

Forward dynamic modelling of cycling for people with spinal cord injury.

Peter James Sinclair

B.P.E. (Hons.) M.Ed. (Physical Education)

A thesis submitted for the degree of Doctor of Philosophy

School of Exercise and Sport Science, Faculty of Health Sciences

The University of Sydney

November, 2001

Abstract

A forward dynamic model was developed to predict the performance of Spinal Cord Injured (SCI) individuals cycling an isokinetic ergometer using Neuromuscular Electrical Stimulation (NMES) to elicit contractions of the quadriceps, hamstring and gluteal muscles. Computer simulations were performed using three inter-connected models: a kinematic model of segmental linkages, a muscle model predicting forces in response to stimulation, and a kinetic model predicting ergometer pedal forces resulting from muscle stimulation.

Specific model parameters for SCI individuals were determined through measurements from isometric and isokinetic contractions of the quadriceps muscles elicited using surface stimulation. The muscle model was fitted to data resulting from these isolated experiments in order to tailor the model's parameters to characteristics of muscles from SCI individuals. Isometric data from a range of knee angles were used to fit tendon slack lengths to the rectus femoris and vastus muscles. Adjustments to the quadriceps moment arm function were not able to improve the match between measured and modelled knee extension torques beyond those using moment arms taken from available literature. Similarly, literature values for constants from the muscle force - velocity relationship provided a satisfactory fit to the decline in torque with angular velocity, and parameter fitting did not improve this fit. Passive visco-elastic resistance remained constant for all velocities of extension except the highest (240 deg s⁻¹). Since knee angular velocities this high were not experienced during cycling, a visco-elastic dampener was not included within the present cycling model.

The rise and fall in torque following NMES onset and cessation were used to fit constants to match the rate of change in torque. Constants for the rise in torque following NMES onset were significantly altered by changes in knee angle, with more extended angles taking longer for torque to rise. This effect was small, however, within the range of angles used during cycling, and consequently was not included within the cycling model. The decline in torque after NMES cessation was not affected by knee angle. A period of five minutes cyclical isometric activity of the quadriceps resulted in torque declining by more than 75% from rested levels. The activation time constants were largely unaffected by this fatigue, however, with only a small increase in the time for torque to decline, and no change in rise time or the delay

between stimulation changes and resulting torque changes. The cycling model, therefore, did not incorporate any effect for changes in activation timing with fatigue.

Performance of the full model was evaluated through measurements taken from SCI individuals cycling a constant velocity ergometer using NMES elicited contractions of the quadriceps, hamstring and gluteal muscles. Pedal transducers measured forces applied to the pedals for comparison between measured and modelled values. A five minute period of continuous cycling using just the quadriceps muscles produced similar results to those found for isolated knee extension. External power output dropped by 50% over the five-minute period, however there was no change in the pattern of torque production with fatigue.

Cycling experiments were conducted using single muscle groups across a range of NMES firing angles. Experimental protocols were designed to seek the firing angles for each muscle that maximised power output by that group. Changes in power output in response to firing angle changes were not large, however, in comparison to the effects of cumulative fatigue and inconsistent power output between trials. This lead to large uncertainties in the determination of those firing angles that maximised power output by the quadriceps muscle. Results suggest that NMES firing angles to maximise power output by the quadriceps muscles were relatively similar for each subject. For the hamstring muscles, however, substantial differences were observed in the range of firing angles that maximised power output. Results for the gluteal muscles were variable, with some subjects not applying any measurable torque to the cranks, even with maximal stimulation applied.

The model produced a good match to experimental data for the quadriceps muscles, both in the shape of pedal force curves and the firing angles that maximised external power output. The individual variability in hamstring responses was not, however, predicted by the model. Modification of the relative size of the hamstrings' moment arms about the hip and knee substantially improved the match between measured and modelled data. Analysis of results suggests that individual variability in the relative size of these moment arms is a major cause of variation in individual's response to hamstring stimulation. There were apparent limitations in the model's ability to predict the shape of crank torques resulting from stimulation of the gluteus maximus muscle. It is suggested that further research be conducted to enable modelling of this muscle using a range of fibre lengths and moment arms.

