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Abstract

This thesis describes research into the field of image restoration. Restoration is a process by

which an image suffering some form of distortion or degradation can be recovered to its origi-

nal form. Two primary concepts within this field have been investigated.

The first concept is the use of a Hopfield neural network to implement the constrained least

square error method of image restoration. In this thesis, the author reviews previous neural net-

work restoration algorithms in the literature and builds on these algorithms to develop a new

faster version of the Hopfield neural network algorithm for image restoration. The versatility of

the neural network approach is then extended by the author to deal with the cases of spatially

variant distortion and adaptive regularisation. It is found that using the Hopfield-based neural

network approach, an image suffering spatially variant degradation can be accurately restored

without a substantial penalty in restoration time. In addition, the adaptive regularisation resto-

ration technique presented in this thesis is shown to produce superior results when compared to

non-adaptive techniques and is particularly effective when applied to the difficult, yet impor-

tant, problem of semi-blind deconvolution.

The second concept investigated in this thesis, is the difficult problem of incorporating con-

cepts involved in human visual perception into image restoration techniques. In this thesis, the

author develops a novel image error measure which compares two images based on the differ-

ences between local regional statistics rather than pixel level differences. This measure more

closely corresponds to the way humans perceive the differences between two images. Two res-

toration algorithms are developed by the author based on versions of the novel image error

measure. It is shown that the algorithms which utilise this error measure have improved per-



formance and produce visually more pleasing images in the cases of colour and grayscale

images under high noise conditions. Most importantly, the perception based algorithms are

shown to be extremely tolerant of faults in the restoration algorithm and hence are very robust.

A number of experiments have been performed to demonstrate the performance of the vari-

ous algorithms presented.
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Chapter 1: Introduction

1.1 Overview of This Chapter

This chapter provides a background for the reader regarding the subject of image restora-

tion. Understanding the fundamental theory, methods and concepts, and the current state of the

art in the field of image restoration is vitally important to the understanding of the material pre-

sented in the subsequent chapters of this thesis.

This chapter begins with a short discussion on image degradations and their mathematical

models in Section 1.2. Section 1.3 details the basic theory of image restoration and the classi-

cal techniques used to restore images, while Section 1.4 details new emerging techniques for

adaptively restoring images and handling colour images and images degraded by spatially var-

iant distortion. Section 1.5 considers the way humans perceive visual information and how this

information may be incorporated into restoration techniques. Section 1.6 provides an overview

of the subsequent chapters of this thesis and Section 1.7 summarises this chapter.

1.2 Image Degradations

All lifeforms require methods for sensing the environment. Being able to sense one’s sur-

roundings is of such vital importance in the natural world that ever since life has appeared

upon the planet, there has been a constant race to develop more sensory methods and increased

sensory accuracy to out-compete other creatures. As a consequence of this “sensory arms

race”, advanced life forms have at their disposal an array of highly accurate senses. Some unu-
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sual sensory abilities are present in the natural world, such as the ability to detect magnetic

fields and electric fields, or the use of sound waves to determine the internal structure of

objects. Despite this, one of the most prized and universal senses utilised in the natural world is

vision.

Advanced animals living above ground rely heavily on vision. Birds and lizards maximise

their fields of view with eyes on each side of their skulls, while other animals direct their eyes

forward to observe the world in three dimensions. Nocturnal animals often have large eyes to

maximise light intake, while predators such as eagles have very high resolution eyesight to

identify prey while flying. The natural world is full of animals of almost every colour imagina-

ble. Some animals blend in with surroundings to escape visual detection, while others are

brightly coloured to attract mates or warn aggressors. Everywhere in the natural world, animals

and plants make use of vision for their daily survival. The reason for the heavy reliance on eye-

sight in the animal world is simple, vision is by far the best tactical sense available. To survive

in the wild, animals must be able to move rapidly. Hearing and smell provide warning regard-

ing the presence of other animals, yet only a small number of animals such as bats have devel-

oped these senses sufficiently to be used to run away from predators, or chase down prey. For

the majority of animals, only vision enables efficient rapid movements.

Humans rely on vision to a much greater extent than most other animals. Unlike the major-

ity of creatures we see in three dimensions with high resolution and colour. In humans the

senses of smell and hearing have taken second place to vision. Humans have more facial mus-

cles then any other animal, because in our society facial expression is used by each of us as the

primary indicator of the emotional states of other humans, rather than the scent signals used by

many mammals. For this reason it is not surprising that we naturally desire to give our
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machines and computers the ability to see. Since the human world revolves around visual stim-

uli, machines will never be able to fully interact with humans without being able to process

visual information.

However the task is not simple, the human visual system is the product of billions of years

of evolution and is naturally highly complex. To give machines some of the abilities that we

take for granted is the subject of intensive on-going research.

This thesis is concerned with one of the primary visual information processing problems,

handling degraded images. Images are often recorded under a wide variety of circumstances.

As imaging technology is rapidly advancing, our interest in recording unusual or irreproduci-

ble phenomena is increasing as well. We often push imaging technology to its very limits. For

this reason we will always have to handle images suffering from some form of degradation.

Since our imaging technology is not perfect, every recorded image is a degraded image in

some sense. Every imaging system has a limit to its available resolution and the speed at which

images can be recorded. Often the problems of finite resolution and speed are not crucial to the

applications of the images produced, but there are always cases where this is not so. There

exists a large number of possible degradations that an image can suffer. Common degradations

are blurring, motion and noise. Blurring can be caused when an object in the image is outside

the cameras depth of field sometime during the exposure. For example, a foreground tree might

be blurred when we have set up a camera with a telephoto lens to take a photograph of a moun-

tain. A blurred object loses some small scale detail and the blurring process can be modelled as

if high frequency components have been attenuated in some manner in the image [1,2]. If an

imaging system internally attenuates the high frequency components in the image, the result
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will again appear blurry, despite the fact that all objects in the image were in the camera’s field

of view. Another commonly encountered image degradation is motion blur. Motion blur can be

caused when a object moves relative to the camera during an exposure. Such as a car driving

along a highway in an image. In the resultant image, the object appears to be smeared in one

direction. Motion blur can also result when the camera moves during the exposure. Noise is

generally a distortion due to the imaging system rather than the scene recorded. Noise results

in random variations to pixel values in the image. This could be caused by the imaging system

itself, or the recording or transmission medium. Sometimes the definitions are not clear such as

in the case where an image is distorted by atmospheric turbulence, such as “heat haze”. In this

case, the image appears blurry due to the fact that the atmospheric distortion has caused sec-

tions of the object to be imaged to move about randomly. This distortion could be described as

“random motion blur”, but can often be modelled as a standard blurring process. Some types of

image distortions, such as certain types of atmospheric degradations, [3-7], can be best

described as distortions in the phase of the signal. Whatever the degrading process, image dis-

tortions can fall into two categories [1, 2].

• Some distortions may be described as spatially invariant or space invariant. In a space invar-

iant distortion all pixels have suffered the same form of distortion. This is generally caused

by problems with the imaging system such as distortions in optical system, global lack of

focus, or camera motion.

• General distortions are what is called spatially variant or space variant. In a space variant

distortion, the degradation suffered by a pixel in the image depends upon its location in the

image. This can be caused by internal factors, such as distortions in the optical system, or by

external factors, such as object motion.
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In addition, image degradations can be described as linear or non-linear [1]. In this thesis,

we consider only those distortions which may be described by a linear model. For these distor-

tions, a suitable mathematical model is given in Chapter 2.

1.3 Classical Restoration Techniques

The previous section discussed the various types of distortion that an image may suffer. In

some cases, the image degradations encountered in everyday photography are either consid-

ered not severe enough to merit correction, or the scene imaged is not considered important

enough to have the distortions corrected. However there are many cases where this is not so.

Photographs of scientific interest taken of rare phenomena can suffer from many distortions. It

may be too expensive or impossible to duplicate the phenomena. Consider a space probe sent

to take photographs of a distant planet. If the images have become blurred or degraded by noise

during the transmission back to Earth, it may not be possible to instruct the spacecraft to take a

second image of the planet. If a security camera photographs a crime in progress, a blurry pic-

ture may be the best hope for identifying the offender. In addition, some imaging technologies

may have inherent problems. There will always be cases when the image is considered impor-

tant enough to attempt to correct the distortion.

The act of attempting to obtain the original image given the degraded image and some

knowledge of the degrading factors is known as “image restoration”. The problem of restoring

an original image, when given the degraded image, with or without knowledge of the degrading

point spread function (PSF) or degree and type of noise present is an ill-posed problem [1,8 -

10] and can be approached a number of ways such as those given in [1, 11 - 13]. For all useful
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cases a set of simultaneous equations is produced which is too large to be solved analytically.

Common approaches to this problem can be divided into two categories, inverse filtering or

transform related techniques, and algebraic techniques. An excellent review of image

restoration techniques is given by [1]. The following references also contain surveys of

restoration techniques, Katsaggelos [14], Sondhi [15], Andrews [16], Hunt [17], and Frieden

[18].

1.3.1 Transform Related Restoration Techniques

Transform related restoration techniques involve analysing the degraded image after an

appropriate transform has been applied. By acting directly on the transformed image before

applying an inverse transform, or using the transformed image information to develop an

inverse filter, an image may be partially restored. A number of transform related techniques

exist and all of the following techniques are described in [1].

A. Inverse Filter

In the fourier domain the transfer function of this filter is the inverse of the transfer function

of the distortion applied to the image. This produces a perfect restoration in the absence of noise,

but the presence of noise has very bad effects. Some ad-hoc solutions modify the filter transfer

function so that it approaches zero in regions where the noise power is greater than the signal

power.
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B. Wiener Filter

This filter is better than the inverse filter in the presence of noise because it usesa priori

statistical knowledge of the noise field. The transfer function is chosen to minimise the mean

square restoration error using statistical information on both the image and noise fields. Ozkan,

et al. recently examined a method of accounting for spatial and temporal correlations when

using multiframe Wiener filters to restore image sequences [19].

C. Parametric Estimation Filters

These filters are variations on the Wiener filter and are described by E.R. Cole [20]. Some

examples are:

• POWER SPECTRUM FILTER: This filter matches the power spectrum of the reconstructed

image to the original image. However, the power spectrum, unlike the fourier spectrum, is

not unique to an image. Hence this filter may result in a large mean square error, unlike the

traditional Wiener filter. A small variation in the transfer function of the power spectrum fil-

ter produces a very similar filter called the Geometrical mean filter.

• CONSTRAINED LEAST-SQUARES FILTER: This Wiener filter variation adds an extra

term to the Wiener filter transfer function in the form of a design spectral variable. This var-

iable may be used to minimise higher order derivatives of the estimate [21].

Some work has been done recently in the field of adaptive image restoration using recursive

image filters such as that presented by Erler and Jernigan [22]. Mallikarjuna and Chaparro
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investigated using a composite model of an image, where the gross information had been

separated from the textural information [23]. After this had been achieved, the nonstationarities

in the mean and autocorrelation could be used to help restore the image.

D. Kalman Filter

The Kalman filter is a recursive filter for image restoration which has been examined a great

deal recently. Wu and Kundu examined a faster simpler version of this filter and modified the

filter to take account of non-gaussian noise [24]. Citrin and Azimi-Sadjadi also investigated

image restoration with the Kalman filter [25].

E. Homomorphic Filter Restoration

Another class of filters which work on the principle of transforming the degraded image

into another representation space. In theory, the new representation space may be such that the

restoration operations are more easily performed. The concept of “power spectrum equalisa-

tion” is used as a restoration criteria.

1.3.2 Algebraic Restoration Techniques

Algebraic techniques involve attempting to find a direct solution to the distortion by matrix

inversion techniques, or techniques involving an iterative method to minimise a degradation

measure.
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A. Pseudoinverse Spatial Image Restoration

This set of image restoration techniques attempt to restore an image by considering the

vector space model of the image degradation and attempting to restore the image in this vector-

space domain. This involves finding an approximation to the inverse of the matrix blurring

operator which is multiplied with the column scanned image vector to produce the degraded

observed image. These blur matrices are invariably very large and it is not computationally

feasible to invert them. However it is often possible to find the inverses of the row and column

operators separately if the blur matrix has a special form and apply them sequentially to the rows

and columns of the image. This technique is known as pseudoinverse image restoration. This

technique does not take into account the effects of noise in the calculations of the pseudoinverse

and so is sensitive to noise in the image.

B. SVD Pseudoinverse Spatial Image Restoration

Using the technique of singular value decomposition (SVD), any matrix can be decomposed

into a series of eigenmatrices. By applying this technique to decompose the blur matrix, the

resultant eigenmatrices can be used to develop an estimation technique where successive

estimations of the reconstructed image are based on the previous estimate. This method is

effective with problems of ill-conditioning, since it is possible to interactively terminate the

expansion before numerical problems result. However the presence of noise in the observed

image can often lead to numerical instability.
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C. Wiener Estimation

In this method the noise field is modelled again as a two-dimensional random process with

a known mean and co-variance function. In addition, the ideal image is assumed to also be a

sample of a two-dimensional random process with known first and second moments. The

restoration matrix and a bias vector are found to minimise the mean square error formula.

D. Constrained Image Restoration

Previous techniques considered images only as arrays of numbers, however a restored image

is spatially smooth and strictly positive in amplitude. Often constrained restoration techniques

are based on Wiener estimation and regressional techniques. Reeves and Mesereau have

developed a method of assessing the validity of sets of constraints using cross-validation [26].

There are a great number of possible constraints which may be applied by the following

methods:

• specification of individual pixel values.

• ratios of values of some pixels.

• amplitude limits.

Oftena priori information is available for use as constraints, e.g. amplitude limits to fit the

image into the dynamic range of the display. It is usually better to incorporate the constraints in

the restoration process rather than to apply them to the final results. Many different constraint

parameters exist:
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• Positivity: By taking the log of an image before restoration, the resultant estimate is guaran-

teed to be strictly positive. Recently Snyder, et al. examined the restoration of images using

a positivity constraint, and proposed a method of regularising the solution [27].

• Probability Density approaches: The techniques of maximum entropy, maximum likeli-

hood, and maximum a posteriori are constraints developed to estimate a probability density

from observation of its moments. J.P. Burg’s technique yielded a closed form solution to

this problem, however it is unstable in the presence of noise [28]. J.A. Edward and M.M.

Fitelson developed a technique based on the maximum entropy principle with a positivity

constraint [29]. P.A. Jansson, et al. and T.S. Huang, et al. have developed methods based on

amplitude constraints [30, 31]. Gokmen and Li tackled the problem of edge detection and

surface reconstruction using a smoothness constraint that varied spatially [32]. Zervakis and

Venetsanopoulos have recently examined the problem of restoring images suffering non-lin-

ear distortion using a least squares restoration measurement [33].

1.4 Emergent Restoration Techniques

A number of new restoration methodologies have developed in recent years as has interest

in new aspects of image restoration problems. Researchers are now becoming very interested

in the subjects of spatially variant restoration, adaptive restoration, blind restoration, and col-

our restoration.

1.4.1 Neural Network Approach

In this approach the image is restored by the minimisation of a cost function. However, this



12

cost function optimisation is performed by using a neural network approach. In this way neural

networks can be used to implement a range of filters to an image. The iterative solution of the

minimisation approach to image restoration is very amendable to neural network implementa-

tion. The main reason is that the learning concept associated with neural networks brings truly

adaptive processing to restoration so that such iterative techniques are not just efficient, but

produce high quality results. Additional benefits offered by neural networks are their extremely

parallel nature [34]. Zhou, et al. proposed a Hopfield neural network approach to constrained

mean square error restoration [35]. The network was further optimised by Paik and Katsagge-

los [36]. Iiguni, Sakai and Tokumaru developed several new learning algorithms for a multilay-

ered neural network based on the Extended Kalman filter [37]. Steriti and Fiddy compared the

Hopfield network energy minimisation approach to the singular value decomposition method

of finding a matrix inverse and found that the Hopfield method was superior [38]. The neural

network approach to image restoration will be examined more closely in Chapter 3.

1.4.2 Space Variant Methods

Most of the algorithms in Section 1.3 do not adapt easily to the case of images degraded by

spatially variant distortion. Since most degraded images in the real world suffer some form of

spatially variant degradation, recent years have seen increasing interest in this field. A number

of interesting algorithms have been developed.

Perry and Guan showed that the neural network-based algorithms could be extended to the

spatially variant case, [39], the development of which is detailed in Chapters 3 and 4. Koch, et

al. used a multiple model Extended Kalman filters (EKF) procedure to restore images with var-

iations in the blur parameters [40]. Ozkan, et al. developed a method to handle spatially variant
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blurs using the method of projection onto convex sets (POCS) [41]. Recently Sung and Choi

presented a method for restoring images suffering spatially variant blur using a self-organising

neural network (SONN) to learn the characteristics of the spatial variance [42]. Patti, et al. pro-

posed a new approach for restoring spatially variant restoration of progressive and interlaced

video [43]. Their method is based on Kalman filtering.

1.4.3 Adaptive Methods

Many image restoration methods assume that the image can be modelled by a stationary

process. This is however not a valid assumption. The local regional statistics of different

regions in the image are in general not the same. For this reason if a global regularisation is

chosen for all pixels in the image, edges will invariably be smoothed in order to increase noise

suppression. The restoration quality is sensitive to the value of the regularisation term. If the

regularisation term is weighted too weak in the error measure, the resultant restored image will

contain noise artifacts. On the other hand, if the regularisation term is weighted too strongly in

the error measure, the resultant restored image will be blurred. Various methods have been

employed to chose the optimal value of regularisation parameter for image restoration [44-46].

In [47], the authors used fuzzy logic control to adaptively vary the regularisation parameter

to achieve the optimal balance between removing edge ringing effects and suppressing noise

amplification. Their method was based on gray level range within the neighbourhood of each

pixel and was particularly tailored for gamma camera images where Poisson noise dominates.

