CHARACTERISING AND MAPPING PORCINE ENDOGENOUS RETROVIRUSES

A thesis submitted to the Faculty of Agricultural science in the fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Sydney
Australia

Declaration

The work presented in this thesis is original and was undertaken in the Department of Animal Science while I was enrolled as a PhD student in the Faculty of Agricultural Science, University of Sydney.

I certify that this thesis has not been submitted for any other degree, and that all sources of information and assistance during the experimental work and preparation of the thesis are duly acknowledged.

Jun Heon Lee

August 2000

Dedication

For my beloved people:
My parents, Jil Hyun Lee and Jung Ja Kim
My wife, Myoung Hee Hong
My daughter, Kyong Shik Lee

Acknowledgements

During my three and half years PhD study, a lot of people encouraged me to finish my course in various ways, which I will gratefully acknowledge.

First of all, I am most grateful to my supervisor, Associate Professor Chris Moran, for his support, encouragement and invaluable guidance throughout my PhD candidature. It is a great fortune for me in having had the opportunity to study under his supervision. Chris has been involved at all stages and in all aspects of my studies described in this thesis, making lots of valuable suggestions. Also, he devoted a lot of time and care to critically reading all drafts of this thesis, and gave expert editorial advice for completion of this thesis.

I am also extremely grateful to my associate supervisor, Associate Professor Frank W. Nicholas, who provided stimulating suggestions throughout my Ph.D. course and this thesis. Frank also read the whole thesis and made many constructive suggestions, which are greatly appreciated. I will always bear my supervisors' suggestions in mind as a scientific researcher for the rest of my life.

My sincere gratitude goes to Dr Graham C. Webb, at University of Adelaide and The Queen Elizabeth Hospital, Adelaide who gave me a lot of help including warm hospitality in his house and experiments on FISH mapping of PERVs.

Thanks to the people at the Westmead Hospital, Sydney, including Dr Phill O'Connell, Jane Burgess, and Tina Patel in relation to valuable discussions and Westran pig DNA samples.

I thank to Associate Professor Mick O'Neill in the Biometry Unit and Dr John James in relation to the confidence limits of my experiment.

I also thank to Dr Yizhou Chen, postdoctoral fellow in my laboratory, who generously shared meaningful insights and discussions on many aspects of my project.

My personal thanks to Seung Soo Lee, a Korean Fellow who has shared most of my time in this laboratory and has shared great knowledge of genetics.

I have much pleasure in acknowledging all of my colleagues in the Animal Genetics section including, Zung Doan, Dr Weiyi Zhang, Dr Mohammad Shariflou, Dr Nauman Maqbool, Nicola Man, Jaime Gongora, and Mark Gear for a very helpful, friendly and entertaining environment.

I also thank the colleagues in the Department of Veterinary Clinical Sciences at Camden (Dr Herman Raadsma, Dr Imke Tammen, Dr Bill Blackhall, Julie Cavanagh, Natatha Ellis, Marilyn Jones, Gina Attard) for their help in relation to the Li-Cor sequencer.

My general thanks also go to many other members of the Department of Animal Science for their kind help in various ways.

I also thank to the people in the Korean Oversea Student Association in the University of Sydney and ROTC colleagues who give me a lot of entertainments and encouragements, especially Jung Won Kim, Wonje Lee, Robin Lee, Hak Hae Kim, Yong Jae Jeon and their families.

My heartfelt thanks go to Myoung Hee Hong, my wife and my colleague, and my daughter Kyong Shik Lee, for their love, encouragement and support during my three years PhD study.

Finally, I would like to gratefully acknowledge all the support of my parents. Without their help, I could not start my PhD either.

This thesis was written using Microsoft Word 97 installed in a personal computer Pentium 200. All result pictures were scanned by Hewlett Packard ScanJet 6200C scanner.

Jun Heon Lee
The University of Sydney
August 2000

Summary

The initial focus of this PhD project was on comparative gene mapping. Comparative gene mapping is facilitated by consensus PCR primers which amplify homologous gene fragments in many species. As a part of an international co-ordinated programme of comparative mapping in pigs, 47 CATS (Comparative Anchor Tagged Sequence) consensus primer pairs for loci located on human chromosomes $9,10,20$, and 22 , were used for amplifying homologous loci in pigs. After optimization of PCR conditions, 23 CATS products have confirmed by comparison with homologous sequences in GenBank. A French somatic cell hybrid panel was used to physically map the 6 porcine CATS products distinguishable from rodent background product, namely ADRA1A, ADRA2A, ARSA, GNAS1, OXT and TOP1. Of these, the map location of ADRA1A and OXT showed inconsistency with the previously recognised conserved relationship between human and pig. The other four loci mapped to positions consistent with known syntenic relationships. Despite low levels of polymorphism, frequently indistinguishable rodent and porcine products in somatic hybrids and some confusion of identity of gene family members, these CATS primers have made a useful contribution to the porcine-human comparative map.

The focus of the project then changed to genetic and molecular characterisation of endogenous retroviruses in pigs and their relatives. Pigs are regarded as a potentially good source of organs and tissues for transplantation into humans. However, porcine endogenous retroviruses have emerged as a possible problem as they can infect cultured human cells. Two main types of pig retrovirus, determined by envelope protein, PERV-A and PERV-B, are widely distributed in different pig breeds and a third less common type, PERV-C, has also been recognised. Endogenous retroviruses were analyzed from the Westran (Westmead transplantation) inbred line of pig, specially bred for biomedical research. Thirty-one 1.8 kb env PCR product clones were sequenced after preliminary screening with the restriction enzymes KpnI and MboI. Five recombinant clones between A and B were identified. 55% of clones (17/31) sequenced had stop codons within the envelope protein-encoding region, which would prevent the retrovirus from making full-length envelope protein recognizable by cell-surface receptors of the virus. The endogenous viruses were physically mapped in Westran pigs by FISH (Fluorescence In Situ Hybridisation) using PERV-A and PERV-B envelope clones as probes. Preliminary FISH data suggest that there are at least 22 PERVs (13 PERV-A and 9 PERV-B) and the chromosomal locations of these in the Westran strain are quite different from European Large White pigs. The sequences and mapping results of inbred Westran pig suggest that there are relatively few PERV integration sites compared with commercial pigs and further that a large proportion of clones are defective due to premature stop codons in the envelope gene.

To investigate the relationship of endogenous retroviruses in peccaries and pigs, a set of degenerate primers was used to amplify peccary retroviral sequences. The sequences of two putative retroviral clones showed close homology, albeit with a 534 bp deletion, to mouse and pig retroviral sequences. Also, four non-target sequences were amplified from peccary with the degenerate retroviral primers. They are a part of the peccary cofilin gene, a SINE, and a sequence containing a microsatellite. The peccary endogenous retroviral sequences are significant in that they are the first such sequences reported in peccary species and repudiate old claims in the literature that peccaries do not have C-type retroviral sequences.

Abbreviations

${ }^{3} \mathrm{H}$	= tritium
5-BrdU	= 5 -flourdeoxyuridine
ANGIS	= Australian genomic information service
APS	= ammonium persulfate
bp	$=$ base pair(s)
BSA	= bovine serum albumin
CATS	= comparative anchor tagged sequences
cM	= centi Morgan
cpm	$=$ counts per minute
dATP	$=$ deoxyadenosine triphosphate
dCTP	= deoxycytidine triphosphate
dGTP	= deoxyguanosine triphosphate
dTTP	= deoxythymidine triphosphate
DNA	= deoxyribonucleic acid
dNTPs	= deoxynucleoside triphosphates (dATP, dCTP,dGTP,dTTP)
EDTA	= ethylenediamine tetra acetic acid
FISH	= fluorescence in situ hybridisation
FITC-avidin	= Fluorescein isothiocynate conjugated avidin
g	= gram
g	= centrifugation force
kb	$=$ kilobase pair(s)
LB	= Luria-Bertani medium
OD	= optical density
nm	= nano metre
PBS	= phosphate-buffered saline
PCR	= polymerase chain reaction
PERVs	= porcine endogenous retroviruses
PHA	= phytohaemagglutinin
PiGMaP	= European Community initiated international pig gene mapping project
PSF	$=$ penicillin, streptomycine, and fungizone
PWM	= pokeweed mitogen
RFLP	$=$ restriction fragment length polymorphism

RNA	$=$ ribonucleic acid
Rnase	= ribonuclease
QTL	= quantitative trait locus
rpm	$=$ revolutions per minute
SDS	$=$ sodium dodecyl sulphate
SNP	$=$ single nucleotide polymorphism
TAE	$=$ Tris-acete-EDTA buffer
Taq	$=$ Taq DNA polymerase
TBE	$=$ Tris-borate-EDTA buffer
TE	$=$ Tris-EDTA buffer
TEMED	$=\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}$ '-tetra methyl ethylene diamine
Tris	$=$ Tris(hydroxymethl)aminomethane
$\mu \mathrm{Ci}$	$=$ micro Curie
$\mu \mathrm{l}$	$=$ micro liter
$\mu \mathrm{M}$	$=$ micro Molar
UV	= ultraviolet
V	$=$ voltage

List of Contents

DECLARATION II
DEDICATION. III
ACKNOWLEDGEMENTS IV
SUMMARY VI
ABBREVIATIONS VIII
LIST OF CONTENTS X
CHAPTER ONE: INTRODUCTION 1
1.1. GENOME MAPPING 1
1.1.1. MARKERS FOR GENOME MAPPING 1
1.1.1.1. Conventional markers 1
1.1.1.2. DNA markers 1
1.1.2. Gene mapping. 4
1.1.2.1. Linkage (Genetic) mapping 4
1.1.2.2. Cytogenetic (Physical) mapping 5
1.1.3. Pig genome mapping6
1.1.3.1. PiGMaP and PiGMaP reference families 7
1.1.4. Application of gene mapping 8
1.1.4.1. Identification of QTL 8
1.1.4.2. Marker Assisted Selection (MAS) 8
1.1.4.3. Identifying the genes underlying QTL 9
1.1.4.4. Comparative gene mapping 9
1.2. Retroviruses 10
1.2.1. Structure and life cycle of retrovirus 10
1.2.2. Classification of retroviruses 12
1.2.2.1. Retroviruses in different host species 14
1.2.3. Retroviral variation 17
1.2.3.1. Mutation and deletion 17
1.2.3.2. Recombination 18
1.2.4. Retroelements 18
1.2.4.1. Endogenous retroviruses (ERVs) 19
1.2.4.2. LINEs. 19
1.3. Xenotransplantation 20
1.3.1. Barriers to xenotransplantation 21
1.3.1.1. Hyperacute rejection 21
1.3.1.2. Cell-mediate immunity 21
1.3.2. Genetic manipulation to avoid xenograft rejection 22
1.3.3. Progress in xenotransplantation. 23
1.3.4. Dangers of porcine xenotransplantation 24
1.4. AIMS OF THIS THESIS. 25
CHAPTER TWO: GENERAL MATERIALS AND METHODS 26
2.1. INTRODUCTION 26
2.2. PREPARATION OF BUFFERS 26
2.2.1. Commonly used buffers 26
2.2.1.1. Tris-HCl 26
2.2.1.2. EDTA 26
2.2.1.3. TE 27
2.2.1.4 TAE 27
2.2.1.5. TBE 27
2.2.1.6. SSC 27
2.2.2. Buffers used for DNA extraction 27
2.2.2.1. Cell lysis buffer 27
2.2.2.2. Nuclear lysis buffer 28
2.2.2.3. Solution I 28
2.2.2.4. Solution II 28
2.2.2.5. Solution III 28
2.2.3. Gel loading buffers 28
2.2.3.1. Agarose gel-loading buffer 28
2.2.3.2. Sequencing gel-loading buffer 29
2.3. Preparation of MEDIUM 29
2.3.1.1. LB medium 29
2.3.1.2. LB plate with ampicillin or kanamycin 29
2.4. DNA EXTRACTION 30
2.4.1. Extracting genomic DNA from blood 30
2.4.2. Extracting plasmid DNA from bacterial cells 30
2.4.3. Isolation of DNA from gel slices. 33
2.4.3.1. \quad BRESAclean $^{\mathrm{TM}}$ DNA purification kit 33
2.4.3.2. Low melting point agarose gel. 34
2.5. MEASURING THE CONCENTRATION OF DNA 34
2.5.1. Spectrophotometric measurement 34
2.5.2. Agarose gel quantification 34
2.6. DESIGNING PRIMERS. 34
2.7. PCR 35
2.7.1. PCR conditions 35
2.7.2. PCR amplification 35
2.7.3. Touchdown PCR 36
2.7.4. Screening of clones using boiled preparation 36
2.8. RESTRICTION ENZYME DIGESTION 36
2.9. GeLS AND GEL ELECTROPHORESIS 37
2.9.1. Agarose gels 37
2.9.2. Sequencing gels 37
2.9.2.1. ABI 373 sequencing gels 37
2.9.2.2. Li-cor sequencing gels 38
2.10. SEQUENCING - ABI/LI-COR 38
2.10.1. ABI Dye Terminator Cycle Sequencing 38
2.10.2. Li-Cor cycle sequencing 39
2.11. Cloning PCR PRODUCTS. 39
2.11.1. $T_{O P O}{ }^{T M}$ TA Cloning Kit 40
2.11.1.1. Ligation of plasmid and insert DNA 40
2.11.1.2. Transformation reaction 40
2.11.2. Zero Blunt ${ }^{T M}$ PCR Cloning Kit 41
2.11.2.1. Ligation of plasmid and insert DNA 41
2.11.2.2. Transformation reaction 41
2.12. MAPPING RESOURCES 41
CHAPTER THREE: IMPROVING THE COMPARATIVE PORCINE MAP RELATIVE TO HUMAN CHROMOSOMES 9, 10, 20 AND 2242
3.1. Introduction 42
3.2. GENERAL STRATEGY 45
3.3. MATERIALS 47
3.3.1. CATS primers 47
3.3.2. Pig genomic DNA 50
3.3.3. Somatic cell hybrid panel 50
3.4. METHODS 51
3.4.1. Preliminary PCR testing of CATS primers on porcine genomic DNA 51
3.4.2. Purifying $P C R$ product from agarose gel slices 51
3.4.3. Direct Sequencing of PCR products using ABI 373 automatic DNA sequencer. 52
3.4.4. Cloning and sequencing OXT PCR products from Landrace and Large White breeds 52
3.4.5. Verification of the sequences 52
3.4.6. Searching for restriction enzyme sites for distinguishing porcine and rodent PCR products from the somatic cell hybrid panel. 52
3.4.7. Screening for porcine RFLPs 53
3.4.8. Physical mapping - somatic cell hybrids 53
3.5. RESULTS 54
3.5.1. Optimum conditions for PCR. 54
3.5.2. Sequences of PCR products 56
3.5.3. Comparison of the sequences with the GenBank database 56
3.5.4. Screening for PCR-RFLP in CATS products 58
3.5.4.1. \quad An $M s p$ I RFLP for $O X T$. 59
3.5.4.2 Sequence comparison between Large White and Landrace breeds for $O X T$. 59
3.5.5. Restriction enzyme digestion of mouse, hamster, and pig template for analysis of the somatic cell hybrid panel 60
3.5.6. Somatic cell genetics of ADRA1A, ADRA2A, ARSA, GNAS1, OXT, TOP1 61
3.5.7. Comparative map 64
3.6. DISCUSSION AND CONCLUSION 64
CHAPTER FOUR: CHARACTERISING PORCINE ENDOGENOUS RETROVIRUSES (PERVS) IN WESTRAN PIGS 68
4.1. INTRODUCTION 68
4.2. Materials 70
4.2.1. Animal resources 70
4.2.2. Primers. 73
4.2.2.1. PERV PCR amplification. 73
4.2.2.2. Primers for sequencing 73
4.3. Methods 73
4.3.1. PCR conditions 73
4.3.1.1. PCR using Taq DNA polymerase 73
4.3.1.2. \quad PCR using $P f u$ proof-reading DNA polymerase 74
4.3.1.3. Cycle sequencing reaction 74
4.3.2. Cloning of PERV PCR products 74
4.3.3. Checking clone inserts by PCR and restriction digestion. 74
4.3.4. Extracting plasmid DNA from bacterial cells. 75
4.3.5. Sequencing of PERV clones. 75
4.3.6. Orientation and amalgamation of sequences 75
4.3.7. Sequence alignment and translation 75
4.3.8. Phylogenetic analysis 76
4.4. Results 76
4.4.1. Designing primers 76
4.4.2. PCR for PERV-C amplification. 77
4.4.3. Restriction enzyme digestion for screening PERV clones 78
4.4.4. Sequences of PERV clones 80
4.4.4.1. Sequence similarities of PERV clones 80
4.4.4.2. Empirical cycle-sequencing error rate, using the Li-Cor sequencer. 83
4.4.4.3. Frame shift mutations and premature stop codons 83
4.4.5. Phylogenetic analysis 86
4.4.6. Recombinant clones between PERV-A and PERV-B 86
4.5. DISCUSSION 87
CHAPTER FIVE: PHYSICALLY MAPPING PERVS 92
5.1. INTRODUCTION 92
5.2. MATERIALS 94
5.2.1. Animals 94
5.2.2. Probes for FISH 95
5.2.3. Primers for precise mapping of a PERV junction 95
5.2.4. Somatic cell hybrid panel 95
5.3. METHODS 95
5.3.1. FISH 95
5.3.1.1. Lymphocyte cell culture. 95
5.3.1.2. Making PERV FISH probes 97
5.3.1.3. In situ hybridisation of PERV probes to chromosomes 98
5.3.1.4. Stringency rinses 99
5.3.1.5. Immunochemical detection of biotin label 99
5.3.1.6. Staining and viewing of chromosomes 100
5.3.1.7. Scoring of FISH signals 100
5.3.1.8. Statistical analysis of hybridisation signals 100
5.3.2. PCR conditions for somatic cell hybrid mapping 101
5.4. Results 102
5.4.1. Incorporation of biotin 102
5.4.2. Chromosomal distributions of PERVs 102
5.4.2.1. PERV-A locations 114
5.4.2.2. PERV-B locations 116
5.4.3. A physical location for a PERV junction fragment 117
5.5. DISCUSSION 119
CHAPTER SIX: DISCOVERY OF ENDOGENOUS RETROVIRUS IN COLLARED PECCARIES (TAYASSU TAJACU) 123
6.1. InTRODUCTION 123
6.2. MATERIALS 125
6.2.1. The Peccary genomic DNA samples 125
6.2.2. Primers 126
6.2.2.1. Degenerate primers 126
6.2.2.2. Internal primers. 126
6.3. Methods 127
6.3.1. PCR conditions 127
6.3.1.1. PCR conditions for amplifying MLV homologues using degenerate primers 127
6.3.1.2. PCR conditions for internal primers 127
6.3.1.3. Cycle sequencing reaction 127
6.3.2. Purifying $P C R$ products from agarose gels. 127
6.3.3. Cloning of $P C R$ products 128
6.3.4. Quick PCR method to check clones for correct inserts 128
6.3.5. Extraction of plasmid DNA from bacterial cells. 128
6.3.6. Restriction enzyme digestion 128
6.3.7. Sequencing with Li-Cor sequencer 128
6.3.8. Analysis of sequence data 128
6.4. RESULTS 129
6.4.1. PCR amplification for retroviral sequences in Collared peccary 129
6.4.2. Checking the insert by EcoRI Restriction digestion 130
6.4.3. Sequences of peccary retroviral clones 130
6.4.4. $\quad P C R$ with internal primers. 135
6.4.5. The sequences of non-retroviral inserts. 136
6.5. DISCUSSION 140
CHAPTER SEVEN: FINAL DISCUSSION AND CONCLUSION 143
7.1. DEVELOPMENT OF PIG - HUMAN COMPARATIVE MAP 143
7.2. CHARACTERISING AND MAPPING PERVS 144
7.2.1. Characterising PERVs 144
7.2.2. Physically mapping of PERVs 144
7.3. ENDOGENOUS RETROVIRUSES IN COLLARED PECCARIES 145
7.4. Future research 145
BIBLIOGRAPHY 147
APPENDICES 167

Chapter One

Introduction

The present thesis has two separate aims. One is developing markers in the pig genome using CATS (comparative anchor tagged sequences) primers and the other aim is characterising and mapping PERVs (Porcine Endogenous Retroviruses). PERVs are a major potential hazard of xenotransplantation.