Table of Contents

Abstract		ii
Table of c	ontents	iv
List of fig	ures	viii
List of tab	les	xvii
Acknowle	dgments	xxi
Candidate	s certificate	xxii
Chapter 1	: Introduction	1
1.1	Background	1
1.2	Statement of the problem	7
1.3	Specific objectives	8
1.4	Significance of the study	10
1.5	Structure of the thesis	11
1.6	Definition of symbols	
Chapter 2	2: Literature review	16
2.1	Introduction	16
2.2	Benefits of electrical stimulation exercise	16
2.3	Design of ergometers for NMES induced cycling	21
2.4	Forward dynamic simulations	23
2.4.1	Why perform simulations?	23
2.4.2	2 Simulation methods used with cycling	26
2.4.3	3 Computer simulation methods used with NMES	
2.5	Muscle modelling	34
2.5.1	Muscle lengths and moment arms	34
2.5.2	2 Series elasticity	43
2.5.3	3 Angle of pennation	47
2.5.4	4 Optimum fibre length	53
2.5.5	5 Muscle cross-sectional area	58
2.5.0	6 Force - velocity relationship	
2.5.7	7 Rate of force development	67
2.5.8	8 Summary of muscle modelling parameters	73

Chapter 3	: The effect of fibre heterogeneity on the force-length relationship for a	
m	uscle	78
3.1	Introduction	78
3.2	Model development	80
3.3	Results	
3.4	Discussion	<u> 92 </u>
3.5	Summary	95
Chapter 4	: Methods	<u>97</u>
4.1	Introduction	<u> 97 </u>
4.2	Computer simulations	98
4.2.1	Kinematic model	99
4.2.2	Muscle model	103
4.2.3	Kinetic model	111
4.2.4	Summary	114
4.3	Knee extension experiments	115
4.3.1	Equipment	115
4.3.2	Subjects	116
4.3.3	Calibration	116
4.3.4	Experimental protocol	116
4.3.5	Data collection	
4.3.6	Data reduction from isometric trials	120
4.3.7	Data reduction from dynamic trials	124
4.3.8	Statistical analyses	126
4.4	Cycling experiments	126
4.4.1	Equipment	126
4.4.2	Subjects	
4.4.3	Experimental protocol	
4.4.4	Data analysis	136
Chapter 5	: Knee extension experiment results and discussion	141
5.1	Isometric contractions	141
5.1.1	Effect of knee angle on muscle performance.	141
5.1.2	Effect of fatigue on muscle performance	147
5.1.3	Discussion	150

5.1.4	Summary	155
5.2	Isokinetic contractions	156
5.2.1	Effect of velocity on passive torque	156
5.2.2	Effect of velocity on active torque	157
Chapter 6	: Development of parameters for use in the model	<u> 159 </u>
6.1	Fitting model parameters to knee extension data	159
6.1.1	Introduction	159
6.1.2	Fit tendon slack length to isometric data	160
6.1.3	Low velocity dynamic contractions	163
6.1.4	Fit both tendon length and moment arms to isometric data	165
6.1.5	Dynamic contractions at different velocities	168
6.1.6	Fit Hill constants to dynamic contractions	171
6.1.7	Discussion of interaction between variables	171
6.1.8	Fit activation constants to isometric data.	178
6.1.9	Test activation constants during dynamic contractions.	
6.1.1	0 Summary of fitting results.	192
6.2	Fitting model parameters to data from published literature	193
6.2.1	Hamstring tendon slack length.	193
6.2.2	Gluteus maximus tendon slack length.	195
Chapter 7	: NMES cycling experiments	<u>199</u>
7.1	Effect of 5 minutes continuous cycling on the development of crank torque	199
7.1.1	Introduction	
7.1.2	Changes in crank torque with quadriceps fatigue	200
7.1.3	Comparison between measured and modelled crank torques	203
7.1.4	Summary	207
7.2	NMES firing angles to maximise power output by the quadriceps muscles	207
7.2.1	Introduction	207
7.2.2	Comparison of modelled to measured results	209
7.2.3	Effect of changing stimulation onset angle	221
7.2.4	Effect of changing stimulation cessation angle	228
7.2.5	Summary	234
7.3	NMES firing angles to maximise power output by the hamstring muscles	236
7.3.1	Comparison of modelled to measured results	236

