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Synopsis 
The effect of temperature on soil behaviour has been the subject of many studies in 

recent years due to an increasing number of projects related to the application of high 

temperature to soil. One example is the construction of facilities for the disposal of hot 

high level nuclear waste canisters (150-200°C) several hundred meters underground in 

the clay formations. Despite this, the effects and mechanism by which temperature 

affects the soil properties and behaviour are not fully known. A limited amount of 

reliable experimental data, technological difficulties and experimental methods 

employed by different researchers could have contributed to the uncertainties 

surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical 

models have been developed for soil behaviour, but their validity needs to be examined 

by reliable experimental data. 

In this research, efforts have been made to improve the experimental techniques. Direct 

displacement measuring devices have been successfully used for the first time to 

measure axial and lateral displacements of clay samples during tests at various 

temperatures. The thermo-mechanical behaviour of two reconstituted clays has been 

investigated by performing triaxial and permeability tests at elevated temperature. 

Undrained and drained triaxial tests were carried out on normally consolidated and over 

consolidated samples of M44 clay and Kaolin C1C under different effective stresses, 

and at temperatures between 22°C and 100°C. Permeability tests were carried out on 

samples of M44 clay at temperatures between 22°C and 50°C. The effects of 

temperature on permeability, volume change, pore pressure development, shear strength 

and stiffness, stress-strain response and critical state parameters for different 

consolidation histories have been investigated by comparing the results at various 

temperatures. The results are also compared with the predictions of two models. 

It has been found that at elevated temperature the shear strength, friction angle and 

initial small strain stiffness reduce whereas permeability increases. The slope of the 

swelling line in the ν-p´ plane has been found to reduce with temperature. The slope of 

the isotropic normal consolidation line (INCL) and critical state line (CSL) in the ν-p´ 

plane, λ, have been observed to be independent of temperature, but both the INCL and 

the CSL shift downwards to lower locations as temperature increases. The deformations 
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during drained cooling and re-heating cycles have been found to be elastic and to simply 

reflect the expansivity of the soils solid particles. The thermal volume changes during 

undrained heating have been observed to be direct results of the thermal expansion of 

water and clay particles. The internal displacement measuring devices have been found 

to produce reliable data for the variation of strains at elevated temperature. 
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