

University of Sydney

Department of Civil Engineering

THERMO-MECHANICAL BEHAVIOUR

OF

TWO RECONSTITUTED CLAYS

BY

BEHROOZ GHAHREMANNEJAD

A thesis submitted for the degree of Doctor of Philosophy

April 2003

To my parents Mohtaram and Ghorbanali With love and gratitude

Synopsis

The effect of temperature on soil behaviour has been the subject of many studies in recent years due to an increasing number of projects related to the application of high temperature to soil. One example is the construction of facilities for the disposal of hot high level nuclear waste canisters (150-200°C) several hundred meters underground in the clay formations. Despite this, the effects and mechanism by which temperature affects the soil properties and behaviour are not fully known. A limited amount of reliable experimental data, technological difficulties and experimental methods employed by different researchers could have contributed to the uncertainties surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical models have been developed for soil behaviour, but their validity needs to be examined by reliable experimental data.

In this research, efforts have been made to improve the experimental techniques. Direct displacement measuring devices have been successfully used for the first time to measure axial and lateral displacements of clay samples during tests at various temperatures. The thermo-mechanical behaviour of two reconstituted clays has been investigated by performing triaxial and permeability tests at elevated temperature. Undrained and drained triaxial tests were carried out on normally consolidated and over consolidated samples of M44 clay and Kaolin C1C under different effective stresses, and at temperatures between 22°C and 100°C. Permeability tests were carried out on samples of M44 clay at temperatures between 22°C and 50°C. The effects of temperature on permeability, volume change, pore pressure development, shear strength and stiffness, stress-strain response and critical state parameters for different consolidation histories have been investigated by comparing the results at various temperatures. The results are also compared with the predictions of two models.

It has been found that at elevated temperature the shear strength, friction angle and initial small strain stiffness reduce whereas permeability increases. The slope of the swelling line in the v-p' plane has been found to reduce with temperature. The slope of the isotropic normal consolidation line (INCL) and critical state line (CSL) in the v-p' plane, λ , have been observed to be independent of temperature, but both the INCL and the CSL shift downwards to lower locations as temperature increases. The deformations

during drained cooling and re-heating cycles have been found to be elastic and to simply reflect the expansivity of the soils solid particles. The thermal volume changes during undrained heating have been observed to be direct results of the thermal expansion of water and clay particles. The internal displacement measuring devices have been found to produce reliable data for the variation of strains at elevated temperature.

Acknowledgements

I started my postgraduate studies as a Master student in December 1997 at the Department of Civil Engineering and upgraded the studies to a Ph.D. level in August 1999. During my candidature, I was privileged to have the support of many people both inside and outside Sydney University and I really like to thank all of them. I wish to express my sincere gratitude to my supervisor Dr David Airey for his support and assistance in technical matters throughout the duration of this project. I am grateful to Prof. John Carter for his comments regarding the modelling aspects of this study. I also like to express my appreciation to the members of the Centre for Geotechnical Research (CGR) and the workshop in particulars Dr. Tim Hull, Mr. Ross Barker, Mr Antonio Reyno and Mr. Keith Barry for their great help and constructive comments on the soil testing, instrumentation and manufacturing of the testing equipments.

I am grateful to Mr. Hajime Ishizawa from RKC Company for providing a free temperature controller and for his comments regarding programming to control temperature in the high temperature triaxial apparatus.

I wish to thank the Australian Research Council (ARC) for their generous financial support in the form of an ARC grant during the whole period of this study.

I like to appreciate the assistance and friendship of Dr. Gerard Gabriel and Dr. Michel Chaaya as well as the Facilities Management Office at the University of Sydney who provided me with the opportunity to work on a flexible casual basis for the last five years. Also I am grateful to Dr. Hossein Taiebat and Prof. Hassan Rahimi for their valuable advices on the layout and formatting of this thesis.

Finally, I wish to express my deepest gratitude to my wife for her unending support and sacrifices that she made during my candidature. Masoumeh I really love you and thank you for your assistance in typing as well as your encouragement, patience and love throughout this study. Also I am grateful to my son Ali who has given me hope to finish this thesis.

