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Abstract

This thesis describes research into the field of image restoration. Restoration is a process by
which an image suffering some form of distortion or degradation can be recovered to its origi-

nal form. Two primary concepts within this field have been investigated.

The first concept is the use of a Hopfield neural network to implement the constrained least
square error method of image restoration. In this thesis, the author reviews previous neural net-
work restoration algorithms in the literature and builds on these algorithms to develop a new
faster version of the Hopfield neural network algorithm for image restoration. The versatility of
the neural network approach is then extended by the author to deal with the cases of spatially
variant distortion and adaptive regularisation. It is found that using the Hopfield-based neural
network approach, an image suffering spatially variant degradation can be accurately restored
without a substantial penalty in restoration time. In addition, the adaptive regularisation resto-
ration technique presented in this thesis is shown to produce superior results when compared to
non-adaptive techniques and is particularly effective when applied to the difficult, yet impor-

tant, problem of semi-blind deconvolution.

The second concept investigated in this thesis, is the difficult problem of incorporating con-
cepts involved in human visual perception into image restoration techniques. In this thesis, the
author develops a novel image error measure which compares two images based on the differ-
ences between local regional statistics rather than pixel level differences. This measure more
closely corresponds to the way humans perceive the differences between two images. Two res-
toration algorithms are developed by the author based on versions of the novel image error

measure. It is shown that the algorithms which utilise this error measure have improved per-



formance and produce visually more pleasing images in the cases of colour and grayscale
images under high noise conditions. Most importantly, the perception based algorithms are

shown to be extremely tolerant of faults in the restoration algorithm and hence are very robust.

A number of experiments have been performed to demonstrate the performance of the vari-

ous algorithms presented.



Chapter 1: Introduction

1.1 Overview of This Chapter

This chapter provides a background for the reader regarding the subject of image restora-
tion. Understanding the fundamental theory, methods and concepts, and the current state of the
art in the field of image restoration is vitally important to the understanding of the material pre-

sented in the subsequent chapters of this thesis.

This chapter begins with a short discussion on image degradations and their mathematical
models in Section 1.2. Section 1.3 details the basic theory of image restoration and the classi-
cal techniques used to restore images, while Section 1.4 details new emerging techniques for
adaptively restoring images and handling colour images and images degraded by spatially var-
lant distortion. Section 1.5 considers the way humans perceive visual information and how this
information may be incorporated into restoration techniques. Section 1.6 provides an overview

of the subsequent chapters of this thesis and Section 1.7 summarises this chapter.

1.2 Image Degradations

All lifeforms require methods for sensing the environment. Being able to sense one’s sur-
roundings is of such vital importance in the natural world that ever since life has appeared
upon the planet, there has been a constant race to develop more sensory methods and increased
sensory accuracy to out-compete other creatures. As a consequence of this “sensory arms

race”, advanced life forms have at their disposal an array of highly accurate senses. Some unu-



sual sensory abilities are present in the natural world, such as the ability to detect magnetic
fields and electric fields, or the use of sound waves to determine the internal structure of
objects. Despite this, one of the most prized and universal senses utilised in the natural world is

vision.

Advanced animals living above ground rely heavily on vision. Birds and lizards maximise
their fields of view with eyes on each side of their skulls, while other animals direct their eyes
forward to observe the world in three dimensions. Nocturnal animals often have large eyes to
maximise light intake, while predators such as eagles have very high resolution eyesight to
identify prey while flying. The natural world is full of animals of almost every colour imagina-
ble. Some animals blend in with surroundings to escape visual detection, while others are
brightly coloured to attract mates or warn aggressors. Everywhere in the natural world, animals
and plants make use of vision for their daily survival. The reason for the heavy reliance on eye-
sight in the animal world is simple, vision is by far the best tactical sense available. To survive
in the wild, animals must be able to move rapidly. Hearing and smell provide warning regard-
ing the presence of other animals, yet only a small number of animals such as bats have devel-
oped these senses sufficiently to be used to run away from predators, or chase down prey. For

the majority of animals, only vision enables efficient rapid movements.

Humans rely on vision to a much greater extent than most other animals. Unlike the major-
ity of creatures we see in three dimensions with high resolution and colour. In humans the
senses of smell and hearing have taken second place to vision. Humans have more facial mus-
cles then any other animal, because in our society facial expression is used by each of us as the
primary indicator of the emotional states of other humans, rather than the scent signals used by

many mammals. For this reason it is not surprising that we naturally desire to give our



machines and computers the ability to see. Since the human world revolves around visual stim-
uli, machines will never be able to fully interact with humans without being able to process

visual information.

However the task is not simple, the human visual system is the product of billions of years
of evolution and is naturally highly complex. To give machines some of the abilities that we

take for granted is the subject of intensive on-going research.

This thesis is concerned with one of the primary visual information processing problems,
handling degraded images. Images are often recorded under a wide variety of circumstances.
As imaging technology is rapidly advancing, our interest in recording unusual or irreproduci-
ble phenomena is increasing as well. We often push imaging technology to its very limits. For

this reason we will always have to handle images suffering from some form of degradation.

Since our imaging technology is not perfect, every recorded image is a degraded image in
some sense. Every imaging system has a limit to its available resolution and the speed at which
images can be recorded. Often the problems of finite resolution and speed are not crucial to the
applications of the images produced, but there are always cases where this is not so. There
exists a large number of possible degradations that an image can suffer. Common degradations
are blurring, motion and noise. Blurring can be caused when an object in the image is outside
the cameras depth of field sometime during the exposure. For example, a foreground tree might
be blurred when we have set up a camera with a telephoto lens to take a photograph of a moun-
tain. A blurred object loses some small scale detail and the blurring process can be modelled as
if high frequency components have been attenuated in some manner in the image [1,2]. If an

Imaging system internally attenuates the high frequency components in the image, the result



will again appear blurry, despite the fact that all objects in the image were in the camera’s field
of view. Another commonly encountered image degradation is motion blur. Motion blur can be
caused when a object moves relative to the camera during an exposure. Such as a car driving
along a highway in an image. In the resultant image, the object appears to be smeared in one
direction. Motion blur can also result when the camera moves during the exposure. Noise is
generally a distortion due to the imaging system rather than the scene recorded. Noise results
in random variations to pixel values in the image. This could be caused by the imaging system
itself, or the recording or transmission medium. Sometimes the definitions are not clear such as
in the case where an image is distorted by atmospheric turbulence, such as “heat haze”. In this
case, the image appears blurry due to the fact that the atmospheric distortion has caused sec-
tions of the object to be imaged to move about randomly. This distortion could be described as
“random motion blur”, but can often be modelled as a standard blurring process. Some types of
image distortions, such as certain types of atmospheric degradations, [3-7], can be best
described as distortions in the phase of the signal. Whatever the degrading process, image dis-

tortions can fall into two categories [1, 2].

» Some distortions may be described as spatially invariant or space invariant. In a space invar-
iant distortion all pixels have suffered the same form of distortion. This is generally caused
by problems with the imaging system such as distortions in optical system, global lack of

focus, or camera motion.

» General distortions are what is called spatially variant or space variant. In a space variant
distortion, the degradation suffered by a pixel in the image depends upon its location in the
image. This can be caused by internal factors, such as distortions in the optical system, or by

external factors, such as object motion.



In addition, image degradations can be described as linear or non-linear [1]. In this thesis,
we consider only those distortions which may be described by a linear model. For these distor-

tions, a suitable mathematical model is given in Chapter 2.

1.3 Classical Restoration Techniques

The previous section discussed the various types of distortion that an image may suffer. In
some cases, the image degradations encountered in everyday photography are either consid-
ered not severe enough to merit correction, or the scene imaged is not considered important
enough to have the distortions corrected. However there are many cases where this is not so.
Photographs of scientific interest taken of rare phenomena can suffer from many distortions. It
may be too expensive or impossible to duplicate the phenomena. Consider a space probe sent
to take photographs of a distant planet. If the images have become blurred or degraded by noise
during the transmission back to Earth, it may not be possible to instruct the spacecratft to take a
second image of the planet. If a security camera photographs a crime in progress, a blurry pic-
ture may be the best hope for identifying the offender. In addition, some imaging technologies
may have inherent problems. There will always be cases when the image is considered impor-

tant enough to attempt to correct the distortion.

The act of attempting to obtain the original image given the degraded image and some
knowledge of the degrading factors is known as “image restoration”. The problem of restoring
an original image, when given the degraded image, with or without knowledge of the degrading
point spread function (PSF) or degree and type of noise present is an ill-posed problem [1,8 -

10] and can be approached a number of ways such as those givenin [1, 11 - 13]. For all useful



cases a set of simultaneous equations is produced which is too large to be solved analytically.
Common approaches to this problem can be divided into two categories, inverse filtering or
transform related techniques, and algebraic techniques. An excellent review of image
restoration techniques is given by [1]. The following references also contain surveys of
restoration techniques, Katsaggelos [14], Sondhi [15], Andrews [16], Hunt [17], and Frieden

[18].

1.3.1 Transform Related Restoration Techniques

Transform related restoration techniques involve analysing the degraded image after an
appropriate transform has been applied. By acting directly on the transformed image before
applying an inverse transform, or using the transformed image information to develop an
inverse filter, an image may be partially restored. A number of transform related techniques

exist and all of the following techniques are described in [1].

A. Inverse Filter

In the fourier domain the transfer function of this filter is the inverse of the transfer function
of the distortion applied to the image. This produces a perfect restoration in the absence of noise,
but the presence of noise has very bad effects. Some ad-hoc solutions modify the filter transfer
function so that it approaches zero in regions where the noise power is greater than the signal

power.



B. Wiener Filter

This filter is better than the inverse filter in the presence of noise because iaysexi
statistical knowledge of the noise field. The transfer function is chosen to minimise the mean
square restoration error using statistical information on both the image and noise fields. Ozkan,
et al. recently examined a method of accounting for spatial and temporal correlations when

using multiframe Wiener filters to restore image sequences [19].

C. Parametric Estimation Filters

These filters are variations on the Wiener filter and are described by E.R. Cole [20]. Some

examples are:

« POWER SPECTRUM FILTER: This filter matches the power spectrum of the reconstructed
image to the original image. However, the power spectrum, unlike the fourier spectrum, is
not unique to an image. Hence this filter may result in a large mean square error, unlike the
traditional Wiener filter. A small variation in the transfer function of the power spectrum fil-

ter produces a very similar filter called the Geometrical mean filter.

e CONSTRAINED LEAST-SQUARES FILTER: This Wiener filter variation adds an extra
term to the Wiener filter transfer function in the form of a design spectral variable. This var-

iable may be used to minimise higher order derivatives of the estimate [21].

Some work has been done recently in the field of adaptive image restoration using recursive

image filters such as that presented by Erler and Jernigan [22]. Mallikarjuna and Chaparro



investigated using a composite model of an image, where the gross information had been
separated from the textural information [23]. After this had been achieved, the nonstationarities

in the mean and autocorrelation could be used to help restore the image.

D. Kalman Filter

The Kalman filter is a recursive filter for image restoration which has been examined a great
deal recently. Wu and Kundu examined a faster simpler version of this filter and modified the
filter to take account of non-gaussian noise [24]. Citrin and Azimi-Sadjadi also investigated

image restoration with the Kalman filter [25].

E. Homomorphic Filter Restoration

Another class of filters which work on the principle of transforming the degraded image
into another representation space. In theory, the new representation space may be such that the
restoration operations are more easily performed. The concept of “power spectrum equalisa-

tion” is used as a restoration criteria.

1.3.2 Algebraic Restoration Techniques

Algebraic techniques involve attempting to find a direct solution to the distortion by matrix

inversion techniques, or techniques involving an iterative method to minimise a degradation

measure.



A. Pseudoinverse Spatial Image Restoration

This set of image restoration techniques attempt to restore an image by considering the
vector space model of the image degradation and attempting to restore the image in this vector-
space domain. This involves finding an approximation to the inverse of the matrix blurring
operator which is multiplied with the column scanned image vector to produce the degraded
observed image. These blur matrices are invariably very large and it is not computationally
feasible to invert them. However it is often possible to find the inverses of the row and column
operators separately if the blur matrix has a special form and apply them sequentially to the rows
and columns of the image. This technique is known as pseudoinverse image restoration. This
technique does not take into account the effects of noise in the calculations of the pseudoinverse

and so is sensitive to noise in the image.

B. SVD Pseudoinverse Spatial Image Restoration

Using the technique of singular value decomposition (SVD), any matrix can be decomposed
into a series of eigenmatrices. By applying this technigue to decompose the blur matrix, the
resultant eigenmatrices can be used to develop an estimation technique where successive
estimations of the reconstructed image are based on the previous estimate. This method is
effective with problems of ill-conditioning, since it is possible to interactively terminate the
expansion before numerical problems result. However the presence of noise in the observed

image can often lead to numerical instability.



10

C. Wiener Estimation

In this method the noise field is modelled again as a two-dimensional random process with
a known mean and co-variance function. In addition, the ideal image is assumed to also be a
sample of a two-dimensional random process with known first and second moments. The

restoration matrix and a bias vector are found to minimise the mean square error formula.

D. Constrained Image Restoration

Previous techniques considered images only as arrays of numbers, however a restored image
is spatially smooth and strictly positive in amplitude. Often constrained restoration techniques
are based on Wiener estimation and regressional techniques. Reeves and Mesereau have
developed a method of assessing the validity of sets of constraints using cross-validation [26].
There are a great number of possible constraints which may be applied by the following

methods:

» gspecification of individual pixel values.
* ratios of values of some pixels.

o amplitude limits.

Oftena priori information is available for use as constraints, e.g. amplitude limits to fit the
image into the dynamic range of the display. It is usually better to incorporate the constraints in
the restoration process rather than to apply them to the final results. Many different constraint

parameters exist:
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» Positivity: By taking the log of an image before restoration, the resultant estimate is guaran-
teed to be strictly positive. Recently Snyder, et al. examined the restoration of images using

a positivity constraint, and proposed a method of regularising the solution [27].

» Probability Density approaches: The techniques of maximum entropy, maximum likeli-
hood, and maximum a posteriori are constraints developed to estimate a probability density
from observation of its moments. J.P. Burg’'s technique yielded a closed form solution to
this problem, however it is unstable in the presence of noise [28]. J.A. Edward and M.M.
Fitelson developed a technique based on the maximum entropy principle with a positivity
constraint [29]. P.A. Jansson, et al. and T.S. Huang, et al. have developed methods based on
amplitude constraints [30, 31]. Gokmen and Li tackled the problem of edge detection and
surface reconstruction using a smoothness constraint that varied spatially [32]. Zervakis and
Venetsanopoulos have recently examined the problem of restoring images suffering non-lin-

ear distortion using a least squares restoration measurement [33].

1.4 Emergent Restoration Techniques

A number of new restoration methodologies have developed in recent years as has interest

iIn new aspects of image restoration problems. Researchers are now becoming very interested

in the subjects of spatially variant restoration, adaptive restoration, blind restoration, and col-

our restoration.

1.4.1 Neural Network Approach

In this approach the image is restored by the minimisation of a cost function. However, this
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cost function optimisation is performed by using a neural network approach. In this way neural
networks can be used to implement a range of filters to an image. The iterative solution of the
minimisation approach to image restoration is very amendable to neural network implementa-
tion. The main reason is that the learning concept associated with neural networks brings truly
adaptive processing to restoration so that such iterative techniques are not just efficient, but
produce high quality results. Additional benefits offered by neural networks are their extremely
parallel nature [34]. Zhou, et al. proposed a Hopfield neural network approach to constrained
mean square error restoration [35]. The network was further optimised by Paik and Katsagge-
los [36]. liguni, Sakai and Tokumaru developed several new learning algorithms for a multilay-
ered neural network based on the Extended Kalman filter [37]. Steriti and Fiddy compared the
Hopfield network energy minimisation approach to the singular value decomposition method
of finding a matrix inverse and found that the Hopfield method was superior [38]. The neural

network approach to image restoration will be examined more closely in Chapter 3.

1.4.2 Space Variant Methods

Most of the algorithms in Section 1.3 do not adapt easily to the case of images degraded by
spatially variant distortion. Since most degraded images in the real world suffer some form of
spatially variant degradation, recent years have seen increasing interest in this field. A number

of interesting algorithms have been developed.

Perry and Guan showed that the neural network-based algorithms could be extended to the
spatially variant case, [39], the development of which is detailed in Chapters 3 and 4. Koch, et
al. used a multiple model Extended Kalman filters (EKF) procedure to restore images with var-

lations in the blur parameters [40]. Ozkan, et al. developed a method to handle spatially variant
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blurs using the method of projection onto convex sets (POCS) [41]. Recently Sung and Choi
presented a method for restoring images suffering spatially variant blur using a self-organising
neural network (SONN) to learn the characteristics of the spatial variance [42]. Patti, et al. pro-
posed a new approach for restoring spatially variant restoration of progressive and interlaced

video [43]. Their method is based on Kalman filtering.

1.4.3 Adaptive Methods

Many image restoration methods assume that the image can be modelled by a stationary
process. This is however not a valid assumption. The local regional statistics of different
regions in the image are in general not the same. For this reason if a global regularisation is
chosen for all pixels in the image, edges will invariably be smoothed in order to increase noise
suppression. The restoration quality is sensitive to the value of the regularisation term. If the
regularisation term is weighted too weak in the error measure, the resultant restored image will
contain noise artifacts. On the other hand, if the regularisation term is weighted too strongly in
the error measure, the resultant restored image will be blurred. Various methods have been

employed to chose the optimal value of regularisation parameter for image restoration [44-46].

In [47], the authors used fuzzy logic control to adaptively vary the regularisation parameter
to achieve the optimal balance between removing edge ringing effects and suppressing noise
amplification. Their method was based on gray level range within the neighbourhood of each
pixel and was particularly tailored for gamma camera images where Poisson noise dominates.
In [48], the authors used a model-based neural network approach to adaptively vary the resto-
ration parameters. In [49], a regularisation functional was developed to vary the regularisation

parameter from iteration to iteration in a restoration algorithm. Reeves used a generalised



14

cross-validation (GCV) criterion restore images using a spatially variant regularisation term
[50]. The use of the mulitresolution nature of the wavelet transform as a basis for spatially

adaptive regularisation for restoration was also proposed [51, 52].

1.4.4 Blind Image Restoration

In this field of study, the blur degradation is not known in advance. Some surveys of blind
deconvolution methods are given by [53] and [54]. There are a number of approaches to this

problem.

One approach is to examine the image to determine the blur impulse response and noise
power. This is usually done by isolating the image of a suspected known object in the image and
observing how the object was degraded. A point source or edge in the image is often the most
useful. Noise variance can be estimated by isolating a region of relatively constant background.
Savakis and Trussell have investigated identifying the blurring function by computing the best
match between the restoration residual power spectrum and its expected value [55]. Reeves and
Mersereau used generalised cross-validation in their investigation in order to identify a blurring
function [56]. Galatsanos and Katsaggelos studied the problem of choosing the regularisation
parameter and estimating the noise variance in image restoration [57]. Pavlovic and Tekalp
recently developed a method of identifying blur based on parametric modelling of the blur in
the continuous spatial domain [58]. Trussell and Fogel proposed a method to estimate and
restore spatially variant motion blurs in image sequences by examining the relative motions of
different parts of the image [59]. Anarim, et al. presented a technique for the identification of

blur parameters using expectation maximisation (EM) [60].
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Another approach is to indirectly determine the degrading function using multiple images or

similar images:

» Temporal redundancy: in some cases such as television, we might be presented with many
frames containing the same image, in this case noise can be removed by averaging the
images. If each frame contains the same subject but different blur point spread functions,
the image can be restored by conversion to the fourier domain, taking the log of the image,

and temporal averaging [1].

