi#a). The user can go even further by
inserting another Top-Down constraint to havdrawn aboveé. In this case, the constraints define

a precise ordera abovec, ¢ aboveb, andb aboved, and thus the only valid solution is to reverse

the edg€b, ¢) and(d, a), as in Figureb.4(e).

;N A
N IR - B

[b] [a] [d]
[b] [a]
(@) (b) () (d)

Figure 5.4: Different ways of drawing a cycle. Thick arrows represent layout constraints.

In summary, layout constraints can be used not only to reduce the number of feasible solutions,
but also to force the system to consider a specific solution. Note that all layout constraints, Top-
Down and Left-Right, involve a pair of vertices. Therefore, layout constraints are modeled as
special directed edges, that we aadinstraint edgesConstraint edges can be freely inserted into
the system, providing that they do not make a cycle.

Considering the effect of layout constraints, we developed a new approach for the Cycle Re-
moval step. LetG = (V, E) be the graph to be drawn ardthe set of Top-Down constraints.
First, we construct a new grap’ by merging L with G. Whenever an original edge and a
constraint edge (excluding orientation) connect the same pair of vertices, we remove the origi-
nal edge and leave the constraint. The merge procedure can be formalizéd=a¢V, E’), where
E' = LU{(u,v) € E: (u,v) and(v,u) are notinL}. If the resulting grapl@’ is acyclic then the
problem is solved. Otherwise, a method for the Feedback Arc Set problem is applied to this graph,
but it reverses only the original edges. For instance, merging the cycle from the previous example
with the set of constraints in Figue4(e) causes the eddé, c) to be removed. Then, the next step

is to reverse some edgesdai in order to break cycles. The algorithm for this task can reverse any
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edge, excepta, ¢), (¢, b) and(b, d), which represent constraints. The optimal solution would be to
reverse only(d, a).

We modify theGreedy-Cycle-Removakuristic in i3] in order to solve the Feedback Arc Set
problem with constraint edges. The advantage of using this algorithm is that it is simple and runs in
linear time. The algorithm works by removing vertices from the graph and adding them either to a
list S; orto a listS,.. Finally, S; is concatenated with,. to form S. The listS provides an ordering
for the vertices of7’. All edges(u,v) € E’ wherev appears before in .S are reversed, resulting
in an acyclic graph. Our modification of the Greedy-Cycle-Removal is minor, and is highlighted
in bold in Figure5.5. The modification ensures that no constraint edge is reversed. Moreover, the
algorithm can still run in linear time. Proofs for these properties of the algorithm are presented at

the end of this chapter, in Sectiérb.6

Let G.be a copy of G.
1. Initialize both §; and S, to be empty lists.
2. while G, is not empty do
(a) while G. contains a sink do
Choose a sink u, remove it from G,, and prepend it to S,. (Isolated
vertices are also considered sinks at this stage.)
(b) while G. contains a source do
Choose a source u, remove it from G,, and append it to S;.
(c) if G. is not empty then
Choose a vertex u, such that there is no constraint edge (v,u) for any
vertex v left in G,, and the difference outdeg(u)-indeg(u) is maximum;
remove u from G. and append it to .S;.
3. Concatenate S; with S, to form S.

Figure 5.5: The modified version of the Greedy-Cycle-Removal heuristic presentd@]in [

Layer Assignment

The Layer Assignment step is executed for the gré@pk- (V, E’) produced by the previous step.
Recall thatE” includes constraint edges. Focus is considered in this step, and it is implemented
by modifying a well known layering algorithm so that it does not change the coordinates of fixed
vertices. Note that edges with fixed vertices at both ends may not affect the layering algorithm, so
they can be removed to increase efficiency. This approach is presented inF=igyure

We use the Longest Path Layering heuris&@[to construct a layering of?’. This algorithm
results in drawings that are in general too wide; however, it runs in linear time and can be easily
modified to handle focus.

The original version of the Longest Path Layering heuristic places all sinks in the bottom layer
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1. Let G'=(V,E’) be the graph resulting from the previous step, and AcV
the set of selected vertices. Remove all edges (#,v) from E’ with  and v
fixed vertices (belonging to V-A4).

2. Apply a Layering Algorithm on G’. The algorithm, however, should be
modified to leave the coordinates of the fixed vertices unchanged.

Figure 5.6: The approach for Layer Assignment with support to constraints and focus.

L1. Then each remaining vertexis placed in layer., 1, wherep is the length of the longest path
from « to a sink. In our modified version we extend the procedure to include also the longest path
between a vertex and fixed (non-selected) vertices. All selected sinks are placed on Layes
previously. However, fixed vertices already ha¥ecoordinates assigned to them. Every non-sink
selected vertex is then placed in layef.,,, wherem = maz{p + ¢ : there is a sink or a fixed
vertexv in layer L,, and the longest path fromto v has lengthp}.

Note that our layering algorithm may violate Top-Down constraints in the special case where
they conflict with focus. Consider that there is a chain of directed edges;), (v2, v3), . . ., (Vgp_1,
vg), Wherewv; is a fixed vertexp, ... v,_; are selected verticesy, is a fixed vertex or a selected
sink, andl,, — [, < (k — 1), with [,,, andl,, the layers assigned tq andv; respectively by the
algorithm. If (v1,v2) is a constraint edge, then this constraint is violated sinds assigned to a
layer abovey;. All other edgegv;_1,v;),7 =3, ..., k point downward.

We developed a solution for the case whejas a selected sink. It consists of adding a post-
processing step that uses the previously computed layering to shift some vertices down. Basically,
for each non-source selected veriexs V' taken in the topological order, we reassigmo a new
layerl,, = min{l, — 1 : for all verticesv such that there is an edge, ) € E'}.

The revised algorithm still runs in linear time. It moves all vertiegs. . . , v, downward by
k+1,, —1,, — 1 layers. Unfortunately, the problem persists for the case whei®a fixed vertex:
the vertexvi_1 will be assigned to a layer below vertex. However, this is a problem due rather to
a conflict between focus and layout constraints than to the layering algorithm itself. Our approach

places focus at a higher priority than layout constraints.

Crossing Reduction

In the next step of the Sugiyama method, we use the original gtaph (V, E) as well as the
layering defined by the previous step. A version of the barycenter algoritfig) is applied to

handle focus and Left-Right constraints. This version adjusts onlyXtteordinate of selected



5.3 An Interactive Graph Drawing Framework 80

vertices and solves constraints during the processing. A general description of the algorithm is

shown in Figures.7.

Let L;,L;...,Lk be the set of K layers defined by the Layer Assignment step.

Repeat until the number of edge crossings is minimal
1. Fori<K-1to1do
a. For each selected vertex u in layer L;, move u to its barycenter
position according to its adjacent vertices in layer L;;. If u has no
neighbors in L;+,, then its original position is preserved.
b. FixConstraints (7).
2. Fori<-2to K do
a. For each selected vertex u in layer L;, move u to its barycenter
position according to its adjacent vertices in layer L;.;. If u has no
neighbors in L, ;, then its original position is preserved.
b. FixConstraints (7).

Figure 5.7: The barycenter algorithm for Crossing Reduction with support to constraints and focus.

The algorithm uses a heuristic callétkConstraints(i)that reorganizes the selected vertices
in layer L;, so that every selected vertex occupies a unique integer position in the layer and the
number of unsatisfied Left-Right constraints is minimized. The heuristic is given in Pig8irét
has complexityO(m(n+W)), wherem is the number of selected vertices in laygrn is the total

number of vertices in this layer, aidl is the width of the layer in the current drawing.

FixConstraints(i)
Let G=(V.E) the graph to be drawn, and W/ and Wr the X-coordinates of the left-
most and the right-most vertices in layer L;, respectively.

1. Compute a list S of all selected vertices of G in layer L,.
2. Sort S in non-increasing order of X-coordinates.
3. While S is not empty do

a. Let u be the first vertex in S (that is, u is the left-most vertex in S), and
let x,, be the current X-coordinate of u.

b. Choose an integer number p in /[Wi-1, Wr+1], such that no vertex in V-S
that is in layer L; has X-coordinate p, and the number of unsatisfied
Left-Right constraints is maximally reduced by moving u to position p.
If there is more than one integer p that gives a minimal number of
unsatisfied constraints, then choose the closest value to x,,.

c.  Set the X-coordinate of u to position p (x,<p).

. Remove u from S.

e. Adjust Wl and Wr to include p in the interval: Wiemin(Wlp); and

Wr<max(Wr,p).

Figure 5.8: The FixConstraintsheuristics.

Left-Right constraints may involve vertices in different layers. If this is the case, all constraint
edges that have at least one vertex in laiewill be taken into consideration. Note thiitxCon-
straintsdoes not guarantee to solve all Left-Right constraints, since it analyzes the layer locally, and

it demands the existence of empty positions for moving vertices. Some vertices may also be fixed,
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preventing constraint resolution. Nevertheless, the heuristic solves most constraints when applied

iteratively by the barycenter algorithm.

Horizontal Coordinate Assignment

Finally, the last step of Sugiyama method, the Horizontal Coordinate Assignment, is not explicitly
included in our approach. This is because the barycenter algorithm, combindex@tdnstraints
already assigng-coordinates that do not result in many bends or long edges. Furthermore, the
algorithm in Figure5.7 can be re-applied by the user for improving the horizontal coordinate as-

signment of vertices that cause bends or long edges.

5.4 The GDHints System

We implemented the Sugiyama steps described in the previous section in an interactive system,

called GDHintg. A snapshot of the system is shown in Fig&ré. The system includes:

e a user interface, by which the user can select vertices for focus, add and delete constraints or

perform manual changes;

e graph drawing functions for layering (cycle removal and layer assignment) and ordering (for

crossing reduction); and

¢ displays of quality metrics of drawings.

User-System Cooperation and Quality Feedback.

The system and the user work together to improve a drawing of a gfraphV, E). The drawing
is improved when its new layout is better than the previous one according to the following priority

of aesthetic criteria:
¢ showing fewoffending edgesan offending edge is an upward or a horizontal edge;
¢ showing few edge crossings;

e showing few dummy vertices;

2The GDHints system is included in the CD-ROM attached to this thesis. See Appfalixnore details.
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Figure 5.9: GDHints — an interactive Graph Drawing system based on user hints.

¢ showing few edge bends (a bend occurs when an edge changes its direction on a dummy

vertex); and

e Minimizing the drawing area.

At the beginning of the processing, the system produces an initial drawing by assigning layers
and X -coordinates to the vertices of the graph inside an area of8j28 « |V /2|. The system then
selects all vertices of the graph and calls the layering and the ordering functions to create a better
initial drawing.

After this first stage, the user can interact with the system. It is possible to call the drawing
functions again for redrawing selected parts of the graph, specify layout constraints, and manually
move vertices in the drawing.

The system evaluates the quality of every new drawing and automatically saves the best drawing
generated so far. At any time, the user can return to the best drawing or can force the system to
accept the current drawing as the best one.

The system provides useful feedback to the user by showing a picture of the drawing being
improved and textual information about its quality. The quality of the best solution saved by the
system is also shown for comparison with the current drawing. In addition, the feedback includes

colors for highlighting bad quality aspects of the drawing, and sound and animation events for
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calling the user’s attention whenever a new and better solution is created.

5.5 Pilot Study

We did an initial study of the GDHints system with human subjects. The aim of the study was
to verify whether users could improve drawings of graphs by applying the interactive tools in our

framework.

5.5.1 Experiment Setup

Five subjects took part in the study: a Ph.D. student, an honors student, a research assistant, and
two post-doctorate visitors, all of them from the Information Visualization Group at the University

of Sydney. The subjects had a good knowledge of Graph Drawing, but were not involved in the
development of the User Hints framework; therefore, a 30-minute introduction to the GDHints
system was provided before starting the experiments.

The study involved three kinds of experiments:

e ExperimentEl (constraints only): the system allowed insertion and deletion of layout con-
straints; manual changes and focus were deactivated. The vertices of the graph were auto-

matically selected by the system when the user called the graph drawing functions.

e ExperimentE2 (constraints + focus): the subjects could insert and delete constraints, as well

as select vertices for focusing.

e ExperimentE3 (constraints + focus + manual changes): the complete functionality of the

system was available.

Constraints were allowed in all experiments, since they are an advanced feature in interactive
graph drawing, and we wanted to test them as much as possible. On the other hand, manual changes
are intuitive features (the subjects tend to use this option mainly); therefore, we considered them
only in experimeng3.

Six graphs were used in the study, details of which are shown in Tabl&raphGLlis a social
network. Graph$s2, G3, G4, G5 andG6 are from graph drawing papers. GraR is the proper
K-layer graph from 182. GraphG3is a predator-prey ecosystem, shown ][ GraphG4 is

based on the C-language syntax graph; it has one more vertex (labeled “v8”) and an extra edge
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Quality of the initial drawings
Name v | IE| (produced by the system using the Sugiyama method)
Offending . Dummy
Crossings . Bends | Area
edges Vertices
G1 — Waleska 10 | 20 2 9 17 13 72
G2 — Klayer 18 | 24 0 5 0 0 24
G3 — Ecosystem | 15 26 0 16 7 7 48
G4 - Csyntax 34 | 46 4 12 39 19 182
G5 — Unixsys 41 | 49 0 4 24 9 132
G6 - Worlddyn | 43 | 69 6 70 144 56 360

Table 5.1: Graphs used for the experiments with the GDHints system.

than the original graph shown id7, 178. GraphG5is from paper 9] and represents the Unix
System family-tree. Grap&6 is the Forrester's World Dynamics graph, taken frai8J. Some

of the graphs have vertices labelled by numbers, while others have proper names. Tghles
the numbers of vertices(|) and edges|€|) of the graphs, and quality parameters for the initial
drawings created by the system.

The order in which the experiments were carried out was the same for all subjects: the three
types of experimentsHl, E2 and thenE3) were done for each graph at a time. We started with
small graphs, leaving the largest ones to the end, so that the subjects could improve their skills
smoothly. In total 90 experiments (5 subjects x 3 types of experiments x 6 graphs) were done. We
allowed 20 minutes for each experiment.

In the introduction session, the subjects were informed about some possible improvements for
graphsG4, G5 and G6. For instance, they were told that gra@ allows a downward planar
drawing. The aim was to motivate the subjects for the experiments.

The users’ actions were recorded in history files. The history contains a detailed list of all
operations executed by the subject, the drawings produced by each operation, and the changes on
the quality of the drawings. After the experiments, the users were interviewed. We asked questions
about the difficulty or facility in using the system, and their general strategy for working on the
drawings. The comments collected from the interview were compared with the data in the history
files in order to identify some relationship between the users actions and the changes in the quality of
the drawings. This analysis also provided feedback about strong and weak points of our approach.

The first 15 experiments (related to gra@h) were not included when averaging the results,

since we considered the subjects were still learning how to use the system during that time.
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Offending Edges Crossings Dummy Vertices Bends Area

Graph Exp
Min i Max: Av | Min Max: Av | Min | Max Av | Min | Max: Av | Min | Max | Av
E1]| 2 2 2 5 7 6 17 30 196 12 22 146 72 99  79.2
Gl E2]| 2 2 2 4 5 42 17 17 17 11 14 : 1221 72 90 : 77.4
E3| 2 2 2 3 4 38 17 26 188 8 13 102 ] 40 81 & 584
E1] O 0 0 2 5 3.8 0 8 2.8 0 8 2.4 24 48 © 332
G2 [E2| © 0 0 1 2 1.4 8 11 9 4 10 7.4 42 77 55
E3|] O 0 0 1 2 1.2 6 14 102 4 13 7.8 30 80 | 52.8
E1l 0 0 0 9 14 ¢ 10 7 16 8.8 7 14 8.4 48 60 : 51.2
G3 |[E2| O 0 0 5 13 9 7 57 272 5 20 ¢ 132 48 122 | 852
E3|] O 0 0 5 8§ | 64 15 37 246 10 26 ¢ 16.8 | 60 119 : 84
E1] 3 4 34 8 12 : 10.8] 39 100 © 63.8| 15 46 : 28.8 | 182 : 440 @ 267.2
G4 [ E2| 3 4 34 6 9 7 38 107 : 64.6 | 17 35 216 168 : 288 :219.2
E3] 3 4 3.4 4 10 : 6.4 ] 36 88 564 | 14 34 234 168 : 270 :223.6
E1l 0 0 0 3 4 36| 24 24 24 7 12 8.6 | 132 : 176 : 151.8
G5 [ E2] O 0 0 0 2 :04] 25 32 288 8 17 ¢ 11.6 | 132 : 168 :152.8
E3] O 0 0 0 0 0 25 30 @ 26.8 7 14 9.6 | 132 ¢ 156 :147.8
El1|] 6 6 6 52 0 65 :584| 144 @ 212 167.8] 40 55 ¢ 504 360 : 522 i 423
G6 [ E2| 6 6 6 35 0 60 (474] 144 | 167 154.6] 39 76 58 | 384 i 420 | 404
E3| 6 6 6 35 0 46 1 40.6| 162 ¢ 250 193.6] 34 94  67.8| 384 ¢ 621 i 456

Table 5.2: Quality of the best drawings produced by the users for all graphs.

5.5.2 Results

Table 5.2 shows the results of each experiment for the six graphs. It presents the minimum, the
maximum and the average values of the aesthetics criteria for the best drawings produced by the
five subjects.

Compared to the initial solutions described in Tablé the number of offending edges was not
improved much. Only some small improvements were achieved for ggdpiThis is because the
layering algorithm already produces results very close to the optimum. On the other hand, there
was a significant reduction of the number of edge crossings. The experiments where not all subjects
could solve crossings were the ones based only on constraints. When focus and manual changes
were allowed, all five subjects produced better drawings in this aspect.

The numbers of dummy vertices and bends, and the area of the drawings were higher than the
initial figures for almost all experiments. This shows that such aesthetics are in general inversely
proportional to the improvement of edge crossings. In order to eliminate edge crossings, the user
may need to expand edges and define a more complex routing for the dummy vertices, which very
often causes bends, creates new dummy vertices, and increases the area of the drawing.

An overall comparison of the results obtained in the three types of experiments with the quality

of the initial drawings are shown in Tabte3. The table contains, in percentage, the average values
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Experiment Crossings | Dummy Vertices Bends Area
Av Av Av Av

E1l 80.3% 126% 103.4% 124.8%

E2 44.0% 195% 143.9% 151.0%

E3 35.0% 185% 157.1% 151.1%

Table 5.3: Overall results of the experiments compared to the quality of the initial drawings.

from Table5.2divided by the initial values (from Tabk 1), combined for graph&2to G6. We can
see that the users could reduce the number of edge crossings by about 20% on average in experiment
E1, 56% in experimenE2, and 65% in experimerE3. The percentages for dummy vertices, bends
and area of the drawings are greater than 100%, showing an increase in the initial figures for these
criteria. The values for offending edges are not included in the table because there was no change.

The results in Table5.2 and5.3 demonstrate a monotonic improvement in the quality of the
drawings when more interactive tools are used in the experiments. Unfortunately, the improvement
was also affected by learning effects. Two subjects mentioned that the experience gained with
experiment€El and E2 helped to perform tasks in the following experimeB8. Basically, the
subjects had an idea about how much improvement could be done in the drawing and where changes
were necessary.

An interesting point to note is the significant gap between the experiredraadE2. Adding
the focus facility to the system greatly improved the results. We considered this together with
the comments from the interviews. The subjects confirmed that it was difficult to improve the
drawings in the experimeril, since adding new Left-Right constraints very often caused many
new problems. A typical example was when the user inserted a Left-Right constraint between
two vertices graphically close to each other, aiming to swap them. The solution found by the
system satisfied the constraint, but moved the vertices to distant positions, thus creating new edge
crossings. We concluded that the system was able to find solutions that satisfy Left-Right constraints
in almost all cases, however, not the ones with minimal number of crossings and that preserved the
mental map. Further, layout constraints could not be used to control the position of dummy vertices
properly, since they were available only for real vertices of the graph.

The usage (as percentage of user interactions represented by mouse clicks) of the main tools
in the system is presented in Taldlgl. The columnSelectrepresents the selection of elements of
the drawings, necessary before moving a group of vertices simultaneously, or before running the

layering and the ordering algorithms. The colu@itierincludes less important operations such as
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Operations

Exp. Select | Move | Layering | Ordering l;e;lir;o:? Cﬁ:s(:r. é)oerll(;:i. Other| All
E1 0% 0% 10.7% 76.3% 2.4% 7.7% 2.5% 10.4% | 100%
E2 162% | 0% 11.3% 64.6% 1.9% 4.5% 1.1% [0.4% | 100%
E3 15.5% | 33.3% 6.9% 39.1% 2.4% 0.6% 0.1% |2.1% | 100%

Total | 10.6% | 10.7% 9.7% 60.2% 2.2% 4.3% 1.3% 1% | 100%

Table 5.4: Usage of the interactive tools of the GDHints System.

aligning vertices to the grid, zooming in, and zooming out. The Total shows the overall results
for all types of experiments.

Table5.4shows that constraints played a less important role in the optimization processing than
focus (ayeringand Ordering operations) and manual changesofe operations Ordering was
the most significant tool. The users also pointed out that the option for returning to the best solution
was very important. They used this facility in a simple search approach for escaping from local
minima, which is explained in the Remarks section of this chapter.

Figure5.10illustrates the improvement of edge crossings over time (in seconds). The chart was
generated from the history file of a particular subject for the drawing of g@jytthe Forester’'s
World Dynamics Graph, in experimeB&R. All operations repeated consecutively in the file were
compacted into a single action for simplification of the figure. The peaks in the chart represent user

actions that resulted in worse drawings.
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Figure 5.10: Changes in the number of edge crossings caused by user actions.

Note that the pilot study involved a limited number of subjects and, therefore, our findings can
not be generalized to guess the performance of new users. We can only infer about the performance
of the five subjects, since they completed a sufficiently large number (eighteen) of drawing tasks.
The major result of the pilot study is that the potential of the Sugiyama Method was extended by

supporting focus and layout constraints. The subjects were able to improve drawings of graphs by
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(b)

Figure 5.11: Drawings of the predator-pray ecologic system, gr&#h Drawing (a) has 16 crossings, 7
dummy vertices, 7 bends, width 12 and height 4. Drawing (b) has 5 crossings, 33 dummy vertices, 17 bends,
width 15 and height 7.

using these interactive tools and performing manual changes. Moreover, strong and weak aspects

of the framework were identified:

e Focus was a very important tool for helping the method to converge to good drawings.

e The combination of focus and manual changes offered more control of the optimization pro-

cess and, therefore, increased the chance of producing better drawings.

e The attempt to use layout constraints for improving the drawing solutions was not successful.

A final observation about the experiments regards processing time. The users spent 14 minutes
on average in each experiment. However, just 10% of this time was used by the system for some
processing. In the other 90%, that we consider idle time, the system was waiting for the user to
perform some action. During the idle time the user was thinking about what kind of hint to give
to the system. This indicates that there is much CPU power left for enhancing the cooperation
between the system and the user. A new promising collaborative approach would be having the

system working in the background, improving areas of the drawing selected by the user.

Examples of Drawings

Figuresb.11to 5.14show some drawings from experiments. The drawings lal@leate the initial
solutions. These are automatically created by the system in a few seconds, and are the same for all
the five users and for the three types of experiments. The drawings laibdlace examples of

improved solutions created by the users.
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(b)

Figure 5.12: Drawings of the C language syntax graph. Drawing (a) has 4 opposite edges, 12 crossings,
39 dummy vertices, 19 bends, width 13 and height 14. Drawing (b) has 3 opposite edges, 4 crossings, 61
dummy vertices, 31 bends, width 15 and height 18.

(b)

Figure 5.13: Drawings of the Unix family-tree graph. Drawing (a) has 4 crossings, 24 dummy vertices, 9
bends, width 12 and height 11. Drawing (b) has no crossing, 25 dummy vertices, 7 bends, width 13 and
height 11.
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Figure 5.14: Drawings of the Forrester’s World Dynamics Diagram. Drawing (a) has 6 opposite edges, 70
crossings, 144 dummy vertices, 56 bends, width 24 and height 15. Drawing (b) has 6 opposite edges, 35
crossings, 162 dummy vertices, 55 bends, width 24 and height 16.
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5.6 Remarks

In this section, we present our main remarks about the GDHints system and the interactive frame-

work. We also suggest some ideas for improving the work.

5.6.1 Constraints

In the system, constraints are used only as a tool for improving the aesthetic quality of drawings
of graphs. This means that the system assigns a higher priority to the aesthetic criteria than to
constraint satisfaction, when comparing two solutions. The reason for this was to experiment with
how constraints could help solving a traditional graph drawing problem, that is, avoiding upward
and horizontal edges, minimizing the number of edge crossing, and working on other aesthetic
issues.

In fact, the users found it hard to improve drawings using only constraints (in experifent
We observed that inserting a constraint and allowing the system to redraw the whole graph can
resultin a new drawing that is very different from what is expected. The constraint can move nearby
vertices apart from each other, and can create several new edge crossings. As a consequence, the

final drawing may look worse than the initial one. We believe that this problem can be solved by:

e providing more meaningful types of constraints that help the user to describe his or her inten-

tions — eg. proximity constraints between vertices; and

e extending the ordering procedure for automatically refining the drawing (minimizing edge

crossings) after solving constraints.

Constraints may also affect the position of vertices of the graph that are not directly restricted by
them, thus destroying the mental map of the drawing. There are some mechanisms for preserving
mental map explicitly. One solution is to assign degrees of movement to distinct vertices; the higher
the degree, the farther the vertex can be moved. Based on this idea, vertices with many unsatisfied
user-constraints would be set with the highest degree of movement. In addition, extra constraints
could be automatically created by the system for keeping the relative position of vertices that are
not involved in any user constraint. Some work in this direction can be foung2n &nd it is

mentioned briefly in Sectiob.6.7.
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5.6.2 Focus

ExperimentE2, based on focus and constraints, demonstrated a considerable reduction in edge
crossings when compared to the results from experiridnt Note that the difference between
experiment&£2 andE3 is much smaller than between experimeBisandE2. This indicates that

focus plays a very important role in the crossing minimization processing. The main advantage of
having focus is to concentrate the graph drawing algorithms on parts of the graph that really have to
be redrawn. Furthermore, by focusing on a small set of vertices, we can reduce the execution time
of our algorithms.

Another issue is that, when focus is allowed in the system (in experireB2dadE3), we can
simulate a manual approach for preserving mental map. This is possible by selecting only vertices
directly involved in constraints and redrawing them. After that, some refinement can be achieved by
selecting vertices near the constrained ones and calling the ordering procedure again. This manual

approach can be implemented later as an automatic process without much effort.

5.6.3 User Search Method

The system allows a search method based on local exploration with backtracking. The main idea
is to improve a solution by exploring its neighborhood (that is, looking for a better solution that
can be generated by applying a small sequence of changes to the current drawing). When a path of
investigated solutions does not lead to any improvement, the user can backtrack to the starting point
and explore a different path. This is possible with the features for returning to the best computed
solution and setting the current working solution as the best one.

We perceived that the users intuitively applied this search method in their experiments. They
initiated the search by using the best computed drawings as a starting point. Then they changed
the drawing several times using hints. If no better drawing was found after a number of iterations,
they returned to the best solution and started the search again. However, if a better solution was
found during the exploration, then the new drawing automatically replaced the current best one and
became the starting point. Sometimes the users did not find a better solution with the search, but the
working drawing seemed to be promising. So they forced the system to set the working solution as
the starting point (that is, the best solution). This allowed the user to concentrate the search on the

promising drawing, rather than on the previous best drawing.
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5.6.4 Quality Feedback

The icon animation and the sound event seemed to have affected the user in two different ways:

e They indicated that the action made by the user was correct and, consequently, reinforced a

future usage of the same operation;

e They motivated the user to keep working on the graph drawing problem.

We believe that such animations and sound may help optimization tasks. There is much potential
for developing better feedback strategies. One possible idea is to build intelligent agents that help to
identify promising areas of the problem and/or indicate whether the user is on the right path towards

a good solution.

5.6.5 Task Division

The advantage of using an interactive framework for optimization problems is the possibility of
getting better results via some sort of division of tasks between the human and an automatic search
method. In our case the system automatically identifies and updates the best drawing. This frees
the user from having to analyze the quality of every new drawing, so that he or she can focus on the
improvement task.

The fact that the system was idle most of the time suggests that there is space for improving the

collaboration.

5.6.6 Properties of the Greedy-Cycle-Removal Heuristic

In this section we prove some basic properties of our modified Greedy-Cycle-Removal heuristic,
presented in Figur8.5. The heuristic is aimed at computing a listof vertices of a graplty =
(V, E), that defines an ordering for the verticeslin The setE consists of normal edges and

Top-Down constraint edges.

Theorem: The modified Greedy-Cycle-Removal heuristic satisfies Top-Down constraint edges in
E. In other words, for every constraint ed@ye v) € FE, v always appears afterin the resultant
list S —assuming that these constraints do not conflict with each other.

The proof of this theorem is by contradiction. Firstly, however, we explain the algorithm in

more details:
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e Line (a) moves all sinks to the beginning &f.
e Line (b) moves all sources to the end%f

e Line (c) moves a vertex that has no incoming constraint edge to the ej¢d sich vertices

always exist when the graph is not empty, and the constraint edges do not conflict.

Suppose that the algorithm violates a Top-Down constraint). Since the relative order
between vertices ith; and S, is hever changed once they have been inserted in these lists, we
can stop the execution of the algorithm immediately when a constraint is violated, and analyze the

situation. Basically, there are only 6 cases that can cause the violation:

1. Vertexw is added to the beginning &. at line (a), wherv has already been inserted into
S;. This means that was not a source when it was addedsipand that it had a incoming

constraint edge. However, in this casesould not be inserted if; at either line (b) or (c).

1. Vertexwv is added to the beginning &f. at line (a), whenu is already inS,.. But thenu was

not a sink before it was inserted K., and consequently it could not be addedstoat line

(a).

iii. Vertexwu is added to the end d; at line (b), wherv is already inS;. This is similar to case

(7), which shows by contradiction thatcould not be inS;.

. Vertexv is added to the end &f; at line (b), andux has already been inserted in¥p. The

same reasoning for cas&)(is valid here, showing that could not be inS...

v. Vertexwu is added to the end d; at line (c), andv is already inS;. This is similar to case
(47).

vi. Vertexv is added to the end cf; at line (c), andu has already been inserted 4. This is

similar to case#).

All these cases imply contradictions regarding the way that the algorithm works; therefore, no

constraint is violated.