7.3.2	Effect of changing stimulation onset angle	246
7.3.3	Effect of changing stimulation cessation angle	253
7.3.4	Discussion	258
7.4	NMES firing angles to maximise power output by the gluteal muscles	261
7.4.1	Comparison of modelled to measured results	261
7.4.2	Effect of changing stimulation onset angle	268
7.4.3	Effect of changing stimulation cessation angle	271
7.4.4	Summary	273
7.5	The effect of seat position on NMES firing angles	274
7.5.1	Amount of movement	274
7.5.2	Quadriceps and gluteal muscles	274
7.5.3	Hamstring muscles	278
7.5.4	Summary	285
7.6	Sensitivity of predicted NMES firing angles to model parameters	286
Chapter 8	: Evaluation of model performance	<u> 293 </u>
8.1	Overview of match between measurements and simulations	293
8.2	NMES timing to generate maximum power output under acute conditions	297
8.3	Comparison of NMES firing angles from the present model with	
	previously published values	304
8.4	The ability of models to predict seat positions that maximise power output.	306
8.5	NMES timing to generate maximum power output over extended periods	308
Chapter 9	: Conclusions	312
9.1	Achievement of research objectives	313
9.2	Delimitations	321
9.3	Limitations of the study	322
9.4	Areas for further research	325
Reference	S	327
Appendice	28	
Append	ix 1. Ethics approval	A1

Appendix 2. Example source code for computer simulations

Appendix 3. Calibration examples

Appendix 4. Experimental data

Note: appendices 2 - 4 are located on an accompanying Compact Disk. They may be accessed through a standard Web browser by selecting the file "Appendix.htm" from the root directory of the CD.

List of Figures

Figure 1.1.1	Crank torques generated by SCI and able-bodied subjects cycling against four different resistances.	3
Figure 1.1.2	Schematic illustrating that only a narrow range of stimulation firing angles may be suitable to provide a common pattern for all subjects.	4
Figure 1.1.3	Illustration of the effect of crural index on knee angles during cycling.	5
Figure 2.4.2.1	Typical pattern of force application to pedals during upright cycling. From Ericson and Nisell (1989), p120.	26
Figure 2.4.2.2	Typical pattern of performance index throughout one complete revolution in cycling. From Ericson and Nisell (1988), p121.	27
Figure 2.5.1.1	Comparison between moment arms from various sources for the quadriceps femoris muscles about the knee.	38
Figure 2.5.1.2	Comparison between moment arms from various sources for rectus femoris about the hip.	39
Figure 2.5.1.3	Comparison between moment arms from various sources for the hamstring muscles about the knee.	40