1.1. Genome mapping

1.1.1. Markers for genome mapping

1.1.1.1. Conventional markers

Throughout human history, animals and plants have been selected based on their superior appearance and performance. Such performance-based selection continues to be vitally important today. However, the availability of genetic markers, initially blood group variants and later biochemical polymorphism (Juneja and Vögeli, 1998), opened new possibilities. Blood group variation is detected as the presence or absence of certain antigens on blood cells. Researchers investigated the relationship between variation in blood types and variation in susceptibility to disease or other traits of interest. Biochemical polymorphism was also investigated based on electrophoretically detectable enzymes and protein variants (also called allozymes). The biochemical polymorphisms studied in the pig focussed mainly on the proteins of blood plasma (serum) and red cells and also to some extent those in milk, semen and other tissues (Juneja and Vögeli, 1998). Although some of these proteins showed relatively high levels of polymorphism, they were replaced by superior DNA markers displaying higher levels of variation or greater availability of markers and detectable using a uniform assay technique.

1.1.1.2. DNA markers

The advent of recombinant DNA technologies, and especially the Polymerase Chain Reaction (PCR) technique, provided ready access to DNA markers for any species. DNA markers can be divided into two categories, namely multilocus markers and single-locus markers. The former includes minisatellites (also called variable number of tandem repeats (VNTR),
although this term also applies to microsatellites), random amplified polymorphic DNA fragments (RAPD) and amplified fragment length polymorphism (AFLP) markers. The latter includes restriction fragment length polymorphisms (RFLPs), microsatellites and single nucleotide polymorphisms (SNPs).

Minisatellites or VNTR markers

Minisatellites were the first developed tandem repeat markers with multiple alleles. Jeffreys et al. (1985) discovered human minisatellites, which typically have a core sequence greater than 10 bp , with 3 to 30 copy numbers within a block. Because variability in this marker system is determined by the number of the repeats within the block, minisatellites are also known as VNTRs for Variable Number Tandem Repeats (Nakamura et al., 1987). Minisatellites are generally sufficiently informative to reveal a unique genotype in each individual. Thus these markers can provide an individual specific DNA "fingerprint" and can be used for parentage testing and linkage studies (Jeffreys et al., 1985). Many minisatellite loci have been found to be extremely variable, with heterozygosity values greater than 90% and mutation rates exceeding 10^{-2} per generation (Bruford and Wayne, 1993). Despite their hyperpolymorphism, minisatellites have fallen into disfavour as genetic markers in recent years for at least three major reasons. Firstly, minisatellites do not uniformly cover the genome in some species, primarily residing in heterochromatic regions near telomeres and centromeres. Secondly, minisatellites are not amenable to PCR, requiring hybridisation technology. Thirdly, the interpretation of complex fingerprint patterns generated by core sequence probes is very difficult and it is difficult or impossible to recognise individual loci (Dodgson et al., 1997).

RAPD markers

RAPD markers were the first PCR-based markers to be used (Williams et al., 1990). Small primers $(8-10 \mathrm{bp})$ are used to amplify a mixture of random fragments from the genome. Although these markers have the advantage of being very easily generated by PCR and require only a small amount of template DNA (Williams et al., 1990), they have severe limitations. They are dominant markers which are intrinsically less informative than codominant markers. Also RAPD markers are not easily reproducible because the appearance of bands is very sensitive to slight changes in PCR conditions. The most serious disadvantage is that a new map must be generated for each new pedigree examined, as there is no locus specificity in the primers used (Crawford et al., 2000).

AFLP markers

AFLP markers are also multilocus markers (Vos et al., 1995). To produce them, genomic DNA is cut with restriction enzymes and oligonucleotide adaptors are ligated to each end of the restriction fragments. Selective PCR primers are used to amplify subsets of fragments from the mixture of genomic restriction fragments. The selective primers cover the adaptor sequences added onto the end of the restriction fragments and include additional bases to the 3 ' end of the primers to give additional specificity (Vos et al., 1995). These markers have the same advantage as RAPDs, being easily generated by PCR, but are less sensitive to the PCR conditions, giving more reproducible amplification products. However, like RAPDs, these markers have the disadvantage of being diallelic dominant/recessive markers, also requiring a new map for each new resource pedigree being studied (Crawford et al., 2000).

RFLP markers

RFLPs are the first reported class of DNA markers. They result from small-scale changes in DNA, usually base substitutions, which create or destroy specific restriction endonuclease cleavage sites. They are detected as size variants on electrophoresis (Botstein et al., 1980). Initially, RFLPs were detected by Southern hybridisation analysis (e.g. Archibald et al., 1994). Now, most RFLPs used in animal genome analysis are detected by PCR, and are called PCRRFLPs.

RFLP markers are generally only diallelic, corresponding to the absence or presence of a recognition site for the restriction endonuclease employed, and thus no more than 50% heterozygosity can be expected. However, these markers have advantages of being easy and relatively cheap to generate and being codominant. RFLPs are still used in genome mapping, mainly of type I candidate genes.

Microsatellites

Microsatellites, also called Simple Sequence Repeats (SSR), are tandem repeats of one to four bp , which are interspersed throughout the genomes of mammals, birds, fish, and plants (see review Bruford and Wayne, 1993). Microsatellites are the markers primarily responsible for the recent explosive expansion of genetic linkage maps in many species. They have the advantages of being single-locus, hyperpolymorphic, co-dominant in almost all cases, and uniformly spread throughout the genome. Further they require only a small amount of template DNA and are relatively easy to find and characterise (Crawford et al., 2000). Another enormous advantage of microsatellite markers is that they are sequence-tagged sites (STS) and thus their use can be transferred easily between laboratories simply by exchange of primer sequences.

SNPs

SNPs arise primarily from nucleotide substitutions. They are estimated to occur about every kilobase of unique sequence in humans (Cooper et al., 1985) and similar frequencies of occurrence are estimated in other mammals. Thus SNPs represent a particularly rich source of genetic variation (Crawford et al., 2000). In theory, SNPs can be up to tetra-allelic polymorphisms. However, in practice in humans, tri-allelic and tetra-allelic SNPs are very rare. Generally SNPs are bi-allelic (Brookes, 1999).

Numerous techniques, including PCR-RFLP, are available for detecting some or all SNPs. Orita et al. (1989) described a method detecting point mutation as Single Strand Conformation Polymorphism (SSCP). Single-stranded DNA molecules of different sequence display specific sequence-based migration patterns in a non-denaturing polyacrylamide gel, due to alternative three-dimensional conformations that can be formed (Beier, 1993; Spinardi et al., 1991).

However, the real importance and potential for application of SNPs lies in their automated detection using DNA chip technology (Chee et al., 1996). Although individually not highly informative, SNPs are so numerous that it will be possible to incorporate thousands of SNPs onto single DNA microchips, enabling enormously sensitive parentage testing and rapid and automated genome scanning for QTL (Brookes, 1999).

1.1.2. Gene mapping

A gene map records the location(s) of gene(s) or marker(s) of interest. There are two quite different mapping methods, namely linkage mapping and physical mapping. A linkage map is based on the recombination frequency (r) between genes or markers detectable among the offspring of parents with distinguishable alleles at two or more loci. On the other hand, a physical map does not require variants, but assigns loci to chromosomal positions either by in situ hybridisation or by using somatic hybrid panels.

1.1.2.1. Linkage (Genetic) mapping

Loci on different chromosome segregate independently. On the other hand, loci on the same chromosome may show evidence of co-segregation or linkage. The recombination frequency used to estimate the map distance between a pair of loci ranges from 0 for tightly linked loci to 0.5 for loci that are far apart or on different chromosomes. A reference pedigree, also called a mapping resource, can be constructed by crossing genetically divergent populations to increase the informativeness of the parents or can be based on existing families in a population. The construction of a linkage map is a very useful step for the identification of genes
having quantitative effects on traits of interest (so called quantitative trait loci or QTLs) (Archibald and Haley, 1998).

1.1.2.2. Cytogenetic (Physical) mapping

Physical mapping identifies the location of genes or genetic markers on the individual chromosomes or regions of chromosome without analysis of segregation between loci. There are three major physical mapping techniques which allow the identification of the chromosomal location of specific DNA fragments, namely use of i) in situ hybridisation, ii) somatic cell hybrids, and iii) radiation hybrids.

ISH (In Situ Hybridisation)

A fragment of DNA of interest can be radioactively or fluorescently labelled and allowed to hybridise to metaphase chromosome spreads. The development of fluorescent in situ hybridization (FISH) has almost replaced the use of radiolabelled probes. The sensitivity of detection by FISH is dependent upon the probe size and type of tag used in labelling the probe (Gillois, 1991). The great advantage of FISH compared with radioactive in situ hybridization (RISH) is that not only is it safer, but also multicolour analysis is amenable to detection of different loci on the same metaphase spreads using differently coloured dyes (Trask, 1991a; Trask, 1991b).

Somatic cell hybrid mapping

Somatic cell hybrid panels have played a significant role in physical mapping of known genes and markers in humans and livestock species (Payen et al., 1995; Rettenberger et al., 1994; Robic et al., 1996; Williamson et al., 1995). The technique basically involves fusion of cell lines originating from different species. Somatic cell hybrids between a donor species (e.g. pig) and a recipient species (normally Chinese hamster or mouse) randomly lose donor chromosomes or fragments of chromosomes so that sublines of cells contain only a few specific donor chromosomes or chromosomal fragments. A panel of these sublines can be tested for presence or absence of a particular DNA sequence and this can then be correlated with presence or absence of a particular chromosome or chromosomal segment to identify the chromosome or chromosomal region where the locus is located (Bosch et al., 1993; Iles et al., 1992).

In pigs, early attempts at mapping with a somatic cell hybrid panel used Southern blotting techniques (Ruddle, 1981). PCR-based analysis of somatic cell hybrid panels is now routinely applied (Rettenberger et al., 1995a; Rettenberger et al., 1996; Rettenberger et al., 1994; Zijlstra et al., 1996).

The INRA laboratories in Toulouse, France, have generated and distributed DNA from a very informative porcine somatic cell hybrid panel which can be used to assign DNA loci to specific chromosomes and chromosomal regions (Yerle et al., 1996). This panel consists of 27 pig \times rodent somatic cell hybrids in which 127 different subchromosomal regions can be identified as a result of fragmentation of the porcine chromosomes by low level irradiation (see radiation hybrid below). It is an efficient tool for physical mapping and has been used in the study described in this thesis.

Radiation hybrid mapping

Radiation hybrid mapping provides very high-resolution maps (McCarthy, 1996). The technique is identical to construction of a conventional somatic hybrid panel except that the donor (e.g. pig) chromosomes are fragmented by a high dose of X-ray irradiation. The broken fragments are recovered in recipient cells (e.g. rodent), and hybrid clones are analysed for the presence or absence of DNA markers. Whole genome radiation hybrid mapping has become a mainstream method for high-resolution human gene mapping (Gyapay et al., 1996; Stewart et al., 1997) as well as animal gene mapping (Kwok et al., 1998; Murphy et al., 1999; Womack et al., 1997; Yerle et al., 1998). In 1998, a radiation hybrid panel became publicly available for mapping studies in pigs, jointly developed by INRA, France and the University of Minnesota, USA, called the INRA-University of Minnesota porcine Radiation Hybrid (IMpRH) panel. It consists of 118 hybrid clones, and the resolution of the radiation hybrid map is higher than that obtained by linkage analysis from available mapping families, so that unresolved markers in the linkage map can be ordered (Yerle et al., 1998).

1.1.3. \quad Pig genome mapping

Pigs have a number of advantages in gene mapping studies. Firstly, pigs produce large litters of ten or more and have a relatively short gestation period of about 114 days. This allows the rapid establishment of experimental pedigrees for mapping studies. Secondly, genetically divergent breeds are available for creating highly informative reference and resource pedigrees. By crossing genetically divergent breeds, the level of heterozygosity in the F1 animals is increased and the pedigree is much more likely to be highly informative in the F2 generation. Finally, pigs have a relatively small chromosome number ($2 \mathrm{n}=38$) as compared with other domestic animal species like cattle $(2 n=60)$, sheep $(2 n=54)$, goat $(2 n=60)$, dog $(2 n=78)$, horse $(2 n=64)$ and chicken $(2 n=78)$. Also pig chromosomes are easily distinguishable from each other especially with the help of chromosome banding methods. Therefore physical mapping techniques such as in situ hybridisation and chromosome sorting are easier to apply.

In August 1989, there were only 42 markers mapped in the pig, 15 of which were assigned to 7 linkage groups, and 27 markers were mapped in 10 chromosomes (Echard, 1990). Intense efforts were made during the 1990s to develop a comprehensive genome map of the pig, particularly benefiting from the availability of hyperpolymorphic microsatellite markers. Three international research groups have been involved in linkage mapping the porcine genome, namely the Pig Gene Mapping Project (PiGMaP) consortium (Archibald et al., 1995), the Scandinavian group (Ellegren et al., 1994; Marklund et al., 1996) and the United States Department of Agricuture (USDA) group (Rohrer et al., 1996; Rohrer et al., 1994). The combined efforts of these groups have been placed mare than 1500 polymorphic genetic markers on the porcine linkage map and many genes and markers also have been physically mapped (Yerle et al., 1997; PiGBASE, http://www.ri.bbsrc.ac.uk/pigmap/pigbase/pigbase.html).

1.1.3.1. PiGMaP and PiGMaP reference families

The European Pig Gene Mapping Project (PiGMaP) consortium was initiated in 1989 by a group of 10 laboratories within the PiGMaP collaboration (Haley et al., 1990). The initial aim of PiGMaP was to map markers at evenly-spaced intervals of approximately 20 cM , covering the whole genome. The group also set out to produce a comprehensive physical map within 3-4 years (Echard et al., 1992; Haley et al., 1990). Laboratories in Europe, Japan, United States and Australia (Associate Professor C. Moran's laboratory) were included. Echard et al. (1992), summarising the early status of PiGMaP, indicated that even by 1992 a total of 84 loci had been assigned to 17 chromosomes. With the arrival of microsatellite markers, a comprehensive linkage map was rapidly achieved. Archibald et al. (1995) reported the first PiGMaP linkage map consisting of 245 markers, 81 corresponding to known genes, with the rest being anonymous microsatellite and RFLP markers. Linkage groups were assigned to all 18 autosomal chromosomes and the X chromosome. The number of markers mapped in the pig is still growing. Currently over 2000 loci and more than 3500 markers are described in the linkage database (PiGBASE: http://www.ri.bbsrc.ac.uk/cgi-bin/arkdb/browsers/browser.sh?species=pig).

The PiGMaP reference population consists of six families of a three-generation pedigree based on crosses between genetically divergent breeds. Five centres in Europe contributed animals to the shared PiGMaP mapping pedigrees, from Scottish, Dutch, French, Swedish and German resources. Three divergent pig types were used to establish the PiGMaP reference pedigree, namely i) European commercial breeds, Large White and Pietrain, which have good commercial performance traits; ii) European Wild Boar, whose appearance and physiological properties such as growth rate as well as fat content are very distinct from modern European breeds (Andersson et al., 1994a); and iii) Chinese Meishan, which is highly fecund but otherwise
very unproductive. By crossing such phenotypically divergent breeds, it was hoped that it would be easier to map loci controlling monogenic as well as polygenic traits of interest (Andersson et al., 1994a).

1.1.4. Application of gene mapping

1.1.4.1. Identification of QTL

Quantitative genetic variation is the major component of intra- and interpopulation differences for many traits of biological, medical and agricultural significance. The development of porcine genome maps allows the identification of specific markers associated with genes influencing economically important traits, which are called QTLs (Quantitative Trait Loci) (Andersson et al., 1994b; Archibald et al., 1995). QTLs are those loci whose variation jointly contributes to the quantitative trait variation observed between animals in a population. The general principle is simple: if a QTL for a particular trait is closely linked to a marker, the marker alleles will appear to be associated with different levels of performance for the trait. Genome maps provide two advantages for the detection of QTLs. First, they enable choice of the minimum number of markers, evenly spaced in the genome, that will enable a scan of the entire genome. Second, knowing the location of marker linked to a QTL allows the approximate location of the QTL, and this information can be used for selection of candidate gene(s) in the same other species. New statistical and experimental methods are being developed to map QTLs in different types of population structure (Archibald and Haley, 1998; Crawford et al., 2000). Once mapped, QTLs have important potential applications in breeding programmes, including marker assisted selection, marker assisted introgression and less directly, positional cloning. Several QTLs have been recorded in pigs (e.g. Andersson et al., 1994b).

1.1.4.2. Marker Assisted Selection (MAS)

The progress of genome mapping and the knowledge of co-segregation of a marker allele and a trait may be used to improve efficiency of selection of animals. MAS (Archibald, 1994; Soller, 1994) is particularly relevant for traits which cannot easily be measured in the candidates for selection, such as sex-limited traits, reproductive traits, slaughter traits and processing traits.

1.1.4.3. Identifying the genes underlying QTL

The positional candidate gene approach can help to identify the gene causing variation in a particular trait. Once a QTL has been mapped, candidate gene loci in the vicinity of the QTL can be evaluated for their effects on the trait. This approach has been noticeably successful for the isolation of disease genes (Collins, 1995; Fujii et al., 1991). The success of this approach is greater if all possible candidates have been identified, for example by genome sequencing. For species whose genomes are poorly characterised, such as the pig, cross reference to a well characterised genome, such as human or mouse, will be essential. By placing many type I markers, that is evolutionary conserved coding sequences, on the genetic maps of many mammalian species, one can get a clear picture of syntenic relationships. This augments the number of positional candidate genes in less well studied species by providing large numbers of comparative positional candidates.

1.1.4.4. Comparative gene mapping

Comparative gene mapping, involving comparison of chromosomal locations of homologous genes in different species, is a useful source of information in terms of identifying candidate disease genes and genes determining complex traits. It also facilitates gene mapping in other species and provides insights into genome organisation and evolution (DeBry and Seldin, 1996; Eppig, 1996; Eppig and Nadeau, 1995; Nicholas and Harper, 1996; Womack and Kata, 1995). The first step in the comparative gene mapping approach is the recognition of regions of conserved synteny, that is, groups of linked loci conserved among species. A large effort has been made in recent years to define the conserved synteny between species.