Theorem: The time complexity of our modified algorithm is linear in the size of the graphs

(V,E), O(|V| + |E|), if E has no duplicated edges.
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To prove this theorem we use the same data structure proposés].idp array with2|V | + 1
buckets is created, with indices ranging fram- |V'| to |V'| + 1. Each bucket consists of a double-
linked list of vertices. The array is initialized before executing the algorithm as follows: all sinks
are placed in bucket — |V, and all sources are placed in buck&i — 1; every other vertex
v is inserted into buckedutdedv)—indegv). Each vertexv has an integer attribute(v) that
indicates its number of incoming constraint edges. When inserting a veiter a buckeb, we
check whether, has an incoming constraint edge. If it does, then weupat the beginning ob;
otherwise, we insert it at the end &f Finally, an integer variablg, used as a pointer, is set to the
largest non-negative index of a bucket containing a non-source vertex with no incoming constraint
edge. If such a bucket does not exist (for example, all vertices with no incoming constraint edges
are in buckets with indices smaller than zero), theés set to zero. We assume here thatdedv)
andindegv) (describing the numbers of outgoing and incoming constraint edges) are variables
assigned to every vertexc V, and that their were previously computed.

This initialization can be done in tim@(|V| + |E|).

The removal of a vertex from the graph is executed by a routine calREMOVEVERTEX(u)

We consider that the following statement is true before and after the execution of the routine:

StatementST1 the variablep points to the right-most bucket with index greater or equal to zero
that contains a non-source vertex: V, such thatx(v) = 0. If such a bucket does not exigtjs

zero. The variable does not point to buckets with sinks or sources.

This statement is true after the initialization, and is maintained by a search operation in the

routineREMOVEVERTEXas follows:

1. Vertexu is deleted from its bucket. This can be done in constant time.

2. For every edgéu,v) makeindegv) < indegv) — 1; for edge(v, u) makeoutdedv) «

outdedv) — 1. This step is executed i@(indeq u)+outdedu)) time.

3. For every adjacent vertexof v is moved from its current bucket to another bucketouf-
degv) = 0 orindegv) = 0 then we putv into bucketl — [V| or |V| — 1 respectively;
otherwise it is put into bucketutdegv)—indegv). The attributex(v) is also properly up-

dated. Moreovery is inserted at the beginning or at the end of the new bucket according to
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a(v), as in the initialization step. This entire operation uses tini@deq u)+outdequ)).

4. Let @ be the set of all vertices adjacent tou, such thaindegv) # 0 andoutdedv) # 0
anda(v) = 0, after the changes done in the previous stepy 6 empty then sef «— 0;
otherwise, make «—Max(0,Max{outdedv)—indegv) : v € Q}). The set) and the value
of ¢ can also be computed in tin@(outdedu)+indegw)).

5. If ¢ > p, we makep < ¢. This satisfies the stateme®T1 If ¢ = p then the statement is
already valid However, if < p, then we have to updaje We know thap > 0. We perform
a search for a vertexsuch thatx(v) = 0, starting from the bucket of indexto the bucket of
index0. We stop the search as soon as we find a bucket with such a vertex or when we reach
the bucket of index 0. The variabgeis set to the index of the bucket where the search stops.
Note that after this operatignsatisfies the stateme8T 1 No search is necessary on buckets
of index greater thap, because < p and the statement was true whiREMOVEVERTEX
was called. The search demangdsteps at most. We need to perform the search begause
was pointing to a bucket with a vertexthat satisfied the statement, but this vertex may have
been moved by the operations executed at lines (1) and BEMOVEVERTEXWe have

four cases to analyze:

1. Vertexw is still in bucket with indexp. Then the search stops immediately, without

changingp, and the statement is satisfied. This takes constant time.

7i. Vertexw was moved to a bucket with index smaller thanThis happens if there is an
edge(w, u). Since there are no duplicated edges;ould only be moved one bucket to
the left. Then the search checks only 2 buckets (with indgxaxdp — 1) at most, and
findsw again, or another vertex with no incoming constraint edge. In total, the search
is done in constant time. Note that the case where vestexmoved to a bucket with
index greater thap is not possible here, since this would imply the conditior p,

and it would have been treated previously.

iii. Vertexu = w. Then the search uses tird¥p)=0 (outdequ)—indegu)) <
O(outdedu)+ indegu)) at most. In this case, the search time is proportional to the

degree ofu.

iv. Vertexw was moved to the bucket of indéx-|V'| or of index|V'|—1 at line (3), because

itis turns into a sink or a source respectively with the removal. dfet outdeg’ (w) and
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indeg’(w) be the numbers of outgoing and incoming edges dfefore the update at

line (3). Note that once a vertex turns into a sink or a source, it never appears again in the
“middle buckets” (with indiceg—|V'| to |V'|—2), and itis always deleted in this or in the
following loop of the Greedy-Cycle-Removal heuristic. Consequently, we have that the
time for proceeding the search is in the worst c@$g)=0 (outdeg(w)—inded(w)) <
O(outdeg(w)+inded(w)). But this means that it is bounded by the degree of a vertex
that will certainly be deleted in the next loop, and will never appear again in a bucket

analyzed by the search.

6. Deletew from the graph. This also us&3(indeq«)+outdedu)) time, for removing the

edges connected to

In the worst case, the time used REMOVEVERTEK:) is O(outdedu)+ indegu))+
O(outdedqw)+indegw)), wherew is a vertex that will be removed in this or in the next loop of the
Greedy-Cycle-Removal algorithm.

Now, we show how we use the data structure and the routine described above in the main lines

of our algorithm:

1. Line (a) callsREMOVEVERTEM:) and prepends to S, for every sinku € V.

2. Line (b) performs a similar task, by callir@REMOVEVERTE:) and appending to S;, for

every source: € V.

3. Line (c) is more complex. It must check whether> 0. If the answer is ‘yes’, thep
points to a bucket that contains a vertexhe with greatesbutdeqgu)—indeg«) and which
has no incoming constraint edge, because of the state®¥entThis is the vertex that we
are interested in, and we c®REMOVEVERTE:) to remove it. However, ip < 0, then we
have to perform a search for a valid vertexor removal. We know that such a vertex exists
because the graph is still not empty and that there is no conflict between constraint edges.
Also, the vertexu is not in a bucket with index greater than zero, sigdelwould imply
thatp > 0. Therefore, the vertex is in a bucket with index 0. Searching for this vertex
demands checking| + 1 buckets. We have thdt| + 1 = |outdedu)—indequ)| + 1 <
outdequ)+indegu) + 1. Thus, to findu we use time) (outdequ)+indeg«)). We then call
REMOVEVERTEK:). The vertexu is appended t&; once it has been removed frath
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In the worst case, the degree of every vertexn G is counted a constant number of times in
the total time involving the main lines of the algorithm: (1) during the search operation in line (c);
(2) whenu becomes a source or a sink by removing another vertexp avas pointing to a bucket
that contained, — this is caseif) of the routineREMOVEVERTEXwhich demands a search with
time proportional ta:; and (3) finally whenu is removed.

Concatenation of the listS; and.S,, and reversion of the edges of the graph that are against
the ordering defined by can be done in linear time. The time complexity of the whole algorithm,
therefore, is linear.

We note that the original Greedy-Cycle-Removal heuristic is proven to produce & tist
vertices that reversers at md#t|/2 — |V|/6 edges, if no double edgeéu(v) and (v, u)) exist.

However, we cannot guarantee this performance, with our modification.

5.6.7 Related Work

Paris [L46 presents an interactive single-line diagram editor that serves as a user interface to a
real-time power system simulator. The editor exploits a collaboration between user actions and
automatic tools based on an adaptation of the Sugiyama method in a very similar way to our User
Hints framework. The aim is also to improve drawings or to adjust them according to domain
knowledge. The user can perform manual changes and run the automatic tools on a selected part
of a drawing such as in the GDHints system. The editor, however, is based on a different graphical
representation for the drawings, and details of how some interactive features are implemented are
not given.

Bohringer and Paulisct2p] introduce an interactive constraint-based system for directed graph
drawing. The user can specify layout constraints that assign vertices to particular positions or ranges
in the diagram, define a relative position between vertices, and group vertices together in clusters.
A drawing is created by a constraint satisfaction system integrated with the Sugiyama Method.
Basically, each step of the Sugiyama method implies some automatic constraintsXratttey”
positions of the vertices. These constraints are combined with the user-defined constraints, and are
solved by the constraint system in order to obtain a drawing solution. If an initial drawing of the
graph already exists, then special constraints with low priority are also included to ensure that the
new drawing does not differ drastically from the previous one. The special constraints, for example,
may define a horizontal and vertical ordering for all vertices according to their positions in the initial

drawing.
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5.6.8 A Better Optimization Method in the GDHints System

The optimization method in GDHints can be improved by improving the algorithms in the steps of
the Sugiyama method. The heuristics that we implemented are only one possible choice. We could,
instead, use a constraint satisfaction system, such as the one described in the previous section.
There are also many simple heuristics that may offer promising results. Examples are swapping
the position of the vertices of a layer, or using the median heuristic instead of the barycenter for
crossing reductiord3).

Better optimization methods can produce drawings with higher quality. The question of interest
is how to support the same type of interactive facilities discussed in this chapter in another algo-
rithm. Moreover, it would be interesting to see whether human interaction is still necessary when

using a more effective method. In the next chapter we approach these issues.



CHAPTER 6

Extending the Graph Drawing Case Study: A Focus and

Constraint-Based Genetic Algorithm

In the previous section we saw that user interaction combined with heuristics based on the Sugiyama
method could provide better drawings of graphs than the heuristics alone. In the present chapter
we investigate this issue further for a more effective graph drawing algorithm. We describe a focus
and constraint-based genetic algorithm for directed graph drawing, and show that it can still benefit
from human interaction.

The design of the genetic algorithm was published in the proceedings of the Second Interna-
tional Conference on Hybrid Intelligent Systems in 2089][ and as a technical repo&()].

This Chapter is organized as follows: Sectidi discusses the application of Genetic Algo-
rithms to Graph Drawing. Sectiohi2 provides some definitions for drawings of directed graphs.
Section6.3 presents our genetic algorithm and describes how focus and layout constraints is sup-
ported. Sectiorb.4 explains the integration of the genetic algorithm into the GDHints system.
Section6.5 presents a human evaluation of graph drawing tasks using the genetic algorithm. Fi-
nally, Section6.6 discusses other issues regarding the use of the genetic algorithm and its internal

structure.

6.1 Genetic Algorithms for Graph Drawing

The success in applying genetic algorithm to different optimization problems has lead to the devel-
opment of genetic algorithms systems for Graph Drawing. The expectation has been to obtain better
approximate results or higher flexibility in supporting complex objective functions than traditional
heuristic methods.

A number of graph drawing genetic algorithms have been prop@$62, 88, 116 137, 163
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187). Most of them are for general graphs, or for drawing directed graphs with straight-line edges.
When dummy vertices are considered and the edges are allowed to bend, the problem is more
difficult; Brankeet al. [187] treats this problem.

Despite of the promised benefits in using genetic algorithms, the applications of this method for

Graph Drawing have shown serious disadvantages:

e Excessive computation time is necessary even for drawing simple graphs.

¢ The effectiveness of the method decreases drastically as the size of the graph increases.

Thus, many of the papers cited above contain bad drawings that could easily be improved by
using some standard graph drawing heuristics.

In fact, we consider that the best genetic algorithms for graph drawing are the hybrigdtbaes
combine traditional genetic operators with domain-specific heuristics. This is the case of the sys-
tems presented by Branke al. [29, 187, which implement a spring algorithm and the barycenter
heuristic as mutation operators. Our own experience in this direction, using multi-agent systems
for drawing general and directed grapl$,[52, 53, 175, shows that better results are yielded
by a combination of different strategies. Moreover, Brapkal. [187 and Rosete-Sarezet al.

[163 also investigate the use of different solution representations, where a drawing is described
not by theX, Y coordinates of its vertices, but by the relative position between the vertices. The
aim is to allow simple mutation operators to perform large and effective changes of the drawing.
Another aim is to abstract the major characteristics of the solutions, so that drawings with no signif-
icant differences (for example, a drawing that is a shifted or a mirrored version of another layout)
are considered the same. This avoids having the population of solutions overloaded with similar
drawings and, consequently, losing diversity.

Although, these extensions are beneficial, the application of genetic algorithms for graph draw-
ing is still far away from the effectiveness and efficiency desired for this problem. We therefore
propose using human interaction based on hints, so that tasks that are not properly performed by a
genetic algorithm can be complemented by a user, and vice-versa.

We present a genetic algorithm for this aim, which can be applied as the optimization method

1The name to be given to a modified genetic algorithm can arouse political feelings. Some researchers prefer always
to employ the term “hybrid” to distinguish an extended genetic algorithm from traditional genetic algorithms based on
binary operators. Other researchers are more radical, and emphasize this difference by using the general expression
“evolutionary approaches” when referring to hybrid genetic algorithms. In this chapter, we do make this difference in the
nomenclature. We describe a hybrid genetic algorithm, but we call it a “genetic algorithm” for simplicity.
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in the interactive framework described in the previous chapter. The genetic algorithm necessarily
supports focus and layout constraints, and can work on an existing drawing.

Another genetic algorithm that supports similar facilities is presented by Masdj.[ This
genetic algorithm solves user-defined constraints that can impose an ordering for the vertices (such
as the Top-Down and Left-Right constraints that we investigate), and assign vertices to particular
coordinates (this would be comparable to define fixed vertices in our approach). Our work, however,
is different from the approach of Masui, because we consider that many vertices can be set as fixed
vertices. Thus, our algorithm tries to ignore the fixed vertices as much as possible, and concentrates
action on the selected vertices. We also use a different structure to implement our genetic algorithm,
and we present more advanced operators that are based on the work of &rahK&87] and on

own our experiencedp, 52, 53, 175.

6.2 Graph Drawing Definitions

We use the same graph drawing standards from the previous chapter, where a directed graph is
drawn on an infinite rectangular grid of, Y coordinates. Thé& -coordinates represent layers,
while the X -coordinates are called columns. Layers and columns are labeled with integers from
bottom to top, and from left to right. Figui®@1 shows an example of a drawing of a graph on a
grid. We, however, define here a drawing in a more formal way:

A drawing D = (V, E, M,d) consists of a directed graghi = (V, E), a setM of dummy
vertices, and a functiod that assignsX, Y coordinates of the grid to every vertexin V' U M.
Every dummy vertex is related to a particular edga E, and uniquely identifies the intersection
of e with a particular layer. We use the notation$ andv.x to refer to theY -coordinate and the

X-coordinate, respectively, of a vertexn V' U M. If, for an edgee = (u,v) in E,

vl —ull >1,
thene is long and hasv.l — w.l|] — 1 dummy vertices.

The graph-drawing problem is to produce drawings that satisfy the same aesthetic criteria de-
fined in the previous chapter. The main difference from that chapter is that we include here a new
aesthetic criterion, minimizing the total edge length, which is set with a low priority. We also in-
clude the satisfaction of layout constraints directly as part of the objective function; these constraints
receive the highest priority.

The interaction with a graph drawing process consists of supplying user hints. Hints are manual

adjustments of the coordinates of the vertices, Top-Down and Left-Right layout constraints, and
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Figure 6.1: Drawing of a directed graph on a grid.

focus on a region of the drawing for improvement. Focus is performed by selecting a group of

vertices. Vertices that are not selected are cdliaxtl

6.3 The Genetic Algorithm

In this section we describe a genetic algorithm that supports focus and layout constraints. The
design of the genetic algorithm is based on the criterion that it should be fast and economical with
memory usage.

As in the previous chapter, the selected vertices of a graph drawing are the only elements that can
be repositioned. The layout of the remaining part of the drawing has to be preserved. This condition
implies that having a population of individuals where each one contains a complete drawing of
the graph is not an efficient approach for minimizing memory usage. Much memory is wasted,
particularly when a small percentage of the drawing is selected.

At first glance, a good approach seems to be constructing an induced sub-graph with the selected
vertices. A drawing could then be produced for the sub-graph independently, and combined with the
coordinates of the fixed vertices. However, this is not effective because there is a strong dependency
between selected and fixed vertices, mainly due to the edges connecting them. Such dependency
affects — and in most of the cases restricts — the repositioning of the selected vertices.6Rlgure
illustrates this situation. Figuré.2(a) is an initial drawing with selected verticése and f, and
Figure6.2(b) is an improved version of the drawing produced by our genetic algorithm. In order
to increase the proximity between the neighbor verticesdd, vertexd had to “jump over” the
fixed vertexc. Verticese and f also had to be moved in order to improve the layout of the edges
(e,a), (f,g) and(d, f), regarding several aesthetic criteria such as minimizing the number of edge

crossings and presenting uniform edge orientation. Furthermore, the selected vertices could not be
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placed anywhere; vertex overlap is not allowed and some positions of the drawing were already

taken by fixed vertices.

(b)

Figure 6.2: Dependence between selected and fixed elements of a graph when redrawing selected vertices.

The dependency between vertices implies that we cannot separate selected and fixed elements
of the graph completely. Therefore, another way of managing selection effectively and efficiently is
necessary. Our solution to this problem consists of a more complex data structure for the individuals
in the genetic algorithm, and special operations that allow integration of the individuals with a

complete drawing of the graph. The following section gives details of our approach.

6.3.1 Individuals

Let D be a drawing of a grap&y. Letv.selectecbe a Boolean attribute that indicates, for any real
or dummy vertex in D, whetherv is selected or not. We extend here the concept of selection in
order to include edges: an edgin D is selected if at least one of its endpoints or dummy vertices
(if they exist) is selected. This condition is indicateddiselected

The genetic algorithm manipulates a drawing of the whole graph, a list of layout constraints and
individuals. An individual contains information about only the selected vertices and the selected
edges, and it can be used to reconstruct the selected area of the drawing. The genetic algorithm can
have several individuals each possibly describing a different layout for the selected area. A group
of individuals generated in an iteration of the genetic algorithm is called the population.

Figure6.3shows the structure of an individual. It consists of three main parts:

1. REALV a fixed-length vector with th&', Y coordinates of all selected real vertices;

2. EDGES a vector with one position for each selected edge of the drawing, holding a list of all

dummy vertices associated with this edge. The list is sorted such that the dummy vertices are
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in the same order as they appear when following the orientation of the edge. Every dummy
vertex inEDGEScontains itsX, Y coordinate position, whether this vertex is selected or not,

and a reference to the edge to which it is related.

3. DUMMYV avariable-length vector with references to the selected dummy vertiE&GES

The vectoDUMMYVis used for quickly accessing the selected vertices only.

REALV EDGES
| x| x B3 | Bdee, | Bage: | Edee,
DUMMYV >

| dummy l_ret1 dummyz_refI dummyp_reti »

Figure 6.3: Representation of an individual. Selected dummy vertices are shown in gray color.

Note that an individual holds information about fixed dummy vertices as well as selected
dummy vertices of a selected edge. In Figarg fixed dummy vertices are represented by white
ellipses, while the selected ones are highlighted in gray. Although fixed dummy vertices should not
be redrawn, they have to be included in the individual since they can be deleted if the length of their
edges is shortened. Consider that the user has selected the endpoints of a longoetiget its
dummy vertices. If th& -coordinate (saved iIREALV) of any of the endpoints of is changed,
then the length of the edge can be reduced and some of its dummy vertices need to be removed. On
the other hand, if the edge length is increased, then new dummy vertices have to be created. All
new dummy vertices created with this process are marked as selected.

For simplicity, we refer to a real and a dummy vertex in an individual using the same notation
for vertices in a drawing, introduced in Sectiér?; that is, we use.x andv.l to represent th&
and theY coordinates of a vertex, respectively, in an individual. If v is a real vertex, then we
are referring to coordinates in the vecREALVof I. If v is a dummy vertex, then we refer to
coordinates saved in the vec®DGES

An individual can be produced directly from a drawiiig) of the whole graph containing a
selected set of vertices. We call this operatibiractionand we use the notatidaxtract (D) to
indicate the new individual extracted from. As an example oExtraction the drawing in Figure
6.2(a) would result in an individual witiREALV containing coordinates for vertices e and f.

The vectorEDGESwould have six positions — representing the selected edgés3, (e, a), (b, d),
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(d, f), (e, f) and(f, g), each with empty lists, since there are no dummy vertices in these edges.
The vectoDUMMYVwould have zero length.

It is possible to combine a drawing of the whole graph with an individual; we name this op-
eration Merge. The notatioderge (D,I) represents the drawinG merged with the individual .

The merge operation updates the sequence of dummy vertices and the coordinates of all selected
vertices of D according to the information ii. Note thatD may already have a layout for the
selected elements, which is overwritten by the information in the individual.

Extraction and Merge are used by the genetic algorithm in several stages of the graph drawing
improvement. For instance, the first individual produced is extracted from an initial drawing input
to the genetic algorithm. Later, new individuals are merged with this drawing in order to create
a complete layout for evaluation. More details about the application of Extraction and Merge are

given in the next sections.

6.3.2 Quality Evaluation

We define an evaluation functiadp(D, R) = (¢1(D, R), q2(D), q3(D), ..., q7(D)) that measures
aesthetic aspects of a drawifly and the degree to which satisfies a lisi? of constraints. This

function results in a cost vector, whose parameters are as follows:
1. ¢1: number of violated Top-Down and Left-Right constraints;
2. ¢2: number of horizontal and upward edges;
3. g3: number of edge crossings;
4. g4: number of dummy vertices;
5. ¢5: number of edge bends (the angle of the edges incident to a dummy vertex &)fot

6. ¢g: the area of the drawing (the number of layers multiplied by the number of columns used

by the drawing); and
7. q7: the sum of all edge lengths.

A priority order is defined such thaf is more important thag;, foralli =1,2,...,6.
Minimizing the number of edge crossings, bends, the area of the drawing and other aspects is a
common approach for improving drawings of directed graphs. In general, low cost vectors indicate

aesthetically pleasing drawings and, therefore, solutions of high quality.
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Every individual produced by the system is assigned a cost vector. The cost vector measures
only the selected elements of the drawing and their relation with the fixed elements. This is obtained
by firstly merging the individual with the existing drawing of the whole graph, and then computing
q1, g2, - .., q7 for the selected vertices and edges. For instance, when compgting need to
count the number of edge crossings between two selected edges and between a selected and a non-
selected edge. The crossings between two non-selected edges do not have to be considered for the
cost vector, since they are invariant.

Given two individualsl; and I with assigned cost vector3; = (qi,qi,...,q}) andQs =
(2,43,...,q%) respectively, we say thdj is betterthan Iy, denoted byl; < I, if Q; is smaller
than@- in the priority order; formally:I; < I» if ¢f < ¢3, orif there is ak, 2 < k < 7, such that
q,i < q,% andg} = ¢?foralli = 1,2,...,k — 1. Using this ordering, we aim to produce drawings

which minimize the cost vector.

6.3.3 Evolutionary Cycle

The genetic algorithm takes as input an initial drawingf a graph with some selected vertices,
and a listR of Top-Down and Left-Right constraints. The algorithm produces a population of
individuals representing different layouts for the selected elements of the drawing.

The genetic algorithm executes the following steps:

1. A copy D’ of the drawingD is made. The copy, which is also a layout of the whole graph, is

used in several activities including in merging.

2. An initial population P is created by extracting an individualfrom D’ and applying the
mutation operators td several times in order to produce new individuals. The populdagpn

contains the first individual and 20 mutated clones.
3. iter «— 0.

4. The populationP;., is evaluated by computing a cost vector for every individual. Basically,

for everyI in Py.,, the genetic algorithm executdterge (D’,I) and compute§)(D’, R).

5. A sub-populationS is chosen fromP;., by a kind of tournament selection. The best indi-
vidual in Py, is directly inserted inta5 (if there is more than one individual with lowest
cost vector, then one is chosen arbitrarily). The remaining individual3.in take part in

pairwise competitions: we choose randomly two individualsind I> from Py, that have
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not yet participated in a competition; if < I, thenl; is added taS; otherwise,l; is added

to S. In the first generation of individuals, the competition is always between individuals
created by mutation. In next generatiofsis chosen among the individuals created via mu-
tation, andl; from the individuals created via crossover. Note that this step produces$a set

with 11 individuals (the best individual plus the 10 tournament winners).
6. iter «— iter + 1.

7. A new populationP;., is created: the best individual ifi (decided in step 5) is directly
transferred t@>;.,; then two individuald; and/, are randomly chosen and removed fr6in
These individuals are combined by a crossover operator and are adBgg td'he process
repeats untilS is empty. In order to complete the new population, 10 other individuals are

produced by mutation of the best individual My, .

8. If a stop criterion is reached, then the evolutionary cycle ends, and the genetic algorithm

outputsPy..; otherwise, it goes back to step 4.

In the genetic algorithm, new individuals are created through mutation or crossover of existing
ones. Good individuals, with low cost vectors, are expected to succeed in the selective tournament
and propagate their characteristics to the next generations. We stop the algorithm in our system
after a predefined number of iterations. However, other stop criteria can be used, such as detecting
when no significant improvement is made in the best individual after many consecutive iterations.

Figure6.4illustrates the internal functioning of the genetic algorithm.

Drawing D’ 1% Ind.

Extraction
22 -2 2
Evolutionary

A cycle

v
3 Population of Individuals
| Tter i+1
T 0| 25 | 28| 3B - %Iteri

Cost vector ‘ | | ‘ | |

Figure 6.4: Internal functioning of the genetic algorithm.

The drawingD’ is necessary since it contains the dependency between the fixed and the selected

vertices and edges. An individual can be thought as a partial solution — a layout of only the selected
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elements. By merging this individual with’ we obtain a complete solution. The evaluation of
individuals only makes sense in the context of the whole drawing.
Moreover, the drawing)’ provides the position information for all fixed vertices. Such infor-

mation is useful during mutation and crossover in order to avoid vertex overlaps.

6.3.4 Operators

This section describes the mutation and crossover operators implemented in our genetic algorithm.

First, some basic routines are introduced.

Basic Routines

We developed five basic routines for helping to changeXh& coordinates of selected vertices.
The changes are applied to vect®&BALV, EDGESand/orDUMMYYV of an individual passed by

the parameters. The routines are:

e MOVEX (Individuall; Vertexv; Integerz). This routine changes the horizontal coordinate
of a selected (real or dummy) vertexin an individual/. MOVEXtries firstly to release
the positionz on layerv.l, so thatv can be moved ta (v.z — x) without overlapping any
vertex. For this aim, it may shift some vertices or find an alternative horizontal position for
the move. Ifv.z is already equal te, the routine verifies whether this position is occupied
by another vertex, and solves overlaps. In the next lines, we refer to vertices in lagaly.

The routine works as explained below:

1. If there is no vertex: in positionz, with v # v, thenv.z is set tox and the routine
ends.

2. If z is occupied by a fixed vertex, we search for the closest positiaihat is not
occupied by a fixed vertex (even though it may contain a selected vertex); othefwise
is set toz.

3. If the positionz’ is occupied by a selected vertexwith u # v, then we shift theX -
coordinate of: and of as many selected vertices as necessary, not includingrder

to release this position.

4. Finally, v.z is set toz’ and the routine ends.
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The directions for the searching and shifting actions are determined by the current horizontal
coordinatev.x of v, the new positior:, and by the two global Boolean variables that we call
samedirsearclandsamedirshift Whenz < v.z, the vertexv has to be moved to the left of

its current position. However, if is already occupied by a fixed vertex then this move is
not possible and a search for a better position has to be carried saim#dirsearch=True
then the routine searches on the left-hand side of the drawing startingnadther words: it
searches for the greatest positidrsmaller thane that is not occupied by any fixed vertex.

If samedirsearch=Falsethen the algorithm searches in the opposite direction (looking for
the smallest:’ greater thanr). A symmetric reasoning is adopted when> v.z. When

x = v.x, the search direction is chosen randomly. Step 3 follows a similar idea for shifting
vertices, where the direction of shifting is determinedby, x, and the global Boolean

variablesamedirshift

MOVEXcan be implemented in linear time in the total number of fixed and selected vertices

on layerv.l, if a sorted list of all vertices in this layer is provided.

e MOVEY (Individuall; Vertexv; Integery). MOVEY changes the vertical coordinate of a

selected vertex in an individuall. It executes the following steps:

1. vl —y;

2. MOVEX ([,v,v.x).

e UPCLOSURE (Individual; Vertexwv). This routine returns a list of all selected vertices
in layerv.l or above, that can reaah includingv itself, following only edges with both

endpoints selected.

e DOWNCLOSURE (Individual; Vertexv). This routine returns a list of all selected vertices
in layerv.l or below, that can be reached framincludingw itself, following only edges with

both endpoints selected.

e MOVEYCLOSURE (Individudl; Vertexwv; Integery; Boolean upclosureflag)This routine
changes the vertical coordinate of a selected vertamxd of all vertices directly or indirectly
connected to it in a particular direction. The parametes the newY -coordinate to be

assigned t@. The pseudo-code BiOVEYCLOSURES presented below:

1.d—y—wl
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2. If upclosureflaghenC — UPCLOSURE(I,v)
elseC — DOWNCLOSURE(I,v);

3. Foralluin C do

a) u.l — ul+d;
b) MOVEX (,u,u.x).

Note thatMOVEXnot only moves a vertex to a new position in a layer, but also guarantees no
overlap with any other vertexMOVEYmoves a vertex to a new layer and cal©VEXto solve
overlaps.MOVEYCLOSURHnoves a vertex to a new layer as well as the vertices than can reach
it or be reached from it. After executindOVEY or MOVEYCLOSUREall edges connected to
the moved vertices are checked for invalid dummy vertices. If necessary, new dummy vertices are
created and existing ones are deleted.

Although we have not explicitly mentioned here, these basic routines use the dllyidg-

scribed in Sectio®.3.4 in order to query the graph structure and the fixed vertices.

Mutations

We implement three mutation operators. One is a general random mutation, one follows the well
known "barycenter” heuristic, and one solves constraints. The choice for the design of these muta-
tions was based on the work of Brangeal. [187 and on our experience with the application of

multi-agent systems to Graph Drawingg] 52, 53, 175.