Figure 2.5.1.4	Comparison between literature moment arms from various sources	
	for the hamstring muscles about the hip.	41
Figure 2.5.1.5	Comparison between literature moment arms from various sources for gluteus maximus about the hip	42
Figure 2.5.2.1	Arrangement of muscle fibres in series with tendon. Adapted from Figure 1, Zajac (1989).	43
Figure 2.5.3.1	Illustration of the angle of pennation of muscle fibres.	47
Figure 2.5.3.2	Illustration of pennation change with fibre shortening.	49
Figure 2.5.3.3	Alternate models of fibre arrangement. Adapted from Spoor et al. (1991a).	50
Figure 3.2.1	Force-length relationship for a single sarcomere.	81
Figure 3.2.2	Illustration of the model's distribution of fibre and sarcomere lengths.	84
Figure 3.3.1	Forces generated by individual fibres within the model.	
Figure 3.3.2	Forces generated by whole muscles having different distributions of fibre and sarcomere lengths.	
Figure 3.3.3	Data to match Figure 1a, Huijing et al. (1989).	<u>91</u>
Figure 3.3.4	Data to match Figure 2, Herzog and ter Keurs (1988).	92
Figure 4.2.1.1	Illustration of segments included in the kinematic model.	99
Figure 4.2.2.1	The conceptual muscle model.	103
Figure 4.2.2.2	Schematic of muscle model code.	104
Figure 4.2.2.3	Muscle fibre velocity expressed as a function of the force applied to a fibre.	107
Figure 4.2.2.4	Illustration of muscle activation in response to stimulation.	108

Figure 4.2.2.5	Schematic of muscle belly length.	109
Figure 4.2.3.1	Illustration of the positive direction for all variables used in equations 4.2.3.1 to 4.2.3.6.	113
Figure 4.3.1.1	Illustration of electrode placements.	115
Figure 4.3.6.1	Determination of stimulation timing from stimulator output.	120
Figure 4.3.7.1	Weight torque fitted to passive data collected at 10 deg s ⁻¹ for one exemplar subject.	125
Figure 4.4.1.1	The MOTOmed viva cycle ergometer.	127
Figure 4.4.1.2	Cycling using the MOTOmed viva and chosen chair.	128
Figure 4.4.1.3	Leg bracing system used with the cycle ergometer.	129
Figure 4.4.1.4	Illustration of electrode placements.	130
Figure 4.4.1.5	Illustration of the major data collection components.	132
Figure 4.4.3.1	Illustration of negative torque pattern with early stimulation onset.	135
Figure 4.4.4.1	Calculation of pedal forces and angles.	138
Figure 5.1.1.1	Effect of knee angle on NMES-induced isometric torque.	142
Figure 5.1.1.2	Effect of knee angle on rise delay and rise time 50%.	143
Figure 5.1.1.3	Effect of knee angle on fall delay and fall time 50%.	144
Figure 5.1.2.1	Change in torque with fatigue.	149
Figure 5.1.2.2	Change in fall time with fatigue.	150
Figure 5.2.1.1	Effect of velocity on passive torque	157
Figure 5.2.2.1	Effect of velocity on nett torque	158
Figure 6.1.2.1	Normalised torque produced by rectus femoris and vastii after fitting tendon slack length	162

Figure 6.1.2.2	Normalised torque produced by entire quadriceps after fitting	
	tendon slack length	162
Figure 6.1.3.1	Comparison between knee extension contractions measured from	
	each subject during knee extension contractions at 10 deg s ⁻¹ and	
	those modelled using the parameters outlined in Section 6.1.2.	165
Figure 6.1.4.1	Comparison between measured isometric joint torques, those	
	modelled by fitting just tendon lengths from Section 6.1.2 and	
	those modelled by fitting moment arms as well as tendon lengths	166
Figure 6.1.4.2	Comparison between moment arms derived from a number of	
	published sources and those fitted to match isometric data.	167
Figure 6.1.5.1	Comparison between torques measured at 60 deg knee flexion for	
	all subjects at each velocity of knee extension and those modelled	
	using Hill constants chosen from published literature	170
Figure 6.1.7.1	Comparison between the force length curve described by Delp et	
	al. (1990) and that calculated for a single human sarcomere in	
	Section 3.2.	172
Figure 6.1.7.2	Comparison between measured isometric joint torques and those	
	modelled using the two different force-length equations illustrated	
	in Figure 6.1.7.1	173
Figure 6.1.7.3	Comparison between quadriceps moment arms from multiple	
	literature sources and those determined by fitting the model to	
	experimental data using the human sarcomere force-length	
	relationship.	174
Figure 6.1.7.4	Comparison between experimentally measured isometric torques	
C	and those produced by modelling.	175
Figure 6.1.7.5	The effect of fitting hill constants on modelled torque-velocity	
-	relationship when using the human sarcomere force-length	
	relationship.	176