In order to recognise evolutionary breakpoints between species, a set of anchored reference loci suitable for comparative mapping in mammals was first proposed by O'Brien et al., (1993). Subsequently, Lyons et al. (1997) designed 410 evolutionary conserved primers to amplify anchor loci in different species, calling them Comparative $\underline{\text { Anchor Tagged Sequence }}$ (CATS) markers. Once the CATS markers have been mapped in each species, it will be easier to detect chromosomal rearrangements and assist in reconstructing mammalian chromosome evolution. However, the CATS approach using consensus primers has not proved to be very efficient, especially in pig, with only a small number of localisation having been obtained (see Chapter three for more detail). Recently, cross-species chromosome painting or Zoo-FISH (Scherthan et al., 1994) has contributed significantly to identification of conserved synteny between species (e.g. Rettenberger et al., 1995b).

1.2. Retroviruses

1.2.1. \quad Structure and life cycle of retrovirus

Retroviruses are a group of viruses whose genetic material is comprised of RNA rather than DNA. Retroviruses are associated with a variety of diseases including malignancies, immunodeficiencies, and neurologic disorders (Rosenberg and Jolicoeur, 1997). Normally, the virions are 80 to 100 nm in diameter and their outer envelope is constituted of glycoproteins. Each retrovirus particle contains two copies of 8 to 10 kb genomic RNA held together by hydrogen bonding in a dimeric structure. Broadly, retroviruses are classified into two different groups, namely the simple and the complex, which can be distinguished by the organisation of the RNA genome. Compared to a simple retrovirus genome containing only four major coding regions, gag, pro, pol, and env, a complex retroviral genome contains information for regulatory proteins besides the major coding regions (Vogt, 1997).

The gag region contains the information for the synthesis of internal virion proteins that form the matrix (MA), the capsid (CA) and the nucleocapsid (NC) protein structure. The pol region directs the synthesis of reverse transcriptase (RT) and integrase (IN) enzymes; and the surface (SU) and transmembrane (TM) components of the viral envelope protein are encoded by the env coding region. In addition, a small coding domain present in all retroviruses is pro, which encodes the virion protease (PR) (Vogt, 1997). Protease is responsible for all the proteolytic cleavages generating the mature gag and pol proteins during virion maturation (Coffin, 1992) (Fig 1.1). This standardised nomenclature for the proteins common to all retroviruses is on the basis of biological function, enzymatic activity and/or virion location data (Leis et al., 1988).

The retroviral life cycle starts from the attachment of the viral surface glycoproteins to specific host plasma membrane receptors, which leads to fusion of virus and cell membranes. The integration of viruses (exogenous viruses) and cell surfaces is highly specific and determines the viral-host range. After penetration into the cell, the RNA genome is transcribed into DNA by reverse transcriptase. This DNA copy is then inserted into the host genome, at which stage it is called an endogenous retrovirus or DNA provirus. Reverse transcription of the RNA genome also generates long terminal repeats (LTRs) found at both ends of the DNA provirus (Figure 1.2).
(a)

(b)

Fig 1.1 (a) Schematic cross section through a retroviral particle. (b) A simple retroviral genome which contains four major coding regions (Source: Vogt, 1997).

Fig 1.2 The life cycle of a retrovirus (Source: Vogt, 1997).

1.2.2. Classification of retroviruses

The classification and nomenclature for retroviruses presented here is based on Vogt (1997). Retroviruses are subdivided into seven genera (Table 1.1) of which five have oncogenic potential. All oncogenic members except the human T-cell leukaemia virus-bovine leukemia virus (HTLV-BLV) genus are simple retroviruses (Vogt, 1997).

Based on their morphology under the electron microscope, retroviruses can be classified into four categories, namely A, B, C, D type particles. A type particles are $60-90 \mathrm{~nm}$ in diameter with an electron-lucent center surrounded by a double shell. They occur as intracellular forms only and do not have any infectivity.

B type particles have two morphologically distinctive features. One is that budding particles at the plasma membrane show toroidal (doughnut-shaped) cores about 75 nm in diameter and long spikes are seen at the cell surface. The other feature is that the mature forms contain electron-dense nucleoids about $125-130 \mathrm{~nm}$ in diameter that are eccentrically located within the enveloped particle.

Table 1.1 Classification of retroviruses.

Genus	Example	Virion morphology ${ }^{\text {a }}$	Genome
Avian sarcoma and Leukosis viral group	Rous sarcoma virus	Central, spherical core C particles	Simple
Mammalian B-type Viral group	Mouse mammary tumor virus	Central, spherical core B particles	Simple
Murine leukemia Related viral group	Moloney murine leukemia virus	Central, spherical core C particles	Simple
D-type viral group	Mason-Pfizer monkey virus	Cylindrical core D particles	Simple
Human T-cell Leukemia, bovine Leukemia viral group	Human T-cell leukemia virus	Central, spherical core	Complex
Lentiviruses	Human immunodeficiency virus	Cone-shaped core	Complex
Spumaviruses	Human foamy virus	Central, spherical core	Complex

The majority of retroviruses isolated to date are classified as C type particles. The first distinct viral structure at the plasma membrane is an electron-dense crescent-shaped form that will be the core of the particle. As virus maturation proceeds, the core is eventually seen as a sphere with an electron-lucent center. The C particles have an immature form with centrally located electron-lucent cores, which matures into a centrally located electron-dense core.

D type is typical of many retroviruses found in primates. They resemble B type particles in assembly, maturation and morphology but have less prominent surface projections and a characteristic cylindrical core (Coffin, 1992; Teich, 1982).

1.2.2.1. Retroviruses in different host species

Avian retroviruses

The discovery of retroviruses arose from investigations of neoplastic disease in chickens revealing the existence of Avian leukemia virus (ALV) (Ellermann and Bang, 1908) and Rous sarcoma virus (RSV) (Rous, 1911). These viruses constitute the C-type virus genus, referred to as avian sarcoma/leukemia viruses (ASLV) (Vogt, 1997). Payne (1992) describes the classification of avian retroviruses into four distinct classes.
(1) Leukosis-sarcoma group viruses (also termed avian sarcoma and leukemia viruses). These are exogenous and endogenous viruses recognised mainly in the domestic fowl and which cause a variety of leukotic disorders, sarcomas, and other tumors.
(2) Reticuloendotheliosis viruses. These are exogenous viruses in several species of domestic poultry and appear to be related to mammalian retroviruses. They cause lymphomas and acute reticulum cell and other tumors.
(3) Lymphoproliferative disease virus of turkeys. This is an exogenous virus of turkeys which causes a lymphoproliferative disease.
(4) Pheasant type C oncoviruses. These are endogenous viruses of golden and Lady Amhurst pheasants and are apparently nonpathogenic. They are unrelated to the endogenous leukosissarcoma group viruses that also occur in certain species of pheasants.

Murine retroviruses

The retroviruses of rodent species, especially the mouse, have been widely studied because of the short generation length, large litter size and amenable breeding strategy of the host. The
mouse retroviruses can be classified into four groups based on the differences in virion morphology and sequence homology. There are type C murine leukemia viruses (MuLVs or MLVs), type B mammary tumor viruses (MMTVs), type A intracisternal particles (IAPs), and VL30s (Kozak and Ruscetti, 1992).

The C-type viruses are wide distributed both as exogenous and endogenous forms and can cause a wide variety of malignancies, immunosuppression and neurological disease (Petropoulos, 1997). The C-type viruses are classified as ecotropic (capable of growing in normal mouse cells but not in cells from other species), xenotropic (incapable of growing in normal mouse cells but growing well in cells from other species), polytropic (capable of growing well in mouse cells and cells of other species), and amphotropic (capable of growing well in mouse cells and cells of other species, but distinct in antigenic and interference properties compared with polytropic) (Kozak and Ruscetti, 1992).

Mouse mammary tumor viruses (MMTVs) represent a class of murine retroviruses distinct from the MuLVs by virion morphology, by the absence of sequence homology, and by their sensitivity to induction by glucocorticoid hormones (Kozak and Ruscetti, 1992). MMTVs are associated with mammary carcinoma and T-cell lymphomas and can be inherited vertically in certain inbred strains or transmitted horizontally through the milk from the affected females (Petropoulos, 1997).

IAPs are found only in association with the endoplasmic reticulum and have no extracellular phase (Kozak and Ruscetti, 1992). IAPs are not known to encode replicationcompetent viruses. However, they are present in mice at approximately 1000 to 2000 copies per cell and are often expressed in plasma-cell tumors at high level (Boeke and Stoye, 1997).

VL30s are endogenous retrovirus-like sequences which are not known to produce any virion structural components, but can be efficiently packaged and transmitted as pseudotypes of type C viruses (Kozak and Ruscetti, 1992).

Feline retroviruses

Based on Hardy (1992), feline species have three major groups of retroviruses, namely Oncovirus, Lentivirus and Spumavirus.

The oncovirus group is now classified as the Murine leukemia virus (MLV)-related retrovirus genus and is present in both endogenous and exogenous forms. The virions exhibit a C type morphology and Feline sarcoma and leukemia viruses (FeSV/FeLV) are included. They can causes malignancies, immunosuppression, and neurological disease similar to C type murine leukemia viruses in mice (Petropoulos, 1997).

FIV (Feline immunodeficiency virus) and FSV (Feline syncytial virus) belong to the Lentivirus and Spumavirus genera, respectively. FIV induces an AIDS-like syndrome in cats. FSV pathogenicity has not been demonstrated (Petropoulos, 1997).

Bovine retroviruses

Two retroviruses in the HTLV/BLV genus have been recognised in bovine species. They are the Bovine leukemia virus (BLV) and Bovine immunodeficiency virus (BIV). BLV is the cause of enzootic bovine leukosis (Kettmann et al., 1992). BLV can be transmitted vertically by the transfer of infected lymphocytes in milk from a dam to her calf, or horizontally between cattle by biting insects or via contaminated instruments (Pelzer and Sprecher, 1993). BIV is a horizontally transmitted, nononcogenic, pathogenic retrovirus and member of the Lentivirus genus. There has been a interest in BIV because Human immunodeficiency virus (HIV) is also included in the Lentivirus genus (Gonda, 1992).

Other retrovirus genera also exist in bovine species. These are Bovine pulmonary adenocarcinoma virus, a type D retrovirus genus, and Bovine syncytial virus (BSV) in Spumavirus genus. The bovine pulmonary adenocarcinoma virus is the bovine version of the Jaagsiekte sheep retrovirus (JSRV) (Petropoulos, 1997).

Ovine retroviruses

JSRV (Jaagsiekte sheep retrovirus) is a type D retrovirus, comprising both endogenous and exogenous viruses of sheep. These viruses are associated with pulmonary cancer in sheep (Petropoulos, 1997). Similar endogenous proviruses are detected in goats and other ungulates (Hecht et al., 1996).

Maedi and Visna virus (MVV) and Caprine arthritis encephalitis virus (CAEV) are caused by ovine lentiviruses (OvLV) (Petropoulos, 1997). Maedi, an Icelandic word meaning dyspnoea, is used to describe a chronic interstitial pneumonia, and Visna refers to a slow, progressive disease of the central nervous system. Maedi and Visna, therefore, are chronic multisystemic diseases of sheep (DeMartini et al., 2000). CAEV also induces diseases of the central nervous system (CNS) (McGuire et al., 1990).

Human retroviruses

Three different genera of retroviruses are identified in humans. They are Human T-cell leukemia virus (HTLV) in the HTLV/BLV genus, Human foamy virus (HFV) in the Spumavirus genus and Human immunodeficiency virus (HIV) in the Lentivirus genus (Petropoulos, 1997).

HTLV can be divided into two species (HTLV-1 and HTLV-2) and only exogenous viruses are known. Infection with HTLV is associated with B- and T-cell leukemias, lymphomas
and neurological disease (Petropoulos, 1997). HIV is an exogenous retrovirus and no closely related endogenous retrovirus have been described. Members of the Lentivirus genus, including HIV, are the causative agents of immunodeficiencies, neurological degeneration and arthritis (Petropoulos, 1997).

Porcine retroviruses

Porcine type C viruses are classified in the genus Murine leukemia virus (MLV)-related virus (Petropoulos, 1997). The first description of porcine C type retroviruses was from cultured pig kidney cells (Breese, 1970; Armstrong et al., 1971). These porcine retroviruses are associated with lymphosarcomas and tumors (Bostock and Owen, 1973). There has been emerging interest in porcine retroviruses in relation to the potential use of pig organs and tissues for xenotransplantations (Cozzi and White, 1995) and the theoretical hazards to transplant recipients associated with endogenous proviruses (Stoye and Coffin, 1995).

Recently, much research has been carried out on porcine retroviruses. Retroviral infection has been investigated in humans and baboons, both in vitro (Martin et al., 1998a; Patience et al., 1998; Wilson et al., 1998) and in vivo (Martin et al., 1998b; Paradis et al., 1999; Pitkin and Mullon, 1999; Switzer et al., 1999).

1.2.3. Retroviral variation

1.2.3.1. Mutation and deletion

Retroviruses are prone to errors during replication (Temin et al., 1991) and variation among retrovirus populations has been observed since their first discovery (Rous and Murphy, 1913). Three different polymerases are involved in retrovirus replication, namely reverse transcriptase, DNA polymerase, and RNA polymerase II (Pathak and Temin, 1990b). Cellular DNA polymerases have a very low mutation rate because of their proofreading mechanisms, and their contribution to the retroviral mutation rate is negligible (Drake, 1969). The rate of mutation caused by RNA polymerase II has not been measured and its contributions to retroviral mutation rates is unknown (Pathak et al., 1990). On the other hand, the mutation rate of avian myeloblastosis virus (AMV) and human immunodeficiency virus (HIV) reverse transcriptase determined by in vitro assay has been estimated to be 2.3×10^{-5} and 4.3×10^{-5} substitutions per bp per polymerisation cycle, respectively (Preston et al., 1988). Gojobori and Yokoyama (1985) compared the rate of nucleotide substitution for the retroviral v-mos oncogene of Moloney murine sarcoma virus (Mo-MuSV) and its cellular counterpart c-mos. They estimated the rate of nucleotide substitution for $v-m o s$ and $c-m o s$ as 1.31×10^{-3} and 1.71×10^{-9} substitutions per site
per year, respectively. The difference in rate of mutations between v-mos and c-mos confirmed that DNA polymerase-based mutation was far less frequent than reverse transcriptase-based mutation as indicated by Drake (1969). Another study measured the forward mutation rates in vivo for spleen necrosis virus (SNV). Substitutions occurred at a rate of 7×10^{-6} per nucleotide per cycle and frameshifts occurred at a rate of 1×10^{-6} per nucleotide per cycle (Pathak and Temin, 1990b). Deletions and deletions with insertions occurred at a similar rate of 2×10^{-6} per nucleotide per cycle (Pathak and Temin, 1990a).

1.2.3.2. Recombination

Since retroviral particles have two genomic RNAs in their virus particles, they can easily recombine. The study of retrovirus recombination suggests a selective value for recombination in removing genomic damage and in increasing the amount of variation in retrovirus populations (Temin, 1991).

To measure the rate of recombination in a single cycle of retrovirus replication, helper cells were infected with spleen necrosis virus-based splicing vectors containing either the neomycin-resistance gene (neo) or the hygromycin B phosphotransferase gene (hygro). Progeny proviruses were screened for proviruses expressing both wild type genes and were then characterized by restriction enzyme digestion. The rate of retroviral recombination is about 2% per 1 kb per replication cycle (Hu and Temin, 1990). Another experiment showed that recombination between an homologous sequence of about 560 bp occurred with a frequency of about 10^{-4} per virus replication cycle (Stuhlmann and Berg, 1992). Recently, recombination between species has been identified. For example, BaEV (baboon endogenous retrovirus) is a recombinant between two primate viruses (Mang et al., 1999; van der Kuyl et al., 1997) and RD114 in cat is a recombinant between baboon and primate retroviruses (van der Kuyl et al., 1999). Also, Jaagsiekte sheep retrovirus (JSRV) appears to be a type B and D chimera because it contains type D capsid sequences and type B envelope sequences (Hecht et al., 1996).

1.2.4. Retroelements

Retroelements are dispersed repetitive elements whose movement is mediated via an RNA intermediate. These elements, also called retroposons or retrotransposons, consist of SINEs (Short Interspersed Nuclear Elements), LINEs (Long Interspersed Nuclear Elements), endogenous retroviruses and processed pseudogenes (Moran, 1998). The common feature of all retroelements is that DNA copies have been made from RNA templates using reverse transcriptase, and then integrated into the host genome.

1.2.4.1. Endogenous retroviruses (ERVs)

ERVs are very common in the mouse genome, comprising up to 5% of the genome, whereas in humans, they have been estimated to constitute up to 0.1% of germ-line DNA (Patience et al., 1997b). Complete ERVs, like the RNA of simple exogenous retroviruses, consist of the gag, pol, and env genes flanked by LTRs, although many endogenous retroviruses may be defective and undergoing mutational decay. Although many are capable of completing the infectious viral cycle and thus are capable of horizontal transmission, most endogenous retroviruses are stably inherited and are vertically transmitted only (Patience et al., 1997b).

1.2.4.2. LINEs

LINEs (Long Interspersed Nuclear Elements) are a class of retroposon distinguishable from endogenous retroviruses by the lack of $e n v$ sequences (Moran, 1998). LINEs are defined as repeated sequences of DNA greater than 5 kb in length. They are usually present at copy numbers of greater than 10^{4} per mammalian genome (Hutchison et al., 1989; Singer, 1982). Most LINEs are truncated and stranded in their current genomic location, where they are doomed to gradually decay due to unconstrained mutation, even though some LINEs have at least a theoretical potential for further movement (Moran, 1998).

One common LINE family in mammalian species, LINE-1 or L1, contains two open reading frames (ORFs) potentially encoding proteins, although these ORFs are frequently interrupted by mutation (Martin, 1991). All LINEs, including the truncated ones, end with polyadenylation or at least an A rich region, and are bounded by short direct repeats. Some features such as the lack of LTRs, the presence of an internal RNA polymerase II promoter and reverse transcriptase-like sequences are likely to be common to all LINE elements (Martin, 1991).

Homologous sequences of the L1 family have been found in animals, insects, higher plants and even in protozoans suggesting that it may be even the ancestor of retroviruses (Hutchison et al., 1989). Only about 10% of mouse L1 elements are the full length of about 7 kb , with the remainder being shorter truncated elements down to 500 bp in size. The L1 family alone is present at more than 80,000 sites within the mouse genome. Given the universal distribution of L1-like elements in eukaryotes, a similar number of related elements would be expected in the porcine genome (Moran, 1998). Miller (1994) has described the existence of porcine LINEs. Porcine LINEs are uniformly distributed throughout the euchromatic part of porcine genome, with a slight bias towards G-bands (Thomsen and Miller, 1996).