¢ RANDOMCHANGE (Individual). This operator changes the coordinates of a selected ver-
tex in an individuall. It randomly chooses a selected veriexa direction to move (hori-
zontal or vertical), and an offsét € Z*. If the direction is horizontal or i is a dummy
vertex, then the operator caNMOVEX( ,v,v.x + k); otherwise, it callMOVEY(,v,v.l + k),
MOVEYCLOSURH(v,v.l + k,False)or MOVEYCLOSURH(v,v.l + k,True) RANDOM-
CHANGE:Is similar to the mutatiorShakedescribed in 187]. The main difference is that
we setk according to a linear distribution of probabilities where small absolute values of the
offset have a higher chance to be chosen. Moreover, a maximum offset is defined so that the

width or the height of the whole drawing is not greatly increased.

e WALKBC (Individual I). This operator follows the same idea of the mutatitalk BC

introduced by 187]; it implements a heuristic based on the famous barycenter method of
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Sugiyameet al. [178. Our version ofWalk BC moves only selected vertices and considers
both real and dummy vertices. It randomly chooses a selected veateka vertical direction

d = 1 (for Up) ord = —1 (for Down). TheX-coordinate ofv in I is set to the arithmetic

mean of all adjacent vertices obn layerv.l—d. Then a vertex: adjacent ta in the direction

d is chosen at random, and the barycenter process is repeated for u. The mutation continues
walking until there is no more adjacent vertex to choose in the diredtiodlALK BC calls

MOVEXin order to move selected vertices.

e SOLVER (Individuall). This operator solves an unsatisfied constraint or changes the ori-
entation of an edge that does not point downwa&®LVERrandomly chooses a selected
vertexw that is part of an unsatisfied constraint (u, v) or ¢ = (v, u). If ¢ is a Top-Down
constraint, then the operator calOVEYCLOSURH(u, v.l + 1,False)for ¢ = (u,v), and
MOVEYCLOSURH(u,v.l — 1,True)for ¢ = (v, u); otherwise, ifc is a Left-Right constraint,
it calls MOVEX({ ,u,v.z — 1) for ¢ = (u,v), andMOVEX( ,u,v.x + 1) for ¢ = (v, u). If
there is no unsatisfied constraint, but the individual has an edgéu, v) that is horizontal
or upward, then the operator changes Yheoordinate ofu or v as if e were a Top-Down
constraint. In the case thatdoes not violate any constraint and has no horizontal or upward

edges, another mutation operator is called for changing

The mutation to be applied in order to change an individual is chosen at random.

Crossovers

The genetic algorithm has one crossover operator:

e COMBINE (Individually,l5). This randomly chooses a selected real vettéRat has dif-
ferent coordinates iy and I, and swaps its positions in the individual81OVEX and

MOVEYCLOSURIHre used for swapping the coordinates of

6.4 Integration into the GDHints System

We have integrated the genetic algorithm into the GDHints system. The system provides an ini-
tial drawing of a graph using the Sugiyama method. The user then performs manual changes of
the drawing, specifies layout-constraints, and/or selects some vertices for redrawing. The genetic

algorithm was implemented as an independent processing thread that can be activated at any time.
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When activated, it creates a copy of the current drawing being visualized by the user and starts the
evolutionary cycle. Every three seconds, the application locks the population of the genetic algo-
rithm, recovers the best individual and merges it with the current (external) drawing. The user sees
a progressive sequence of changes of the selected elements of the drawing whenever the best indi-
vidual is continuously improved. If the merged drawing is better than the best drawing previously
saved by the system, then the new drawing is set as the best one.

Figure6.5shows drawings produced by the GDHints system. The drawing on the left-hand side
is the an initial layout generated using the Sugiyama method. Selected vertices are highlighted in a
darker color. The drawing on the right hand-side is an improved solution, produced by the genetic
algorithm in 12 seconds (on a Pentium 11l 760Mhz with 284Mb of RAM running Windows Me).

The genetic algorithm works on any group of selected vertices. The user can select just a single
real vertex, a dummy vertex of an edge, or all vertices of the graph. The selected vertices do not
have to be adjacent in the graph or even in the drawing. Figushows improvements of two
disjoint regions of a drawing.

A point to be noted is that the user cannot make manual changes while the genetic algorithm is
running. This is for efficiency. If such changes were allowed, then the cost vector of all individuals
in the current population would need to be recomputed, and the list of dummy vertices may have
to be reconstructed in order to keep them consistent. This processing is very time consuming;
therefore, we decided simply to have the users stop the genetic algorithm before performing manual

changes.
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Figure 6.5: Improvement of a selected graph drawing region (of the Forrester's World Dynamics graph.)
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Figure 6.6: Simultaneous improvement of two disjoint selected graph drawing regions (of the C-Language
Syntax graph.)

6.5 Evaluation

We performed human experiments, similarly to what was done in the previous chapter, in order to
verify whether the combination of user plus system could provide better drawings than the genetic

algorithm running alone.

6.5.1 Experiment Setup

The experiments involved 20 subjects, all students from the School of Information Technologies of
The University of Sydney. Seven subjects were doing an honors degree, eight were doing masters,
and five were Ph.D. students. They had different interests in Computer Science; some students were
involved with research in Language Technologies and Networking. Others were doing a coursework
masters degree in Information Technologies in general. Two honors and two Ph.D students were
from the Information Visualization Research Group. None of the subjects, however, had been
involved with the User Hints research before.

A 30-minute introduction to the system was provided. During the introduction the subjects
learned about the graph drawing problem, the tools available in the system, and the goal of the
experiments. They then had 15 minutes for practicing with the system, by improving a drawing of
the Ecosystem graph (this is the grapB used in the Pilot Study in Sectidn5). The drawings
produced for the Ecosystem were not included in the analysis of the performance of the subjects.

Each subject did 12 experimeftslivided in two task sessions as shown in Tabl& The

experiments used graphs mostly from graph drawing papers. The daphtax Klayer, Unixsys

>The experiments were performed in a standard computer, a PC Intel Celeron 702Mhz with 256Mb RAM, running
MS Windows 98.
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Exp. | Graph Name [V] |[E| | Initial Drawing | User Interaction

Session 1

Al Csyntax 34 46 Sugiyama All

A2 Klayer 18 24 Sugiyama All

A3 Unixsys 41 49 Sugiyama All

A4 Worlddyn 43 69 Sugiyama All

AS Knation 23 87 Sugiyama All

A6 Telcall 111 193 Sugiyama All

A7 Gd94dir 40 131 Sugiyama All
Session 2

B1 Knation 23 87 Sugiyama Focus Only

B2 Telcall 111 193 Sugiyama Focus Only

B3 Unixsys (with 41 49 Sugiyama All

constraints)
B4 Worlddyn 43 69 High Quality All
B5 Gd94dir 40 131 High Quality All

Table 6.1: Setup for the experiments with the genetic algorithm.

andWorlddynare the same presented in ChageThe Knationis the Knowledge Nation graph
presented ing6]. The graphTelcallis a network of telephone calls. It appeared in the Graph Draw-
ing Contest during the Graph Drawing Conference in 1988%. [ Another graph from the Graph
Drawing Contest, this time from 19949 is the Gd94dir, it describes the references between
graph drawing papers. The size of all graphs are shown in the table. The ¥vagtdyn Knation
TelcallandGd94dirare the largest ones.

The first task session consisted of 7 experiments (lab®letd A7), where the subjects had to
improve drawings created by the Sugiyama method. The subjects could perform manual changes
of the drawings and focus the genetic algorithm for improving the layout of a group of vertices.

The second task session involved 5 experimeBist¢ B5), where the subjects had to execute
special graph drawing activities. In experimeBtsandB2 the subjects could perform only focus;
manual changes were disabled in this setup. In experif@8rihe subjects could perform both
focus and manual changes, but the graph had pre-assigned 16 layout constraints (9 Left-Right and
7 Top-Down constraints) that needed to be satisfied. In experinBzrasdB5 the subjects were
presented with high quality initial drawings, previously computed by running the genetic algorithm
extensively on the Sugiyama-based drawings. The task was to try to improve the high quality by
performing focus and manual changes.

We allowed 20 minutes for every experiment. The order of the drawing activities for the first
and the second sessions was sorted randomly, so that no two subjects did the same experiment in

the same order. The only exception was the experirAénivhich was the first task for all subjects.
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The experiments were video taped and the tapes were studied afterward. We also observed the
subjects during the experiments in a hon-invasive way. We noted any significant problem with the
interactive framework and promising graph drawing strategies. At the end of the experiments, the
subjects were interviewed about the strong and weak points of the system, their general strategy for
using the genetic algorithm, and about the amount of time available for the graph drawing tasks.

In order to compare the human performance with a fully automatic approach, we produced
drawings by running the genetic algorithm alone: for every experitngatran 100 genetic algo-
rithms, each one taking 40 minutes. The algorithms were executed on the same type of computer
used by the subjects, and the drawings they produced after intervals of 20 and 40 minutes were col-
lected. The results for 20 minutes indicate what the genetic algorithm can produce if they are used
instead of the humans during the experiments. The results for 40 minutes show the performance of

the algorithm if extra 20 minutes are allowed.

6.5.2 Results

The results of the experiments are presented in Tah® 6.13 Each table is divided into four

parts that show, from top to bottom, the quality of the initial drawing, the quality of the drawings
produced by the subjects, and a summary of the results obtained by the genetic algorithm for 20 and
40 minutes GA20andGA40respectively).

The table has two extra columns for the subjects indicating their performance against the fully-
automatic genetic algorithm: columi@&A20Compand GA40Comp These columns contain the
number of executions of the genetic algorithm (for 20 and 40 minutes respectively) that produced
worse results than a particular human subject. We call this informatidrutinan performancdt is
important to have such measure since the genetic algorithm is a stochastic method (it may produce
different results in every execution), and we need to know about how the subjects perform when
compared to possible outputs of the method. A value 1GBA20Comgor GA40Compindicates
that the subject in the corresponding row performed better than all 100 executions of the genetic
algorithm. A value 0, on the other end, means that the subject performed worse than all executions
of the algorithm, or as bad as its worst execution. In general, a value greater than 50 indicates
that the human performance was higher than the average performance of the genetic algorithm.

For summarizing the human results, we provide the minimum, the maximum, the average and the

3Except experimentB1 and B2, which shared the automatic-generated results for experimdnasid A6, respec-
tively.
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standard deviation for every column related to the subfjects

For the genetic algorithm, the tables present the quality of the best drawing, the fiftieth best
drawing (rowBest5(, and of the worst drawing produced by the 100 executions for 20 and 40
minutes. The minimum, the maximum, the average and the standard deviation values for each
aesthetic criterion separately are also included.

The first good result of the evaluation was that the genetic algorithm, by itself, could improve
the initial drawings created by the Sugiyama method significantly. The genetic algorithm was even
better than the human subjects in the previous study (in Chapfer two graphs:Csyntaxand
Worlddyn For theWorlddyngraph, for example, the execution of the genetic algorithm resulted
in a drawing with only 21 edge crossings (see Tah®, while the best human performance was
35 crossings (Tabl&.2); even the 50th best execution of the genetic algorithm produced a better
result: 33 edge crossings. On the other hand, the human results in the pilot study were still better
for graphsKlayer andUnixsys

We highlight on the tables the cases where the human performance was 100, in order to help the
reader to locate those values. We also highlightatherage human performanocehich are given
by the intersections of rovwv with columnsGA20CommandGA40Comp

In experimentAl (graphCsyntay, the subjects were more effective than the genetic algorithm
alone: 6 out of 20 subjects outperformed the algorithm in all executions. Note that some subjects
did very bad (Subjects 2, 10, 17, 13 and 11), with a performance inferior to 40. Nevertheless, the
average human performance was reasonably high: 68.05.

For the experiment&2 (graphKlayer) andA3 (graphUnixsys the human performance was out-
standing: 18 and 15 subjects, respectively, had performance 100. The average human performance
was above 90, and just one subject — in experird&ht had a very poor performance.

We found that longer executions of the genetic algorithm for grapégntax Klayer and
Unixsyscould not improve the drawings much. The results 8440 suggest that the genetic
algorithm had reached a local minimum in the first 20 minutes, and could not escape from it.

For the largest graphs in the first experiment session, the human perforr@iki@ompwas
low. In experimentd4 (with graphWorlddyn only one subject had performance 100; the average
human performance was 64.60 — still higher than the average execution of the genetic algorithm. In

experimentA5, A6 andA7 (graphsKnation Telcall and Gd94dir), none of the subjects achieved

“Note that a lower value of the latter quality aesthetic does not mean necessarily a better drawing, since there is a
priority order for the aesthetic criteria. As we mentioned in Chaptégss offending edges and less edge crossings may
imply in a greater number of dummy vertices and bends, or in a larger drawing area.
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performancel00, and the average human performance was 38.80, 32.00 and 29.29, respectively.
Note that the genetic algorithm produced better drawings when more time was allowed for these
graphs (see rows f@e40and columnGA40Comgor more details).

The comments made by the subjects during the interview help to understand their performance
in the first session of experiments: the subjects said that they could use imagination for manually
improving the drawings of the small graphs. For large graphs they mentioned feeling lost with the
overwhelming number of edge crossings and bends.

In fact the aesthetic measures of the initial drawings of the large graphs were very bad, and
much work would be necessary to produce better solutions. Running the genetic algorithm on the
whole graph for these cases would be faster than by manual change. Most of the subjects realized
this fact, but too late in the experiments. For instance, we saw some subjects spending time with
local edge crossings in the initial drawingTdlcall, which we knew could be eliminated by running
the genetic algorithm to improve the drawing globally. Note that the gfafitallis a bipartite, and
the Sugiyama method emphasizes this characteristic by producing a drawing using two layers (see
Figure6.13a)). The minimum number of edge crossings is obtained by expanding the drawing to
use more layers.

In the second session of the experiments the subjects had to deal with different situations, which
included using focus only, manipulating layout constraints (with higher priority than the normal
aesthetic criteria), and working on initial drawings with high quality.

In experimenB1 andB2 (graphsKnation and Telcall, respectively), we expected the subjects
to achieve very good results. The motivation for these experiments was to avoid having the system
spend processing time on areas of the drawing which were already of good quality. This is illustrated
in Figure6.7, where the layout of the edges on the left-hand side of the drawing can be improved.
Focusing the genetic algorithm on those edges produces the intended layout must faster than running
it on the whole graph. The subjects did use this approach, by refocusing the genetic algorithm on a
new part of the drawing after 12 to 24 seconds without significant improvement. Nevertheless, the

overall results were not good for two reasons:

1. Some subjects performed focus locally at first; however, the initial drawing could be improved

more by running the genetic algorithm on the entire graph.

2. The genetic algorithm reached local minima, and the subjects could not use any other tool

but focus to help it to escape from the minima.
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Figure 6.7: Drawing of theWorlddygraph with a promising area for improvement, on the left-hand side of
the figure.

The average human performance in experimBatndB2is a little better than the results in the
corresponding experiments in the first sessidgdndA6). For example, ilB1the average human
performancesA20Comps 45.60, while inA5 it was 38.80. This difference seems to be related to
the fact that using the genetic algorithm for large graphs is better than performing improvements
via manual changes. The experience gained from the experiments in the first session may also have
contributed to a better human performance.

In experimenB3, the system started with the same initial drawing used in experif&riut
added 16 layout constraints to it. Constraints were considered more important than the normal
aesthetic criteria. Twelve constraints were unsatisfied in the initial solution. One subject had per-
formance 100, and the average human performance was 86.95. The genetic algorithm was able to
help the subjects in solving almost all unsatisfied constraints in a first run on the whole graph. How-
ever, it had difficulty with left-right constraints, and very often got stuck in a local minimum where
one such constraint was unsatisfied. The subjects could solve this problem by simply reordering the
vertices on the layers and running the algorithm again to obtain further improvements. Note that the
genetic algorithm executing alone for 20 minutes in a constrained problem was not able to escape
from local minima. The average and tBest50results of the genetic algorithm are worse than the
subject results not only in terms of constraint satisfaction, but also considering offending edges and
edge crossings. Even allowing 20 more minutes to the algorithr®AA0 did not improve the
drawings.

Finally, in experiment84 andB5, with high quality initial drawings, we got surprising results.
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In experimenB4 (with graphWorlddyr), nine subjects had performance 100. The average hu-
man performance was 70.80 f&irA20Compand 69.70 foilGA40Comp This is much better than
the results in experimemt4, where the average human performances were 64.60 and 63.90, re-
spectively, with just one subject having performance 100. Such improvement was obtained because
of the use of manual changes. The genetic algorithm by itself could not produce the same type of
results, as we demonstrate in ro@820andGA400f Table6.12

In experimentB5 (graphGdo4dir), seven subjects had performance 100G#x20Comp and
the average human performance was 89.10. GA40Compfour subjects had performance 100,
and the average was 83.55, which indicates that longer executions of the genetic algorithm could
improve the automatic results. Nevertheless, the subjects performed much better than in experiment
A7, where the average human performances were only 2&&2@Compand 24.95GA40Comip
and no subject had performance 100.

The results in experimenB4 andB5 show that human intervention can help when the genetic
algorithm becomes stuck in a local minimum or is already close to it. The results also show that
not all subjects could help the system. In experimB#t six subjects had poor performance —
GA20Compwas lower than 10.

Table 6.14 shows the overall relationship between the users’ actions and the performance of
the subjects (this includes the sum of parameters from all experiments, excepBframd B2
— these two experiments had no manual changes, and, therefore, its inclusion would incorrectly
affect the correlation analysis shown in the table for manual moves). The table contains the level
of study,expected knowledgen Graph Drawing, sex, information regarding the execution of the
genetic algorithm and manual changes of the drawings, arndtidigoerformancdor every subject.

The expected drawing knowledge a number between 1 and 3 that we assigned to the subjects
based on our knowledge about their familiarity with the Graph Drawing area. Value 3 was given
to subjects who have already worked on Graph Drawing; this includes some of the members from
the Information Visualization Research group or from other research groups. Value 2 was given
to other PhD students. All other subjects received value 1. The colaiimegives the sum

of the processing time (in seconds) of the genetic algorithm activated by the subjects during the
experiments. The columBA Exeds the number of times that the genetic algorithm was executed.
The columninteractive Timeprovides an estimation of how much time (in seconds) the subjects
spent with manual changes of the drawings. This parameter consists of the sum of all intervals of

time of 25 seconds during which the user performed at least one action related to manual change and
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did not execute the genetic algorithm. The coluhmtal Performancédor a subject gives the sum
of his’lherGA20Compperformance plus the number of other subjects who performed worse than
him/her in every experiment. The correlations of the main columns of the table with the column
Total Performancés presented. The information about the subjects is sorted by increasing order of
total performance

Note that thdevel of studythe expected knowledgend the sex of the subjects did not affect
their overall performance significantly. We noticed, however, that there was a higher positive cor-
relation between the use of the genetic algorithm and the human performance. We also found a
negative correlation between the time spent with manual changes of the drawings and the human
performance. Even though there are peculiarities in how this correlation is observed for the indi-
vidual experiments, the overall conclusion is that using the genetic algorithm provides better results
than performing many manual changes. We know, however, that human intervention is useful since
the subjects could not outperform the genetic algorithm in several cases without such a tool. The
question is when and how the user should interact with the optimization method. The experiments
with small graphs and with high initial drawings suggests the answer: interaction is useful when
the genetic algorithm becomes stuck in local minima in order to help it to progress towards a better
solution.

By observing the subjects doing the experiments we identified several graph drawing configura-
tions that represent local minima to the genetic algorithm. Some of the minima represent difficulty

in:

e Moving a subgraph consisting of many vertices to a different position — this consisted of a
local minimum when the vertices had to be moved as whole group, otherwise a worse drawing

would be created.

e Eliminating unnecessary columns and layers containing only dummy vertices or no vertices
at all in the middle of the drawing so that the used area is reduced — the genetic algorithm
could solve such a problem more easily when the unnecessary columns and layers were at

the extreme ends (left, right, top or bottom) of the drawing.

¢ Reducing edge crossings by routing the edges in a hon-straight path — if the routing involves

moving dummy vertices to horizontal positions distant from the endpoints of the edges then

>These two correlations are expected to be opposite, as the time spent using the genetic algorithm and the time used
for manual changes are in some sense complementary.



6.5 Evaluation 121

the algorithm may not be able to find this solution.

In those configurations the subjects improved the drawing by doing the necessary change by
hand. Nevertheless, they also developed some interesting general strategies for escaping from local

minima:

e Creating empty columns and layers in the center of the drawing that can be used later by the
genetic algorithm as a temporary space to reorganize the vertices (note that this is exactly
the opposite of what we mentioned before, but it helps the genetic algorithm to solve edge

crossings in some cases).
e Swapping the position of the dummy vertices of two edges that are crossing.

e Attempting to escape from local minima by "messing up” the drawing, that is, moving several
vertices randomly and then running the genetic algorithm to create a new improved layout;
if the new layout is not better than the previous one, then the best existing solution can be

recovered.

The initial drawings of the graphs and some improved drawings created during the experiments
are illustrated in Figure8.8t0 6.19

The final conclusions of the experiments are that:
e The subjects could help the genetic algorithm to escape from local minima.

e The general strategy defined by the subjects for improving the drawings was to run the genetic
algorithm on the whole graph until no further significant improvement could be obtained.
Then they would alternate manual changes with focused re-executions of the algorithm sev-
eral times. Manual changes were necessary to escape from local minima. Re-executing the
genetic algorithm after a manual change would improve the quality of “draft solutions” cre-
ated by the subjects (that is, performing a fine tuning of the drawing) and progress the search

towards a better solution.

e The final quality of the drawings in the experiments depended on human skills; while some
subjects did very well, others performed poorly. We could not clearly identify what type
of skills makes the difference. However, it seems that geometrical thinking is one of the

capabilities necessary for this kind of task.
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Results for Offend. Cross. Dum.my Bends Area GA20 GA40
Csyntax Edges Vertices Comp Comp
Initial Drawing 4 12 39 19 182
1 3 5 74 14 260 89 89
2 4 11 39 12 182 0 0
3 3 6 46 5 187 58 58
4 3 6 35 5 195 61 61
5 3 3 63 8 247 100 100
6 3 3 45 6 255 100 100
7 3 6 50 3 216 55 55
8 3 6 30 3 182 87 87
9 3 4 56 5 323 99 99
10 3 9 34 7 210 1 1
11 3 6 57 11 198 36 36
Subjects 12 3 3 72 12 260 100 100
13 3 6 73 8 294 22 22
14 3 3 68 27 342 100 100
15 3 6 46 5 208 57 57
16 3 3 51 4 198 100 100
17 3 7 72 17 285 12 12
18 3 5 30 5 154 98 98
19 3 6 30 3 196 86 86
20 3 3 51 5 234 100 100
Min 3 3 30 3 154 0 0
Max 4 11 74 27 342 100 100
Ay 3.05 5.35 51.10 8.25 231.30 68.05 68.05
StD 0.22 2.13 15.37 5.93 50.65 36.24 36.24
Best 3 4 55 6 234
50Best 3 6 54 5 270
Worst 3 9 34 8 224
GA20 Min 3 4 30 3 140
Max 3 9 80 9 336
Ay 3.00 6.18 46.20 5.77 211.51
Std 0.00 0.87 15.53 1.48 4418
Best 3 4 55 6 234
50Best 3 6 54 5 270
Worst 3 9 34 8 224
GA40 Min 3 4 30 3 140
Max 3 9 80 9 336
Av 3.00 6.18 46.20 5.76 211.51
StD 0.00 0.87 15.53 1.46 4418

Table 6.2: Results of the experimewtl, for the graphCsyntax
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Results for Offend. Cross. Dum.my Bends Area GA20 GA40
Klayer Edges Vertices Comp Comp
Initial Drawing 0 5 0 0 24
1 0 2 4 1 35 100 100
2 0 1 14 3 56 100 100
3 0 2 11 2 56 99 99
4 0 1 11 2 49 100 100
5 0 1 10 2 48 100 100
6 0 1 11 0 119 100 100
7 0 2 4 1 35 100 100
8 0 1 11 1 70 100 100
9 0 1 11 2 63 100 100
10 0 2 4 0 50 100 100
11 0 1 11 1 63 100 100
Subjects 12 0 1 11 3 70 100 100
13 0 1 9 1 48 100 100
14 0 1 9 3 42 100 100
15 0 1 15 4 72 100 100
16 0 1 9 1 48 100 100
17 0 1 13 5 63 100 100
18 0 2 13 4 56 99 99
19 0 2 4 1 35 100 100
20 0 1 11 3 56 100 100
Min 0 1 4 0 35 99 99
Max 0 2 15 5 119 100 100
Av 0.00 1.30 9.80 2.00 56.70 99.90 99.90
StD 0.00 0.47 3.35 1.38 18.57 0.31 0.31
Best 0 2 4 1 40
50Best 0 4 3 0 35
Worst 0 4 3 1 30
GA20 Min 0 2 3 0 25
Max 0 4 8 2 54
Av 0.00 3.85 3.33 0.16 35.87
Std 0.00 0.39 0.92 0.39 417
Best 0 2 4 1 40
50Best 0 4 3 0 35
Worst 0 4 3 1 30
GA40 Min 0 2 3 0 25
Max 0 4 8 2 54
Av 0.00 3.85 3.33 0.16 35.87
StD 0.00 0.39 0.92 0.39 4.17

Table 6.3: Results of the experimeit2, for the graptKlayer.
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Resu.lts for Offend. Cross. Dum.my Bends Area GA20 GA40
Unixsys Edges Vertices Comp Comp
Initial Drawing 0 4 24 9 132
1 0 2 22 5 143 98 98
2 0 3 24 5 143 2 2
3 0 0 32 4 156 100 100
4 0 0 30 2 168 100 100
5 0 0 25 4 154 100 100
6 0 0 25 2 187 100 100
7 0 0 25 3 143 100 100
8 0 1 43 4 210 98 98
9 0 0 25 3 154 100 100
10 0 0 25 4 44 100 100
11 0 0] 25 7 143 100 100
Subjects 12 0 0 25 4 121 100 100
13 0 0 49 5 288 100 100
14 0 0 25 5 154 100 100
15 0 0 28 2 154 100 100
16 0 0 25 3 154 100 100
17 0 3 22 2 132 97 97
18 0 1 30 4 168 98 98
19 0 0 25 3 154 100 100
20 0 0 28 3 132 100 100
Min 0 0 22 2 44 2 2
Max 0 3 49 7 288 100 100
Ay 0.00 0.50 27.90 3.70 155.10 94.65 94.65
StD 0.00 1.00 6.76 1.30 44 .24 21.83 21.83
Best 0 1 27 4 143
50Best 0 3 24 4 132
Worst 0 3 24 6 132
GA20 Min 0 1 24 2 121
Max 0 3 27 7 154
Ay 0.00 2.95 24.06 3.93 135.96
Std 0.00 0.30 0.42 0.88 7.58
Best 0 1 27 4 143
50Best 0 3 24 4 132
Worst 0 3 24 6 132
GA40 Min 0 1 24 2 121
Max 0 3 27 7 154
Av 0.00 2.95 24.06 3.93 135.96
StD 0.00 0.30 0.42 0.88 7.58

Table 6.4: Results of the experime®t3, for the grapHJnixsys
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Results for Offend. Dummy GA20 GA40
Worlddyn Edges Cross. Vertices Bends Area Comp Comp
Initial Drawing 6 70 144 56 360
1 6 33 148 26 400 59 56
2 6 31 235 40 500 67 67
3 6 34 172 24 425 39 38
4 6 22 202 33 408 98 98
5 6 23 229 37 588 97 97
6 6 26 184 41 456 90 90
7 6 28 145 33 360 88 88
8 6 31 148 26 345 78 77
9 6 18 164 18 384 100 100
10 6 63 199 64 456 0 0
11 6 57 136 21 360 0 0
Subjects 12 6 25 456 59 1026 92 92
13 6 24 172 33 391 95 95
14 6 70 144 56 360 0 0
15 6 28 193 28 432 87 87
16 6 33 177 28 368 50 46
17 6 38 182 46 442 4 4
18 6 21 203 32 396 99 99
19 6 33 169 41 396 50 46
20 6 22 164 29 368 99 98
Min 6 18 136 18 345 0 0
Max 6 70 456 64 1026 100 100
Av 6.00 33.00 191.10 35.75 443.05 64.60 63.90
StD 0.00 14.21 68.05 12.55 148.70 37.45 37.63
Best 6 21 178 24 456
50Best 6 33 155 26 384
Worst 6 43 154 28 400
GA20 Min 6 21 139 21 360
Max 6 43 196 36 480
Av 6.00 33.06 154.87 25.38 395.24
Std 0.00 4.37 9.59 2.87 29.38
Best 6 21 178 24 456
50Best 6 33 153 23 400
Worst 6 43 154 28 400
GA40 Min 6 21 139 21 360
Max 6 43 185 35 475
Av 6.00 32.96 154.21 25.20 393.32
StD 0.00 4.35 8.23 2.66 26.47

Table 6.5: Results of the experimednt4, for the graphNorlddyn
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Results for Offend. Dummy GA20 GA40
Knation Edges Cross. Vertices Bends Area Comp | Comp
Initial Drawing 30 249 186 137 460
1 28 135 216 78 546 35 32
2 28 166 274 91 555 3 2
3 28 117 267 82 765 74 73
4 28 140 236 79 481 30 24
5 28 127 295 112 608 57 54
6 28 101 242 86 546 93 93
7 28 132 180 82 407 43 37
8 28 147 244 77 645 18 13
9 28 82 166 68 385 99 99
10 28 156 134 59 396 9 5
11 28 136 270 109 585 34 29
Subjects 12 28 123 241 119 812 66 61
13 28 136 180 81 530 35 32
14 29 509 221 172 720 0 0
15 28 143 192 65 564 26 19
16 28 117 204 77 432 74 73
17 30 204 202 121 552 0 0
18 28 140 547 126 1175 29 23
19 29 96 203 103 564 0 0
20 28 130 230 84 533 51 44
Min 28 82 134 59 385 0 0
Max 30 509 547 172 1175 99 99
Av 28.20 151.85 237.20 93.55 590.05 38.80 35.65
StD 0.52 87.96 83.13 26.67 178.76 30.60 30.94
Best 28 78 288 82 675
50Best 28 130 235 88 598
Worst 28 190 264 94 765
GA20 Min 28 78 126 60 378
Max 28 190 707 112 2016
Av 28.00 130.01 263.60 85.21 681.14
Std 0.00 19.88 69.74 10.18 190.24
Best 28 78 288 82 675
50Best 28 128 496 93 1880
Worst 28 178 266 94 700
GA40 Min 28 78 126 60 378
Max 28 178 496 103 1880
Av 28.00 127.22 256.15 82.51 667.39
StD 0.00 18.13 56.64 9.58 173.06

Table 6.6: Results of the experimew, for the graphKnation
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Results for Offend. Dummy GA20 GA40
Telcall Edges Cross. Vertices Bends Area Comp | Comp
Initial Drawing 0 1740 0 0 192
1 0 380 403 172 2074 68 59
2 0 431 290 138 1495 37 25
3 0 435 635 126 2140 35 25
4 0 361 213 117 1177 84 71
5 0 628 530 239 2508 2 0
6 0 442 310 144 2366 33 25
7 0 388 403 120 2014 63 51
8 0 309 224 129 1440 99 96
9 0 382 245 176 1190 68 57
10 0 581 124 82 728 5 2
11 0 966 198 169 1166 0 0
Subjects 12 0 622 303 188 2567 3 0
13 0 653 411 279 1272 1 0
14 0 658 493 379 1875 1 0
15 0 514 502 236 2489 11 8
16 0 607 215 132 1053 4 1
17 0 1122 a7 47 288 0 0
18 0 434 374 133 1392 35 25
19 0 356 227 129 1296 87 78
20 0 594 416 206 1728 4 1
Min 0 309 a7 47 288 0 0
Max 0 1122 635 379 2567 99 96
Av 0.00 543.15 328.15 167.05 1612.90 32.00 26.20
StD 0.00 206.17 147.67 74.04 628.67 34.23 31.22
Best 0 280 252 109 1540
50Best 0 407 620 134 3304
Worst 0 664 555 168 2352
GA20 Min 0 280 156 87 981
Max 0 664 1079 206 3848
Av 0.00 425.52 360.03 128.64 1785.96
Std 0.00 74.79 164.77 26.78 578.18
Best 0 277 233 97 1540
50Best 0 388 515 144 2484
Worst 0 622 147 83 880
GA40 Min 0 277 147 82 880
Max 0 622 999 193 3416
Av 0.00 401.87 330.30 115.68 1695.48
StD 0.00 66.74 158.65 22.93 545.36