Figure 6.1.8.1	The rise in knee extension torque in response to stimulation onset	
	during three successive isometric contractions by a single subject.	179
Figure 6.1.8.2	The rise in knee extension torque in response to stimulation onset.	
	Comparison between the modelled rise and all measured data.	181
Figure 6.1.8.3	The fall in knee extension torque in response to stimulation	
	cessation. Comparison between the modelled fall and all measured	
	data	
Figure 6.1.9.1	Illustration of the normalising procedure for dynamic contractions.	186
Figure 6.1.9.2	Normalised rises in torque averaged from all available trials at each	
	velocity of knee extension.	187
Figure 6.1.9.3	Comparison between normalised knee extension torque during	
	isometric contractions and dynamic contractions at 10 deg s ⁻¹ .	188
Figure 6.1.9.4	Comparison between isometric contractions and dynamic	
	contractions at 10 deg s ⁻¹ using an alternative normalising	
	procedure for isometric torque.	
Figure 6.1.9.5	Normalised falls in torque averaged from all available trials at each	
	velocity of knee extension.	190
Figure 6.2.1.1	Maximum voluntary knee flexor torque for males measured at	
	various speeds of contraction. From Knapik et al. (1983), p941.	194
Figure 6.2.1.2	Comparison between knee flexion torque at different knee angles	
	predicted by the model with those measured by Knapik et al.	
	(1983) and Scudder (1980).	
Figure 6.2.2.1	Comparison between hip extension torque at different hip angles	
	predicted by three variations of the model with those measured by	
	Nemeth et al. (1983) and Waters et al. (1974).	196
Figure 6.2.2.2	Comparison between gluteal moment arms reported by Nemeth and	
	Ohlsen (1985) and those calculated by Schutte (1992).	

Figure 7.1.1.1	Typical crank torque – angle curve for a single subject with	
	stimulation firing angles between 300 and 20 deg.	200
Figure 7.1.2.1	Change in power output during the course of five minutes	
	continuous cycling using stimulation of just the right quadriceps	
	muscles	201
Figure 7.1.2.2	Torque patterns averaged for each subject and normalised against	
	peak torque at time zero	202
Figure 7.1.3.1	Measured and modelled crank torques at the beginning and end of	
	five minutes cycling using NMES to the right quadriceps muscles	204
Figure 7.1.3.2	Correlations between measured and modelled crank torques	
	throughout the course of five minutes continuous cycling,	
	calculated using passive levels taken before and after the active	
	cycling period.	205
Figure 7.2.1.1	Individual crank torque curves for selected NMES firing angles of	
	the quadriceps	208
Figure 7.2.1.2	Modelled crank torques for the same trials shown in Figure 7.2.1.1.	208
Figure 7.2.2.1	Average modelled and measured crank torque curves at selected	
	angles of quadriceps stimulation onset.	210
Figure 7.2.2.2	Average modelled and measured crank torque curves at selected	
	angles of quadriceps stimulation cessation.	211
Figure 7.2.2.3	Modelled knee extensor torque for one subject with stimulation	
-	firing angles between 200 and 20 deg.	212
Figure 7.2.2.4	Crank angular velocity - angle curves for one representative subject	
	during active and passive cycling.	213
Figure 7.2.2.5	Predicted error in modelled crank torque resulting from changes in	
0	crank velocity with muscle activation.	215

