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Abstract 

 

A forward dynamic model was developed to predict the performance of Spinal Cord Injured 

(SCI) individuals cycling an isokinetic ergometer using Neuromuscular Electrical Stimulation 

(NMES) to elicit contractions of the quadriceps, hamstring and gluteal muscles. Computer 

simulations were performed using three inter-connected models: a kinematic model of 

segmental linkages, a muscle model predicting forces in response to stimulation, and a kinetic 

model predicting ergometer pedal forces resulting from muscle stimulation. 

 

Specific model parameters for SCI individuals were determined through measurements from 

isometric and isokinetic contractions of the quadriceps muscles elicited using surface 

stimulation. The muscle model was fitted to data resulting from these isolated experiments in 

order to tailor the model’s parameters to characteristics of muscles from SCI individuals. 

Isometric data from a range of knee angles were used to fit tendon slack lengths to the rectus 

femoris and vastus muscles. Adjustments to the quadriceps moment arm function were not 

able to improve the match between measured and modelled knee extension torques beyond 

those using moment arms taken from available literature. Similarly, literature values for 

constants from the muscle force - velocity relationship provided a satisfactory fit to the 

decline in torque with angular velocity, and parameter fitting did not improve this fit. Passive 

visco-elastic resistance remained constant for all velocities of extension except the highest 

(240 deg s-1). Since knee angular velocities this high were not experienced during cycling, a 

visco-elastic dampener was not included within the present cycling model. 

 

The rise and fall in torque following NMES onset and cessation were used to fit constants to 

match the rate of change in torque. Constants for the rise in torque following NMES onset 

were significantly altered by changes in knee angle, with more extended angles taking longer 

for torque to rise. This effect was small, however, within the range of angles used during 

cycling, and consequently was not included within the cycling model. The decline in torque 

after NMES cessation was not affected by knee angle. A period of five minutes cyclical 

isometric activity of the quadriceps resulted in torque declining by more than 75% from rested 

levels. The activation time constants were largely unaffected by this fatigue, however, with 

only a small increase in the time for torque to decline, and no change in rise time or the delay 
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between stimulation changes and resulting torque changes. The cycling model, therefore, did 

not incorporate any effect for changes in activation timing with fatigue. 

 

Performance of the full model was evaluated through measurements taken from SCI 

individuals cycling a constant velocity ergometer using NMES elicited contractions of the 

quadriceps, hamstring and gluteal muscles. Pedal transducers measured forces applied to the 

pedals for comparison between measured and modelled values. A five minute period of 

continuous cycling using just the quadriceps muscles produced similar results to those found 

for isolated knee extension. External power output dropped by 50% over the five-minute 

period, however there was no change in the pattern of torque production with fatigue.  

 

Cycling experiments were conducted using single muscle groups across a range of NMES 

firing angles. Experimental protocols were designed to seek the firing angles for each muscle 

that maximised power output by that group. Changes in power output in response to firing 

angle changes were not large, however, in comparison to the effects of cumulative fatigue and 

inconsistent power output between trials. This lead to large uncertainties in the determination 

of those firing angles that maximised power output by each muscle. Results suggest that 

NMES firing angles to maximise power output by the quadriceps muscles were relatively 

similar for each subject. For the hamstring muscles, however, substantial differences were 

observed in the range of firing angles that maximised power output. Results for the gluteal 

muscles were variable, with some subjects not applying any measurable torque to the cranks, 

even with maximal stimulation applied.  

 

The model produced a good match to experimental data for the quadriceps muscles, both in 

the shape of pedal force curves and the firing angles that maximised external power output. 

The individual variability in hamstring responses was not, however, predicted by the model. 

Modification of the relative size of the hamstrings’ moment arms about the hip and knee 

substantially improved the match between measured and modelled data. Analysis of results 

suggests that individual variability in the relative size of these moment arms is a major cause 

of variation in individual’s response to hamstring stimulation. There were apparent limitations 

in the model’s ability to predict the shape of crank torques resulting from stimulation of the 

gluteus maximus muscle. It is suggested that further research be conducted to enable 

modelling of this muscle using a range of fibre lengths and moment arms. 
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