Table 6.7: Results of the experimeWts, for the graphrelcall.
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Results for Offend. Dummy GA20 GA40
Gd94dir Edges Cross. Vertices Bends Area Comp | Comp
Initial Drawing 0 757 325 203 742
1 0 494 362 143 864 93 84
2 0 721 325 174 742 0 0
3 0 525 372 133 952 20 15
4 0 521 352 130 864 37 23
5 0 515 381 138 884 55 42
6 0 495 684 180 2160 90 82
7 0 523 380 148 864 28 17
8 0 536 359 155 952 4 2
9 0 534 339 134 870 6 4
10 0 562 335 157 780 0 0
11 0 576 335 156 795 0 0
Subjects 12 0 686 682 354 1426 0 0
13 0 540 585 191 1988 1 0
14 0 497 480 141 1100 89 80
15 0 515 646 193 1200 55 40
16 0 542 443 181 972 0 0
17 0 698 323 180 742 0 0
18 0 525 412 162 880 19 15
19 0 614 333 181 795 0 0
20 0 479 393 154 880 97 95
Min 0 479 323 130 742 0 0
Max 0 721 684 354 2160 97 95
Av 0.00 554.90 426.05 169.25 1035.50 29.70 24.95
StD 0.00 70.33 122.47 47.86 391.60 36.60 33.57
Best 0 458 416 160 901
50Best 0 517 420 135 936
Worst 0 542 370 123 986
GA20 Min 0 458 335 113 765
Max 0 542 615 162 1870
Av 0.00 514.03 383.86 132.16 910.56
Std 0.00 15.39 44.68 11.10 126.44
Best 0 450 416 168 816
50Best 0 512 340 117 840
Worst 0 540 359 129 848
GA40 Min 0 450 335 115 765
Max 0 540 500 168 1265
Av 0.00 509.16 381.23 128.32 897.16
StD 0.00 16.94 33.74 9.72 82.24

Table 6.8: Results of the experimeit7, for the graphGd94dir.
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Results for Offend. Dummy GA20 GA40
Knation Focus Edges Cross. Vertices Bends Area Comp | Comp
Initial Drawing 30 249 186 137 460

1 28 144 264 92 675 26 19
2 28 122 287 86 690 67 61
3 28 112 238 87 602 80 79
4 28 124 242 75 616 65 60
5 28 129 299 88 672 54 48
6 28 120 218 83 559 71 67
7 28 172 200 83 494 3 2
8 28 126 251 85 750 58 56
9 28 144 221 83 616 26 19
10 28 132 233 83 533 43 36
11 28 118 258 90 585 73 70
Subjects 12 28 143 238 81 658 26 19
13 28 136 180 81 530 35 32
14 28 132 240 79 624 43 36
15 28 129 266 78 795 55 49
16 28 126 254 87 672 58 56
17 28 157 192 84 624 9 4
18 28 154 247 80 672 11 6
19 28 147 213 73 624 18 13
20 28 105 239 78 616 91 90
Min 28 105 180 73 494 3 2
Max 28 172 299 92 795 91 a0
Av 28.00 133.60 239.00 82.80 630.35 45.60 41.10
StD 0.00 16.27 29.69 4.85 72.47 25.48 26.33
Best 28 78 288 82 675
50Best 28 130 235 88 598
Worst 28 190 264 94 765
GA20 Min 28 78 126 60 378
Max 28 190 707 112 2016
Av 28.00 130.01 263.60 85.21 681.14
Std 0.00 19.88 69.74 10.18 190.24
Best 28 78 288 82 675
50Best 28 128 496 93 1880
Worst 28 178 266 94 700
GA40 Min 28 78 126 60 378
Max 28 178 496 103 1880
Av 28.00 127.22 256.15 82.51 667.39
StD 0.00 18.13 56.64 9.58 173.06

Table 6.9: Results of the experimeil, for the graphKnationwith the subjects performing only focus.
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Results for Offend. Dummy GA20 GA40
Telcall Focus Edges Cross. Vertices Bends Ared Comp | Comp
Initial Drawing 0 1740 0 0 192
1 0 371 223 121 1554 79 66
2 0 556 339 155 1800 6 3
3 0 404 679 135 3596 51 35
4 0 356 225 114 1210 87 78
5 0 462 169 107 952 31 19
6 0 486 147 92 928 20 12
7 0 518 400 188 1443 10 7
8 0 474 249 117 1526 23 16
9 0 379 271 117 1534 70 59
10 0 390 158 98 1122 62 47
11 0 420 157 84 832 42 28
Subjects 12 0 432 196 113 1078 37 25
13 0 605 283 132 1744 4 1
14 0 530 181 114 1155 9 5
15 0 495 212 119 1050 16 10
16 0 342 212 90 1391 94 87
17 0 551 279 132 1017 7 3
18 0 376 338 142 1887 73 60
19 0 651 210 95 900 1 0
20 0 379 308 126 1272 70 59
Min 0 342 147 84 832 1 0
Max 0 651 679 188 3596 94 87
Av 0.00 458.85 261.80 119.55 1399.55 39.60 31.00
StD 0.00 88.44 119.86 24.36 605.07 31.14 28.24
Best 0 280 252 109 1540
50Best 0 407 620 134 3304
Worst 0 664 555 168 2352
GA20 Min 0 280 156 87 981
Max 0 664 1079 206 3848
Av 0.00 425.52 360.03 128.64 1785.96
Std 0.00 74.79 164.77 26.78 578.18
Best 0 277 233 97 1540
50Best 0 388 515 144 2484
Worst 0 622 147 83 880
GA40 Min 0 277 147 82 880
Max 0 622 999 193 3416
Av 0.00 401.87 330.30 115.68 1695.48
StD 0.00 66.74 158.65 22.93 545.36

Table 6.10: Results of the experimeB?2, for the graphrelcall with the subjects performing only focus.
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Results for C Offend. Dummy GA20 GA40
. onstr. Cross. N Bends Area
Unixsys Constr Edges Vertices Comp Comp
Initial Drawing 12 0 4 24 9 132
1 0 4 10 44 12 391 80 80
2 0 3 4 50 8 416 94 94
3 0 3 2 50 8 352 99 99
4 0 3 3 72 19 462 96 96
5 0 3 3 70 23 468 96 96
6 0 3 8 46 10 375 87 87
7 0 3 2 37 9 273 100 100
8 0 4 6 44 8 294 83 83
9 0 3 4 38 12 255 95 95
10 0 3 7 59 18 384 88 88
11 1 4 4 37 8 253 46 46
Subjects 12 0 3 6 54 16 357 89 89
13 0 3 9 55 11 540 86 86
14 0 3 5 74 19 418 90 90
15 0 3 6 122 23 576 88 88
16 0 3 6 47 9 368 89 89
17 0 3 5 98 33 437 90 90
18 1 3 6 89 20 272 61 61
19 0 3 2 63 15 270 99 99
20 0 4 5 52 18 570 83 83
Min 0 3 2 37 8 253 46 46
Max 1 4 10 122 33 576 100 100
Av 0.10 3.20 5.15 60.05 14.95 386.55 86.95 86.95
StD 0.31 0.41 2.25 22.15 6.71 101.49 12.98 12.98
Best 0 3 2 42 7 336
50Best 1 3 10 81 14 306
Worst 2 7 7 22 5 208
GA20 Min 0 3 0 19 2 176
Max 2 7 13 95 25 667
Av 0.77 4.06 6.00 52.05 10.86 303.02
Std 0.51 1.09 2.95 16.14 3.70 82.82
Best 0 3 2 42 7 336
50Best 1 3 10 81 14 306
Worst 2 7 7 22 5 208
GA40 Min 0 3 0 19 2 176
Max 2 7 13 95 25 667
Av 0.77 4.06 6.00 52.03 10.86 303.02
StD 0.51 1.09 2.95 16.14 3.70 82.82

Table 6.11: Results of the experimeBt3, for the grapHJnixsyswith layout constraints.
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Results for Offend. Dummy GA20 GA40
Worlddyn HQ Edges Cross. Vertices Bends Ared Comp Comp
Initial Drawing 6 22 152 24 375

1 6 22 152 24 360 0 0
2 6 20 221 36 500 6 1
3 6 20 154 29 375 95 95
4 6 17 214 28 437 100 100
5 6 15 242 41 528 100 100
6 6 19 178 31 450 99 99
7 6 21 150 22 384 6 1
8 6 20 147 25 345 98 98
9 6 17 176 24 391 100 100
10 6 22 145 21 360 5 1
11 6 22 152 23 360 5 1
Subjects 12 6 16 167 28 408 100 100
13 6 19 235 29 475 99 99
14 6 17 189 40 425 100 100
15 6 16 165 27 368 100 100
16 6 14 185 26 408 100 100
17 6 20 147 22 375 98 98
18 6 21 226 31 456 5 1
19 6 16 189 33 408 100 100
20 6 17 181 30 425 100 100
Min 6 14 145 21 345 0 0
Max 6 22 242 41 528 100 100
Av 6.00 18.55 180.75 28.50 411.90 70.80 69.70
StD 0.00 2.50 31.59 5.68 50.29 44.56 46.27
Best 6 18 158 27 400
50Best 6 20 155 26 375
Worst 6 22 152 23 375
GA20 Min 6 18 147 22 375
Max 6 22 158 30 400
Av 6.00 20.09 155.45 25.70 381.50
Std 0.00 0.49 1.78 1.70 11.02
Best 6 18 158 27 400
50Best 6 20 155 25 375
Worst 6 22 152 23 375
GA40 Min 6 18 147 22 375
Max 6 22 158 30 400
Av 6.00 20.00 155.57 25.76 381.50
StD 0.00 0.28 1.63 1.60 11.02

Table 6.12: Results of the experime4, for the graphworlddyn
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Results for Offend. Dummy GA20 GA40
Gd94dir HQ Edges Cross. Vertices Bends Ared Comp | Comp
Initial Drawing 0 456 432 135 1008
1 0 455 407 129 952 99 87
2 0 442 507 141 1134 100 100
3 0 439 476 146 1083 100 100
4 0 448 558 200 1260 100 99
5 0 442 530 191 1176 100 100
6 0 451 620 167 1495 99 99
7 0 456 408 127 901 90 70
8 0 452 424 133 972 99 98
9 0 455 409 127 935 98 84
10 0 455 429 134 954 94 81
11 0 456 429 136 990 16 1
Subjects 12 0 452 435 142 1008 99 98
13 0 456 432 132 1008 1 0
14 0 443 430 134 1026 100 99
15 0 455 424 136 1008 95 81
16 0 439 469 134 1060 100 100
17 0 453 409 135 952 99 96
18 0 452 406 131 901 99 98
19 0 455 429 137 936 94 81
20 0 449 423 147 954 100 99
Min 0 439 406 127 901 1 0
Max 0 456 620 200 1495 100 100
Av 0.00 450.25 452.70 142.95 1035.25 89.10 83.55
StD 0.00 5.97 58.20 20.10 142.48 27.80 29.76
Best 0 451 410 143 952
50Best 0 456 414 131 952
Worst 0 456 432 133 1008
GA20 Min 0 451 404 126 952
Max 0 456 432 143 1008
Av 0.00 455,90 418.64 131.15 980.17
Std 0.00 0.54 9.50 2.41 28.02
Best 0 443 410 135 952
50Best 0 456 408 129 952
Worst 0 456 432 129 1008
GA40 Min 0 443 404 125 952
Max 0 456 432 135 1008
Av 0.00 455.54 411.65 129.60 964.49
StD 0.00 1.50 7.56 1.98 23.29

Table 6.13: Results of the experime®5, for the graphGd94dir.
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. Expected . Interactive Total
Subject Level Knowladge Sex GA Time (s) | GA Exec Time (s) | Performance
11 Honors 1 M 3878 52 9191 394
10 Master 1 M 5799 102 3423 466
2 Master 1 M 6221 49 4975 489
17 Honors 1 F 6843 97 6150 552
13 PhD 3 M 9493 129 3105 629
18 Honors 3 M 7418 121 5080 736
7 Master 1 F 10175 321 2152 790
14 PhD 2 M 5350 85 8167 798
1 Master 1 M 8552 101 3346 813
19 PhD 2 F 7312 262 4647 821
15 Honors 1 F 9729 193 3105 828
3 Master 1 M 8568 146 2609 835
16 Honors 3 M 7351 262 2895 867
8 Master 1 F 8861 204 2646 868
12 PhD 1 M 7056 232 4233 871
4 Master 1 F 9933 264 2435 945
5 PhD 2 M 6527 169 2152 969
20 Master 1 M 8249 104 3742 973
9 Honors 3 M 8250 450 3153 1018
6 Honors 3 M 7539 274 3800 1048
Correlation - 0.31 - 0.50 0.66 -0.54 1.00

Table 6.14: Details about the subjects and their total performance.
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Figure 6.8: Drawings of theCsyntaxgraph in experimeml. Figure (a) is the initial drawing. Figure (b) is

the improved drawing created by Subject 6.

Figure 6.9: Drawings of the Klayer graph in experimef2. Figure (a) is the initial drawing. Figure (b) is

the improved drawing created by Subject 16.

Figure 6.10: Drawings of thelUnixsysgraph in experimenA3. Figure (a) is the initial drawing. Figure (b)

is the improved drawing created by Subject 9.
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(b)

Figure 6.11: Drawings of theWorlddyngraph in experimend4. Figure (a) is the initial drawing. Figure (b)

is the improved drawing created by Subject 9.
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Figure 6.13: Drawings of theTelcall graph in experimenA6. Figure (a) is the initial drawing. Figure (b) is
the improved drawing created by Subject 8.
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Figure 6.14: Drawings of theGd94dirgraph in experimenA?. Figure (a) is the initial drawing. Figure (b)

is the improved drawing created by Subject 20.
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Figure 6.15: Drawing of theKnationgraph created by Subject 20 in Experimit
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Figure 6.16: Drawing of theTelcall graph created by Subject 16 in experimBat
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(b)

Figure 6.17: Drawings created in experimeBB, for the graphJnixsyswith layout constraints. Figure (a)
is the initial drawing. It has 12 unsatisfied constraints. Figure (b) is the improved drawing created by Subject
7, where all constraints are satisfied.
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(b)

Figure 6.18: Drawings of theWorlddygraph in experimernB4. Figure (a) is the initial drawing. Figure (b)
is the improved drawing created by Subject 5.
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Figure 6.19: Drawings of theGd94dirgraph in experimenB5. Figure (a) is the initial drawing. Figure (b)

is the improved drawing created by Subject 16.
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6.6 Remarks

In this section we discuss several issues regarding the use of focus and layout constraints in the
genetic algorithm and its internal structure. Suggestions for further implementations are also pre-

sented.

6.6.1 Focus and Constraints

Our genetic algorithm can be used in situations where an initial graph drawing simply needs to
be improved, or when the structure of the graph changes dynamically and its drawing has to be
updated.

For such needs, the focus facility provides an effective way of performing a drawing task. It
allows the improvement of the desired regions of a graph drawing, while preserving the layout of
areas which already have good quality (recall that areas not selected by the user are not changed).

Focus may also reduce computational resources necessary to produce an improved drawing.
Processing time can be saved by exploring only the space of possible layouts for the selected vertices
of the graph. The structure of the individuals in the genetic algorithm takes further advantage of this
issue by keeping the minimal amount of information necessary to represent the selected elements.
In addition, much processing time is saved by not evaluating the quality of the entire drawing when
computing cost vectors for the individuals.

Note, however, that focus is beneficial only when the region to be redrawn is small compared
to the entire drawing. Otherwise the merge procedure implemented in the genetic algorithm causes
unnecessary overhead.

The support for layout constraints offers more control of the drawing activity. Constraints are
useful, for example, for defining an ordering of the graph vertices without assigning precise coordi-
nates to them. The approach that we used for supporting layout constraints in the genetic algorithm
is reasonably flexible: it allows new types of constraints to be included by changing the objective
function to contain a measure of the constraint satisfaction and, possibly, developing mutation and
crossover operators to solve them. It would even be interesting to have new operators added to the
current implementation of the genetic algorithm, as the existing operators do not guarantee that all

constraints are satisfied.
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6.6.2 Human Interaction

Human interaction with the genetic algorithm is necessary for two types of activities: (1) adjusting
the system to produce a drawing with the characteristics that the user wants; and (2) helping the
genetic algorithm to converge to a better drawing according to a predefined set of aesthetic criteria
and constraints — whenever the method becomes stuck in bad local minima or takes to long to
perform a particular improvement. In general, layout constraints, focus and manual changes play
an important role in both tasks. However, the experiments with human interaction in the present
and in the previous chapter investigate only the second type of activity. We did not run experiments
where the users insert their subjective drawing aesthetic into the system, since most of subjects
were not experts and it would also be hard to compare their results. Rather, we imposed a precise
order for the aesthetic criteria, which is already common in many graph drawing applications. In
the experiments we also fixed the set of layout constraints (in experia®nor allowed them to
be changed, but investigated this facility as a tool for helping convergence (in Chapter

Evidently, in real applications several interactive facilities should be available such as insertion
of domain-dependent constraints and options for changing the set of aesthetic criteria. It is possible,
for instance, to allow the users to specify a different priority order to the drawing aesthetics. Figure
6.20shows an example where minimizing the number of edge crossings was set as more important
than reducing the number of offending edges in the priority order. This modification was done
manually in the code of the genetic algorithm, but it could be implemented as an option of the
graphical interface. Playing with aesthetic criteria is an interesting way of learning how different
measures affect the drawing of a graph; a user may even discover that a particular priority order

provides a more meaningful drawing for a certain type of graph.

Code Optimizations

Since the genetic algorithm is used as an interactive tool, where the response time has to be short,
optimization of the data structure and of the code of the algorithm becomes an essential issue. A
reduction of processing time is already obtained by using focus, as discussed in the previous section.

Nonetheless, we have implemented some other simple optimizations:

¢ We keep track of which vertices and edges are affected by the mutation or crossover operators.
When computing the quality of an individual, we recalculate only the contribution of the

affected elements to the cost vector.
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Figure 6.20: A drawing of theTelcall graph produced by minimizing the number of edge crossings as the
most important aesthetic criterion.

e A bucket structure is created for the drawifg and for every new individual. The structure
classifies all vertices by their layers, so that a list of the vertices in a particular layer can be

efficiently recovered.

Many other adjustments are possible. An interesting one, that we did not implement, is to
recompute the parameters of the cost vectors only if and when necessary. For instance, suppose that
we are doing a tournament selection with pairwise competition between two individualsd 7o,
with quality vectorQ, = (qi,q¢3,...,¢}) andQs2 = (¢?,43, ..., ¢?) respectively. If we find that
gt < ¢? for ani, 1 < i < 6, then we do not have to compute and compare the valug'%fof all
j=1i+1,i+2,...,7,since the individual, has already lost the competition and will be destroyed.

This strategy is proposed by Roseteafaret al. in [1627. The authors have presented results for

graph drawing showing that the system with this optimization is much faster than an ordinary one.

Comments on the GDHints System

In the interview, run as part of our human experiments, the subjects provided insightful comments
regarding their interaction with the GDHints system.
All subjects said that the interface was intuitive and easy to use. They did not mention about the

interval of 3 seconds for updating the screen with the most recent drawing produced by the genetic
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algorithm. However, we do not think they felt this to be long. In fact, when a new best drawing is
produced by the genetic algorithm, the system indicates this fact by playing a small animation. The
animation itself takes about 3 seconds and, in some ways, “fills in” the time gap to the next update
of the system.

Nevertheless, the subjects made several suggestions for new interactive facilities that could

enhance the graph drawing task. The most promising ones were:

¢ Including anundofeature. This was mentioned by almost all subjects. Even though the
system allows returning to the best drawing produced so far, such a drawing could differ
from the current drawing by many interactive steps performed by the user. If the system
returns to the best drawing instead of to the most immediate previous one, then much work

may be lost.

e Improving the assignment df -coordinates to new dummy vertices —which are created when
a user manually moves the endpoints of an edge. At the moment, the system does not produce
a necessarily good position to new dummy vertices. It may cause edge crossings that could

be solved easily.

e Implementing a tool for automatically reversing the order of Xheoordinates of a group of
vertices, when they are manually moved from the left to the right-hand side of the drawing
or vice-versa. The goal here is to solve new edge crossings created by edges going from the

moved vertices to their fixed neighbors in the drawing.

e Developing a tool for expanding the drawing (that is, shifting vertices in order to open empty
columns and rows in a particular region of the drawing). This tool should preserve the quality

of the drawing as much as possible.

6.6.3 The Internal Structure of the Genetic Algorithm

The decisions for choosing a different representation for the graph drawing solution and for im-
plementing mutation operators in a particular way were based on several design and performance

issues. We explain some of these decisions in this section.
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Solution Representation

The genetic algorithm inl[87] implements a different representation for the individuals, cadlige
length representatigrthat works only for directed acyclic graphs.

Instead of using th&, Y'-coordinates of the vertices in the drawing, #uge length represen-
tation stores two valueg(v) andi(v), for every vertexv. The valuep(v) is a real number between
0 and 1 that determines the positiomofvithin its layer. The valué(v) is an integer number that
determines the difference between the layer aind the layer of the lowest predecessow ofA
drawing can be constructed from this representation by initially computing a topological ordering
of the vertices of the graph. The source vertices are put in the highest layers. Then the remaining
vertices are visited in topological order and are assigned to a layer according tb\vakies and
to the layer of their lowest predecessor. TXiecoordinates of the vertices are computed by sorting
all vertices in every layer by thejrvalues.

The edge length representatidmas the advantage of allowing adjustments of the position of
several vertices by moving a single vertex. For instance, changing-thtie of a vertexr may
result in a new ordering of the vertices in the same layer and, therefore, result in différent
coordinates for them. Changing th®alue ofv may move automatically all successorsuagome
layers up or down. This effect helps the algorithm to escape from local minima, what would be
difficult to do by independently moving just a few vertices at a time. Unfortunately, we cannot
adopt theedge length representatian its totality in our genetic algorithm since we handle general
directed graphs that may have cycles. In this case, there is no topological ordering.

As an alternative, we decided to use absolkité” coordinates in the individuals, and compen-
sate the adjustment effect of thdge length representatidoy having vertex-overlap resolution and

closure-based movements implemented in the basic routines.

Design of the Operators

We experimented with different setups for the operators of the genetic algorithm, and found that
some options result in convergence to better solutions than others. For instance, the riR&hAtion
DOMCHANGEwithout the linear distribution of probabilities (all offsétdhave the same probabil-

ity of being chosen) produces individuals with much lower quality. These individuals are difficult
to improve and rarely propagate their characteristics to new generations.

The mutationSOLVERalso gives better solutions than the system without it. This mutation
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provides a fast way of solving constraints and minimizing the number of offending edges, which
are the elements with highest priorities in the quality measure of the individuals.

Moreover, treating vertex overlaps explicitly is important. Recall that we prevent overlap by
shifting vertices in the routinMOVEX An alternative approach would be to allow vertex overlap,
but penalize it in the cost vector. However, this could result in individuals with many overlaps, that
are destroyed before propagating their attributes to the next population; even though such individu-
als could be significantly improved by solving the overlaps as we do.

Finally, the choice of the values of the global Boolean variabdasesearchdiandsameshiftdir
affects the quality of the solutions as well. We observed that some values could help to escape from
local minima. However, this depended strongly on the drawing under improvement and on the
set of selected vertices. A general compromise choice was sasetsearchdiand sameshiftdir

randomly before running any mutation or crossover operator.

6.6.4 Hill Climbing

We tried a different configuration for the evolutionary cycle of the genetic algorithm, where the
crossover operator was deactivated and the population consisted of only one individual. The mod-
ified algorithm, that we call here HC, is essentially a Hill Climbing method, and can be described

by the following code:

1. Let I be first individual, extracted fromy’.
2. Repeat until a stop condition is satisfied:

a) Choose a mutation operator randomly, and create a new individigl applying the

operator tal.

b) If I’ is better thanl then replacd with I’; otherwise, discard’.

We tested the HC in a fully automatic mode with the graphs used in Se&Bpas we did for
the original genetic algorithm. The HC was executed 100 times for every graph, each execution
taking 40 minutes. We employed the same computers used in the human experiments.
Tables6.15and6.16show the summarized results of the HC for 20 and 40 minutes, respectively.
The qualitative parameters of the drawings produced by the best, the fiftieth best (the median) and
the worst executions are presented. Colu@#R20Compn Table6.15 and columnGA40Compgn

Table6.16are the same parameters used in Tabl@go 6.13 Both columns give the number of
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Results of Offend. Dummy GA20
the HC Constr. Edges Cross. Vertices Bends Area Comp
Experiment A1 - Csyntax graph
Best 0 3 4 67 4 315 99
HC20 50Best 0 3 6 54 4 252 53
Worst 0 3 9 34 7 182 1
Experiment A2 - Klayer graph
Best 0 0 2 4 1 35 100
HC20 50Best 0 0 3 8 1 54 87
Worst 0 0 3 12 3 70 86
Experiment A3 - Unixsys graph
Best 0 0 1 27 4 143 99
HC20 50Best 0 0 3 24 3 143 66
Worst 0 0 3 24 6 132 0
Experiment A4 - Worlddyn graph
Best 0 6 21 152 26 390 100
HC20 50Best 0 6 33 146 29 435 62
Worst 0 6 42 150 25 375 2
Experiment A5 - Knation graph
Best 0 28 85 197 79 492 99
HC20 50Best 0 28 124 347 102 950 63
Worst 0 29 148 269 94 630 0
Experiment A6 - Telcall graph
Best 0 0 292 412 141 2360 99
HC20 50Best 0 0 383 221 99 1166 67
Worst 0 0 598 305 150 1545 4
Experiment A7 - Gd94dir graph
Best 0 0 452 395 125 901 100
HC20 50Best 0 0 512 450 134 972 58
Worst 0 0 543 335 114 795 0
Experiment B3 - Unixsys graph with constraints
Best 0 3 1 55 9 375 100
HC20 50Best 1 3 9 65 12 323 51
Worst 2 6 7 33 6 204 1
Experiment B4 - Worlddyn graph with a high quality initial drawing
Best 0 6 20 174 25 468 6
HC20 50Best 0 6 22 166 25 425 0
Worst 0 6 22 166 25 425 0
Experiment B5 - Gd94dir graph with a high quality initial drawing
Best 0 0 443 419 132 1008 100
HC20 50Best 0 0 456 408 132 952 69
Worst 0 0 456 432 133 1008 0

Table 6.15: Results produced by the Hill Climbing for 20 minutes.

executions (between 1 to 100) of the original genetic algorithm that resulted in a worse drawing
than the one considered in the corresponding row of the table, for the same amount of processing
time.

The results obtained with the HC are very promising. It performed as well as the genetic algo-

rithm when considering the quality of the drawing in the best execution. Sometimes the HC was
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Results of Offend. Dummy GA40
the HC Constr. Edges Cross. Vertices Bends Area Comp
Experiment A1 - Csyntax graph
Best 0 3 4 67 4 315 99
HC40 50Best 0 3 6 52 5 198 54
Worst 0 3 9 34 7 182 1
Experiment A2 - Klayer graph
Best 0 0 2 4 1 35 100
HC40 50Best 0 0 3 8 1 54 87
Worst 0 0 3 12 3 70 86
Experiment A3 - Unixsys graph
Best 0 0 1 27 4 143 99
HC40 50Best 0 0 3 24 3 143 66
Worst 0 0 3 24 6 132 0
Experiment A4 - Worlddyn graph
Best 0 6 18 161 29 416 100
HC40 50Best 0 6 32 150 20 400 67
Worst 0 6 39 155 24 416 4
Experiment A5 - Knation graph
Best 0 28 84 253 86 645 99
HC40 50Best 0 28 121 481 94 1173 64
Worst 0 28 182 289 82 765 0
Experiment A6 - Telcall graph
Best 0 0 276 353 121 2360 100
HC40 50Best 0 0 376 217 91 1166 61
Worst 0 0 597 278 134 1590 1
Experiment A7 - Gd94dir graph
Best 0 0 452 395 121 901 99
HC40 50Best 0 0 505 365 123 848 71
Worst 0 0 535 472 147 1007 2
Experiment B3 - Unixsys graph with constraints
Best 0 3 1 55 9 375 100
HC40 50Best 1 3 9 53 10 300 52
Worst 2 6 7 33 6 204 1
Experiment B4 - Worlddyn graph with a high quality initial drawing
Best 0 6 20 174 25 468 1
HC40 50Best 0 6 22 166 25 425 0
Worst 0 6 22 166 25 425 0
Experiment B5 - Gd94dir graph with a high quality initial drawing
Best 0 0 440 404 128 952 100
HC40 50Best 0 0 456 408 128 952 51
Worst 0 0 456 426 130 1008 5

Table 6.16: Results produced by the Hill Climbing for 40 minutes.
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Figure 6.21: Improvements of th&d94dirgraph by the Hill Climbing and the genetic algorithm.

slightly worse, sometimes it was befterThe median HC, however, was better than the median
genetic algorithm in almost all cases. This is indicated by valugsAZ0Compand GA40Comp
grater or equal to 50 in the rovsOBest The only case where the HC performed poorly was for
the Worlddyngraph with a high quality initial drawing. Our explanation for this is that improving
such drawing demands moving out of a local minimum, what the HC obviously cannot do. On the
other hand, the HC was significantly better than the genetic algorithm fd€lther graph. This
suggests that the genetic algorithm may have fallen into a local minimum that was harder to escape,
or simply could not explore the local space of solutions sufficiently in the given amount of time.

The main advantage of the HC over the genetic algorithm is that it can improve the drawings
faster. Figures.21 presents the reduction of the number of edge crossings fdBt®dir graph
over time, performed by the HC and the genetic algorithm. The chart shows the quality of the best,
median and worst executions (among 100 executions for each algorithm) taken every 30 seconds.

The number of offending edges was zero during the entire computation.

®Some of the improvements of the HC over the genetic algorithm were for less significant aesthetic criteria such as
the number of dummy nodes and bends. In those cases, the number of offending edges and edge crossings could not be
reduced.
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Our results are in agreement with the findings of Rosete<xet al. [161], which also show
that a simple stochastic Hill Climbing method for graph drawing outperforms a genetic algorithm.