Figure 7.2.2.6	Horizontal and vertical pedal forces measured for subject 6 with	
	stimulation firing angles between 300 and 20 deg.	216
Figure 7.2.2.7	Horizontal and vertical pedal forces measured for all subjects with stimulation firing angles between 300 and 20 deg.	216
Figure 7.2.2.8	The ergometer's drive system illustrating the elastic nature of the drive belt connecting the cranks to the motor	217
Figure 7.2.2.9	Example vertical force patterns for two subjects with stimulation firing angles of 300 to 20 deg	218
Figure 7.2.2.10	The effect on modelled pedal forces from changing modelled hip height by 5 cm in one representative trial.	219
Figure 7.2.2.11	Measured and modelled horizontal pedal forces at selected stimulation firing angles.	221
Figure 7.2.3.1	Changes in correlation between measured and modelled crank torques with stimulation onset angle.	223
Figure 7.2.3.2	Change in power output with quadriceps NMES onset angle for four representative subjects.	224
Figure 7.2.3.3	Measured and modelled rises in crank torque with different NMES onset angles.	227
Figure 7.2.3.4	The effect of quadriceps stimulation onset angle on power output.	228
Figure 7.2.4.1	The effect of changing stimulation cessation angle on measured and modelled crank torques.	229
Figure 7.2.4.2	Changes in correlation between measured and modelled crank torques with stimulation cessation angle.	230
Figure 7.2.4.3	Change in power output with quadriceps NMES cessation angle for four representative subjects.	231
Figure 7.2.4.4	The effect of quadriceps stimulation cessation angle on power output.	234

Figure 7.3.1.1	Individual crank torque curves resulting from activation of the	
	hamstring muscles at selected NMES onset angles.	236
Figure 7.3.1.2	Modelled crank torques for the same trials shown in Figure 7.3.1.1	237
Figure 7.3.1.3	Average modelled and measured crank torque curves at selected	228
	angles of hamstring stimulation onset.	230
Figure 7.3.1.4	Crank torque and pedal forces for Subject 3 with NMES firing angles between 0 and 120 deg.	239
Figure 7.3.1.5	Crank torque and pedal forces for Subject 4 with stimulation firing	2.40
	angles between 0 and 120 deg.	240
Figure 7.3.1.6	Forces and torques for Subject 4 adjusted by decreasing the model's knee moment arm by 40%.	241
Figure 7.3.1.7	Comparison between pedal forces modelled using either a	
1 iguie (.5.1.)	modification of knee or of hip moment arms.	242
Figure 7.3.1.8	Crank torque and pedal forces for Subject 1 with NMES firing	
	angles of 0 to 90 deg.	243
Figure 7.3.1.9	Forces and torques for Subject 1, adjusted by increasing the model's knee moment arm by 25%	244
Figure 7.3.2.1	Change in power output with hamstring NMES onset angle for four	
Figure 7.5.2.1	representative subjects.	247
Figure 7.3.2.2	A comparison between measured and predicted NMES onset	
	angles that maximise power output by the hamstring muscles.	252
Figure 7.3.3.1	Change in power output with hamstring NMES cessation angle for	
	four representative subjects.	253
Figure 7.3.3.2	A comparison between measured and predicted NMES cessation	
	angles that maximise power output by the hamstring muscles.	257
Figure 7.3.4.1	Range of moment arm values available for each hamstring muscle	
	from different literature sources.	259