» Single frame images: these images can be restored by examining ideal images with similar
content to the suspected contents of the degraded image. Stockham, et al. developed a
method whereby some of the parameters of the restoration are discovered by sectioning the
image, taking it into the Fourier domain, take the image log and averaging the results [61].
Some research has been done using statistical information about the change in blur to
develop better Wiener filtering techniques to handle this problem such as those shown in

Slepian [62], Guan and Ward [63], and Ward [64].

Sivakuma and Desai examined the problem of unknown blur functions and proposed a
multilevel perceptron approach [65]. Mesarovic, et al. proposed a two step algorithm to
simultaneously restore the image and estimate the parameters of a restoration filter by using a
hierarchical Bayesian approach [66]. Pai, Havlicek and Bovik showed that given three blurred
versions of the same image and some restrictions on the size of the original image, sufficient
conditions exist for exact multichannel blind image restoration [67]. May, et al. tackled the
problem of blind image restoration by incorporating local image characteristics as the basis for

bound constraints on individual pixels [68]. You and Kaveh considered a regularisation
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approach to joint blur identification and restoration [69]. Ayers and Dainty and Davey, et al.
have developed an iterative technique based on phase retrieval algorithms using simple inverse
filtering [70-72]. Fish, et al. adapted the Richardson-Lucy algorithm for deconvolution while
Holmes developed an algorithm based on the expectation maximisation algorithm [73-77].
Thiebaut and Conan used the error function minimisation method of Lane with the

implementation of strict constraints using a reparameterisation of the problem [78,79].

1.4.5 Colour Image Restoration

The restoration of colour images is a difficult task but a logical next step for research in the
field of image restoration. When restoring a colour image consideration must be made in
regard to the correlation between different colour planes. [80] provides a good review of cur-
rent technology and research in the field of digital colour imaging. The authors of [81]
approach this problem by decorrelating the colour planes using the Karhunen-Loeve transfor-
mation, while Galatsanos, et al. have developed a spatially adaptive filter for colour images

which utilises local within and between channel image properties [82].

1.5 Perception Motivated Restoration

In Section 1.4.3, we mentioned the problems caused by considering the image to be an
ensemble of stationary processes. Any restoration process based on this concept can only ever
produce sub-optimal results. However there is another consideration. When a restoration algo-
rithm is designed with the aim of creating an image which will be more pleasing to the human
eye, we must incorporate some kind of model of the human visual system. At the basis of most

restoration algorithms is some form of image error measure which is being minimised.
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The most common method to compare the similarity of two images is to compute their
mean square error (MSE). However the MSE relates to the power of the error signal and has
little relationship to human visual perception. An important drawback to the MSE and any cost
function which attempts to use the MSE to restore a degraded image is that the MSE treats the
image as a stationary process. All pixels are given equal priority regardless of their relevance to
human perception. This suggests that information is ignored. When restoring images for the
purpose of better clarity as perceived by humans the problem becomes acute. When humans
observe the differences between two images, they do not give much consideration to the differ-
ences in individual pixel level values. Instead humans are concerned with matching edges,
regions and textures between the two images. This is contrary to the concepts involved in the
MSE. From this it can be seen that any cost function which treats an image as a stationary

process can only produce a sub-optimal result.

Considerations regarding human perception have been examined in the past [83 - 93]. A
great deal of work has been done toward developing linear filters for the removal of noise
which incorporate some model of human perception [94 - 96]. In these works it is found that
edges have a great importance to the way humans perceive images. Ran and Farvardin consid-
ered psychovisual properties of the human visual system in order to develop a technique to
decompose an image into smooth regions, textured regions and regions containing what are
described as “strong edges” [97]. This was done with a view primarily toward image compres-
sion. Similarly Bellini, Leone and Rovatti developed a fuzzy perceptual classifier to create
what they described as a “pixel relevance map” to aid in image compression [98]. Hontsch and
Karam developed a perceptual model for image compression which decomposed the image

into components with varying frequency and orientation [99]. A perceptual distortion measure
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was then described which used a number of experimentally derived constants. Huang and
Coyle considered the use of stack filters for image restoration [100]. They used the concept of
a weighted mean absolute error (WMAE), where the weights were determined by the perceptu-
ally motivated visible differences predictor (VDP) described in [101]. In the past, research has
for the most part been concerned with the preservation of edges and the reduction of ringing
effects caused by low-pass filters and the models presented to take account of human percep-
tion are often complicated. In this work we contend that the manner in which smooth regions
are restored is of equal importance to the manner in which edges are restored. This is due to the
fact that noise in an image is much more noticable in smooth regions, which has a important
part to play in whether an image is perceived as “good” or “bad”. We will show in this thesis
that complicated models of human visual perception may not be needed to produce improved
restoration algorithms. Simple functions which incorporate some psychovisual properties of
the human visual system can be easily incorporated into existing algorithms and can provide

improvements over current technigues.

1.6 Overview of This Thesis

This thesis consists of 6 chapters. The first chapter provides material of an introductory
nature to describe the basic concepts and current state of the art in the field of image restora-
tion. Chapter 2 describes briefly the contributions of this thesis to the field of image restora-
tion, gives a mathematical description of the restoration problem from the Hopfield neural
network perspective, and presents a novel image error measure which is computationally inex-
pensive and yet powerful. Chapter 3 describes current algorithms based on this method. In
addition a new algorithm is presented which is an improvement on the previous algorithms and

the algorithm is extended to handle spatially variant degradations. A number of experiments
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are performed to show the improvement in performance resulting from the use of the new algo-
rithm. Chapter 4 extends the algorithm presented in Chapter 3 to implement adaptive constraint
restoration methods for both spatially invariant and spatially variant degradations. A method of
constraint selection is presented using concepts of human perception and experiments are per-
formed which compare the algorithms performance to other algorithms in terms of restoration
quality, efficiency, and semi-blind deconvolution performance. Chapter 5 utilises the image
error measure presented in Chapter 2 to introduce novel restoration algorithms. Experiments
are performed on the new algorithms to show an improvement in performance when compared

to previous algorithms. Chapter 6 summarises this thesis.

1.7 Summary

This chapter has presented some introductory material which is important for understanding
the subsequent chapters of this thesis. Firstly, the importance of image processing and the
nature of image degradations was described. Then the concepts involved in image restoration
are detailed and a short survey of classical image restoration methods is presented. These
methods are classified into non-iterative transform based techniques and algebraic techniques.
Following this, emergent image restoration research is described. This includes research into
the use of neural networks for cost function optimisation and current investigations in the prob-
lems of spatially variant, adaptive, semi-blind and colour restoration. Section 1.5 described the
importance of incorporating concepts from human visual perception into the field of image res-
toration, and detailed current research into the perception based image processing and com-

pression techniques.
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Chapter 2: Contributions of the Thesis

2.1 Introduction

In this thesis, the author has made a number of developments in the field of image restora-
tion which, after extensive literary search, are believed to be novel. The author investigated the
concept of using a Hopfield-based neural network to restore images which have suffered some
form of degradation and additive noise. Previous algorithms described in the literature have
been enhanced and their functionality expanded. In particular, the author has made three con-

tributions to image restoration:

1. A fast algorithm has been developed which is an improvement on previous algorithms to
decrease restoration time markedly without any reduction in restoration quality. The algo-
rithm is extended to restore images suffering spatially variant distortion. The author shows
that using the method described in this thesis, spatially variant images can be restored with

only a little increase in restoration time.

2. The concept of adaptive constraint parameter (ACP) restoration is introduced in order to
cope with different statistical properties in different parts of an image. The author investi-
gates two methods of allocating each pixel in the image a value of constraint parameter.
Gradient descent based methods are shown to be unacceptable in this case and the author
has developed a method to assign each pixel a constraint parameter value using simple prin-

ciples of human visual perception.
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3. Continuing on the subject of using human visual criteria to judge images, the author has
proposed a novel, simple image error measure which uses concepts of human perception to
judge the difference between two images, without being computationally expensive. This
Image error measure is then used as the basis for a family of new restoration cost functions.
The author has developed two new restoration algorithms which are designed to be fast and

computationally inexpensive, and yet be an improvement on traditional algorithms.

This chapter briefly details the contributions of this thesis to the field of image restoration.
Subsequent chapters will elaborate upon these contributions and provide experimental and
mathematical justifications. In order to put things into perspective, Section 2.2 briefly
describes linear image restoration and the basic neural network formulation of the problem.
Section 2.3 details the improvement the author has made to increase the speed of the basic neu-
ral network algorithm, while Section 2.4 details the expansion of the restoration algorithm to
the case of spatially variant distortion. Section 2.5 describes the algorithm developed by the
author to implement adaptive constraint parameter restoration. Section 2.6 presents the novel
image error measure developed by the author and shows how this error measure is a closer
match to human concepts of image quality when compared to the MSE. Section 2.7 details new
algorithms developed by the author, which use the Hopfield neural network model as a base for
the minimisation of new non-linear restoration cost functions incorporating the error measure

developed in Section 2.6. Section 2.8 summarises this chapter.

2.2 Image Restoration using a Neural Network

To restore an image degraded by a linear distortion, a restoration cost function is developed.

The cost function is created using knowledge about the degraded image and an estimate of the
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degradation, and possibly noise, suffered by the original image to produce the degraded image.
The free variable in the cost function is an image, often denotefl by , and the cost function is

designed such that thé  which minimises the cost function is an estimate of the original
image. A common class of cost functions is based on the mean square error (MSE) between the

original image and the estimate image. Cost functions based on the MSE often have a quad-

ratic nature.

2.2.1 Problem Formulation

All linear image degradations can be described by their impulse response. Consider a PSF
of sizeP by P acting on an image of siz2é by M. In the case of a two-dimensional image, the
PSF may be written ak(x, y) . When noise is also present in the degraded image, as is often

the case in real world applications, the image degradation model in the discrete case becomes

[2]:

N M
g(x y) = > > fa, B)h(x y:a, B) +n(x ) (2.1)
a B
where f(x,y) andg(x, y) are the original and degraded images respectivelyn@nd)) is
the additive noise component of the degraded imagéy (K y) is a linear function then by

lexicographically orderingg(x, y) ,f(x,y) ana(x y) into column vectors of d\d, we

may restate (2.1) as a matrix operation [1], [2]:

g = Hf +n (2-2)
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whereg andf are the lexicographically organised degraded and original image vectsride

additive noise component ahtlis a matrix operator whose elements are an arrangement of the
elements ofh(x y) such that the matrix multiplicationfafith H performs the same opera-
tion as convolving(x, y) with h(x, y) . In generalH may take any form. However ih(x, Yy)

is spatially invariant withP « min(N, M) thenh(x y,a, ) becomes(x—a,y—[) in
(2.1) andH takes the form of a block-Toeplitz matrix. Hi(x, y)  has a simple form of space

variance theid may have a simple form, resembling a block-Toeplitz matrix.

In this work, the degradation measure we consider minimising starts with the constrained

least square error measure [2]:

_ L iz Linile
= Ug-nil?+ ol 23

wheref is the restored image estimatés a constant, anD is a smoothness constraint oper-
ator. SinceH is often a low pass distortiom will be chosen to be a high pass filter. The second
term in (2.3) is the regularisation term. The more noise that exists in an image, the greater the
second term in (2.3) should be, hence minimising the second term will involve reducing the

noise in the image at the expense of restoration sharpness.

Choosingh becomes an important consideration when restoring an image. Too great a value
of A will oversmooth the restored image, whereas too small a valdendlf not properly sup-

press noise.
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2.2.2 Neural Network Restoration

Neural network image restoration approaches are designed to minimise a quadratic
programming problem [35 - 39]. The general form of a quadratic programming problem can

be stated as:

Minimise the energy function associated with a neural network given by:
f+c (2.4)

comparing this with (2.3, b, andc are functions o, D, A, andn, and other problem related
constraints. In terms of a neural network energy function, itheh(element oW corresponds
to the interconnection strength between neurons (pixealslj in the network. Similarly, vector

b corresponds to the bias input to each neuron.

Equating the formula for the energy of a neural network with equation (2.3), the bias inputs
and interconnection strengths can be found such that as the neural network minimises its energy
function, the image will be restored. From [35], setting MN, the interconnection strengths

and bias inputs were shown to be:

L
Wi = = 3 hyhy =AY dydy, (2.5)
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L
by = S gphy (2.6)
p=1

wherewj; is the interconnection strength between pixedsidj, andb; is the bias input to neu-
ron (pixel)i. In addition,hy; is the (,j)th element of matrit from equation (2.2) andj is the
(1,))th element of matribD from equation (2.3). The full derivation of (2.5) and (2.6) is given in

Appendix A. In this thesis, we consider a sequential neural network algorithm in which each

pixel's energy contribution is reduced individually during each iteration.
2.3 Improvement on the Basic Neural Network Algorithm

In Chapter 3, the basic neural network algorithms for the restoration of images are exam-
ined. The author then builds on these previously described algorithms to create a new faster
algorithm. This algorithm produces identical results to the previous algorithms, yet takes much

less time to restore an image. Briefly, this contribution may be summarised as follows:

Equating the formula for the energy of a neural network with quadratic cost function the bias
inputs and interconnection strengths can be found such that as the neural network minimises its

energy function, the image will be restored. In previous algorithms the image was restored by

~ u.
calculating the input to the neuron, and then updating the neuron value in unitsteps, ol ,

|uil
wherey; is the input to the current neuron, until the energy contribution of the current neuron

to the energy function is minimised.

The author found that a much faster way to minimise the energy contribution of the current
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A u
neuron was to allow the neuron to take a single larger stépfgf = W—' . This allows the time
i

taken during each iteration to be greatly reduced without any reduction in restoration quality.

The algorithm may be further enhanced based on the fact any neuron in the network is con-
nected by non-zero weights to only a finite neighbourhood of pixels centred on it. The size of
this neighbourhood and the weights between the centre pixel and its neighbours do not vary
with the current neuron’s position in the network, (as long as that neuron is sufficiently far
from the edges of the image and the degradation is space invariant). This means that, as long as
boundary regions of the image are avoided, the elir@atrix can be stored as a single small
“weighting mask”. This greatly reduces computational complexity and storage space required

by the algorithm on a computer.
2.4 Space Variant Processing

In the previous section, the analysis of the restoration procedure did not assume that the
degradation was space invariant. In fact the degradation may be space variant and the network
will still converge to the correct result. Many image restoration methods have difficulties being
extended to the space variant case, however in Chapter 3 the author shows that the fast algo-
rithm presented in that chapter can easily be extended to the space variant case. A space variant
distortion will not allow one weighting mask to be used for the entire image. In the general
case, each pixel would require an individual weighting mask. However such an array of
weighting masks would not contain any zero elements and hence require much less storage

space than th&/ matrix.
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The author investigated a simple case of space variant distortion. The case examined in
Chapter 3 is one where each row of the image is degraded by a different PSF, but the PSFs
cycle though a closed set of available PSFs. In that chapter, the author showed Yhatiébr
distortions, only -2 weighting masks were required. This method requires substantially less
storage than is needed for computing the enfifenatrix. The author shows that an image
degraded by this process can be restored exactly with a restoration time comparable to the

space invariant case.

2.5 Adaptive Regularisation Methodologies

In Chapter 4, the author proposed a restoration algorithm, which implements adaptive con-
straint processing (ACP). To utilise an adaptive regularisation parameter in the restoration
method means that each pixel may have a different value of regularisation parameter. The

intention is to suppress noise more strongly in regions where errors are most noticable.

The author considered methods for assigning each pixel a constraint value and showed that
a gradient descent based method did not work in this case. Since the author is particularly con-
cerned with restoring images for the purpose of human visual evaluation, the use of concepts of
human perception to select constraint values for each pixel was considered. By considering
how simple local regional statistics effect the human ability to detect noise in a restored image,
the author presents a technique for selecting regularisation parameter values by relating the
value of the constraint to a pixel’s local variance by a log-linear relationship. This technique is
shown to produce visually superior restored images under a range of conditions. Computation-
ally, the author shows that by creating a set of weighting masks where each mask implements a

different constraint parameter value, adaptive constraint restoration can be achieved with very
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little additional restoration time.

In addition, the author shows in Chapter 4 how the adaptive constraint methodology can
prove very useful in the difficult field of semi-blind image restoration. Semi-blind image resto-
ration is the problem of restoring an image when some aspects of the degrading function are
unknown. The author shows that the statistics-based adaptive regularisation technique can
compensate for uncertainty in the degrading function. In particular, if the function is space var-
iant in an unknown manner, the adaptive technique the author presents in Chapter 4 is shown to
produce a superior restoration compared to a non-adaptive method even when the parameters

of the degradation are known.

2.6 New Error Measure

Another major contribution of this thesis is a novel image error measure which is both sim-
ple and powerful. Often an image is filtered for the purpose of greater visual quality or clarity
as perceived by humans, such as an old photograph or a television transmission [1]. In these
cases an enhancement algorithm is attempting to produce an image which human beings will
find visually pleasing. For an enhancement algorithm to produce an image which humans find
pleasant it should possess a way of improving the image’s quality which takes into account
human visual preferences. This section will briefly describe a perception based error measure

for this purpose.

Many classical image restoration cost functions are based on the mean square error (MSE):
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MSE = ¥=0v=0 2.7
S VIN (2.7)

where f(x, y) Iis the restored image of interest.

This error measure compares images on a pixel to pixel basis, and in effect makes a state-
ment about the power of the noise signal created by the subtraction of the two images to be
compared. This kind of information is mathematically useful. However cost functions based on
the MSE favour slow variations in the image and bear very little relationship to the manner in
which humans view the differences between two images. Humans tend to pay more attention to
sharp differences in intensity within an image [92-94], for example edges or noise in back-
ground regions. Hence an error measure should take into account the concept that low variance
regions in the original image should remain low variance regions in the enhanced image, and
high variance regions should likewise remain high variance regions. This implies that noise
should be kept at a minimum in background regions, where it is most noticable, but noise sup-
pression should not be as important in highly textured regions where image sharpness should
be the dominate consideration. These considerations are especially important in the field of
colour image restoration. Humans appear to be much more sensitive to slight colour variations

than they are to variations in brightness.

In view of the above problems with classical error measures such as the MSE, the author
investigated a different error measure which is based on the comparison of local statistics, local
standard deviation mean square error (LSMSE). The LSMSE is calculated by comparing the

local standard deviations in the neighbourhood of each pixel in the images we wish to com-
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pare. The mean square error between the two standard deviations gives an indication of the
degree of similarity between the two images. This error measure requires matching between
the high and low variance regions of the image, which is more intuitive in terms of human vis-

ual perception.

The local standard deviation in tiAeby A neighbourhood of pixelx y) in imagef is given

by:
X+é y+ =
2 2 FGL 1) =M A(F (X 2
kM= | S 3 (f (i, j) é((xy») 2.8)
i=x-5 j=y-§ A
2 2

where the local mean of tiieby A neighbourhood of pixek( y) in imagef is given by:

2 2 .
Ma(f(9)) = > > fg?) (2.9)
i=x-5 j=y-5

Using the above conventions, we can define the LSMSE betweeNxWMoimagesf andg

as:

N-1M-1 2
LSMSE,(f, g) = Z Z (aa(f(X Y))N—I\(/TA(Q(X, ) (2.10)

x=0y=0

The LSMSE in effect requires the matching of homogeneous statistical regions between the
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two images to be compared. Hence background regions should remain as noise free as possible
and highly textured regions should not be smoothed by the restoration procedure. An alternate
definition of this error measure is given by the comparisons of local variances rather than local

standard deviations:

The local variance in af by A neighbourhood of pixek( y) in imagef is given by:

A A
+Z +=
X > y

2 (i, 1) = MA(F(x W)

2
i:X_é': _é A
2 17Y73

aa(f(x y) =

(2.11)

where M ,(f (X, y)) is given by (2.9).