Unfortunately, we did not use the HC in our human experiments since its test was completed
only after the evaluation of the genetic algorithm. Nevertheless, we believe that the positive results
with the HC have important implications for interactive optimization tasks. The first aspect is that
by using a faster algorithm the optimization process can be sped up and completed in less time. In
addition, human interaction and visual feedback can also benefit: the user does not have to wait
long for a solution refresh (which was set for 3 seconds using our genetic algorithm), since more
significant improvements of the drawings occurs per period of time.

Note that the user is still necessary, as the results of the HC are worse than the human-generated
solutions for most of the experiments. The HC also does not replace the genetic algorithm totally
since the Hill Climbing approach cannot escape from local minima. The genetic algorithm may be
particularly useful when no further improvement can be obtained with the HC.

The HC is promising, and it needs further investigation.



CHAPTER 7

User Hints for Map Labeling

In Chapters$ and6 we applied the User Hints framework to improve the search for better solutions
in terms of a fixed set of quality measures. In the present chapter, we concentrate mainly on how
to refine an optimization problem (as discussed in Chapteso that domain knowledge can be
included. We show this process for the problem of labeling point features in cartographic maps.
An interactive framework is introduced that allows users to change the objective function and the
constraints of the problem intuitively. The framework can also be used to help convergence to
optimal solutions.

Part of this work was published at the proceedings of the Twenty-Sixth Australasian Computer
Science Conference, in Adelaide-Australia, in February, 260B [

The remainder of the chapter is organized as follows: Sectibmtroduces the Map Labeling
problem and techniques for solving it. Sectibr2 explains the need for having human-computer
interaction in Map Labeling processes. SecfloBpresents a sequence of steps that characterizes
an automatic Map Labeling approach. In Secfiofiwe introduce an interactive framework based
on User Hints that extends the automatic labeling steps. Settiodescribes a system that we
built for testing our interactive Map Labeling framework. Sectfo@presents an evaluation of the
system and the framework with experts in Cartography. Finally, Se€tibdiscusses other issues
related to experts’ heuristics, data structure and memory management, and extensions to the Map

Labeling framework.

7.1 The Map Labeling Problem and Automatic Methods

The Map Labeling Problentonsists of assigning positions for the labels of the graphical features
of a map, so that these elements can be identified. Three types of graphical features are normally

consideredpoint featuresarea featuresandline features Point features are usually represented
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by a dot, a circle or a small icon. Cities in a country map are examples of point features. Area
features are larger graphical objects, mostly polygonal areas. Typical area features are political
regions (such as states) in a map. Line features are lines that may vary in thickness, and are used to
describe rivers, roads, streets and train lines. Figurélustrates the labeling of features for a map

of Australia. The labels are assigned to points representing cities and to areas indicating states and

other geographic regiohs
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Figure 7.1: Map of Australia with labeled features from the Lonely Planet. (c) Copyright 2003 Lonely Planet
Publications. All rights reserved. Used with Permissimw.lonelyplanet.com

The Map Labeling Problem is well-known in Cartography and had its scientific foundation
established in the second half of the last century, most notably with the work of @8 &7 and
Yoeli [20]]. Imhof and Yoeli defined a set of rules that are used up to the present day to guide the

development of labeling algorithms; these are:

1. readability: labels must have legible sizes;
2. unambiguity: each label must be easily identified with exactly one graphical feature; and

3. avoidance of overlapslabels should not overlap with other labels or other graphical features.

1The association between types of features and objects of the map is in some ways flexible. A graphical element
usually treated as a particular type of feature may be represented by another type. For instance, suburbs in maps of cities
can be represented by point features, when the picture is scaled down so that the area becomes small. Note as well that
each type of feature in general implies a different standard for label placement. While point features have their labels
usually displayed around them, area features have the labels placed inside them. Line features are usually labeled by
placing the label text along a line or inside it, if the line is thick.
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Since the debut of Map Labeling as a scientific area, this problem has increased in importance
and has been the subject of a considerable number of publications. An illustrative chart of the
distribution of the Map Labeling publications over the last forty five years can be seenMaihe
Labeling Bibliography Web Sit198. The Computational Geometry Impact Task Forgg] [has
even classified the Map Labeling problem as an important issue to be investigated by future research.

Current map-labeling research has several applications that involve not only the development
of Cartographic and Geographic Information Systems in general, but also related products such as
tools for Information Visualizationd6, 108 and for image annotatiorlfZ. Whenever there is a
need for assigning graphical labels to graphical objects, Map Labeling techniques can be useful.

Techniques for solving Map Labeling problems commonly adopt a model for label placement.
Three main models have been proposed in the literafi#d,[and are illustrated in Figuré.2 for

point features (labels are represented abstractly by rectangular boxes):

(@) (©)

Figure 7.2: Label position models.

e Fixed-Position Model The labels can only be placed on a finite set of candidate positions
defined around each feature. This is the most popular model. It has special cases such as the
2-Position and 4-Position Fixed models, which specify two and four positions respectively

for every feature.

e Slider Model. In the Slider model (Figuré.2(b)) the labels can slide continuously in one
or more directions while still touching their features. This movement allows a fine grain

placement where labels can be shifted left, right, up or down in order to avoid overlaps.

e Fixed-Position Scalable Model It is similar to the Fixed-Position model, where the labels
can only be placed in a predefined set of candidate positions. However, the size of the labels
can be scaled in order to solve overlaps. A particular case of the Scalable modd&lestie
Model (Figure7.2(c)), where the labels can be scaled, but their area should stay constant. The

labels also have to stay attached to their point features.
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These models provide a formalization for the labeling problem so that it can be solved compu-
tationally. For instance, by using the Fixed-Position model we can define a combinatorial optimiza-
tion problem: assigning labels to candidate positions, so that all features are labeled and there is no
label-label or label-feature overlap. Figufesillustrates the 4-Position-Fixed model for labeling
four point features representing cities. Note that some positions overlap with each other. The label-
ing task aims to choose one candidate position for every feature so that, when placing the label on
that position, no overlap occurs. For cases where there is ho assignment that yields an overlap-free
labeling, one or more features must stay unlabeled. It is also possible to define preferences for the
candidate positions in order to have the labels placed as much as possible on a particular side of
their features (e.g: on the top-right corner of the feature). Preferences can be represented by costs
assigned to the candidate positions. When including costs, the optimization problem needs to be
redefined to computing an overlap-free assignment of labels to positions with minimum total cost

(the sum of the costs of all label positions).

Figure 7.3: Candidate label positions for four cities. Each city is represented by a dot and has four candidate
positions (represented by dotted rectangles around the feature) for label placement.

Based on the labeling models described above, four basic Map Labeling problems can be for-

mulated:

e Decision Problem- verifying whether there is a label assignment, such that all features are

labeled using one of their candidate positions and no two labels overlap.

e Label Problem — if the answer to the Decision Problem is ‘yes’, then finding the labeling

assignment without overlaps.

¢ Number Maximization Problem — finding a labeling assignment where as many features as

possible are labeled without overlaps.

>These problems are usually related to the Fixed-Position model, but they can consider the Slider and the Scalable
models.
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e Size Maximization Problem— finding a maximum scaling facterand a labeling assign-
ment, such that all features are labeled, the size of the labels are scaledruythere is no

label overlap.

These optimization problems are computationally difficult to solve for most practical cases
[130. For example, the decision problem for the 4-Position-Fixed model where labels are squares
of equal size isNP-complete 70, 130/3. The Label Problem, the Number Maximization Problem
and the Size Maximization Problem depend on the Decision Problem. Therefore, they are NP-hard.

The minimization of the costs of the labeling solution is usually done in combination with the
basic problems.

Several optimization methods have been proposed for Map Labeling, such as Expert Systems,
greedy heuristics, Discrete Gradient Descent methods, Simulated Annealing and Integer Linear
Programming.

Expert systems were presented initially as a promising apprdabh,[55, 72, 101, 147]. It was
possible to describe the overlapping relation between labels as a set of logic rules, and use expert
systems to obtain a labeling assignment. Nevertheless, it was later realized that the combinatorial
nature of the labeling problem and the naive search implemented by many expert systems made it
impossible to solve labeling instances of practical s

Greedy heuristics and Discrete Gradient Descent methods for map lat#dingdre also in-
vestigated for some time. Greedy heuristics take the map features in a particular order, and construct
a labeling solution by deciding about the labeling positions sequentially without backtracking. Dis-
crete Gradient Descent methods are in general more “intelligent” approaches. An example of a
Discrete Gradient Descent algorithm consists of starting with an unlabeled solution, and computing
the costs of using every labeling position for every feature; it then chooses the feature and the po-
sition that yields a solution with minimum cost. This process repeats until no further improvement
of the labeling can be obtained.

Greedy heuristics and Discrete Gradient Descent are simple to implement and fast to execute.
However, they easily fall into local minima with poor global quali8A].

The problems presented by the previous algorithms are overcome by the Simulated Annealing
proposed by Christensest al. [33, 34]. This method provides very good results in a reasonable

time. Moreover, a compromise between solution quality and processing time can be achieved by

3For the 2-Position-Fixed model, the problem can be solved in polynomial time on the number of candidate positions.
This can be proved by reducing it to a 2SAT problefa, [95].
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adjusting the annealing schedule of the algorithm.

Simulated Annealing is, in fact, one of the most successful methods for map labeling. It has
been extensively employed also as a benchmark for evaluating new map labeling techniques.

Another successful method is based on Integer Linear Programming. Zo232e?(3 for-
mulated an Integer Linear Programming model for map labeling, and used Lagrangian Relaxation
to solve it. Strijk, Verweij and Aardall]76, 192 presented later an Integer Linear Programming
model with several optimizations that can quickly solve large instances, with up to 950 point fea-
tures in the 4-Position-Fixed model, using Branch-and-Bound.

The work of Strijket al., Zoraster P03 and Christenseat al. [202, 203, as well as many other
approaches, are strongly related to modeling the map labeling problem as a Maximum Independent
Set problem, and then solving it using some standard techniques. This process will be explained in
more detail later.

Other map labeling methods also of importance are Approximation Algorithms (mainly for
some restricted problems) 1, 19, 148 154, Tabu searchg00, and Genetic Algorithms45, 155
188 189, 191].

7.2 The Need for User Intervention

Even though an extensive literature on Map Labeling is availa®g]] it is interesting to note

that these scientific results do not entirely satisfy the needs of real map labeling tasks performed in
industry. A technological gap exists here between scientific research and real-world applications.
While existing optimization methods are suitable for some particular map labeling aspects, such
as the avoidance of overlaps and ambigyignd preferences for label placement, they very often
neglect other important issues.

For instance, labeling methods usually do not deal with domain knowledge about the semantics
of the labels. See, for example, the case in Figurewhere three features are labeled as “St.
George”, “Washington” and “Happy Bay” respectively. Considered in this order the labeling may
cause the user to misread the labels to say “George Washington” or “George Washington Happy”.
This effect can occur even though there is sufficient space in between the labels. The human map
labeler may prefer to minimize this problem by positioning the label “Washington” above its feature.

Such an operation can be easily performed by hand. However, it would be difficult to encode this

4Ambiguity is resolved by most map labeling approaches by ensuring a minimal distance between pairs of labels and
between labels and features that are not directly associated.
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knowledge as a general constraint in an optimization tool, since it depends on the semantics of the

labels.

St. George  Washington Happy Bay

Figure 7.4: Semantic problems with labels.

Another difficulty is that map labeling approaches solve labeling problems globally, providing
a labeling solution that tends to be good in general, but that may sacrifice the quality of some
particular areas of interest for the cartographers.

Furthermore, it seems hard to cope with the large amount of constraints and aesthetics that the
cartographers naturally use when producing maps by hand. This includes knowledge about the
implicit importance of some features, rules for breaking down long labels in small lines, alternative
positions for labeling features in dense areas, and consistency with rules used in other maps. Such
information varies from cartographer to cartographer, and is based on experience acquired from
working in the field.

For all these reasons, Map Labeling in industry is still dependent on a large amount of human
work. Optimization methods for map labeling do not deal with the type of domain knowledge
described above. The user has to adjust the solution in a post-processing stage by manually moving
the labels. This technological gap can be seen, for example, in the main companies in Australia
that produce maps and street directories — Ausway and UBD. Both companies use systems that
automatically produce initial labeling solutions. The computer-generated solutions are helpful, but
they are in general not totally pleasing to the cartographers. Thus, a manual activity is necessary to
improve them 80, 164, 185.

Unfortunately, manual adjustment of a labeling solution can also be a complex and very time-
consuming process, particularly for dense regions of the map where the replacement of one label
can cause new problems with the surrounding text.

These difficulties suggest that Map Labeling can benefit from interactive optimization. There-
fore, we investigate in the present chapter a framework based on User Hints where cartographers
can interact with automatic map labeling techniques. The goal is still to allow the user to adjust the
labeling solutions in order to convey domain knowledge. However, we aim to reduce the amount

of manual work by providing a better integration with automatic labeling methods. We concentrate
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our study on the Maximum Number Labeling problem with the Fixed-Position model. Only point
features are considered and labels are represented by rectangles of unit height.
In the next section, we divide the labeling process into a sequence of small steps. These steps

are used later as a basis for our interactive Map Labeling framework.

7.3 Labeling Steps

We define the map labeling process as a sequence of steps that goes from inputting graphical in-
formation about features and labels of the map to modeling the labeling task as an optimization
problem, and finally to producing a labeling solution. Figdrgshows a diagram of the labeling

steps used in the present chapter. This division in steps is very intuitive and is done by many map
labeling approaches such as the ones presented by Edmaataddib 1], Zoraster 03, and Strijk
etal.[176.

The labeling process starts with a list of point features containing their coordinates and their
labels. A set of graphic attributes is then assigned to the labels, describing the type and the size
of the font used for writing the text. In the next labeling step, a labeling model is incorporated
into the process. We use the Fixed-Position model described before, where a number of predefined
candidate label-positions are assigned to each point feature. The candidate positions are rectangular
regions in the map. The size of the regions depends on the label text and on the font size. Each
candidate position has a cost value (a real number in the intgrvg), that represents the user
preference for placing a label in it; the higher the cost value, the lower the preference.

Some basic notations are useful for formalizing these first stepst’ let {f1, fo, ..., fu}
be a set ofn point-features of a map labeling problem. Every featfirbas a textual labd} of
dimensions; = (wj, h;), and is assigned a set of candidate positions for displayirigon the
map, fori = 1,2,...,n. We callP = |J_, m; the set of all candidate positions. The function
A(p) € [0, 1] gives acost valueor eachp € P.

The next labeling step is to define a combinatorial mof@&l 176, 203: we construct an undi-
rectedconflict graphG = (V, E) describing all overlaps between pairs of candidate label positions,
and use it for computing a label assignment. The conflict graph is as follows: for each candidate
positionp in P, there is a vertex,, in V; for every pair of label positiong andq in P that overlap
on the map, we add an ed@s,, v,) to £; if a candidate label positiopassigned to a point feature

fi € F overlaps another point featufe € F', with i # j, then we insert an edde,,, v,) in E for
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Figure 7.5: The Map Labeling steps.

every candidate label positianin ;. Moreover, for every featur¢ < F', the vertices associated
to its candidate label positions form a cliqueGh The cost values of the candidate positions can
be extended to the conflict graph by definiXigu,) = A(p) for all p in P.
An example of a conflict graph is shown in Figufé for the candidate positions presented in
Figure7.3. Many of the user interactions presented in this chapter manipulate the conflict graph, as

we explain in Sectiof7.4.1

Figure 7.6: The conflict graph of the candidate label positions in Figlu® Vertices, representing label
positions, are drawn as squares. The original candidate label positions, shown as dotted rectangles, are
presented here only for reference. Each candidate position has a cost assigned to it. Light-color edges
connect vertices associated to the same feature. Dark-color edges indicate overlaps on the map between two
candidate positions.

After the conflict graph has been constructed, the next labeling step is to solve an optimization

problem. The most common approach (see for example Srigd. [176]) is to solve a variant
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of the Minimum Cost Maximum Independent Set Problem (MCMISP) for the conflict graph. A
set/ C V isindependenif no two vertices of/ are joined by an edge ik. The set/l C V

is amaximum independent sgtit is independent and it has maximum size. TW&imum Cost
Maximum Independent Set Problésrto find a maximum independent getor which the sum of

the costs of the vertices ihis minimized.

A solution for the MCMISP is directly associated with a solution for the labeling problem, since
the vertices inl indicate candidate positions for labeling the features. Note that the edges in the
conflict graph are chosen so thatfiis independent, then the candidate positions associated with
the vertices i/ do not overlap. If no vertex related to a particular featfire F' appears irf, then
f remains unlabeled. Figureé7 shows the maximum independent set with minimum cost for the
conflict graph in Figur& .6, and the corresponding labeling solution.

In the rest of this chapter we refer to a set of vertiées V' and its associated candidate

positions indistinguishably aslabeling solution

0.3

0.7

0.7 1

(a) (b)

Figure 7.7: (a) the maximum independent set with minimum cost for the conflict graph in FigGrand
(b) its corresponding labeling.

The MCMISP provides a clear representation for the map labeling problem. However, in some
circumstances (for example, for interactive optimization methods) we need a more flexible model.
Christenseret al. [33] present a model where label overlaps are tolerated, but they are penalized
in the objective function. The problem consists of minimizing the number of labels taking part in
overlaps plus the number of unlabeled features. A labeling solution in this case may have overlaps,
but it is expected to be an intermediate stage to a better labeling.

We use Christensen’s model and modify the conflict graph to includmkateled vertex; for
every featuref;, i = 1,2,...,n. The unlabeled vertex has a very large cost and forms a clique with
the other vertices associated to the same feature. If an unlabeled vertex appetrsrirwe do not
label its feature.

The new optimization problem is formalized as finding a suliset V', such thai{p € P :
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vp € I,(vp,u) € E,u € I} + {e € I :1 < i < n}|is minimized, and the solutiof is
constrained to have exactly one vertex associated to every feature. The sum of the costs of the
unlabeled vertices il is a secondary criterion for minimization.

Christenseret al. propose a data structure for computing and maintaining the cost of a labeling
solution efficiently. For every candidate position, we record a list of all other candidate positions
(associated to different features) and features that intersect with ip; betthe candidate position
in use by a featurg;, with p; € (m; U €), andp; = e indicating thatf; is unlabeled] < i < n. For
every featuref;, 1 < i < n, we store a counter of the number of pairwise overlaps betweand
all other features, and betwegpandp;, for 1 < j < n and: # j. If p; = € then the counter fof;
is zero.

The total number of labels taking part in overlaps is given by the number of features whose
counter is different from zero. If a featug, 1 < ¢ < n, has its label candidate position in use
p; changed, then the counter firand for other related features can be updated by looking at the
lists of intersecting elements associated to the previous and the new candidate positions referred by
p;. Whenever a counter slips from (to) zero, the total number of overlapping labels is incremented
(decremented) by one.

Note that the labeling steps described here characterize a fully automatic labeling approach.

Next we consider a framework where the human plays a role.

7.4 An Interactive Map Labeling Framework
Our interactive framework for Map Labeling provides the following resources:

1. Mechanisms for refining a labeling problem — the user can adjust the constraints and objec-
tives of the problem so that the optimum solution for the modified problem has the properties
in which the user is interested. Manual changes and other interaction facilities offer an intu-

itive way for inserting domain knowledge into the optimization process.

2. Automatic optimization methods for incremental improvement of a labeling solution — in-
stead of performing time-demanding manual adjustments of labeling solutions, the user can
take advantage of automatic optimization methods. The methods compute a solution consid-

ering recent domain knowledge entered into the system, and support focus.

3. Quality feedback — visualizations provide feedback to the user about the quality of the current
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labeling solution and the progress of the optimization process.

We implement these resources by extending the automatic labeling steps presented in the pre-
vious section. The extension is shown in Figdr& The first modification is to allow a continuous
processing between the optimization method and the labeling solution; this is indicated by the cycle
between the last two boxes on the left-hand side of the figure. In addition, data structures used
in each labeling step are extended to become persistent and dynamic. Parts of the data structures
can also be selected, so that interactive and automatic operations are executed only on the selected
elements. Selection is shown by a vertical line that intersects the labeling steps. Finally, the user

can control the labeling steps through a number of interaction facilities.
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Figure 7.8: The interactive framework for Map Labeling.

The framework employs data structures for keeping aFsef point features, the labé] and
the setr; of candidate positions for every featufg € F, the conflict graphG = (V, E) and a
labeling solution/ C V' (that functions as a working solution). These data structures are persistent
—they are kept in memory rather than discarded after running a labeling method, in contrast to what

is done by traditional map labeling approaches — so that changes made by the user are preserved.
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Selection is defined for point features, for candidate positions and for vertices of the conflict
graph. However, user direct control of the selection mechanism is allowed only for point features.
When the user selects a point feature, its corresponding candidate positions and vertices in the
conflict graph are automatically selected. Deselecting a point feature causes the selection of its
candidate positions and associated vertices to be undone.

A visualization tool provides pictures of the labeling. The user can tune the visualization as we
explain in more detail later. The framework also includes the best solution agent (implicit in Figure

7.8), which saves the best labeling solution produced so far.

7.4.1 Interactions

Several interaction facilities are investigated in our framework. We present a complete list of them
below (in this subsection and in the remainder of this chapter we use the formal notations introduced

in Section7.3):
a) Changing the font size of the label of a feature.

b) Activating/deactivating a predefined candidate positiéor a feature — this action causes the

insertion/removal of a vertex, into/from the conflict graph, plus its related edges.

¢) Creating a customized candidate position for a particular feature. The new candidate position
can be located anywhere in the map — this action also causes the inclusion of a new vertex

and of some edges in the conflict graph.

d) Changing the cost of a candidate label position — the change is made on the associated vertex

in the conflict graph as well.
e) Directly creating a new edge in the conflict graph or removing an existing one.

f) Constraining a featur¢ to be labeled — this action temporarily deletes the unlabeled vertex

assigned tg’ from the conflict graph.

g) Constraining a featur¢ not only to be labeled, but also to use a particular candidate label
positionp — in this case, all vertices in the conflict graph related swe temporarily removed,

except the vertex,,; the related edges are also deleted.

h) Choosing and running a different optimization method, when more than one algorithm is

available.



7.4 An Interactive Map Labeling Framework 167

i) Focusing the optimization method on a group of selected features — when an optimization

method is executed, only the selected features can have their labeling assignment modified.

i) Manually changing the labeling solution computed by the optimization method — this opera-
tion is implemented by allowing the user to swap a veptéx . with another vertex, where

p andq are associated with the same feature.

All these operations are done graphically and in an intuitive way through a graphical interface.

Changes performed by the user in a particular step of the labeling process are immediately
propagated to the data structures of the later steps. For instance, increasing the font size of the label
of a feature causes all related candidate positions to enlarge. New overlaps may then occur, forcing
new edges to be added to the conflict graph. Similarly, if the user deactivates a candidate position
p of a featuref € F' whose vertex, is in use by the labeling solutioh thenv,, is removed from
the conflict graph and fromh. The unlabeled vertex of is added tdl instead.

Note that the selection mechanism not only allows the user to focus the optimization method on
a particular section of the labeling problem, but also to restrain all other interaction facilities to this
region. For example, by calling the appropriate tool for activating/deactivating candidate positions
causes a modification only of the selected features. This is quite different from the traditional map
labeling approach, where a labeling model is defined uniformly for all features.

Even though the diagram for user interaction in Figiu&seems different from the User Hints
framework in ChapteB, it matches the types of user hints we described perfectly. The interaction
facilities (a) to (g) represent adjustments to the objective function and to the constraints of the
problem, since they affect the conflict graph used as an input to the optimization methods. Facility
(h) corresponds to controlling the labeling method directly, while facility (i) is a focus mechanism.
Facility (j) is a typical manual adjustment of the solution.

With these interaction facilities the user has sufficient flexibility to refine the problem and im-
prove a map labeling solution. He or she can either execute a fully manual postprocessing of a
computer-generated solution, or combine human intervention with automatic optimization meth-
ods. Examples of how to use the framework for solving specific labeling problems are given in

Section7.4.5
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7.4.2 Solution Quality

We say that a feature onflictingif its associated vertex in I is not an unlabeled vertex, and

if there is an edgév,u) € E with w € I andu is also not an unlabeled vertex. In other words,

the feature is conflicting if it is labeled and its current label position is overlapping another label or

feature, or if the feature itself is overlapped by the label position in use by another feature.
Thequality of a labeling solutior?, for a conflict graphG = (V, E') and set of featureg', with

I CV,isdefined byQa(I) = (q1(1), g2(I)), where:

e ¢ is the number of conflicting features implied bylus the number of unlabeled vertices in

I.
e ¢- is the sum of the cost of all non-unlabeled verticeg.in

Given two labeling solutiong; and I> for the same labeling problend; is betterthe I if
Qc(11) < Qg(I2) in lexicographic order. The values for and g, can be efficiently computed

using the data structure described6d]f

7.4.3 Optimization Methods and Focus

Any optimization method that is able to solve the map labeling problem described in Sé&ion
can be used in our framework. This includes practically all methods mentioned in this chapter
such as Simulated Annealing, simple greedy heuristics, Discrete Gradient Descent, Integer Linear
Programming and Genetic Algorithms. The optimization methods must input the set of features,
the conflict graph and, optionally, an existing labeling solution to the problem. As output, they must
produce a new labeling solution.

The existing labeling solution can be a starting point for producing a better labeling via an
improvement process. It also provides a bound for the quality of any new labeling.

When integrating the optimization methods in the framework, we have to consider feature se-
lection (focus) and constraints. Constraints can be easily implemented (as described previously, in
Section7.4.]) by translating them into changes of the conflict graph before running the methods.

Focus may be implemented here in two possible ways:

1) Hard-coding focus in the optimization methods. In this case, the algorithms are modified to

remove from or add to the existing solutidronly selected vertices of the conflict graph. If

Sprovided that there is a feasible solution.
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the existing labeling solution contains non-selected vertices, then these are preserved in the

new solution.

2) Executing a preprocessing stage where a simplified labeling problem is created containing
only the necessary information for labeling the focused area. The optimization methods are
not changed. They work on the simplified problem, and the resultant solution is integrated

with the existing solution for the whole labeling.

Support for focus is relatively easy to hard-code in general improvement methods, such as
greedy heuristics and Simulated Annealing. A list of selected features is sufficient to control which
elements of the existing solution can be modified. Integer Linear Programming methods also permit
a simple hard-code implementation: integer constraints can be defined for assigning the labels of
the non-selected features to their current candidate positidnslinis means that only the variables
associated to the selected features are free to change.

The preprocessing option, however, offers several advantages: it allows the use of existing map
labeling algorithms without modification; it simplifies the labeling problem by discarding several
non-selected features; and it is also simple to implement.

In the next section, we explain the preprocessing approach in detail.

The Preprocessing

Given a list of featureg”, a conflict graphG = (V, E), an existing labeling solutioh C V, and a
functiono (V') — Boolean that indicates whether a vertexc V' is selected or not((v) = true if
vis selected, andlalse otherwise), we compute a simplified labeling problem with featiites F
by defining asimplified conflict grapiG’ = (V’, E’), and asimplified labeling solutiod’ C T as

follows:

1.V ={ueV:o(u)=trueor ((u,v) € E,u € I and o(v) = true)},
2. ' ={(u,v) € E:u,v eV and (o(u) = true or o(v) = true)};
3.I'=INV"

The new sef” consists of all features df that have at least one of their associated vertices in
V. Figure7.9shows the result of a preprocessing for a labeling problem involving three features in

the 4-Position-Fixed model. The middle feature is selected and, consequently, all its vertices in the
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conflict graph. Note that the simplified labeling problem contains only the elements that may affect
the quality of labeling assignments for the selected feature (Feature 2). The new problem does not
include all candidate positions for Feature 3, since this feature is not selected and, therefore, its
label position does not change. Furthermore, no labeling assignment for Feature 2 causes overlaps
with the label of Feature 1; consequently, Feature 1 is not included in the simplified problem.

Labeling Problem Simplified Labeling Problem

-

243 2[3

) L :>

e
Selected
feature
Conflict Graph Simplified Conflict Graph
> &
‘\
Selected
vertices

Figure 7.9: Preprocessing of a selected labeling problem.

A solution for the simplified problem provides a solution for selected features of the original
problem. In addition, the labeling assignment for the non-selected featurégtimat is, Feature 3
in Figure7.9) is preserved, sincE’ does not contain unlabeled vertices for these features, and all

features are constrained to have exactly one of their associated vertiées in

7.4.4 Visualizations

Visualizations are provided to show qualitative aspects of the labeling solution and/or combinatorial
characteristics of the problem.

The user can swap between two visualizations:

1) A geographical map with features and labels. This view has small variations that can be
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chosen by the user, such as displaying a box around the labels and presenting all candidate

positions. Figure’.10illustrates this visualization.

2) The conflict graph with all vertices ih highlighted. This is shown in Figurgé11

Overlaps and unlabeled features are highlighted in the pictures by using icons with different

colors and shapes.

Mark John
Isabelle Arna
.Paul :]O%ph Jacky
D& Molly”
Marie Nick  Dianne
.Alej and.michad .Paef .Rl chard
Jenny Kim
.Tony .David
Bob
. All ;
Allan Caroline JTrevis
Keith Jessy
Alexandre Aaron
Tim
(@) (b)

Figure 7.10: The geographic map visualization for a set of features with proper names. The labels “Alejan-
dra” and “Michael” are overlapping. Two variations are presented: a traditional view (a), and a picture with
all candidate positions that emphasizes the position in use (b).
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Figure 7.11: The conflict graph visualization for the labeling problem in Figdr&Q The yellow lines (in
light color) represent in fact a clique between vertices associated to a same feature.

In order to avoid overwhelming the visualization with too many details, we adapf@mnation-
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demand policythe user can control the amount of extra information to be displayed. This is done
by combining the visualization tool with the feature-selection mechanism, so that extra details are
shown only for the selected features. For instance, the user can hide all unselected unlabeled fea-

tures or their candidate positions of all unselected features.

7.4.5 Labeling Improvement

In this section we explain how the interaction facilities can be used for solving overlaps and ambi-

guity, and for converging to better local minima.

Overlaps

In general, the optimization methods provide an initial labeling solution without overlaps, but with
some unlabeled features. Overlaps are then created by the user when moving a label to a different
candidate position, increasing the font size of a label, or changing the label text. Such changes may
be based on domain knowledge, but they create problems that need to be solved.

Overlaps can be treated by selecting a group of the features including the conflicting ones, and
re-executing an optimization method for reorganizing the labels. If there is no complete labeling

without overlaps, then one or more features will be set to an unlabeled state.

Ambiguity and Semantic Problems

Ambiguity involves uncertainty in uniquely identifying to which feature a label is related. Figure
7.12 shows a crowded labeling region with ambiguous situations. For instance, it is difficult to
identify the features for “Kotto” and “Osyth”. The observer may also be unsure, at a first glance,

about the features associated with labels “Slotnick” and “Tallbot”.