1.3. Xenotransplantation

Xenotransplantation is the transplantation of cells, tissues or organs between different species. The interest in xenotransplantation has been growing during the past decade because of the potential for using pigs as a source for unlimited donor organs and tissues to overcome a shortage of human materials for clinical transplantation. For example, 4000 people in the USA died waiting for a transplant in 1998 and every 16 minutes a new name is added to the waiting list (Melton, 1999). The comparison between waiting lists and transplants is illustrated in Fig 1.3 for the UK, and similar trends are reported throughout the world.

According to White and Nicholson (1999), clinical transplantation can be divided into two eras separated at the middle of the 1960s, prior to and after availability of treatment for immunosuppression. Before the availability of appropriate immunosuppression, the results of transplants were very poor. The use of immunosuppressive chemicals like cyclosporin provided long-term survival of grafted organs but could not eliminate progressive graft rejection (Bailey et al., 1985). There have been a few attempts during the past century to transplant animal organs into humans. More recently, molecular and immunological understanding of xenograft rejection and the feasibility of genetic modification of donors has made xenotransplantation more likely (Platt and Lin, 1998; Vanhove et al., 1998).

Fig 1.3 Discrepancy between number of patients awaiting renal transplantation and the number of renal transplants performed in UK (United Kingdom Transplant Support Services Association, 1998).

For several reasons, pigs rather than non-human primates are expected to be the best sources of xenograft donors. Firstly, porcine organs are physiologically and anatomically similar to those of humans. Secondly, pigs can be bred economically and quickly in large numbers in a disease-free environment. Finally, there are few ethical qualms about breeding pigs for slaughter for xenotransplantation because pigs are already bred for human consumption (White and Nicholson, 1999).

1.3.1 Barriers to xenotransplantation

1.3.1.1. Hyperacute rejection

Hyperacute rejection is the first major barrier to xenotransplantation and occurs immediately after exposure of the donor organs to a recipients blood flow. A single donor gene and its products are responsible for the hyperacute rejection of organs transplanted from nonprimates into primates. A disaccharide sugar, galactose $\alpha(1,3)$ galactose, called α-gal antigen, is present as the terminal residue of glycoproteins and glycolipids on the surface of cells from pigs and other mammals but is absent from higher apes (Mollnes and Fiane, 1999). Naturally occurring antibodies in primates, formed in response to the same antigen in bacteria, recognise galactose $\alpha(1,3)$ galactose. This antigen-antibody system activates the complement cascade causing hyperacute rejection. Hyperacute rejection leads to destruction of the graft within minutes to a few hours (Platt and Bach, 1991). Endothelial cells in blood vessels are the primary target of the host immunity in hyperacute rejection (Platt et al., 1990).

Under normal circumstance, the complement cascade is inhibited by a number of proteins in the plasma and on the surface of the cells (Hourcade et al., 1989). These protective proteins include Decay accelerating factor (DAF), Membrane cofactor protein (MCP) and CD59. They are also collectively called regulators of complement activation (RCAs) (Cozzi and White, 1995).

1.3.1.2. Cell-mediate immunity

Cell-mediated rejection is becoming of increasing importance as it causes delayed xenograft rejection (White and Nicholson, 1999). Major histocompatibility complex (MHC) antigens play a major role in eliciting this response, even though the mechanism of cell-mediated immunity is not fully understand (White and Nicholson, 1999).

1.3.2. Genetic manipulation to avoid xenograft rejection

Knocking out $\alpha(1,3)$ galactosyl transplantation

The $\alpha(1,3)$ galactose epitope is the major xenoantigen expressed on porcine cells and is responsible for hyperacute rejection. All humans have circulating antibodies, which recognise gal antigen since similar antigens are expressed in bacteria. Exposure of recipients to porcine tissue expressing gal antigen causes activation of the complement cascade and ultimately hyperacute rejection. The enzyme, $\alpha(1,3)$ galactosyl transferase, creates this antigen and it would be desirable to eliminate it from porcine organs to be used for xenotransplantation. This porcine gene was cloned by Dabkowski et al. (1994). Homologous recombination provides a theoretical mechanism for knocking out the function of $\alpha(1,3)$ galactosyl transferase but all attempts to develop porcine embryonic stem (ES) cells have failed (Vanhove et al., 1998). Very recently, five piglets were cloned by nuclear transfer (Bradbury, 2000) bringing closer the possibility of a knockout of $\alpha(1,3)$ galactosyl transferase and thus ultimately overcoming this major hurdle to xenotransplantation.

Alternatively, Ogawa et al. (1999) demonstrated that transfected cells for splicing variants of $\alpha(1,3)$ galactosyl transferase suppress the expression of α-gal antigen. The transgene cDNAs without exon 5 and $8(\Delta 58)$, with insertion of 47 bp between exon 7 and 8 (Full +47) or with two point mutations in exon 9 (Mut 9), reduced α-gal expression in COS7 cells by $27 \%, 36 \%, 23 \%$, respectively. The $\Delta 58$, Full +47 and Mut 9 showed $9 \%, 36 \%$ and 42% suppression of α-gal expression in PK15 cells.

Over expressing H-transferase

The most widely explored alternative mechanism for preventing expression of galactose α $(1,3)$ galactose on porcine glycoproteins is to overexpress another glycosyl transferase, $\alpha(1,2)$ fucosyl transferase or H-transferase. The overexpression of H-transferase suppresses the appearance of galactose $\alpha(1,3)$ galactose in mouse and pigs (Sharma et al., 1996). However, this effect of reducing Gal expression is dependent on cell type in the mouse (Chen et al., 1998). Transgenics for the fucosyl transferase gene in the rat have developed carcinoma of the colon, raising fears that overexpression of this enzyme and its product might be pathogenic in pigs (Hallouin et al., 1999).

Protective proteins

Protective proteins like DAF (Decay accelerating factor, CD55), MCP (Membrane cofactor protein, CD46) and CD59 can be overexpressed in pigs to inhibit activation of the complement cascade and initiation of hyperacute rejection (Cozzi and White, 1995; Mollnes and Fiane, 1999).

Initial attempts involved microinjection of human protective proteins into porcine zygotes. Levels of transgenic expression of human DAF in porcine donors are very variable, but 67% of transgenic pigs express the transgene in skin, liver, spleen, lung and heart (Langford et al., 1994). Primate studies have demonstrated survival of porcine hearts transgenic for human DAF for up to 60 days without evidence of rejection. Unfortunately, high levels of immunosuppression are required and have led to adverse side effects in the recipients (Dabkowski et al., 1994). Human DAF transgenic pigs were also used for renal transplantation to primates without hyperacute rejection and a maximum survival of 78 days was achieved (Bhatti et al., 1998; Zaidi et al., 1998).

Mollnes and Fiane (1999) indicated that there may be possible health concern arising from overexpression of membrane complement regulators, due to their affinity for different ligands. For example, DAF is a high-affinity ligand for the seven-span transmembrane molecule, CD97, which is rapidly expressed upon activation of many leukocytes and natural killer cells (Hamann et al., 1996). Thus overexpression of DAF might interfere with control of general cell mediated immunity. In addition, MCP is a receptor for measles virus and DAF is a receptor for echovirus and coxackie B picornavirus and overexpression of these proteins could affect susceptibility to virus infection (Weiss, 1998).

1.3.3. Progress in xenotransplantation

Organ xenotransplantation, including heart, liver and kidney from transgenic pigs, has been tested in non-human primates (Byrne et al., 1997; Daggett et al., 1997; McCurry et al., 1995; Schmoeckel et al., 1998; Zaidi et al., 1998). Also various porcine cells, including foetal brain cells, pancreatic islet cells and liver cells also have been tested for transplantation (Chari et al., 1994; Deacon et al., 1997; Groth et al., 1994; Heneine et al., 1998; Pitkin and Mullon, 1999). Table 1.2 shows the recent progress and potential for xenotransplantation using porcine organs and cells.

Most progress has been made in transplanting porcine foetal brain cells into humans to cure Parkinson's and Huntington's disease. The brain is protected by the blood-brain barrier from circulating immune factors and neural cells do not strongly express MHC class I and class II antigens for the xenograft rejection. Recently, Schumacher et al. (2000) reported results of transplantation of porcine embryonic ventral mesencephalic tissue into patients with advanced Parkinson's disease, providing improvements in the total Unified Parkinson's Disease Rating Scale scores of 19%.

Table 1.2 Potential xenotransplantation therapy using porcine cells and organs.

Disease	Defect	Therapeutic effect	Stage	Company
Parkinson's	Death of dopaminergic neurons in substantia nigra	Regulated release of dopamine at synapses	Phase I	Diacrin Inc
Huntington's	Death of GABAergic neurons in corpus striatum	Recognition of neuronal pathways and regulated release of GABA at synapses	Phase I	Diacrin Inc
Focal epilepsy	Inappropreate neuronal firing	Inhibition of epileptic focus	Preclinical	Diacrin Inc
Cognitive disorders	Depletion with aging of cholinergic neurons in neocortex and hippocampus	Regulated release of acetylcholine at synapses	Preclinical	Diacrin Inc
Acute liver failure	Hepatocyte death	Liver function	Preclinical	Diacrin Inc
Familial hyperchlesterolemia	Defect of LDL receptor on liver cells	Enhanced metabolism of circulating cholesterol	Preclinical	Diacrin Inc
Cardiac disease	Diseased or damaged myocardium	Provision of functional cardiac contractile tissue	Preclinical	Diacrin Inc
Diabetes	Death of insulin producing	Provision of insulin in response pancreatic islets to changes in blood sugar	??	??
Cardiac disease	Diseased or damaged heart	Replacement of non-functional heart	Preclinical	Norvatis

(Personal Communication: Chris Moran)

1.3.4. Dangers of porcine xenotransplantation

With the advent of xenotransplantation, zoonoses - the inadvertent transmission of pathogens from animal organs or cells into human recipients - have become a concern. Pathogens specific to baboons and pigs, which can infect humans, have been reviewed by Michaels and Simmons (1994). To reduce the potential risks of transmitting animal infections to the recipients, consideration has been given to raising donor animals under specific pathogen free (SPF) conditions. In this process, any known exogenous pathogens can be excluded (Swindle, 1998).

However, endogenous retroviruses, belonging to the category of retroelements (see section 1.1.4 for more details), form part of the genome of the donor. They are hard to detect and difficult or impossible to eliminate from the donor species, even under SPF conditions, but have the potential to cause serious disease in humans (Stoye et al., 1998).

Three types of porcine endogenous retroviruses (PERVs) differentiated by the envelope (env) gene, called PERV-A, PERV-B and PERV-C, have been recognised. They are present at approximately 50 copies in the pig genome (Akiyoshi et al., 1998; Le Tissier et al., 1997). Host range and interference studies in the three classes of PERVs show that each of them recognise different receptors and all of them infect at least one human cell line (Takeuchi et al., 1998).

Recent coculture and infectivity experiments have shown that PERVs released from pig kidney cell lines, from mitogenically activated porcine peripheral blood mononuclear cells (PBMCs), or from porcine endothelial cells, can infect human cells and cell lines in vitro, raising concerns about the possibility of cross-species infection after xenotransplantation (Martin et al.,

1998a; Patience et al., 1997a; Wilson et al., 1998). However, there has been no evidence of PERV infections in vivo in baboons and humans (Martin et al., 1998b; Paradis et al., 1999; Pitkin and Mullon, 1999; Switzer et al., 1999).

1.4. Aims of this thesis

At the time that the research described in this thesis was commenced, there was little success with CATS primers in the pig genome as comparative anchor markers. Therefore the first part of this thesis describes gene mapping use CATS primers. The rest of the thesis describes characterising and mapping PERVs (porcine endogenous retroviruses). As a first step in defining the real PERV hazard for xenotransplantation, this thesis includes the following aspects: i) Characterising PERVs in Westran pigs. ii) Physical mapping including FISH mapping and somatic cell hybrid mapping of PERVs. iii) Characterising ERVs (Endogenous Retroviruses) in the Collared Peccary in order to obtain insight into PERV evolution by looking at endogenous retroviruses from relatives of the pig.

This thesis is organised into seven chapters. General Materials and Methods are described in Chapter Two. The mapping of a subset of CATS markers in the pig genome is described in Chapter Three. Characterization and mapping of Porcine Endogenous Retroviruses (PERVs) is presented in Chapter Four and Chapter Five, respectively. Chapter Six reports the discovery of endogenous retroviruses in the Collared peccary. Finally, a general discussion and conclusions are presented in Chapter Seven.

Chapter Two

General Materials and Methods

2.1. Introduction

This chapter describes the general and common materials and methods used in more than one chapter in this thesis. Common laboratory techniques, materials, and general procedures for preparation of reagents presented here are based on Molecular Cloning: a Laboratory Manual (Sambrook et al., 1989), unless otherwise mentioned. All specific materials and methods are fully described in relevant chapters. All glassware and plasticware were sterilised by either autoclaving at $120^{\circ} \mathrm{C}$ for 20 minutes or baking at $200^{\circ} \mathrm{C}$ overnight. Chemical reagents used were Analytical Reagent (AR) or Molecular Biology grades unless otherwise specified.

2.2. Preparation of buffers

2.2.1. Commonly used buffers

2.2.1.1. Tris-HCl

To make 1 M Tris- HCl with a required pH (7.6 or 8.0), 121.1 g of Tris base was initially dissolved in 800 ml distilled water and the pH was adjusted to the desired value by adding concentrated HCl at room temperature. The volume of the solution was then adjusted to 1000 ml by adding distilled water and the mixture was then autoclaved at $120^{\circ} \mathrm{C}$ for 20 minutes.

2.2.1.2. EDTA

The stock solution of 0.5 M EDTA (pH 8.0) was made by adding 186.1 g of disodium ethylenediaminetetraacetate. $2 \mathrm{H}_{2} \mathrm{O}$ (EDTA) to an initial volume of 800 ml distilled water. About 20 g sodium hydroxide (NaOH) was added to hasten dissolving of EDTA. The solution was stirred on a magnetic stirrer for at least 3 hours. Finally, the pH was adjusted to 8.0 with further NaOH and the volume was made up to 1000 ml . The solution was then autoclaved at $120^{\circ} \mathrm{C}$ for 20 minutes.

2.2.1.3. TE

TE (10 mM Tris- HCl and 1 mM EDTA) buffer was prepared in aliquots of 500 ml at a time. To make this volume of TE, 1 ml of 0.5 M EDTA (pH 8.0) and 5 ml of 1 M Tris- $\mathrm{HCl}(\mathrm{pH}$ 7.6 or 8.0) was mixed and the volume was made up with distilled water. The solution was then autoclaved at $120^{\circ} \mathrm{C}$ for 20 minutes.

2.2.1.4. TAE

A stock solution (50X) of TAE (Tris-acetate EDTA) was prepared by mixing 242 g of Tris base, 57.1 ml of glacial acetic acid and 100 ml of 0.5 M EDTA (pH 8.0) and adjusting the volume to 1000 ml with distilled water. A working solution (1X) was prepared by dispensing 400 ml of the stock solution and bringing the final volume to 20 litres with distilled water.

2.2.1.5. TBE

A 20X TBE (Tris-borate EDTA) stock was made by mixing 216 g of Tris base, 110 g boric acid and 80 ml of 0.5 M EDTA (pH 8.0) and adjusting to final volume of 1000 ml by adding distilled water.

2.2.1.6. SSC

A 20X SSC stock was prepared by mixing 175.3 g of NaCl and 88.2 g of sodium citrate in 800 ml of distilled water. The solution was then adjusted the pH to 7.0 with few drops of NaOH and adjusting to final volume of 1000 ml by adding distilled water.

2.2.2. Buffers used for DNA extraction

2.2.2.1. Cell lysis buffer

To make 100 ml of cell lysis buffer, 1 ml of Triton X-100 (1% final concentration), $100 \mu \mathrm{l}$ of 1 M Tris- HCl pH 8.0 (1 mM final concentration) and $500 \mu \mathrm{l}$ of $1 \mathrm{M} \mathrm{MgCl}_{2}$ (5 mM final concentration) were mixed, and distilled water was added to adjust the total volume to 100 ml . Prior to use, 32 ml 1 M sucrose were added to 68 ml of the solution (0.32 M final concentration). This buffer was freshly made and used for lysing cells when genomic DNA was extracted from blood samples.

2.2.2.2. Nuclear lysis buffer

A stock of 100 ml nuclear lysis buffer was prepared by mixing 1 ml of $1 \mathrm{M} \mathrm{Tris-HCl}, \mathrm{pH}$ 8.0 (10 mM final concentration), 1 ml of 1 M KCl (10 mM final concentration), $400 \mu \mathrm{l}$ of 0.5 M EDTA, pH 8.0 (2 mM final concentration), $500 \mu \mathrm{l}$ of SDS (0.5% final concentration) and $50 \mu \mathrm{l}$ of 1 M NaCl (0.5 mM final concentration). The final volume was adjusted to 100 ml with distilled water. This buffer was used for lysing nuclei when genomic DNA was extracted from blood samples.

2.2.2.3. Solution I

A stock of 100 ml solution I was prepared by mixing 2 ml of 0.5 M EDTA $\mathrm{pH} 8.0(10 \mathrm{mM}$ final concentration) and 2.5 ml of 1 M Tris -HCl pH 8.0 (25 mM final concentration). The final volume was adjusted to 100 ml distilled water. This buffer was used for extraction of plasmid DNA from bacterial cells.

2.2.2.4. Solution II

This solution was freshly made immediately before use for extraction of plasmid DNA from bacterial cells. 1 ml stock of 10% SDS was mixed with 2 ml of 1 M NaOH . Distilled water was then added to obtain a 10 ml solution II, containing $1 \% \mathrm{SDS}$ and 0.2 M NaOH .

2.2.2.5. Solution III

This solution was also required for extraction of plasmid DNA from bacterial cells. To prepare a 100 ml of this solution, 11.5 ml of acetic acid (11.5% final concentration) was added to 60 ml stock of 5 M potassium acetate (3 M final concentration) and the final volume was adjusted with distilled water.

2.2.3. Gel loading buffers

2.2.3.1. Agarose gel-loading buffer

To make 10 ml of 10 X stock, 0.025 g Bromophenol blue (0.25% final concentration), 0.025 g Xylene Cyanole FF (0.25% final concentration) and 5 ml of 30% Ficoll (15% final concentration) were mixed and distilled water was added to adjust the final volume to 10 ml . The
stock was stored at room temperature and used when loading DNA samples in agarose gels to prevent samples from spilling from wells and to provide tracking dyes for electrophoresis.

2.2.3.2. Sequencing gel-loading buffer

Gel-loading buffer for ABI sequencer

A stock was made by mixing 9.8 ml of deionized Formamide (98% final concentration), $200 \mu \mathrm{l}$ of 0.5 M EDTA pH 8.0 (10 mM final concentration) and 0.0025 g of each Bromophenol blue and Xylene Cyanole (0.025% final concentration). This buffer aided loading samples into wells and maintained DNA in a denatured status during electrophoresis.

Gel-loading buffer for Li-Cor sequencer

A stop/loading buffer stock was made by dissolving 40 mg NaOH (10 mM final concentration) and 2 ml 0.5 M EDTA pH 7.6 (10 mM final concentration) into 100 ml deionized Formamide. Stock loading dye solution ($21 \mathrm{mg} / \mathrm{ml}$ Basic Fuchsin, Aldrich) in the ratio 5:100 was added above stop buffer. These stock solutions were stored in the freezer.