Using the above conventions, we define the LVMSE betweelNivbimaged andg as:

N-1M-1

LVMSE,(f.9) = 5 5
x=0y=0

(G2(F(% ) = 02(g0% V)))
NM

(2.12)

LVMSE stands for local variance mean square error (LVMSE). Although the LSMSE and
the LVMSE are related, we may wish to use one or the other depending on the circumstances.
The LSMSE is best for measuring the error between two images since its range of possible val-
ues is not as great as the LVMSE. The LVMSE on the other hand is easier and faster to calcu-
late since the square root calculation needed to compute the standard deviations is absent. The

utilisation of the LVMSE and the LSMSE should produce similar results.
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Figure 2.1 illustrates the connection between the LSMSE and human perception. Figures
2.1a, 2.1b and 2.1c show three regions of an image. Figure 2.1a shows a smooth region, Figure
2.1b shows an image edge and Figure 2.1c shows a high texture region within the image. Fig-
ures 2.1d, 2.1e and 2.1f show, respectively, the smooth, edge and texture regions degraded by
Gaussian noise of standard deviation 17.12. It is clear from these figures that noise is most not-
icable in Figure 2.1d, where image detail is low. In Figure 2.1e, noise is again noticable in the
smooth regions of the image, but less noticable around the edge. In Figure 2.1f, noise is the
least noticable due to the presence of texture. This corresponds with the arguments above
regarding the manner in which human perceive noise in images. For each pair of images, the
SNR, the LSMSE, and the LVMSE were computed by comparing the original and noisy

images. The following table illustrates the results.

Table 2.1: Comparison of the SNR, LSMSE and the LVMSE for various image regions.

Image Region SNR (dB) LSMSE LVMSE
Smooth Region 2.54 114.66 79162
Edge Region 10.57 87.49 72650
Textured Region 7.98 18.25 70775

From Table 2.1 we can see that the SNR fails to correspond to human perception, stating
that the image least corrupted is the edge image. The LSMSE on the other hand clearly shows
that noise has the greatest effect on the smooth image and is least noticable on the highly tex-
tured image. This matches human observation. The LVMSE also follows the same trend as the

LSMSE, however the larger values of the LVMSE are less desirable for comparing images than
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the LSMSE.

Figure 2.1: (a) Smooth region of flower image. (b) Edge region of flower image. (c) Textured
region of flower image. (d) Image 2.1a with noise added. (e) Image 2.1b with noise added. (f)

Image 2.1c with noise added.

2.7 LSMSE-based Cost Functions for Image Restoration

In Chapter 5, the author uses the image comparison measure introduced in the previous sec-

tion to develope new restoration algorithms. Two image restoration algorithms are introduced.
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These algorithms originated from the constrained least square error cost function, but move
away from the Hopfield neural network model even further than the adaptive algorithm pre-

sented in Chapter 4.
2.7.1 LVMSE Modified Cost Function

The first novel algorithm in Chapter 5 is based on enhancing the basic constrained least
square error cost function to include a term which minimises LVMSE. The modified cost func-

tion is given by:

N-1M—-1, 2,% 2 2
1 s A2l (02(F (% y)) - o2(g(x y))O)
£ = Yo-nilz+dlolP+ey 5 O

x=0y=0

(2.13)

where the first two terms are the standard constrained least square error cost function, which

was explained in Section Z.bi(f(x, y)) is the variance of the local region surrounding

pixel (x,y) in the image estimate an(dri(g(x, y))D is the variance of the local region sur-

rounding pixel &,y) in the degraded image scaled to predict the variance in the original image.

In Chapter 5, the author also presents a method for estimatﬁ‘(gg(x, y))D . In general, if we

consider an image degraded by a linear process, then we find that a useful approximation is:

a9 ) = K(x Y)(0a(a0x ) —I(% ) (2.14)

whereJ(x, y) is a function of the noise added to the degraded image at poigtdnd K (X, y)
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is a function of the degrading point spread function at poing). The author has developed an
algorithm to minimise (2.13) by using the components which are similar to the previous neural

network model to extend the algorithm presented in Chapter 3.
2.7.2 Log LVR Modified Cost Function

After analysing the nature of (2.13), the author presents an alternative version of the new
algorithm in Chapter 5. This new version performs similarly to the algorithm based on (2.13),

yet in some respects is an improvement.

The second version of the LSMSE-based cost function suggested by the author is:

) -
0 oa(f(x y)) [f

N-1M-1[] ;2
_1 AR E A(9(%,Y))
e = Ugnil+dloifzeey 3 — oA

x=0y=0

(2.15)

where oi( f (x,y)) and oi(g(x, y))D are as defined in the previous section. As with (2.13),

an algorithm is presented in Chapter 5 to minimise (2.15).

The new algorithms have some of the adaptive properties of the algorithm in Chapter 4,
with greater ease of use and robustness. The performances of the new algorithms are shown to
be superior to previous algorithms when applied to grayscale and especially colour images in
highly noisy environments. In addition the author shows that the LSMSE-based algorithms are

much more fault tolerant than previous algorithms in the presence of network errors.
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2.8 Summary

This chapter was written to clearly and briefly describe the contributions to the field of
Image restoration presented in this thesis. The contributions include faster restoration algo-
rithms using neural networks with respect to previous neural network restoration algorithms,
adaptive restoration techniques, and perception-based error measurement and applications in
restoration. The contributions mentioned in this chapter will be more clearly described and jus-
tified (experimentally and mathematically) in subsequent chapters. In subsequent chapters, the
above contributions of this thesis will be examined against both classical approaches to image

processing and previous neural network approaches described in the literature.

The author trusts that these contributions are novel and non-trivial.
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Chapter 3: Basic Neural Network Algorithm

3.1 Introduction

In this chapter, we investigate the basic neural network approach to the problem of restoring
an image degraded by some function in the presence of noise. In Chapter 2, the image restora-
tion problem was stated and the least mean square error cost function for image restoration was
described. In addition, the basic neural network model was given and it was shown how the
weights and bias inputs of the neurons in the network may be assigned to solve the image res-
toration problem. This chapter builds on the material presented in Chapter 2 to examine the
image restoration algorithms which result from these fundamental concepts. In Section 3.2, we
analyse some previous neural network algorithms developed in the literature to solve this prob-
lem and detail the advantages and disadvantages of each. In Section 3.3, a new algorithm is
presented with greatly improved performance when compared to the previous algorithms. This
algorithm will form the basis for all subsequent algorithms in this thesis. It will then be shown
that the introduced algorithm will converge on a solution in a finite number of iterations and
we will analyse some important properties of the introduced algorithm in Section 3.4. Section
3.5 expands the algorithm to handle space variant degradations and Section 3.6 details imple-
mentation considerations. Some experimental results are presented in Section 3.7. Section 3.8

summarises this chapter.
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3.2 Neural Network Restoration Algorithms in the Literature

In the network described by Zhou, et al. for an image vidth 1 gray levels, each pixel is

represented b+ 1 neurons [35]. Each neuron can have a value of O or 1. The valuglof the

pixel is then given by:

fi= 3 vik (3.1)

wherey;  is the state of th&th neuron of theth pixel. Each neuron is visited sequentially and

has its input calculated according to:

L
U= b+ 5w (3.2)
=1

wherey; is the input to neuron and ?j is the state of thj¢gh neuron. Based o, the neuron’s

state is updated according to the following rule:

Afi = G(u)
where
U1,u>0
G(u) =gou=0 (3.3)

%—1,u<0
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The change in energy resulting from a change in neuron statg, of is given by:
1 ~\2 -

If AE <0, then the neuron’s state is updated. This algorithm may be summarised as:

Algorithm 3.1:
repeat
Fori=1,....Ldo
Fork=0, .... Sdo

L
i=1

Afi = G(u)
%—1,u<0
where G(u =0 Ou=0
3 1,u>0

1 niy2 :

A

if AE<O, thenv; , = v;  +Af;



t=t+1

}
until (Fi®) = fit-1)0i=1, ...,

40

In the paper by Paik and Katsaggelos, Algorithm 3.1 was altered to remove the step where

the energy reduction is checked following the calculation\df

[36]. Paik and Katsaggelos

presented an algorithm which made use of a more complicated neuron. In their model, each

pixel was represented by a single neuron which takes discrete values betwee®, Gadds

capable of updating its value byl

method for calculatings f; was also presented:

Af = G(u)
where
D —1, U<—9|
0
Giuy=0 0, -6 <=u<
E 1, u>6,
whereb; = —1'W-- >0
| 2 I

This algorithm may be presented as:

, or keeping the same value during a single step. A new

(3.5)
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Algorithm 3.2:

repeat

{
Fori=1,...Ldo
{

L
i=1

Af; = Gi(w)
where

-1, u<-6
0, -6,su<b,
1, u>6,

Gi(u) =

[ .

where®; = —%Wii >0

fi(t+1) = K(f (1) +Af)

where
E 0,u<0
K(u) = 0 u0<us<sS
Hsuzs
}
t=t+1

}
until (Fi®) = fit-1)0i=1, ..., 1

Algorithm 3.2 makes no specific check that energy has decreased during each iteration and
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so in [36] they proved that Algorithm 3.2 would result in a decrease of the energy function at
each iteration. Note that in Algorithm 3.2, each pixel only changes its valuglby during an
iteration. In Algorithm 3.1, the pixel’s value would change by any amount between @and
during an iteration since each pixel was representefl ¥ neurons. Although Algorithm 3.2

is much more efficient in terms of the number of neurons used, it may take many more itera-
tions than Algorithm 3.1 to converge to a solution (although the time taken may still be faster
than Algorithm 3.1). If we consider that the value of each pixel represents a dimensiorLof the
dimensional energy function to be minimised, then we can see that Algorithms 3.1 and 3.2
have slightly different approaches to finding a local minimum. In Algorithm 3.1, the energy
function is minimised along each dimension in turn. The image can be considered to represent
a single point in the solution space. In Algorithm 3.1, this point moves to the function mini-
mum along each of the axes of the problem until it eventually reaches a local minimum of
the energy function. In Algorithm 3.2, for each pixel, the point takes a unit step in a direction
that reduces the network energy along that dimension. If the weight matrix is negative definite
(-W is positive definite), however, regardless of how these algorithms work, the end results
must be similar (if each algorithm ends at a minimum). The reason for this is that when the
weight matrix is negative definite, there are no local minima, except for the global minimum.
That is, the function has only one minimum. In this case the méittiz invertible and taking

(2.4) we see that:

o - _wi-b (3.6)

Hence the solution is given by:

fH=—wb (3.7)
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(assuming thaw ™ exists).

The Yis the only minimum and the only stationary point of this cost function, so we can

state that ifW is negative definite and Algorithm 3.1 and Algorithm 3.2 both terminate at a

local minimum, the resultant image must be close i for both algorithms. Algorithm 3.1
approaches the minimum in a zig-zag fashion, whereas Algorithm 3.2 approaches the mini-
mum with a smooth curve. W is not negative definite then local minima may exist and Algo-
rithms 3.1 and 3.2 may not produce the same results. If Algorithm 3.2 is altered so that instead
of changing each neuron’s value Bt before going to the next neuron, the current neuron is
iterated until the input to that neuron is zero, then Algorithms 3.1 and 3.2 will produce identi-

cal results. Each algorithm will terminate in the same local minimum.

3.3 The Proposed Algorithm

Although Algorithm 3.2 is an improvement on Algorithm 3.1, it is not optimal. From itera-
tion to iteration, neurons often oscillate about their final value, and during the initial iterations
of Algorithm 3.1 a neuron may require 100 or more state changes in order to minimise its
energy contribution. A faster method to minimise the energy contribution of each neuron being
considered is suggested by examination of the mathematics involved. For an image where each
pixel is able to take on any discrete integer intensity between (Gawe assign each pixel in

the image to a single neuron able to take any discrete value betweerS)Zinde the formula

for the energy reduction resulting from a change in neuron dtéte is a simple quadratic, itis

possible to solve for thaf; which produces the maximum energy reduction. Theorem 3.1

states that this approach will result in the same energy minimum as Algorithm 3.1 and hence
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the same final state of each neuron after it is updated.

Theorem 3.1 For each neuron i in the network during each iteration, there exists a state

change&fi’ such that the energy contribution of neuron i is minimised.

Proof:

Let u; be the input to neurarwhich is calculated by:

L
ji=1

Let AE be the resulting energy change duAifq

AE = —%SNH(Aﬂ)Z—uiAﬂ (3.8)

Differentiating AE with respect té f i gives us:

9 AE = —w,Af —u

of;

The value ofA fi which minimises (3.8) is given by:



Therefore
~ -u,
Af' = —
Wi
QED.

Based on theorem 3.1, the proposed algorithm is presented below.

Algorithm 3.3.
repeat
{
fori=1, ..... L do
{
L
i=1
Afi = G(u)
E -1,u<0
where G(u =0 Ou=0
E L,u>0

BEy = - B af)’ - uaf,

45

(3.9)

(3.10)
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~ —U
if AE,;<O0 thenAf," = v
i

fi(t+1) = K(f,(t) +Af")

where
S o,u<0
K(u) =0 u0<u<sS
Hsuxs
}
t=t+1
}

until (Fi®) = fit-1)0i=1, ...,

Each neuron is visited sequentially and has its input calculated. Using the input value, the

state change needed to minimise the neuron’s energy contribution to the network is calculated.
Note that sinceAf; 0{-1,0, 1} andf; ankf;’ must be the same sign,asep (3.10) is
equivalent to checking that at least a unit step can be taken which will reduce the energy of the

network. IfAE.,.< 0, then

—%Wii uiAﬂ <0
1

—Wi —|u;| <0

O—w;; < 2|y

Substituting this result into the formula F;’  we get:
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A —Ui
Afi' = —

Wi

U _ Lt
TR

SinceA fi’ and\ fi have the same sign Arigl = +1 we obtain:

> = (3.11)

In this wayA ﬂ’ will always be large enough to alter the neuron’s discrete value.

Algorithm 3.3 makes use of concepts from both Algorithm 3.1 and Algorithm 3.2. Like
Algorithm 3.1 the energy function is minimised in solution space along each dimension in turn
until a local minimum is reached. In addition, the efficient use of space by Algorithm 3.2 is uti-
lised. Note that the above algorithm is much faster than either Algorithm 3.1 or 3.2 due to the
fact that this algorithm minimises the current neuron’s energy contribution in one step rather

than through numerous iterations as did Algorithms 3.1 and 3.2.

3.4 Analysis

In the paper by Paik and Katsaggelos, it was shown that Algorithm 3.2 would converge to a
fixed point after a finite number of iterations and that the fixed point would be a local mini-
mum of E in (2.3) in the case of a sequential algorithm [36]. Here we will show that Algorithm

3.3 will also converge to a fixed point which is a local minimurk of (2.3).

Algorithm 3.2 makes no specific check that energy has decreased during each iteration and

so in [36] they proved that Algorithm 3.2 would result in a decrease of the energy function at
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each iteration. Algorithm 3.3 however changes the current neurons state if and only if an

energy reduction will occur addfi| = 1 . For this reason Algorithm 3.3 can only reduce the

energy function and never increase it. From this we can observe that each iteration of Algo-
rithm 3.3 brings the network closer to a local minimum of the function. The next question is
“Does Algorithm 3.3 ever reach a local minimum and terminate?”. Note that the gradient of

the function is given by:

— = Wf—-b == (312)

whereu is a vector whoséh element contains the current input to neuroNote that during

any iterationu will always point in a direction that reduces the energy functior. # Tt then
for at least one neuron a change in state must be possible which would reduce the energy func-

tion. For this neurony; # 0 . The algorithm will then compute the change in state for this neu-

> % the neuron’s state will be changed. In this case

ron to move closer to the solution. |Idsfi’

we assume that no boundary conditions have been activated to stop mdérownchanging
value. Due to the discrete nature of the neuron states we see that the step size taken by the net-
work is never less than 1.

To re-state the facts obtained so far:

* During each iteration Algorithm 3.3 will reduce the energy of the network.

* A reduction in the energy of the network implies that the network has moved closer to a
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local minimum of the energy function.

» There is a lower bound to the step size taken by the network and a finite range of neuron
states. Since the network is restricted to changing state only when an energy reduction is

possible, the network cannot iterate forever.

From these observations we can conclude that the network reaches a local minimum in a
finite number of iterations, and that the solution given by Algorithm 3.3 will be close to the
solution given by Algorithm 3.1 for the same problem. The reason why algorithms 3.1 and 3.3
must approach the same local minimum is the fact that they operate on the pixel in an identical
manner. In Algorithm 3.1 each of tf&+ 1 neurons associated with pixe$ adjusted to reduce
its contribution to the energy function. The sum of the contributions ofthé. neurons asso-
ciated with pixeli in Algorithm 3.1 equals the final grayscale value of that neuron. Hence dur-
ing any iteration of Algorithm 3.1 the current pixel can change to any allowable value. There
areS+ 1 possible output values of pixeand only one of these values results when the algo-
rithm minimises the contribution of that pixel. Hence whether the pixel is representgd-ldy
neurons or just a single neuron, the output grayscale value that occurs when the energy contri-
bution of that pixel is minimised during the current iteration remains the same. Algorithms 3.1
and 3.3 both minimise the current pixels energy contribution, hence they must both produce
the same results. In practice the author has found that all three algorithms generally produce
identical results, which suggests that for reasonable values of the parametdy a single

global minimum is present.

Note that in this investigation we have not made any assumptions regarding the nature of

the weighting matrix\V, or the bias vecto). W andb determine where the solution is in the
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solution space, but as long as they are constant during the restoration procedure the algorithm
will still terminate after a finite number of iterations. This is an important result, and implies
that even if the degradation suffered by the image is space variant or if we assign a different
value ofA to each pixel in the image, the algorithm will still converge to a result. EvéM if

andb are such that the solution lies outside of the bounds on the values of the neurons, we
would still expect that there exists a point or points which mininktseithin the bounds. In
practice we would not expect the solution to lie entirely out of the range of neuron values. If
we assume that Algorithm 3.3 has terminated at a position where no boundary conditions have

been activated. Then the condition:

<%, 0i 040, 1, ..., L}

il

|Afi'| =

must have been met. This implies that:
1 :

In [36], Paik and Katsaggelos noticed this feature as well, since the same termination condi-
tions apply to Algorithm 3.2. The self-connection weigh, controls how close to the ideal
solution the algorithm will approach before terminating. Since increasing the value of
increases the value af;;, we would expect also that the algorithm would terminate more
quickly and yet be less accurate for larger values.dfhis is found to occur in practice. When

A increased, the number of iterations before termination drops rapidly.
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3.5 Dealing with Spatially Variant Distortion

In the above analysis, no conditions were placed upon the form of the riathixfact the
neural network cost function only assumes that the weighting maktixs symmetric. In the
case of a space invariant degradation, the madriwill be symmetric. However in the real
world this is not often the case. As discussed in Chapter 1, the general form of an image degra-
dation will be space variant. However many of these distortions will still be linear and so the
model given by equation (2.2) still holds. In the case of a linear space variant distbttvaili,
not be symmetric, but the weighting matri/, will still be symmetric. This can be clearly
shown by examining equation (2.5). By converting (2.5) into matrix notation we see that the

weighting matrix is given by:

W = —HTH -ADTD (3.14)

Assume thaH is not symmetric, such thetzHT | then:

WT = -(HTH +ADTD)T
= —(HTH)T-A(DTD)T
- _HT(HT)T_)\DT(DT)T

= —-HTH-ADTD=W

Hence the weighting matrixyV, is symmetric. This is a powerful feature of the neural net-
work approach. If the image suffers a known form of space variance then the weights of the

neurons in the network can be adjusted to restore the image exactly with very little additional
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computational overhead.