In [48], the authors used a model-based neural network approach to adaptively vary the resto-

ration parameters. In [49], a regularisation functional was developed to vary the regularisation

parameter from iteration to iteration in a restoration algorithm. Reeves used a generalised
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cross-validation (GCV) criterion restore images using a spatially variant regularisation term

[50]. The use of the mulitresolution nature of the wavelet transform as a basis for spatially

adaptive regularisation for restoration was also proposed [51, 52].

1.4.4 Blind Image Restoration

In this field of study, the blur degradation is not known in advance. Some surveys of blind

deconvolution methods are given by [53] and [54]. There are a number of approaches to this

problem.

One approach is to examine the image to determine the blur impulse response and noise

power. This is usually done by isolating the image of a suspected known object in the image and

observing how the object was degraded. A point source or edge in the image is often the most

useful. Noise variance can be estimated by isolating a region of relatively constant background.

Savakis and Trussell have investigated identifying the blurring function by computing the best

match between the restoration residual power spectrum and its expected value [55]. Reeves and

Mersereau used generalised cross-validation in their investigation in order to identify a blurring

function [56]. Galatsanos and Katsaggelos studied the problem of choosing the regularisation

parameter and estimating the noise variance in image restoration [57]. Pavlovic and Tekalp

recently developed a method of identifying blur based on parametric modelling of the blur in

the continuous spatial domain [58]. Trussell and Fogel proposed a method to estimate and

restore spatially variant motion blurs in image sequences by examining the relative motions of

different parts of the image [59]. Anarim, et al. presented a technique for the identification of

blur parameters using expectation maximisation (EM) [60].
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Another approach is to indirectly determine the degrading function using multiple images or

similar images:

• Temporal redundancy: in some cases such as television, we might be presented with many

frames containing the same image, in this case noise can be removed by averaging the

images. If each frame contains the same subject but different blur point spread functions,

the image can be restored by conversion to the fourier domain, taking the log of the image,

and temporal averaging [1].

• Single frame images: these images can be restored by examining ideal images with similar

content to the suspected contents of the degraded image. Stockham, et al. developed a

method whereby some of the parameters of the restoration are discovered by sectioning the

image, taking it into the Fourier domain, take the image log and averaging the results [61].

Some research has been done using statistical information about the change in blur to

develop better Wiener filtering techniques to handle this problem such as those shown in

Slepian [62], Guan and Ward [63], and Ward [64].

Sivakuma and Desai examined the problem of unknown blur functions and proposed a

multilevel perceptron approach [65]. Mesarovic, et al. proposed a two step algorithm to

simultaneously restore the image and estimate the parameters of a restoration filter by using a

hierarchical Bayesian approach [66]. Pai, Havlicek and Bovik showed that given three blurred

versions of the same image and some restrictions on the size of the original image, sufficient

conditions exist for exact multichannel blind image restoration [67]. May, et al. tackled the

problem of blind image restoration by incorporating local image characteristics as the basis for

bound constraints on individual pixels [68]. You and Kaveh considered a regularisation
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approach to joint blur identification and restoration [69]. Ayers and Dainty and Davey, et al.

have developed an iterative technique based on phase retrieval algorithms using simple inverse

filtering [70-72]. Fish, et al. adapted the Richardson-Lucy algorithm for deconvolution while

Holmes developed an algorithm based on the expectation maximisation algorithm [73-77].

Thiebaut and Conan used the error function minimisation method of Lane with the

implementation of strict constraints using a reparameterisation of the problem [78,79].

1.4.5 Colour Image Restoration

The restoration of colour images is a difficult task but a logical next step for research in the

field of image restoration. When restoring a colour image consideration must be made in

regard to the correlation between different colour planes. [80] provides a good review of cur-

rent technology and research in the field of digital colour imaging. The authors of [81]

approach this problem by decorrelating the colour planes using the Karhunen-Loeve transfor-

mation, while Galatsanos, et al. have developed a spatially adaptive filter for colour images

which utilises local within and between channel image properties [82].

1.5 Perception Motivated Restoration

In Section 1.4.3, we mentioned the problems caused by considering the image to be an

ensemble of stationary processes. Any restoration process based on this concept can only ever

produce sub-optimal results. However there is another consideration. When a restoration algo-

rithm is designed with the aim of creating an image which will be more pleasing to the human

eye, we must incorporate some kind of model of the human visual system. At the basis of most

restoration algorithms is some form of image error measure which is being minimised.
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The most common method to compare the similarity of two images is to compute their

mean square error (MSE). However the MSE relates to the power of the error signal and has

little relationship to human visual perception. An important drawback to the MSE and any cost

function which attempts to use the MSE to restore a degraded image is that the MSE treats the

image as a stationary process. All pixels are given equal priority regardless of their relevance to

human perception. This suggests that information is ignored. When restoring images for the

purpose of better clarity as perceived by humans the problem becomes acute. When humans

observe the differences between two images, they do not give much consideration to the differ-

ences in individual pixel level values. Instead humans are concerned with matching edges,

regions and textures between the two images. This is contrary to the concepts involved in the

MSE. From this it can be seen that any cost function which treats an image as a stationary

process can only produce a sub-optimal result.

Considerations regarding human perception have been examined in the past [83 - 93]. A

great deal of work has been done toward developing linear filters for the removal of noise

which incorporate some model of human perception [94 - 96]. In these works it is found that

edges have a great importance to the way humans perceive images. Ran and Farvardin consid-

ered psychovisual properties of the human visual system in order to develop a technique to

decompose an image into smooth regions, textured regions and regions containing what are

described as “strong edges” [97]. This was done with a view primarily toward image compres-

sion. Similarly Bellini, Leone and Rovatti developed a fuzzy perceptual classifier to create

what they described as a “pixel relevance map” to aid in image compression [98]. Hontsch and

Karam developed a perceptual model for image compression which decomposed the image

into components with varying frequency and orientation [99]. A perceptual distortion measure
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was then described which used a number of experimentally derived constants. Huang and

Coyle considered the use of stack filters for image restoration [100]. They used the concept of

a weighted mean absolute error (WMAE), where the weights were determined by the perceptu-

ally motivated visible differences predictor (VDP) described in [101]. In the past, research has

for the most part been concerned with the preservation of edges and the reduction of ringing

effects caused by low-pass filters and the models presented to take account of human percep-

tion are often complicated. In this work we contend that the manner in which smooth regions

are restored is of equal importance to the manner in which edges are restored. This is due to the

fact that noise in an image is much more noticable in smooth regions, which has a important

part to play in whether an image is perceived as “good” or “bad”. We will show in this thesis

that complicated models of human visual perception may not be needed to produce improved

restoration algorithms. Simple functions which incorporate some psychovisual properties of

the human visual system can be easily incorporated into existing algorithms and can provide

improvements over current techniques.

1.6 Overview of This Thesis

This thesis consists of 6 chapters. The first chapter provides material of an introductory

nature to describe the basic concepts and current state of the art in the field of image restora-

tion. Chapter 2 describes briefly the contributions of this thesis to the field of image restora-

tion, gives a mathematical description of the restoration problem from the Hopfield neural

network perspective, and presents a novel image error measure which is computationally inex-

pensive and yet powerful. Chapter 3 describes current algorithms based on this method. In

addition a new algorithm is presented which is an improvement on the previous algorithms and

the algorithm is extended to handle spatially variant degradations. A number of experiments
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are performed to show the improvement in performance resulting from the use of the new algo-

rithm. Chapter 4 extends the algorithm presented in Chapter 3 to implement adaptive constraint

restoration methods for both spatially invariant and spatially variant degradations. A method of

constraint selection is presented using concepts of human perception and experiments are per-

formed which compare the algorithms performance to other algorithms in terms of restoration

quality, efficiency, and semi-blind deconvolution performance. Chapter 5 utilises the image

error measure presented in Chapter 2 to introduce novel restoration algorithms. Experiments

are performed on the new algorithms to show an improvement in performance when compared

to previous algorithms. Chapter 6 summarises this thesis.

1.7 Summary

This chapter has presented some introductory material which is important for understanding

the subsequent chapters of this thesis. Firstly, the importance of image processing and the

nature of image degradations was described. Then the concepts involved in image restoration

are detailed and a short survey of classical image restoration methods is presented. These

methods are classified into non-iterative transform based techniques and algebraic techniques.

Following this, emergent image restoration research is described. This includes research into

the use of neural networks for cost function optimisation and current investigations in the prob-

lems of spatially variant, adaptive, semi-blind and colour restoration. Section 1.5 described the

importance of incorporating concepts from human visual perception into the field of image res-

toration, and detailed current research into the perception based image processing and com-

pression techniques.
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Chapter 2: Contributions of the Thesis

2.1 Introduction

In this thesis, the author has made a number of developments in the field of image restora-

tion which, after extensive literary search, are believed to be novel. The author investigated the

concept of using a Hopfield-based neural network to restore images which have suffered some

form of degradation and additive noise. Previous algorithms described in the literature have

been enhanced and their functionality expanded. In particular, the author has made three con-

tributions to image restoration:

1. A fast algorithm has been developed which is an improvement on previous algorithms to

decrease restoration time markedly without any reduction in restoration quality. The algo-

rithm is extended to restore images suffering spatially variant distortion. The author shows

that using the method described in this thesis, spatially variant images can be restored with

only a little increase in restoration time.

2. The concept of adaptive constraint parameter (ACP) restoration is introduced in order to

cope with different statistical properties in different parts of an image. The author investi-

gates two methods of allocating each pixel in the image a value of constraint parameter.

Gradient descent based methods are shown to be unacceptable in this case and the author

has developed a method to assign each pixel a constraint parameter value using simple prin-

ciples of human visual perception.
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3. Continuing on the subject of using human visual criteria to judge images, the author has

proposed a novel, simple image error measure which uses concepts of human perception to

judge the difference between two images, without being computationally expensive. This

image error measure is then used as the basis for a family of new restoration cost functions.

The author has developed two new restoration algorithms which are designed to be fast and

computationally inexpensive, and yet be an improvement on traditional algorithms.

This chapter briefly details the contributions of this thesis to the field of image restoration.

Subsequent chapters will elaborate upon these contributions and provide experimental and

mathematical justifications. In order to put things into perspective, Section 2.2 briefly

describes linear image restoration and the basic neural network formulation of the problem.

Section 2.3 details the improvement the author has made to increase the speed of the basic neu-

ral network algorithm, while Section 2.4 details the expansion of the restoration algorithm to

the case of spatially variant distortion. Section 2.5 describes the algorithm developed by the

author to implement adaptive constraint parameter restoration. Section 2.6 presents the novel

image error measure developed by the author and shows how this error measure is a closer

match to human concepts of image quality when compared to the MSE. Section 2.7 details new

algorithms developed by the author, which use the Hopfield neural network model as a base for

the minimisation of new non-linear restoration cost functions incorporating the error measure

developed in Section 2.6. Section 2.8 summarises this chapter.

2.2 Image Restoration using a Neural Network

To restore an image degraded by a linear distortion, a restoration cost function is developed.

The cost function is created using knowledge about the degraded image and an estimate of the



22

degradation, and possibly noise, suffered by the original image to produce the degraded image.

The free variable in the cost function is an image, often denoted by , and the cost function is

designed such that the which minimises the cost function is an estimate of the original

image. A common class of cost functions is based on the mean square error (MSE) between the

original image and the estimate image. Cost functions based on the MSE often have a quad-

ratic nature.

2.2.1 Problem Formulation

All linear image degradations can be described by their impulse response. Consider a PSF

of sizeP by P acting on an image of sizeN by M. In the case of a two-dimensional image, the

PSF may be written as . When noise is also present in the degraded image, as is often

the case in real world applications, the image degradation model in the discrete case becomes

[2]:

(2.1)

where and are the original and degraded images respectively, and is

the additive noise component of the degraded image. If is a linear function then by

lexicographically ordering , and into column vectors of sizeNM, we

may restate (2.1) as a matrix operation [1], [2]:

(2.2)
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whereg andf are the lexicographically organised degraded and original image vectors,n is the

additive noise component andH is a matrix operator whose elements are an arrangement of the

elements of such that the matrix multiplication off with H performs the same opera-

tion as convolvingf(x, y) with . In general,H may take any form. However if

is spatially invariant with then becomes in

(2.1) andH takes the form of a block-Toeplitz matrix. If has a simple form of space

variance thenH may have a simple form, resembling a block-Toeplitz matrix.

In this work, the degradation measure we consider minimising starts with the constrained

least square error measure [2]:

(2.3)

where is the restored image estimate,λ is a constant, andD is a smoothness constraint oper-

ator. SinceH is often a low pass distortion,D will be chosen to be a high pass filter. The second

term in (2.3) is the regularisation term. The more noise that exists in an image, the greater the

second term in (2.3) should be, hence minimising the second term will involve reducing the

noise in the image at the expense of restoration sharpness.

Choosingλ becomes an important consideration when restoring an image. Too great a value

of λ will oversmooth the restored image, whereas too small a value ofλ will not properly sup-

press noise.
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2.2.2 Neural Network Restoration

Neural network image restoration approaches are designed to minimise a quadratic

programming problem [35 - 39]. The general form of a quadratic programming problem can

be stated as:

Minimise the energy function associated with a neural network given by:

(2.4)

comparing this with (2.3),W, b, andc are functions ofH, D, λ, andn, and other problem related

constraints. In terms of a neural network energy function, the (i,j)th element ofW corresponds

to the interconnection strength between neurons (pixels)i andj in the network. Similarly, vector

b corresponds to the bias input to each neuron.

Equating the formula for the energy of a neural network with equation (2.3), the bias inputs

and interconnection strengths can be found such that as the neural network minimises its energy

function, the image will be restored. From [35], settingL = MN, the interconnection strengths

and bias inputs were shown to be:

(2.5)
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(2.6)

wherewij is the interconnection strength between pixelsi andj, andbi is the bias input to neu-

ron (pixel) i. In addition,hij is the (i,j)th element of matrixH from equation (2.2) anddij is the

(i,j)th element of matrixD from equation (2.3). The full derivation of (2.5) and (2.6) is given in

Appendix A. In this thesis, we consider a sequential neural network algorithm in which each

pixel’s energy contribution is reduced individually during each iteration.

2.3 Improvement on the Basic Neural Network Algorithm

In Chapter 3, the basic neural network algorithms for the restoration of images are exam-

ined. The author then builds on these previously described algorithms to create a new faster

algorithm. This algorithm produces identical results to the previous algorithms, yet takes much

less time to restore an image. Briefly, this contribution may be summarised as follows:

Equating the formula for the energy of a neural network with quadratic cost function the bias

inputs and interconnection strengths can be found such that as the neural network minimises its

energy function, the image will be restored. In previous algorithms the image was restored by

calculating the input to the neuron, and then updating the neuron value in unit steps, ,

whereui is the input to the current neuron, until the energy contribution of the current neuron

to the energy function is minimised.

The author found that a much faster way to minimise the energy contribution of the current

bi gphpi
p 1=

L

∑=

∆ f i
ˆ ui

ui
-------=
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neuron was to allow the neuron to take a single larger step of . This allows the time

taken during each iteration to be greatly reduced without any reduction in restoration quality.

The algorithm may be further enhanced based on the fact any neuron in the network is con-

nected by non-zero weights to only a finite neighbourhood of pixels centred on it. The size of

this neighbourhood and the weights between the centre pixel and its neighbours do not vary

with the current neuron’s position in the network, (as long as that neuron is sufficiently far

from the edges of the image and the degradation is space invariant). This means that, as long as

boundary regions of the image are avoided, the entireW matrix can be stored as a single small

“weighting mask”. This greatly reduces computational complexity and storage space required

by the algorithm on a computer.

2.4 Space Variant Processing

In the previous section, the analysis of the restoration procedure did not assume that the

degradation was space invariant. In fact the degradation may be space variant and the network

will still converge to the correct result. Many image restoration methods have difficulties being

extended to the space variant case, however in Chapter 3 the author shows that the fast algo-

rithm presented in that chapter can easily be extended to the space variant case. A space variant

distortion will not allow one weighting mask to be used for the entire image. In the general

case, each pixel would require an individual weighting mask. However such an array of

weighting masks would not contain any zero elements and hence require much less storage

space than theW matrix.

∆ f i
ˆ ′

ui–

wii
-------=
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The author investigated a simple case of space variant distortion. The case examined in

Chapter 3 is one where each row of the image is degraded by a different PSF, but the PSFs

cycle though a closed set of available PSFs. In that chapter, the author showed that forV such

distortions, only 2V-2 weighting masks were required. This method requires substantially less

storage than is needed for computing the entireW matrix. The author shows that an image

degraded by this process can be restored exactly with a restoration time comparable to the

space invariant case.

2.5 Adaptive Regularisation Methodologies

In Chapter 4, the author proposed a restoration algorithm, which implements adaptive con-

straint processing (ACP). To utilise an adaptive regularisation parameter in the restoration

method means that each pixel may have a different value of regularisation parameter. The

intention is to suppress noise more strongly in regions where errors are most noticable.

The author considered methods for assigning each pixel a constraint value and showed that

a gradient descent based method did not work in this case. Since the author is particularly con-

cerned with restoring images for the purpose of human visual evaluation, the use of concepts of

human perception to select constraint values for each pixel was considered. By considering

how simple local regional statistics effect the human ability to detect noise in a restored image,

the author presents a technique for selecting regularisation parameter values by relating the

value of the constraint to a pixel’s local variance by a log-linear relationship. This technique is

shown to produce visually superior restored images under a range of conditions. Computation-

ally, the author shows that by creating a set of weighting masks where each mask implements a

different constraint parameter value, adaptive constraint restoration can be achieved with very
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little additional restoration time.

In addition, the author shows in Chapter 4 how the adaptive constraint methodology can

prove very useful in the difficult field of semi-blind image restoration. Semi-blind image resto-

ration is the problem of restoring an image when some aspects of the degrading function are

unknown. The author shows that the statistics-based adaptive regularisation technique can

compensate for uncertainty in the degrading function. In particular, if the function is space var-

iant in an unknown manner, the adaptive technique the author presents in Chapter 4 is shown to

produce a superior restoration compared to a non-adaptive method even when the parameters

of the degradation are known.