2.3. Preparation of medium

2.3.1.1. LB medium

For preparing 1 litre LB (Luria-Broth) medium, 10 g Bacto-Tryptone (1% final concentration) 5 g Bacto-Yeast extract (0.5% final concentration) and 10 g NaCl (1% final concentration) were dissolved in 800 ml distilled water. The pH of the medium was adjusted to 7.0 by adding NaOH and the final volume was increased to 1 litre by adding distilled water. LB medium was autoclaved at $120^{\circ} \mathrm{C}$ for 20 minutes and stored at $4^{\circ} \mathrm{C}$.

2.3.1.2. LB plate with ampicillin or kanamycin

Into 100 ml LB medium, 2 g agar was added (2% final concentration) and the mixture was microwaved until dissolved. The solution was cooled down to $50^{\circ} \mathrm{C}$ and then $500 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ ampicillin or kanamycin was added ($50 \mu \mathrm{~g} / \mathrm{ml}$ final concentration) and mixed. Then, 15 ml of this solution was poured in 6 mm Petri dishes. The plates were left at room temperature for 20 minutes to harden the agar, and were then stored in an upside-down position at $4^{\circ} \mathrm{C}$ until used.

2.4. DNA extraction

2.4.1. Extracting genomic DNA from blood

Porcine whole blood samples in 10ml EDTA vacutainer tubes were removed from the $20^{\circ} \mathrm{C}$ freezer and thawed at room temperature. 10 ml of the thawed blood was transferred to a 50 ml polypropylene screw-cap centrifuge tube (Beckman) and approximately 5 ml cell lysis buffer (1% Triton X-100, 0.32 M sucrose, 1 mM Tris- HCl pH 8.0 and $5 \mathrm{mM} \mathrm{MgCl}_{2}$) (see section 2.2.2.1. in detail) was added. This solution lyses blood cells and leaves the nuclei intact. A nuclear pellet was obtained after centrifugation at $4,000 \mathrm{rpm}$ (See Appendix 2.3 for the conversion of rpm to g) for 10 minutes in a Beckman J2-21 M/E Centrifuge using a JA-20 rotor. The supernatant was decanted into a beaker containing 20 ml of bleach. If the pellet was red, the above lysis step was repeated. After decanting the supernatant, the pellet was resuspended in 5 ml of nuclear lysis solution (10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,10 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM}$ $\mathrm{NaCl}, 0.5 \%$ SDS, 2 mM EDTA) (see section 2.2.2.2. in detail) with $40 \mu \mathrm{l} 20 \mathrm{mg} / \mathrm{ml}$ Preteinase K . The contents were mixed and the tube incubated at $55^{\circ} \mathrm{C}$ with constant shaking at 100 rpm overnight.

On the following day, $20 \mu \mathrm{l}$ of RNase ($10 \mathrm{mg} / \mathrm{ml}$) was added into the solution and the tube was incubated a further 1 hour at $55^{\circ} \mathrm{C}$. After finishing incubation, 3 ml of phenol and 3 ml of chloroform were added and the solution was mixed by inversion. After the tube was centrifuged at $10,000 \mathrm{rpm}$ for 10 minutes in the Beckman JA-20 rotor with a suitable rubber adapter supplied by Beckman, the upper aqueous layer was carefully removed to a fresh 10 ml yellow cap graduated polypropylene tube. The purified DNA was then precipitated by the addition of $500 \mu \mathrm{l}$ of 3 M sodium acetate (NaOAc) and 1 volume of isopropanol and the centrifugation was performed at $10,000 \mathrm{rpm}$ for 5 minutes to pellet the DNA. After carefully pouring off the supernatant, 1 ml of 70% ethanol was added to rinse the DNA which was again centrifuged at $10,000 \mathrm{rpm}$ for 5 minutes. The DNA pellet was dried at room temperature until the residual liquid disappeared. The DNA pellet was resuspended in $500 \mu \mathrm{l}$ of TE buffer (pH 7.5) and $2 \mu \mathrm{l}$ of RNase ($10 \mathrm{mg} / \mathrm{ml}$) and left at room temperature overnight to dissolve prior to storage at $4^{\circ} \mathrm{C}$.

2.4.2. Extracting plasmid DNA from bacterial cells

Mini-preparation of Plasmid DNA

The alkaline minilysis method of Birnboim and Doly (Birnboim and Doly, 1979) was adapted for the preparation of plasmid DNA.

Individual positive plasmid colonies were picked with a sterile tip to inoculate a 10 ml tube containing 5 ml LB medium with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin or kanamycin depending on the vector used. The tube was then incubated at $37^{\circ} \mathrm{C}$ for $10-14$ hours. After finishing incubation, 0.5 ml of each culture solution was used to make a glycerol stock for long-term storage of live bacteria. A bacterial cell pellet was obtained after centrifugation at $5,000 \mathrm{rpm}$ for 5 minutes in a Beckman J2-21 M/E centrifuge using a JA-20 rotor with rubber adapter. The supernatant was discarded into a beaker with 20 ml of bleach.

The residual cell pellet was thoroughly resuspended in $100 \mu \mathrm{l}$ of ice-cold miniprep solution I (25 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0) (see section 2.2.2.3. in detail). After vigorous vortexing, the tube was stood at room temperature for 5 minutes. To lyse the cells, 200 μl of freshly prepared miniprep solution II (section 2.2 .2 .4) was added to the cell suspension. The tube was mixed gently by inversion to ensure that the entire surface of the tube came in contact with solution II, then placed on ice for 5 minutes. To precipitate proteins and cell debris, $150 \mu \mathrm{l}$ of ice-cold miniprep solution III (60 ml 5 M potassium acetate, 11.5 ml glacial acetic acid, and 28.5 ml distilled water) (see section 2.2.2.5. in detail) was added and then mixed by vortexing for a few seconds. The tube was chilled in ice for 10 minutes to allow most of the protein, high molecular-weight RNA and chromosomal DNA to precipitate.

The tube was centrifuged at $12,500 \mathrm{rpm}$ for 5 minutes at room temperature to yield a clear supernatant. The supernatant, which contained the plasmid DNA, was transferred to a fresh tube, while the pellet which contained precipitated proteins and cell debris was discarded. An equal volume of phenol ($400 \mu \mathrm{l}$) was added to the supernatant and the tube was vortexed for one minute, to create an aqueous phenol emulsion. The tube was then spun at $12,500 \mathrm{rpm}$ for 5 minutes to separate the phenol and aqueous layers. Immediately after centrifugation, the aqueous layer (top phase) was transferred to another fresh tube, mixed with an equal volume of chloroform $(400 \mu \mathrm{l})$ and centrifuged at $12,500 \mathrm{rpm}$ for 5 minutes. Again, the aqueous layer was removed after centrifugation and transferred to a fresh Eppendorf tube. To precipitate the plasmid DNA, 0.05 volume of 4 M NaCl followed by 2 volumes of absolute ethanol were added to the tube. The tube was placed at $-80^{\circ} \mathrm{C}$ for 20 minutes.

After centrifugation for 10 minutes, the supernatant was discarded and the plasmid DNA pellet was collected. The pellet was rinsed gently with 1 ml of 70% ethanol and dried by placing the tube into a heater block at $37^{\circ} \mathrm{C}$ for about 10-20 minutes. Finally, the plasmid DNA pellet was dissolved in $30 \mu \mathrm{l}$ TE buffer (pH 7.5) containing $10 \mu \mathrm{~g} / \mathrm{ml}$ DNase-free pancreatic RNase and stored at $4^{\circ} \mathrm{C}$.

Mini-preparation of Plasmid DNA for sequencing

Pure plasmid DNA was needed for sequencing. A JETquick Plasmid Miniprep Spin Kit (GENOMED Inc.) was employed for this purpose.

Bacterial cells were harvested by the previously described method in a 10 ml tube. The cell pellet was thoroughly resuspended in $210 \mu \mathrm{l}$ of solution G1 (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,10 \mathrm{mM}$ EDTA pH 8.0, $100 \mu \mathrm{~g} / \mathrm{ml}$ RNase A). After vigorous vortexing, the homogeneous suspension was transferred to a 1.5 ml Eppendorf tube. To lyse the cells, $210 \mu \mathrm{l}$ of solution $\mathrm{G} 2(0.2 \mathrm{M} \mathrm{NaOH}$, $1 \% \mathrm{SDS}$) was added to the cell suspension. The tube was mixed gently by inversion to ensure that the entire surface of the tube came in contact with solution G2, then incubated at room temperature for 5 minutes. To precipitate proteins and cell debris, $280 \mu \mathrm{l}$ of solution G 3 (contains acetate and guanidine hydrochloride; details not provided by manufacturer) was added and then mixed by inverting the tube several times until a homogenous phase was obtained. After centrifugation for 10 minutes at $12,500 \mathrm{rpm}$, the supernatant was loaded into a JETquick spin column in a 2 ml receiver tube. Immediately after centrifugation for 1 minute, the flowthrough in the receiver tube was discarded. The spin column was reinserted into the receiver tube and $500 \mu \mathrm{l}$ of solution GX (contains acetate, guanidine hydrochloride, EDTA, and ethanol; details not provided by manufacturer) added. After incubation for 1 minute at room temperature, the column was centrifuged again at $12,500 \mathrm{rpm}$ for 1 minute and the flowthrough discarded again. The spin column was reinserted into the receiver tube and $700 \mu 1$ of solution G 4 (contains ethanol, NaCl , EDTA, and Tris-HCl; details not provided by manufacturer) added. After centrifuging twice at $12,500 \mathrm{rpm}$ for 1 minute to get rid of all residual solutions, the JETquick spin column was placed into a new 1.5 ml Eppendorf tube. $50 \mu \mathrm{l}$ of preheated $\left(65-70^{\circ} \mathrm{C}\right) \mathrm{TE}$ buffer $(10 \mathrm{mM}$ Tris- HCl and 1 mM EDTA) was added directly onto the centre of silica matrix of the spin column to elute the DNA from the column. After centrifuging at $12,500 \mathrm{rpm}$ for 2 minutes, the plasmid DNA eluted was stored at $4^{0} \mathrm{C}$ until use.

Large-scale preparation of plasmid DNA

This is a modification of the alkaline minipreparation method. 100 ml of LB medium in a 500 ml conical flask was inoculated with cells from a single colony of bacteria. Cells were grown overnight with shaking at $37^{\circ} \mathrm{C}$. The medium was collected in a 250 ml polypropylene screw-cap centrifuge tube (Beckman) and spun in a JA-14 rotor in a Beckman J2-21M/E centrifuge at 5,000 rpm for 5 minutes. The bacterial pellet was resuspended in 2.5 ml of solution I (25 mM Tris- HCl $\mathrm{pH} 8.0,10 \mathrm{mM}$ EDTA pH 8.0) (see section 2.2.2.3. in detail) and transferred to a 50 ml polypropylene screw-cap centrifuge tube (Beckman). 5 ml of freshly prepared solution II (0.2 M $\mathrm{NaOH}, 1 \%$ SDS) (see section 2.2.2.4. in detail) was then added and mixed by gentle inversion,
followed by placing the tube on ice for 5 minutes. Then 3.75 ml of solution III (3 M potassium acetate, 11.5% acetic acid) (see section 2.2.2.5. in detail) was added and mixed by vortexing for a few seconds before the tube was placed in ice for 10 minutes. The mixture was then centrifuged in a JA-20 rotor at $4^{\circ} \mathrm{C}$ for 15 minutes at $15,000 \mathrm{rpm}$ and the supernatant was transferred to a new 50 ml centrifuge tube.

To this supernatant, $50 \mu 1$ of DNase-free pancreatic RNase ($10 \mathrm{mg} / \mathrm{ml}$) was added and the tube was incubated at $37^{\circ} \mathrm{C}$ for 30 minutes. This was followed by adding $40 \mu 1$ of Proteinase K $(20 \mathrm{mg} / \mathrm{ml})$ and further incubation at $37^{\circ} \mathrm{C}$ for 1 hour. After incubation, $1 / 2$ volume of isopropanol (5.6 ml) was added and the contents of the tube were mixed. The tube was then spun at $4^{\circ} \mathrm{C}$ for 15 minutes at $10,000 \mathrm{rpm}$. After centrifugation, the supernatant was poured off and the DNA pellet was resuspended in $300 \mu \mathrm{l}$ of 0.3 M sodium acetate. The solution was transferred to a fresh Eppendorf tube after dissolution. 3 volumes of absolute ethanol ($900 \mu \mathrm{l}$) were added and the tube stored at $-80^{\circ} \mathrm{C}$ for 20 minutes, followed by centrifugation for 5 minutes. The plasmid DNA was then rinsed with 70% ethanol, briefly dried, and dissolved in $500 \mu \mathrm{l}$ of $\mathrm{TE}(\mathrm{pH} 7.5)$.

2.4.3. Isolation of DNA from gel slices

2.4.3.1. BRESAclean ${ }^{\text {TM }}$ DNA purification kit

The isolation of pure PCR products is essential for the cloning reaction. For this purpose, a BRESAclean ${ }^{\mathrm{TM}}$ DNA purification kit (Bresatec Inc.) was used.

DNA fragments were excised from a TAE gel under UV light, weighed, mixed with 3 volumes of BRESA-SALT ${ }^{\mathrm{TM}}$ (bottle no. 1), and incubated at $55^{\circ} \mathrm{C}$ for 5 minutes. The completely dissolved gel slice was mixed with $5 \mu \mathrm{l}$ plus $1 \mu \mathrm{l} / \mu \mathrm{g}$ DNA of BRESA-BIND ${ }^{\mathrm{TM}}$ (bottle no. 2) and incubated for 5 minutes at room temperature to bind DNA with regular mixing to keep the BRESA-BIND ${ }^{\text {TM }}$ in suspension. The BRESA-BIND ${ }^{\text {TM }} /$ DNA complex pellet was obtained after centrifugation for 5 seconds with microcentrifuge. The supernatant was poured off and the pellet was washed once with BRESA-WASH ${ }^{\text {TM }}$ (bottle no. 3) in a volume equivalent to the amount of BRESA-SALT ${ }^{\text {TM }}$ (bottle no. 1) used. After 5 seconds centrifugation again all traces of wash solution were removed. Purified DNA was eluted with $20 \mu 1$ of TE buffer followed by incubation at $55^{\circ} \mathrm{C}$ for 5 minutes and by centrifugation 1 minute in microcentrifuge. DNA was stored at -20 ${ }^{\circ} \mathrm{C}$ until use.

2.4.3.2. Low melting point agarose gel

The second method for gel purification of DNA used low-melting point agarose (Wieslander, 1979). Restriction digests or PCR reaction products were run at 100 V in 1% lowmelting point agarose gel. Electrophoresis was stopped at an appropriate time, and the DNA band of interest was excised from the gel and placed in an Eppendorf tube containing $100 \mu \mathrm{l}$ of TE (pH 7.5). The gel was melted using a heater block at $65^{\circ} \mathrm{C}$ for 15 minutes, and the insert DNA fragment was then purified by phenol and chloroform extractions. Finally, after ethanol precipitation, the DNA fragment was dissolved in TE (pH 7.5) and stored at $4^{0} \mathrm{C}$.

2.5. Measuring the concentration of DNA

2.5.1. Spectrophotometric measurement

The DNA samples to be quantified were diluted in individual 1.5 ml Eppendorf tubes containing $2 \mu \mathrm{l}$ of extracted genomic or plasmid DNA in $198 \mu \mathrm{l}$ of TE (pH 7.5). The concentration of DNA was measured by spectrophotometry (Pharmacia Biotech Gene Quant II RNA/DNA Calculator) at wavelength of $260 \mathrm{~nm}\left(\mathrm{OD}_{260}\right)$ and $280 \mathrm{~nm}\left(\mathrm{OD}_{280}\right)$. The OD_{260} was used for determining genomic DNA concentration using the relationship that OD_{260} of 1 corresponds to about $50 \mu \mathrm{~g} / \mathrm{ml}$ of double-stranded DNA. The ratio between OD_{260} and OD_{280} indicates the extent to which there has been contamination of the extracted DNA with protein. When the ratio is less than 1.8 , it indicates that the sample is contaminated with protein (Sambrook et al., 1989).

2.5.2. Agarose gel quantification

To check the concentration of DNA or to determine whether the DNA was sheared or otherwise degraded, $1 \mu \mathrm{l}$ of extracted DNA was mixed with agarose loading dye and run on a 0.8% agarose gel at 100 voltage for 40 minutes. A range of known concentrations of DNA ($\lambda /$ HindIII $1 \mu \mathrm{~g} / \mathrm{ml}$) was used to estimate the concentration of extracted DNA samples.

2.6. Designing Primers

Primers were designed from the relevant GenBank database sequences using the computer program "Primer Design - Version 2.0" (Scientific and Educational Software, 1991). The criteria specified in the selection of a primer were a $45-55 \%$ GC content, no hairpins, no dimerisation within or between primer pairs, and a primer length of 20 nucleotides. Primers for the
comparative mapping research (Comparative Anchor Tagged Sequence (CATS) primers) were kindly supplied by Dr. Leslie Lyons. All other primers were synthesised commercially unless specified. Primers were diluted to $10 \mathrm{pmole} / \mu \mathrm{l}$ with sterile MilliQ water and stored at $-20^{\circ} \mathrm{C}$. The Primer Design program estimates the melting temperatures for each primer and normally the annealing temperature for PCR reaction was set at $5^{\circ} \mathrm{C}$ lower than melting temperature.

2.7. PCR

2.7.1. PCR conditions

PCR conditions were optimised by testing four levels of MgCl_{2} concentration $(0.5 \mathrm{mM}, 1$ $\mathrm{mM}, 2 \mathrm{mM}, 3 \mathrm{mM}$) and a range of annealing temperatures using identical control genomic DNA before moving to the main experiments. The optimum concentration of MgCl_{2} and annealing temperature for each primer pair is presented in relevant chapters.

2.7.2. PCR amplification

PCR reactions were performed in a $25 \mu 1$ reaction volume and the composition is outlined below.
Constituent
Genomic DNA
Forward primer
Reverse primer
MgCl_{2}
Each dNTP (dATP, dGTP, dCTP, dTTP)
$10 \times$ Taq polymerase buffer
Taq DNA polymerase
Distilled water

Final

$\sim 100 \mathrm{ng}$
10 pmol
10 pmol
$0.5 \mathrm{mM}-3 \mathrm{mM}$
$100 \mu \mathrm{M}$
$2.5 \mu \mathrm{l}$
1 unit
up to $25 \mu \mathrm{l}$

The mixture was overlaid with one drop of Paraffin oil and PCR was carried out in a PTC100 Programmable Thermal Controller (MJ Research, Inc.) with the following thermocycling programme (Table 2.1). After the thermocycle reaction, the PCR products were directly analyzed or stored at $-20^{\circ} \mathrm{C}$ until used later.

Table 2.1 Thermocycling profile used for PCR amplification.