If the degrading PSFs follow some regular or cyclic pattern then further optimisations can
be made to the algorithm. Instead of developing the full non-symmetric form versidrfaf
the entire image, certain regular patterns of space variance allow us to compute a set number of
simpler alternative versions of thé matrix which describe each different type of degrading
PSF the image has suffered. From this we can compute a number of alternative versions of the
W matrix. Hence we have a number of different sets of weights to select from when restoring
the image. In the worst case, completely random spatial variance, thdxddaueique sets of
weights to restore the image. However, if patterns of spatial variance can be discovered, the
number of unique sets of weights can be significantly reduced. We will analyse the cyclic spa-
tially variant case in detail. Consider a cyclic spatially variant distortion obtained by the use of

V PSFshy(X, y), ..., hy.1(X, y). The pixels in any one row of the image are acted upon by the

same PSF, however the PSF applied to each row is varied cyclically through the sequence:

SH={ho(X, ¥), KX, ¥), -y Ra(X, ¥), RroX, ), Ra(X, ), -0 BOX, Y (3.15)

The sequenc&, has a period of 2, and hence\22 unique sets of weights are required to

restore the image. This type of distortion is similar to the degradations involved with side-scan
sonar images. The method employed in [39] to handle spatially variant distortion was to
precompute a number of sets of weights to handle the various PSFs degrading the image. Since
the spatial variation of the PSFs was known, the correct set of weights could be chosen to
restore the image accurately. Section 3.7 details some experiments performed to restore an

image degraded by a cyclic distortion.
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3.6 Implementation Considerations

Despite the increase in efficiency and speed of Algorithm 3.3 when compared to Algorithms
3.1 and 3.2, there are still a number of ways that the algorithm can be made more efficient. The
ith row of the weighting matrix describes the interconnection strengths between neurdn
every other neuron in the network from the “viewpoint” of neuroihe weighting matrix is
NM by NM, which is clearly a prohibitively large amount of data which requires storage. How-

ever the mathematical discussion in the previous sections implies a short cut.

By examining (2.5) we observe that in the casd?o& min(M, N) , it can be seen that when
calculating the input to each neuron, only pixels within a certain rectangular neighbourhood of
the current pixel contribute non-zero components to the neuron input. In addition it can be seen
that the non-zero interconnection strengths between any given pixel and a neighbouring pixel
depend only on the position of the pixels relative to each other in the case of spatially invariant
distortion. Using the above observations, the input to any neuron (pixel) in the image can be
calculated by applying a mask to the image centred on the pixel being examined. The case of
spatially variant distortion requires more weighting masks to be created, however in the analy-

sis above each unique set of weights requires only one weighting mask to describe I For a

by P distortion, each weighting mask contains only’(-Zl)2 terms A 5 by 5 dgrading PSF

acting on a 250 by 250 image requires a weight matrix contairfii.r@glo9 elements, yet a
weighting mask of only 81 elements. In addition, by considering the finite regions of support
of the degrading and filtering impulse functions representeH laypdD, the weighting masks

and bias inputs to each neuron may be calculated without storing mdtriaedD at all. They

may be calculated using only the impulse responses of the above matrices.
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Even in the case of an image suffering spatially variant distortion we can precompute all the
relevant weighting masks for the problem and assign each pixel an optimal mask before resto-
ration is commenced. An image suffering spatially variant distortion can in this way be
restored using an adaptive approach with very little additional overhead compared to a spa-

tially invariant approach.

3.7 Experimental Results

To test Algorithm 3.3, we structured a series of experiments. In the first experiment, the effi-
ciency of Algorithms 3.1, 3.2, and 3.3 were compared to one another. The second experiment
implements Algorithm 3.3 with an image degraded by space variant distortion. In the third
experiment, a practical example of the use of this method will be given. In this section the
images will be compared by measuring their Signal to Noise Ratios (SNR) and LSMSEs

(where LSMSE is as defined in Chapter 2).

3.7.1 Experimental Setup

In experiments one and two, the images were blurred using a gaussian PSF with the impulse

response:
h(x ) 1 2,y (3.16)
X y) = exp| - X -
210,00, Do 2055

whereao, andoy are the standard deviations of the PSF irxtaedy directions respectively.
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3.7.2 Efficiency

The time taken to restore an image was compared among Algorithms 3.1, 3.2, and 3.3. A
degraded image was created by blurring a 256 by 256 image with a Gaussian blur of size 5 by
5 and standard deviation 2.0. Noise of variance 4.22 was added to the blurred image. Each
algorithm was run until at least 85% of the pixels in the image no longer changed value or
many iterations had passed with the same number of pixels changing value during each itera-
tion. Algorithm 3.1 was stopped after the sixth iteration when no further improvement was
possible, and took 6067 seconds to run on a SUN Ultra SPARC 1. Algorithm 3.2 was stopped
after the 30th iteration with 89% of pixels having converged to their stable states and took 126
seconds to run. Algorithm 3.3 was stopped after the 18th iteration with 90% of pixels stable
and took 78 seconds to run. Algorithm 3.3 is much faster than Algorithms 3.1 and 3.2, despite
the fact that algorithms 3.1 and 3.3 approach the same local minimum and hence give the same
results. The computation time of Algorithm 3.3 can be expected to increase linearily with the
number of pixels in the image, as can the computation times of Algorithms 3.1 and 3.2. The
single step neuron energy minimisation technique of Algorithm 3.3 provides its superior speed
and this trend does hold for any size image. Various types of distortions and noise would not be
expected to change the speed relationship between Algorithms 3.1, 3.2 and 3.3 for any given
image. This is due to the fact that each algorithm was shown to converge to similar points in

solution space and instead use different methods to reach this point.

3.7.3 Spatially Variant Distortion

An image was created using a cyclic variation of 7 by 7 Gaussian PSFs. Using the analysis
in Section 3.5V was set to be 4. Table 3.1 details the degrading PSFs used to blur the image as
per equation (3.15):

Table 3.1:Degrading PSFs.

Standard Deviation 1.5 2.0 3.0 4.0
PSF ho(X, ¥) hi(x, ) ha(X, ¥) hs(X, ¥)
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The original image is shown in Figure 3.1a and the degraded image is shown in Figure 3.1b.
This image was restored using two techniques. The first technique was a spatially invariant
approach. The spatially variant distortion was approximated as a spatially invariant distortion
by using a 7 by 7 gaussian PSF of standard deviation 2.55. That is, all pixels were acted upon
by one weighting mask, whose components were calculated by approximating the space vari-
ant distortion as a space invariant distortion. Since the space variant distortion was very severe,
the approximation caused instability in the restored image. The time to restore this image using
the spatially invariant approximation was 230 seconds on a SUN Ultra SPARC 1. This image is
shown in Figure 3.1c. The second technique was the proposed spatially variant approach with
the six correctly calculated weighting masks. This restoration not only is better than Figure
3.1c, but recovers almost all the fine details lost in distortion. The time to restore this image
using the spatially variant method was 314 seconds on a SUN Ultra SPARC 1. This image is
shown in Figure 3.1d. Note that using Algorithm 3.3, the image could be restored using the
correct spatially variant weights with only an extra 36% time penalty when compared to the

spatially invariant approximation.
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(b)

Figure 3.1: Original, degraded and restored images suffering spatially variant distortion.

3.7.4 An Application Example

Algorithm 3.3 was applied to the problem of restoring an image with an unknown level of

motion blur. Restoring an image distorted by motion blur is a very common problem.

An image was supplied to us showing an aircraft wing in a state of assembly. The camera
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had shifted with an unknown degree of movement during some of the exposures thereby

blurring the images. Figure 3.2a shows an image of the wing with camera movement.

Although the image appears to be blurred by motion from left to right, it was desired to
confirm this by restoring the image using the network parameters derived from motion in
horizontal, vertical and both diagonal directions. The neural network algorithm is perfectly
suited to rapid investigations due to the fact that different regions of the image can be set to be
restored using the parameters of different point spread functions. Figure 3.2b shows Figure 3.2a
restored using both diagonal point spread functions (top left and bottom right of the image), a
vertical motion blur point spread function (bottom left of the image), and a horizontal motion
blur point spread function (top right of the image). Using the image partitioning ability of this
algorithm, four exploratory restorations were performed simultaneously. As a result of this,
Figure 3.2b demonstrates that the best matching point spread function was that associated with
horizontal camera movement, since the top right section of the image is clearly the most well

restored.

The second part of the investigation was to determine the whether the horizontal motion was
from left to right, right to left or due to camera shake rather than motion blur (in which case the
motion will be in both directions). Figure 3.2c shows Figure 3.2a restored using the parameters
of four different point spread functions. The top-left of the image was restored using the
parameters of a uniform point spread function (as a control). The bottom-left of the image was
restored with a point spread function associated with camera shake. The top-right and bottom
right regions were restored using the parameters of horizontal motion blur to the right and left
respectively. Figure 3.2c shows that the image was degraded with horizontal motion blur to the

right as this set of network parameters produce the sharpest restoration. Figure 3.2d shows the
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final restored image using the optimal point spread function determined previously.

(b)

() (d)

Figure 3.2: Degraded and restored wing images.

3.8 Summary

In this chapter, we have examined the basic neural network optimisation algorithm. We first
looked at the problem of restoring an image acted upon by a degrading PSF in the presence of
noise. The problem of reversing the degrading process and approximating the original image

can be formulated as a minimisation process on a constrained least square error measure func-
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tion. This error measure can be minimised by relating the terms of the error measure with the
formula for the energy of a Hopfield-style neural network. By selecting suitable interconnec-
tion strengths (weights) and bias inputs for the neurons, we can equate the neural network
energy function with the constrained least square error cost function. The problem then
reduces to selecting the optimal algorithm to minimise the network energy function. We exam-
ined two such algorithms presented previously in the literature and considered the advantages
and disadvantages of both. We then presented a novel algorithm which brings together features
from both the previous algorithms. The new algorithm was shown to converge to a solution in
a finite number of steps with much faster speed than either of the previous algorithms. We
examined some interesting properties of the algorithm including the fact that the convergence
of the algorithm was irrespective of whether the degradation was spatially invariant or spa-
tially variant. The algorithm was expanded to the space variant case and some implementation
considerations involved with using the algorithm in practice were mentioned. A number of
experiments were performed. The experiments showed that the proposed algorithm is much
faster than previous algorithms and in particular is able to accurately restore images degraded
by space variant degradations without a substantial time penalty. Finally, a practical example

of the use of the algorithm was given.
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Chapter 4: Weight Assignment in

Adaptive Image Restoration

4.1 Introduction

In the previous chapter, it was seen that as long as the weights of the network remain con-
stant from iteration to iteration, Algorithm 3.3 will converge. This result was shown to be irre-
spective of the spatial variance of the weights and opens the door for adaptive restoration

methods.

In adaptive restoration, the weights are varied to implement different values of regularisa-
tion parameter for different regions of the image. By doing this, we can adjust restoration
parameters to suppress noise more greatly in regions where it is most noticable, and less so in

regions where image sharpness is the dominant consideration.

There are many ways to vary the regularisation parameter spatially across the image. We
first show that the proposed method based on gradient descent can only find sub-optimal solu-
tions in this adaptive approach, and mathematically verify a fact, which has been observed in
restoration practice, that this method would generally use a small value of regularisation
parameter for textured regions, and a large value for smooth regions. Using this observation,
we then introduce a regional processing approach based on local statistics. This approach also
has some relationship to biological vision systems in that it emphases on edges. The algorithm

which varies the neural weights to take account of a spatially variant PSF, as described in
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Chapter 3, is expanded to combine the adaptive constraint concept developed. We then look at
how adaptive constraint restoration can be used to compensate for incomplete knowledge of

the degrading PSF or incomplete knowledge of the spatial variance of the degradation.

Section 4.2 introduces the adaptive constraint algorithms. Section 4.3 describes the problem
of adaptive constraint restoration for spatially variant distortions. Section 4.4 considers the
problem of semi-blind deconvolution. Section 4.5 details some implementation considerations,
while Section 4.6 describes experiments performed to test the concepts presented in this chap-

ter. Section 4.7 summarises this chapter.

4.2 Adaptive Constraint

The first adaptive weight methodology we will consider is the adaptation of the constraint

factor to take account of the non-stationary nature of the image.

4.2.1 Motivation

Images are, by nature, ensembles of non-stationary processes. For this reason, solutions
based on any stationary model can only produce a suboptimal restoration. An optimal restora-
tion may be achieved by treating statistically dissimilar regions of an image with different res-
toration strategies or parameters. One method to achieve this is by using an adaptive
regularisation scheme. When implementing an adaptive regularisation parameter scheme, an
important consideration is on what basis should the regularisation value be determined. In this
section, we study the space invariant case. The result will be generalised to the space variant

case in the next section.
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To substantiate this issue, we first generalise the quadratic model in (2.3) to
1 212 1 2112
= 5lg-Hfl"+5|/ADf] (4.1)

where

J_l 0
JA = 0 (4.2)

ooj_

is a diagonal matrix to reflect the adaptive processing nature. When A, = ... = Aym ,

Equation (4.1) is reduced to the conventional constrained least squares formula given in (2.3).

By relating (4.1) to the formula for the energy of a neural network, the neural weight

between neuronisandj in the network is given by:

L
z odod (4.3)

L
Wi == Y hghy =N Y dydy, (4.4)
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Note that the matrixV, whose {, j)th element is given by (4.4), is not symmetric. As long as
a check is made on whether the energy will be decreased before updating a pixel value, the lack

of symmetry will not cause the algorithm to fail to converge. This is due to the fact\timay

be replaced by a symmetric equivalent versith) , without changing the energy function.
T
Define WL = M , Wwheré\ is the non-symmetric weighting matrix whosejj th

element is given by (4.4). Nowl  is symmetric since:

T T
(W[DT:(W"-W) :(W +W);wD
2 2
Taking the formula for the energy of the neural network, and notingahat a ahen

a scalar, then we obtain:
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= lemyz_ szt “DT T4 = _leTs T?F
——4f Wf—mf WfD -b f+c——2f Wf-b'f+c (4.5)

From (4.5) we can see that the form of the energy functions given by Mgiagd WU are

identical. This means that if we assign neuron weights according to (4.4), the algorithm will

still converge.

The elements oWl can be considered an alternative approximation of (4.3) and are given

by:

L
> Ay (4.6)

However since we have shown that both approximations produce identical energy functions,
we will hence use the approximation given by (4.4). In Appendix B we show that approximat-
ing (4.3) as (4.4) does not greatly degrade the quality of the restored images. Since approxima-
tion (4.4) is much easier to implement than (4.3), this approximation will be used in the
subsequent sections. The next question is how to determine the valNem @#.4) for each

pixel in the image.

We investigate two methods for determining the regularisation parameter. The first is an
extension of the gradient based method considered in the last chapter. The second is based on

local statistics in the framework of an intelligent neural network.
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4.2.2 The Gradient Based Method

First we will show that although the gradient descent algorithm given in the previous chap-
ter reduces the energy level, it by no means provides an optimal solution in adaptive restora-

tion.

Equations (2.5) and (2.6) indicate that differences in the regularisation parameter effect only

the weights of the neural network, not the initial values or the bias inputs.

Equation (3.4) gives the energy change resulting from a change of neuroAfst&ebsti-

tuting (3.2) into (3.4) yields:

L
AE, = _{ S ) +bi}Afi——w--(Afi)2 (@.7)
i=1

L
It should be noted thaX W fj +Db, isthe input to each neuron and has the same sign as
=1

Af; if AEis to be negative. It is important to note that we are only considering the cases where

AE is negative since whehE >0 , there will be no pixel value update atﬁixel

Definition 4.1: The greatest energy minimisation (GEM) method for selecting the constraint

value for each pixel is defined as choosing for each pixel in each iteration the valueoof a

range of allowable\ values A\, <A <A, ,[A, A,20000 , which best minimises (4.7).
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Based on the definitions and other aforementioned assumptions, we present two theorems.

Theorem 4.1 If the GEM method is used to select a suitablealue from a range of possible

A values, wherd, = 0 andA, = o in Definition 4.1, theky, will always be chosen.

Theorem 4.2 If the GEM method is used to select a suitablealue, satisfyingh, <A <A,

where both\, and Ay are finite, then eitheh or A, will be chosen unless all availabbkeval-

ues would produce the same resultant decrease in energy.

To prove the above theorems, we must rearrange (4.7). Expanding (4.7) using (2.5) we get:

L L
= [Z )3 hpihpjfj—bi}Afi

J—lp 1

+)\Afz Z i pjj

j=1p=1
L

L
1,2 1 2.2 2
+§(Afi) S ho+ o)’ S o
p=1 p=1
= aaf+aBat +c(af)® +Daat)’ (4.8)

L

1

where Zth,pJ, : szp, pJJ ,C:EZhii, and
j=1p=1 j=1p=1 p=

NI
||M -



W.:
It should be noted that, = —A-AB ar@+AD = ——2'1

Consider theAf; which maximises the energy reduction for pixel

defined a& f;' . To computef;’ , we differentiate (4.8) relativefto

%AEi = A+\B+2CAf; + 2D\ AT
i

and set (4.10) to zero to obtain the optihg|’

. —(A+A\;B)
Afi' = m——
2(C+A,D)

Rearrangement of (4.8) yields:
AE, = (A+\B)AT; + (C+AD)(aF)°
The substitution of (4.11) into (4.12) gives us:

,_HA+AB)? (A+AB) _ (A+AB)’
AR = 2 aD) "HC+r D) T AC+AD)
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(4.9)

. Let this factor be

(4.10)

(4.11)

(4.12)

(4.13)

We can confirm from (4.11) thatf;’ always has the same sighasd thatAE;" is always
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negative for positive values af as expected. The graph®E,’ veraus sketched in Fig

4.1.

Maximum Energy Reduction versus Constraint Value
300 T T T T T

200

100

-100

Maximum Energy Reduction Possible
o
L

=200

_300 1 1 1 1 1
-2 0 2 4 6 8 10

Constraint Value <107

Figure 4.1: Graph of maximum energy reduction versus constraint value.

We can see from (4.13) that for all acceptable valueSEf lim AE;," = —oo . This proves

i — 00

Theorem 4.1 and implies that a great energy reduction can always be obtained by choosing a

very large value oh,;. If we allow energy considerations alone to dictate the choicg,dhe
results would be poor. An acceptable range eflues must be set. Sin€eandD are always

positive, andAE;" is always negative, (4.13) has a maximukp at —g

Since (4.13) is a convex function whé&E,' <0 , then we observe that if the set of accepta-

ble A values is finite and constrained betwegnandAy, (A5 < Ap), then (4.13) indicates that

under most circumstances, the best energy reduction will be obtained by choosing gither
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2 2

Ap, and not any intermediate values xf Only under the conditions oﬁ—'&(‘:— = _ZBIS =0 will

numerical errors possibly enable the choice of intermediate valuesTdfis proves Theorem

4.2.

The next question is whick values will be chosen in low and high variance regions of the
image to maximise the energy reduction. To clearly answer this question, it is nhecessary to
examine how the facto, B, C, andD vary as a function of image statistics. This is examined
in Appendix C. From this analysis, a number of conclusions can be drawn. Wisdow and

B is high, the largesk; value gives the best energy minimisation, however whéenhigh and

B is low, the smallest value af produces the best energy minimisation.