2.6 New Error Measure

Another major contribution of this thesis is a novel image error measure which is both sim-

ple and powerful. Often an image is filtered for the purpose of greater visual quality or clarity

as perceived by humans, such as an old photograph or a television transmission [1]. In these

cases an enhancement algorithm is attempting to produce an image which human beings will

find visually pleasing. For an enhancement algorithm to produce an image which humans find

pleasant it should possess a way of improving the image’s quality which takes into account

human visual preferences. This section will briefly describe a perception based error measure

for this purpose.

Many classical image restoration cost functions are based on the mean square error (MSE):
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(2.7)

where  is the restored image of interest.

This error measure compares images on a pixel to pixel basis, and in effect makes a state-

ment about the power of the noise signal created by the subtraction of the two images to be

compared. This kind of information is mathematically useful. However cost functions based on

the MSE favour slow variations in the image and bear very little relationship to the manner in

which humans view the differences between two images. Humans tend to pay more attention to

sharp differences in intensity within an image [92-94], for example edges or noise in back-

ground regions. Hence an error measure should take into account the concept that low variance

regions in the original image should remain low variance regions in the enhanced image, and

high variance regions should likewise remain high variance regions. This implies that noise

should be kept at a minimum in background regions, where it is most noticable, but noise sup-

pression should not be as important in highly textured regions where image sharpness should

be the dominate consideration. These considerations are especially important in the field of

colour image restoration. Humans appear to be much more sensitive to slight colour variations

than they are to variations in brightness.

In view of the above problems with classical error measures such as the MSE, the author

investigated a different error measure which is based on the comparison of local statistics, local

standard deviation mean square error (LSMSE). The LSMSE is calculated by comparing the

local standard deviations in the neighbourhood of each pixel in the images we wish to com-
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pare. The mean square error between the two standard deviations gives an indication of the

degree of similarity between the two images. This error measure requires matching between

the high and low variance regions of the image, which is more intuitive in terms of human vis-

ual perception.

The local standard deviation in theA by A neighbourhood of pixel (x, y) in imagef is given

by:

(2.8)

where the local mean of theA by A neighbourhood of pixel (x, y) in imagef is given by:

(2.9)

Using the above conventions, we can define the LSMSE between twoNxM imagesf andg

as:

(2.10)
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two images to be compared. Hence background regions should remain as noise free as possible

and highly textured regions should not be smoothed by the restoration procedure. An alternate

definition of this error measure is given by the comparisons of local variances rather than local

standard deviations:

The local variance in anA by A neighbourhood of pixel (x, y) in imagef is given by:

(2.11)

where  is given by (2.9).

Using the above conventions, we define the LVMSE between twoNxM imagesf andg as:

(2.12)

LVMSE stands for local variance mean square error (LVMSE). Although the LSMSE and

the LVMSE are related, we may wish to use one or the other depending on the circumstances.

The LSMSE is best for measuring the error between two images since its range of possible val-

ues is not as great as the LVMSE. The LVMSE on the other hand is easier and faster to calcu-

late since the square root calculation needed to compute the standard deviations is absent. The

utilisation of the LVMSE and the LSMSE should produce similar results.
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Figure 2.1 illustrates the connection between the LSMSE and human perception. Figures

2.1a, 2.1b and 2.1c show three regions of an image. Figure 2.1a shows a smooth region, Figure

2.1b shows an image edge and Figure 2.1c shows a high texture region within the image. Fig-

ures 2.1d, 2.1e and 2.1f show, respectively, the smooth, edge and texture regions degraded by

Gaussian noise of standard deviation 17.12. It is clear from these figures that noise is most not-

icable in Figure 2.1d, where image detail is low. In Figure 2.1e, noise is again noticable in the

smooth regions of the image, but less noticable around the edge. In Figure 2.1f, noise is the

least noticable due to the presence of texture. This corresponds with the arguments above

regarding the manner in which human perceive noise in images. For each pair of images, the

SNR, the LSMSE, and the LVMSE were computed by comparing the original and noisy

images. The following table illustrates the results.

Table 2.1: Comparison of the SNR, LSMSE and the LVMSE for various image regions.

From Table 2.1 we can see that the SNR fails to correspond to human perception, stating

that the image least corrupted is the edge image. The LSMSE on the other hand clearly shows

that noise has the greatest effect on the smooth image and is least noticable on the highly tex-

tured image. This matches human observation. The LVMSE also follows the same trend as the

LSMSE, however the larger values of the LVMSE are less desirable for comparing images than

Image Region SNR (dB) LSMSE LVMSE

Smooth Region 2.54 114.66 79162

Edge Region 10.57 87.49 72650

Textured Region 7.98 18.25 70775
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the LSMSE.

Figure 2.1: (a) Smooth region of flower image. (b) Edge region of flower image. (c) Textured

region of flower image. (d) Image 2.1a with noise added. (e) Image 2.1b with noise added. (f)

Image 2.1c with noise added.

2.7 LSMSE-based Cost Functions for Image Restoration

In Chapter 5, the author uses the image comparison measure introduced in the previous sec-

tion to develope new restoration algorithms. Two image restoration algorithms are introduced.

(a)

(b)

(c)

(d)

(e)

(f)



34

These algorithms originated from the constrained least square error cost function, but move

away from the Hopfield neural network model even further than the adaptive algorithm pre-

sented in Chapter 4.

2.7.1 LVMSE Modified Cost Function

The first novel algorithm in Chapter 5 is based on enhancing the basic constrained least

square error cost function to include a term which minimises LVMSE. The modified cost func-

tion is given by:

(2.13)

where the first two terms are the standard constrained least square error cost function, which

was explained in Section 2.2. is the variance of the local region surrounding

pixel (x,y) in the image estimate and is the variance of the local region sur-

rounding pixel (x,y) in the degraded image scaled to predict the variance in the original image.

In Chapter 5, the author also presents a method for estimating . In general, if we

consider an image degraded by a linear process, then we find that a useful approximation is:

(2.14)

whereJ(x, y) is a function of the noise added to the degraded image at point (x, y) and
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is a function of the degrading point spread function at point (x, y). The author has developed an

algorithm to minimise (2.13) by using the components which are similar to the previous neural

network model to extend the algorithm presented in Chapter 3.

2.7.2 Log LVR Modified Cost Function

After analysing the nature of (2.13), the author presents an alternative version of the new

algorithm in Chapter 5. This new version performs similarly to the algorithm based on (2.13),

yet in some respects is an improvement.

The second version of the LSMSE-based cost function suggested by the author is:

(2.15)

where and are as defined in the previous section. As with (2.13),

an algorithm is presented in Chapter 5 to minimise (2.15).

The new algorithms have some of the adaptive properties of the algorithm in Chapter 4,

with greater ease of use and robustness. The performances of the new algorithms are shown to

be superior to previous algorithms when applied to grayscale and especially colour images in

highly noisy environments. In addition the author shows that the LSMSE-based algorithms are

much more fault tolerant than previous algorithms in the presence of network errors.
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2.8 Summary

This chapter was written to clearly and briefly describe the contributions to the field of

image restoration presented in this thesis. The contributions include faster restoration algo-

rithms using neural networks with respect to previous neural network restoration algorithms,

adaptive restoration techniques, and perception-based error measurement and applications in

restoration. The contributions mentioned in this chapter will be more clearly described and jus-

tified (experimentally and mathematically) in subsequent chapters. In subsequent chapters, the

above contributions of this thesis will be examined against both classical approaches to image

processing and previous neural network approaches described in the literature.

The author trusts that these contributions are novel and non-trivial.
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Chapter 3: Basic Neural Network Algorithm

3.1 Introduction

In this chapter, we investigate the basic neural network approach to the problem of restoring

an image degraded by some function in the presence of noise. In Chapter 2, the image restora-

tion problem was stated and the least mean square error cost function for image restoration was

described. In addition, the basic neural network model was given and it was shown how the

weights and bias inputs of the neurons in the network may be assigned to solve the image res-

toration problem. This chapter builds on the material presented in Chapter 2 to examine the

image restoration algorithms which result from these fundamental concepts. In Section 3.2, we

analyse some previous neural network algorithms developed in the literature to solve this prob-

lem and detail the advantages and disadvantages of each. In Section 3.3, a new algorithm is

presented with greatly improved performance when compared to the previous algorithms. This

algorithm will form the basis for all subsequent algorithms in this thesis. It will then be shown

that the introduced algorithm will converge on a solution in a finite number of iterations and

we will analyse some important properties of the introduced algorithm in Section 3.4. Section

3.5 expands the algorithm to handle space variant degradations and Section 3.6 details imple-

mentation considerations. Some experimental results are presented in Section 3.7. Section 3.8

summarises this chapter.
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3.2 Neural Network Restoration Algorithms in the Literature

In the network described by Zhou, et al. for an image with gray levels, each pixel is

represented by neurons [35]. Each neuron can have a value of 0 or 1. The value of theith

pixel is then given by:

(3.1)

wherevi,k is the state of thekth neuron of theith pixel. Each neuron is visited sequentially and

has its input calculated according to:

(3.2)

whereui is the input to neuroni, and is the state of thejth neuron. Based onui, the neuron’s

state is updated according to the following rule:

where

(3.3)
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S 1+

f i
ˆ vi k,

k 0=
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∑+=
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The change in energy resulting from a change in neuron state of  is given by:

(3.4)

If , then the neuron’s state is updated. This algorithm may be summarised as:

Algorithm 3.1:

repeat

{

For i = 1, ....,L do

{

Fork = 0, .... ,S do

{

where

if , then

∆ f̂ i

∆E
1
2
---– wii ∆ f i

ˆ( )
2

ui∆ f i
ˆ–=

∆E 0<

ui bi wij f̂ j

j 1=

L

∑+=

∆ f̂ i G ui( )=

G u( )
1 u 0<,–

0 u, 0=

1 u 0>,





=

∆E
1
2
---– wii ∆ f i

ˆ( )
2

ui∆ f i
ˆ–=

∆E 0< vi k, vi k, ∆ f i
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}

}

}

until ( (t) = (t - 1) ∀i = 1, ...., L)

In the paper by Paik and Katsaggelos, Algorithm 3.1 was altered to remove the step where

the energy reduction is checked following the calculation of [36]. Paik and Katsaggelos

presented an algorithm which made use of a more complicated neuron. In their model, each

pixel was represented by a single neuron which takes discrete values between 0 andS, and is

capable of updating its value by , or keeping the same value during a single step. A new

method for calculating  was also presented:

where

(3.5)

where

This algorithm may be presented as:

f̂ i vi k,
k 0=

S

∑=

t t 1+=

f̂ i f̂ i

∆ f̂ i
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Algorithm 3.2:

repeat

{

For i = 1, ....,L do

{

where

where

where

}

}

until ( (t) = (t - 1) ∀i = 1, ...., L)

Algorithm 3.2 makes no specific check that energy has decreased during each iteration and

ui bi wij f̂ j

j 1=

L

∑+=

∆ f i
ˆ G'i ui( )=

G'i u( )
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
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so in [36] they proved that Algorithm 3.2 would result in a decrease of the energy function at

each iteration. Note that in Algorithm 3.2, each pixel only changes its value by during an

iteration. In Algorithm 3.1, the pixel’s value would change by any amount between 0 andS

during an iteration since each pixel was represented byS +1 neurons. Although Algorithm 3.2

is much more efficient in terms of the number of neurons used, it may take many more itera-

tions than Algorithm 3.1 to converge to a solution (although the time taken may still be faster

than Algorithm 3.1). If we consider that the value of each pixel represents a dimension of theL

dimensional energy function to be minimised, then we can see that Algorithms 3.1 and 3.2

have slightly different approaches to finding a local minimum. In Algorithm 3.1, the energy

function is minimised along each dimension in turn. The image can be considered to represent

a single point in the solution space. In Algorithm 3.1, this point moves to the function mini-

mum along each of theL axes of the problem until it eventually reaches a local minimum of

the energy function. In Algorithm 3.2, for each pixel, the point takes a unit step in a direction

that reduces the network energy along that dimension. If the weight matrix is negative definite

(-W is positive definite), however, regardless of how these algorithms work, the end results

must be similar (if each algorithm ends at a minimum). The reason for this is that when the

weight matrix is negative definite, there are no local minima, except for the global minimum.

That is, the function has only one minimum. In this case the matrixW is invertible and taking

(2.4) we see that:

(3.6)

Hence the solution is given by:

(3.7)

1±

f̂∂
∂E W– f̂ b–=

f̂ ∗ W 1– b–=
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(assuming that  exists).

The is the only minimum and the only stationary point of this cost function, so we can

state that ifW is negative definite and Algorithm 3.1 and Algorithm 3.2 both terminate at a

local minimum, the resultant image must be close to for both algorithms. Algorithm 3.1

approaches the minimum in a zig-zag fashion, whereas Algorithm 3.2 approaches the mini-

mum with a smooth curve. IfW is not negative definite then local minima may exist and Algo-

rithms 3.1 and 3.2 may not produce the same results. If Algorithm 3.2 is altered so that instead

of changing each neuron’s value by before going to the next neuron, the current neuron is

iterated until the input to that neuron is zero, then Algorithms 3.1 and 3.2 will produce identi-

cal results. Each algorithm will terminate in the same local minimum.

3.3 The Proposed Algorithm

Although Algorithm 3.2 is an improvement on Algorithm 3.1, it is not optimal. From itera-

tion to iteration, neurons often oscillate about their final value, and during the initial iterations

of Algorithm 3.1 a neuron may require 100 or more state changes in order to minimise its

energy contribution. A faster method to minimise the energy contribution of each neuron being

considered is suggested by examination of the mathematics involved. For an image where each

pixel is able to take on any discrete integer intensity between 0 andS, we assign each pixel in

the image to a single neuron able to take any discrete value between 0 andS.Since the formula

for the energy reduction resulting from a change in neuron state is a simple quadratic, it is

possible to solve for the which produces the maximum energy reduction. Theorem 3.1

states that this approach will result in the same energy minimum as Algorithm 3.1 and hence

W 1–

f̂ ∗

f̂ ∗

1±

∆ f̂ i

∆ f̂ i
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the same final state of each neuron after it is updated.

Theorem 3.1: For each neuron i in the network during each iteration, there exists a state

change  such that the energy contribution of neuron i is minimised.

Proof:

Let ui be the input to neuroni which is calculated by:

Let ∆E be the resulting energy change due to .

(3.8)

Differentiating with respect to  gives us:

The value of  which minimises (3.8) is given by:
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Therefore

(3.9)

QED.

Based on theorem 3.1, the proposed algorithm is presented below.

Algorithm 3.3.

repeat

{

    for i = 1, ..... ,L do

    {

where

(3.10)
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if  then

where

}

  t = t+1

}

until ( (t) = (t - 1) ∀i = 1, ...., L)

Each neuron is visited sequentially and has its input calculated. Using the input value, the

state change needed to minimise the neuron’s energy contribution to the network is calculated.

Note that since and and must be the same sign asui, step (3.10) is

equivalent to checking that at least a unit step can be taken which will reduce the energy of the

network. If , then

Substituting this result into the formula for  we get:
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Since  and  have the same sign and  we obtain:

(3.11)

In this way  will always be large enough to alter the neuron’s discrete value.

Algorithm 3.3 makes use of concepts from both Algorithm 3.1 and Algorithm 3.2. Like

Algorithm 3.1 the energy function is minimised in solution space along each dimension in turn

until a local minimum is reached. In addition, the efficient use of space by Algorithm 3.2 is uti-

lised. Note that the above algorithm is much faster than either Algorithm 3.1 or 3.2 due to the

fact that this algorithm minimises the current neuron’s energy contribution in one step rather

than through numerous iterations as did Algorithms 3.1 and 3.2.

3.4 Analysis

In the paper by Paik and Katsaggelos, it was shown that Algorithm 3.2 would converge to a

fixed point after a finite number of iterations and that the fixed point would be a local mini-

mum ofE in (2.3) in the case of a sequential algorithm [36]. Here we will show that Algorithm

3.3 will also converge to a fixed point which is a local minimum ofE in (2.3).

Algorithm 3.2 makes no specific check that energy has decreased during each iteration and

so in [36] they proved that Algorithm 3.2 would result in a decrease of the energy function at
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each iteration. Algorithm 3.3 however changes the current neurons state if and only if an

energy reduction will occur and . For this reason Algorithm 3.3 can only reduce the

energy function and never increase it. From this we can observe that each iteration of Algo-

rithm 3.3 brings the network closer to a local minimum of the function. The next question is

“Does Algorithm 3.3 ever reach a local minimum and terminate?”. Note that the gradient of

the function is given by:

(3.12)

whereu is a vector whoseith element contains the current input to neuroni. Note that during

any iteration,u will always point in a direction that reduces the energy function. If then

for at least one neuron a change in state must be possible which would reduce the energy func-

tion. For this neuron, . The algorithm will then compute the change in state for this neu-

ron to move closer to the solution. If the neuron’s state will be changed. In this case

we assume that no boundary conditions have been activated to stop neuroni from changing

value. Due to the discrete nature of the neuron states we see that the step size taken by the net-

work is never less than 1.

To re-state the facts obtained so far:

• During each iteration Algorithm 3.3 will reduce the energy of the network.

• A reduction in the energy of the network implies that the network has moved closer to a

∆ f̂ i 1=

f̂∂
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2
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local minimum of the energy function.

• There is a lower bound to the step size taken by the network and a finite range of neuron

states. Since the network is restricted to changing state only when an energy reduction is

possible, the network cannot iterate forever.

From these observations we can conclude that the network reaches a local minimum in a

finite number of iterations, and that the solution given by Algorithm 3.3 will be close to the

solution given by Algorithm 3.1 for the same problem. The reason why algorithms 3.1 and 3.3

must approach the same local minimum is the fact that they operate on the pixel in an identical

manner. In Algorithm 3.1 each of theS+ 1 neurons associated with pixeli is adjusted to reduce

its contribution to the energy function. The sum of the contributions of theS+ 1 neurons asso-

ciated with pixeli in Algorithm 3.1 equals the final grayscale value of that neuron. Hence dur-

ing any iteration of Algorithm 3.1 the current pixel can change to any allowable value. There

areS+ 1 possible output values of pixeli and only one of these values results when the algo-

rithm minimises the contribution of that pixel. Hence whether the pixel is represented byS + 1

neurons or just a single neuron, the output grayscale value that occurs when the energy contri-

bution of that pixel is minimised during the current iteration remains the same. Algorithms 3.1

and 3.3 both minimise the current pixels energy contribution, hence they must both produce

the same results. In practice the author has found that all three algorithms generally produce

identical results, which suggests that for reasonable values of the parameterλ, only a single

global minimum is present.