Purpose	Temperature	Duration	No. of cycles
Initial denaturation	$95{ }^{\circ} \mathrm{C}$	5 minutes	1
Denaturation	$95^{\circ} \mathrm{C}$	30 seconds	30
Annealing	Variable $\left(50-65^{\circ} \mathrm{C}\right)$	30 seconds	
Extension	$72^{\circ} \mathrm{C}$	30 seconds	1
Final extension	$72{ }^{\circ} \mathrm{C}$	20 minutes	

2.7.3. Touchdown PCR

Touchdown PCR is based on progressively lowering the annealing temperatures during PCR (Don et al., 1991). The high annealing temperature at the beginning of the PCR reaction ensures that only the correct products are amplified in the beginning, even though less efficiently than in the conventional PCR cycles. Later the decreased annealing temperature provides more efficient amplification when the correct products predominant as template.

2.7.4. Screening of clones using boiled preparation

After a single colony was cultured in 5 ml LB medium overnight, a bacterial cell pellet was obtained by centrifugation at $5,000 \mathrm{rpm}$ for 5 minutes in a Beckman $\mathrm{J} 2-21 \mathrm{M} / \mathrm{E}$ centrifuge using a JA-20 rotor with rubber adapter. The supernatant was discarded. $5 \mu 1$ of the residual cell pellet was mixed thoroughly with $5 \mu l$ sterile water and heated at $95^{\circ} \mathrm{C}$ for 5 minutes using a PTC-100 Programmable Thermal Controller (MJ Research Inc.) to release DNA from the cell. PCR amplification was undertaken on $1 \mu \mathrm{l}$ of the boiled extracts.

2.8. Restriction enzyme digestion

All the restriction enzymes and the restriction enzyme buffers were purchased from Promega, and digestions were carried out using the manufacture's recommendations. The following cocktail components were used to digest PCR products or plasmid DNA.

PCR products or plasmid DNA	$=0.5-2 \mu \mathrm{~g}$
$10 X$ restriction enzyme buffer	$=3 \mu \mathrm{l}$
Restriction enzyme	$=5$ units
Distilled water up to	$30 \mu \mathrm{l}$

After the components above were mixed, the tubes were normally incubated overnight in a hybridisation oven (Hybaid Inc) at an appropriate temperature specified in the Promega catalog. The reaction was stopped by adding 10X gel loading buffer before electophoresis.

2.9. Gels and gel electrophoresis

2.9.1. Agarose gels

Agarose gel electrophoresis was used to separate DNA fragments and was performed in a horizontal gel electrophoresis tank (OWL Scientific Plastics Inc.). The concentration of the gel used was dependent on the size of DNA fragments to be resolved. To make a 1% agarose gel, 1 g of agarose powder (Progen Industries Ltd.) was mixed with 100 ml of 1X TAE. The solution was microwaved with shaking at one minute intervals until the agarose was completely dissolved. After cooling the solution to about $60^{\circ} \mathrm{C}, 2 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ ethidium bromide was added before pouring in a 20 cm horizontal gel electrophoresis tank (Owl Scientific Inc.). A well-forming comb was put in place and the solution was allowed to set for about one hour. Samples of PCR products were loaded with loading buffer along with molecular size markers to estimate the size of the product. Electrophoresis of the gel was performed in 1X TAE at 100 to 120 volts for 20 to 45 minutes. Gels were then removed and the DNA bands detected by ethidium bromide fluorescence using an ultraviolet light transilluminator (UVP Inc.). Gels were photographed using a polaroid camera (Polaroid MP4 Land Camera), using a red filter and 667 Kodak black and white instant film.

2.9.2. Sequencing gels

2.9.2.1. ABI 373 sequencing gels

6\% Denaturing polyacrylamide sequencing gels were made to separate DNA fragments differing by as little as one nucleotide in length. A 6% polyacrylamide gel was prepared by dissolving 40 gm of urea (ICN Biomedical Inc.) in 28 ml of distilled water with 12 ml of 40% acrylamide/bis solution (19:1, Gradipore Ltd) and 8 ml of $10 \times$ TBE. The gel solution was mixed in a beaker and stirred until completely dissolved. Meanwhile, the glass plates from a vertical 25 $\mathrm{cm} \times 42 \mathrm{~cm}$ sequencing gel apparatus (Applied Biosystems, Perkin-Elmer) were thoroughly cleaned using glass plate washing solution and distilled water. Then, the gel solution was mixed with $400 \mu 1$ of 10% APS (ammonium persulfate) and $40 \mu l$ of TEMED ($\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$, - tetra methyl ethylene diamine) and immediately the solution was poured between the two glass plates
separated by 0.4 mm spacer. Finally a well-forming comb (36-well sharks-tooth comb) was inserted immediately and the gel left at the room temperature to set for more than 2 hours. After pre-electrophoresis at 2000 volts, 40 watts for 20 minutes in 1 X TBE , sequencing samples were loaded and the gel run at 2000 volts for 14 hours.

2.9.2.2. Li-cor sequencing gels

For the purpose of long readable single pass-sequencing, a Li-Cor sequencer (Model 4200, Li-Cor Inc.) was used. There are three sizes of gels ($25 \mathrm{~cm}, 41 \mathrm{~cm}, 66 \mathrm{~cm}$). A 66 cm gel, which can be read for up to $1,000 \mathrm{bp}$, was used for most of the experiments in this thesis.

A 4% polyacrylamide gel was prepared by mixing 18.9 gm of urea, $3.6 \mathrm{ml} 50 \%$ Long Ranger acrylamide solution (BioProducts Com.) and 10.8 ml of $5 \times \mathrm{TBE}$ in a beaker and stirred until completely dissolved. Distilled water was added to bring the total volume to 45 ml or 50.625 gm . While the gel solution was mixed, the 66 cm glass plates were thoroughly cleaned using distilled water and isopropanol. When the gel solution was dissolved completely, $200 \mu \mathrm{l}$ of 10% APS and $20 \mu \mathrm{l}$ of TEMED were mixed and immediately the solution was poured between the two glass plates separated by a 0.25 mm spacer. Immediately, a well-forming comb (48-well rectangular comb) was inserted. The gel was left at room temperature to set for more than 2 hours.

2.10. Sequencing - ABI/Li-Cor

Cycle sequencing was performed with a dye-labelled (for ABI) or unlabelled (for Li-Cor) terminator, using a method modified from Sanger's dideoxy sequencing method (Sanger et al., 1977).

2.10.1. ABI Dye Terminator Cycle Sequencing

Fuorescence-labelled cycle sequencing reactions were performed in $20 \mu \mathrm{l}$ volumes using an ABI sequencing kit (Perkin Elmer). Each reaction contained 100 ng of plasmid or PCR products template DNA, $8 \mu 1$ of Terminator Ready Reaction Mix and 3.2 pmole primer. The mixture was overlaid with one drop of paraffin oil, and the reaction was performed in a PTC-100 Programmable Thermal Controller (MJ Research, Inc.). Reaction profiles included 25 cycles of 30 seconds denaturation at $96^{\circ} \mathrm{C}, 15$ seconds annealing at $50^{\circ} \mathrm{C}$, and 4 minutes of extension at $60^{\circ} \mathrm{C}$. After PCR, all $20 \mu \mathrm{l}$ of the reaction contents were transferred to a 1.5 ml Eppendorf tube which contained $2 \mu \mathrm{l}$ of 3 M Sodium acetate (pH 4.6) and $50 \mu \mathrm{l}$ of 95% ethanol. The tube was
vortexed and kept on ice for 10 minutes. Then the tube was spun at $12,500 \mathrm{rpm}$ for 15 minutes to remove the unincorporated terminators and to pellet the DNA. After rinsing with 70% ethanol, the pelleted DNA was dried. The dried DNA sample was resuspended by adding $5 \mu \mathrm{l}$ of autosequencing gel loading buffer (Section 2.2.3.2) and completely dissolved by vortexing. Then, the DNA sample was denatured at $95^{\circ} \mathrm{C}$ for 5 minutes, and placed on ice until all of the sample solution was loaded in a sequencing gel. After running the gel, the sequence data were analysed with DNA sequencing analysis software (version 3.3, Perkin Elmer).

2.10.2. Li-Cor cycle sequencing

Li-Cor cycle sequencing reactions were carried out using a SequiTherm EXCEL ${ }^{\text {TM }}$ II DNA Sequencing Kits-LC (Epicentre Technologies, Inc.). Compared to the ABI system, the LiCor system has only two infra-red dyes available (Wavelength 700 and 800). The cycle sequencing reaction products must be resolved in four lanes.

The $17 \mu \mathrm{l}$ volume of premix was made in a 0.5 ml microcentrifuge tube by combining 7.2 $\mu 1$ of 3.5X SequiTherm EXCEL II sequencing buffer, $2 \mu 1$ (1 pmole $/ \mu 1$) of IRD-labelled primer, 100 to 250 fmole of DNA template, $1 \mu \mathrm{l}$ of SequiTherm EXCEL II DNA Polymerase ($5 \mathrm{U} / \mu \mathrm{l}$), and deionized water to 17μ. This premix was placed on ice until use. For each template, four 0.2 ml PCR tubes were labeled G, A, T, C and placed on ice. Then $2 \mu \mathrm{l}$ of each SequiTherm EXCEL II-LC termination mix, G, A, T or C, were added to the G, A, C, T tubes, respectively. 4 μl of premix was added to each of the four tubes of termination mix and thoroughly mixed. The mixture was overlaid with one drop of paraffin oil. After briefly centrifuging, the PCR reaction was performed in a PTC-100 Programmable Thermal Controller (MJ Research, Inc.). Reaction profiles included a 5 minute denaturation step at $95^{\circ} \mathrm{C}$ followed by 30 cycles, each consisting of 30 seconds denaturation at $95^{\circ} \mathrm{C}, 15$ seconds annealing at $50^{\circ} \mathrm{C}$, and 1 minute of extension at $70^{\circ} \mathrm{C}$. After the PCR, $3 \mu \mathrm{l}$ of stop/loading buffer was added to each reaction which was stored at $-20{ }^{0} \mathrm{C}$ until use. After running the Li-Cor sequencing gel, the sequence data were analysed with image analysis (version 4.0, Li-Cor Inc.) and manipulated with image manipulation (version 4.0, Li-Cor Inc).

2.11. Cloning PCR products

Two vector systems were employed: $\mathrm{pCR}^{\circledR} 2.1$ - TOPO vector (Invitrogen, TOPO ${ }^{\text {TM }}$ TA Cloning Kit) (see Appendix 2.1.) for products amplified with Taq DNA polymerase, and pCR^{\circledR} -

Blunt vector (Invitrogen, Zero Blunt ${ }^{\mathrm{TM}}$ PCR Cloning Kit) (see Appendix 2.2.) for products amplified with Pfu proof reading DNA polymerase.

2.11.1. $\quad T O P O^{T M}$ TA Cloning Kit

The plasmid vector, $\mathrm{pCR}^{\circledR} 2.1-\mathrm{TOPO}$, is supplied linearised with single 3' thymidine (T) overhangs for cloning PCR products which generally have 3' adenine (A) overhangs. Topoisomerase is covalently bound to the vector to increase the efficiency of ligation at room temperature.

2.11.1.1. Ligation of plasmid and insert DNA

To obtain the optimal ratio of plasmid-to-insert DNA, a 1:1 molar ratio of vector:insert was tried. In general, 0.5 to $2 \mu \mathrm{l}$ of a typical PCR sample ($10 \mathrm{ng} / \mu \mathrm{l}$) with an average insert length of 400 to $1,000 \mathrm{bp}$ will give the proper insert:vector ratio. In a $5 \mu \mathrm{l}$ reaction volume, the composition contained:

Fresh PCR product	0.5 to $2 \mu \mathrm{l}$
$\mathrm{pCR}{ }^{\circledR} 2.1$ - TOPO vector	$1 \mu \mathrm{l}$

Deionized water to final volume $5 \mu \mathrm{l}$

The ligation reaction was performed for 5 minutes at room temperature $\left(\sim 25^{\circ} \mathrm{C}\right)$. The reaction to be was briefly centrifuged and then placed on ice prior to the One Shot ${ }^{\mathrm{TM}}$ transformation reaction.

2.11.1.2. Transformation reaction

$50 \mu \mathrm{l}$ of TOP10 One Shot $^{\mathrm{TM}}$ competent cells were thawed on ice. $2 \mu \mathrm{l}$ of $0.5 \mathrm{M} \beta$ mercaptoethanol were added and mixed by stirring gently with a pippette tip. $2 \mu \mathrm{l}$ of the TOPO cloning solution were then added. The tube was incubated on ice for 30 minutes. The cells were heat shocked for 30 seconds at $42^{\circ} \mathrm{C}$. Then the tube was transferred into ice and incubated for another 2 minutes. $250 \mu \mathrm{l}$ of SOC medium (2% Tryptone, 0.5% Yeast Extract, $10 \mathrm{mM} \mathrm{NaCl}, 2.5$ $\mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{MgSO}{ }_{4}, 20 \mathrm{mM}$ Glucose) was added and shaken gently at $37^{\circ} \mathrm{C}$ for 30 minutes (for ampicillin selection) or 1 hour (for kanamycin selection) to allow the cells
recover. The cells then be plated directly onto a 1.5\% agar LB medium plate containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin or kanamycin and incubated at $37^{\circ} \mathrm{C}$ overnight.

2.11.2. Zero Blunt ${ }^{T M}$ PCR Cloning Kit

2.11.2.1. Ligation of plasmid and insert DNA

In a $10 \mu 1$ reaction volume, the reaction mix contained:

Linearized, blunt pCR-Blunt (25ng)	$1 \mu \mathrm{l}$
Blunt-end PCR product	1 to $5 \mu \mathrm{l}$
10X Ligation Buffer	$1 \mu \mathrm{l}$
T4 DNA Ligase (4U/ μ)	$1 \mu \mathrm{l}$
Deionized water to final volume	$10 \mu \mathrm{l}$

The ligation reaction was performed for 1 hour at $16^{\circ} \mathrm{C}$. The rest of the procedures are the same as above for the $\mathrm{TOPO}^{\mathrm{TM}} \mathrm{TA}$ Cloning Kit.

2.11.2.2. Transformation reaction

Most of the procedures are the same as for the $\mathrm{TOPO}^{\mathrm{TM}}$ TA Cloning Kit except the recommended duration of the heat shock is 45 seconds rather than 30 seconds and β mercaptoethanol is not needed for the blunt-end cloning reaction.

2.12. Mapping resources

To physically map PCR products, a French somatic cell hybrid panel was employed. It consists of 27 somatic cell hybrid lines including 19 pig \times Chinese hamster somatic cell hybrids (numbers 1-19) and 8 pig \times mouse somatic cell hybrids (numbers 20-27) (Yerle et al., 1996). DNA from these was kindly provided by Dr Martine Yerle of INRA, France. Further details are provided Chapter 1.

Chapter Three

Improving the comparative porcine map relative to human chromosomes 9, 10, 20 and 22

3.1. Introduction

Since Haldane's review of coat-colour-determining genes in several species (Haldane, 1927), it has been postulated that genomic organisation is conserved among mammals even though mammals arose and diverged over the past 70 million years (Andersson et al., 1996). Mammals are estimated to have 70,000 to 100,000 genes (Bird, 1995) and presumably share most of these genes with even distantly related vertebrates like birds and even fish. Genome mapping allows development of comparative gene maps, showing conserved synteny between species, from which conserved and ultimately ancestral chromosome organisation can be inferred. For example, chicken chromosome 1 exhibits conserved synteny with human chromosome 1 (HSA 1) (Smith et al., 1997). The loci on zebrafish (Danio rerio) linkage group 9 imply that this region is homologous to the long arm of HSA 2 (Postlethwait et al., 1998). On the assumption that relatively large chromosomal segments are conserved among species of mammals, it is possible to deduce the position of a gene in one species by knowledge of its position in another (Eppig and Nadeau, 1995; Gillois, 1991). Because of this, comparative genome mapping has emerged as an important research area (Andersson et al., 1996; Wakefield and Graves, 1996). The recognition of conservation of genomes across species has been useful in identifying and mapping new genes, in searching for candidate genes for disease phenotypes, and in analyzing genome organization and evolution (Eppig, 1996; Eppig and Nadeau, 1995; Nadeau and Sankoff, 1997; Nicholas and Harper, 1996).
Characterisation of conserved chromosomal segments among mammalian species will enable animal geneticists to exploit the rapid advances in human and mouse molecular genomics, including the soon to be completed total sequencing of the human genome (Dunham et al., 1999; Hattori et al., 2000). For instance, using already identified mouse and human gene(s) as references and a comparative map, one can predict the location(s) of the nearby gene(s) in animal genomes and vice versa. For this reason, the highly developed genetic maps of humans and mouse are potentially very
valuable resources for genome mappers working in other mammalian species. Conversely the results of QTL studies being performed in domestic and model species can be mined for their biomedical significance. Thus the effort of producing detailed comparative maps between species is justified. Numerous publications have examined comparative mapping (between human and mouse: Cole et al., 1998; Thomas et al., 1999, between human and pig: Bruch et al., 1996; Hu et al., 1997; LahbibMansais et al., 1996; Lahbib-Mansais et al., 1999; Van Poucke et al., 1999, between human and cattle: Aleyasin and Barendse, 1999; Gao and Womack, 1997; Lanneluc et al., 1996; Schlapfer et al., 1998; Yang et al., 1998, between human and cat: Murphy et al., 1999; O'Brien et al., 1997, between human and sheep: Broad et al., 1996; Lanneluc et al., 1996, between human and horse: Caetano et al., 1999, between human and chicken: Smith et al., 1997, and between human and dog: Lyons et al., 1999).

Heterologous chromosomal painting (or Zoo-FISH), i.e. hybridisation of chromosome-specific DNA libraries from one species onto metaphase spreads of a second species, has broadly established the relationship between all human (Homo sapiens, HSA) and all pig (Sus scrofa, SSC) chromosomes. For example, HSA 20 is homologous with SSC 17 and HSA 9 with SSC 1 . HSA 22 corresponds to two different porcine chromosome segments, on SSC 5 p and SSC $14 q$, and HSA 10 corresponds to SSC 10 and 14 (Fröncke et al., 1996; Goureau et al., 1996; Johansson et al., 1995; Rettenberger et al., 1995b). The Zoo-FISH technique, using human chromosome-specific painting probes, has also been applied to other important animal species, such as cattle (Chowdhary et al., 1996; Hayes, 1995; Solinas-Toldo et al., 1995), muntjac (Yang et al., 1997), horse (Raudsepp et al., 1996), cat (Rettenberger et al., 1995a), mink (Hameister et al., 1997) and mice (Scherthan et al., 1994). Chromosome specific-painting probes are also available for animals like mice (Rabbitts et al., 1995), rat (Hoebee et al., 1994), pig (Schmitz et al., 1992) and cattle (Schmitz et al., 1995). Bidirectional chromosomal painting can more accurately determine the chromosomal rearrangement and syntenic relationships between species. The current comparative status between human and porcine chromosomes, based mainly on the work of Frönicke et al. (1996), is shown in Table 3.1.

