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Abstract 

The plant homeodomain (PHD) is a protein domain of ~45–100 residues characterised by 

a Cys4-His-Cys3 zinc-binding motif. When we commenced our study of the PHD in. 

2000, it was clear that the domain was commonly found in proteins involved in 

transcription. Sequence alignments indicate that while the cysteines, histidine and a few 

other key residues are strictly conserved, the rest of the domain varies greatly in terms of 

both amino acid composition and length. However, no structural information was 

available on the PHD and little was known about its function. We were therefore 

interested in determining the structure of a PHD in the hope that this might shed some 

light on its function and molecular mechanism of action. 

Our work began with the structure determination of a representative PHD, Mi2β-P2, and 

this work is presented in Chapter 3. Through comparison of this structure with the two 

other PHD structures that were determined during the course of our work, it became clear 

that PHDs adopt a well-defined globular fold with a superimposable core region. In 

addition, PHDs contain two loop regions (termed L1 and L3) that display increased 

flexibility and overlay less well between the three PHD structures available. These L1 

and L3 regions correspond to variable regions identified earlier in PHD sequence 

alignments, indicating that L1 and L3 are probably not crucial for the PHD fold, but are 

instead likely to be responsible for imparting function(s) to the PHD. Indeed, numerous 

recent functional studies of PHDs from different proteins have since demonstrated their 

ability in binding a range of other proteins. 

In order to ascertain whether or not L1 and L3 were in fact dispensable for folding, we 

made extensive mutations (including both insertions and substitutions) in the loop regions 

of Mi2β-P2 and showed that the structure was maintained. We then went on to illustrate 

that a new function could be imparted to Mi2β-P2 by inserting a five-residue CtBP-

binding motif into the L1 region and showed this chimera could fold and bind CtBP. 

Having established that the PHD could adopt a new binding function, we next sought to 

use combinatorial methods to introduce other novel functions into the PHD scaffold. 

Phage display was selected for this purpose, because it is a well-established technique 
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and has been used successfully to engineer zinc-binding domains by other researchers. 

However, in order to establish this technique in our laboratory, we first chose a control 

system in which two partner proteins were already known to interact in vitro.  

We chose the protein complex formed between the transcriptional regulators LMO2 and 

ldb1 as a test case. We have examined this interaction in detail in our laboratory, and 

determined its three-dimensional structure. Furthermore, inappropriate formation of this 

complex is implicated in the onset of T-cell acute lymphoblastic leukemia. We therefore 

sought to use phage display to engineer ldb1 mimics that could potentially compete 

against wild-type ldb1 for LMO2, and this work is described in Chapter 4. Using a phage 

library containing ~3 × 107 variants of the LMO2-binding region of ldb1, we isolated 

mutants that were able to interact with LMO2 with higher affinity and specificity than 

wild-type ldb1. These ldb1 mutants represent a first step towards finding potential 

therapeutics for treating LMO-associated diseases. 

Having established phage display in our laboratory, we went on to search for PHD 

mutants that could bind selected target proteins. This work is described in Chapter 5. We 

created three PHD libraries with eight randomized residues in each of L1, L3 or in both 

loops of the PHD. These PHD libraries were then screened against four target proteins. 

After four rounds of selection, we were able to isolate a PHD mutant (dubbed L13-FH6) 

that could bind our test protein Fli-ets. This result demonstrates that a novel function can 

be imparted to the PHD using combinatorial methods and opens the way for further work 

in applying the PHD scaffold to other protein design work. 

In summary, the work detailed in Chapters 3 and 5 demonstrates that the PHD possesses 

many of the properties that are desirable for a protein scaffold for molecular recognition, 

including small size, stability, and a well-characterised structure. Moreover, the PHD 

motif possesses two loops (L1 and L3) of substantial size that can be remodeled for target 

binding. This may lead to an enhancement of binding affinities and specificities over 

other small scaffolds that have only one variable loop. In light of the fact that PHDs are 

mainly found in nuclear proteins, it is reasonable to expect that engineered PHDs could 

be expressed and function in an intracellular environment, unlike many other scaffolds 

that can only function in an oxidizing environment. Therefore, our results together with 
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other currently available genomic and functional information indicate PHD is an 

excellent candidate for a scaffold that could be used to modify cellular processes. 

Appendices 1 and 2 describe completed bodies of work on unrelated projects that I have 

carried out during the course of my PhD candidature. The first comprises the invention 

and application of DNA sequences that contain all N-base sequences in the minimum 

possible length. This work is presented as a reprint of our recently published paper in 

Nucleic Acids Research. The second Appendix describes our structural analysis of an 

antifreeze protein from the shorthorn sculpin, a fish that lives in the Arctic and Antarctic 

oceans. This work is presented as a manuscript that is currently under review at the 

Journal of the American Chemical Society.  
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