Note that in this investigation we have not made any assumptions regarding the nature of

the weighting matrix,W, or the bias vector,b. W andb determine where the solution is in the
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solution space, but as long as they are constant during the restoration procedure the algorithm

will still terminate after a finite number of iterations. This is an important result, and implies

that even if the degradation suffered by the image is space variant or if we assign a different

value ofλ to each pixel in the image, the algorithm will still converge to a result. Even ifW

andb are such that the solution lies outside of the bounds on the values of the neurons, we

would still expect that there exists a point or points which minimiseE within the bounds. In

practice we would not expect the solution to lie entirely out of the range of neuron values. If

we assume that Algorithm 3.3 has terminated at a position where no boundary conditions have

been activated. Then the condition:

must have been met. This implies that:

(3.13)

In [36], Paik and Katsaggelos noticed this feature as well, since the same termination condi-

tions apply to Algorithm 3.2. The self-connection weight,wii , controls how close to the ideal

solution the algorithm will approach before terminating. Since increasing the value ofλ

increases the value ofwii , we would expect also that the algorithm would terminate more

quickly and yet be less accurate for larger values ofλ. This is found to occur in practice. When

λ increased, the number of iterations before termination drops rapidly.
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3.5 Dealing with Spatially Variant Distortion

In the above analysis, no conditions were placed upon the form of the matrixH. In fact the

neural network cost function only assumes that the weighting matrix,W, is symmetric. In the

case of a space invariant degradation, the matrixH will be symmetric. However in the real

world this is not often the case. As discussed in Chapter 1, the general form of an image degra-

dation will be space variant. However many of these distortions will still be linear and so the

model given by equation (2.2) still holds. In the case of a linear space variant distortion,H will

not be symmetric, but the weighting matrix,W, will still be symmetric. This can be clearly

shown by examining equation (2.5). By converting (2.5) into matrix notation we see that the

weighting matrix is given by:

(3.14)

Assume thatH is not symmetric, such that , then:

Hence the weighting matrix,W, is symmetric. This is a powerful feature of the neural net-

work approach. If the image suffers a known form of space variance then the weights of the

neurons in the network can be adjusted to restore the image exactly with very little additional

W H– TH λDT D–=

H H T≠

WT H TH λDT D+( )T–=

H TH( )T– λ DTD( )T–=

H T H T( )T– λDT DT( )T–=

H TH– λDTD– W==
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computational overhead.

If the degrading PSFs follow some regular or cyclic pattern then further optimisations can

be made to the algorithm. Instead of developing the full non-symmetric form version ofH for

the entire image, certain regular patterns of space variance allow us to compute a set number of

simpler alternative versions of theH matrix which describe each different type of degrading

PSF the image has suffered. From this we can compute a number of alternative versions of the

W matrix. Hence we have a number of different sets of weights to select from when restoring

the image. In the worst case, completely random spatial variance, there areNM unique sets of

weights to restore the image. However, if patterns of spatial variance can be discovered, the

number of unique sets of weights can be significantly reduced. We will analyse the cyclic spa-

tially variant case in detail. Consider a cyclic spatially variant distortion obtained by the use of

V PSFsh0(x, y), ..., hV-1(x, y). The pixels in any one row of the image are acted upon by the

same PSF, however the PSF applied to each row is varied cyclically through the sequence:

SH = { h0(x, y), h1(x, y), ..., hV-1(x, y), hV-2(x, y), hV-3(x, y), ..., h1(x, y)} (3.15)

The sequenceSH has a period of 2V-2, and hence 2V-2 unique sets of weights are required to

restore the image. This type of distortion is similar to the degradations involved with side-scan

sonar images. The method employed in [39] to handle spatially variant distortion was to

precompute a number of sets of weights to handle the various PSFs degrading the image. Since

the spatial variation of the PSFs was known, the correct set of weights could be chosen to

restore the image accurately. Section 3.7 details some experiments performed to restore an

image degraded by a cyclic distortion.
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3.6 Implementation Considerations

Despite the increase in efficiency and speed of Algorithm 3.3 when compared to Algorithms

3.1 and 3.2, there are still a number of ways that the algorithm can be made more efficient. The

ith row of the weighting matrix describes the interconnection strengths between neuroni and

every other neuron in the network from the “viewpoint” of neuroni. The weighting matrix is

NM by NM, which is clearly a prohibitively large amount of data which requires storage. How-

ever the mathematical discussion in the previous sections implies a short cut.

By examining (2.5) we observe that in the case of , it can be seen that when

calculating the input to each neuron, only pixels within a certain rectangular neighbourhood of

the current pixel contribute non-zero components to the neuron input. In addition it can be seen

that the non-zero interconnection strengths between any given pixel and a neighbouring pixel

depend only on the position of the pixels relative to each other in the case of spatially invariant

distortion. Using the above observations, the input to any neuron (pixel) in the image can be

calculated by applying a mask to the image centred on the pixel being examined. The case of

spatially variant distortion requires more weighting masks to be created, however in the analy-

sis above each unique set of weights requires only one weighting mask to describe it. For aP

by P distortion, each weighting mask contains only (2P - 1)2 terms. A 5 by 5 degrading PSF

acting on a 250 by 250 image requires a weight matrix containing elements, yet a

weighting mask of only 81 elements. In addition, by considering the finite regions of support

of the degrading and filtering impulse functions represented byH andD, the weighting masks

and bias inputs to each neuron may be calculated without storing matricesH andD at all. They

may be calculated using only the impulse responses of the above matrices.

P min M N,( )«

3.9
9×10
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Even in the case of an image suffering spatially variant distortion we can precompute all the

relevant weighting masks for the problem and assign each pixel an optimal mask before resto-

ration is commenced. An image suffering spatially variant distortion can in this way be

restored using an adaptive approach with very little additional overhead compared to a spa-

tially invariant approach.

3.7 Experimental Results

To test Algorithm 3.3, we structured a series of experiments. In the first experiment, the effi-

ciency of Algorithms 3.1, 3.2, and 3.3 were compared to one another. The second experiment

implements Algorithm 3.3 with an image degraded by space variant distortion. In the third

experiment, a practical example of the use of this method will be given. In this section the

images will be compared by measuring their Signal to Noise Ratios (SNR) and LSMSEs

(where LSMSE is as defined in Chapter 2).

3.7.1 Experimental Setup

In experiments one and two, the images were blurred using a gaussian PSF with the impulse

response:

(3.16)

whereσx andσy are the standard deviations of the PSF in thex andy directions respectively.
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3.7.2 Efficiency

The time taken to restore an image was compared among Algorithms 3.1, 3.2, and 3.3. A

degraded image was created by blurring a 256 by 256 image with a Gaussian blur of size 5 by

5 and standard deviation 2.0. Noise of variance 4.22 was added to the blurred image. Each

algorithm was run until at least 85% of the pixels in the image no longer changed value or

many iterations had passed with the same number of pixels changing value during each itera-

tion. Algorithm 3.1 was stopped after the sixth iteration when no further improvement was

possible, and took 6067 seconds to run on a SUN Ultra SPARC 1. Algorithm 3.2 was stopped

after the 30th iteration with 89% of pixels having converged to their stable states and took 126

seconds to run. Algorithm 3.3 was stopped after the 18th iteration with 90% of pixels stable

and took 78 seconds to run. Algorithm 3.3 is much faster than Algorithms 3.1 and 3.2, despite

the fact that algorithms 3.1 and 3.3 approach the same local minimum and hence give the same

results. The computation time of Algorithm 3.3 can be expected to increase linearily with the

number of pixels in the image, as can the computation times of Algorithms 3.1 and 3.2. The

single step neuron energy minimisation technique of Algorithm 3.3 provides its superior speed

and this trend does hold for any size image. Various types of distortions and noise would not be

expected to change the speed relationship between Algorithms 3.1, 3.2 and 3.3 for any given

image. This is due to the fact that each algorithm was shown to converge to similar points in

solution space and instead use different methods to reach this point.

3.7.3 Spatially Variant Distortion

An image was created using a cyclic variation of 7 by 7 Gaussian PSFs. Using the analysis

in Section 3.5,V was set to be 4. Table 3.1 details the degrading PSFs used to blur the image as

per equation (3.15):

Table 3.1: Degrading PSFs.

Standard Deviation 1.5 2.0 3.0 4.0

PSF h0(x, y) h1(x, y) h2(x, y) h3(x, y)
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The original image is shown in Figure 3.1a and the degraded image is shown in Figure 3.1b.

This image was restored using two techniques. The first technique was a spatially invariant

approach. The spatially variant distortion was approximated as a spatially invariant distortion

by using a 7 by 7 gaussian PSF of standard deviation 2.55. That is, all pixels were acted upon

by one weighting mask, whose components were calculated by approximating the space vari-

ant distortion as a space invariant distortion. Since the space variant distortion was very severe,

the approximation caused instability in the restored image. The time to restore this image using

the spatially invariant approximation was 230 seconds on a SUN Ultra SPARC 1. This image is

shown in Figure 3.1c. The second technique was the proposed spatially variant approach with

the six correctly calculated weighting masks. This restoration not only is better than Figure

3.1c, but recovers almost all the fine details lost in distortion. The time to restore this image

using the spatially variant method was 314 seconds on a SUN Ultra SPARC 1. This image is

shown in Figure 3.1d. Note that using Algorithm 3.3, the image could be restored using the

correct spatially variant weights with only an extra 36% time penalty when compared to the

spatially invariant approximation.
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Figure 3.1: Original, degraded and restored images suffering spatially variant distortion.

3.7.4 An Application Example

Algorithm 3.3 was applied to the problem of restoring an image with an unknown level of

motion blur. Restoring an image distorted by motion blur is a very common problem.

An image was supplied to us showing an aircraft wing in a state of assembly. The camera

(a) (b)

(c) (d)
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had shifted with an unknown degree of movement during some of the exposures thereby

blurring the images. Figure 3.2a shows an image of the wing with camera movement.

Although the image appears to be blurred by motion from left to right, it was desired to

confirm this by restoring the image using the network parameters derived from motion in

horizontal, vertical and both diagonal directions. The neural network algorithm is perfectly

suited to rapid investigations due to the fact that different regions of the image can be set to be

restored using the parameters of different point spread functions. Figure 3.2b shows Figure 3.2a

restored using both diagonal point spread functions (top left and bottom right of the image), a

vertical motion blur point spread function (bottom left of the image), and a horizontal motion

blur point spread function (top right of the image). Using the image partitioning ability of this

algorithm, four exploratory restorations were performed simultaneously. As a result of this,

Figure 3.2b demonstrates that the best matching point spread function was that associated with

horizontal camera movement, since the top right section of the image is clearly the most well

restored.

The second part of the investigation was to determine the whether the horizontal motion was

from left to right, right to left or due to camera shake rather than motion blur (in which case the

motion will be in both directions). Figure 3.2c shows Figure 3.2a restored using the parameters

of four different point spread functions. The top-left of the image was restored using the

parameters of a uniform point spread function (as a control). The bottom-left of the image was

restored with a point spread function associated with camera shake. The top-right and bottom

right regions were restored using the parameters of horizontal motion blur to the right and left

respectively. Figure 3.2c shows that the image was degraded with horizontal motion blur to the

right as this set of network parameters produce the sharpest restoration. Figure 3.2d shows the
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final restored image using the optimal point spread function determined previously.

Figure 3.2: Degraded and restored wing images.

3.8 Summary

In this chapter, we have examined the basic neural network optimisation algorithm. We first

looked at the problem of restoring an image acted upon by a degrading PSF in the presence of

noise. The problem of reversing the degrading process and approximating the original image

can be formulated as a minimisation process on a constrained least square error measure func-

(a)

(c)

(b)

(d)



60

tion. This error measure can be minimised by relating the terms of the error measure with the

formula for the energy of a Hopfield-style neural network. By selecting suitable interconnec-

tion strengths (weights) and bias inputs for the neurons, we can equate the neural network

energy function with the constrained least square error cost function. The problem then

reduces to selecting the optimal algorithm to minimise the network energy function. We exam-

ined two such algorithms presented previously in the literature and considered the advantages

and disadvantages of both. We then presented a novel algorithm which brings together features

from both the previous algorithms. The new algorithm was shown to converge to a solution in

a finite number of steps with much faster speed than either of the previous algorithms. We

examined some interesting properties of the algorithm including the fact that the convergence

of the algorithm was irrespective of whether the degradation was spatially invariant or spa-

tially variant. The algorithm was expanded to the space variant case and some implementation

considerations involved with using the algorithm in practice were mentioned. A number of

experiments were performed. The experiments showed that the proposed algorithm is much

faster than previous algorithms and in particular is able to accurately restore images degraded

by space variant degradations without a substantial time penalty. Finally, a practical example

of the use of the algorithm was given.
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Chapter 4: Weight Assignment in

Adaptive Image Restoration

4.1 Introduction

In the previous chapter, it was seen that as long as the weights of the network remain con-

stant from iteration to iteration, Algorithm 3.3 will converge. This result was shown to be irre-

spective of the spatial variance of the weights and opens the door for adaptive restoration

methods.

In adaptive restoration, the weights are varied to implement different values of regularisa-

tion parameter for different regions of the image. By doing this, we can adjust restoration

parameters to suppress noise more greatly in regions where it is most noticable, and less so in

regions where image sharpness is the dominant consideration.

There are many ways to vary the regularisation parameter spatially across the image. We

first show that the proposed method based on gradient descent can only find sub-optimal solu-

tions in this adaptive approach, and mathematically verify a fact, which has been observed in

restoration practice, that this method would generally use a small value of regularisation

parameter for textured regions, and a large value for smooth regions. Using this observation,

we then introduce a regional processing approach based on local statistics. This approach also

has some relationship to biological vision systems in that it emphases on edges. The algorithm

which varies the neural weights to take account of a spatially variant PSF, as described in
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Chapter 3, is expanded to combine the adaptive constraint concept developed. We then look at

how adaptive constraint restoration can be used to compensate for incomplete knowledge of

the degrading PSF or incomplete knowledge of the spatial variance of the degradation.

Section 4.2 introduces the adaptive constraint algorithms. Section 4.3 describes the problem

of adaptive constraint restoration for spatially variant distortions. Section 4.4 considers the

problem of semi-blind deconvolution. Section 4.5 details some implementation considerations,

while Section 4.6 describes experiments performed to test the concepts presented in this chap-

ter. Section 4.7 summarises this chapter.

4.2 Adaptive Constraint

The first adaptive weight methodology we will consider is the adaptation of the constraint

factor to take account of the non-stationary nature of the image.

4.2.1 Motivation

Images are, by nature, ensembles of non-stationary processes. For this reason, solutions

based on any stationary model can only produce a suboptimal restoration. An optimal restora-

tion may be achieved by treating statistically dissimilar regions of an image with different res-

toration strategies or parameters. One method to achieve this is by using an adaptive

regularisation scheme. When implementing an adaptive regularisation parameter scheme, an

important consideration is on what basis should the regularisation value be determined. In this

section, we study the space invariant case. The result will be generalised to the space variant

case in the next section.
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To substantiate this issue, we first generalise the quadratic model in (2.3) to

(4.1)

where

(4.2)

is a diagonal matrix to reflect the adaptive processing nature. When ,

Equation (4.1) is reduced to the conventional constrained least squares formula given in (2.3).

By relating (4.1) to the formula for the energy of a neural network, the neural weight

between neuronsi andj in the network is given by:

(4.3)

Equation (4.3) is overly complicated and can be approximated as:

(4.4)
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Note that the matrixW, whose (i, j)th element is given by (4.4), is not symmetric. As long as

a check is made on whether the energy will be decreased before updating a pixel value, the lack

of symmetry will not cause the algorithm to fail to converge. This is due to the fact thatW may

be replaced by a symmetric equivalent version, , without changing the energy function.

Define , whereW is the non-symmetric weighting matrix whose (i, j) th

element is given by (4.4). Note  is symmetric since:

Taking the formula for the energy of the neural network, and noting that whena is

a scalar, then we obtain:
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(4.5)

From (4.5) we can see that the form of the energy functions given by usingW and are

identical. This means that if we assign neuron weights according to (4.4), the algorithm will

still converge.

The elements of can be considered an alternative approximation of (4.3) and are given

by:

(4.6)

However since we have shown that both approximations produce identical energy functions,

we will hence use the approximation given by (4.4). In Appendix B we show that approximat-

ing (4.3) as (4.4) does not greatly degrade the quality of the restored images. Since approxima-

tion (4.4) is much easier to implement than (4.3), this approximation will be used in the

subsequent sections. The next question is how to determine the values ofλi in (4.4) for each

pixel in the image.

We investigate two methods for determining the regularisation parameter. The first is an

extension of the gradient based method considered in the last chapter. The second is based on

local statistics in the framework of an intelligent neural network.
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4.2.2 The Gradient Based Method

First we will show that although the gradient descent algorithm given in the previous chap-

ter reduces the energy level, it by no means provides an optimal solution in adaptive restora-

tion.

Equations (2.5) and (2.6) indicate that differences in the regularisation parameter effect only

the weights of the neural network, not the initial values or the bias inputs.

Equation (3.4) gives the energy change resulting from a change of neuron state∆fi. Substi-

tuting (3.2) into (3.4) yields:

(4.7)

It should be noted that  is the input to each neuron and has the same sign as

if ∆E is to be negative. It is important to note that we are only considering the cases where

∆E is negative since when , there will be no pixel value update at pixel .