Observation 1 In high texture regions of the image or near edges, #ot@nd B can be
expected to be large. However the contribution from fa&avill be less significant for two

reasons.

* The factoB in (4.13) is multiplied by; which is always << 1.

» The factorB corresponding to a double application of a high-pass filter suggests that in the
presence of gradual edg&syill not be very large. Since noise is added to the image after

blurring, the presence of noise will contribute most to the vallge of

2 2
—_A° —\,B
Therefore we can expect thajf < D

, and so the best energy reduction would be

obtained by choosing the lowest value\available.
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Observation 2 In low texture regions of the imagé, can be expected to be small. FacBr
may also be small. However the presence of noise in the initial estimate shoulBmafiect
on (4.13) override that oA. Hence in low texture regions of the image, choosing the largest

availableA; produces the best energy minimisation.

This analysis has been verified in practice. Figure 4.2 shows the selechoralfes during
the first iteration for an image degraded by a 5 by 5 Gaussian PSF of standard deviation 2.0,
with additive noise of variance 18.49. The darker regions in Figure 4.2 denote the selection of

largerA values, and the lighter regions denote the selection of srhalidues.

Figure 4.2: TheA values selected for each pixel during the initial iteration

of the energy minimisation based algorithm for a typical image.

From Figure 4.2 we can clearly see that to a great extent, only the lowest or the highest

value ofA is chosen by the gradient descent method.
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4.2.3 Local Statistics Analysis

The above analysis shows us that gradient descent is not an optimal approach for choosing

A in adaptive regularisation. However, it leads us to the observation that in low texture regions,
a high value ofj; results in a visually pleasing result, while in high texture regions, aNpw

value works best. These observations encourage us to use local statistics, since these are a good

measure of the image roughness to locally determink, tredue. Mathematically:

A= Y(S) (4.14)
whereY(S§) is a function of the local image statistigsat f i

Since§ has almost exactly the same value for alll piXG€|§, , in a statistically homogenous
area, the\; value is also almost exactly the same. Therefore the structure of the processing
model is further modified such that, instead of assigning each pixel a diffefewe assign

each statistically homogenous areg.a

Assume that there ak€ homogenous areas. By first properly rearranging the pixels in such
a way that the pixels in a homogenous area are consecutively indexted in  to form a new vec-

tor T‘D, equation (4.1) can be rewritten as:

E = %{ lgo—HOfH% + t DT ADD) 15 (4.15)



73

where 1 = [fI fﬂ with f, being the vector consisting of the pixels in tib
homogenous area,
HU=| |, AU= .. [DH={ L gH= .. (4.16)

with Hy, A\, D andg, being the submatrices (vectors)idf] ALl DUl agd |, corresponding

to fy, and A, = Al , with| being the identity matrix. Defined, = |:Hk1 HkK:| and

D, = |:Dk1 DkK:|’ k =1, 2 ...,K, then mathematical manipulation of (4.15) leads to:

E=-

NI

K
S (LT (HTH + ADED) T+ 2g7H, 1} + 1ol
k=1

0
K K K
10
= éZDfE(HEkak"')\kDEkak)fk"' Z Z fr(HH e+ ADE D) f i+ (4.17)
k:g l=1m=1
£k m#Kk
[l
207H, 15 + gt]2
0
U

Apparently, HJ H,,+A, D}, D,, represents the intra-connections within akgeaand

HLHm+ ADJ Dy, represents the inter-area contributions from afdeasd m to areak.

Equation (4.17) is the extension of a biologically motivated neural network: the network of

networks (NoN) [102]. The significance of this mapping is as follows:
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1. The human visual system pays little attention to individual pixels in an image. Instead it
looks for areas of similar pixels in a statistically homogenous sense, and it is more sensitive

to edges [83].

2. The NoN is a computational model imitating a simplified representation of the human cor-
tex, or part of it, the biological visual processing machine. The neurons in the same cluster

are similar to one another.

3. By representing a pixel with a neuron, a homogenous image area is mapped to a cluster of
neurons which are similar to one another. Local statistics is a good criterion to measure the

level of similarity.

Therefore, using a NoN with a statistical criterion to adaptively determin@ tredue and in
turn the processing architecture may potentially simulate some aspects of human perception in

recovering genuine information lost in recording.

Now the important issue is selecting thefor each homogenous area. In this thesis, a curve
fitting approach is proposed. In this approach, the largest and the smallest vatieS gy

andS,,i,, are identified and the correspondig,y andAjmin are determined.

Experiments quickly led to the conclusion that the explicit form of (4.14) is a log-linear

function:

A, = alog(§) +b (4.18)
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It was found that if the variance in a region gradually increases by equal steps, then the
change in variance level is much more noticable when the overall variance levels are low rather
than when the overall variance levels are high. Humans are less able to discern an increase in
noise levels in high variance regions than they are for low variance regions. A log-linear rela-

tionship is therefore suggested. Figure 4.3 shows this effect.

(b)
(0% = 76) ©%=174) 0% = 316)

4 |
(02(= )491) (02(:)699) (02 (:f)973)

Figure 4.3: Images with varying levels of additive noise.

In Figure 4.3, six images with a constant level of pixel intensity are superimposed by noise
of increasing variance. The increasing level of noise between each image and its neighbour on
the right is readily noticable for the first three images when variance levels are low, compared
to the last three when variance levels are high. The difference in apparent noise level between
the last two images is the weakest of the entire set of images, despite the fact that the increase

in variance between these two images is the greatest of the set.
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The above observations lend weight to the use of conataatues for each iteration based
on those during the first iteration. Since theelected during the first iteration can often pro-
duce visually pleasing results (largen the background and smallon the edges), these can
be held constant throughout the restoration procedureAMadues may not act as favourably
for later iterations in the algorithm. For example, the local variance levels in the areas sur-
rounding edges in the image may increase during the restoration due to ripple effects from
nearby edges such that they become large enough to cause a large vahoebef applied to
edges of the image, hence producing the opposite effect to that which we are attempting to

achieve.

4.3 Dealing with Spatially Variant Distortion

In the previous section, the weights of the neural network were varied spatially in order to
implement the adaptive regularisation parameter. A similar concept was considered in Chapter
3 to handle a simple form of spatially variant distortion. In Chapter 3, the author used multiple
sets of weights to successfully restore an image degraded by a cyclic variation of gaussian
PSFs, of different standard deviations. In this section, we will examine the integration of the

spatially variant restoration technique of Chapter 3 with the adaptive constraint technique.

The method employed in Chapter 3 to handle spatially variant distortion was to precompute
a number of sets of weights to handle the various PSFs degrading the image. Since the spatial
variation of the PSFs was known, the correct set of weights could be chosen to restore the
image accurately. However a fixddwas used in Chapter 3. To implement a spatially variant
restoration technique with an adaptive constraint parameter, we produce as many sets of

weights as needed to handle the space variant degradation and every possible choice of regular-
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isation parameter.

Re-stating the discussion in Chapter 3, the cyclic spatially variant distortion we consider is
that obtained by the use &f PSFshy(X, y), ..., hy.1(X, ¥). The pixels in any one row of the
image are acted upon by the same PSF, however the PSF applied to each row is varied cycli-

cally through the sequence:

SH = {ho(X, ¥), A(X, ¥), s ReaX, ¥), RialXs ¥), Rea(X, ), - R(X, V) (4.19)

The sequenc&, has a period of %2, and hence\22 unique sets of weights are required to

restore the image when the same regularisation parameter is chosen for every pixel. When
additional sets of weights are created to implement an adaptive regularisation parameter

scheme, the following analysis applies:

TakingR as the number of choices of regularisation parameter to be used in the restoration,

then the sets of weights to be used to restore a row blurred byttleéement of sequenc®,

form the set;:

WSM. = {Wm, ..., Wmg_,} (4.20)

whereWm} is the set of weights required to restore a row degraded by BgF- using the

jth choice of regularisation parameter being considered. The restoration problem becomes a

problem of selecting the correct set of weights from the super set of:
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WMA = {WSM,, ..., WSMy, _} (4.21)

Restoration of the image is accomplished by selecting the relevaldS#t, based on the

row coordinate of the current pixel being examined, then selecting the orMﬁmzlﬁli within

that set based on the selection schemes described in Section 4.2. Section 4.6 describes an
experiment preformed to implement the spatially variant restoration scheme with an adaptive

regularisation parameter as described above.
4.4 Semi-Blind Deconvolution

The previous sections have assumed that the nature of the degrading PSF is known. In prac-
tical circumstances however, this may not be the case. We may have little or no knowledge of
the degrading PSF in the case of a spatially invariant distortion or may not know the exact
nature of the space variance in a case of spatially variant distortion. In addition, our estimate of
the degrading PSF may be corrupted by noise. Restoring an image with incomplete knowledge
of the nature of the degradation is calledmi-blind deconvolutionFigure 4.4 shows the

effects of using an incorrect PSF estimate during the restoration procedure.
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(d)

Figure 4.4: Degraded image restored with various PSF estimates.

Figure 4.4a is the original flower image. Figure 4.4b is the flower image degraded by a 5 by 5
Gaussian blur of standard deviation 2.0 with additive noise of variance 4.22. Figure 4.4c shows
the image restored using the parameters of a 7 by 7 Gaussian blur of standard deviation 3.0 and
Figure 4.4d shows the image restored using the paramdtar8 by 3Gaussian blur of stand-

ard deviation 1.0. In Figure 4.4c, the degrading PSF estimate is too strong and so the image can
be said to have been “over restored”. Although the edges and high variance regions in Figure

4.4c appear sharp, ringing effects are apparent in the smooth (low variance) regions of the
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image. In Figure 4.4d, on the other hand, the degrading PSF estimate is too weak and so the
image can be said to have been “under restored”. In the smooth (low variance) regions of Fig-
ure 4.4d, we see no artifacts, however the edges and high variance regions of Figure 4.4d

appear blurry.

This would indicate that a too strong PSF estimate produces problems in low variance
regions whereas a too weak PSF estimate produces problems in high variance regions. Figure
4.4d appears similar to the result obtained when a large valdd@sfised during the restora-
tion process. In fact, sinck controls the degree of smoothness in the solution, the effect of
increasing\ is similar to performing the restoration with a weaker PSF estimate. In the adap-
tive A image restoration method described in the previous sections, a small valieufed in
high variance regions and a larger value\a$ used in low variance regions. This implies that
the adaptive constraint restoration method may have an application in semi-blind image resto-

ration. An example should illustrate this.

Assume that an image has suffered a spatially variant distortion and only an estimate of the
average PSF is available. By using the adaptive constraint restoration method we can consider
that each value ok approximates a different strength PSF estimate and hence we effectively
have a range of available PSF estimates to chose from. In the high variance regions of the
image, the\ value is small, this is similar to selecting the strongest PSF estimate. This is the
preferable choice since over-restoring the high variance regions of the image is less visually
disturbing than under-restoring them. To reduce the effects of ripples in the low variance
regions of the image a weak PSF estimate is preferable. This is automatically achieved since
the adaptive constraint restoration method selects the largest valhefasf low variance

regions. As mentioned above, larger value3 gfroduce results similar to using weaker PSF
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estimates. From this we can see that the adaptiastoration method can be used to compen-
sate for inaccuracies in the estimate of degrading PSF. This concept will be further investigated

in Section 4.6.

4.5 Implementation Considerations

A major practical consideration is the number of choices of regularisation value. One would
expect that a large value & will give a better restoration quality, however large valuefof
would slow down the constraint precomputing stage of the algorithm and waste memory. It is
desirable to have as low a valueRfs possible. In practice settify= 3 is usually sufficient,
giving the algorithm the choice of doing nothing or selecting one of three constraint values for

regions for high, medium or low texture levels.

In this investigation, we associated each set of weights with a range of variance values com-
puted in a certain neighbourhood of si&dy A of the current pixel. A variance threshokl,
was set, below which the pixel being examined would not be updated. This is due to the fact
that for extremely low variance regions of an image blurring may not be noticable, in this case
restoration can only serve to enhance noise and waste time. This technique can yield improved
results, however the level of variance threshold and whether or not a variance threshold is used
at all depend on the image being restored and the degrading function. The variance method has
the advantage that it does not require the current pixel to be acted upon by each possible set of
weights to compute the regularisation parameter required. Another advantage to the variance
method is the ability to fine tune the variance threshatdsr A, the area size, to suit a partic-

ular type of image being examined.
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When we consider using variance to determine the regularisation parameter, we expect that
precomputation of the parameter, based on the degraded image statistics would produce similar
results to computing the parameter in each iteration. High variance regions in the degraded
image should remain high variance in the restored image, and low variance regions should like-
wise remain low variance, hence by this argument the chosen values of regularisation parame-
ter in the first iteration should remain approximately the same throughout the restoration
procedure. This also has the added advantage that the algorithm is guaranteed to converge

according to the analysis in Chapter 3.

In practice, precalculating the optimal set of weights for each pixel has further advantages:
During restoration, the image estimate may converge on the solution smoothly or with varying
degrees of oscillation around the final value. During an oscillatory restoration, the image statis-
tics may change in unpredictable ways, causing the regularisation parameter chosen from iter-
ation to iteration to vary also. This may not result in an optimal choice of regularisation value

during any one iteration or an optimal average value of regularisation parameter.

Precomputation of the regularisation parameter results in a faster restoration than that
obtained by computation of the regularisation parameter during each iteration. In fact, by
precomputing the regularisation values for each pixel, the adaptive constraint algorithm takes
only slightly more time than a non-adaptive algorithm for large images, as will be shown in the

next section.

4.6 Experimental Results

To test the adaptive regularisation parameter algorithms presented in this chapter, we struc-
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tured a series of experiments. The first experiment examined the effects of noise on the per-
formance of the algorithm. The second experiment implemented the adaptive constraint
algorithm with an image degraded by space variant distortion. The second experiment also
examines the problem of semi-blind deconvolution. The third experiment examines the
processing efficiency. In the fourth experiment a practical example of the use of this method
will be given. In this section the images will be compared by measuring their Signal to Noise

Ratios (SNR) and LSMSEs (LSMSE is as defined in Chapter 2).

4.6.1 Experimental Setup

In experiment one, the images in Figure 4.5 were blurred using a gaussian PSF with the

impulse response:

h(x ) SN b C al (4.22)
X = XP| — —— .
’ 210,00, P 2o’ 20')2/5

whereo, andoy are the standard deviations of the PSF inxtaedy directions respectively.

Figure 4.5: Original images.
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The number of choices of regularisation paramd®ewas set to 5. The following constraint

matrix, d(X, y), was used:

1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0
1.0/6.0 4.0/6.0 -3.0/6.0 4.0/6.0 1.0/6.0
1.0/6.0 -3.0/6.0 -20.0/6.0 -3.0/6.0 1.0/6.0
1.0/6.0 4.0/6.0 -3.0/6.0 4.0/6.0 1.0/6.0
1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0

4.6.2 Effects of Noise

Two different images were used to compare the various algorithms. Each image was

degraded by the same PSF. For this experiment, a PSF oPsize was used witlo, = oy =

2.0. Various levels of white noise, with variances approximately equal to 4 and 18, were added

to each degraded image. This resulted in 8 images to analyse.

Table 4.1 shows the SNR and LSMSE between the original and the degraded images, and
Images restored with a constant value\pthe greatest energy reduction technique for select-
ing A, the adaptive constraint technique of Kang and Katsaggelos [49], and with an adaptive
value based on local image variance and (4.18). Figure 4.6 shows regularisation parameters
used in the experiment plotted against the level of local variance. The valdeset associ-

ated with variance thresholds in a way consistent with (4.18).
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Figure 4.6: Constraint values chosen versus variance.

Figures 4.7 and 4.8 show the degraded and restored images of the flower image, while Figure
4.9 shows the degraded and restored images of the cat image in the case of a noise variance of

18.30.



Figure 4.7: Degraded and restored images for noise of variance 4.22.
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Figure 4.8: Degraded and restored images for noise of variance 18.52.
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Figure 4.9: Degraded and restored images for noise of variance 18.30.
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Table 4.1: Statistics of degraded and restored images for various levels of noise.

Noise SNR (dB) LSMSE
Variance | | NA | GER| KK | VB | DI | NA |GER | KK | VB
Cat Image
4.24 12.61 13.30 12.55 11.38 13.19 42.9 14.58 14.98 3057 1351
18.30 12.25 12.81 11.02 10.83 12.58 38.6H 17.45 30.43 30146 15.79
Flower Image

4.22 15.67 16.65 15.13 15.74 16.95 20.5 4.35 9.74 6.5b 2.53
18.52 14.94 15.93 12.61 14.32 15.87 19.3 5.94 33.54 10.88 3.74

Legend: DI = Degraded Image; NA = Non-Adaptively restored image; GER = Image restored
using energy minimisation method for constraint selection; KK = Image restored using the

Kang and Katsaggelos algorithm; VB = image restored using Variance Based constraint selec-

tion.

From Figures 4.7, 4.8 and 4.9, the images restored using the adaptive image restoration
methods appear clearer and more visually pleasing despite a slight decrease in SNR when
compared to the images produced by the non-adaptive algorithm. Table 4.1 indicates that using

variance as a criteria to chose the value of regularisation parameter produces images with an

improved LSMSE as noise levels increase.

An image was created using a cyclic variation of 7 by 7 Gaussian PSFs. Using the analysis
in Section 4.3V was set to be 4. Table 4.2 details the degrading PSFs used to blur the image as

per equation (4.19):

4.6.3 Spatially Variant Distortion
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Table 4.2: Degrading PSFs.

Standard Deviation 1.5 2.0 3.0 4.0
PSF ho(X, ¥) hi(x, ) ha(X, ¥) hs(X, ¥)

Noise of variance 4.28 was added to the blurred image. The degraded image is shown in
Figure 4.10a. This image was restored using four techniques. The first technique was a non-
adaptive spatially invariant approach. A regularisation parameter value of 0.0007 was used and
the spatially variant distortion was approximated as a spatially invariant distortion by using a 7
by 7 gaussian PSF of standard deviation 2.55. This image is shown in Figure 4.10b. The second
technique was an adaptive spatially invariant approach. The same approximation of the PSF
was in the previous experiment was used, however the regularisation parameter was varied for
each pixel using the same local variance levelslamdlues as in the low noise example in the

previous experiment. This image is shown in Figure 4.10c.

The image was then restored using a non-adaptive spatially variant restoration method, with
a regularization parameter value of 0.0007. This image is shown in Figure 4.10d. In the final
approach, the degraded image was restored using a spatially variant, adaptive constraint
method, with the variance bas@dvalue selection algorithm. The regularisation value was
selected in the same manner as image 4.10d. This image is shown in Figure 4.10e. The statis-

tics are summarised in Table 4.3.



Figure 4.10: Results of experiments on an image degraded

by spatially variant distortion.
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Table 4.3: Results of spatially variant experiment.

Image SNR (dB) LSMSE
Degraded 13.94 36.01
Space Invariant Non-adaptive 15.03 6.381
Space Invariant Adaptive 14.92 5.45
Space Variant Non-adaptive 15.87 6.041
Space Variant Adaptive 16.01 4.84

It is interesting to note that by using an adaptive approach we can compensate for a lack of
knowledge regarding the degrading PSF. In the cases where the degraded images are restored
by the space invariant approach, we can see that using the adaptive technique produces a much
clearer image with a lower LSMSE although the cyclic blurring effect is marginally visible. In

all cases, using the adaptive approach produces a clearer image with a lower LSMSE.
4.6.4 Efficiency
In this experiment, the time taken to restore an image was compared among the four differ-
ent cases from the space variant experiment. Each algorithm was run three times on a SUN

Ultra 1 workstation, the average results for each algorithm are tabulated below.