N .
Kyriako .Slotmck .Purdum
Cattan
®
®
TallbOt. Armallas verone Sayed
.K' Sheeran® °
unura Pyne
Kotto

® .
eAdelaja .Osyl;h .CaITICk

Figure 7.12: Ambiguous labeling cases.



7.4 An Interactive Map Labeling Framework 173

Our interactive framework offers the user three semi-automatic ways of solving ambiguity:

1) Deactivating one of the candidate label positions in use that is causing ambiguity.
2) Increasing the cost assigned to one or both of the ambiguous candidate positions.

3) Or creating a “virtual” overlap by inserting an edge into the conflict graph that connects the

pair of vertices representing the ambiguous candidate positions.

These operations can be performed using a graphical interface. After the operation, the user
calls an optimization algorithm for computing a new labeling solution for the affected area.

The virtual overlap seems the most powerful approach. It prohibits the ambiguous case, and
still allows some particular solutions that are not possible using the other two alternatives. For
example, the virtual overlap allows the optimization method to resolve ambiguity by setting any
of the features as unlabeled, and leaving the other feature unchanged; the other approaches do not
have the same flexibility.

The three approaches can also be applied to semantic problems, as the one illustrated in Figure
7.4. For that problem, the user may create a conflict edge between labels “St. George” and “Wash-

ington”, and between “Washington” and “Happy Bay”, in order to force them to be repositioned.

Unlabeled Features

If the optimization methods tend to leave important features unlabeled, then the user can force them
to be always labeled by defining labeling constraints visually. Figut8shows examples of such
constraints, which are represented by pins. A pin can be assigned to a feature (saying that it has to
be labeled) or to a particular candidate position (that has necessarily to be used).

When calling a method again, all labeling constraints are automatically translated into changes

of the conflict graph (as explained in Sectibd.1), and force the constrained features to be labeled.

Olshausen. %LeDoux Topa

Call Prunella
ey .Sh&man % .Reneta
Durrett .Hoy Fleda

Figure 7.13: Pinned (constrained) features.
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Other Resources

In practical cartographic processes, the user commonly improves the labeling of features by mov-
ing labels by hand. This is used to solve any labeling problem. We also support the same type of
interaction, but we combine it with adjustments of the data structures. Basically, a free hand move-
ment of a label causes a customized label position with zero cost to be created and inserted into the
conflict graph. The solutior is also updated to have this candidate position set as the choice for
the placement of the label. Note that future executions of a labeling method considers the candidate
customized position with high preference.

Another point to be noted is that the user can increase or decrease the font size of a group of
selected labels simultaneously. This facility combined with executions of labeling methods allows
an interactive search for a solution to the Maximum Size Labeling probletq,[which is also
NP-hard.

7.4.6 Selection Extension

In the previous section we showed that the user could solve labeling problems by performing some
adjustments of the data structures, and then focusing the optimization methods on a region contain-
ing the modified elements. We, however, did not mention anything about the selection itself. We
know that such selection needs to include the modified features, and possibly some nearby features
must be relabeled to allow a low cost solution. The problem here is to decide which nearby fea-
tures should also be selected. In this section we introduce a mechanism that helps the user to select
related features. The mechanism computes the set of all features that may need to be relabeled in
order to solve a local problem.

We present two new concepts in Map Labeling:
Definition: A feature f affectsa featureg, represented by — ¢, f,q € F, if there is an edge
(u,v) in the conflict graph, where is a vertex associated with any candidate positiofi,efndv a
vertex associated with the current candidate position in usg for

Informally, f affectsq if there is a labeling solution fof that conflicts with the current labeling
of ¢. This concept is not symmetric, gs— ¢ does not implyy — f.
Definition: Let A(f) = {¢ € F : f — ¢}. Theaffected closur€’( f) for a featuref € F'is a set

of related features defined recursively as follows:
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ciH={rv U cl.

q€A(f)

The affected closure defines all features that need to be taken into consideration when solving a
labeling problem that involves a given featyfeFigure7.14illustrates this concept. The affected
closure off; is { f1, f2, f3}. This means that for labelingy optimally we may have to change the
labeling of f; or f3. In fact, the conflict betweelfi, and f3 can be solved by relabeling either of
these two features. Moreover, if the label f5fis placed on the bottom-left candidate position of

this feature, then a new overlap with the labelfgis created andg has to be relabeled.

f3

Ji

NE

f

Figure 7.14: Examples of affected closures for four features. The affected closur€§ are= {f1, f2, f3},

C(f2) = {f2}, C(fs) = {f1, fo, fs} andC(fs) = {/fa}.

Since the affected closure is recursive, it may contain features whose candidate positions are
not overlapping, but are affected indirectly. For examglec C(f3) in Figure7.14 even though
fo and f3 do not overlap. The affected closure ff containsfs becausefs — f; andf; — fo.
This is meaningful, because the overlap involving featfsrean be solved by keeping this feature
as itis, and relabeling; and possiblyfs as described above.

We note that the affected closure is also not symmetric. For exafip}e, does not include
fi.

Furthermore, the affected closure for a featfiiie different from the set of vertices determined
by the maximal connected subgraph that contginghe conflict graph for the labeling problem
in Figure 7.14, for instance, is connected and includes all four features. However, the affected
closureC( f1) does not contairf,. Some labeling approachesd identify all disjoint connected
components of the conflict graph, and compute a labeling individually for each connected subgraph.

The advantage of taking the affected closure of a feature instead of the maximal connected subgraph
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is that we can reduce the size of the problem. Note, however, that this is dependent on a particular
group of features that are considered a reference. In addition, it depends on the current labeling of
all features. Iff4 were labeled using the top-left candidate position, then it would also be included
in the affected closure of;.

We use the affected closure in our framework as part of an interactive tool for extending the
user selection. The user selects aSetC F' of important features that present a problem (this
can be, for example, two features whose labels overlap). The user then calls a selection extension
procedure that selects all features in theGEOSUREN) = (J;y C(f)-

The setCLOSUREN) can be computed in linear time (on the size of the conflict subgraph

induced by the features in this set) using a depth-first search.

7.5 The LabelHints System

We have implemented a prototype system, callabelHints, for experimenting with our map

labeling approach. See a snapshot of the system in Fiylite

LabelHints [AUSTRALIA Ibl] [- o] x]
File Edit View Labsling About

[o a|#] Slo| |« 58l

Algorithms

e Highlight
8 Stop

I™ ShowWorking

((147556,-15712) |ConflictingLabels=0/0_Unlabeled=266/266_LabelCost=378.40/376.40

Figure 7.15: LabelHints — an interactive Map Labeling system.

At the beginning of the labeling process, the system creates a trivial working solution by pro-
ducing a setl with an unlabeled vertex for every feature. This is shown in the visualization by
drawing crosses representing unlabeled features. The user then selects a group of features and de-
fines candidate positions for them. Figur&6shows a dialog window for setting feature attributes.

After defining candidate positions, the user may call an optimization method for improving the

labeling.
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Figure 7.16: Feature Setup window in the LabelHints system.

Two optimization methods were implemented in the system: a Hill Climbing algorithm and a
Simulated Annealing algorithm. A multi-thread architecture is supported so that the algorithm can
run as an independent thread, and multiple threads can be executed simultaneously.

The user starts an optimization method by clicking on a button of the interface. The system then
computes a simplified conflict graph containing the selected features, as explained in 3dcfon
and initializes a thread for the labeling method. The thread inputs the simplified conflict graph and
produces two labeling solutions for it, which are kept internally: a working labeling and the best
labeling found so far (note that these solutions are different from the working and best solutions
kept by the system for the entire problem). The thread then runs until a stop condition defined by
the optimization method is satisfied. During this execution, the system queries the thread in regular
time intervals for a solution and integrates it with the global working solution. Either the internal
working labeling or the internal best labeling can be queried; the choice is determined by the user.
However, when the thread completes its execution, only the internal best labeling is available.

The user can start several threads simultaneously for the same set of selected features or for
different sets. Each thread has its own simplified conflict graph and produces independent solutions.
When more than one thread is available, the system queries each thread, and updates the global
working solution sequentially with the results. Note that no lock mechanism of the global solution
exists. This means that the result produced by a thread may overwrite the labeling computed by
another thread, if they share some common features. Therefore, the user is responsible for deciding
how and when to run the algorithms. Nevertheless, superposition of results is not a very serious
problem as the best solution agent is implemented. The agent checks the working solution after
every update with the result of a thread, and saves the best global solution.

The system provides the two visualizations described in Se¢tibd The visualizations are
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interactive, allowing the user to perform feature selection, to set labeling constraints and to perform
manual replacement of the labels via direct manipulation. Parameters of the quality of the working
solution and the best solution are shown in a status bar.

More information about the LabelHints system is presented in Appddidix

7.6 Evaluation

In this section we describe an evaluatiorLabelHints system performed with experts. The evalu-
ation is rather informal, because a controlled experiment with human subjects (of the kind described
in Sectionss.5and6.5) is difficult for Map Labeling. The reason for this is that Cartography is a
professional activity which requires years of training and experience. One cannot perform human
computer interaction experiments in this domain using untrained subjects. Further, it is impossible
to assemble enough professional cartographers to conduct a controlled experiment with statistically
significant results. Thus, we performed a study along the lines of “heuristic evaluatiéf’dy
demonstrating the system to domain experts and noting their feedback. The main difference from
a traditional heuristic evaluation approach is that some experts had to work in groups (due to their
locality and tight work schedules), and we aggregated the results of the different groups ourselves
afterwards.

Meetings were held with cartographers from three organizations: UBD — Universal Press Pty
Ltd, Sydway Publishing Pty, and The Defence Imagery & Geospatial Organisation (DIGO). UBD
is a brand of Universal Press, Australia’s largest publisher of mapping and travel related products.
UBD publications include street directories, maps and atlases for the whole country. Sydway is
part of a group of companies called Ausway, another major mapping organization in Australia that
produces street directories for Sydney, Melbourne and Central Coast. DIGO is the lead agency in the
Department of Defence responsible for the acquisition, production and distribution of imagery and
geospatial based intelligence and data in support to the Australian Defence Force and Government
decision makers. DIGO provides a wide range of services from hardcopy maps to digital products
for incorporation into Geographic Information Systems.

Ouir first visit to UBD was on the 21st of February in 2002, when a preliminary version of the
system was presented to Mr. Graham Russell, the Technology Manager, and to his colleagues. A
second visit was made on the 15th of October 2002 for demonstrating the complete prototype.

We had meetings with Mr. Murray Godfrey, of Sydway, on the 12th of July, and with Mr. David
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Godfrey, Director of Ausway, on the 29th of October 2002.

On the 10th of February 2003, we visited DIGO, in Bendigo — Victoria, and met with a group of
cartographers under the supervision of Mr. Brian McLachlan, chief of the Geospatial Intelligence
Branch.

All three companies make extensive use of computer technology to produce maps, and their
existing software could place labels. UBD has an Autocad system extended in house to support
Cartographic processes. This system computes an initial placement for each label by performing
a simple graphical search nearby its feature for a position that implies less overlaps. Sydway and
DIGO use Maplex and ArcGfS respectively; these two systems implement good labeling algo-
rithms, and allow the users to specify preferences for label placement. None of these three systems,
however, support an interactive labeling optimization such that of our framework, based on focus
and on a dynamic conflict graph.

Each meeting with the experts lasted between two to three hours. This involved a presentation
of the interactive framework, followed by a demonstration oflthbelHints system and by discus-
sions about the interaction facilities. The interactive labeling process was demonstrated for a map
of iron occurrences in Tasmania (Figutd7), a map with cities in lowa-USA (Figuré.18, and a
randomly generated map with proper names (Figui€). The experts were asked about the effec-
tiveness of using our interaction facilities in comparison with their normal way of performing map
labeling tasks. Even though our framework supports fully automatic map labeling, we were more
interested in using virtual overlaps and labeling constraints for solving labeling problems, rather
than by manual changes. The experts were also questioned about the system in general and about
their understanding of the conflict graph concept. Our meetings with Sydway’s experts were at the
Information Visualisation Laboratory of the University of Sydney, where they could use a special
table that we built for interactive optimization. Details about the table are given in AppAndix

The feedback on the system was gathered informally via comments from the experts. The

salient points were as follows:

e The cartographers at UBD mentioned that they spend a significant amount of time manually
improving map labeling solutions. However, they showed that their maps have a high degree
of information, with many lines and area features that need careful and detailed refinement.

The maps are used many times and are very rarely modified after being finished. Therefore, a

®Maplex and ArcGIS are products of the Environmental Systems Research Institute, in California, USA. For more
details about these products $etp://www.esri.com/software/
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Figure 7.17: Map of Iron (Fe) occurrences in Tasmania. The labels consist of names of several localities,
including towns, mines and deposits. Some places are labeled “UNNAMED?”. This incorporates data which
is: (c) Commonwealth of Australia (Geoscience Austrdiisp://www.auslig.gov.aul990.

Figure 7.18: A map of towns in lowa, USA. Data from the National Mapping Information Server of the
United States Geological Surveyt(p://mapping.usgs.goy/
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Figure 7.19: A randomly generated map with proper names. The proper names are from the SCOWL col-
lection, the Spell Checker Oriented Word Liststp://wordlist.sourceforge.ngt

laborious manual refinement is justifiable. The experts noted that our interactive framework
may be useful for Geographic Information Systems, where point features are more common,

and where changes of the geographic information stored in databases happen more often.

e Sydway'’s cartographers also mentioned that they spend a considerable amount of time in
manual refinements of detailed labeling solutions. Almost every label needs to be reposi-
tioned after an initial automatic placement. The experts commented that this labeling adjust-
ment is much easier to perform via a fully manual drag-and-drop operation of the labels, than
by using some advanced interactive facilities such as the virtual overlap. The explanation
for this was that the users could effectively place the labels at the precise positions that they
wanted by a free manual placement. Figdr20shows the map of the Sydney Centre that

appears in Sydway Street Directory; this is a very dense area that needed careful refinement.

e The comments from the cartographers at DIGO regarding labeling improvement were that
moving labels manually seems more effective for small areas, while the interactive tools can

be useful for dense areas with several labeling problems.

e The cartographers of Sydway and DIGO pointed out two important resources that were not



7.6 Evaluation

182

jodiibank
Mefivate
==

|
| Lumley
| House

Wynyard|
Rly.Stn

S5
R
g3 2
B

S

ET)
SAuIIeL
R

AllSeasoms
Premior Mensio

A

PIRE T,
- = Hi
=
H%g S,
==
e

Development Teloph
Under Exchang

\Chatswons
[ %ieise

[ cpans
| S5 S ANzBank
18 & Offices

Cwealt
wealth
Building

i
rsery

7
Broughton |y
W APt

Station

B0 osH |
(BoIpoN D)

Aowiys®

Allianz
Ccentre.

Qlect?

“gerkeley
e
Esﬂp'{

2 ¥I0M

foyiny

1910

e
Vhar

= KK
Cocke g,
5
ﬁe&law-a?;sl';/’c

2
§
B

2
T
[iF
5

—— ane
Genes
%.,ﬂre

Gepiek |

‘owoH

y
a
« &MerchantCt

Sty

_|add

Savings
Ban)

NS ZE7 T
2 Ssocior| Wine
<& g’ | Chan
Setbourne | elans
Chambers [~Hatr;

lspus
Wentworsy| Beant
Chambary [ ——

&

e’ |

Skygarden’

Louss

Vaitien 5

= Cwealth, Stay,
Law Courts
162 gy
Queen:

Law Cour,
Building

Dymocks
Building

Katies Chntrepoint

&NZBank
Grace Bros. b — et
Jctyeney IS gentrepointl Arcades
=" Sydney Tower S
(Centrepoint -, . ~
80 Tower)

David Jones
Market Street

7

Courf.
iann/ m|

e
\sley Mission| P
igigision] P |

[7he Banking |
T |
1

dney Hilton
apita

B “gigg

N
=

SYDNEY
2000

StJames
TrustBidg,
The Groat
Synagogae
(1578

n Centre
idge)

Lb@y

t .
\\ : olico
Downtoy,
% n
T Apartments

|

Lyeos
0SBt
18

I

f

Figure 7.20: The Sydney Centre. Map provided by Sydway Street Directory of Greater Sydney. Copyright
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fully implemented in the system: weights assigned to point features (indicating the impor-
tance of displaying their labels), and levels of font size for different features. Font size and
feature weight usually depend on population size, when the point features represent locali-
ties. Even though our system supports labels with different font sizes, we do not relate this
resource directly to feature importance in the labeling process. In addition, feature impor-

tance only exists partially in our system, and it is represented by the labeling constraints.

e DIGO's experts proposed several extensions to the system. They mentioned that identifying
ambiguity and other labeling problems in a large map can be very time consuming. They
then suggested that the system could highlight pairs of labels that may be problematic (based
on some heuristic checking), and ask the user about running an automated improvement
process. If the user answers ‘yes’, then the system could add a virtual overlap between the
problematic labels, select some affected features and run an optimization method. Some final
suggestions obtained in DIGO included: extending the system to handle layers of features,
as well as overlaps between elements in different layers; implementing a constraint enforcing
a minimum offset between labels and between labels and features; and automatically hiding

some labels of less importance when zooming out.

We noted that suggestions for extending the system dominated the comments of the domain
experts. They proposed not only traditional cartographic tools and ideas, but also semi-automatic
routines that might help the map labeling optimization. Some suggestions show promising direc-
tions for automating the interaction facilittdn general, the experts expressed that the framework
has a good potential for helping cartographers in real map labeling applications, but that more fea-
tures need to be added to the system.

The experts’ comments indicate that fully manual postprocessing can be more effective than
the human-computer collaborative approach for high quality maps. The disadvantages of some
interaction facilities are that they may not satisfy entirely the experts’ desires, and can also create
new labeling problems. Figuré.21 illustrates this problem. An overlap is added by the user
to express the existence of ambiguity between the label “Webster City” and the feature labeled
“Blairsburg”. The intention is to force “Webster City” to be moved to a candidate position that
is distant from “Blairsburg”. Such an operation can be performed by clicking with a particular

tool on the two ambiguous elements, selecting some features for reorganization, and calling an

"More ideas for semi-automatic facilities emerged from the discussions with Sydway’s cartographers, and are pre-
sented in the Remarks Section of this chapter.
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optimization method. The optimization method, however, finds a low cost solution that consists of
setting “Blairsburg” as unlabeled, which is a worse solution. In other examples, the method may
relabel the problematic features properly, but can create new ambiguity between other pair of labels.
For cases like this, a simple manual adjustment where the experts move labels to the positions that

they want is still more effective.
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Figure 7.21: An optimization task where a new problem is created by using virtual overlaps. The pictures
show a sequence of steps executed by the user for relabeling a section of a map: a virtual overlap is defined
between the label “Webster City” and the feature “Blairsburg” (a), some nearby features are selected (b), and
the Simulated Annealing algorithm is called for computing a new labeling (c).

The benefit of using virtual overlaps was recognized for cases where several labels have to
be moved. Figur@.22shows an example in which there are many labeling problems and the user
defines overlaps and constraints for them. By calling an optimization method the user obtains a new
solution where most of the problems were solved. The method relabeled the problematic features,
and reorganized some nearby labels. This solution can be fined tuned by manual adjustment. One
domain expert at DIGO noted that an undo facility is really critical here, to allow the user to revert
to the initial solution in case the computer-generated labeling is visually worse (although it can be
better in terms of the quality function).

We realized that the selection extension tool is important for helping the user to focus the opti-

mization methods. The user’'s guesses about which features are affected by another feature can be
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Figure 7.22: An optimization task where several labeling problems need to be solved. The figure shows: (a)
the initial labeling with aesthetic problems and with a feature, “Zearing”, that needs to be labeled; (b) the
visualization after adding virtual overlaps and a labeling constraint; and (c) a new labeling solution produced
by the focused Simulated Annealing.

wrong. Sometimes nearby features on the map are not related at all, and do not have to be included
in the selection. The opposite situation, where distant features seem unrelated but are affected,
also occurs. Nevertheless, the user may decide to choose even a smaller subset of the extended
selection, particularly when the image is scaled up and the selection runs out of the screen area.
Figure7.23shows the extended selection computed for a feature on the center of the screen. The
user may reduce the selection here, in order to avoid changes in areas that currently are not visible.
Note, however, that this can reduce or eliminate the chances of finding an optimal labeling for the
problem.

A useful resource is the possibility of having two different algorithms. We noted that Simulated
Annealing is difficult to tune perfectly to all problems. We have set its parameters for a slow sched-

ule, but it may stop before some easy improvements are completed. Running the Hill Climbing
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Figure 7.23: Feature selection running out of the screen area (visible when printed in color).

algorithm after Simulated Annealing, or as an alternative method, could achieve better solutions.
Another interesting resource is the multi-thread mechanism in the LabelHints system. As we
mentioned in Chapte?, Simulated Annealing is a stochastic method that can yield different solu-
tions in new executions. We allow the user to exploit this factor by starting several instances of
this algorithm on a selected labeling problem. Better results can be obtained with this approach (the
best labeling is automatically filtered by the best solution agent). The user can also perform changes
while the algorithms are running, and the system can take advantage of multi-processor machines.
A final point about the evaluation is that the visualization of the conflict graph did not appear
to be useful for the experts. The cartographers commented that they understood the concept of the
conflict graph and the basic operations performed on it by the interaction facilities. However, the
visualization itself can be confusing for dense regions of the map, and does not seem to provide any
new information to the user. Refreshes of the drawing of the conflict graph (which happen when
the working solution or the problem changes) also demand considerable computational resources,

and this decreases the interactivity of the system.
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7.7 Remarks

7.7.1 Expert Heuristics

The cartographer from Sydway described simple strategies that they employ for solving overlap

problems in dense areas. These are:

1. Shifting the labels slightly so that an overlap is resolved. This is a manual placement where
the labels are shifted horizontally or vertically to another place, while still touching their

features.
2. Reducing the font size or setting other font attributes such as character spacing.
3. Breaking the label into two or more lines.

4. Abbreviating names.

There is a strong potential for exploiting these strategies in a semi-automatic approach. The
idea is to implement heuristics that incorporate the strategies, and allow the experts to control their
execution as a hormal optimization method. The experts can decide when to execute the heuristics
and on which part of the problem to focus.

The first strategy, for instance, suggests using the Slider model. An algorithm for the Slider
model can be employed such as the one presented by HB&khr{ order to improve the labeling
of a few selected features that are overlapping or are too close to each other. A mapping between
the models can be implemented: non-selected labels in the framework are treated as obstacles in the
Slider model, and the final results are converted back into the Fixed-Position model as customized
candidate positions. Itis also possible to use the Fixed-Position model to simulate the Slider model,
by treating the area around each feature as a discrete space, and create a candidate position for
every possible place near the features. The costs for the candidate positions can be determined
by interpolating the costs associated to the original 4 or 8 predefined-candidate positions. This
is feasible only if the number of selected features is small. After the computation of a labeling
solution, the recently-created candidate positions are destroyed, except for the ones that are chosen
for the solution.

Similar ideas can be implemented for the other strategies, and they are only used when neces-
sary. Note that this does not prevent incorporating such ideas in fully automatic processes. In fact,

the last two strategies (breaking labels in lines and using abbreviations) are already implemented in
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an automatic algorithm in Maplex. However, it may be interesting to define labeling rules that can

be easily customized and reapplied by the user on some local regions of the map.

7.7.2 The Conflict Graph

The conflict graph represents the main data structure used in the framework. Therefore, some
efficiencies are needed to compute and maintain it, and to reduce memory usage. Basically, it
is necessary to use efficient algorithms from computational geometry for searching for candidate
positions that are nearby to or overlap with a given feature or label position. This is for creating
edges in the conflict graph. The choice of the representation for the conflict graph is also important,
so that not all edges have to be defined explicitly. We use the data structure described by Christensen
et al.[33], which keeps a list of candidate positions for every feature. Thus, the clique between these
positions is implicit. Further, when saving a final solution onto disk, it is sufficient to record only
the positions in use and the ones defined by the user. The remaining positions can be reconstructed
when loading the graph.

Note that the conflict graph has its limitations, which are related to the fact that it describes
a simple binary relation between label positions. The conflict graph cannot be used to exclude a
particular placement involving three or more label positions without also excluding partial configu-

rations of these positions.

7.7.3 Comparison with the Traditional Labeling Approach

The main difference between the traditional map labeling framework supported in commercial pack-
ages, such as Arcview and Maplex, and the User Hints framework lies fundamentally in the alterna-
tives offered to the user to improve a labeling solution. In those packages the user can only interact
at the beginning and at the end of the optimization process. At the beginning, the user defines a set
of placement rules for each class of features or for the whole map. These rules are then used by
an optimization method to create a labeling placement. After the placement, the user can revise the

solution; however this can only be done in one of the following ways:
e through a fully manual post-processing adjustment; or

e by modifying the rules and recomputing the labeling solution entirely — the previous labeling

placement is discarded.
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The traditional labeling approach does not allow the user to refine the problem and to focus an
optimization method to improve a particular region of the map. Moreover, re-executing the method
causes improvements manually performed by the users to be lost. Consequently, the traditional

approach cannot be used in a continuous and incremental way.

7.7.4 Extensions to the Framework

Although we restricted our study to the problem of labeling point-features with rectangular labels,
the standard combinatorial model used in our framework is easily extensible to handle any type of
feature and label shapes, as shown by Edmondsah[61]. Studies that consider weights for map
features may also be incorporatdd§].

Another point to note is that traditional labeling systems treat ambiguity by allowing the users
to specify a minimal distance between two labels or between labels and features. However, this is
done uniformly to all labels, and can prevent solutions that have close labels, but are still acceptable.
Thus, a possibility is to support a flexible offset constraint, where the expert can specify different
offset distances for distinct regions of the map. Such a facility can be combined with the selection
mechanism: the user selects a group of features, and sets the offset constraint. The system then
creates a virtual overlap for every pair that violates the constraint. In contrast, relaxing the offset
would cause some virtual overlaps to be deleted.

Since the framework already implements interaction facilities for adding and removing edges

from the conflict graph, the implementation of an interactive offset constraint seems straightforward.



CHAPTER 8

General Remarks

This chapter discusses the User Hints framework in light of experience with the systems described
in Chapterst, 5, 6 and7. We start in Sectio®.1 with a discussion of the implementation of focus

and user-defined constraints in optimization methods. We then present in Se&tuidelines

to apply the User Hints framework to other optimization problems. A justification for investing

in the development of interactive optimization is presented in Se@&i&nNext, in Sectior8.4,

we suggest ideas for using our framework as an environment for helping the development of new

automatic methods. Finally, we conclude in SecBdbwith possible extensions to the framework.

8.1 Constraints and Focus: Implementation Issues

The optimization methods presented in the previous chapters were modified to support user-defined
constraints and focus. We now discuss some issues that arise when implementing such modifica-
tions, and present general directions for this task. We restrict our attention to two major categories

of optimization methods: problem-dependent heuristics (such as the heuristics for the Sugiyama
method described in Chaptgy, and meta-heuristics (such as Hill Climbing, Simulated Annealing,

and Genetic Algorithms used in Chaptdr$, and7).

8.1.1 Constraints

We found that user constraints were much more difficult to encode than focus. Moreover, constraint
implementation was harder for problem-dependent heuristics than for meta-heuristic methods.

For the case of problem-dependent heuristics, the implementation was based on a careful study
of an existing code; this varied from algorithm to algorithm and was time consuming. For meta-

heuristics, the implementation of user constraints was more straightforward, as it could be done by
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modifying an objective function or including constraint-satisfaction subroutines.
Despite the differences in implementation, we identified some common options for extending

an optimization method in order to support user-defined constraints:

(a) Modifying the algorithm, so that a solution changes in a way that never violates a constraint.
In other words — using the definitions presented in Se@i@r2— the algorithm only applies
elementary operations on a soluti§that movesS to (or maintainsS in) the feasible domain.

This alternative was adopted for the implementation of the MOVEX routine in the Genetic

Algorithm in Chaptel6, in order to prevent vertex overlap.

(b) Allowing infeasible solutions to be created, and including a cost factor for constraint violation
into the objective function with a high importance. In this case, the optimization method
naturally searches for a feasible solution. Such an approach was broadly used in this thesis,
for example, in the algorithms for Graph Clustering in Chagteand for treating layout

constraints in the Genetic Algorithm in Chapéer

(c) Allowing constraints to be temporarily violated, but implementing constraint-satisfaction rou-
tines that can be called afterwards to adjust the solution and guarantee feasibility. Examples
of such routines are tHéxConstraintalgorithm presented in Secti@n3.2 and theSOLVER

operator described in Secti@n3.4

We believe that the best approach was to use a combination of the options presented above,

instead of a single alternative.

8.1.2 Focus

Focus can be implemented by adding an attrilzelectedo every variable of the problem, which
indicates whether it is selected or not. The optimization methods are allowed to read all variables,
but can only change the value of the selected variables. In most cases, this condition can be guar-
anteed by simply checking the attribigelectedbefore trying to change a value. TBarycenter
algorithm in Sectiorb.3.2 for example, implements this simple approach. In other cases, such as
for the Layering Assignment algorithm in Sectibr8.2 some extra processing needs to be done to
guarantee that constraints and desirable properties of the solution are satisfied. This usually hap-
pens when two variables, sayandq, take part in a constraint An optimization method may

changep, and then try to changgto maintain the satisfaction ef(considering that was satisfied
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previously, but is now violated by the new valuepf However, ifq is not selected, then it cannot
be changed; thus, the method has to redetits original value, or readjust it to another value in
order to guarantee feasibility.

The implementation of focus can go even further by modifying the optimization methods to
concentrate action only on the selected variables of the problem. Since non-selected variables are
never changed, the methods do not have to consider them until it is necessary to read their values.
This is exactly the type of modification that allows the use of focus to reduce the exploration of the
solution space. Almost all algorithms in this thesis used this approach. The Barycenter algorithm,
as an example again, skips iterations of its internal loops that involve layers containing only non-
selected vertices (although this is not shown explicitly in the code in Figaren page80). For
the Genetic Algorithm, we extract the elements that are necessary to reconstruct the selected part
of a drawing, and perform operations only on them; moreover, we avoid recomputing the quality of
non-selected areas of the drawing.

These two kinds of modification, preventing changes of the value of non-selected variables
and concentrating action only on the selected variables, are the main characteristics of the focus
mechanism.

Note that the selected attribute can be assigned individually to each variable of the problem, or
to a group of variables. For example, in the Graph Drawing case study in Chafiterselection
attribute is associated with a vertex, which contains two variablesXtlznd theY coordinates
of its position on the grid. If the vertex is selected, then eithieor Y or both variables can be
changed by an optimization method. We could instead allow a more fine-grained selection, where
the user selects the variabl&sand theY independently. In that case, the visualization should also

be redesigned to represent partial or complete selection of the coordinates of the vertices.