Definition 4.1: The greatest energy minimisation (GEM) method for selecting the constraint

value for each pixel is defined as choosing for each pixel in each iteration the value ofλ from a

range of allowableλ values, , , which best minimises (4.7).
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Based on the definitions and other aforementioned assumptions, we present two theorems.

Theorem 4.1: If the GEM method is used to select a suitableλ value from a range of possible

λ values, whereλa = 0 and  in Definition 4.1, thenλb will always be chosen.

Theorem 4.2: If the GEM method is used to select a suitableλ value, satisfying

where bothλa andλb are finite, then eitherλa or λb will be chosen unless all availableλ val-

ues would produce the same resultant decrease in energy.

To prove the above theorems, we must rearrange (4.7). Expanding (4.7) using (2.5) we get:

(4.8)
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It should be noted that  and (4.9)

Consider the which maximises the energy reduction for pixel . Let this factor be

defined as . To compute , we differentiate (4.8) relative to :

(4.10)

and set (4.10) to zero to obtain the optimal .

(4.11)

Rearrangement of (4.8) yields:

(4.12)

The substitution of (4.11) into (4.12) gives us:

(4.13)
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negative for positive values ofλ, as expected. The graph of  versusλi is sketched in Fig

4.1.

Figure 4.1: Graph of maximum energy reduction versus constraint value.

We can see from (4.13) that for all acceptable values of∆Ei, . This proves

Theorem 4.1 and implies that a great energy reduction can always be obtained by choosing a

very large value ofλi. If we allow energy considerations alone to dictate the choice ofλi, the

results would be poor. An acceptable range ofλ values must be set. SinceC andD are always

positive, and  is always negative, (4.13) has a maximum at .

Since (4.13) is a convex function when , then we observe that if the set of accepta-

ble λ values is finite and constrained betweenλa andλb (λa < λb), then (4.13) indicates that

under most circumstances, the best energy reduction will be obtained by choosing eitherλa or
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λb, and not any intermediate values ofλ. Only under the conditions of will

numerical errors possibly enable the choice of intermediate values ofλ. This proves Theorem

4.2.

The next question is whichλ values will be chosen in low and high variance regions of the

image to maximise the energy reduction. To clearly answer this question, it is necessary to

examine how the factorsA, B, C, andD vary as a function of image statistics. This is examined

in Appendix C. From this analysis, a number of conclusions can be drawn. WhenA is low and

B is high, the largestλi value gives the best energy minimisation, however whenA is high and

B is low, the smallest value ofλi produces the best energy minimisation.

Observation 1: In high texture regions of the image or near edges, bothA and B can be

expected to be large. However the contribution from factorB will be less significant for two

reasons.

• The factorB in (4.13) is multiplied byλi which is always << 1.

• The factorB corresponding to a double application of a high-pass filter suggests that in the

presence of gradual edges,B will not be very large. Since noise is added to the image after

blurring, the presence of noise will contribute most to the value ofB.

Therefore we can expect that , and so the best energy reduction would be

obtained by choosing the lowest value ofλ available.
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Observation 2: In low texture regions of the image,A can be expected to be small. FactorB

may also be small. However the presence of noise in the initial estimate should makeB’s effect

on (4.13) override that ofA. Hence in low texture regions of the image, choosing the largest

availableλi produces the best energy minimisation.

This analysis has been verified in practice. Figure 4.2 shows the selection ofλ values during

the first iteration for an image degraded by a 5 by 5 Gaussian PSF of standard deviation 2.0,

with additive noise of variance 18.49. The darker regions in Figure 4.2 denote the selection of

largerλ values, and the lighter regions denote the selection of smallerλ values.

Figure 4.2: Theλ values selected for each pixel during the initial iteration

of the energy minimisation based algorithm for a typical image.

From Figure 4.2 we can clearly see that to a great extent, only the lowest or the highest

value ofλ is chosen by the gradient descent method.
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4.2.3 Local Statistics Analysis

The above analysis shows us that gradient descent is not an optimal approach for choosing

λi in adaptive regularisation. However, it leads us to the observation that in low texture regions,

a high value ofλi results in a visually pleasing result, while in high texture regions, a lowλi

value works best. These observations encourage us to use local statistics, since these are a good

measure of the image roughness to locally determine theλi value. Mathematically:

(4.14)

whereY(Si) is a function of the local image statisticsSi at .

SinceSi has almost exactly the same value for all pixels, , in a statistically homogenous

area, theλi value is also almost exactly the same. Therefore the structure of the processing

model is further modified such that, instead of assigning each pixel a differentλi, we assign

each statistically homogenous area aλk.

Assume that there areK homogenous areas. By first properly rearranging the pixels in such

a way that the pixels in a homogenous area are consecutively indexed in to form a new vec-

tor , equation (4.1) can be rewritten as:

(4.15)

λi Y Si( )=

f i
ˆ

f i
ˆ

f̂

f̂ ∗

E
1
2
--- g∗ H∗ f̂ ∗–

2
f̂ ∗ D∗TΛ∗D∗( ) f̂ ∗+{ }=



73

where with being the vector consisting of the pixels in thekth

homogenous area,

(4.16)

with Hk, Λk, Dk andgk being the submatrices (vectors) of and , corresponding

to fk, and , with I being the identity matrix. Define and

, , then mathematical manipulation of (4.15) leads to:

(4.17)

Apparently, represents the intra-connections within areak, and

represents the inter-area contributions from areasl and m to areak.

Equation (4.17) is the extension of a biologically motivated neural network: the network of

networks (NoN) [102]. The significance of this mapping is as follows:
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1. The human visual system pays little attention to individual pixels in an image. Instead it

looks for areas of similar pixels in a statistically homogenous sense, and it is more sensitive

to edges [83].

2. The NoN is a computational model imitating a simplified representation of the human cor-

tex, or part of it, the biological visual processing machine. The neurons in the same cluster

are similar to one another.

3. By representing a pixel with a neuron, a homogenous image area is mapped to a cluster of

neurons which are similar to one another. Local statistics is a good criterion to measure the

level of similarity.

Therefore, using a NoN with a statistical criterion to adaptively determine theλ value and in

turn the processing architecture may potentially simulate some aspects of human perception in

recovering genuine information lost in recording.

Now the important issue is selecting theλi for each homogenous area. In this thesis, a curve

fitting approach is proposed. In this approach, the largest and the smallest values ofSi, Simax

andSimin, are identified and the correspondingλimax andλimin are determined.

Experiments quickly led to the conclusion that the explicit form of (4.14) is a log-linear

function:

(4.18)λi a Si( )log b+=
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It was found that if the variance in a region gradually increases by equal steps, then the

change in variance level is much more noticable when the overall variance levels are low rather

than when the overall variance levels are high. Humans are less able to discern an increase in

noise levels in high variance regions than they are for low variance regions. A log-linear rela-

tionship is therefore suggested. Figure 4.3 shows this effect.

Figure 4.3: Images with varying levels of additive noise.

In Figure 4.3, six images with a constant level of pixel intensity are superimposed by noise

of increasing variance. The increasing level of noise between each image and its neighbour on

the right is readily noticable for the first three images when variance levels are low, compared

to the last three when variance levels are high. The difference in apparent noise level between

the last two images is the weakest of the entire set of images, despite the fact that the increase

in variance between these two images is the greatest of the set.

(a) (b) (c)

(d) (e) (f)

(σ2 = 76) (σ2 = 174) (σ2 = 316)

(σ2 = 491) (σ2 = 699) (σ2 = 973)
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The above observations lend weight to the use of constantλ values for each iteration based

on those during the first iteration. Since theλ selected during the first iteration can often pro-

duce visually pleasing results (largeλ in the background and smallλ on the edges), these can

be held constant throughout the restoration procedure. Theλ values may not act as favourably

for later iterations in the algorithm. For example, the local variance levels in the areas sur-

rounding edges in the image may increase during the restoration due to ripple effects from

nearby edges such that they become large enough to cause a large value ofλ to be applied to

edges of the image, hence producing the opposite effect to that which we are attempting to

achieve.

4.3 Dealing with Spatially Variant Distortion

In the previous section, the weights of the neural network were varied spatially in order to

implement the adaptive regularisation parameter. A similar concept was considered in Chapter

3 to handle a simple form of spatially variant distortion. In Chapter 3, the author used multiple

sets of weights to successfully restore an image degraded by a cyclic variation of gaussian

PSFs, of different standard deviations. In this section, we will examine the integration of the

spatially variant restoration technique of Chapter 3 with the adaptive constraint technique.

The method employed in Chapter 3 to handle spatially variant distortion was to precompute

a number of sets of weights to handle the various PSFs degrading the image. Since the spatial

variation of the PSFs was known, the correct set of weights could be chosen to restore the

image accurately. However a fixedλ was used in Chapter 3. To implement a spatially variant

restoration technique with an adaptive constraint parameter, we produce as many sets of

weights as needed to handle the space variant degradation and every possible choice of regular-
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isation parameter.

Re-stating the discussion in Chapter 3, the cyclic spatially variant distortion we consider is

that obtained by the use ofV PSFsh0(x, y), ..., hV-1(x, y). The pixels in any one row of the

image are acted upon by the same PSF, however the PSF applied to each row is varied cycli-

cally through the sequence:

SH = { h0(x, y), h1(x, y), ..., hV-1(x, y), hV-2(x, y), hV-3(x, y), ..., h1(x, y)} (4.19)

The sequenceSH has a period of 2V-2, and hence 2V-2 unique sets of weights are required to

restore the image when the same regularisation parameter is chosen for every pixel. When

additional sets of weights are created to implement an adaptive regularisation parameter

scheme, the following analysis applies:

TakingR as the number of choices of regularisation parameter to be used in the restoration,

then the sets of weights to be used to restore a row blurred by theith element of sequenceSH

form the set:

(4.20)

where is the set of weights required to restore a row degraded by PSF using the

jth choice of regularisation parameter being considered. The restoration problem becomes a

problem of selecting the correct set of weights from the super set of:

WSMi Wm0
i … WmR 1–

i, ,{ }=

Wmj
i SH[ ]i
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(4.21)

Restoration of the image is accomplished by selecting the relevant setWSMi, based on the

row coordinate of the current pixel being examined, then selecting the optimal within

that set based on the selection schemes described in Section 4.2. Section 4.6 describes an

experiment preformed to implement the spatially variant restoration scheme with an adaptive

regularisation parameter as described above.

4.4 Semi-Blind Deconvolution

The previous sections have assumed that the nature of the degrading PSF is known. In prac-

tical circumstances however, this may not be the case. We may have little or no knowledge of

the degrading PSF in the case of a spatially invariant distortion or may not know the exact

nature of the space variance in a case of spatially variant distortion. In addition, our estimate of

the degrading PSF may be corrupted by noise. Restoring an image with incomplete knowledge

of the nature of the degradation is calledsemi-blind deconvolution. Figure 4.4 shows the

effects of using an incorrect PSF estimate during the restoration procedure.

WMA WSM0 … WSM2V 3–, ,{ }=

Wmj
i
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Figure 4.4: Degraded image restored with various PSF estimates.

Figure 4.4a is the original flower image. Figure 4.4b is the flower image degraded by a 5 by 5

Gaussian blur of standard deviation 2.0 with additive noise of variance 4.22. Figure 4.4c shows

the image restored using the parameters of a 7 by 7 Gaussian blur of standard deviation 3.0 and

Figure 4.4d shows the image restored using the parameters of a 3 by 3Gaussian blur of stand-

ard deviation 1.0. In Figure 4.4c, the degrading PSF estimate is too strong and so the image can

be said to have been “over restored”. Although the edges and high variance regions in Figure

4.4c appear sharp, ringing effects are apparent in the smooth (low variance) regions of the

(a)

(c)

(b)

(d)
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image. In Figure 4.4d, on the other hand, the degrading PSF estimate is too weak and so the

image can be said to have been “under restored”. In the smooth (low variance) regions of Fig-

ure 4.4d, we see no artifacts, however the edges and high variance regions of Figure 4.4d

appear blurry.

This would indicate that a too strong PSF estimate produces problems in low variance

regions whereas a too weak PSF estimate produces problems in high variance regions. Figure

4.4d appears similar to the result obtained when a large value ofλ is used during the restora-

tion process. In fact, sinceλ controls the degree of smoothness in the solution, the effect of

increasingλ is similar to performing the restoration with a weaker PSF estimate. In the adap-

tive λ image restoration method described in the previous sections, a small value ofλ is used in

high variance regions and a larger value ofλ is used in low variance regions. This implies that

the adaptive constraint restoration method may have an application in semi-blind image resto-

ration. An example should illustrate this.

Assume that an image has suffered a spatially variant distortion and only an estimate of the

average PSF is available. By using the adaptive constraint restoration method we can consider

that each value ofλ approximates a different strength PSF estimate and hence we effectively

have a range of available PSF estimates to chose from. In the high variance regions of the

image, theλ value is small, this is similar to selecting the strongest PSF estimate. This is the

preferable choice since over-restoring the high variance regions of the image is less visually

disturbing than under-restoring them. To reduce the effects of ripples in the low variance

regions of the image a weak PSF estimate is preferable. This is automatically achieved since

the adaptive constraint restoration method selects the largest value ofλ for low variance

regions. As mentioned above, larger values ofλ produce results similar to using weaker PSF
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estimates. From this we can see that the adaptiveλ restoration method can be used to compen-

sate for inaccuracies in the estimate of degrading PSF. This concept will be further investigated

in Section 4.6.

4.5 Implementation Considerations

A major practical consideration is the number of choices of regularisation value. One would

expect that a large value ofR will give a better restoration quality, however large values ofR

would slow down the constraint precomputing stage of the algorithm and waste memory. It is

desirable to have as low a value ofR as possible. In practice settingR = 3 is usually sufficient,

giving the algorithm the choice of doing nothing or selecting one of three constraint values for

regions for high, medium or low texture levels.

In this investigation, we associated each set of weights with a range of variance values com-

puted in a certain neighbourhood of sizeA by A of the current pixel. A variance threshold,κ,

was set, below which the pixel being examined would not be updated. This is due to the fact

that for extremely low variance regions of an image blurring may not be noticable, in this case

restoration can only serve to enhance noise and waste time. This technique can yield improved

results, however the level of variance threshold and whether or not a variance threshold is used

at all depend on the image being restored and the degrading function. The variance method has

the advantage that it does not require the current pixel to be acted upon by each possible set of

weights to compute the regularisation parameter required. Another advantage to the variance

method is the ability to fine tune the variance thresholds,κ, or A, the area size, to suit a partic-

ular type of image being examined.
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When we consider using variance to determine the regularisation parameter, we expect that

precomputation of the parameter, based on the degraded image statistics would produce similar

results to computing the parameter in each iteration. High variance regions in the degraded

image should remain high variance in the restored image, and low variance regions should like-

wise remain low variance, hence by this argument the chosen values of regularisation parame-

ter in the first iteration should remain approximately the same throughout the restoration

procedure. This also has the added advantage that the algorithm is guaranteed to converge

according to the analysis in Chapter 3.

In practice, precalculating the optimal set of weights for each pixel has further advantages:

During restoration, the image estimate may converge on the solution smoothly or with varying

degrees of oscillation around the final value. During an oscillatory restoration, the image statis-

tics may change in unpredictable ways, causing the regularisation parameter chosen from iter-

ation to iteration to vary also. This may not result in an optimal choice of regularisation value

during any one iteration or an optimal average value of regularisation parameter.

Precomputation of the regularisation parameter results in a faster restoration than that

obtained by computation of the regularisation parameter during each iteration. In fact, by

precomputing the regularisation values for each pixel, the adaptive constraint algorithm takes

only slightly more time than a non-adaptive algorithm for large images, as will be shown in the

next section.

4.6 Experimental Results

To test the adaptive regularisation parameter algorithms presented in this chapter, we struc-
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tured a series of experiments. The first experiment examined the effects of noise on the per-

formance of the algorithm. The second experiment implemented the adaptive constraint

algorithm with an image degraded by space variant distortion. The second experiment also

examines the problem of semi-blind deconvolution. The third experiment examines the

processing efficiency. In the fourth experiment a practical example of the use of this method

will be given. In this section the images will be compared by measuring their Signal to Noise

Ratios (SNR) and LSMSEs (LSMSE is as defined in Chapter 2).

4.6.1 Experimental Setup

In experiment one, the images in Figure 4.5 were blurred using a gaussian PSF with the

impulse response:

(4.22)

whereσx andσy are the standard deviations of the PSF in thex andy directions respectively.

Figure 4.5: Original images.

h x y,( ) 1
2πσxσy
------------------- x2

2σx
2

--------- y
2

2σy
2

---------+
 
 
 

–exp=

(a) (b)



84

The number of choices of regularisation parameter,R, was set to 5. The following constraint

matrix,d(x, y), was used:

4.6.2 Effects of Noise

Two different images were used to compare the various algorithms. Each image was

degraded by the same PSF. For this experiment, a PSF of sizeP = 5 was used withσx = σy =

2.0. Various levels of white noise, with variances approximately equal to 4 and 18, were added

to each degraded image. This resulted in 8 images to analyse.

Table 4.1 shows the SNR and LSMSE between the original and the degraded images, and

images restored with a constant value ofλ, the greatest energy reduction technique for select-

ing λ, the adaptive constraint technique of Kang and Katsaggelos [49], and with an adaptiveλ

value based on local image variance and (4.18). Figure 4.6 shows regularisation parameters

used in the experiment plotted against the level of local variance. The values ofλ were associ-

ated with variance thresholds in a way consistent with (4.18).

1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0

1.0/6.0 4.0/6.0 -3.0/6.0 4.0/6.0 1.0/6.0

1.0/6.0 -3.0/6.0 -20.0/6.0 -3.0/6.0 1.0/6.0

1.0/6.0 4.0/6.0 -3.0/6.0 4.0/6.0 1.0/6.0

1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0 1.0/6.0
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Figure 4.6: Constraint values chosen versus variance.

Figures 4.7 and 4.8 show the degraded and restored images of the flower image, while Figure

4.9 shows the degraded and restored images of the cat image in the case of a noise variance of

18.30.