Figure 7.4.1.1	Non-normalised crank torques for individual subjects in response	
	to stimulation of the gluteal muscles.	262
Figure 7.4.1.2	Individual crank torque curves measured at selected gluteal NMES onset angles.	263
Figure 7.4.1.3	Modelled crank torques for the same trials shown in Figure 7.3.1.1.	263
Figure 7.4.1.4	Crank torques produced in response to stimulation of the gluteal muscles at different onset angles.	266
Figure 7.4.1.5	Hip angle for one representative subject plotted as a function of crank angle.	268
Figure 7.4.2.1	Change in power output with gluteal NMES onset angle for four representative subjects	269
Figure 7.4.3.1	Change in power output with gluteal NMES cessation angle for four representative subjects	271
Figure 7.5.2.1	The effect of seat position on NMES firing angles for quadriceps and gluteal muscles measured from regression analyses.	275
Figure 7.5.2.2	Effect of seat position on measured and modelled knee angles for two exemplar subjects	277
Figure 7.5.2.3	Effect of seat position on measured and modelled thigh angles for two exemplar subjects	278
Figure 7.5.3.1	A comparison between NMES onset angles that maximise measured power output by the hamstring muscles at two seat positions	279
Figure 7.5.3.2	A comparison between measured and modelled NMES onset angles that maximise power output by the hamstring muscles with the chair set back	282
Figure 7.6.1	Effect of tendon stiffness on the rise of tendon force and crank torque in response to NMES.	290

Figure 8.1.1	Comparison between measured and modelled crank torques for	
	quadriceps, hamstring and gluteal muscles.	294
Figure 8.2.1	Idealised crank torque-angle curve.	298
Figure 8.2.2	Simulated velocity of shortening and crank torque generated by the quadriceps muscles.	300
Figure 8.5.1	Effect of changing stimulation firing angles on the level of force	
	required to maintain constant power output.	310

List of Tables

Table 2.4.3.1	Pennation angles for quadriceps, hamstring and gluteus maximus muscles.	52
Table 2.5.4.1	Optimum fibre lengths for quadriceps and hamstring muscles.	55
Table 2.5.4.2	Anatomical fibre lengths for quadriceps and hamstring muscles.	56
Table 2.5.4.3	Anatomical sarcomere lengths for quadriceps and hamstring muscles.	57
Table 2.5.5.1	Relative cross sectional areas of quadriceps muscles expressed as a percentage of the total muscle group.	<u>61</u>
Table 2.5.5.2	Relative cross sectional areas of hamstring muscles expressed as a percentage of the total muscle group.	62
Table 2.5.7.1	Events in the development of muscle force in response to NMES	<u>67</u>
Table 2.5.7.2	Effect of age on activation dynamics from Backman and Henriksson (1988)	69
Table 2.5.7.3	Effect of nerve denervation on activation dynamics from Miller (1979)	70

Table 2.5.7.4	Effect of age on activation dynamics from Klein et al. (1988)	70
Table 2.5.7.5	Effect of age on relaxation dynamics from Backman and Henriksson (1988)	71
Table 2.5.8.1	Summary of model constants common to all muscles	74
Table 2.5.8.2	Summary of model constants for the quadriceps muscles	75
Table 2.5.8.3	Summary of model constants for the hamstring muscles	76
Table 2.5.8.4	Summary of model constants for gluteus maximus	77
Table 3.2.1	Definitions of force and length at each corner of Figure 3.2.1.	81
Table 3.2.2	Myofilament lengths for human and rat muscle.	
Table 3.2.3	Force and sarcomere length calculated for human and rat muscle at each corner of Figure 3.2.1.	
Table 3.2.4	Fibre and sarcomere lengths for rectus femoris from Herzog et al. (1990).	87
Table 4.3.4.1	Example order of collection for isometric knee angles.	118
Table 4.3.4.2	Example order of collection for isokinetic extension velocities.	119
Table 4.3.6.1	Parameters measured directly from data collected.	121
Table 4.3.6.2	Variables calculated from the measured parameters.	123
Table 5.1.1.1	Regression equations for each activation parameter.	145
Table 5.1.2.1	The effect of fatigue on knee extension torque parameters.	148
Table 6.1.2.1	Comparison between slack lengths fitted by Hoy et al. (1990) and those fitted within the present section.	163
Table 6.1.4.1	Comparison between slack lengths fitted by Hoy et al. (1990) and those fitted using two different quadriceps moment arms across the	1
	knee.	167