Table 4.4: Algorithm run times.

Algorithm Time (CPU seconds)
Non-Adaptive Spatially Invariant 259
Non-Adaptive Spatially Variant 370
Adaptive Spatially Invariant 206
Adaptive Spatially Variant 667
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It is worth noting that the execution times of the adaptive regularisation parameter algo-
rithms are similar to the execution times of the non-adaptive algorithms. The adaptive algo-
rithms require the calculation of five times the number of weighting masks as the non-adaptive
algorithms, and also require pre-restoration calculations of local variance to precompute the
regularisation parameter for each pixel. The reason for the similar execution times is that the
time lost through setting up the adaptive parameters of the network is offset by the time gained
through the non-adjustment of pixels in low variance regions of the image. The most important
fact that we can observe from Table 4.4 is that the time difference required for a fully adaptive,
spatially variant restoration is only double the time required for the much simpler non-adaptive
spatially invariant restoration. This is much faster than any previously reported methods. In
fact as the size of the image increases we would expect the time required for adaptive spatially
variant restoration to approach the time required for non-adaptive, spatially invariant restora-
tion. This is due to the fact that the extra time required for the adaptive spatially variant restora-
tion is primarily taken up by the initial extra weighting mask creation. The quality and speed of
the adaptive spatially invariant approximation method offers a promising alternative to the tra-

ditional semiblind deconvolution methods, especially when the PSF is space variant.

4.6.5 An Application Example

The above neural network algorithm was applied to the problem of restoring images with an
unknown level of blur. Images were supplied to us showing chromosomes in a solution imaged
by a high powered optical microscope. Limitations of the optical system had blurred the images
of the chromosomes. To extract further information about the chromosomes in the images, the

above neural network algorithm was used to enhance the images. Figure 4.11a shows one of the
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original degraded images. Figure 4.11b shows the image 4.11a restored using the non-adaptive
algorithm. Note that the restored image is sharper than the original image, but some noise has
also been amplified as well as some ringing effects. Figure 4.11c shows the image 4.11a
restored using the adaptive algorithm. The level of sharpness is comparable to the results of the
non-adaptive approach, however the level of background noise and ringing effects have been
greatly reduced. In this case the adaptive restoration algorithm has been successful at enhancing

the detail present in the image.



Figure 4.11:Degraded and restored chromosome images.
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4.7 Summary

In this chapter the use of adaptive weights in constrained deconvolution methods was con-
sidered. Since the human visual system favours the presense of edges and boundaries, rather
than more subtle differences in intensity in homogenous areas, [83], noise artifacts may be less
disturbing in high contrast regions than in low contrast regions. It is then advantageous to use a
stronger constraint in smooth areas of an image than in high-contrast regions. While traditional
restoration methods find it difficult to implement an adaptive restoration spatially across an
image, neural network based image restoration methods are particularly amendable to spatial

variance of the restoration parameters.

A method based on using local image statistics to select the optimal value of regularisation
parameter is considered. This method imitates the human visual system and produces superior
results when compared to non-adaptive methods. In addition it was found that no disadvantage
occurred when the values of regularisation parameter for each pixel were chosen by the resto-
ration algorithm before starting the restoration, rather than during each iteration of the restora-
tion procedure. In fact, precomputing of the regularisation parameter further increased the

restoration speed.

In the final part of this chapter, the work is expanded upon to adaptively restore images
degraded by a spatially variant PSF. It is shown that adaptive regularisation techniques can
compensate for insufficient knowledge of the degradation in the case of spatially variant distor-
tions. Moreover, an adaptive spatially variant restoration is shown to be able to be completed in
the same order of magnitude of time as a much simpler non-adaptive spatially invariant resto-

ration.
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Chapter 5: Perception Based Cost Functions

for Image Restoration

5.1 Introduction

In Chapter 2, the author introduced a new error measure based on comparing local variances
which examines the image in a regional sense rather than a pixel-by-pixel sense. In this chap-
ter, we further develop these concepts by introducing two new restoration algorithms which
incorporate versions of this image error measure. The cost functions that these algorithms are
based on are nonlinear and cannot be efficiently implemented by conventional methods. We
therefore propose extended neural network algorithms to iteratively perform the restoration.
We show that the proposed cost functions and processing algorithms perform very well when
applied to both colour and grayscale images. One important property of the proposed method,
compared with the neural network implementation of the constrained least square filter, is that
it is very fault-tolerant in the sense that when some of the neural connections are damaged, it
can still produce very satisfactory results. Comparison with some of the conventional methods

will be provided to justify the new method.

This chapter is organised as follows. Section 5.2 describes the motivation for incorporating
the error measure described in Chapter 2 into a cost function. Section 5.3 presents the restora-
tion cost function incorporating a version of the proposed image error measure from Chapter 2.
Section 5.4 builds on the previous section to present an algorithm based on a more robust vari-

ant of the novel image error measure. Section 5.5 describes implementation considerations.
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Section 5.6 presents some experimental data from this investigation, and Section 5.7 summa-

rises this chapter.

5.2 Motivation

In Chapter 2, we considered the problems inherent in using the MSE and SNR to compare
two images. It was seen that the MSE and SNR have little relationship to the way that humans
perceive the differences between two images. Although incorporating concepts involved in
human perception may seem a difficult task, a new image error measure was presented there
which, despite its simplicity, incorporates some concepts involved in human appraisal of

images.

In Chapter 4, the basic neural network restoration algorithm described in Chapter 3 was
expanded to restore images adaptively using simple human visual concepts. This adaptive
algorithm obtained superior results when compared to the non-adaptive algorithm, and was
shown to produce a more robust restoration when errors occurred due to insufficient knowl-
edge of the degrading function. Despite the improved performance of the adaptive algorithm, it
is still not simple to chose the correct values of the constraint parameterthe case of the
adaptive algorithm, the problem is compounded by the fact that many valuesnoist be
selected, rather than just one value as in the non-adaptive case. In addition, the 3elatted

ues must be related to local variance levels.

We desire to create an algorithm which can adaptively restore an image, using simple con-
cepts involved in human perception, with only a few free parameters to be set. Such an algo-

rithm would be more robust and easier to use than the algorithm in Chapter 4. In the previous
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adaptive algorithm, minimising the MSE was still at the base of the restoration strategy. How-
ever Chapter 2 provides us with a simple alternative to the MSE. It seems logical to create a
new cost function which minimises a LSMSE related term. In this way, the adaptive nature of
the algorithm would be incorporated in the LSMSE term rather than imposed by the external

selection of\ values.
5.3 A LVMSE-Based Cost Function

The discussion in the previous section prompts us to structure a new cost function which
can properly incorporate the LSMSE into restoration. Since the formula for the neural network
cost function has a term which attempts to minimise the MSE, the author investigated the prob-
lem of restoring images using a cost function with a term which endeavours to minimise a
LSMSE-related error measure. The author proposes that an additional term be added to (2.3).
The new term evaluates the local variance mean square error (2.12). The comparison of local
variances rather than local standard deviations was chosen for the cost function since it is eas-

ier and more efficient to calculate.

Hence the new cost function we suggest is:

N-1M—-1, 2,2 2 2
1 s A2l (02(F (% y)) - o2(g(x y))O)
£ = Yo-nilz+ ooy 5 O

x=0y=0

(5.1)

where oi(f(x, y)) is the variance of the local region surrounding pixg (in the image

estimate andci(g(x, y))D is the variance of the local region surrounding pix@li6 the
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degraded image scaled to predict the variance in the original image. The first two terms in (5.1)

ensure a globally balanced restoration, whereas the added LVMSE term enhances local fea-

tures. In (5.1), oi(g(x, y))D is determined as follows. Since the degraded image has been

blurred, image variances i will be lower than the corresponding variances in the original

image. In this case, the variancesi(g(x, y))D would be scaled larger m%(a(rg(x, y) to

reflect the decrease in variance due to the blurring function. In general, if we consider an image

degraded by a process which is modelled by (2.2), then we find that a useful approximation is:

oAa(x Y = K(% Y)(GA(a(x 1))~ I(% Y)) (5.2)

whereJ(x, y) is a function of the noise added to the degraded image at pgiptdnd K (X, y)

is a function of the degrading point spread function at painty]. Although it may appear
difficult to accurately determine the optimal valuedx, y), in fact the algorithm is extremely
tolerant of variations in this factor and only a rough estimate is required. For example, if the
image degradation is a moderate blurring function, with a region of support of around 5 or 7
thenK(x, y) would be set to 2 for all pixels in the image. This indicates that the local variances
in the original image are on average approximately twice that of the degraded image. A high
degree of accuracy is not required. In highly textured regions of the image where the
preservation of image details are most important, the LVMSE term requires that the variance of
the region be large, and the first two terms of (5.1) ensure the sharpness and accuracy of the

image features.
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5.3.1 The Extended Algorithm for the LVMSE Modified Cost Function

The LVMSE modified cost function does not fit easily into the neural network energy func-
tion as given by (2.4), however an efficient algorithm can be designed to minimise this cost
function. One of the first considerations when attempting to implement the LVMSE cost func-
tion is prompted by a fundamental difference in the cost function which occurs due to the addi-
tion of the new term. In the case of a cost function based on minimising mean square error
alone, any changes in an individual pixel value effects the entire image MSE in a simple way.
The square error between any pixel in the image estimate and the corresponding pixel in the
original image does not affect the square error of its neighbours. This simplifies the implemen-
tation of the cost function. In the case of the LVMSE modified cost function, it is different.
When a pixel's value is altered by the algorithm, the total change in the LVMSE is not a simple
function of the current pixel's change in value alone. Changing the current pixel’'s value
changes its own local variance, and the local variances of all of its neighbours withAibyaA
proximity of the current pixel. Hence to truly calculate the total change in LVMSE for the
entire image, the algorithm must calculate how changing the current pixel’'s value effects the
local variances of all its neighbours and how these changes effect the overall LVMSE. This
approach is computationally prohibitive. To resolve this problem we must go back to the fun-
damental justification for adding the LVMSE term in the first place. The justification for add-
ing this term was the fact that we wished to create a cost function which matched the local
statistics of pixels in the original image to that of the image estimate. In this case it is sufficient
that the algorithm considers only minimising the difference in the local variance of the esti-
mated image pixel to the corresponding original image pixel and not minimising the total
LVMSE of the image. The great benefit arising from this approximation will become apparent

as explained below.
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The first step in the development of the algorithm is a change in notation. Rdrbgnvi
image letf represent the lexicographically organized image vector of leNdthas per the
model given by (2.2) and the algorithm for the unmodified neural network cost function (2.3).

The translation between the two indiceandy of f(x, y) and the single indeiof f; is given by:

i = x+yN (5.3)

DefinexX andyX as the two dimensionalandy values associated with pixeby (5.3).

Define the two-dimensional distance between pixalsdj as:

dis2(i, j) = [¥ = x| +|y' - y/] (5.4)

LetK! represent th&lM by NM matrix which has the following property:

Letf = K'f (5.5)

o disZ(i,J)>A;1

then [ = O (5.6)
o dis2(i, j) < A=1
0 i )= 2

K' has the effect of setting to zero all pixels not within #héy A neighbourhood centered

on the pixel with co-ordinates, yI As a shortened notation we will denc[téi]j fiijs . Using
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this notation, the average pixel value in &by A region surrounding pixelis given by:

1 MN
Mu(i) == S f)
A Azjzl j

NM NM
Let3, = Z (f'j) andy; = Z f' . Then the estimated variance of Aley A region sur-
i=1 i

rounding pixel is given by:
vi= 0 (5.7)

Note that, strictly speaking/,i is an estimate of the variance of this region given the availa-
ble pixel values. The true variance of this region is the expectation of the second moment.
However (5.7) is a suitable approximation given the available data. In the rest of this analysis,

(5.7) will be called the “local variance” and the term “estimated local variance” will be used to

refer to o2(g(x y))" .

The LVMSE between the image estimafe, ,and the original imageay then be written

as:

NM
LVMSE(F, f) = ﬁz(v‘(?)-vi(f))2 (5.8)
i=1
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Let Vi(f) be approximated by/'f ' vi' s the estimate of the local variance of pixel

the original image based on the degraded image and knowledge of the degrading point spread

function as per equation (5.2Yf ' is calculated before the algorithm commences and remains

a constant throughout the restoration procedure.

The algorithm we propose to implement first computes the negative direction of the gradient
which gives an indication of whether increasing or decreasing the current neuron value will
result in a net decrease in energy. Once the negative gradient is found the neuron value is
changed in unit steps and the resultant energy decrease after each step is computed. This ends
when no further energy minimisation is possible. In Chapter 3, we showed that the negative
gradient of the unmodified cost function, (2.3), is in fact the input to the neuron. Hence the
negative gradient of the modified cost function will therefore be the input to the neuron minus

the derivative of (5.8).
The gradient of (5.8) is given by:

9 | WMSE = 2 (Vi(F)=vi )2 (Vi(F)=vi) (5.9)
of, NM of.

Note that this formula is an approximation of the gradient which ignores the contributions

of the local variances of the pixels adjacenttmthe overall LVMSE of the image.

= 24y (5.10)



Taking note of the fact thai: =f . Substituting (5.10) into (5.9) we obtain:

B, o2f, 2y0

9 | VMSE = igﬁ_'z_‘%_vf'm_gl_lim

0f; NMEA LLIA A0
o 4 Ofp v gy vE yvf
0-~LVMSE = SO - |4|_fin'_'_4'+_'6+ AR
of; NMATOA® A A A% A% O
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(5.11)

Multiplying (5.11) by and subtracting it from the input to the neuron gives us the negative

gradient of the cost function. Given a change in the value of pixiile resultant change in

energy is the previous change in energy given by (3.4) @lirmes the change in LVMSE. The

change in LVMSE is given by:

ALVMSE = S (Vhey =V 1) = (Vg =V 1))

where
yinew - yiold_'_A];‘i
B = |3i0|d + 2fAiAfAi +(A fAi)2
new new, 2
Vo= [3._ _(Vi W)

new — 2 4

A A

(5.12)
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~ 2 _aon . 2
(Af;)  2FAf 2y "Af, (Af) (5.13)

whereB?Id ,yiOId ano}\/ioId are the values of these parameters before the change in the state of

neuroni occurred. The LVMSE algorithm is therefore:

Algorithm 5.1.
repeat
{
fori=1, ..... L do
{
L
up = b+ Zw”fJ
j=1
NM .
old _ g iD2
B = .Z of i
j=1
Id -
old _ i
i - Z fj
j
Id old
V! B,O i %
d ~ -
oMz A

Id Id Id Id Id\3 Id
pED_ 40 B f(.")_f_vfi B, () °Vfg
Df.0 NMADA A | A4 A° A2 0
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U1,u>0
~ O™ _ g
Af, = GG-H—O where G(u) = OO,u =0
008, %Lu<0
A 2 A A |d A A
vy L(Bf)" 2faf, 2y CAf, (AF)
- Id - -
new o 2 A2 A4 A4
~ 2 ~ 0 ~ P2 i i2
AE = - B, (07) - U+ So((Vhew V1) = (Vo= 1))
repeat
fi(t+1) = K(f;(t) +Af))
E O,u<0
where K(u) = 0 u,0su<S
E Su>S
ul = u|+WiiAfA|
i i
Vold = Vnew
old old ;
i =Y tAf
N2 S faE Id, ¢ £\2
Vi oy, Bh) +2ﬁAﬁ_2ﬁ)AftjAf0
- Id
new 0 A2 A2 A4 A4
. ~ 2 ~ 0 i il2 i il2
umHAE=—%%%MKAfQ-—wAfﬁwmﬁ«V%W—VF)-{Vad—Vfﬁ)zo

t=t+l
}

until (f, ()= f,(t-1)0i=1, ..., 1
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Figure 5.1 shows a flow chart representation of Algorithm 5.1.

Note that Algorithm 5.1 still utilises some features of Algorithm 3.3, specifically the use of

bias inputs and interconnection strength matrices.

g Select next ¢

neuron

Y

Calculate
neuron energy
gradient

Y

No )
Can neuron’s energy be
reduced?

v Yes

Reduce
Energy

Yes

Can the energy be
reduced any
further?

Is this the final neuron
for this iteration?

Did any neurons
change during the
last iteration?

Go to next iteration

Figure 5.1: Flow-chart representing Algorithm 5.1.
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5.3.2 Analysis

It is important to verify that Algorithm 5.1 acts upon a pixel in the intended manner. To ver-

ify this, we must examine the LVMSE term in Algorithm 5.1 more closely.

According to (5.11), the gradient of the LVMSE term of the cost function, when all pixels

except f . are held constant, is given by:

2 ~
0B, v, 2f, 2y0
9_LVMSE = iBB—;—\%—Vf'D]—;——y;D
af, NM[n MDA*  A'O

NM NM
Note that Bi = Z (‘|:IJ)2 and Y, = Z fll can be rewritten Efs = Bi' + ‘I’:\iz and
=1 i

NM NM
v = v,/ +f, wherep, = S (1"1-)2 andy;' =y f| . Note that in this way, we can
i #i INEd

extract the elements of (5.11) that depen(fpn . Hence we obtain:

9 | VMSE = i%l+&_(fi+vi’) _yvieeti_2hi 2w
~ ~2 ~ ~ ~
_o2 Ofy f 2fiyy B Y i2f, 2f, 2y,'O
[A A AT A CLIA A A0

! )2
Note that B_.2 —% is an approximation to the local variance at pixegglecting the
A A



110

R R 2
contribution of the value of pixelitself. Let V' = B_|2 Wi 4)
A A

. AsA increases in valuey’
approaches the value of the local variance at pi@imilarly, we can define an approximation

to the local mean of pixelas:

1 NM K
M= = Z (5.15)
A ihi#

If Ais greater than 3, then pixekcontributes less than 15% of the value of the local mean

and local variance of its neighbourhood.Afis 7 then the contribution is only 2%. Hence

approximatingV’ as the local variance is valid.

This leaves us with:

U2 2f.M’ -
Tivse = R8T R E 6w
of; NMA“O A A A A

wheredJ = V'—V1‘i )

The points for which Equation (5.16) is equal to zero are the stationary points of the

LVMSE term in (5.1). Equation (5.16) is zero Whelﬁi -_M

. This corresponds to the

_io
i

case Whera‘Ai Is approximately equal to its local mean. Equation (5.16) also has zeroes when

A

f.

; satisfies:
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i AW
2M +A/4(|\/|) 40t 10

: _ A2 A L2 a4l
| o0l _1p
(a2 a4l
If Ais greater than or equal to 5, then the error resulting from approxime&fg)gi as
A2 T A4
A_%Z is less than 4%. Therefore, if we assume thas$ large enough tha't&l—2 » _A%‘r then (5.16)
has zeroes at:
famea M2, (5.17)
| - A2 )

Note that (5.17) indicates that ¥>0 , (5.17) may not have a real-valued solution. There

are three cases to examine.

CASE 1:J<0

WhenJ <0 , then local variance of the region surrounding pixglless than the estimated
local variance. Equations (5.17) and (5.16) indicate that the LVMSE term in the cost function

will have three stationary points. The function will then appear as Figure 5.2. The stationary

I

point given by fi = becomes a maximum and the function has two minima given

by (5.17). At least one of these minima will be in the doma€p> 0 ,andso as lodgsamt
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excessively negative it is possible to minimise the LVMSE term in the cost function in this

case.