At the Human Genome Organisation (HUGO) sponsored Comparative Genome Organisation Workshop held on Fraser Island, Australia, in 1995 (Andersson et al., 1996), an international collaborative comparative mapping programme for pigs was established between six groups (Leif Andersson: Sweden, Alan Archibald: UK, Chris Moran: Australia, Larry Schook: USA, Chris Tuggle:USA, Martin Yerle: France) to share the mapping of the newly available Comparative Anchor Tagged Sequence (CATS) markers. Although the original marker CATS was not published until 1997 (Lyons et al., 1997), Drs Lyons and O’Brien had suggested at this meeting that conserved
sequences in expressed genes (Type I markers) can be used for making consensus PCR primers for use in systematically constructing comparative maps for all mammals, and they produced a set of CATS primers for this purpose. The original intention was to linkage-map the markers, but the French group subsequently agreed to supply a somatic cell hybrid panel (Yerle et al., 1996) for physical mapping as well.

Table 3.1 Comparative status of human and porcine chromosomes as identified by gene mapping (both physical and linkage mapping) and Zoo-FISH (Modified from Frönicke et al., 1996).

Human chromosome number	Expected homologies on pig chromosomes based on gene mapping	Homologous porcine segments Observed through Zoo-FISH ${ }^{1}$
1	4,6,9,14	$\begin{aligned} & \text { 4q1.6-qter(S);6q2.3-q2.8(S); } \\ & \text { 6q3.2-qter(S);9q2.4-q2.6;10p(S) } \end{aligned}$
2	3,12,15	3cen-qter(S);15q1.1-q1.4(S);15q2.1-qter(S)
3	13	13cen-q4.6(S)
4	8	8(S)
5	2,14,16	2q2.1(middle)-qter(S);16(S)
6	1,7	$1 \mathrm{p}(\mathrm{S}) ; 7 \mathrm{pter}$-q1.3(MS)
7	9,12,18	9cen-q2.3(S);1.8(S)
8	14	4qter-q1.5(S);14q1.2-q1.3(M);15q1.5(M)
9	1	192.4-qter(S);10cent-q1.1(MS)
10	14	10q1.2-qter(S);14q2.3-qter(S)
11	2,9	2pter-p1.1(WM);9pter-p1.1(M)
12	5,14	5p1.4-qter(S);14q1.4(MS)
13	11	11
14	7	1q2.2-q2.3(S);7q1.5-q2.2(S);7q2.4-qter(S)
15	7	1q1.4-q1.8(S);7q1.4(M);7q2.3-q2.4(MS)
16	3	3p(M);6p(S)
17	12,14	12(S)
18	-	$\begin{aligned} & \text { 1q1.1-q1.3(S);1q1.8(half)-q2.1(S); } \\ & \text { 6q2.8-q3.1(MS) } \end{aligned}$
19	2,6	2cent-q2.1(MS);6cent-q2.1(MS)
20	-	17(S)
21	7,9,13	13q4.7-qter(S)
22	5,14	5pter-p1.4(S);14q1.6-q2.2(MS)
X	X	$\mathrm{X}(\mathrm{S})$

${ }^{1}$ The intensity of signal on each of the porcine segments painted is presented in brackets as follows: $(\mathbf{S})=$ strong; $(M)=$ medium; $(W)=$ weak. In a few cases, intermediate signal intensities (MS =medium strong, WM =weak medium) were also observed. (?) questions validity of this result because hybridisation was on the peri-centromeric region.

The international CATS project was headed by Drs. O'Brien and Lyons and their colleagues at Frederick, Maryland, USA. They designed and distributed 313 CATS primers and relevant information with the objective of enabling the mapping of CATS markers in any species for which the consensus primers yielded the appropriate PCR product (Lyons et al., 1997). The CATS primers were distributed among the six participating groups according to human chromosome numbers. The Australian group was allotted 53 pairs of primers, initially 36 from human chromosome 9 and 10 (Zhang et al., 1996) and later 17 primer pairs coming from markers mapping to human chromosome 20 and 22 (Lee et al., 1998).

Recently, these anchor markers have been ordered in the human linkage map to provide a framework for comparative gene mapping of representative mammalian species (Chen et al., 1999). Other attempts to make cross-species primers have been reported by Venta et al. (1996) (Universal Mammalian Sequences-Tagged Sites, UM-STSs) and Jiang et al. (1998) (Traced Orthologous Amplified Tags, TOASTs).

Dr Weiyi Zhang initially screened 36 primer pairs coming from human chromosomes 9 and 10 in his PhD study, with six loci being physically mapped (Zhang, 1997). In the study reported here, 17 new pairs of CATS primers from human chromosomes 20 and 22 have been tested and the products of 30 primer pairs, which had not been mapped in Zhang's study (1997), were re-evaluated.

3.2. General strategy

On the assumption that most functional genes (type I markers) are present in all mammalian species, the comparison of the gene position and order in one species will identify homologous regions and possibly conserved synteny in another species. If the gene homologies are correctly identified, then similar gene order identifies conserved synteny. For example, most of the q arm of human chromosome 4 is homologous with most of porcine chromosome 8 , although the linear order of the markers is not identical in the two species (Ellegren et al., 1993; Johansson et al., 1995). By mapping a strategic subset of type I markers in a "map-poor" species like a pig, it becomes possible to mine the genetic maps from "map-rich" species such as human and mouse. These two species maps have extensive information on the localisation of coding sequences, especially arising from the human genome project. Well defined comparative maps can be used not only to predict gene locations in "map-poor" species, but also identify candidate disease genes, characterize the genetic basis for complex traits like QTL, predict genome organisation and reveal chromosome evolution (Eppig and Nadeau, 1995; Nadeau and Sankoff, 1997; O'Brien et al., 1988).

The 313 CATS primers are mostly based on the consensus of coding sequences from human and mouse and sometimes other species of mammals. The intention of Lyons et al. (1997) was that they would flank introns, but this is frequently not the case (Zhang, 1997). In theory, the PCR products are designed to contain conserved sequences adjacent to the primers for gene identification. The less-conserved intronic sequences would be a source of polymorphisms. Preliminary analysis of the CATS primer has been reported on the domestic cat (Lyons et al., 1997) and dog (Lyons et al., 1999).

The task assigned to this laboratory by the "pig CATS consortium" was to physically and linkage map 53 CATS loci in the pig genome. The basic strategy used is diagrammatically presented in Fig 3.1. The specific objectives are, i) to optimise PCR conditions for the primers, ii) to sequence the PCR products and to verify their identity with the target loci by comparison with the relevant entries in the GenBank database; iii) to physically map the loci using a porcine somatic cell hybrid panel and iv) to genetically map the loci using the PiGMaP ($\underline{\operatorname{Pig}} \underline{\text { Gene Mapping Project) reference }}$ families.

Fig 3.1 Strategy used to map CATS loci onto pig chromosomes.

3.3. Materials

3.3.1. CATS primers

The CATS primers were chosen from loci spaced at 5 to 10 centiMorgan intervals throughout the mouse and human genomes (O'Brien et al., 1993).

Of 53 CATs loci allotted to the University of Sydney group, 47 CATS primer pairs, from human chromosome $9,10,20$ and 22 , were used in this study for comparative mapping between human and pigs, excluding 6 loci previously mapped by Zhang (1997). The CATS primer sequences, human location, and species from which the primer consensus sequence was derived are listed in Table 3.2.

Table 3.2 A list of 53 CATS loci, their human location, primer sequences and aligned species (Lyons et al., 1997).

Locus	Human Location	Primer sequences ($5^{\prime} \rightarrow 3^{\prime}$) (Forward and Reverse)	Species contributing to consensus Forward $/$ Reverse
ABL1 (abelson murine lukemia viral oncogene)	9q34.1	CTGAATGAAGATGGTGGGC TAAGACCCGGAGCTTTTCAC	HM/HM
ALDH1 (aldehyde dehydrogenase-1)	9q21	CGAGGTCTTCTGCAACCAG TGTCCAAATCCACCAGGTAG	HMR/HMR
$A L D O B$ (aldolase B)	9q21.3-q22.2	AACACTGAAGAGAACCGCC GCCACTTCCCAAAGTCAAC	HKS/HKS
AMBP (alpha-1microglobulin/bikunin)*	9q32-34	AGTGTCTGCAGACCTGCCG AGTAGAACTTGTTGCCGTTGCC	3HJP/3HJP
ANXI (Annexin I)	9q11-22	CATCACCTCAGACACATCTGG CACATCTGTCCCCTTTCTCC	CHKNR/ CHKNR
ASS (argininosuccinate synthetase)	9q34.1	TCATAGCCTACCTGGCCAAC GCCGTGAGACACATACTTGG	CHKM/CHKM
C5 (complement Component 5)	9q32-34	ATGGGAAATTCAAGGCATTG GGAAGCATTGTGAATGTCACC	HM/HM
CNTFR (ciliary neurotrophic factor receptor)	9p13	CCAAGGACAATGAGATTGGG AGATCTTCGTGGTAGGTGGG	HR/HR
DBH (dopamine betahydroxylase)	9q34	CCCCAGCAGGACTACCAG AACGGCTCCTCCAGGATC	HR/HR
GALT (galactose-1phosphate uridyltransferase)	9 p 13	TCTAGCCACTGCACTCCATC CCCATGGAGTAGGGAAAGG	2HM/HM
GGTB2 (glycoprotein 4-beta-galactosyl-transferase-2)	9p13	CACCCTCGTCTATTACCTGG TGAGCAGCGGGGACT	CHM/CHM
GRP78 (glucose related protein 78 kd)*	9q33-34.1	CAACGATCAGGGCAACC TCATTTTAGTGAGAACCATGGC	CHJKM/ CHJKM

GSN (gelsolin)	9q32-q34	CACCCCGAATTCCTAAAGG CCAGCCATTAGTGGAGGTC	HM/HM
$H X B$ (hexabrachion)	9q32-q34	ACTGGCCTTGCTCCTGG TCAGGTTCCCGATGGAGTAC	HMP/HMP
IFN1@ (interferon Alpha) (gene family)	9 p 22	TTCTCCTGCCTGAAGGACAG GGATCTCATGATTTCTGCTCTGAC	HQ/HQ
IFNB1 (interferon Beta-1)*	9p22	AGAACTGAAAGTGGGAAATTCCTC GTCTCATTCCAGCCAGTGCTAG	CHMQ/CHQ
RLN1 (relaxin)	9pter-q12	CTCCTGGGGAAGAACTGCTC TTCAGCTCCTGTGGCAAATTAG	HP/HP
SPTAN1 (spectrin nonerythroid alpha subunit)*	9q33-34	TGCACAGAGTTAAACCAGGC GCTGCTGTCCAAACTGCTC	HKM/KM
TXN (thioredoxin)*	9q31	TGTGAAGTCAAATGCATGCC ATGGTGGCTTCAAGTTTTTCC	HMS/HS
ADRA2A(alpha-2Aadrenergic receptor)	10q23-q25	GCACCTGTGCGCCATC CTTCTCGATGGAGATGAGCG	CHJKMPO/ CHJKMPO
ADRB1 (beta-1adrenergic receptor)	10q24-26	CCTCTTCATCATGTCCCTGG TGACACACAGGGTCTCGATG	2HM/2HM
ALOX5 (arachidonate 5-lipoxygenase)	10q11.2	GGGGACTACATCGAGTTCCC GGGTTCCACTCCATCCATC	HM/HM
APT1 (apoptosis Antigen 1)	10q23	TCTGGACCCTCCTACCTCTG TTGTCTGTGTACTCCTTCCCTTC	HM/HM
BMII (oncogene BMI1)	10p13	CAGCTGATGCTGCCAATG CATCACAGTCATTGCTGCTG	HM/HM
CHAT (choline acetyltransferase)	10q11.2	CCATTGTGCAGCAGTTTGG TGGAGTTGACAGGCAGGG	HP/HP
CREM (cyclic-AMP-response- Element modulator)	10p11.2	AGACTAGCACGGGGCAATAC CAAAGCAGTAGTAGGAGCTCGG	HMR/HMR
CYP2E (cytochrome p450, family II, subfamily E)	10q24.3-qter	GAAGTATCTGAGGCTGATGAGTTTG TCCAGTGACTGATGGTGCTC	HNR/HNR
DNTT (terminal deoxynucleotidyl Transferase)	10q23-q24	TGGAGAAGAAAATGGGAACC CGATCAGCCAGGAGACATC	CH/CH
EGR2 (early growth response-2)*	10q21.1-q22.1	CCCAAAAGACCAAGCAAGAC GCAGATCCGACACTGGAAG	HR/HR
HK1 (hexokinase-1)	10q22	CGGGTCTTCCTTTCGAATTC ATGTTGGCATCATAGTCCCC	CHR/CHR
IL2R (interleukin-2 receptor)	10p14-p15	CACGCCACATTCAAAGCC GATGAGTGGCTTGAGTTTCCTG	HFM/HF
OAT (ornithine aminotransferase)	10q26	TGAGAAAGGAGCTCATGAAGC GGCCAGAAGCCCATTATCTC	HMR/HMR
PLAU (plasminogen activator urinary)	10q24	CCAACAAGTACTTCTCCAACATTC AGTTCCAGGCCAGGCAG	2CHP/2CHMP
$P P$ (pyrophosphatase inorganic)	10q11.1-q24	ACAAGGCGTTCACCAAGG AACGAACCTCTTGCACATTTG	CHNR/CHNPR
PRF1 (perforin 1)	10q22	AGACCCACCAGGACCAGTAC GСТТСТТСТТСТТСТССТСАСАG	HM/HM
VIM (vimentin)	10p13	ATTGAGATTGCCACCTACAGG TGAGTGGGTGTCAACCAGAG	CHJMR/CHJMR

PRNP (Prion Protein)	20pter-p12	TGGTGGCTGGGACAG GGCACTTCCCAGCATGTAG	24CGJLMPRS / 24CGJLMPRS
OXT (Oxitocin, prepro(neurophysin -I))	20p13	CGCCTGCTACATCCAGAAC CGACGGCAGGTAGTTCTCC	CHMRS / 2HMPRS
SRC (V-Src avian sarcoma viral oncogene homolog)	20q11.2	CCTTCCTCCTCGTTCGTGAGAG TGATGTAATAGCCACCCGTG	FH / FH
TOP1 (Topoisomerase (DNA) I)	20q11.2-13.1	CTGATGCCAAGGTCATGAAG GTCCAGATAATTGAGTTTGGAGG	HM / HM
ADA (Adenosine deaminase)	20q12-q13.11	CCTGGTCCAGCTACCTCAC GCGGGTCATCTGTGTTGAG	HM / HM
CD40 (CD40 antigen)	20q12-q13.2	CTTATCACCCAGATGATTGGG AGTTCAGTAAGGATAAGGACCCC	$\mathrm{CH} / \mathrm{CH}$
GNASI (Guanine nucleotide binding protein, α stimulating activity polypeptide 1)	20q13.2-q13.3	GGAGGACAACCAGACCAAC CTTCGATTTTCCAGCAAGG	CH/ CH
ADRA1A (Adrenergic, $\alpha-1 \mathrm{~A})$	20	CAACTATTTCATCGTGAACCTGG TACACGCGGCAGTACATGAC	HR / HMR
ADRBK2 (Adrenergic, beta, recepter kinase 2)	22q11	ACCTTGGGTCTCATTATGGG CTCACCTTCATAGCTTTCAAACC	HMR / HR
GNAZ (Guanine nucleotide binding protein (G protein), alpha-z-polypeptide)	22q11.2	CGCTCACGGGACATGAC ACAGAAGATGATGGCTGTTACG	HR / HR
IGL@ (Immunoglobulin lambda gene cluster)	22q11.2	$\begin{aligned} & \hline \text { CCCGCCCTCCTCTGAGG } \\ & \text { GCCGCGTACTTGTTGTTGCT } \end{aligned}$	2HNQ / 2HNQ
ACO2 (Aconitase 2, mitochondrial)	22q11.2-q13.1	CAGTGGCCAAGCAGGC GCCAGGGCTGTGACAATC	HMP / HMPR
LIF (Leukemia inhibitory factor)	22q12	CCCATTTGAGCATGAACCTC CCCAGCATCTCTAGGCAGTG	CHM / CH
NEFH (Neurofilament)	22q12.1-q13.1	AGCTGCTCGGACAGATCC CCTTGTCTTCTGTGGCCTTC	HM / HR
PDGFB (V-sis plateletderived growth factor beta polypeptide (Simian sarcoma viral oncogene homolog))	22q12.3-q13.1	TTCAAGAAGGCCACAGTGAC GTCTCCTTCAGTGCCTTCTTG	HFMR / HM
$\begin{aligned} & \text { CYP2D@ (Cytochrome } \\ & \text { P 450) } \\ & \hline \end{aligned}$	22q13	$\begin{aligned} & \hline \text { ATGGTGACCACCTCGACC } \\ & \text { CAGCACCGATGACAGGTTG } \end{aligned}$	2CHM / 2CHM
ARSA (Arylsulfatase A)	22q13.3-qter	AGGCTACCTCACAGGAATGG AAGCAGGTCAGGTTCTGGC	HM / HM

${ }^{1}$ Species or order codes for both alignment and comparative data are: $\mathrm{A}=$ chicken, $\mathrm{B}=$ bat, $\mathrm{C}=$ cow, $\mathrm{D}=\operatorname{dog}$, $\mathrm{E}=$ e chidna, $\mathrm{F}=$ cat, $\mathrm{G}=$ goat, $\mathrm{H}=$ human, $\mathrm{I}=$ shrew, $\mathrm{J}=$ Chinese hamster cell line (E36), $\mathrm{K}=$ cavia, $\mathrm{L}=, \mathrm{M}$ $=$ mouse cell line, (RAG), $\mathrm{N}=$ rabbit, $\mathrm{O}=$ opossum, $\mathrm{P}=$ pig, $\mathrm{Q}=$ horse, $\mathrm{R}=$ rat, $\mathrm{S}=$ sheep, $\mathrm{T}=$ deer, $\mathrm{U}=$ seal, $\mathrm{V}=$ vole, $\mathrm{W}=$ wallaby, $\mathrm{X}=$ xiphosphorus, $\mathrm{Y}=$ giant panda, $\mathrm{Z}=$ humpback whale, $1=$ leopard cat, $2=$ nonhuman primate, $3=$ non-Mus and non-Cricetus rodent, and $4=$ other species, including; bulbarus, cavia, callitrix, cervid, desmodus, didelphis, macropus, mustela, odocoileus, tragelaphus, trichosurus, tupaia, vulpes, and Xenopus. Exceptions: $\mathrm{J}=$ cricetulus and $\mathrm{M}=$ mouse for aligned species column.
*6 CATS loci already mapped by Zhang (1997).

3.3.2. \quad Pig genomic DNA

Porcine genomic DNA from unrelated Australian pigs (Table 3.3) was available for a preliminary PCR test and for sequencing of PCR products. The PiGMaP reference pedigree (see Section 1.3.3.1 for more formation and see Appendix 3.1 for the pedigree) was available for linkage mapping and for evaluating RFLPs.

Table 3.3 Porcine DNA samples from 23 unrelated Australian animals representing nine European breeds (kindly provided by Dr P. Le Tissier).