Supporting Focus by Creating a Simplified Problem

The preprocessing approach used in the Map Labeling case study, which creates a simplified la-
beling problem (see pagks8), represents a more natural strategy for implementing focus. The

approach is based on the following steps:

1. Creating a simplified problem instance that contains only the necessary variables to be inves-
tigated. These variables are the selected variables, as well as the non-selected variables that

are dependent on the selected ones. Informally, we consider that two variables are dependent



8.1 Constraints and Focus: Implementation Issues 193

if they are involved in a same constraint, or if they are tightly coupled in the objective func-
tion of the optimization problem — so that the problem cannot be properly solved by setting

these variables separately and combining their values afterwards.

2. Possibly fixing the values of all non-selected variables, so that the optimization methods do

not have to be modified to distinguish between selected and non-selected elements.
3. Producing a solution for the simplified problem by applying an optimization method.

4. Integrating the solution for the simplified problem with an existing solution for the complete

problem.

The main ideais to modify the instance of the optimization problem, rather than the optimization
method itself. This can be achieved by discarding all variables and constraints that are not affected
by the selected variables. As a consequence, the problem becomes simpler and can be solved with
less computational effort. Moreover, if it is possible to set the non-selected variables as constants,
then traditional optimization methods can be used without modification.

The preprocessing approach was effectively used for Map Labeling, and can be applied to other
optimization problems. Consider, for example, a version of the Graph Clustering problem which
aim is to reorganize an existing clustering solut®n= (N1, No, ..., Ni), whereNy, No, ..., Ny
are clusters of the vertices of a graph= (V, E), so that the number of intercluster edges is
minimized and the sizes of the original clusters are preserved. Consider also that an algorithm
exists for this task, and that(.S, G) tries to improveS as much as possible by swapping pairs of
vertices in different clusters. Suppose now that the user wants to focus on just two selected clusters
N; and N, to be reorganized; in this case a simple calltcs, G') may not work properly, as the
algorithm may modify any cluster ii§. We can, of course, adjust to recognize and preserve
non-selected clusters, such As, ..., N.. However, a more interesting approach would be to
compute asimplifiedclustering solutionS’ = (N7, Nj) and asimplifiedgraphG’ = (V'/, E’),
whereN; = Ny, Nj = Ny, V! = N1 |UN2 andE' = {(u,v) € E : u,v € (N1|JN2)}. We
could then executel(S’, G’) to improveS’, and update the solutiofi by replacing/N; with the
improved partitionV], and N> with Nj. This approach demands additional processing time for
creatingS’ and for updatingS; nevertheless, it offers a modular way of implementing focus, and
can be easily integrated with any clustering algorithm (given that it does not change the size of the

existing clusters).



8.1 Constraints and Focus: Implementation Issues 194

Unfortunately, the preprocessing approach does not work for all problems. The Directed Graph
Drawing problem studied in Chaptebsand 6 is an example. We cannot create a subgraph con-
taining few vertices, run a graph drawing algorithm on it, and expect the resulting drawing to be
integrated well with an existing drawing of the entire graph. As we discussed in Clgpter
selected and non-selected vertices of a drawing are strongly interdependent. Consequently, the
non-selected vertices always have to be taken into consideration. Note that the genetic algorithm
implemented in Chaptes maintains an internal copy of the whole drawing in order to query the
position of the non-selected vertices and edges.

In general terms, given an optimization problem with a set of selected variables and a set of

unselected variables, we can identify thdependency conditions

1. Independent selectionthe selected variables are independent of the non-selected ones. As
a consequence, the preprocessing approach can be applied, and the optimization methods do
not have to be modified to support focus. An example is the version of the Graph Clustering

problem described in this section.

2. Proportional-dependent selectienthere is dependency between selected and non-selected
variables, but the number of dependent non-selected variables is small or proportional to
the number of selected variables. In this case, the preprocessing may still be used, but the
dependent non-selected elements have to be incorporated into the simplified problem. This is

the case of the preprocessing approach for Map Labeling.

3. Strongly-dependent selectienall non-selected variables are involved in a dependency re-
lationship with at least one selected element. For example, in the Directed Graph Drawing
problem, every selected vertex of the graph is dependent on all non-selected vertices, since
the latter ones are necessary to compute the number of edge crossings and to avoid vertex
overlap. The most appropriate approach for this case is to implement focus by modifying the

optimization methods as proposed in the previous section.

The dependency conditions described above are based on the assumption that the values of all
selected variables can be freely changed by an algorithm. However, if a more restrictive optimiza-
tion method is used which changes only a subset of the selected variables and/or never violates some
constraints, then the selection may be treated as a simpler case. For example, the strong dependence

in the Graph Drawing problem (due to the fact that batlandY coordinates of the selected ver-



8.2 Applying the User Hints Framework 195

tices can be set to any position) does not have to be fully considered when usiBgriteenter
algorithm. This algorithm modifies only th€-coordinate of the vertices. Moreover, the barycenter
improvement of a vertex involves checking overlap constraints with vertices in the same layer,
and recalculating certain aesthetic measures (such as the number of edge crossings) with vertices in
the layers immediately above and belowTherefore, there is a possibility of creating a simplified
problem instance by using the preprocessing approach. Such a problem would include only selected
vertices and the vertices in the layers immediately above and below the former ones. Non-selected
vertices that are in layers far away, and that are not connected to any selected vertex by an edge or
user constraint do not have to be added to the simplified problem.

Finally, the Selection Extension function presented in Sedtidrbalso has an important effect
on the implementation of the focus facility. The impact of this function can be better understood
now that we have introduced some basic concepts about the dependence between selected and non-
selected variables. What the Selection Extension function does is to augment the set of selected
variables by adding to it the dependent non-selected variables. This process is repeated recursively
until no dependent element exists in the set of non-selected variables. As a result, the sets of selected
and non-selected variables become independent, and the first dependency condition (independent
selection) applies. Such a function may be useful in other optimization problems to extend the set

of selected variables and allow the preprocessing approach to be used.

8.2 Applying the User Hints Framework

This section presents a process consisting of six steps for applying the User Hints framework to
other optimization problems (see diagram in Fig8r#). We propose guidelines for each step

based on our experience with the case studies in Chapters

8.2.1 Verifying the Suitability of the Problem

The first step for using the framework is, in fact, to verify whether the optimization problem is
suitable for interactive processing or not. Some factors mentioned in Chaptezady help to
perform this test; they provide a characterization of complex problems that tend to be dependent on

human intervention:

e Problems that are computationally difficult, usually involving many objectives, constraints

and variables, and for which the current hardware technology cannot provide the desired
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Verifying the suitability of the problem

v

Investigating automatic optimization methods

v

Defining visualizations and forms of interaction

v

Defining the quality function

v

Implementing the optimization methods

v

Evaluating the framework

Figure 8.1: A process for applying the User Hints framework to optimization problems.

solution in an acceptable amount of time.

e Problems for which there are equally optimal solutions according to objective functions, so

that domain knowledge is necessary to distinguish between these solutions.
e Problems that are not completely known and change over time.

e Subjective problems that are difficult to specify formally.

The best test, however, is to look at the domain and identify how the problem is currently
solved for practical applications. If manual processing is part of the current practice, then there is
a possibility of using interactive optimization. As we saw in the previous chapters, Graph Drawing

and Map Labeling are of this nature.

8.2.2 Investigating Automatic Methods

If the problem is suitable for interactive optimization, then the next step is to catalogue and study

automatic methods that can be used to solve it. For each method considered, we should identify:

¢ Negative and Positive aspects — related to the effectiveness and efficiency of the method in
solving the proposed optimization problem. Such aspects include processing time and mem-

ory usage, support for the entire set of constraints of the problem, and effectiveness in opti-
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mizing the complete objective function (or functions). This information is important because
the methods usually present tradeoffs, such as being able to obtain the optimal solution, but
subject to excessive computation time. In addition, many simple heuristics are suitable to re-
strict problems, which are simplified models of real-world problems. Knowing these aspects

helps to decide which method to use and in what situation.

e Characteristics that may contribute to a better integration with an interactive environment —
verifying if the method supports dynamic optimization, allows an incremental improvement
of an existing solution, offers indication about its progress (such as expected time to complete
the execution), and if it is flexible for change (so that focus and new types of constraints can

be easily included).

The positive aspects of the methods tell us about parts of the optimization problem that can
be solved automatically. On the other hand, the negative aspects that are common to all methods
indicate possible areas for improvement via human interaction.

Note that the investigation of automatic methods can cause a revision of the suitability of the
problem. We may find that a combination of existing methods or a new algorithm, recently pub-
lished, already provides the effectiveness and efficiency that the user desires. In that case, the
efforts should be redirected to implement an automatic approach. The use of an interactive frame-
work should be postponed until new evidence shows that it is necessary. In Se8time discuss

other issues related to deciding between a fully automatic or an interactive optimization.

8.2.3 Defining Visualizations and Forms of Interactions

The visualization tool must provide useful feedback, and allow the user to directly manipulate the
elements of the optimization process.

Several general guidelines exist for developing effective visualizat®hsll, 174. In the
present section we discuss some criteria more specific to the User Hints framework. Basically, all
visualizations should allow a quick identification of good and bad aspects of the solutions being
developed and of the progress of the optimization methods. They should also offer intuitive user
interaction for performing the three main types of hints — adjustment of constraints, focus and
manual change of the variables of the problem.

Examples of visualizations that can be presented to the user were described in Sdcion

They include: a picture of the working solution, textual information about the quality of the working
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and the best solutions, and an indication of the progress of the optimization method and updates of
the best solution.

The picture of the working solution is the main visualization, since it integrates most of the
information to be presented to the user as well as interaction facilities. Such a picture can be
designed by choosing a set of graphical objects for representing the elements of the solution and of
the optimization problem. These elements are the variables, the objectives and the constraints. The
graphical objects usually have attributes (such as color, position on the picture, shape, etc.) that can
change to reflect the state of the elements of the optimization (the value of the variables, whether
a variable is selected or not, whether group of variables contributes positively or negatively to the
objective function, and whether a constraint is violated or satisfied). For example, in the Graph
Clustering problem in Chaptef we use the size of a circle to indicate cluster size. Moreover,
if a cluster violates a size constraint, then the perimeter of its associated circle is highlighted in
red. In the Graph Drawing problem, edges are drawn as lines, and are painted in black if pointing
downwards, or red if pointing upwards. Recall that red edges represent undesirable aspects of the
solution.

The task of developing a good visualization consists then of designing meaningful graphical
objects, and defining an intuitive mapping function between their attributes and the state of the
elements of the optimization process. In general, this task depends on creativity, and differs from
application to application. Nevertheless, good ideas for effective visualizations may come from the

following sources:

e The domain of experts — quite often a graphical representation has already been developed
by domain experts to visualize and solve the problem. Examples are the basic graphical
standards that we used for drawing the vertices and edges in Chajgileds, and the map
view for the Map Labeling problem in ChaptérVisualizations developed by domain experts
may not be the best ones, but they are certainly a good starting point. Note that interactive
systems that implement such visualizations probably look more natural and easy to use to a

domain expert than software based on a new visualization. This reduces the time to learn.

e General visualization techniques — many visualization techniques exist that can be applied to
different domains. One approach is the Parallel Coordinate visualization illustrated in Figure
2.4, on page22, which can be used to represent the relationship between multidimensional

data. The Graph Drawing approach is another example. There are many books about visual-
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ization techniquesil, 43, 174, 195|.

Usually more than one visualization is possible for the framework; they may implement distinct
graphical objects and/or different mapping functions. Using multiple visualizations is helpful when
each describes the optimization process from a different perspective that enhances user comprehen-
sion. Even when only one visualization is available, it may be interesting to implement features for
tuning the view, so that certain aspects of the optimization process can be temporarily emphasized
or hidden.

Audio feedback and animation are also features that can be employed as part of the visual-
ization. We use both, for example, to signal updates of the best solution. In addition, we have
experimented with the idea of displaying samples of intermediate results produced by the optimiza-
tion methods. This allows the user to follow incremental improvements of the working solution
more easily, when the consecutive screen shots are not too different from each other.

The second role of the visualizations, in supporting direct manipulation, can be implemented by
reversing the mapping function between the graphical objects and the elements of the optimization
process. The aim is to allow the user to control the optimization process by manipulating the

graphical objects. User Interaction can be implemented for the following tasks:

e Changing the value of the variables of the problem in the working solution.

Inserting and deleting constraints.

Adjusting the objectives.

Selecting variables of the problem for focus.

Executing the optimization methods.

Details for these interactions depend on the specific optimization problem, on the visualizations
available, on general software usability guidelines, and also on creativity. We may implement only
a small subset of all possible methods of interacting with the optimization process. A minimal
requirement is to allow the user to improve at least the aspects that the optimization methods cannot
solve by themselves. In a complete approach, the user may adjust every single element of the
optimization (variable, constraint, and objective) directly. Furthermore, the form of interaction can
be designed differently for different visualizations. For instance, moving a graphical object in one

visualization may set the value of a variable, while in other visualization a similar move may change
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several variables at the same time. Naturally, principles of usability should be observed, such as
maintaining consistency of the interface and providing feedback for the user’s adtighd 71].

It is important to note that new types of user constraints can be developed during the design of
the visualizations. In general, thinking about a visualization offers the designer of the framework
an opportunity to look at the optimization process more deeply, and identify different ways of con-
trolling it. Constraints created at this stage can be tightly associated to the particular visualization
in mind.

A final task to be executed in this step is to decide the level of flexibility of the manual change
hint, in terms of constraint satisfaction. In some cases, it is useful to allow the user to violate
constraints. In other situations, constraint satisfactions must be ensured by restraining the user
actions or calling subroutines to solve violated constraints, as suggested in Seétidn our
GDHints system (Chaptds), for example, the FixConstraint algorithm is automatically executed

after a manual change in order to solve vertex overlap.

8.2.4 Defining the Quality Function

The quality function can only be defined completely after identifying the types of interactions that
are intuitive for the user. This is because it depends on new types of constraints and policies regard-
ing constraint violation that are decided in the previous step.

The quality function must include measurements for the traditional objectives and constraints of
the optimization problem, and optionally for new user constraints that were identified as important.
Costs for constraint violation are included so that feasible solutions (or solutions that only violate
a few constraints) are assigned a higher quality. Relative importance between the constraints may

also be specified.

8.2.5 Implementing the Optimization Methods

The next step is to include automatic optimization methods from the literature into the framework.

This involves the following sub-steps:

1. Changing the optimization methods to support focus and user constraints. General approaches

for this step were discussed in Sectii.

2. Changing the methods to consider information about an existing solution when computing a

new solution. The emphasis here is to allow a cyclic improvement of the working solution,
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as mentioned in Sectich 1.5

3. If a method runs for a long period of time, then implementing a way of querying it for inter-
mediate solutions during the processing. The method should also provide indication about its
progress, that is, the amount of time which the user has to wait for the end of the computation;

this information may be based on an analysis of the stop condition of the method.

4. Integrating the methods with the framework. This includes: creating graphical objects on
the user interface and modules for choosing, running and stopping the methods; defining
whether the methods run in parallel or alternately with user actions; defining whether and in
which frequency intermediate solutions are sampled; specifying the conditions for replacing
the working solution with intermediate and final solutions produced by the methods; and

providing a visualization of the progress of the computation.

The data structure to be manipulated by the methods and other elements of the framework

during the optimization process must also be designed at this stage.

8.2.6 Evaluating the Framework

Finally, the framework must be evaluated to verify whether human-computer collaboration in the
new interactive system provides better results than the traditional way of solving the optimization
problem. Such an evaluation may involve a comparison with a fully manual approach, with a fully
automatic approach, or with manual post-processing optimization. Since the User Hints framework
naturally supports all these modes of work, it can be used as a platform for testing all cases.

A sequence of steps for performing the evaluation is presented below:

1. Definingmajor performance measure$his step depends on the goal of the framework. If
the goal is to help convergence, then typical performance measures are the quality of the final
solution produced with the optimization process and/or the time needed to generate it. For a
problem refinement task, the performance measure is related to the effectiveness in inserting

domain knowledge into the optimization process.

2. Listing basic measureselated to the use of hints and of other elements of the framework that

can be evaluated. A number of basic measures are presented in the next section.

3. Designing test scenarios for comparing human-computer collaborative optimization against

other approaches. The common scenarios are: (a) allowing only manual changes of the
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solution, (b) executing the optimization methods without user interaction, and (c) allowing
the user to perform manual changes and to use any automatic tools. Note that scenario (c)
corresponds to the collaborative optimization, which we may hope to provide better results
than the other options. These scenarios can be subdivided into simpler configurations, in
order to test the basic measures individually, or to test combinations of them. However,
testing all possibilities may be impossible, or even unnecessary. For example, a scenario
involving only manual change is not useful for complex problems, for which no good solution

can be produced without the help of an automatic method.

4. Deciding the type of evaluation. Two main alternatives are:

e A quantitative evaluation, involving human experiments. This is the most common
approach when the goal of the framework is to help convergence. Examples of this type

of evaluation are presented by the Graph Drawing case studies, in Chaptets.

¢ Informative evaluation with domain experts, such as the heuristic evaluation method.

This was done for the Map Labeling case study, in Chapter

5. Preparing and performing the evaluation. This step usually involves a number of subtasks
such as choosing the problem instances to be used in the evaluation, experimental design
from the statistical point of view, recruiting users, providing training on the framework, and
executing and recording the evaluation. Such tasks are usually supported by scientific back-

ground in human experiments and usability studie®|{142, 171].

6. Analyzing the results. As we mentioned before, we hope to obtain better solutions by having
collaborative optimization than by either a fully manual or a fully automatic approach. If the
results are in agreement with this expectation, then the framework achieves its goal. On the
other hand, negative results for a particular basic measure or for the entire experiment lead to

two possible interpretations:

e The user hints or the visualizations are not effective — then they should be redesigned
or discarded. An example is the visualization of the conflict graph in the Map Labeling
problem in Chapter, which was not helpful. When many negative results are observed,
we can also question our conclusion from Sec8Bdh ], that the problem was suitable

for interactive optimization.
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e User hints are useful, but interaction was not exploited correctly — this may suggest a
better approach for combining human and computer collaboration. This was the case,
for example, for the evaluation of the Graph Drawing framework in Chaftevwe
verified that human interaction was more effective for helping the genetic algorithm to
escape from local minima. Therefore, new systems should start by using the genetic

algorithm at the beginning of the optimization process as much as possible.

Even though the evaluation is listed here as the last step, it may be carried out in an iterative
process, where visualizations and interactive functions of the framework are incrementally proposed

and immediately tested.

Basic Measures

When performing the evaluation we should verify the effectiveness and efficiency of the elements
of the framework such as the visualizations and the types of user hints. Some basic measures for

these elements are listed below:

e Constraint effectivenessindicates whether domain knowledge can be properly represented
by user constraints, and whether the optimization methods are capable of dealing with these

constraints.

e Focusing effectivenessindicates whether focusing the optimization methods helps to ex-
plore the space of solutions. Scettal. [17( investigate this issue in the HUGS paradigm by
comparing a focused approach with a fully automatic algorithm. This is similar to our experi-
ments in Chapte. Scott also investigated whether users could correctly identify areas of the
solution for focus; they computed, among other factors, the percentage of focused areas that
correctly yielded improvements, and the percentage of areas that could be improved but were
not focused. Another way of evaluating focus is to compare the results produced by user-
defined focus with the results of an automatic (possibly random) focus approach. In the latter
case, the system automatically selects variables and runs an optimization method on them.
We note that focus effectiveness depends on whether the user selects the minimum number
of variables of the problem that produces the highest improvement of the solution. Selecting
too few variables may reduce the flexibility of reorganizing the solution; on the other hand,

selecting too many variables creates a larger space of solutions than necessary, which may



8.2 Applying the User Hints Framework 204

slow down the search. The measure of effectiveness of focus, therefore, should ideally test

whether the user achieves a good compromise between processing time and solution quality.

e Manual-change effectivenessverifying whether manual changes directly improves con-
straint satisfaction or provides better results according to the objectives of the problem; it
should consider whether manual changes help the optimization methods to escape from local

minima, and to reduce processing time in general.

e Appropriate stop timing- identifying whether the user can stop the optimization method
before a search for an optimal solution stagnates. This issue was investigated by Arderson
al. [8] for the HUGS paradigm, by investigating what improvement could be obtained if the
algorithms were left running for a longer period of time. We did not do a formal evaluation
of this aspect in this thesis. Nevertheless, we did notice that the users tended to stop the
optimization method after a period of time without significant improvement of the solution

(between 12 to 24 seconds, with our Genetic Algorithm for drawing graphs).

e Effective visualizatior identifying whether the visualizations and the interaction operations
defined on them are helpful for the user. This aspect may involve checking whether the
most important elements and qualitative aspects of the optimization process were modeled
by graphical objects. In addition, we should investigate whether interactive operations are
supported by the visualization. More general measures, related to principles for designing
meaningful, intuitive, and legible visualizations can be abstracted from the area of Informa-

tion Visualization B1, 141].

e Progressive learning- investigating whether the effectiveness of the user actions increases
with time. The users may learn effective ways of applying the optimization methods and
performing manual changes. They can also become familiar with the visualization, and learn
how to better interpret it. Learning was observed in the evaluations of our study cases through

interviews. Scotet al. [17( discuss this issue as well, for the HUGS paradigm.

¢ General satisfactior a final aspect is to investigate the user satisfaction with the framework.
This not only indicates whether the user feels that the task was successfully completed, but

also measures usability aspects of the interface.

Some of the basic measures are simple to define formally and evaluate in a quantitative way.

Other basic measures, however, depend on a number of factors that cannot be controlled or pre-
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dicted, or are subjective to the user. For the latter cases, the evaluation can be executed by having

the users giving an informal opinion about the measures.

8.3 Interactive Versus Automatic Optimization

For the goal of improving convergence alone, we can question the value of implementing user
interaction. A basic discussion point is: why invest effort in an interactive framework, if the opti-
mization problem is well known and properly formulated? Why not develop better algorithms, that
can solve the problem effectively and in a suitable amount of time, instead of asking a user to do
the work? One may say that if humans are necessary for the optimization task, then it is because the
existing algorithms are not good enough, and they should be improved. When considering costs,
this argument can be much stronger. We may realize, for example, that developing a new algorithm
(that can automate a process) involves a large investment at the beginning, but in the long term it
provides a better tradeoff than expending money with workers’ salaries for several years. Moreover,
humans get sick, have all sorts of emotional problems, need breaks and take holidays, have variable
performance, and may be simply not suitable for the job.

While all these arguments appear valid, they do not consider a few important engineering and

political aspects:

e Developing a better algorithm can be quite difficult and very time consuming; some compa-
nies may not be willing to wait months or even years for a new technological solution. Rather,
they may prefer to have humans filling the gap left by the existing optimization methods, until
one day a fully automatic approach is available. Moreover, it may be the case that there is no
guarantee that a computational solution will ever exist, due to the complexity of the problem
and the limitations of computers, based on the Turing Machine model. Thus, humans, who
are possibly not bounded by the same limitations, may offer more powerful resources to solve

some problems.

e Even when very effective algorithms exist, the optimization problem itself may demand pow-
erful computers, with fast CPUs and large memory capacity, in order to be solved. Such

hardware technology may be too expensive for ordinary companies for the mMoment

1Also note that, although it is against the current scientific and technological trends, some governments may prefer to
promote processes and services that employ people, rather than ones that release them from their jobs. This attitude may
be taken, for example, to reduce unemployment rates or to avoid intensive importation of foreign technology.
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These aspects show the difficulty in adopting a fully automatic solution. However, we believe
that investing in interactive optimization and in fully automatic optimization are not mutually exclu-
sive choices; on contrary, they can complement each other (except in cases where there are limited
budget and time constraints). On one hand, human interaction contributes to the performance and
to the effectiveness of existing optimization methods, as we shown in this thesis. On the other hand,
new and more advanced methods added to the optimization process can leverage human perfor-
mance. The first advantage of having a more advanced optimization method is that it can produce
initial solutions of much higher quality. Besides, a new method may also serve as a more effective
tool for working on existing solutions. This effect was noticed, for example, during our experi-
ments with the Graph Drawing problem. We realized that a genetic algorithm was not only capable
of providing much better solutions automatically; it could also improve user-generated solutions in
a more effective way than the heuristics in the Sugiyama method presented in Ghapter

The benefit of having both interactive facilities and very good automatic tools suggests ex-
tending the optimization module of the User Hints framework continuously. Initially, only few
optimization methods are available, and the user may have to tackle several problems that cannot be
solved automatically. Later, as more advanced optimization methods are developed, they are used

to provide a better initial solution, and to help the user in a collaborative work mode.

8.4 Learning from Observation

Scottet al. [17( suggest that their systems could be used to train novice users on problem solv-
ing based on the HUGS paradigm. We recognize the same potential in the User Hints framework.
Nonetheless, we can identify another interesting application, which characterizes the opposite learn-
ing process: instead of using the framework for training users, we can exploit it as an environment
for helping us (developers of technology) to learn new algorithms. This can be done by observing
expert users working on optimization problems, and then trying to abstract new algorithms based
on the users’ expertise and subjective strategies. The knowledge obtained with this process can be
used later to automate activities in the framework that are currently executed by humans.

A simple approach for identifying new algorithms is to study manual changes of the working
solution performed by the users. Such changes may represent promising strategies for solving prob-
lems that cannot be treated effectively by the optimization methods. For example, in the evaluation

sections of Chapter§ and7 we identified some user heuristics. Those heuristics could be useful
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for implementing new automatic tools, which can be activated by the users for solving particular
problems. It may also be possible to implement the heuristics as subroutines of a meta-heuristic
method (for example, as a new mutation operator in a genetic algorithm) in order to improve its
convergence.

A more automatic approach would be to investigate machine learning techniques for replac-
ing the user. The aim here is to learn the user’s strategies for employing semi-automatic tools of
the framework, such as performing focus, and choosing, executing and stopping an optimization
method. Research on learning human actions has been done for other datGal®e]]} and may
provide useful ideas for exploring this issue in the User Hints framework.

We can also design agents imaxed initiative[90] fashion that continuously observe the user
and construct a model of his or her intentions. This model may help the user in performing frequent
and repetitive tasks. For example, if an actiois almost always succeeded by an actiptihen the
system may propose the executiorb@br automatically execute it) when the user perfoems

Implementing some of the approaches and ideas mentioned above is quite challenging, and

would constitute a new thesis by itself.

8.5 Extensions to the User Hints Framework

The User Hints framework can be extended in many ways.

An intuitive extension is to have more than one instance of the elements of the framework. Note
that we have already been using several visualizations and optimization methods. We may support,
in addition, more than one working solution simultaneously. These solutions could be created by
different optimization methods, or by the same method using different controlling parameters (for
example, two genetic algorithms with distinct population sizes or stop criteria). The user could
then improve the solutions manually or reapply the optimization methods to do them. For a multi-
objective problem, this extension may provide an interesting way for producing and displaying
compromise solutions. Furthermore, interactive tools could be created to generate new solutions by
merging parts of existing results.

Another extension is to implement a history of previous working solutions, so that the user can
revert to an “old” result (as in the HUGS approach) when the current optimization process does not
lead to a promising end. The history does not have to save all working solutions generated during

the optimization process, because this could demand much memory. Moreover, many solutions are



8.5 Extensions to the User Hints Framework 208

not useful for the users, such as bad intermediate results generated during an improvement task. A
possibility is, therefore, to constructsalectivehistory. For example, we could save only the best
solutions updated during the optimization process; in our human experiments in Chdbetebest
solutions represented on average 6% of the total number of generated solutions.

Note that the best solution agent can be redesigned to be more informative. An extended agent
may not only provide feedback about the improvement of the best solution, but also identify where
and what type of improvement was obtained. For the GDHints system, for example, the agent could
say “Good. Two edge crossings were eliminated”, and indicate this by showing a faded background
image of the previous working solution. If it is desirable, then an avatar may be implemented to
make the agent more anthropomorphic. A less invasive option, however, would be highlighting in a
different color the information related to the improvement of edge crossings in the status bar.

The idea of keeping previous solutions suggests a new visualization for describing the direction
of the optimization process. This visualization could display attributes of all working solutions
produced over the time. A typical example is iamprovement-time chartas the one shown in
Figure5.100n paged7, which describes improvements of the working solution for the edge crossing
criterion. Such a visualization does not demand much memory, since it is sufficient to save only the
quality parameters of the solutions.

An improvement-time chadan be generated even if the quality attribute is not a single value,
but a vector of measures such as the entire quality vector in our GDHints system. In that case, we
rank the quality vectors of all solutions during the optimization, and then creake Hrline chart
showing the position of the solutions in the rank. Each solution has a point in the chart, Yhose
coordinate is given by its rank, and th&coordinate is the time when the solution was produced.
Note that theY'-coordinate of this visualization displays a relative distance between the solutions,
rather than an absolute difference of their quality measures. Moreover, as hew solutions are created
during the optimization process, the rank and the visualization need to be updated. We believe that
similar types of visualization, that display multiple solutions, may provide useful feedback to the
user.

Another possible extension to the User Hints framework is to implemeréteés of mobility
used in the HUGS paradigm. This implementation may be different for each optimization problem,
but in some cases mobility can be partially modeled by a combination of focus and constraint op-
erations. An example is the Edge Crossing Minimization problem described byeKu[110,

where an improvement algorithm swaps two vertices in the same layer if at least one of the ver-
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tices has high mobility and none of them has low mobility (see Figu®e Using our GDHints
system based on the User Hints framework, high and medium mobility vertices would be set as
selected, while low mobility vertices would stay unselected. The Left-Right constraints would then
be automatically created for connecting low and medium mobility vertices, imposing an ordering
between them. Optimization methods applied to this configuration would tend to reorganize the
“high mobility” vertices, and preserve the sequential ordering of the remaining elements. The mod-
eling, however, is not complete because the ordering of the constraints could be temporarily violated
(except if we changed the optimization method to disallow any move that violates a Left-Right con-
straint). In addition, the algorithms could still spend time trying to move the “medium mobility”
vertices, instead of concentrating action only on the “high mobility” ones, since no internal differ-
ence would exist between them. Thus, a proper implementation of levels of mobility would require

addressing these issues.
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CHAPTER 9

Conclusion

This thesis demonstrates how human interaction can be useful in optimization processes. We in-
vestigate two major interactive goatefining the optimization problermndhelping convergence to
optimal solutions

An interactive framework is developed that allows a user to control the optimization processes.
User actions are callddints and include operations such as constraint adjustment, focus of opti-
mization methods and manual changes of an existing solution.

Experiments with systems based on the User Hints framework demonstrate that human-computer
collaboration can help to obtain better solutions than a fully automatic approach or a manual post-
processing approach.

The effectiveness of the user interaction varies for the major interactive goals.