This is as one would expect sincelik 0 , then the variance of the local region surrounding
pixel i needs to be increased to meet the target variance estimate. It is always possible to

increase the local variance of pixdby moving that pixel's value further from the mean. This

is why the stationary pointhi - _M_ , Which is the point Wherf%; is approximately

AzD

equal to the mean of the local region, becomes a maximum.

x 10° Graph of LVMSE term versus pixel value: Case 1
2.5 T T T
2 . -
£ 1.5 .
e
L
)
=
2
1 . -
0.5F .
0 | | | |
0 50 100 150 200 250 300
Pixel value

Figure 5.2: Graph of function for Case 1.
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N

|~

M")
AZ

CASE 2:0<J<

(M)2

When 0<J<
A2

, then the local variance of region surrounding pixslgreater than

the estimated local variance, but the difference is not great. Equations (5.17) and (5.16) indi-
cate that the LVMSE term in the cost function will again have three stationary points. The
function will then appear as Figure 5.3.

MI

-

The stationary point given byfAi = becomes a maximum and the function has

0o

two minima given by (5.17). At least one of these minima will be in the doméiin> 0 , and it

is again possible to minimise the LVMSE term in the cost function in this case.

WhenJ >0 , the local variance of pixeheeds to be decreased to match the target variance

(M')2

A2

estimate. IfJ < , It is possible to match the local variance of pixeith the target vari-

ance estimate by moving that pixels value toward the mean pixel value in the local region. The

stationary point ﬂ - _M , Which is the point Wheré is approximately equal to the
AzD
. . . . (M')2 (M’)2
mean of the local region, is again a maximum, unldss v . When A2 , all

three stationary points correspond to the same value and the function has one minimum at

f= M _w

[
114

A2
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x 10° Graph of LVMSE term versus pixel value: Case 2
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Figure 5.3: Graph of function for Case 2.
M")2
CASE 3: 3> M)
A2

"2
When J > (I\;I‘z) , then the local variance of region surrounding pixslgreater than the

estimated local variance, but the difference is too large for equality to be reached by changing
a single pixel’s value. Equation (5.17) will have no solutions and the LVMSE term in the cost

function will have one stationary point. The function will then appear as Figure 5.4.
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The stationary point given byfAi = le becomes a minimum, whdte> 0 since all
3-10
pixel values are constrained to be positive. So the minima will be in the dorﬁiaiﬂo , and it

is possible to minimise the LVMSE term in the cost function in this case.

"2
When J > ('\2\2) , the local variance of pixeheeds to be decreased to match the target var-

iance estimate. The minimum local variance is obtained by decreasing the value of the current
pixel to the mean value of the local region. In this case, the minimum local variance obtainable

by altering one pixel's value is still greater than the estimate. The stationary point

I

- _M is the point where fi is approximately equal to the mean of the local region.

3-S5

A

>

Hence the pixel will move toward the mean value of the local region, hence reducing the local

variance as much as possible.

By examining each of the three cases above we can see that the LVMSE term in the cost
function is well behaved despite its non-linear nature. In all cases a minimum exists and by
minimising the LVMSE term in the cost function, the local variance of the current pixel's

region will always move closer to the target variance estimate.
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x 10° Graph of LVMSE term versus pixel value: Case 3
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Figure 5.4: Graph of function for Case 3.

5.4 A log LVMSE-Based Cost Function

The previous section showed that the LVMSE cost term in (5.1) is well behaved, and results
in an algorithm which does indeed work as intended to match the local variance of the region
surrounding the current pixel to that of a target variance estimate of the original image. How-
ever improvement is still possible. The LVMSE term in (5.1) has its greatest effect when the
difference between the actual local variance and the target variance estimate is large. When the
difference is small, the LVMSE term in (5.1) has little effect. The strength of the LVMSE term

is proportional to the square of the absolute difference between the two variances and does not
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depend on the level of the variances. The dependence on the absolute difference between the
variances is in fact a disadvantage. When the local variance of a region is large and the target
variance for that region is also large, then noise will not be readily noticed. In this case, the first
term in the cost function which ensures sharpness of edges should be allowed to dominate the
restoration. However in this case, the difference between the target variance and actual vari-
ance may be large, causing the LVMSE term to dominate instead. On the other hand, when the
local variance of a region is small and the target variance for that region is also small, we
would want the LVMSE term to dominate, since this term would keep the local variance low
and suppress noise. However, in this case since the target variance and the actual variance are

small, the LVMSE term can also be too small and have an insufficient effect.

This prompts us to move away from absolute differences in local variances, and, instead,
compare the ratio of the local variance and its estimate. Taking this idea one step further, we
notice that taking the log of this ratio provides additional emphasising of small differences in
variance at low variance levels and de-emphasising large differences in variance at high vari-

ance levels.

Hence the new cost function we propose is:

)
0 Ooa(f(x, y)) f

N—lM—lD [bz
_1 212 L M zll2 Al9(x, Y))
e = Ho-nil2+doilP+ey § 220

x=0y=0

(5.18)

This new term in (5.18), we will denote the Log Local Variance Ratio (Log LVR) term.
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5.4.1 The Extended Algorithm for the Log LVR Modified Cost Function

The algorithm to minimise (5.18) has the same basic strategy as the algorithm created in
Section 5.3. First, the negative direction of the gradient is computed. Once the negative gradi-
ent is found, the neuron value is changed in unit steps and the resultant energy decrease after
each step is computed. This ends when no further energy reduction is possible. As in the last
section, multiplying the partial derivative of the Log LVR term in (5.18)dgnd subtracting it
from the input to the neuron gives us the negative gradient of the cost function. As defined in

Section 5.3, the local variance of thdy A region centred on pixelis given by:

i B| yl
v A2 A4

NMo NM
wherep, = Z(f'j) andy; = Zf'j .
j

j=1

The gradient of the Log LVR term in (5.18) is given by:

OviOvf 1 @2f, 2y0
Lootvn- i BB 20
of. NM oy 'OV v oA AfD

A

DB| yl2 Dfi V'D
H (a2 A4D][;A2 A

NM d
vy HPL_Yeo
DElA\Z A4l

(5.19)
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a2~ A4lOT i p20
I]

NMD In(V ) 583 VID

amﬁl Ve _Yio

Similarly, given a change in the value of pixgthe resultant change in energy is the previ-
ous change in energy given by (3.4) pRiemes the change in Log LVR. The change in Log

LVR is given by:

1 M Ve sl ¥usis
ALOGgLVR = —— MnG—0 - On—=M 0 (5.20)
NMmM ovfm 0O vimo
where
yInew y:)ld_l_A]:i
new _ old 2 A7 r.\2
B; =B, +2f,Af +(AF)
Sy’
new — A2 A4
£2 ooz Id s
yiogBf)  2hisf 2y “Af, _(AfF)
old 2 2 4 4
A A A A

The new algorithm is therefore:

Algorithm 5.2.

repeat



Id NMDA'DZ
old _ i
= 3 B
j=1
Id -
vio=3
i
Id old
V! B i 0
old_?_ A4
SDE_V_I o _Yio
e, e 1wl A
mfo NM In(vi) O YO
O 583' A20]
0
R 0 e [ Dl’u>0
f G-+ where G(u) = OgO,u =0
008, Er11u<0
£\2 AF A Id
Voo (Afi)+ f.Af, 2y,° Af. _(af)
Id
new o A2 A2 K K
o m o af o ot afo
AE = Dl%N”(Af) —uAf + + NG ~On2m 0
M OvfmMm 0O Ovimo
repeat

f(t+1) = K(f (t) +Af)

0
O
where K(u) = g u,0<su<S
O
O
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new
old old 7
i yi +Af
N2 P af old, ¢ °
= v, _ _
new 0 A2 A2 K I
) m o o o/ ofo
until AE =~ 0w, (af)" ~uaf, + omin G2 - OnG-29m 02 0
NMm ovim 0O Dvimo

t=t+l
}

until (f, ()= f,(t-1)0i=1, ..., 1

Note that Algorithm 5.2 is almost identical to Algorithm 5.1 and still utilises some features

of Algorithm 3.3, specifically the use of bias inputs and interconnection strength matrices.

5.4.2 Analysis

As in the previous section, we will verify the correct operation of Algorithm 5.2. To verify

this, we must examine the Log LVR term in (5.18) more closely.

The gradient of the Log LVR term of the cost function when all pixels excefpt are held

constant is given by:
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B v? of, vy, 0

) 4 0"~ AiTA? AT
' LogLVR = —[3 O (5.21)

of NMg i PV

i 3 in(vi) HE YO

2 psl

NM - NM i | A2
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. AsA increases in valuey'

approaches the value of the local variance at pi@imilarly, we can define an approximation

to the local mean of pixelas:
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There are some points for which (5.22) is undefined. These points are given by:

At these points the function will have an infinitely negative gradient. In the event that

then the function will be defined for all values 6{ . Fortunately this will almost

v s (M)2
A2

always happen. This can be seen by examining the condition for undefined points to exist:
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Using the formulas fo¥’ anil’ we get:
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However the variance of a set of numbers is always greater than or equal t&zero.  is the var-
iance of the local region of pixelobtained when the value of pixels set to zero. Hence we

have:
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Which means that:
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(5.24)

Equation (5.24) of course means that condition (5.23) will only be satisfied when the local

variance is very close to zero. As long as steps are taken to ensure that this does not occur, the

function will be well defined for all values df

The points for which Equation (5.22) is equal to zero are the stationary points of the Log

LVR term in (5.18). Equation (5.22) is zero wheﬁi = _M

. This corresponds to the

1o
AzD

case where fi is approximately equal to its local mean. Equation (5.22) also has zeroes when

A

f, satisfies:
InO—= - +V'O-In(Vf) =0
A2 A 0

This is equivalent to:

wheredJ = V'—V1‘i }
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The stationary points are thus given by:

~ , M’ 2
fxM iA/%—J (5.25)

Note that (5.25) indicates thatif>0 , (5.25) may not have a real-valued solution. (5.25) is
identical to (5.17) in the previous section and so the case by case analysis in Section 5.3.2 is
identical for a Log LVR modified cost function as it was for the LVMSE modified cost func-

tion.

As with the LVMSE term, the Log LVR term in the cost function is well behaved despite its
non-linear nature. In all cases minima exist and by minimising the Log LVR term in the cost
function, the local variance of the current pixel’s region will always move closer to the target

variance estimate.
5.5. Implementation Considerations

A problem to be overcome is that the third terms in the LVMSE based cost functions are not
guadratic in nature. When the local variance in the image estimate is much lower than the
projected local variances of the original image, the LVMSE term in Algorithm 5.1 becomes
large and may force the pixel values to an extreme of the range of acceptable values in order to
create a high variance region. The LVMSE term should never completely dominate over the
first term in (5.1) since the LVMSE term only attempts to match regions, not pixels, and fine
structure within the region will be lost. To remedy this situation, the pixel values are not allowed

to change by more than a set amount per iteration. This method appears to work well in practice
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and the pixel values converge to a solution after a finite number of iterations. This method
however is not required to the same degree in Algorithm 5.2. Algorithm 5.2 was designed to

avoid this effect, however this method may still be employed to improve results.

The addition of the LVMSE term into the cost function allows a powerful optimisation to be
made to Algorithm 5.1. In regions were the degraded image is very smooth and the variance
estimate of the original image is very small, improvement in image processing speed can be
achieved by not restoring these pixels. This will not affect the quality of processing since
attempting to deconvolve regions where the blurring effect is not noticable by humans can only
serve to amplify noise. It is logical not to attempt to restore such regions when using Algorithm
5.1 since the LVMSE based term in the cost function for this algorithm has little effect at low
variance regions. Algorithm 5.2 on the other hand was designed to smooth these regions and so

it is not necessary to avoid attempting to restore these regions.

5.6 Experimental Results

A number of experiments were conducted to evaluate the performance of the proposed

method. Comparisons were made with some well known methods in the literature.

5.6.1 Colour Image Restoration

For the first experiment, colour images were used consisting of three colour planes, red,
green, and blue. The image was degraded by a 5 by 5 Gaussian PSF of standard deviation 2.0
applied to each of the colour planes. In addition, additive noise of variance 369.31 was also

added to each colour plane. Figure 5.5a shows the original image and Figure 5.5b shows the



128

degraded image. The degraded image has a SNR of 19.81dB and a LSMSE of 313.05. The

SNR was calculated by adding together the signal to noise ratio of each colour plane:

o o obD

SNR= 20logd— + — + =0 (5.26)
Eb; 0% ol

Similarly the LSMSE for the entire image was calculated by summing the LSMSEs of each
colour plane. A 9 by 9 neighbourhood was used for calculating the local variance. We com-
pared our algorithm with the Wiener filter and the constrained least square (CLS) filter. In this
investigation, we assumed that each colour plane in our test image does not have a high level of
correlation and so the filters are applied to each colour plane separately. The Wiener restored
image is shown in Figure 5.5¢ and has a SNR of 16.65 dB and a LSMSE of 859.80. The image
was also restored using Algorithm 3.3, without the LSMSE term. A constraint factyr=of
0.001 was chosen. The CLS restored image is shown in Figure 5.5d and has a SNR of 17.26 dB
and a LSMSE of 634.04. The image was also restored using the adaptive constraint algorithm
from Chapter 4. This image is shown in Figure 5.5e and has a SNR of 19.19 dB and a LSMSE
of 195.68. The same degraded image was also restored using the LSMSE modified cost func-
tion, Algorithm 5.1. In the LSMSE modified cost function, the value\oas set to 0.0005.

The factor® was set to be 0.00001 and the image local variance estimate was computed as:

a2(g(x Y = 2(a3(g(x y)) - 200)

This image is shown in Figure 5.5f and has a SNR of 19.89 dB and a LSMSE of 180.81.

Finally the degraded image was restored using the Log LVR modified cost function, Algorithm
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5.2. In the Log LVR modified cost function, the valueofvas set to 0.0005. The factBwas
set to be 50 and the image local variance estimate was computed as for Algorithm 5.1. This

image is shown in Figure 5.5g and has a SNR of 21.65 dB and a LSMSE of 88.43.

By visual observation it can be seen that Figures 5.5f and 5.5¢g, produced by the LSMSE and
Log LVR based cost functions, display better noise suppression in background regions and are
at the same time sharper than Figure 5.5¢c and Figure 5.5d, produced by the Wiener and the
CLS approaches. Figures 5.5f and 5.5¢g also display a better SNR and LSMSE than Figures
5.5¢, 5.5d and 5.5e. Although the LSMSE restored images are visually closer to the original
image than the degraded image, their SNRs are only slightly higher than the degraded image.
This is not surprising in view of the arguments above that SNR does not correspond well with
human visual perception. However LSMSE does match with human observation and assigns a
much lower value to Figures 5.5f and 5.5g. Comparing the two different forms of the LSMSE-
based cost functions, we find that Algorithm 5.2, (Figure 5.59), is superior, with a similar level
of sharpness when compared to Figure 5.5f, yet better noise suppression in background

regions.

We see that the adaptive constraint method produces a similar result to Algorithm 5.1. This
Is primarily because both algorithms use the concept of a variance threshold. As mentioned in
Section 5.5, if the local variance is below the threshold, the pixel is not adjusted. Both algo-
rithms 3.3 and 5.1 use identical thresholds and so have similar LSMSEs. Algorithm 5.2, how-
ever, was designed not to require the variance threshold and instead provides additional

smoothing to background regions and hence a much lower LSMSE.
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Figure 5.5: Colour images restored using various algorithms.
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(¢))

Figure 5.5 (cont.):Colour images restored using various algorithms.

5.6.2 Grayscale Image Restoration

For the second experiment, a grayscale image was degraded by a 5 by 5 Gaussian PSF of
standard deviation 2.0. Additive noise of variance 87.62 was also added. Figure 5.6a shows the
original image and Figure 5.6b shows the degraded image. The degraded image has a SNR of
12.58 dB and a LSMSE of 28.13. The degraded image was first restored using a Wiener filter
approach. The Wiener restored image is shown in Figure 5.6¢ and has a SNR of 11.66 dB and
a LSMSE of 38.69. The image was also restored using the CLS algorithm (Algorithm 3.3).
Figure 5.6d shows the image restored using the CLS algorithm with a constant faater of
0.001. Figure 5.6d has a SNR of 8.76 dB and a LSMSE of 128.09. Figure 5.6e shows the image
restored using the CLS algorithm with a constant factdr ©f0.002. Figure 5.6e has a SNR of
11.93 dB and a LSMSE of 36.91. Figure 5.6f shows the image restored using the adaptive con-
straint algorithm presented in Chapter 4 using a range of constraint values from 0.02 to 0.0015
associated with levels of local variance. Figure 5.6f has a SNR of 11.97 dB and a LSMSE of

22.28. The degraded image was also restored using the LVMSE modified cost function imple-
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mented using Algorithm 5.1. Figure 5.6g shows this image which has a SNR of 12.15dB and a
LSMSE of 22.71. Finally the degraded image was restored using the Log LVR modified cost
function implemented using Algorithm 5.2. Figure 5.6h shows this image which has a SNR of
12.07 dB and a LSMSE of 20.59. By observation, it can be seen that Figure 5.6h is visually
closest to the original image. LSMSE confirms visual inspection and indicates that Figure 5.6h
is the most well restored. Note that once again the adaptive algorithm from Chapter 4 performs
similarly to the LSMSE-based algorithms. The advantage of the LSMSE algorithms is that

they have less free variables to set up.

(d)

Figure 5.6: Grayscale images restored using various algorithms.
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Figure 5.6 (cont.):Grayscale images restored using various algorithms.

5.6.3 LSMSE of Different Algorithms

For the third experiment, the original flower image was blurred using a 5 by 5 Gaussian blur
of standard deviation 2.0. A number of images were created, each suffering a different value of
noise. The images were restored using Algorithm 3.3, Algorithm 5.1, Algorithm 5.2, a Wiener
filter, and the adaptive constraint algorithm from Chapter 4. For each image, the same value of

A was used in Algorithm 3.3, Algorithm 5.1 and Algorithm 5.2. This meant that the restored
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iImages from Algorithm 3.3, Algorithm 5.1, and Algorithm 5.2 had the same degree of sharp-

ness, but differed in the level of noise suppression. In this way the effects of the LSMSE-based
terms in (5.1) and (5.18) could be examined in isolation. Figure 5.7 shows the results of this
experiment. It can be clearly seen that in terms of the LSMSE, Algorithms 5.1 and 5.2 outper-
form the other algorithms, especially the standard CLS approach for the same level of sharp-

ness.