Noise Variance 4.23 
Noise Variance 18.49

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3
x 10

−3

Local Image Variance

C
o

n
st

ra
in

t 
V

a
lu

e

Constraint Value versus Variance



86

Figure 4.7: Degraded and restored images for noise of variance 4.22.

(a)

(b) (c)

(d) (e)
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Figure 4.8: Degraded and restored images for noise of variance 18.52.

(a)

(b) (c)

(d) (e)
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Figure 4.9: Degraded and restored images for noise of variance 18.30.

(a)

(b) (c)

(d) (e)
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Table 4.1: Statistics of degraded and restored images for various levels of noise.

Legend: DI = Degraded Image; NA = Non-Adaptively restored image; GER = Image restored

using energy minimisation method for constraint selection; KK = Image restored using the

Kang and Katsaggelos algorithm; VB = image restored using Variance Based constraint selec-

tion.

From Figures 4.7, 4.8 and 4.9, the images restored using the adaptive image restoration

methods appear clearer and more visually pleasing despite a slight decrease in SNR when

compared to the images produced by the non-adaptive algorithm. Table 4.1 indicates that using

variance as a criteria to chose the value of regularisation parameter produces images with an

improved LSMSE as noise levels increase.

4.6.3 Spatially Variant Distortion

An image was created using a cyclic variation of 7 by 7 Gaussian PSFs. Using the analysis

in Section 4.3,V was set to be 4. Table 4.2 details the degrading PSFs used to blur the image as

per equation (4.19):

Noise
Variance

SNR (dB) LSMSE

DI NA GER KK VB DI NA GER KK VB

Cat Image

4.24 12.61 13.30 12.55 11.38 13.19 42.98 14.58 14.98 30.57 13.51

18.30 12.25 12.81 11.02 10.83 12.58 38.65 17.45 30.43 30.46 15.79

Flower Image

4.22 15.67 16.65 15.13 15.74 16.95 20.53 4.35 9.74 6.56 2.53

18.52 14.94 15.93 12.61 14.32 15.82 19.35 5.94 33.54 10.88 3.74
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Table 4.2: Degrading PSFs.

Noise of variance 4.28 was added to the blurred image. The degraded image is shown in

Figure 4.10a. This image was restored using four techniques. The first technique was a non-

adaptive spatially invariant approach. A regularisation parameter value of 0.0007 was used and

the spatially variant distortion was approximated as a spatially invariant distortion by using a 7

by 7 gaussian PSF of standard deviation 2.55. This image is shown in Figure 4.10b. The second

technique was an adaptive spatially invariant approach. The same approximation of the PSF

was in the previous experiment was used, however the regularisation parameter was varied for

each pixel using the same local variance levels andλ values as in the low noise example in the

previous experiment. This image is shown in Figure 4.10c.

The image was then restored using a non-adaptive spatially variant restoration method, with

a regularization parameter value of 0.0007. This image is shown in Figure 4.10d. In the final

approach, the degraded image was restored using a spatially variant, adaptive constraint

method, with the variance basedλ value selection algorithm. The regularisation value was

selected in the same manner as image 4.10d. This image is shown in Figure 4.10e. The statis-

tics are summarised in Table 4.3.

Standard Deviation 1.5 2.0 3.0 4.0

PSF h0(x, y) h1(x, y) h2(x, y) h3(x, y)
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Figure 4.10: Results of experiments on an image degraded

by spatially variant distortion.

(a)

(b) (c)

(d) (e)
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Table 4.3: Results of spatially variant experiment.

It is interesting to note that by using an adaptive approach we can compensate for a lack of

knowledge regarding the degrading PSF. In the cases where the degraded images are restored

by the space invariant approach, we can see that using the adaptive technique produces a much

clearer image with a lower LSMSE although the cyclic blurring effect is marginally visible. In

all cases, using the adaptive approach produces a clearer image with a lower LSMSE.

4.6.4 Efficiency

In this experiment, the time taken to restore an image was compared among the four differ-

ent cases from the space variant experiment. Each algorithm was run three times on a SUN

Ultra 1 workstation, the average results for each algorithm are tabulated below.

Table 4.4: Algorithm run times.

Image SNR (dB) LSMSE

Degraded 13.94 36.01

Space Invariant Non-adaptive 15.03 6.381

Space Invariant Adaptive 14.92 5.45

Space Variant Non-adaptive 15.87 6.041

Space Variant Adaptive 16.01 4.84

Algorithm Time (CPU seconds)

Non-Adaptive Spatially Invariant 259

Non-Adaptive Spatially Variant 370

Adaptive Spatially Invariant 206

Adaptive Spatially Variant 667
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It is worth noting that the execution times of the adaptive regularisation parameter algo-

rithms are similar to the execution times of the non-adaptive algorithms. The adaptive algo-

rithms require the calculation of five times the number of weighting masks as the non-adaptive

algorithms, and also require pre-restoration calculations of local variance to precompute the

regularisation parameter for each pixel. The reason for the similar execution times is that the

time lost through setting up the adaptive parameters of the network is offset by the time gained

through the non-adjustment of pixels in low variance regions of the image. The most important

fact that we can observe from Table 4.4 is that the time difference required for a fully adaptive,

spatially variant restoration is only double the time required for the much simpler non-adaptive

spatially invariant restoration. This is much faster than any previously reported methods. In

fact as the size of the image increases we would expect the time required for adaptive spatially

variant restoration to approach the time required for non-adaptive, spatially invariant restora-

tion. This is due to the fact that the extra time required for the adaptive spatially variant restora-

tion is primarily taken up by the initial extra weighting mask creation. The quality and speed of

the adaptive spatially invariant approximation method offers a promising alternative to the tra-

ditional semiblind deconvolution methods, especially when the PSF is space variant.

4.6.5 An Application Example

The above neural network algorithm was applied to the problem of restoring images with an

unknown level of blur. Images were supplied to us showing chromosomes in a solution imaged

by a high powered optical microscope. Limitations of the optical system had blurred the images

of the chromosomes. To extract further information about the chromosomes in the images, the

above neural network algorithm was used to enhance the images. Figure 4.11a shows one of the
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original degraded images. Figure 4.11b shows the image 4.11a restored using the non-adaptive

algorithm. Note that the restored image is sharper than the original image, but some noise has

also been amplified as well as some ringing effects. Figure 4.11c shows the image 4.11a

restored using the adaptive algorithm. The level of sharpness is comparable to the results of the

non-adaptive approach, however the level of background noise and ringing effects have been

greatly reduced. In this case the adaptive restoration algorithm has been successful at enhancing

the detail present in the image.
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Figure 4.11: Degraded and restored chromosome images.

(a)

(b)

(c)
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4.7 Summary

In this chapter the use of adaptive weights in constrained deconvolution methods was con-

sidered. Since the human visual system favours the presense of edges and boundaries, rather

than more subtle differences in intensity in homogenous areas, [83], noise artifacts may be less

disturbing in high contrast regions than in low contrast regions. It is then advantageous to use a

stronger constraint in smooth areas of an image than in high-contrast regions. While traditional

restoration methods find it difficult to implement an adaptive restoration spatially across an

image, neural network based image restoration methods are particularly amendable to spatial

variance of the restoration parameters.

A method based on using local image statistics to select the optimal value of regularisation

parameter is considered. This method imitates the human visual system and produces superior

results when compared to non-adaptive methods. In addition it was found that no disadvantage

occurred when the values of regularisation parameter for each pixel were chosen by the resto-

ration algorithm before starting the restoration, rather than during each iteration of the restora-

tion procedure. In fact, precomputing of the regularisation parameter further increased the

restoration speed.

In the final part of this chapter, the work is expanded upon to adaptively restore images

degraded by a spatially variant PSF. It is shown that adaptive regularisation techniques can

compensate for insufficient knowledge of the degradation in the case of spatially variant distor-

tions. Moreover, an adaptive spatially variant restoration is shown to be able to be completed in

the same order of magnitude of time as a much simpler non-adaptive spatially invariant resto-

ration.



97

Chapter 5: Perception Based Cost Functions

for Image Restoration

5.1 Introduction

In Chapter 2, the author introduced a new error measure based on comparing local variances

which examines the image in a regional sense rather than a pixel-by-pixel sense. In this chap-

ter, we further develop these concepts by introducing two new restoration algorithms which

incorporate versions of this image error measure. The cost functions that these algorithms are

based on are nonlinear and cannot be efficiently implemented by conventional methods. We

therefore propose extended neural network algorithms to iteratively perform the restoration.

We show that the proposed cost functions and processing algorithms perform very well when

applied to both colour and grayscale images. One important property of the proposed method,

compared with the neural network implementation of the constrained least square filter, is that

it is very fault-tolerant in the sense that when some of the neural connections are damaged, it

can still produce very satisfactory results. Comparison with some of the conventional methods

will be provided to justify the new method.

This chapter is organised as follows. Section 5.2 describes the motivation for incorporating

the error measure described in Chapter 2 into a cost function. Section 5.3 presents the restora-

tion cost function incorporating a version of the proposed image error measure from Chapter 2.

Section 5.4 builds on the previous section to present an algorithm based on a more robust vari-

ant of the novel image error measure. Section 5.5 describes implementation considerations.
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Section 5.6 presents some experimental data from this investigation, and Section 5.7 summa-

rises this chapter.

5.2 Motivation

In Chapter 2, we considered the problems inherent in using the MSE and SNR to compare

two images. It was seen that the MSE and SNR have little relationship to the way that humans

perceive the differences between two images. Although incorporating concepts involved in

human perception may seem a difficult task, a new image error measure was presented there

which, despite its simplicity, incorporates some concepts involved in human appraisal of

images.

In Chapter 4, the basic neural network restoration algorithm described in Chapter 3 was

expanded to restore images adaptively using simple human visual concepts. This adaptive

algorithm obtained superior results when compared to the non-adaptive algorithm, and was

shown to produce a more robust restoration when errors occurred due to insufficient knowl-

edge of the degrading function. Despite the improved performance of the adaptive algorithm, it

is still not simple to chose the correct values of the constraint parameter,λ. In the case of the

adaptive algorithm, the problem is compounded by the fact that many values ofλ must be

selected, rather than just one value as in the non-adaptive case. In addition, the selectedλ val-

ues must be related to local variance levels.

We desire to create an algorithm which can adaptively restore an image, using simple con-

cepts involved in human perception, with only a few free parameters to be set. Such an algo-

rithm would be more robust and easier to use than the algorithm in Chapter 4. In the previous
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adaptive algorithm, minimising the MSE was still at the base of the restoration strategy. How-

ever Chapter 2 provides us with a simple alternative to the MSE. It seems logical to create a

new cost function which minimises a LSMSE related term. In this way, the adaptive nature of

the algorithm would be incorporated in the LSMSE term rather than imposed by the external

selection ofλ values.

5.3 A LVMSE-Based Cost Function

The discussion in the previous section prompts us to structure a new cost function which

can properly incorporate the LSMSE into restoration. Since the formula for the neural network

cost function has a term which attempts to minimise the MSE, the author investigated the prob-

lem of restoring images using a cost function with a term which endeavours to minimise a

LSMSE-related error measure. The author proposes that an additional term be added to (2.3).

The new term evaluates the local variance mean square error (2.12). The comparison of local

variances rather than local standard deviations was chosen for the cost function since it is eas-

ier and more efficient to calculate.

Hence the new cost function we suggest is:

(5.1)

where is the variance of the local region surrounding pixel (x,y) in the image

estimate and is the variance of the local region surrounding pixel (x,y) in the
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degraded image scaled to predict the variance in the original image. The first two terms in (5.1)

ensure a globally balanced restoration, whereas the added LVMSE term enhances local fea-

tures. In (5.1), is determined as follows. Since the degraded image has been

blurred, image variances ing will be lower than the corresponding variances in the original

image. In this case, the variances would be scaled larger than to

reflect the decrease in variance due to the blurring function. In general, if we consider an image

degraded by a process which is modelled by (2.2), then we find that a useful approximation is:

(5.2)

whereJ(x, y) is a function of the noise added to the degraded image at point (x, y) and

is a function of the degrading point spread function at point (x, y). Although it may appear

difficult to accurately determine the optimal values ofK(x, y), in fact the algorithm is extremely

tolerant of variations in this factor and only a rough estimate is required. For example, if the

image degradation is a moderate blurring function, with a region of support of around 5 or 7

then would be set to 2 for all pixels in the image. This indicates that the local variances

in the original image are on average approximately twice that of the degraded image. A high

degree of accuracy is not required. In highly textured regions of the image where the

preservation of image details are most important, the LVMSE term requires that the variance of

the region be large, and the first two terms of (5.1) ensure the sharpness and accuracy of the

image features.
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5.3.1 The Extended Algorithm for the LVMSE Modified Cost Function

The LVMSE modified cost function does not fit easily into the neural network energy func-

tion as given by (2.4), however an efficient algorithm can be designed to minimise this cost

function. One of the first considerations when attempting to implement the LVMSE cost func-

tion is prompted by a fundamental difference in the cost function which occurs due to the addi-

tion of the new term. In the case of a cost function based on minimising mean square error

alone, any changes in an individual pixel value effects the entire image MSE in a simple way.

The square error between any pixel in the image estimate and the corresponding pixel in the

original image does not affect the square error of its neighbours. This simplifies the implemen-

tation of the cost function. In the case of the LVMSE modified cost function, it is different.

When a pixel’s value is altered by the algorithm, the total change in the LVMSE is not a simple

function of the current pixel’s change in value alone. Changing the current pixel’s value

changes its own local variance, and the local variances of all of its neighbours within anA by A

proximity of the current pixel. Hence to truly calculate the total change in LVMSE for the

entire image, the algorithm must calculate how changing the current pixel’s value effects the

local variances of all its neighbours and how these changes effect the overall LVMSE. This

approach is computationally prohibitive. To resolve this problem we must go back to the fun-

damental justification for adding the LVMSE term in the first place. The justification for add-

ing this term was the fact that we wished to create a cost function which matched the local

statistics of pixels in the original image to that of the image estimate. In this case it is sufficient

that the algorithm considers only minimising the difference in the local variance of the esti-

mated image pixel to the corresponding original image pixel and not minimising the total

LVMSE of the image. The great benefit arising from this approximation will become apparent

as explained below.
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The first step in the development of the algorithm is a change in notation. For anN by M

image letf represent the lexicographically organized image vector of lengthNM as per the

model given by (2.2) and the algorithm for the unmodified neural network cost function (2.3).

The translation between the two indicesx andy of f(x, y) and the single indexi of fi is given by:

(5.3)

Definexk andyk as the two dimensionalx andy values associated with pixelk by (5.3).

Define the two-dimensional distance between pixelsi andj as:

(5.4)

Let Ki represent theNM by NM matrix which has the following property:

Let (5.5)

then (5.6)

Ki has the effect of setting to zero all pixels not within theA by A neighbourhood centered

on the pixel with co-ordinatesxi, yi. As a shortened notation we will denote as . Using
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this notation, the average pixel value in theA by A region surrounding pixeli is given by:

Let and . Then the estimated variance of theA by A region sur-

rounding pixeli is given by:

(5.7)

Note that, strictly speaking,Vi is an estimate of the variance of this region given the availa-

ble pixel values. The true variance of this region is the expectation of the second moment.

However (5.7) is a suitable approximation given the available data. In the rest of this analysis,

(5.7) will be called the “local variance” and the term “estimated local variance” will be used to

refer to .

The LVMSE between the image estimate, , and the original image,f, may then be written

as:
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Let be approximated by . is the estimate of the local variance of pixeli in

the original image based on the degraded image and knowledge of the degrading point spread

function as per equation (5.2). is calculated before the algorithm commences and remains

a constant throughout the restoration procedure.

The algorithm we propose to implement first computes the negative direction of the gradient

which gives an indication of whether increasing or decreasing the current neuron value will

result in a net decrease in energy. Once the negative gradient is found the neuron value is

changed in unit steps and the resultant energy decrease after each step is computed. This ends

when no further energy minimisation is possible. In Chapter 3, we showed that the negative

gradient of the unmodified cost function, (2.3), is in fact the input to the neuron. Hence the

negative gradient of the modified cost function will therefore be the input to the neuron minus

the derivative of (5.8).

The gradient of (5.8) is given by:

(5.9)

Note that this formula is an approximation of the gradient which ignores the contributions

of the local variances of the pixels adjacent toi to the overall LVMSE of the image.
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Taking note of the fact that . Substituting (5.10) into (5.9) we obtain:

(5.11)

Multiplying (5.11) byθ and subtracting it from the input to the neuron gives us the negative

gradient of the cost function. Given a change in the value of pixeli, the resultant change in

energy is the previous change in energy given by (3.4) plusθ times the change in LVMSE. The

change in LVMSE is given by:

(5.12)

where

f̂ i
i

f̂=

f i
ˆ∂

∂ LVMSE
2

NM
---------

βi

A
2

------
γ i

2

A
4

------– V f
i

–
 
 
  2 f i

ˆ

A
2

--------
2γ i

A
4

-------–
 
 
 

=

f i
ˆ∂

∂ LVMSE∴ 4

NM A
2

----------------
f i
ˆ βi

A
2

----------
f i
ˆ γ i

2

A
4

-----------– f i
ˆ V f

i
–

βiγ i

A
4

---------–
γ i

3

A
6

------
γ iV f

i

A
2

--------------+ +
 
 
 

=

∆LVMSE
1

NM
--------- Vnew

i
V f

i
–( )

2
Vold

i
V f

i
–( )

2
–( )=

γ i
new γ i

old ∆ f i
ˆ+=

βi
new βi

old
2 f i

ˆ ∆ f i
ˆ ∆ f i

ˆ( )
2

+ +=

Vnew
i βi

new

A
2

-----------
γ i

new( )
2

A
4

------------------–=



106

(5.13)

where , , and are the values of these parameters before the change in the state of

neuroni occurred. The LVMSE algorithm is therefore:

Algorithm 5.1.
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where
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Figure 5.1 shows a flow chart representation of Algorithm 5.1.

Note that Algorithm 5.1 still utilises some features of Algorithm 3.3, specifically the use of

bias inputs and interconnection strength matrices.