For the goal ofefining the problemwe have found that:

e Human intervention is certainly necessary, and adding or removing constraints seems to be a
promising way to insert domain knowledge. However, we did encounter some difficulties in
using constraints. One of the challenges is to ensure that the set of constraints implemented in
the system covers most of the user needs for changing the optimization problem dynamically.
This is difficult, because adjustments of the problem may require new variables, conditions,
and preferences that were unknown until runtime and cannot be entirely predicted. It is also
necessary to guarantee that the user’s interpretation of what a constraint does really matches
its effect on the system. We noticed, for example, that the users in the experiments in Chapter
5 could not obtain the precise result they expected by using Left-Right constraints. In addi-
tion, modifying existing optimization methods to treat constraints effectively and efficiently

can be a difficult task.

e The user can always change the solution manually to make it consistent with some domain
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knowledge. Nevertheless, this does not represent a permanent solution. In fact, changes
performed by the user can be lost by running the optimization methods. The best way of
using manual changes for problem refinement is either performing them in a post-processing
stage only, or combining these changes with other types of user hints such as focus and
constraint adjustment. In our Map Labeling system, for example, moving a label by hand to

a new position causes a customized candidate position to be created or updated to reflect the
placement. Also, the cost of the customized label position is set to zero, so that it has a high
preference when using an optimization method. The main point here is to avoid situations

where the optimization methods overrule the changes made by the user.
Regarding the goal dfelping convergencehe investigation showed that:

e Manual change is important to improve the final quality of solutions. This was verified in
particular when optimization methods became stuck in local minimal states. For other situa-
tions, mostly involving large problem instances (such as the problem of drawing the largest
graphs in Chaptes), a solution of higher quality can be obtained by running an optimization

method alone rather than by having human intervention.

¢ Constraints by themselves are not effective in helping convergence. The benefits of this type

of hint were very small and were realized only when combined with focus.

e Focus demonstrates a great potential for concentrating the action of the optimization methods,
and thus, reducing the space of solutions to be explored. Nonetheless, the decision to focus
on a small set of variables or on a large set is critical, since it may affect the final quality
of the solution. Another interesting observation is that the basic feature for implementing
focus — selection of variables — is an intuitive tool for concentrating any procedure (not only
optimization methods) on a particular region of the problem. This was shown in Chapter

for changing the candidate positions of a set of selected point features.

Our experiments with the interactive systems suggest that the best way of exploiting the User
Hints framework is first to execute the optimization methods to create an initial solution of high
quality. The user can then perform manual changes and reapply the methods for further improve-
ments. This is not, however, a strict recommendation as the framework supports several work modes

and can be used in many different ways.
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Finally, a philosophical comment about the future of interactive optimization is appropriate.
As more effective and efficient optimization methods are developed, as well as artificial intelligent
techniques combined with user profiling approaches, many activities executed by humans tend to
be automated. One question is whether there will always be a place for interactive optimization.

Some people say that humans will never be fully replaced by computers, because computers
are restrained by their programming code and hardware limitations which are different from the
human “mental architecture”. Even though this may be true, we believe that a more enlightening
indication cames from the field of Economics. Mabry and Sharplin, in the article “Does more
technology create unemployment?2, argue that unemployment caused by new technology is
not so harmful for the economy as many people say. In fact, they show that the introduction of
technology increases production of goods; such increase by itself creates new jobs in the business
and service sectors in the medium and long terms, which finally absorbs professionals discharged
from the automated sectors. In order words, technology discharges employees, but also creates new
needs and new jobs (the same idea is discusset])in\\Vhile this argument may be contentious
in general, our belief is that such reasoning is valid for interactive optimization. Better automatic
tools allow us to grasp new concepts and to envisage new applications that involve more complex
problems, which we did not have or could not understand before. The new problems by themselves
are too complex for the current technology and need human expertise and intuition. Thus, a cyclic
process exists, where we create automatic tools that help us to investigate new problems for which
the existing technology is always one step behind. Such a process may ensure the presence of users

in interactive optimization processes.

9.1 Future Research
We intend to continue the investigation of the User Hints framework. Our future projects include:

e Applying the User Hints framework to other optimization problems, in particular to Bin-
packing problems and to the problem of drawing very large graphs such as biochemical path-

ways [L02 136.

¢ Analyzing the advantages and disadvantages of the extensions to the framework proposed in

Section8.5.

e Investigating approaches for observing and automating the users’ actions as suggested in
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Section8.4. Machine learning and mixed initiative techniques can be explored.

e Experimenting with different dynamics for human-computer collaboration where automatic
tools play a more active role, without reducing user interaction. It may be possible, for
example, to have a system detecting areas of the working solution that need improvement,
and automatically running an optimization method on them. Synchronization and locking
mechanisms may be necessary to maintain consistency of the solution while a user and the

system are working in parallel.

e Developing new general visualizations that can increase the understanding of complex opti-
mization processes, and/or provide a higher degree of flexibility in directly manipulating the

variables of the problem.

e Studying ways of applying and possibly adjusting the framework to support collaborative

optimization with two or more users.
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Optimization Table

This appendix describes two tables that we built for experimenting with interactive optimization
processes. The tables are based onofitémization tablg8] developed by Joe Marks and Neal
Lesh at the Mitsubishi Electric Research Laboratories (MERL) in Boston. MERL's table basically
involves a computer, a whiteboard laid on a desk, and a data projector and a front-surface mirror
mounted on the ceiling. See Figufel for illustration. The projector creates the image of the
computer screen, which is reflected by the mirror to the whiteboard. The main input devices are
a wireless mouse, a wireless keyboard, and a Mimio dévarecontrolling the mouse pointer. A
mouse ring was also tried, but was not as effective for interaction as the previous interfaces. In
addition, ordinary whiteboard pens and eraser can be employed to write notes on the table. This

setup was used in several interactive optimization ta8k&Z4, 170.

B A

Figure A.1: MERL's Optimization Table. The photograph is courtesy of Joe Marks.

LA front-surface mirror is usually a metal plate with one side polished to function as a mirror. Ordinary glass mirrors
are not suitable for projection because they produce a “ghost image”.

2The Mimio device provides a solution for digitalizing information written on a whiteboard. It includes four special
pens, an eraser, andvimio barthat is usually attached to the board. The pens and the eraser send a signal to the Mimio
bar indicating which tool is being used and its current location. This signal is sent by the bar to the computer for recording
the information written on whiteboard, or for controlling a mouse pointer. For the later case, the computer desktop image
is projected on the whiteboard, and tRe Y -coordinates of the capture system of the Mimio bar is calibrated to match
the projection area. More information about the Mimio device is availaliétt/www.mimio.com
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Figure A.2: Our first optimization table with bottom-up projection.

After a visit to MERL in the December 2000, we decided to build a similar environment, but
having the computer screen projected under the table instead of on the top. The aim was to avoid
shadow when the user is close to the table or is interacting with it.

Our first implementation (showed in Figue2) consisted of a normal desk modified to have a
projection area. We used two layers of 6mm glass, with a semitransparent material in between. The
image was created by a data projector (a Sony VPL-PX31, with 2800 lumens) standing on the floor,
and was reflected to the bottom of the projection area by a large mirror under the table. The desk
also had an area for keeping a monitor and additional tools. We installed a Matrox G450 video card
with dualheadcapability. The outputs of the video card were attached to the monitor and to the
data projector, so that applications could be swapped between both screens. The interaction devices
were a wireless mouse and a wireless keyboard, a Mimio device, and normal whiteboard pens and
eraser, as in MERL.

We used this table in our initial tests of the GDHints system (before performing the pilot study).
The possibility of directly interacting with the application and the large screen area showed to be
fascinating and more intuitive than using a monitor. Nevertheless, we found some design problems:

the projection took most of the space under the glass screen, so that it was not possible to sit
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Equipments (acquired in 2001) Cost (AUS)
Table (basic structure with glass layers) and platform — carpenter service $4,500.00
1.5m x 1m Rear Light Projection Screen material, from Screen Technics $110.00
(Australian company)
Pentium IV system (1.4GHz, 512Mb, 40Gb HD, CD-ROM, soundcard, $2,700.00
speakers, and 17 monitor) with a Matrox G450 video card
Logitech wireless keyboard and mouse $200.00
QTQO060 Mimio Capture Bar for PC $1,900.00
VPL-PX31-2800 ANSI Sony Projector $15,400.00
Total  $24,810.00

Table A.1: Cost of the equipments for the second optimization table.

properly, with the keens under the table; the environment was also too small for having more than
one person working on it. Moreover, we had difficulty in adjusting the focus of the top and bottom
edges of the image (due to a distortion of the lens of the projector). We minimized this effect by
reversing the projector upsidedown; however, an optimal solution would demand a more elaborated
positioning of the projector and the mirror. We then decided to build another table to solve some of
these issues.

The second table is larger and taller than the first one — 157cm x 90cm by 90cm of hwitfit
a projection area of 108cm x 80cm. It is placed on the top of a platform that we built, which floor
is 125cm above the ground; the platform allows a sufficient distance between the data projector,
that stays on the ground, and the glass screen of the'téde Figure\.3. The image is projected
straight up to the glass screen through a hole on the floor of the platform. This configuration permits
up to four people discussing an optimization problem around the table. The computer and the input
devices from the first environment were employed in the second table.

The new table was constructed for supporting a movable setup, by working also with a plasma
screen. Unfortunately, our experiments with a Sony PFM-42B1 plasma 42" screen was not promis-
ing: this screen has a protective glass layer that stays about 2cm from the active display; such gap
makes it difficult to interact directly with the image. Moreover, we noticed that the Mimio device
had problems in detecting the Mimio pens when used on the plasma screen.

The total cost of the second optimization table is presented in Tafile

We did not perform any formal evaluation of the effectiveness of these two environments. One
could design experiments, for example, to investigate whether users can produce better results in an

optimization task by using the optimization tables rather than a normal monitor.

3Extensions to the legs of the table allow to incline it forwards.
“Another alternative would be to buy short-distance lens for the projector, but the cost-benefit for implementing this
option was not advantageous.
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~ B

Figure A.3: Our second optimization table with bottom-up projection.

Nonetheless, we used the second table to demonstrate our interactive systems to profession-
als from Information Technology, Cartography, and Transport and Logistics Management, and we

collected informal feedback from them. This feedback, together with our own observations were:

e The users mentioned feeling “involved” by the environment and being more concentrated on
the problem. In fact, the size of the screen area takes a larger proportion of the field of vision

of the user than a 17" monitor in a normal configuration.

e The experts in Cartography (fro8ydway) liked the table, and said that it would be inter-
esting to have a similar setup at their work. Note that these professionals already use large

workbenches, which are not computational except for a digitalizer (for inputting data).

e The Mimio device allows more intuitive forms of manipulating the elements of the interface
than a mouse. It is possible, for instance, to have a tool in the GDHints system that allows

the user to route edges by manually drawing them as lines.
The main disadvantages of the tables, observed during our experimentations, were:

e The glass surface reflects the light from the ceiling, which can by quite annoying. This effect

was reduced by switching off the top lights when using the environment.

SInformation about Sydway can be obtained frottp://www.ausway.com.au/
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e The image resolution of most data projectors are considerably worse than the resolutions of

good monitors. Moreover, computer monitors are more affordable than data projectors.

e The Mimio device had several problems: it is not very accurate, so clicking on small icons
in the screen can be difficult; objects left on the table can block the signal sent by the Mimio

pen; and the device does not implement hardware support for right-click.

e The Mimio also does not support more than one person controlling the computer simulta-
neously. There are other input devices for multiple-user applications. An example is the

Diamondtouch technologyf], developed by MERL.

e Since the projected image is large, the user has to make wide movements with the arm to
interact with it. This may be more tiring than using a mouse. We tried to minimize such
problems by allowing the user to move the toolbars of the GDHints and LabelHints systems

to the bottom of the screen.

¢ Finally, we still do not have a suitable configuration for sitting comfortably. The original table
from MERL offers a better solution for this problem, but at a cost of shadows on the image.

Mounting a table similar to the workbenches used by architects could be a good alternative.

Most of these disadvantages can be solved by improvements of touch screens, such as the ones
used in the Tablet PCs. As this technology becomes more portable and affordable, large optimiza-

tion tables may move from the research field to real applications in industry.
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Included CD-ROM

This appendix describes the contents of the CD-ROM that comes with the thesis, and provides more

details about the interface of the interactive systems described in the previous chapters.

B.1 Contents
The CD-ROM is organized as follows:

e Index.html a HTML file with the description of the contents of the CD-ROM, and with the

terms and conditions for using this material.

UserHints.pdf- this thesis in PDF format. A version for two-sided printing is available as
UserHints2sided.pdf

ClusterHints— the directory with the ClusterHints system.

GDHints— a directory with versions of the GDHints system. This includes:

— FirstStudy- the system and documents used in the first experiment.
— SecondStudy the system and documents used in the second experiment.

— FullVersion— a complete version of the GDHints system.

LabelHints— a directory with the LabelHints system.

All programs in the CD-ROM are for Pentium PC with Microsoft Windows Me. They may run

in other versions of Microsoft Windows (and even on Linux using Wine), but this is not guaran-

1This material is also available at the web site of the Information Visualization Research Group at the University of
Sydney bttp://www.it.usyd.edu.au/"visyal
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teed. Note that the programs are prototypes developed for testing our ideas only; their code is not

optimized.

Next we describe the interface of the main programs included in the CD-ROM.

B.2 The ClusterHints System

*+® ClusterHints: [C:\usr\Hugo\thesis\ClusterHints\¥2001\graphs\64grid.dat]
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£-0.00760154542685283, Minterlinks=74 MNelusters= 4 Mot constrained " |

|Temp=ﬂ, E=0.00730232777380274, Ninterlinks=73, Nclusters= 4 Not constrained

Toolbar

Break selected clu§ters, Merge selected Change to the scatter-
so that each of their clusters into a plot visualization.
vertices is assigned to a

single cluster.

unique cluster.

Change to the

Change to the graph histogram visualization.

drawing visualization.
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Control Panel

Activate/deactivate
the objective function
(minimize the number

of intercluster edges). Constraints

— in nyfn. of clusters
3

—F Max num. of clusters

IW .l—.i

———Jv tdin cluster size

Activate/deactivate

—F Max cluster size

IW .l—.i

L—¥ Balance

Clustering

— Start |

Pause |

Start, pause and stop

constraint. |5 J — | Define constraint

Constraint value.

importance.

the execution of a Stop |
clustering Method. -

[~ Loop

Interaction with the Graph Drawing visualization

Progress bar (based on
a predefined number
of iterations).

Forces the clustering
method to be re-executed.

1

Clicking on a circle
selects/unselects its
associated cluster. Selected
clusters are shown in yellow.
Clicking outside the circles
unselects all clusters.
Pressing Ctrl while
performing selection
prevents the clusters of being
unselected.

Direct manipulation is supported in this visualization for selection of clusters. The other visualiza-

tions do not implement interactive features.
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Drawing Panel

Drawing Represent the number

Show/hide clusters. ‘ ———{ Show of intercluster edges
N Clusters by changing the
Show/hide edges | — ¥ Cluster Edges thickness of the edges
between clusters. I™ Edge Weight between clusters.
Force the drawing | ———  Stetch / Force the drawing
to be recomputed FE—— to be récqmputed
ing i - by assigning
by enlarging it. )
random coordinates

to its clusters.

History

E=066BEEEEEEEEEERT, Minterlinks=0, Nclusters= 1 Mot constrained

= Running Hill Clirmbing

E=066BEEEEEEEEEERT, Minterlinks=0, Nclusters= 1 Mot constrained
E=0.34347759266462, Minterlinks=45, Nclusters= 2 Mot constrained
E=0.349474839057394, Ninterlinks=41, Nclusters= 2 Mot constrained
E=0.00844707675740882, Minterlinks=79, Nclusters= 3 Mot constrained
E=0.00844569995379609, Minterlinks=77. Nclusters= 3 Mot constrained
E=0.00844501155198972, Minterlinks=76, Nclusters= 3 Mot constrained
E=0.00844432315018336. Minterlinks=75, Nclusters= 3 Mot constrained
E=0.00844432315018336. Minterlinks=75, Nclusters= 3 Mot constrained
E=0.00761049465033569, Minterlinks=87, Nclusters= 4 Mot constrained
E=0.00760705264130386. Minterlinks=82, Nclusters= 4 Mot constrained
E=0.00760154542686293. Minterlinks=74, Nclusters= 4 Mot constrained LI

|»

This area shows the quality of the solutions that were created by either the user or the system, and

were displayed on the screen.

Status Bar

|Temp=D, E=0.00730232777980279, Ninterlinks=73, Mclusters= 4 Mot constrained 4

The status bar presents the quality of the most recent solution created by the user or the system.
When a clustering algorithm is running, this quality information refers to the intermediate solution
being improved. If the algorithm is the Simulated Annealing, then the value of the température

is also showed.
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Textual Description

:!fCIustering Solution !Em

B4 verices in 4 clusters.

" ErtE Cluster

1] 2

1 2

2 1]

3 2

4 3

5 2

5 1]

7 2

a K]

9 K]

10 1

11 1

12 1]

13 1]

14 1]

1K 1 Ll
Update Il Close ‘

This window presents the clustering solution textually. For each verteikthe graph it shows
the clusterid of v (the clusterid is an integer that uniquely identifies the cluster. These numbers
are displayed at the center of the circles in the graph drawing visualization, and in the scatter-plot

visualization).
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Menu
File
Open- open a file containing the structure of a graph.

Exit — close the ClusterHints application.

Edit
Break Clusters- break selected clusters so that the resultant clusters have a single vertex
each.
Merge Clusters- merge selected clusters into a single cluster.
Select All- select all clusters.
Unselect All- deselect all clusters.
Clear History— clear the history log.
View
Graph Drawing— change to the graph drawing visualization.
Histogram by Size- change to the histogram visualization, which shows the number of
clusters by cluster size.
Clusters by Size change to the scatter-plot visualization, which presents all clusters classi-
fied by cluster size.
Textual Descriptior- show the Textual Description window.
Algorithm

Hill Climbing — choose the Hill Climbing algorithm for graph clustering.
Simulated Annealing choose the Simulated Annealing algorithm.
Lock Settings at Runtimedisallow changes of the constraint set and the objective function

while an algorithm is executing.

About- show information about the ClusterHints system.
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B.3 The GDHints System — Full Version

3 - ecosystem_dat
Eile ¥iew Algoritms  Apout

| ENETENEILE

|

cn

m)(l rHc B B_E:SYIEI

Top-Down

Left-Right

Delete

¥ Show Caonstraints

............................................

Unsolved=0/0 |Otfending edges=0/0 (H=0/0) crossin gs=14/14 dummynodes=7/7 bends=6/6 height=4/4 width=12/12 Y

Opening a Graph

Open Em
Loak in: I@Graphs j - = B

| ceyntac. dat

=) ecosystern.dat
(5] o9 dir dat
EEYEEES

[ knation.dat

&) telcall.dat

(5] unixsys. dat
(&) worlddyn. dat

File name

Files of type: IGDH\ntS graph format j Cancel
v

In order to open a graph the user must clickFile—Openand choose a graph file in ti@pen

Dialog window(all graph files have extension “.dat”). Then he or she must @& The system

automatically produces an initial drawing for the graph by selecting all vertices and running the

Sugiyama method.

After loading the graph structure, it is possible to open a saved drawing for it (if there is one).

In that case, the user goes to tApen Dialog windovagain, changes the fiefille typeto “GDHints

drawing”, and opens a file with extension “.drw”. The drawing is recovered if it is associated with

the current graph in memory.

The graph file of the GDHints system is a text file that contains:

1. Aline with a general description.
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2. A line with two integers;n andm (representing the number of vertices and the number of

edges of the graph, respectively), separated by a space.

3. An empty line or a line with an ordered list of labels for the vertices, separated by spaces.

This line should have at mostlabels.

4. One or more lines with» edges in the form(u, v)”, wherew andv are indices of the vertices,

1 < u,v < n. The edges can be separated by a space, a tab, or by the “new line” code.

Toolbar
Start the genetic
algorithm.
Run Qrdering Stop the genetic
(Sugiyama) algorithm.
Run Layering Progress bar for the
(Sugiyama). genetic algorithm.
Adjust font size | ] Use Hill Climbing
(press ‘Enter’). in the genetic alg.
— o R i —,— _
‘ N @|IQ|I%>| = m|m| B X sl ﬁ| B S5";,|
’ Fit to the screen. Align to grid. J
Zoom in/out. Return to the best
drawing computed
Shift drawing. so far.
— | Change mode to selection and Set the current | —
manual change of vertices. drawing as the
best one.

Note that the Layering, the Ordering and the genetic algorithm only run on selected vertices. If no
vertex is select, then no action is performed by these algorithms. The tool for aligning vertices to

the grid also works only on selected vertices.
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Constraint Panel

In order to create Top- Top-Dawn
Down and Left-Right _
constraints, click on Lefi-Right
one of these buttons.
Then click on two .
e 6t e A constraint list shows
drawing. The first all constraints sorted by
vertex will be selected name. In order to delete
as the Top/Left part of some constraints, select
the constraint; the them by clicking on the
seaid varer vl B list, and press the button
the Down/Right part. Delete.
Delete
IV Show Canstraints —1—— | Check this box to hide
or show constraints at
any time.

Interaction with the visualization

The visualization of the GDHints system displays the working solution, which consists of a graph

drawing. Vertices are shown as rectangles, and edges as lines. Direct manipulation is supported for:

e \ertex Selection— Clicking on a vertex selects it. Selected vertices are shown in red. In
order to select several vertices simultaneously, the user has to press and l@idttoékey
while selecting. Th&hiftkey allows the user to reverse the current selection of a vertex. Fur-
thermore, it is possible to select a group of vertices by using the mouse to define a “selection

area”.

e Manual Changes— Ideally, vertices should be positioned on the intersection points of the

grid. However, the system allows the user to use the intermediateordinates.

e Constraint Insertion — See explanation in the previous section.

Best Drawing

The system is capable of recognizing when a new drawing generated by the user or by the drawing
algorithm is better than the best drawing produced so far. When this occurs the system flashes the
button Best(@) and saves the new drawing as the best one. The user can also force the current

solution to be set as the best drawing at any time by pressing the kﬁmbBest(@). This
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operation can be executed even when the current solution is worse than the best drawing held by

the system. The user can recover the best drawing by cIickilﬁpat(B;%‘).

Status Bar

Number of
unsatisfied layout
constraints.

List of aesthetic criteria. The numbers
before the /> are the quality parameters
of the working solution. The ones after
the /> are for best solution computed so
far.

Undalved=0/0 |Offending edges=0/0 (H=0/1) crossings=14/14

dummynodes=7/7 bends=6/8 height=4/4 wicth=12/12

/

L

’ The priority order for these parameters is from left to right.

The status bar presents the quality parameters of the working solution and of the best solution.
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Menu
File

Open- open a graph or a drawing of a graph.

Save-— save a graph or a drawing.

Print — print the drawing.

Voice— activate/deactivate the voice feedback of the best solution agent.

Exit — close the GDHints application.
View

Layers— show/hide layers (grid rows).
Columns- show/hide grid columns.

Dummy Vertices- show/hide dummy vertices.
Constraints- show/hide constraints.

Fit to Screen- fit the drawing to the screen area.

Always Fit to Screer force the system to automatically fit the drawing to the screen area

after an update of the work solution.
Font Size Adjustmentset the font size adjustmentastomaticor manual

Toolbars— show/hide the toolbars and the constraint panel.
Algorithms

Layering— run the layering algorithm based on the Sugiyama method.

Ordering— run the ordering algorithm based on the Sugiyama method.

Start GA- start the genetic algorithm.

Stop GA- stop the genetic algorithm.

Align Vertices to Grid- move all selected vertices to the nearest intersection position of the

grid.

About- show information about the GDHints system.
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B.4 The LabelHints System
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Opening or Creating a Labelin

g Problem

A labeling process starts by opening an existing labeling problem from the disk, or by creating a

labeling problem manually using the graphical interface.

In order to open a problem, the user must choose the optier-Openof the menu, and then

select the desired file (with extension *“.Ibl’) in tkipen Dialog windows

Open

Lookin: Ia map

x| & Bk Er

=Eronmag. bl
& propernamesmap.lal
@ usamap.lbl

File name

Files of type:

ILabeIing Hints

[

The LabelHints system comes with three labeling samples: a map with iron mines in Tasmania

(‘ironmap.lbl’), a randomly-generated map with proper names (‘propernamesmap.lbl’), and a map

of cities in lowa ('usamap.lbl’). These maps are only for testing our prototype. They should not be

used for any other reason.

After choosing the labeling file, the system opens and presents the map. Maps with many
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features may take a while to be drawn on the screen.

Another possibility is to create a new map. In order to do this, the user must define the general

LA

properties of point features by clicking on tReature Setujputton (#=l). A dialog box appears for
configuring candidate positions, the font size, and the diameter of the features’ points. The next
step is to select the button for creating new featu@b;(and clicking on the desired positions of

the screen. The feature attributes (such as the label positions) can be changed later by selecting one

or more features, and clicking on the Feature Setup button again.

Toolbar

Create/Remove Extend the selection.

virtual overlaps.

Configure point

Define labeling features.
traints.
o Start an instance of the
Manual change labeling algorithm.
of the labeling.
° Choose a labeling
’ Create new features. ‘ w algorithm.

e H‘IICIimbing
H & 5 Annealing

2T
Begr

0z,

]

W%Ifl B0« || 5:

Fit to the screen. Return to the
best drawing
Zoom in/out. computed so far.

Set the current drawing

— ’ Change to the selection mode.
as the best one.

Abbreviate selected features
according to simple rules.
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Feature Setup

~Label Positions

¥ Top-Lett [0.400
0.470

¥ Bottom-Left|0.600

Puoint Feature Setup m
[~ Top 0.800 ¥ Top-Right 0.000
[~ Center |1.000 [~ Right 0100

[ Left

" Bottom  |0.975 W Bottom-Right (0.200

[Top-Right =] [0000  Ref Cooix [0 v:[o
~Label & Dia
IPUim
Faontsize: [40 Diameter: |3
o Ok X Cancel |
Algorithm Panel
Algorithms
List of algorithms ’gi 1D

(threads) started by
the user. This list is
automatically cleaned
when all algorithms
finish their execution.

Check this box to show
the internal solution of

Select an algorithm in the
list above and click on
Stop to end it. The name
of the algorithm still
remains in the list, until all
threads have concluded

Stop ’|

the algorithms, rather
than their best solution.

their execution.

———F Show Waorking

Interaction with the visualizations

Two visualizations are implemented in the LabelHints system: a geographical map, and a draw-
ing of the conflict graph. These visualizations are also described in the Cifaj@ection7.4.4
Unlabeled features are shown as crosses in the map visualization.

The user can interact with the visualizations for:

e Feature Selection- In the selection mode %), the user can click on the point (circle or
cross) of a feature in order to select it. Several features can be simultaneously selected by
pressing and holding th€ontrol key while performing the selection. Holding ti&hift key

allows the user to reverse the current selection of a feature. Similarly to the GDHints system,
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it is possible to select a group of features by defining a “selection area” with the mouse. If the
Alt key is pressed during the selection, then the Selection Extension mechanism is applied to

the newly selected features.

e Feature Information — In the selection mode, the user must click on the point of a feature

and wait some seconds in order to see the feature’s label.

e Manual Changes— In the manual change modEJ), clicking on the point of a feature
changes its associated label position in use. The left and the right buttons of the mouse change
the label position in different directions. The middle button sets the feature as unlabeled. By
using the left mouse button it is possible to drag and drop a label to any of its predefined
candidate positions. The left button also allows a drag-and-drop operation, but it is used for
free movements; a labels can be placed anywhere on the map, causing a customized candidate

position to be created or updated.

e Labeling Constraint Insertion — Labeling constraints can be defined by usingRiretool
(ﬂ). Clicking with the Pin on a feature constrains it to be labeled. Clicking on a label

prevents labeling algorithms to move it to another label position.

e Virtual Overlap — The virtual overlap tooliﬂ) allows the user to create or remove a virtual
overlap between two features, or between a feature and a label (belonging to another feature).
This can be done by clicking on a pair of elements on the screen. Note that this tool can be
used to remove original edges of the conflict graph, which represent real overlaps between

candidate positions.

Best Labeling Solution

The LabelHints system implements the best solution agent as in the GDHints system. The buttons
Best(@) andSet Bes(@) allow the user to recover the best solution or to set the best solution

respectively.
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Status Bar

Parameters of the quality function: number of
features in overlap, number of unlabeled
features, and total cost of the current labeling
assignment. The values before the ‘/” are for
the working solution. The ones after the ‘/’
refer to the best solution.

™| X Y- coordinate
on the map.

(]

(F92505,46427) |ConflictingLabels=0/0 Unlabeled=39/33 LabelCost=243.89/243 59

The status bar presents the quality parameters of the working solution and of the best solution.

Map Dimension

Map Dimension m

Top-Left corner————— Bottom-Right cormer———

hini: ID RS IWDDD
ki ID Py IWDDD

X Cancel |

Menu
File

New- create a new labeling problem.

Open- open a labeling problem.

Save— save the current labeling problem.

Save As- save the current labeling problem with another name.

Print — print the labeling as it appears on the screen.

Voice Feedback activate/deactivate the voice feedback of the best solution agent.

Exit — close the LabelHints application.
Edit

Map Dimension- define the maximum and minimutd andY coordinates of the map.
These coordinates are used for adjusting (fitting) the map to the screen area. This tool
also offers the option of removing candidate positions and/or features that are out of the

map dimension.



B.4 The LabelHints System B-17

Point Feature Setup open a dialog box for configuring the parameters of new point features
(if now feature is selected); if some features are selected, then this dialog box allows

the user to adjust their attributes.
Abbreviate Selected Labelsallows the user to abbreviate selected features. This is a simple

facility that was implemented based on suggestions of the domain experts.

View

Display Labeling- switch to the map visualization.
Display Conflict Graph- switch to the conflict graph visualization.
Map Geometry- show/hide the geographic map in background.
Label Text- show/hide the labels.
Candidate Label Positions show/hide all candidate positions.
Label Position in Use- show/hide the candidate position in use.
Highlight Overlap— highlight or not overlaps on the map.
Hide:

Unselected Unlabeled features

Unselected Additional Label Positiorsshow/hide candidate positions that not se-
lected. This must be used in combination with the opt@andidate Label Posi-

tions
Toolbars— show/hide the toolbars and the algorithm panel. Also allows the user to move the
toolbars to the bottom of the window.

Labeling

Hill Climbing — run the labeling Hill Climbing algorithm. This algorithms iterates while
there is a change of the labeling that results in a better solution or in a solution with the

same cost.
Simulated Annealing run the Simulated Annealing algorithm.

Reset Labeling set all selected feature to ‘unlabeled’.

About— show information about the LabelHints system.
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