Table 6.1.5.1	Knee extension torques measured at a knee angle of 60 deg for all	
	subjects at each velocity of knee extension.	169
Table 6.1.6.1	Comparison between hill constants fitted within the present study	
	to those reported in previous literature.	171
Table 6.1.7.1	Changes in hill constants with fitting procedure.	176
Table 6.1.9.1	Number of rise periods available for analysis at each velocity of knee extension.	184
Table 6.1.9.2	Number of fall periods available for analysis at each velocity of knee extension.	191
Table 7.1.2.1	Changes in measured crank torque with fatigue.	203
Table 7.2.3.1	Constants for equation 7.2.3.1 from analysis of regression predicting power output from quadriceps stimulation onset angle	225
Table 7.2.4.1	Constants for equation 7.2.3.1 from analysis of regression predicting power output from quadriceps stimulation cessation angle.	232
Table 7.3.1.1	Correlations between measured and modelled crank torques when hamstring stimulation commenced at 0 deg.	245
Table 7.3.2.1	Constants for equation 7.2.3.1 from analysis of regression predicting power output from hamstring stimulation onset angle	248
Table 7.3.2.2	Hamstring onset angles resulting in maximum power output calculated from individual regressions for each subject.	250
Table 7.3.2.3	Peak hamstring NMES onset angles measured by analysis of regression and predicted by the standard and modified models.	251
Table 7.3.3.1	Constants for Equation 7.2.3.1 from analysis of regression predicting power output from hamstring stimulation cessation	
	angle	254

Table 7.3.3.2	Hamstring cessation angles resulting in maximum power output	
	calculated from individual regressions for each subject.	255
Table 7.3.3.3	Peak hamstring NMES cessation angles measured by analysis of regression and predicted by the standard and modified simulations.	256
Table 7.4.1.1	Angle where torque was maximum for each subject at different	
	stimulation onset angles.	264
Table 7.4.2.1	Constants for Equation 7.2.3.1 from analysis of regression	
	predicting power output from gluteal stimulation onset angle.	270
Table 7.4.3.1	Constants for Equation 7.2.3.1 from analysis of regression	
	predicting power output from gluteal stimulation cessation angle.	272
Table 7.5.2.1	Comparison between measured and modelled firing angles for	
	quadriceps and gluteal muscles.	276
Table 7.5.3.1	Hamstring knee moment arm modification ratios calculated from	
	seat forward and seat back positions.	281
Table 7.5.3.2	Comparison between modelled hamstring stimulation angles using	
	both standard and modified models in two seat positions.	284
Table 7.6.1	Sensitivity of hamstring firing angles to changes in model	
	parameters	287
Table 7.6.2	Sensitivity of quadriceps firing angles to changes in model	
	parameters	288
Table 8.2.1	Comparison of peak stimulation timing between muscles	304
Table 8.3.1	Comparison between NMES firing angles predicted by the current model and those published elsewhere.	305
	±	

Acknowledgments

I would like mostly to thank my family, Jane, Tom and Louise, for having the patience to wait for this thesis to be complete. Jane, particularly, has offered her support by shouldering the load and shielding me from the ever-present question: "when". I love you all and promise to spend more of my weekends with you from now on.

My parents have managed to instil a respect and desire for learning without me ever being conscious of their teaching. Their ability to do this impresses me no end and I love them a lot.

Numerous staff from the Faculty of Health Sciences have assisted with this journey. My supervisors, Richard Smith and Glen Davis, have given their valuable time in editing this document. Ray Patton and Tim Turner have kept the equipment running and my face smiling. Che Fornusek has freely offered his time and expertise to develop the ergometer interface; may his release from studentship come quickly. Many others have offered their support and encouragement. Thank you all.

My subjects deserve special thanks, as their sessions were long and tedious. They have given most freely of their time and I couldn't have done this research without them. Their generosity and good humour is an example to us all.

Candidates Certificate

I, Peter Sinclair, certify that the work contained within this document is my own and has not been submitted to another university or institution as a part or whole requirement for any higher degree.

Peter James Sinclair

Date _____