Graph of LSMSE versus Noise

350 T T T
— - Algorithm 3.3 y
3001 | \iener Filter 7 |
X Adaptive Constraint 7
o . 2
50k Algorithm 5.1 R |
Algorithm 5.2 7
B
S
200 7 )
} ’
1 7
150+ )
100+ )
50 )
0 X = =X | | | ! | 1
2 4 6 8 10 12 14 16 18

Noise Standard Deviation

Figure 5.7: Graph of LSMSE for various algorithms and levels of noise.
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5.6.4 Robustness Evaluation

For the fourth experiment, the original flower image was blurred using a 5 by 5 Gaussian
blur of standard deviation 2.0. Additive noise of variance 87.62 was also added. The degraded
image was restored using Algorithm 3.3, Algorithm 5.1 and Algorithm 5.2. In each algorithm,

A was set to 0.001 to maintain the same level of sharpness. Figure 5.8a shows the results of
Algorithm 3.3. This image is identical to Figure 5.6d and has a SNR of 8.76 dB and a LSMSE
of 128.09. Figure 5.8b shows the results of Algorithm 5.1. Figure 5.8b has a SNR of 12.45 dB
and a LSMSE of 20.76. Figure 5.8c shows the results of Algorithm 5.2. Figure 5.8c has a SNR
of 12.25 dB and a LSMSE of 19.76. Next we severed one of the neural interconnections to a
neighbouring neuron for every neuron in the network. The same connection was severed for
each neuron in the network. This would be expected to degrade the performance of the net-
work. Using the same parameters, the restorations were performed again. Figure 5.8d shows
the results of restoring the image using Algorithm 3.3 with a faulty network. The SNR is -4.21
dB and the LSMSE is 5889.42. Figure 5.8e shows the results of restoring the image using
Algorithm 5.1 with a faulty network. The SNR is 12.15 dB and the LSMSE is 23.23. Figure
5.8f shows the results of restoring the image using Algorithm 5.2 with a faulty network. The
SNR is 10.06 dB and the LSMSE is 40.13. From these results we can see that Algorithm 3.3 is
not very tolerate of errors in weights. The image produced by the faulty network is very
degraded and has poor values of SNR and LSMSE. On the other hand, Algorithm 5.1 and
Algorithm 5.2 have almost no visual differences between images restored using the correct net-
work and images restored using the faulty network. The images restored using the faulty net-
work have only slightly worse values of SNR and LSMSE compared to the image restored
using the correct network. The reason that Algorithm 5.1 and 5.2 are more fault-tolerant than

Algorithm 3.3 is due to the LSMSE-related terms in these algorithms. The damaged weights in
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Algorithm 3.3 produced streaks in the image. These streaks would cause the pixels in their
vicinity to have very high local variances. Since Algorithm 3.3 does not consider the local
regional statistics of the image, the streaks are not suppressed. However Algorithm 5.1 and
Algorithm 5.2 attempt to match local variances in the restored image with an estimate of the
original image. The streaks are therefore suppressed by Algorithms 5.1 and 5.2. It is clear that
Algorithms 5.1 and 5.2 are very robust and are not greatly affected by errors in the network.
Algorithm 5.1 is more robust than Algorithm 5.2 on the edges because of the fact that the log-
ratio relationship between the local variance and the target variance used by Algorithm 5.2 was
developed to de-emphasise the LSMSE effect on edges. Algorithm 5.1 has its greatest effect on
edges, whereas Algorithm 5.2 was specifically designed to have the least effect on edges and
the greatest effect on smooth regions. However both algorithms are still quite tolerate of net-
work errors. This is due to the fact that the LVMSE based terms in these algorithms can never
be affected by severed neural connections. The author believes that this aspect is a powerful

feature of the proposed algorithms.
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(f)

Figure 5.8:Images restored using correct and faulty networks.
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5.7 Summary

In Chapter 2, a novel error measure was introduced which compares two images by consid-
eration of their regional statistical differences rather than their pixel-level differences. It was
found that this error measure more closely corresponds to human visual perception of image
guality. Based on the new error measure, two cost functions were developed. The first cost
function was based closely on the LVMSE error measure introduced in Chapter 2. This cost
function was analysed and shown to be well behaved. The analysis of the first modified cost
function suggested that improvements could be made by incorporating a logarithmic version of
the LVMSE into the standard cost function. The second cost function was hence developed and
shown to be well behaved. Algorithms to optimise these cost functions were designed based on

adaptation of the neural network approach to optimising constrained least square error.

The proposed algorithms were shown to suppress noise strongly in low variance regions
while still preserving edges and highly textured regions of an image. The algorithms were
shown to perform well when applied to both grayscale and colour images. It was also shown

that the proposed iterative algorithms are very robust.
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Chapter 6: Conclusion

6.1 Introduction

This chapter summarises the material presented in this thesis. Section 6.2 details the overall
objectives of this thesis. Section 6.3 summarises the background material presented in Chapter
1. Section 6.4 considers the material presented in this thesis regarding the problem of restoring
images for human observers. Section 6.5 summarises advances made to the basic neural net-
work algorithm. Section 6.6 details the extension of the basic neural network algorithms to
incorporate some concepts of human perception. Section 6.7 examines some future research

directions for this field. Section 6.8 concludes this chapter.

6.2 Overview of Thesis Objectives

In the field of image restoration, the recent advances in the use of Hopfield-based neural
networks have been exciting. The neural network approach provides a level of flexibility and
adaptability which the author believes is far from being fully exploited. For this reason, this
thesis shows how this approach can be expanded to handle the cases of semi-blind image resto-
ration, adaptive constraint restoration and the restoration of images suffering from spatially

variant degradations.

Another underdeveloped research field is the problem of incorporating concepts of the
human visual system into the field of image processing, especially image restoration. The

author feels that the field of image processing is extensively intertwined with these concepts,
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and as such, they deserve further investigation. Therefore a very important objective of this
thesis is to develop usable image fidelity measures, which can describe important human visual
criteria, and yet be of a form which allows easy incorporation into image restoration (and gen-

eral image processing) algorithms. Some such algorithms have been presented in this thesis.

6.3 Background

In Chapter 1, background material was presented. Various types of image degradation and
their causes were described. Image degradations could be described as linear or non-linear and
spatially variant or spatially invariant. This was followed by a description of the basic concepts
involved in the problem of restoring degraded images to approximations of their original

forms.

In that chapter a review of the basic classical methods of image restoration was given. These

methods were classified into transform-based techniques or algebraic techniques.

Among the transform related techniques we considered restoration methods such as the
Inverse filter, Wiener filter, parametric estimation filters, Kalman filters and homomorphic fil-

ters.

For the algebraic restoration techniques, we considered methods such as pseudoinverse res-

toration, singular value decomposition pseudoinverse restoration, Wiener estimation, and con-

strained restoration.

We pointed out each of these classical methods have one serious drawback or another. Some
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of them can be computationally expensive, while most do not adapt easily to varying algorith-
mic parameters spatially during the restoration procedure. For this reason, we looked at emer-

gent image restoration methods and research directions.

We considered the recent neural network approaches to image restoration. These
approaches are increasing in popularity due to the ease of implementing a wide range of filters
and the ability of neural networks to alter neuron weights to implement truly adaptive image

restoration.

We also studied some new methods for the restoration of images degraded by spatially vari-
ant distortions, and we considered general algorithms for adaptive image restoration. Recent
research in the difficult field of blind image restoration was presented and a number of recent
algorithms described. The problems involved in the restoration of colour images were detailed

and recent research papers in this field were summarised.

6.4 Perception Motivated Error Measures

This thesis studied the problem of incorporating concepts from the human visual system
into image restoration algorithms. It was seen that images restored without using any concepts
from the human visual system can hardly take into account the human concepts of a “good” or
“bad” image. Without these concepts, a restoration algorithm will invariably produce subopti-

mal results from a human point of view.

Most image restoration algorithms are based on some measure of image quality, such as the

mean square error (MSE). However error measures such as the MSE are derived from statisti-
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cal considerations, such as the idea that a bad image is one where the noise power is too great.
These considerations have little relationship to the way that humans perceive images. Humans
do not concentrate on the values of individual pixels or the global statistics of the image, but
instead are concerned with edges and textures within the image. Edges and textures can be
considered as local statistical properties, rather than global ones. Research has been done into
various forms of image error measures. Many of these measures rely on complex models, or
empirically derived constants, and are hence difficult to incorporate into image restoration
algorithms. In order to feasibly incorporate perception into restoration, the author developed a
simple, yet powerful, image error measure based on the comparison of local regional statistics.
The proposed error measures have two formats; LSMSE (local standard deviation mean square
error) and LVMSE (local variance mean square error). An experiment was performed which
showed that the LSMSE and the LVMSE provide a better match to human visual appraisal

when compared to the SNR.

6.5 Advances on the Basic Neural Network Algorithm

In Chapter 3, previous work performed in the field of neural network based image restora-
tion was reviewed and the basic algorithms described. The author then presented a modified
algorithm which uses a more advanced neuron. The new algorithm is able to minimise each
neuron’s contribution to the overall energy function in one step, rather than the many steps
required by previous algorithms. The author then shows that this results in a great increase in
speed without any subsequent reduction in restoration quality. The author shows how the algo-
rithm may be extended to the case of restoring images suffering from spatially variant degrada-

tions through the use of multiple “weighting masks”.
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In Chapter 4, the new algorithm is used as a basis for extending the functionality of the neu-
ral network restoration technique. In particular, adaptive regularisation is introduced. The
adaptive constraint algorithm requires a method of selecting the correct constraint value for
each neuron (pixel) in the network. In Chapter 4, the author considers how this can be
achieved. It is first shown that using the technique of gradient descent to select the regularisa-
tion constant will produce poor results. Given the relevance of local statistics and the human
visual system, the author presents a method for assigning constraint values to each pixel based
on a log-linear relationship between local variance and the value of the regularisation constant.
It is described how using this constraint selection method may not only be able to implement
an adaptive regularisation term with a view to improving the visual appearance of images for a
human observer, but may also be applicable to the problem of semi-blind image restoration.
This is due to the fact that a varying regularisation term can alternately be modelled as a vary-
ing estimation of the degrading PSF. The multiple weighting mask concept for space variant

processing is then taken a step further to allow adaptive regularisation.

A number of experiments are performed which show the results of applying the adaptive
constraint network approach to the problems of standard image restoration, restoration effi-
ciency, and semi-blind image restoration. The adaptive algorithm is shown to perform better

than other restoration techniques for these problems.

6.6 Perception-Based Algorithm Modifications

Despite the success of the adaptive constraint algorithm presented in Chapter 4, the author

considered the problems involved with using the MSE as the sole measure of image fidelity. In

Chapter 5, the author presented two new restoration algorithms, which incorporate error meas-
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ures based on the LVMSE error measure presented in Chapter 2.

The first restoration algorithm is based on minimising the constrained least square error
function with an additional term which describes the LVMSE of the image and the second cost
function is a variation of LVMSE, but with greater emphasis on low levels of local variance, by

taking the logarithm of the ratio of the local statistics.

The author presented algorithms to minimise both of these cost functions and presented a
number of experiments which show that the LSMSE-modified cost functions perform better
than the standard constrained least square error cost functions for the problems of standard

grayscale image restoration, colour image restoration, and network error tolerance.

One of the most important findings regarding the modified cost functions is that they are
very robust. When interconnections between neurons were severed in the networks, the stand-
ard neural network algorithms produced very poor results. However by including details
regarding the local statistical properties of the image into the restoration cost function by the
use of a LVMSE-related term, images could be restored with very little reduction in quality.

This is a powerful feature of the algorithms presented in Chapter 5.

6.7 Future Work

There are a number of future research topics which still remain to be pursued in this field.

Better models of the adaptive constraint algorithm could be developed, especially in regard to

the method of constraint assignment, which needs to be formalised.
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In Chapter 5 we examined the incorporation of LSMSE based terms into the standard con-
strained least square error cost function. Two variants of LVMSE were considered as candi-
dates for inclusion in modified cost functions. Both measures restored the image adaptively
and produced better results when compared to non-adaptive methods, especially when noise
levels were high. However there exists other variations of the LSMSE measure. It would be
interesting to examine the many possible variations of the LSMSE and the resultant restoration
algorithms. Some variations may prove superior to others, or be tailored to a particular image
or problem. Here we have tailored the standard restoration algorithms to the problem of restor-
ing images for human appraisal, but more research needs to be done into the more general con-
cept of “problem tailored algorithms”. A future research direction would be incorporating into
the algorithm information about the correlation between the colour co-ordinates and compar-
ing this with existing techniques such as the well known Wiener filter proposed by Hunt and

Kubler [81].

6.8 Summary

This chapter summarised the material covered in this thesis. The major developments and

contributions have been described, as have been the experiments performed and their results.
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Appendix A: Calculation of Weights and Bias Inputs

The cost function we are attempting to minimise is given by:

E = %||g—Hf||2+:—2L)\||Df||2 (A1.1)

wheref is the restored image estimatés a constant, anD is a smoothness constraint oper-

ator. LetL = MN be the number of neurons (pixels) in the network.

The formula for the energy of the neural network is given by:
fwi-p'f+c (A1.2)

where the i(j)th element ofW corresponds to the interconnection strength between neurons

(pixels)i andj in the network and vectdrcorresponds to the bias input to each neuron.

Expanding (A1.1) we get:



147

-

'O Lol .
z [(gp) _ngz hp|f + Z hplf z thfJD+ )\ z DZ EDZ pj JD
ple i=1 i=1 j=1 = Q: qu

1
NI

%Z<9p>2 Z nghpuf’f-z th.f Zh Foal )\z delf Zd ,

p=1li=1 p=1li=1 j=1 p=1li=1 j=1
1L L L 1 L L L L L
=532 2 > hfihfivsd 3 5 5 dyfidufi= 3 3 gphyifs +'Z (9p)°
p=1li=1j= p=1li=1j=1 p=1li=1
Hence
1 L L DL . ,
EZ Z %pz o] p|+)\ Z dIDJ pIfo Z Z gphplf +— Z (gp) (AL1.3)
=1j=17p=1 i=lp=1

Expanding (Al1.2) we get:

L L
E:_%Z  w;fifj- zbf+c (AL.4)

i=1j=1 i=1
By equating the terms in equations (A1.3) and (A1.4) we find that the neural network model

can be matched to the constrained least square error cost function by ignoring the constant,

and setting:

L
wi == Y hyhy-A Y dydy, (AL1.5)
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and

L
bi = Z gphpi (A16)
p=1

wherew; is the interconnection strength between pixedsdj, andbj is the bias input to neu-
ron (pixel)i. In addition,hy; is the (,))th element of matriXd from equation (Al1.1) and; is

the (,j)th element of matrid.
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Appendix B: Analysis of the Adaptive Constraint Approximation

The weights for the adaptive constraint method can be computed by generalising the con-

strained least square error cost function.

E = 3g-Hil*+3l/ADH? (A2.1)
where
Ay OO
JA = 0 0 (A2.2)

0 0 ./ Aum

is aL by L diagonal matrix to reflect the adaptive processing nature. In this model each pixel
is assigned a constraint valde DefineD' = JAD . Note that the elements Bf  are given
by:

dij' = JAd

Using equation (A1.5), the weight between neuiicarsd; in the network is given by:

L L
Wy = = % hpihg— S dyi'dy)
p=1 p=1
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L
Apdpid, (A2.3)
1

L

== > hpihgi=
p=1 p

Equation (A2.3) is difficult to implement compared to the single constraint case, (A1.5).

However (A2.3) can be greatly simplified. Consider the approximation:

L L
wi == Y hghy—kA Y dpdy, (A2.4)
p=1 p=1

whereA; is the constraint value assigned to neurpandk is a scaling constant. Equation
(A2.4) is much easier to calculate for each neuron since it only relies on the valusssigned

to neuron, and does not depend on the valuea afsigned to other neurons in the neighbour-
hood of neuron. If we have a finite set of available valuesXafthen by using (A2.4) we will
require only one weighing mask for eakhvalue in the set. If we instead use (A2.3) we will
have to recalculate the weights for each neuron in the network. This will, for obvious reasons,
greatly degrade the performance of the network. The next question we must ask is how well

does (A2.4) approximate (A2.3) and when can we expect the approximation to break down.

Note that the concept of a “weighting mask” described in Chapter 3 used the fact that a neu-
ron only has non-zero connections to other neurons within a certain neighbourhood centred on
the neuron. If a neuron lies in a region where all its neighbours were assigned the same value
of A, then (A2.3) would be the same as the weighting mask produced by using a constant value

of A for all pixels in the image. This means that a constant can be found such that (A2.3) can be

accurately approximated by (A2.4) awg = W in the vicinity of this neuron.
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If some of the neurons in the neighbourhood of neurbave different values of, but the

difference between; andA; is not great, then (A2.4) is still a good approximation although

wj; # wj; . However we can expect tha; = w,

If some of the neurons in the neighbourhood of neuroave very different values afthen

the approximation will not hold. We cannot expect tlmq]-t: Wj; . This is not a big problem

however, since regions where neighbouring neurons have greatly different vahiesust be

edges and highly textured regions. The reasons for this will be further explained in Chapter 4.

In such regions, noise is not readily noticable and so any errors made by approximating (A2.3)

as (A2.4) will be masked. Hence the approximation provides increased ease of use and only

breaks down in those regions where the effects are least noticable.
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Appendix C: Analysis of the Factors in the Gradient Descent Method.
FACTOR A
FactorA is given by:

L

L
j=1p=1

L L
whereK = ¥ hyhy ) = [HTHTT .
j=1p=1

The factorK is the value of pixelfi after a double application of the degrading PSF to the

image estimate. Using the approximate formulaHiothenH is symmetricH '=H. Note that

L
sinceb; = z hpiyp ,bj is the value of pixelfi after a single application of the degrading
p=1

PSF to the degraded image, which is itself the result of applying the degrading PSF to the orig-

inal image. Therefore in effect;

L L
T
b, = Z Z hpihpjfj = [H Hf]; (A3.1)
p=1j=1

wheref is the estimate of the original when noise is not considered. The algorithm would
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eventually returr as the restored image when= 0 . Hence we obtain:

A= HHf —HTHf = H'H(f - ) (A3.2)

whereAy is the column vector whose elemems the value of factoA computed at neuroin

during thekth iteration of the algorithm.

Considering (A3.2), it is obvious that the entrieshipmay be positive or negative and will

approach zero as the image estimate approaches the original image in the event of no noise. We

can expech to have its greatest values in the initial iteration of the algorithm.

If the initial image estimate i§ = g = Hf | then:

Ap = HH(Hf —=f) = H' H(H —1)f (A3.3)

As long as the additive noise is not too severe, the double application of the low-pass
degrading PSF given biyl will remove most of the noise in the smooth regions of the image.
SinceH —1 is a high pass filter, factérwould tend to be large in high variance regions and

small in low variance regions of the image.

FACTOR B

L L
For factorB we haveB = Z z dp;d
j=1p=1

pjfj , Which can be rewritten as:
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B =[D'Df] (A3.4)

SinceD' = D, factorB is hence the value of pixef; after a high-pass filter has been applied

twice to the image estimate. On edges and high texture regions, we would expect the magni-
tude of factomB to be large. However since the high-pass filter is applied twice, noise and very

sharp edges would produce a larger magnitud® tlan more gradual edges in the image. It is

important to note thaB may be positive or negative depending on whether the valug of is

higher or lower than the mean of its neighbours, howdeiill tend to zero in low variance

regions of the image.

FACTORS C & D

FactorsC andD are given byC =

NI

L L
Z héi andD = % Z dii . Both these factors are
p=1 p=1

constantC will always be quite small and in the case of a degrading PSF modeflacdbltby 5
Gaussian blur of standard deviation 2.0 in be#ndy directions,C = 0.28. FactoD depends

upon the type of high-pass filter chosen and typical values are of the order of 50 to 500.
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GLOSSARY

Cost Function: A function of any number of variables whose output is a sin-
gle number. The function can be minimised to find an optimal

set of parameters.

Blind Image Restoration: Image restoration performed with no knowledge of the

degrading PSF details.

Human Visual System: The human biological system for the processing of visual
information. This description includes visual properties and
processing inherent in the eyes, optical nerve and visual cen-

tres of the brain.

lll-Posed Problem: A problem with too few constraints and hence has a number
of possible solutions. Image processing problems are often of

this form.

Neural Networks: A computational model consisting of numerous simple
processing units connected in a grid to each other. Motivated

by biological systems.

Point Spread Function (PSF): A two dimensional impulse response. The response of a single

point source to a linear imaging system.

Restoration: The correction of an image suffering some form of distortion,

noise or degradation.

Semi-Blind Image Restoration: Image restoration performed with incomplete knowledge of
the degrading PSF.

Spatially Invariant PSF: A PSF whose form does not depend on its position in the

image.
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Spatially Variant PSF: A PSF whose form varies according to its position in the

image.
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