Contents

Syno	Synopsis		
Ackr	nowledge	ements	V
List	of Symbo	ols	xi
СНА	PTER 1	Introduction	1
1.1	Backg	round and methodology	1
1.2	Object	tives	3
1.3	Outlin	es of dissertation	4
СНА	PTER 2	Literature Survey	5
2.1	Introdu	uction	5
2.2	Backg	round	7
	2.2.1	Formation of new minerals	7
	2.2.2	Specific gravity	7
	2.2.3	Atterberg limits	9
	2.2.4	Thermal conductivity	11
	2.2.5	Effects of heating on permeability of soil	12
	2.2.6	Volume and pore pressure changes	13
	2.2.7	Clay-water interaction	20
	2.2.8	Secondary consolidation or creep	22
	2.2.9	Stiffness and shear strength	24
	2.2.10	Critical state and Cam-clay parameters	29
2.3	Model	ling aspects	30

~ 1	a	. 1	1 .	. •
$\gamma \Lambda$	Votting	tho	0h100	tition
4.4	SCUITZ			いていい
	~ • • • • • • • • • • • • • • • • • • •			

CHA	PTER 3	3 Apparatus and Instrumentation	34
3.1	Introd	uction	34
3.2	Equip	ment and experimental setup	34
	3.2.1	Hydraulic conductivity	34
	3.2.2	Setup for triaxial testing	36
		3.2.2.1 Room temperature triaxial apparatus	36
		3.2.2.2 High temperature triaxial apparatus	36
	3.2.3	Description of equipment and calibration	38
		3.2.3.1 Load frame and load measurements	38
		3.2.3.2 Triaxial chamber	40
		3.2.3.3 Temperature controlled oven	41
		3.2.3.4 GDS digital controllers and drainage lines	42
		3.2.3.5 Membrane, Porous stones and Top cap	45
		3.2.3.6 Ceramic stand	47
		3.2.3.7 Displacement measurement	48
		3.2.3.8 Pore water pressure measuring devices	57
		3.2.3.9 Thermocouples	58
		3.2.3.10 Data acquisition system	59
	3.2.4	Error assessment	60
	3.2.5	Suggestions for further improvements to the FHTTA	63
3.3	Testin	ng Procedure	63
	3.3.1	Material and methods	63
	3.3.2	Physical properties	64
	3.3.3	Procedure in permeability tests	64

32

		3.3.3.1 Sample preparation	64
		3.3.3.2 Sample setup and test procedure	65
	3.3.4	Procedure in triaxial tests	65
		3.3.4.1 Sample preparation	65
		3.3.4.2 Sample setup	66
Арр	endix 3.	A	67
Арр	endix 3.	B	75
Арр	endix 3.0	С	80
СНА	APTER 4	4 Thermo-Mechanical Behaviour of Clay	87
4.1	Introd	luction	87
4.2	Triaxi	al testing of saturated clay at various temperatures	87
	4.2.1	Experimental procedure	88
		4.2.1.1 Saturation	88
		4.2.1.2 Consolidation	89
		4.2.1.3 Shear	91
		4.2.1.4 Primary calculations and data analysis	91
		4.2.1.5 Corrections and errors	93
	4.2.2	Results of tests on M44 clay	95
		4.2.2.1 Isotropic mechanical and thermal consolidation	95
		4.2.2.2 Secondary consolidation	112
		4.2.2.3 Cubical thermal expansion of M44 clay particles	114
		4.2.2.4 Shearing characteristics of M44 Illitic clay	117
		4.2.2.5 Critical state and Cam-clay parameters	130
	4.2.3	Results of tests on Kaolin C1C	134
		4.2.3.1 Isotropic mechanical and thermal consolidation	134

		4.2.3.2 Coefficient of volumetric thermal expansion of	
		Kaolin C1C particles	141
		4.2.3.3 Shearing characteristics of Kaolin C1C	142
		4.2.3.4 Critical state and modified Cam-clay parameters	148
	4.2.4	Comparison of the results with previous studies	151
4.3	Hydra	aulic conductivity	153
	4.3.1	Results	153
4.4	Concl	usions	157
	4.4.1	Thermo-Mechanical consolidation	157
	4.4.2	Strength and Ductility	158
	4.4.3	Stiffness	159
	4.4.4	Critical state	159
	4.4.5	Permeability	159
Appe	ndix 4.	Α	160
Appendix 4.B		164	
Appe	Appendix 4.C		167
Appe	Appendix 4.D 170		

СНА	PTER 5 Thermo-Mechanical Models for Soil	173
5.1	Introduction	173
5.2	Background on Thermo-Elastic-Plastic models for clay	174
5.3	Implementation of Thermo-Mechanical models	176
	5.3.1 The Elastoplastic model proposed by Cui et al (2000)	176
	5.3.2 Cam-clay model for deviatoric loading	182
5.4	Determination of parameters	184
5.5	Validity of formulations	186

5.6	Predic	ctions and comparison with experimental data	189
	5.6.1	Isotropic thermo-mechanical consolidation	190
	5.6.2	Undrained thermal volumetric and pore pressure changes	196
	5.6.3	Deviatoric stress-strain response	197
		5.6.3.1 Undrained triaxial compression	197
		5.6.3.2 Drained triaxial compression	204
5.7	Sumn	nary and conclusion	205
СНА	PTER	6 Summary and Discussion	208
6.1	Backg	ground	208
6.2	Appar	ratus and Instrumentation	209
6.3	Thermo-Mechanical Behaviour of Clay		210
6.4	Thermo-Mechanical Modelling of Soil		212
6.5	Suggestions for future work 2		213

