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Abstract  
 

This thesis investigates the application of plasma immersion ion implantation (PIII) to 

polymers. PIII requires that a high negative potential be applied to the surface of the 

material while it is immersed in a plasma. This presents a problem for insulating 

materials such as polymers, since the implanting ions carry charge to the surface, 

resulting in a charge accumulation that effectively neutralises the applied potential. 

This causes the plasma sheath at the surface to collapse a short time after the potential 

is applied.  

 

Measurements of the sheath dynamics, including the collapsing sheath, are performed 

using an electric probe. The results are compared to theoretical models of the plasma 

sheath based on the Child-Langmuir law for high voltage sheaths. The theoretical 

model predicts well the sheath dynamics for conductive substrates. For insulating 

substrates the model can account for the experimental observations if the secondary 

electron coefficient is modified, justified on the basis of the poly-energetic nature of 

the implanting ions.  

 

If a conductive film is applied to the insulator surface the problem of charge 

accumulation can be avoided without compromising the effectiveness of PIII. The 

requirement for the film is that it be conductive, yet transparent to the incident ions. 

Experimental results are presented which confirm the effectiveness of the method. 

Theoretical estimates of the surface potential show that a film of the order of 5nm 

thickness can effectively circumvent the charge accumulation problem. Efforts to 

produce and characterise such a film form the final two chapters of this thesis. The 

optimal thickness is determined to be near the percolation threshold, where a marked 



 vi

increase in conductivity occurs. Spectroscopic ellipsometry is shown to be an 

excellent method to determine the film thickness and percolation threshold non-

invasively.  

 

Throughout this work cathodic vacuum arcs are used to deposit thin films and as a 

source of metal plasmas. The design and construction of a pulsed cathodic vacuum arc 

forms a significant part of this thesis. Investigations of the cathode spots and power 

supply requirements are presented. 
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