Figure 5.1:Flow-chart representing Algorithm 5.1.
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5.3.2 Analysis

It is important to verify that Algorithm 5.1 acts upon a pixel in the intended manner. To ver-

ify this, we must examine the LVMSE term in Algorithm 5.1 more closely.

According to (5.11), the gradient of the LVMSE term of the cost function, when all pixels

except  are held constant, is given by:

Note that and can be rewritten as and

where and . Note that in this way, we can

extract the elements of (5.11) that depend on . Hence we obtain:

(5.14)
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contribution of the value of pixeli itself. Let . AsA increases in value,

approaches the value of the local variance at pixeli. Similarly, we can define an approximation

to the local mean of pixeli as:

(5.15)

If A is greater than 3, then pixeli contributes less than 15% of the value of the local mean

and local variance of its neighbourhood. IfA is 7 then the contribution is only 2%. Hence

approximating  as the local variance is valid.

This leaves us with:

(5.16)
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If A is greater than or equal to 5, then the error resulting from approximating as

is less than 4%. Therefore, if we assume thatA is large enough that then (5.16)

has zeroes at:

(5.17)

Note that (5.17) indicates that if , (5.17) may not have a real-valued solution. There

are three cases to examine.

CASE 1:
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point given by becomes a maximum and the function has two minima given

by (5.17). At least one of these minima will be in the domain , and so as long asJ is not

f i
ˆ

2M′
A

2
---------- 4 M′( )2

A
4

----------------- 4J
1
A2
------ 1

A4
------– 

 –±

2 1
A2
------ 1

A4
------– 

 
----------------------------------------------------------------------------=

1
A2
------ 1

A4
------–

1
A2
------ 1

A2
------ 1

A4
------»

f i
ˆ M′ A

M′( )2

A2
-------------- J–±≈

J 0>

J 0<

J 0<

f i
ˆ M′

1 1

A
2

------– 
 
---------------------=

f i
ˆ 0>



112

excessively negative it is possible to minimise the LVMSE term in the cost function in this

case.

This is as one would expect since if , then the variance of the local region surrounding

pixel i needs to be increased to meet the target variance estimate. It is always possible to

increase the local variance of pixeli by moving that pixel’s value further from the mean. This

is why the stationary point , which is the point where is approximately

equal to the mean of the local region, becomes a maximum.

Figure 5.2: Graph of function for Case 1.
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CASE 2:

When , then the local variance of region surrounding pixeli is greater than

the estimated local variance, but the difference is not great. Equations (5.17) and (5.16) indi-

cate that the LVMSE term in the cost function will again have three stationary points. The

function will then appear as Figure 5.3.

The stationary point given by becomes a maximum and the function has

two minima given by (5.17). At least one of these minima will be in the domain , and it

is again possible to minimise the LVMSE term in the cost function in this case.

When , the local variance of pixeli needs to be decreased to match the target variance

estimate. If , it is possible to match the local variance of pixeli with the target vari-

ance estimate by moving that pixels value toward the mean pixel value in the local region. The

stationary point , which is the point where is approximately equal to the

mean of the local region, is again a maximum, unless . When , all

three stationary points correspond to the same value and the function has one minimum at
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Figure 5.3: Graph of function for Case 2.
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estimated local variance, but the difference is too large for equality to be reached by changing
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The stationary point given by becomes a minimum, where since all

pixel values are constrained to be positive. So the minima will be in the domain , and it

is possible to minimise the LVMSE term in the cost function in this case.

When , the local variance of pixeli needs to be decreased to match the target var-

iance estimate. The minimum local variance is obtained by decreasing the value of the current

pixel to the mean value of the local region. In this case, the minimum local variance obtainable

by altering one pixel’s value is still greater than the estimate. The stationary point

is the point where is approximately equal to the mean of the local region.

Hence the pixel will move toward the mean value of the local region, hence reducing the local

variance as much as possible.

By examining each of the three cases above we can see that the LVMSE term in the cost

function is well behaved despite its non-linear nature. In all cases a minimum exists and by

minimising the LVMSE term in the cost function, the local variance of the current pixel’s

region will always move closer to the target variance estimate.
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Figure 5.4: Graph of function for Case 3.
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depend on the level of the variances. The dependence on the absolute difference between the

variances is in fact a disadvantage. When the local variance of a region is large and the target

variance for that region is also large, then noise will not be readily noticed. In this case, the first

term in the cost function which ensures sharpness of edges should be allowed to dominate the

restoration. However in this case, the difference between the target variance and actual vari-

ance may be large, causing the LVMSE term to dominate instead. On the other hand, when the

local variance of a region is small and the target variance for that region is also small, we

would want the LVMSE term to dominate, since this term would keep the local variance low

and suppress noise. However, in this case since the target variance and the actual variance are

small, the LVMSE term can also be too small and have an insufficient effect.

This prompts us to move away from absolute differences in local variances, and, instead,

compare the ratio of the local variance and its estimate. Taking this idea one step further, we

notice that taking the log of this ratio provides additional emphasising of small differences in

variance at low variance levels and de-emphasising large differences in variance at high vari-

ance levels.

Hence the new cost function we propose is:

(5.18)

This new term in (5.18), we will denote the Log Local Variance Ratio (Log LVR) term.
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5.4.1 The Extended Algorithm for the Log LVR Modified Cost Function

The algorithm to minimise (5.18) has the same basic strategy as the algorithm created in

Section 5.3. First, the negative direction of the gradient is computed. Once the negative gradi-

ent is found, the neuron value is changed in unit steps and the resultant energy decrease after

each step is computed. This ends when no further energy reduction is possible. As in the last

section, multiplying the partial derivative of the Log LVR term in (5.18) byθ and subtracting it

from the input to the neuron gives us the negative gradient of the cost function. As defined in

Section 5.3, the local variance of theA by A region centred on pixeli is given by:

where  and .

The gradient of the Log LVR term in (5.18) is given by:

(5.19)
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Similarly, given a change in the value of pixeli, the resultant change in energy is the previ-

ous change in energy given by (3.4) plusθ times the change in Log LVR. The change in Log

LVR is given by:

(5.20)

where

The new algorithm is therefore:

Algorithm 5.2.
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    for i = 1, ..... ,L do

    {
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until

    }

  t = t+1

}

until ( (t) = (t - 1) ∀i = 1, ...., L)

Note that Algorithm 5.2 is almost identical to Algorithm 5.1 and still utilises some features

of Algorithm 3.3, specifically the use of bias inputs and interconnection strength matrices.

5.4.2 Analysis

As in the previous section, we will verify the correct operation of Algorithm 5.2. To verify

this, we must examine the Log LVR term in (5.18) more closely.

The gradient of the Log LVR term of the cost function when all pixels except are held

constant is given by:
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(5.21)

Note that and can be rewritten as and

where and . Note that in this way we can extract

the elements of (5.21) that depend on . Hence we obtain:
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contribution of the value of pixeli itself. Let . AsA increases in value,

approaches the value of the local variance at pixeli. Similarly, we can define an approximation

to the local mean of pixeli as:

This leaves us with:

(5.22)

There are some points for which (5.22) is undefined. These points are given by:

At these points the function will have an infinitely negative gradient. In the event that

then the function will be defined for all values of . Fortunately this will almost

always happen. This can be seen by examining the condition for undefined points to exist:
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Using the formulas for  and  we get:

Hence we require that:

(5.23)

However the variance of a set of numbers is always greater than or equal to zero. is the var-

iance of the local region of pixeli obtained when the value of pixeli is set to zero. Hence we

have:

Which means that:
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(5.24)

Equation (5.24) of course means that condition (5.23) will only be satisfied when the local

variance is very close to zero. As long as steps are taken to ensure that this does not occur, the

function will be well defined for all values of .

The points for which Equation (5.22) is equal to zero are the stationary points of the Log

LVR term in (5.18). Equation (5.22) is zero when . This corresponds to the

case where is approximately equal to its local mean. Equation (5.22) also has zeroes when

 satisfies:

This is equivalent to:

where .
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The stationary points are thus given by:

(5.25)

Note that (5.25) indicates that if , (5.25) may not have a real-valued solution. (5.25) is

identical to (5.17) in the previous section and so the case by case analysis in Section 5.3.2 is

identical for a Log LVR modified cost function as it was for the LVMSE modified cost func-

tion.

As with the LVMSE term, the Log LVR term in the cost function is well behaved despite its

non-linear nature. In all cases minima exist and by minimising the Log LVR term in the cost

function, the local variance of the current pixel’s region will always move closer to the target

variance estimate.

5.5. Implementation Considerations

A problem to be overcome is that the third terms in the LVMSE based cost functions are not

quadratic in nature. When the local variance in the image estimate is much lower than the

projected local variances of the original image, the LVMSE term in Algorithm 5.1 becomes

large and may force the pixel values to an extreme of the range of acceptable values in order to

create a high variance region. The LVMSE term should never completely dominate over the

first term in (5.1) since the LVMSE term only attempts to match regions, not pixels, and fine

structure within the region will be lost. To remedy this situation, the pixel values are not allowed

to change by more than a set amount per iteration. This method appears to work well in practice
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and the pixel values converge to a solution after a finite number of iterations. This method

however is not required to the same degree in Algorithm 5.2. Algorithm 5.2 was designed to

avoid this effect, however this method may still be employed to improve results.

The addition of the LVMSE term into the cost function allows a powerful optimisation to be

made to Algorithm 5.1. In regions were the degraded image is very smooth and the variance

estimate of the original image is very small, improvement in image processing speed can be

achieved by not restoring these pixels. This will not affect the quality of processing since

attempting to deconvolve regions where the blurring effect is not noticable by humans can only

serve to amplify noise. It is logical not to attempt to restore such regions when using Algorithm

5.1 since the LVMSE based term in the cost function for this algorithm has little effect at low

variance regions. Algorithm 5.2 on the other hand was designed to smooth these regions and so

it is not necessary to avoid attempting to restore these regions.

5.6 Experimental Results

A number of experiments were conducted to evaluate the performance of the proposed

method. Comparisons were made with some well known methods in the literature.

5.6.1 Colour Image Restoration

For the first experiment, colour images were used consisting of three colour planes, red,

green, and blue. The image was degraded by a 5 by 5 Gaussian PSF of standard deviation 2.0

applied to each of the colour planes. In addition, additive noise of variance 369.31 was also

added to each colour plane. Figure 5.5a shows the original image and Figure 5.5b shows the
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degraded image. The degraded image has a SNR of 19.81dB and a LSMSE of 313.05. The

SNR was calculated by adding together the signal to noise ratio of each colour plane:

(5.26)

Similarly the LSMSE for the entire image was calculated by summing the LSMSEs of each

colour plane. A 9 by 9 neighbourhood was used for calculating the local variance. We com-

pared our algorithm with the Wiener filter and the constrained least square (CLS) filter. In this

investigation, we assumed that each colour plane in our test image does not have a high level of

correlation and so the filters are applied to each colour plane separately. The Wiener restored

image is shown in Figure 5.5c and has a SNR of 16.65 dB and a LSMSE of 859.80. The image

was also restored using Algorithm 3.3, without the LSMSE term. A constraint factor ofλ =

0.001 was chosen. The CLS restored image is shown in Figure 5.5d and has a SNR of 17.26 dB

and a LSMSE of 634.04. The image was also restored using the adaptive constraint algorithm

from Chapter 4. This image is shown in Figure 5.5e and has a SNR of 19.19 dB and a LSMSE

of 195.68. The same degraded image was also restored using the LSMSE modified cost func-

tion, Algorithm 5.1. In the LSMSE modified cost function, the value ofλ was set to 0.0005.

The factorθ was set to be 0.00001 and the image local variance estimate was computed as:

This image is shown in Figure 5.5f and has a SNR of 19.89 dB and a LSMSE of 180.81.

Finally the degraded image was restored using the Log LVR modified cost function, Algorithm
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5.2. In the Log LVR modified cost function, the value ofλ was set to 0.0005. The factorθ was

set to be 50 and the image local variance estimate was computed as for Algorithm 5.1. This

image is shown in Figure 5.5g and has a SNR of 21.65 dB and a LSMSE of 88.43.

By visual observation it can be seen that Figures 5.5f and 5.5g, produced by the LSMSE and

Log LVR based cost functions, display better noise suppression in background regions and are

at the same time sharper than Figure 5.5c and Figure 5.5d, produced by the Wiener and the

CLS approaches. Figures 5.5f and 5.5g also display a better SNR and LSMSE than Figures

5.5c, 5.5d and 5.5e. Although the LSMSE restored images are visually closer to the original

image than the degraded image, their SNRs are only slightly higher than the degraded image.

This is not surprising in view of the arguments above that SNR does not correspond well with

human visual perception. However LSMSE does match with human observation and assigns a

much lower value to Figures 5.5f and 5.5g. Comparing the two different forms of the LSMSE-

based cost functions, we find that Algorithm 5.2, (Figure 5.5g), is superior, with a similar level

of sharpness when compared to Figure 5.5f, yet better noise suppression in background

regions.

We see that the adaptive constraint method produces a similar result to Algorithm 5.1. This

is primarily because both algorithms use the concept of a variance threshold. As mentioned in

Section 5.5, if the local variance is below the threshold, the pixel is not adjusted. Both algo-

rithms 3.3 and 5.1 use identical thresholds and so have similar LSMSEs. Algorithm 5.2, how-

ever, was designed not to require the variance threshold and instead provides additional

smoothing to background regions and hence a much lower LSMSE.
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Figure 5.5:Colour images restored using various algorithms.

(a) (b)

(c) (d)

(e)
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Figure 5.5 (cont.):Colour images restored using various algorithms.

5.6.2 Grayscale Image Restoration

For the second experiment, a grayscale image was degraded by a 5 by 5 Gaussian PSF of

standard deviation 2.0. Additive noise of variance 87.62 was also added. Figure 5.6a shows the

original image and Figure 5.6b shows the degraded image. The degraded image has a SNR of

12.58 dB and a LSMSE of 28.13. The degraded image was first restored using a Wiener filter

approach. The Wiener restored image is shown in Figure 5.6c and has a SNR of 11.66 dB and

a LSMSE of 38.69. The image was also restored using the CLS algorithm (Algorithm 3.3).

Figure 5.6d shows the image restored using the CLS algorithm with a constant factor ofλ =

0.001. Figure 5.6d has a SNR of 8.76 dB and a LSMSE of 128.09. Figure 5.6e shows the image

restored using the CLS algorithm with a constant factor ofλ = 0.002. Figure 5.6e has a SNR of

11.93 dB and a LSMSE of 36.91. Figure 5.6f shows the image restored using the adaptive con-

straint algorithm presented in Chapter 4 using a range of constraint values from 0.02 to 0.0015

associated with levels of local variance. Figure 5.6f has a SNR of 11.97 dB and a LSMSE of

22.28. The degraded image was also restored using the LVMSE modified cost function imple-

(f) (g)
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mented using Algorithm 5.1. Figure 5.6g shows this image which has a SNR of 12.15dB and a

LSMSE of 22.71. Finally the degraded image was restored using the Log LVR modified cost

function implemented using Algorithm 5.2. Figure 5.6h shows this image which has a SNR of

12.07 dB and a LSMSE of 20.59. By observation, it can be seen that Figure 5.6h is visually

closest to the original image. LSMSE confirms visual inspection and indicates that Figure 5.6h

is the most well restored. Note that once again the adaptive algorithm from Chapter 4 performs

similarly to the LSMSE-based algorithms. The advantage of the LSMSE algorithms is that

they have less free variables to set up.

Figure 5.6:Grayscale images restored using various algorithms.

(a) (b)

(c) (d)
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Figure 5.6 (cont.):Grayscale images restored using various algorithms.

5.6.3 LSMSE of Different Algorithms

For the third experiment, the original flower image was blurred using a 5 by 5 Gaussian blur

of standard deviation 2.0. A number of images were created, each suffering a different value of

noise. The images were restored using Algorithm 3.3, Algorithm 5.1, Algorithm 5.2, a Wiener

filter, and the adaptive constraint algorithm from Chapter 4. For each image, the same value of

λ was used in Algorithm 3.3, Algorithm 5.1 and Algorithm 5.2. This meant that the restored

(g) (h)

(f)(e)
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images from Algorithm 3.3, Algorithm 5.1, and Algorithm 5.2 had the same degree of sharp-

ness, but differed in the level of noise suppression. In this way the effects of the LSMSE-based

terms in (5.1) and (5.18) could be examined in isolation. Figure 5.7 shows the results of this

experiment. It can be clearly seen that in terms of the LSMSE, Algorithms 5.1 and 5.2 outper-

form the other algorithms, especially the standard CLS approach for the same level of sharp-

ness.

Figure 5.7:Graph of LSMSE for various algorithms and levels of noise.
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5.6.4 Robustness Evaluation

For the fourth experiment, the original flower image was blurred using a 5 by 5 Gaussian

blur of standard deviation 2.0. Additive noise of variance 87.62 was also added. The degraded

image was restored using Algorithm 3.3, Algorithm 5.1 and Algorithm 5.2. In each algorithm,

λ was set to 0.001 to maintain the same level of sharpness. Figure 5.8a shows the results of

Algorithm 3.3. This image is identical to Figure 5.6d and has a SNR of 8.76 dB and a LSMSE

of 128.09. Figure 5.8b shows the results of Algorithm 5.1. Figure 5.8b has a SNR of 12.45 dB

and a LSMSE of 20.76. Figure 5.8c shows the results of Algorithm 5.2. Figure 5.8c has a SNR

of 12.25 dB and a LSMSE of 19.76. Next we severed one of the neural interconnections to a

neighbouring neuron for every neuron in the network. The same connection was severed for

each neuron in the network. This would be expected to degrade the performance of the net-

work. Using the same parameters, the restorations were performed again. Figure 5.8d shows

the results of restoring the image using Algorithm 3.3 with a faulty network. The SNR is -4.21

dB and the LSMSE is 5889.42. Figure 5.8e shows the results of restoring the image using

Algorithm 5.1 with a faulty network. The SNR is 12.15 dB and the LSMSE is 23.23. Figure

5.8f shows the results of restoring the image using Algorithm 5.2 with a faulty network. The

SNR is 10.06 dB and the LSMSE is 40.13. From these results we can see that Algorithm 3.3 is

not very tolerate of errors in weights. The image produced by the faulty network is very

degraded and has poor values of SNR and LSMSE. On the other hand, Algorithm 5.1 and

Algorithm 5.2 have almost no visual differences between images restored using the correct net-

work and images restored using the faulty network. The images restored using the faulty net-

work have only slightly worse values of SNR and LSMSE compared to the image restored

using the correct network. The reason that Algorithm 5.1 and 5.2 are more fault-tolerant than

Algorithm 3.3 is due to the LSMSE-related terms in these algorithms. The damaged weights in
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Algorithm 3.3 produced streaks in the image. These streaks would cause the pixels in their

vicinity to have very high local variances. Since Algorithm 3.3 does not consider the local

regional statistics of the image, the streaks are not suppressed. However Algorithm 5.1 and

Algorithm 5.2 attempt to match local variances in the restored image with an estimate of the

original image. The streaks are therefore suppressed by Algorithms 5.1 and 5.2. It is clear that

Algorithms 5.1 and 5.2 are very robust and are not greatly affected by errors in the network.