BIBLIOGRAPHY

216

List of Symbols

a	a parameter related to the shape of thermal plastic strain curve
А	cross section area of sample
α_1	a parameter defining the thermal over consolidation effect
α_p	a parameter defining the slope of thermal plastic strain curve
α	linear coefficient of thermal expansion
α_2	coefficient of drained thermal expansion of soil during thermal cycle
α_0	a parameter defining curvature of the LY locus
α_{u}	coefficient of undrained thermal expansion of clay
α_{dr}	coefficient of drained thermal expansion of clay
α_{w}	cubical coefficient of thermal expansion of water
α_{s}	cubical coefficient of thermal expansion of solid
α_{st}	physico-chemical coefficient of structural volume change
β	the hardening parameter for TY locus
В	pore pressure coefficient
C_V	coefficient of consolidation
C_1	intersection of the HC curve with p' axis
C_2	a shape parameter related to HC curve
С	electrolyte concentration
C_{α}	coefficient of secondary consolidation
CSL	critical state line
D	sample diameter
di	dielectric constant
$d\epsilon^{e}_{v}$	elastic volumetric strain increment
$d\epsilon^{p}_{vm}$	plastic volumetric strain increment due to mechanical loading
ΔV_{dr}	volume of expelled water
ΔΤ	temperature change
Δv_a	volume of expanded adsorbed water per unit surface area of clay mineral per $^{\circ}\mathrm{C}$
Δe_{st}	changes in void ratio due to temperature cycling
$d\epsilon^{p}{}_{s}$	plastic shear strain increment
$d\epsilon^{p}_{v}$	plastic volumetric strain increment

$d\epsilon^{p}_{vmT}$	thermal plastic strain increment when thermo-mechanical path reaches LY locus due to heating
$d\epsilon^{p}_{\ vTm}$	mechanical plastic strain increment at constant temperature
$d\epsilon^{e}_{vT}$	elastic volumetric strain increment due to thermal loading
e	void ratio
ε _a	axial strain
ε _s	shear strain
ε _v	volumetric strain
E _m	membrane Young's modulus
$\epsilon^{p}_{\ vT}$	plastic volumetric strain due to thermal loading
ε _v	volumetric strain
Gs	specific gravity of solid
G ₅₀	secant modulus at 50% of maximum deviator stress at failure
G	initial shear modulus at small strain
Г	specific volume corresponding to $p'_c = 1$ kPa on CSL
H _{dr}	length of drainage path
Н	sample height
H _c	sample height after consolidation
INCL	isotropic normal consolidation line
I _P or PI	plasticity index
\mathbf{k}_1	a parameter defining the thermal over consolidation effect
k	permeability
K _v	absolute permeability
Κ	bulk modulus
κ	slope of swelling line in v-p' plane
LY	loading yield
L _d	size of double layer
λ	slope of INCL in v-p' plane
LL	liquid limit
m _v	comperessibility
$\mu_{\rm w}$	viscosity of water
М	slope of CSL in q-p' plane
μ	Poisson's ratio
NC	normally consolidated

N	Specific volume corresponding to $p'=1$ kPa on INCL
ν	specific volume
n	porosity
OCR	over consolidation ratio
OC	over consolidated
p'	mean effective stress
p´ _c	mean effective stress at the end of mechanical consolidation
p'c0	preconsolidation pressure or p'_0
p´ _{cs}	mean effective stress at critical state
p´0	stress controlling the size of the yield locus
ρ_d	dry density
PL	plastic limit
ρ_w, γ_w	density of water
q	deviator stress, $\sigma_1 - \sigma_3$ or $\sigma'_1 - \sigma'_3$
$q_{\rm f}$	deviator stress at failure
SG	specific gravity
Ss	specific surface
S	unit electronic charge
σ_1	major principal stress
σ'_1	effective major principal stress
σ_3	minor principal stress
σ'_3	effective minor principal stress
t	time
t90	the time to reach 90% consolidation
t _m	thickness of membrane
Т	temperature
T _c	a reference temperature corresponding to intersection of the TY locus with T axis
TY	thermal yield
T _{HC}	temperature at which the expansion-contraction behaviour of OC samples occurs
u	pore pressure
V	volume
Vc	cation valence
V_{w}	volume of water

Vs	volume of solid
V _C	volume of sample after consolidation
V'_{w}	volume of water after correction for temperature
V′s	volume of soil solid after correction for temperature
Ws	weight of solid
W_{w}	weight of water