Algorithm 5.1 is more robust than Algorithm 5.2 on the edges because of the fact that the log-

ratio relationship between the local variance and the target variance used by Algorithm 5.2 was

developed to de-emphasise the LSMSE effect on edges. Algorithm 5.1 has its greatest effect on

edges, whereas Algorithm 5.2 was specifically designed to have the least effect on edges and

the greatest effect on smooth regions. However both algorithms are still quite tolerate of net-

work errors. This is due to the fact that the LVMSE based terms in these algorithms can never

be affected by severed neural connections. The author believes that this aspect is a powerful

feature of the proposed algorithms.
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Figure 5.8: Images restored using correct and faulty networks.

(a)

(c)

(b)

(e)

(d)

(f)
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5.7 Summary

In Chapter 2, a novel error measure was introduced which compares two images by consid-

eration of their regional statistical differences rather than their pixel-level differences. It was

found that this error measure more closely corresponds to human visual perception of image

quality. Based on the new error measure, two cost functions were developed. The first cost

function was based closely on the LVMSE error measure introduced in Chapter 2. This cost

function was analysed and shown to be well behaved. The analysis of the first modified cost

function suggested that improvements could be made by incorporating a logarithmic version of

the LVMSE into the standard cost function. The second cost function was hence developed and

shown to be well behaved. Algorithms to optimise these cost functions were designed based on

adaptation of the neural network approach to optimising constrained least square error.

The proposed algorithms were shown to suppress noise strongly in low variance regions

while still preserving edges and highly textured regions of an image. The algorithms were

shown to perform well when applied to both grayscale and colour images. It was also shown

that the proposed iterative algorithms are very robust.
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Chapter 6: Conclusion

6.1 Introduction

This chapter summarises the material presented in this thesis. Section 6.2 details the overall

objectives of this thesis. Section 6.3 summarises the background material presented in Chapter

1. Section 6.4 considers the material presented in this thesis regarding the problem of restoring

images for human observers. Section 6.5 summarises advances made to the basic neural net-

work algorithm. Section 6.6 details the extension of the basic neural network algorithms to

incorporate some concepts of human perception. Section 6.7 examines some future research

directions for this field. Section 6.8 concludes this chapter.

6.2 Overview of Thesis Objectives

In the field of image restoration, the recent advances in the use of Hopfield-based neural

networks have been exciting. The neural network approach provides a level of flexibility and

adaptability which the author believes is far from being fully exploited. For this reason, this

thesis shows how this approach can be expanded to handle the cases of semi-blind image resto-

ration, adaptive constraint restoration and the restoration of images suffering from spatially

variant degradations.

Another underdeveloped research field is the problem of incorporating concepts of the

human visual system into the field of image processing, especially image restoration. The

author feels that the field of image processing is extensively intertwined with these concepts,
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and as such, they deserve further investigation. Therefore a very important objective of this

thesis is to develop usable image fidelity measures, which can describe important human visual

criteria, and yet be of a form which allows easy incorporation into image restoration (and gen-

eral image processing) algorithms. Some such algorithms have been presented in this thesis.

6.3 Background

In Chapter 1, background material was presented. Various types of image degradation and

their causes were described. Image degradations could be described as linear or non-linear and

spatially variant or spatially invariant. This was followed by a description of the basic concepts

involved in the problem of restoring degraded images to approximations of their original

forms.

In that chapter a review of the basic classical methods of image restoration was given. These

methods were classified into transform-based techniques or algebraic techniques.

Among the transform related techniques we considered restoration methods such as the

Inverse filter, Wiener filter, parametric estimation filters, Kalman filters and homomorphic fil-

ters.

For the algebraic restoration techniques, we considered methods such as pseudoinverse res-

toration, singular value decomposition pseudoinverse restoration, Wiener estimation, and con-

strained restoration.

We pointed out each of these classical methods have one serious drawback or another. Some
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of them can be computationally expensive, while most do not adapt easily to varying algorith-

mic parameters spatially during the restoration procedure. For this reason, we looked at emer-

gent image restoration methods and research directions.

We considered the recent neural network approaches to image restoration. These

approaches are increasing in popularity due to the ease of implementing a wide range of filters

and the ability of neural networks to alter neuron weights to implement truly adaptive image

restoration.

We also studied some new methods for the restoration of images degraded by spatially vari-

ant distortions, and we considered general algorithms for adaptive image restoration. Recent

research in the difficult field of blind image restoration was presented and a number of recent

algorithms described. The problems involved in the restoration of colour images were detailed

and recent research papers in this field were summarised.

6.4 Perception Motivated Error Measures

This thesis studied the problem of incorporating concepts from the human visual system

into image restoration algorithms. It was seen that images restored without using any concepts

from the human visual system can hardly take into account the human concepts of a “good” or

“bad” image. Without these concepts, a restoration algorithm will invariably produce subopti-

mal results from a human point of view.

Most image restoration algorithms are based on some measure of image quality, such as the

mean square error (MSE). However error measures such as the MSE are derived from statisti-
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cal considerations, such as the idea that a bad image is one where the noise power is too great.

These considerations have little relationship to the way that humans perceive images. Humans

do not concentrate on the values of individual pixels or the global statistics of the image, but

instead are concerned with edges and textures within the image. Edges and textures can be

considered as local statistical properties, rather than global ones. Research has been done into

various forms of image error measures. Many of these measures rely on complex models, or

empirically derived constants, and are hence difficult to incorporate into image restoration

algorithms. In order to feasibly incorporate perception into restoration, the author developed a

simple, yet powerful, image error measure based on the comparison of local regional statistics.

The proposed error measures have two formats; LSMSE (local standard deviation mean square

error) and LVMSE (local variance mean square error). An experiment was performed which

showed that the LSMSE and the LVMSE provide a better match to human visual appraisal

when compared to the SNR.

6.5 Advances on the Basic Neural Network Algorithm

In Chapter 3, previous work performed in the field of neural network based image restora-

tion was reviewed and the basic algorithms described. The author then presented a modified

algorithm which uses a more advanced neuron. The new algorithm is able to minimise each

neuron’s contribution to the overall energy function in one step, rather than the many steps

required by previous algorithms. The author then shows that this results in a great increase in

speed without any subsequent reduction in restoration quality. The author shows how the algo-

rithm may be extended to the case of restoring images suffering from spatially variant degrada-

tions through the use of multiple “weighting masks”.
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In Chapter 4, the new algorithm is used as a basis for extending the functionality of the neu-

ral network restoration technique. In particular, adaptive regularisation is introduced. The

adaptive constraint algorithm requires a method of selecting the correct constraint value for

each neuron (pixel) in the network. In Chapter 4, the author considers how this can be

achieved. It is first shown that using the technique of gradient descent to select the regularisa-

tion constant will produce poor results. Given the relevance of local statistics and the human

visual system, the author presents a method for assigning constraint values to each pixel based

on a log-linear relationship between local variance and the value of the regularisation constant.

It is described how using this constraint selection method may not only be able to implement

an adaptive regularisation term with a view to improving the visual appearance of images for a

human observer, but may also be applicable to the problem of semi-blind image restoration.

This is due to the fact that a varying regularisation term can alternately be modelled as a vary-

ing estimation of the degrading PSF. The multiple weighting mask concept for space variant

processing is then taken a step further to allow adaptive regularisation.

A number of experiments are performed which show the results of applying the adaptive

constraint network approach to the problems of standard image restoration, restoration effi-

ciency, and semi-blind image restoration. The adaptive algorithm is shown to perform better

than other restoration techniques for these problems.

6.6 Perception-Based Algorithm Modifications

Despite the success of the adaptive constraint algorithm presented in Chapter 4, the author

considered the problems involved with using the MSE as the sole measure of image fidelity. In

Chapter 5, the author presented two new restoration algorithms, which incorporate error meas-
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ures based on the LVMSE error measure presented in Chapter 2.

The first restoration algorithm is based on minimising the constrained least square error

function with an additional term which describes the LVMSE of the image and the second cost

function is a variation of LVMSE, but with greater emphasis on low levels of local variance, by

taking the logarithm of the ratio of the local statistics.

The author presented algorithms to minimise both of these cost functions and presented a

number of experiments which show that the LSMSE-modified cost functions perform better

than the standard constrained least square error cost functions for the problems of standard

grayscale image restoration, colour image restoration, and network error tolerance.

One of the most important findings regarding the modified cost functions is that they are

very robust. When interconnections between neurons were severed in the networks, the stand-

ard neural network algorithms produced very poor results. However by including details

regarding the local statistical properties of the image into the restoration cost function by the

use of a LVMSE-related term, images could be restored with very little reduction in quality.

This is a powerful feature of the algorithms presented in Chapter 5.

6.7 Future Work

There are a number of future research topics which still remain to be pursued in this field.

Better models of the adaptive constraint algorithm could be developed, especially in regard to

the method of constraint assignment, which needs to be formalised.
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In Chapter 5 we examined the incorporation of LSMSE based terms into the standard con-

strained least square error cost function. Two variants of LVMSE were considered as candi-

dates for inclusion in modified cost functions. Both measures restored the image adaptively

and produced better results when compared to non-adaptive methods, especially when noise

levels were high. However there exists other variations of the LSMSE measure. It would be

interesting to examine the many possible variations of the LSMSE and the resultant restoration

algorithms. Some variations may prove superior to others, or be tailored to a particular image

or problem. Here we have tailored the standard restoration algorithms to the problem of restor-

ing images for human appraisal, but more research needs to be done into the more general con-

cept of “problem tailored algorithms”. A future research direction would be incorporating into

the algorithm information about the correlation between the colour co-ordinates and compar-

ing this with existing techniques such as the well known Wiener filter proposed by Hunt and

Kubler [81].

6.8 Summary

This chapter summarised the material covered in this thesis. The major developments and

contributions have been described, as have been the experiments performed and their results.
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Appendix A: Calculation of Weights and Bias Inputs

The cost function we are attempting to minimise is given by:

(A1.1)

where is the restored image estimate,λ is a constant, andD is a smoothness constraint oper-

ator. Let  be the number of neurons (pixels) in the network.

The formula for the energy of the neural network is given by:

(A1.2)

where the (i,j)th element ofW corresponds to the interconnection strength between neurons

(pixels) i andj in the network and vectorb corresponds to the bias input to each neuron.

Expanding (A1.1) we get:

E
1
2
--- g H f̂– 2 1

2
---λ D f̂ 2+=

f̂

L MN=

E
1
2
---– f̂

T
W f̂ bT f̂ c+–=

E
1
2
--- gp hpi f̂ i

i 1=

L

∑–
 
 
  2

p 1=

L

∑ 1
2
---λ dpi f̂ i

i 1=

L

∑
 
 
  2

p 1=

L

∑+=

1
2
--- gp hpi f̂ i

i 1=

L

∑–
 
 
 

gp hpj f̂ j

j 1=

L

∑–
 
 
 

p 1=

L

∑=
1
2
---λ dpi f̂ i

i 1=

L

∑
 
 
 

dpj f̂ j

j 1=

L

∑
 
 
 

p 1=

L

∑+



147

Hence

(A1.3)

Expanding (A1.2) we get:

(A1.4)

By equating the terms in equations (A1.3) and (A1.4) we find that the neural network model

can be matched to the constrained least square error cost function by ignoring the constant,c,

and setting:

(A1.5)
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and

(A1.6)

wherewij is the interconnection strength between pixelsi andj, andbi is the bias input to neu-

ron (pixel) i. In addition,hij is the (i,j)th element of matrixH from equation (A1.1) anddij is

the (i,j)th element of matrixD.
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Appendix B: Analysis of the Adaptive Constraint Approximation

The weights for the adaptive constraint method can be computed by generalising the con-

strained least square error cost function.

(A2.1)

where

(A2.2)

is aL by L diagonal matrix to reflect the adaptive processing nature. In this model each pixeli

is assigned a constraint valueλi. Define . Note that the elements of are given

by:

Using equation (A1.5), the weight between neuronsi andj in the network is given by:
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(A2.3)

Equation (A2.3) is difficult to implement compared to the single constraint case, (A1.5).

However (A2.3) can be greatly simplified. Consider the approximation:

(A2.4)

whereλi is the constraint value assigned to neuroni, andk is a scaling constant. Equation

(A2.4) is much easier to calculate for each neuron since it only relies on the value ofλ assigned

to neuroni, and does not depend on the values ofλ assigned to other neurons in the neighbour-

hood of neuroni. If we have a finite set of available values ofλ, then by using (A2.4) we will

require only one weighing mask for eachλ value in the set. If we instead use (A2.3) we will

have to recalculate the weights for each neuron in the network. This will, for obvious reasons,

greatly degrade the performance of the network. The next question we must ask is how well

does (A2.4) approximate (A2.3) and when can we expect the approximation to break down.

Note that the concept of a “weighting mask” described in Chapter 3 used the fact that a neu-

ron only has non-zero connections to other neurons within a certain neighbourhood centred on

the neuron. If a neuron lies in a region where all its neighbours were assigned the same value

of λ, then (A2.3) would be the same as the weighting mask produced by using a constant value

of λ for all pixels in the image. This means that a constant can be found such that (A2.3) can be

accurately approximated by (A2.4) and  in the vicinity of this neuron.
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If some of the neurons in the neighbourhood of neuroni have different values ofλ, but the

difference betweenλi andλj is not great, then (A2.4) is still a good approximation although

. However we can expect that

If some of the neurons in the neighbourhood of neuroni have very different values ofλ then

the approximation will not hold. We cannot expect that . This is not a big problem

however, since regions where neighbouring neurons have greatly different values ofλ must be

edges and highly textured regions. The reasons for this will be further explained in Chapter 4.

In such regions, noise is not readily noticable and so any errors made by approximating (A2.3)

as (A2.4) will be masked. Hence the approximation provides increased ease of use and only

breaks down in those regions where the effects are least noticable.

wij wji≠ wij wji≈

wij wji≈
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Appendix C: Analysis of the Factors in the Gradient Descent Method.

FACTOR A

FactorA is given by:

where .

The factorK is the value of pixel after a double application of the degrading PSF to the

image estimate. Using the approximate formula forH, thenH is symmetric,HT=H. Note that

since ,bi is the value of pixel after a single application of the degrading

PSF to the degraded image, which is itself the result of applying the degrading PSF to the orig-

inal image. Therefore in effect;

(A3.1)

wheref is the estimate of the original when noise is not considered. The algorithm would
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eventually returnf as the restored image when . Hence we obtain:

(A3.2)

whereAk is the column vector whose elementi is the value of factorA computed at neuroni

during thekth iteration of the algorithm.

Considering (A3.2), it is obvious that the entries inAk may be positive or negative and will

approach zero as the image estimate approaches the original image in the event of no noise. We

can expectAk to have its greatest values in the initial iteration of the algorithm.

If the initial image estimate is , then:

(A3.3)

As long as the additive noise is not too severe, the double application of the low-pass

degrading PSF given byH will remove most of the noise in the smooth regions of the image.

Since is a high pass filter, factorA would tend to be large in high variance regions and

small in low variance regions of the image.

FACTOR B

For factorB we have , which can be rewritten as:
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(A3.4)

SinceDT = D, factorB is hence the value of pixel after a high-pass filter has been applied

twice to the image estimate. On edges and high texture regions, we would expect the magni-

tude of factorB to be large. However since the high-pass filter is applied twice, noise and very

sharp edges would produce a larger magnitude ofB than more gradual edges in the image. It is

important to note thatB may be positive or negative depending on whether the value of is

higher or lower than the mean of its neighbours, howeverB will tend to zero in low variance

regions of the image.

FACTORS C & D

FactorsC andD are given by and . Both these factors are

constant.C will always be quite small and in the case of a degrading PSF modelled by a 5 by 5

Gaussian blur of standard deviation 2.0 in bothx andy directions,C = 0.28. FactorD depends

upon the type of high-pass filter chosen and typical values are of the order of 50 to 500.
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GLOSSARY

Cost Function: A function of any number of variables whose output is a sin-

gle number. The function can be minimised to find an optimal

set of parameters.

Blind Image Restoration: Image restoration performed with no knowledge of the

degrading PSF details.

Human Visual System: The human biological system for the processing of visual

information. This description includes visual properties and

processing inherent in the eyes, optical nerve and visual cen-

tres of the brain.

Ill-Posed Problem: A problem with too few constraints and hence has a number

of possible solutions. Image processing problems are often of

this form.

Neural Networks: A computational model consisting of numerous simple

processing units connected in a grid to each other. Motivated

by biological systems.

Point Spread Function (PSF): A two dimensional impulse response. The response of a single

point source to a linear imaging system.

Restoration: The correction of an image suffering some form of distortion,

noise or degradation.

Semi-Blind Image Restoration: Image restoration performed with incomplete knowledge of

the degrading PSF.

Spatially Invariant PSF: A PSF whose form does not depend on its position in the

image.
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Spatially Variant PSF: A PSF whose form varies according to its position in the

image.
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