I. D. number	Pig breed
01	Berkshire (BS)
02	Berkshire (BS)
03	Large White (LW)
04	Large Black (LB)
05	Tamworth (TW)
06	Landrace (LD)
07	Wessex Saddleback (WS)
08	Wessex Saddleback (WS)
09	Wessex Saddleback (WS)
10	Duroc (DC)
11	Duroc (DC)
12	Duroc (DC)
13	Hampshire (HS)
14	Hampshire (HS)
15	Hampshire (HS)
16	Berkshire (BS)
17	Large White (LW)
18	Large White (LW)
19	Landrace (LD)
20	Landrace (LD)
21	Landrace (LD)
22	Large Black (LB)
23	Welsh (WL)

3.3.3. Somatic cell hybrid panel

The description and method of analysis of the somatic cell hybrid panel is described in Section 1.3.2.2 and 3.4.8.

3.4. Methods

3.4.1. Preliminary PCR testing of CATS primers on porcine genomic DNA

Approximately 100 ng porcine genomic DNA was used as template for amplification using conventional Taq DNA Polymerase in a $25 \mu \mathrm{l}$ PCR reaction volume, containing 1 to $3 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ (depending on the primers), $100 \mu \mathrm{M}$ dNTPs (dATP, dGTP, dCTP, and dTTP), $10 \times$ Taq DNA Polymerase buffer and 10 pmol of a pair of CATS primers. This solution was overlaid with paraffin oil and the PCR was carried out initially with two thermocycling programs, namely "touchdown" PCR (more details see Section 2.7.3) and conventional PCR (more details see Section 2.7.2). In spite of optimization of PCR conditions, multi-banded products or smears were sometimes amplified. For these recalcitrant primers, AmpliTaq Gold DNA Polymerase (Perkin-Elmer, 5 units $/ \mu \mathrm{l}$) was tried. This modified Taq Polymerase is provided in an inactive state and can be activated in a pre-PCR heat step and/or slowly during thermal cycling (Slow-release PCR).

The annealing temperature and number of PCR reaction cycles was varied depending on primers and template DNA concentrations. PCR products were electrophoresed in 2% agarose gel (Progen) to determine whether single-banded products were being amplified. The PCR product sizes in base pairs were estimated comparing with ϕ X 174 RF DNA/Hae III size-standard ladder (Promega).

3.4.2. Purifying PCR product from agarose gel slices

Specific PCR product of similar size to that found in cats (Lyons et al., 1997) was cut from a 2% low melting point agarose gel (Progen). The gel slice was put into a 1.5 ml Eppendorf tube and $100 \mu \mathrm{l}$ of TE (Tris-EDTA, $\mathrm{pH}=8.0$) was added. This mixture was placed onto a Heat Block ($80-85$ ${ }^{\circ} \mathrm{C}$) until it became liquid. $400 \mu 1$ of phenol (approximately equal to the gel slice volume) was added to this solution and mixed thoroughly. The mixture was put into the heat block again to liquify and was then centrifuged for 10 minutes in a microcentrifuge. The supernatant was collected without disturbing the intermediate (agarose) and lower (phenol) layers. $500 \mu 1$ of chloroform was added to the supernatant in a new tube and spun for 5 minutes. The aqueous phase was collected again into a new Eppendorf tube. $40 \mu \mathrm{l}$ (one-tenth of the total volume) 3 M sodium acetate and $700 \mu \mathrm{l}$ (equal volume) of isopropanol were added and the tube placed at $-80^{\circ} \mathrm{C}$ for 15 minutes. The solution was spun for 10 minutes to precipitate the DNA. The supernatant was poured off and $500 \mu \mathrm{l}$ of 70%
ethanol added to rinse away residual sodium acetate. The ethanol was then poured off and the DNA pellet was briefly dried on a heat block $\left(42^{\circ} \mathrm{C}\right)$ for 5 minutes. 10 to $15 \mu \mathrm{l}$ of TE was added to the Eppendorf tube to dissolve the DNA.

3.4.3. Direct Sequencing of PCR products using ABI 373 automatic DNA sequencer

When a single-banded PCR product of the correct size was amplified, 100 ng of PCR product was used directly as template for sequencing using an ABI 373 automatic sequencer (Perkin Elmer) (Section 2.10.1). 3.2 pmol of forward or reverse primer was used to enable sequencing from one strand of template DNA.

3.4.4. Cloning and sequencing OXT PCR products from Landrace and Large White breeds

To investigate the difference in sequence of the $O X T$ gene between two breeds, the $O X T$ PCR products of Landrace and Large White pig breeds were cloned into $\mathrm{pCR}^{\circledR} 2.1$ - TOPO vector (Invitrogen, $\mathrm{TOPO}^{\mathrm{TM}}$ TA Cloning Kit) (see Section 2.1 and Appendix 2.1 for more details) in order to look for Single Nucleotide polymorphisms (SNPs).

3.4.5. Verification of the sequences

The sequences obtained were screened against the GenBank database using the FASTA program (Pearson and Lipman, 1988) via the ANGIS (Australian National Genomic Information Service; http://www.angis.usyd.edu.au) interface, to investigate homology between PCR product sequences and the target sequences.

3.4.6. Searching for restriction enzyme sites for distinguishing porcine and rodent PCR products from the somatic cell hybrid panel

Because a somatic cell hybrid panel was used as a physical mapping tool, a major problem arose from the fact that the CATS primers were very likely to amplify PCR product from the rodent (mouse or hamster) background present in all clones in the somatic hybrid panel. Since mouse
sequence (Lyons et al., 1997) was very frequently included in the consensus, the problem was severe. When all somatic cell hybrid clones generated identical PCR products, restriction enzymes, especially four-base cutters, viz. AluI, HhaI, HaeIII, MspI, RsaI, Sau3AI and TaqI, were used to attempt to distinguish porcine and rodent PCR products. If there were no differences detected by the above restriction enzymes, mouse sequences were obtained from Genbank and in some cases hamster sequences were generated using an ABI 373 automatic sequencer and then confirmed by FASTA comparison. Restriction enzyme maps were generated for pig, mouse and hamster, using the GCG MAP program, to identify an enzyme able to distinguish the products from these species.

3.4.7. Screening for porcine RFLPs

PCR products, verified by comparison with GenBank, were tested for porcine RFLPs using four-base recognition sequence restriction enzymes (AluI, HhaI, HaeIII, MspI, RsaI, Sau3AI and TaqI) on products from 23 unrelated Australian pigs (see Table 3.3 for the list of pig breeds). The protocol used for restriction enzyme digestion has been described in Section 2.8. The restriction enzyme digestion reaction was stopped by adding $5 \mu \mathrm{l}$ of 10 x agarose gel loading buffer and the digested PCR products were loaded onto a 2% agarose gel containing $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide. Electrophoresis was run at approximately $100 \mathrm{~V}(10 \mathrm{~V} / \mathrm{cm})$ so that optimal separation of the fragments of interest occurred within an hour. Finally, the gel was viewed and photographed on an ultra-violet light transilluminator.

3.4.8. Physical mapping - somatic cell hybrids

DNA from the hybrid clones was analyzed by PCR for all CATS primer pairs confirmed by sequencing to amplify the correct porcine genes. Each primer pair was used with its optimal MgCl_{2} concentration and annealing temperature to allow the visualization of the porcine-specific product on an agarose gel. Diagnostic PCRs were carried out in $25 \mu 1$ reaction volume of $1 \times$ PCR buffer (Promega), consisting of 20 ng DNA from 27 hybrid lines, pig and rodent parental lines (mouse LMTK and Chinese hamster Wg3hcl2), 10 pmol of each primer, $100 \mu \mathrm{M}$ of each dNTPs, 0.5 to 3 $\mathrm{mM} \mathrm{MgCl}_{2}$ and 1 U Taq DNA polymerase. Reactions were performed in a PTC-100 Programmable Thermal Controller (MJ Research, Inc.) using the PCR programme described previously except the number of cycles was increased to 45 cycles (see Table 2.1 for more details).

Chromosomal and regional assignments were achieved through observing the concordant segregation of porcine PCR products with chromosome fragments retained in the hybrid cells. The pattern of amplification of porcine PCR products depends on the presence/absence of the relevant porcine chromosomal regions in each of the 27 somatic hybrid clones developed by Yerle et al. (1996).

A World Wide Web (WWW) site at the INRA laboratory, Toulouse, France, was accessed to obtain all relevant somatic cell hybrid panel information and to interpret the PCR data. The address is http://bio.toulouse.inra.fr/lgc/pig/hybrid.htm. This site enables entry of the results from the somatic cell hybrid panel and provides an immediate assignment to a chromosomal region using a programme to interpret the new PCR data in relation to all previously lodged data, and also provides statistical output on the reliability of the assignment (Chevalet et al., 1997). Loci can be assigned to 127 different non-overlapping subchromosomal regions. The programme also calculates correlation coefficients, which are measures of association (co-segregation) between markers, and which have values of 1 or close to 1 when two loci are syntenic. However, provided the correlation coefficient is greater than 0.8 , a locus can be reasonably assigned to a specific chromosomal region (Chevalet et al., 1997; Robic et al., 1996; Yerle et al., 1996).

3.5. Results

3.5.1. Optimum conditions for PCR

Factors affecting PCR yield are mainly annealing temperature and MgCl_{2} concentration. Because some CATS primers may not perfectly match the pig template, adjustment of these factors may improve PCR results. For the CATS loci located on human chromosome 9 and 10, PCR conditions were initially evaluated by Zhang (1997). Of the 47 primer pairs tested, 21 gave singlebanded PCR products using conventional Taq DNA polymerase with minor adjustment of reaction conditions. With use of AmpliTaq Gold Polymerase, 14 more primer pairs produced better results with a single or clear dominant band. 12 primer pairs continued to give double, triple or multiple bands even with variation of PCR conditions (Table 3.4).

Table 3.4 Optimum PCR conditions and porcine PCR product size for CATS markers mapping to human chromosome 9, 10, 20, and 22. The feline PCR product sizes (Lyons et al., 1997) are also presented for comparison.

Locus symbol ${ }^{1}$	PCR product size $(\mathrm{bp})^{2}$	$\begin{aligned} & \mathrm{MgCl}_{2} \\ & (\mathrm{mM}) \end{aligned}$	Annealing temperature $\left({ }^{\circ} \mathrm{C}\right)^{3}$	PCR product size in cat (bp)
ABL1	1,200*\#	2	50	1,100
ALDH1	900*	2	59	1,000
ALDOB	300	2	54	300
AMBP\$	450	2	58	450
ANX1	150	2	53	600
ASS	700, 400	3	50	1,300
C5	200*\#	3	50	1,000
CNTFR	270, 600	2	50, 57	600
DBH	210, 500	2	55, T	500
GALT	500	2	57	475
GGTB2	320	2	55	1,100
GRP78\$	800	2	52	400
GSN	150	2	52	194
HXB	150	2	56	600
IFN1 @	400	2	54	400
IFNB1\$	450	2	58	450
RLN1	300	2	56	500
SPTAN1\$	180	2	54	700
TXN\$	800*	2	55	600
ADRA2A	170	1	53	200
ADRB1	200	1.5	54	190
ALOX5	1,500\#	2	52	500
APT1	270	2	56	400
BMII	750	1	64	200
CHAT	Multiple bands	2	55	861
CREM	320	1	51	1,000
CYP2E	Multiple bands	2	58	900
DNTT	Multiple bands	2	53	900
EGR2\$	150	1	51	800
HK1	150, 1,200\#	2	50	800
IL2RA	180	2	55	100
OAT	1,500*	2	58	2,000
PLAU	600*	2	52	500
$P P$	Multiple bands	2	50	600
PRF1	120	2	53	1,000
VIM	200\#	2	55	750
PRNP	250*	2	51	250
OXT	600	1	58	900
SRC	120	1.5	60	300

TOP1	400^{*}	2	54	500
ADA	120	1	60	1,000
CD40	$130^{*} \#$	2	52	2,000
GNAS1	320^{*}	2	55	500
ADRA1A	450	2	65	453
ADRBK2	Multiple bands	1.5	51	1,000
GNAZ	150^{*}	2	50	150
IGL@	190^{*}	2	60	220
ACO2	280,600	2	$55, \mathrm{~T}$	1,200
LIF	$100,250,450$	$1,1,2$	$51,60, \mathrm{~T}$	900
NEFH	$400,600^{*}$	$2,1.5$	60,54	375
PDGFB	$200^{*}, 280$	$1.5,2$	54,51	603
CYP2D@	500,450	2	$53, \mathrm{~T}$	700
ARSA	230^{*}	2	60	600

\$: Mapped by Zhang (1997)
2: *PCR products amplified by AmpliTaq Gold DNA Polymerase (Perkin-Elmer); \# PCR fragments with very weak bands.
${ }^{3}$ T: ‘Touchdown' PCR

3.5.2. Sequences of PCR products

For the primers giving strong major bands, one of the primers was used to directly sequence the PCR product (more details see Section 2.10.1). For the loci from human chromosome 9 and 10, if the amplified PCR product size was approximately the same as obtained by Zhang (1997), a sequencing reaction was not carried out because this would have simply duplicated Zhang's results. The PCR products from the rest CATS primers were sequenced partially or fully except for five primer pairs (CHAT, CYP2E, DNTT, PP, ADRBK2) which gave multiple bands.

3.5.3. Comparison of the sequences with the GenBank database

The putative homologues of the submitted sequences were identified using FASTA searches of the GenBank database. 23 CATS products, including 13 analysed by Zhang (1997), were confirmed to match the target loci because they aligned with relevant genes of human or other mammals (Table 3.5 and Appendix 3.1). Zhang (1997) also generated a product for BMII, but this did not match with anything in the GenBank database. In the second trial, a longer and more accurate BMII CATS sequence was obtained, confirming that the appropriate product had been amplified. However 25 products still did not match the CATS target loci.

Table 3.5 Alignment of sequences from 23 CATS PCR products with genes in the database.

Gene symbol	Matching Gene in GenBank database	Species in the database	Expectation for the best correct match ${ }^{1}$
ADRA2A	PIGA2AR	Pig	$1.1 \mathrm{x} \mathrm{e}^{-30}$
ADRB1*	MMB1AR	Monkey	$2 \mathrm{x}^{-25}$
ALDOB*	HUMALDB1	Human	1.8
AMBP*	SSAMGBIK	Pig	$2 \times \mathrm{e}^{-6}$
APT1*	MUSFASANT	Mouse	4.5
BMII	HUMBMI1X	Human	$4.5 \mathrm{x} \mathrm{e}^{-15}$
EGR2*	HUMEGR2A	Human	$1.8 \mathrm{x} \mathrm{e}^{-11}$
GRP78*	SSGRP78	Pig	$8.1 \mathrm{xe}^{-7}$
GSN*	SSGELSOL	Pig	$1.3 \mathrm{x} \mathrm{e}^{-30}$
IFN1@*	SSPOIII5	Pig	$4.2 \times \mathrm{e}^{-10}$
IFNB1*	PIGINFB	Pig	0
OAT*	HUMOAT10	Human	$9.4 \times{ }^{-5}$
PLAU*	SSUPAG	Pig	$3.3 \mathrm{x} \mathrm{e}^{-26}$
SPTANI*	HUMASPX	Human	0.0029
TXN*	HSTHDC	Human	$8 \times \mathrm{e}^{-6}$
OXT	HUMOTNP1	Human	$2.1 \times \mathrm{e}^{-10}$
TOP1	HUMTOP18	Human	$1.1 \mathrm{x} \mathrm{e}^{-24}$
CD40	HUMCD40L1	Human	$3.4 \times \mathrm{x}^{-6}$
GNAS1	HUMGNAS6	Human	$5.4 \mathrm{x} \mathrm{e}^{-31}$
ADRAIA	HUMA1AADR	Human	0
GNAZ	HUMGNAZ	Human	$6.4 \times \mathrm{x}^{-27}$
IGL@	PIGIGLVJC	Pig	$1.5 \mathrm{x} \mathrm{e}^{-29}$
ARSA	HSARYLA	Human	$3.5 \mathrm{xe}^{-7}$

*Data were generated by Zhang (1997).
${ }^{1}$ Statistical expectation for the sequence. The number of sequences with this identity expected in a database of this size by chance alone. An value less than 0.05 is considered statistically significant.

There are several possible explanations for the unmatched CATS sequences. Firstly, these sequences may be predominantly from nonconserved introns and lack sufficient length of conserved exonic sequence to allow alignment with GenBank sequences. For example, the 160 bp ARSA CATS sequence did not match significantly with any sequence in the GenBank database search. However, 40 bp at the beginning of the sequence were well matched with ARSA human sequences. Because most of the ARSA CATS sequence was from an unconserved intron, the FASTA alignment could not match it with homologous sequences from other species. Secondly, since the CATS primers were designed predominantly from human and mouse sequences, it is possible that the primers have amplified artefactual products in the pig genome. Thus, it is not clear whether the sequences from these 25 CATS PCR products are primarily intronic or artefactual. Thirdly, it is possible to have
errors in primer design or recording. Zhang (1997) found that the primer pair for RLN1 flanks a fragment of about 5.6 kb in the human genome, which is impossible to amplify reliably from a genomic template under standard PCR conditions. Also, he found that the reverse primer of ANX1 was not found in any relevant gene sequences when used in FASTA to query the GenBank database. Therefore it is not surprising that the PCR product amplified by the ANX1 primer pairs could be an artefact. Finally, direct sequencing of the CATS PCR products, which were sometimes of poor quality, generated many unreadable nucleotides, $(\mathrm{N})_{\mathrm{n}}$. In these cases, finding a match to the target locus in the GenBank data base was made more difficult.

3.5.4. Screening for PCR-RFLP in CATS products

Products from the following six loci were tested for RFLP: ADRA1A, BMI1, GNAS1, GNAZ, $O X T$ and TOP1. After cutting with four-base pair recognition restriction enzymes, including AluI, HhaI, HaeIII, MspI, RsaI, Sau3AI and TaqI, an RFLP was obtained for only one of the five loci, namely $O X T$ (Fig 3.2 and Fig 3.3).

Fig 3.2 The $O X T$ MspI RFLP genotypes seen in unrelated Australian pigs, S : size standards, $\phi X 174 /$ HaeIII DNA ladder (Promega). Lane 1 and 7: Large White, lane 2 and 8: Landrace, lane 3: Wessex Saddleback, Lane 4: Duroc, Lane 5: Hampshire, Lane 6: Berkshire, Lane 9: Welsh. Lanes 1, 3, 5 and 7 are AA genotype and lanes 2, 4, 6, 8 and 9 are aa genotype.

Fig 3.3 The OXT MspI RFLP genotypes seen in the PiGMaP reference families, showing three apparent genotypes (see lane headings). S: size standards, ϕ X174/HaeIII DNA ladder (Promega).

3.5.4.1. \quad An MspI RFLP for OXT

A $M s p I$ restriction site ($\mathrm{C} \downarrow \mathrm{CGG}$) polymorphism was found for the $O X T$ PCR product. When the PCR product was digested using $M s p \mathrm{I}$, two different genotypes (AA and aa) were observed from several unrelated Australian pig samples, and all three genotypes (AA, Aa and aa) were observed in the PiGMaP reference families. This MspI RFLP was genotyped in the PiGMaP pedigree. Among the six PiGMaP families, the Edinburgh-1, German and Swedish families were informative, but no variation was found in the Edinburgh-2, French and Dutch families (see Appendix 3.2 for detailed information). Interestingly, a null allele also was detected in the sample of unrelated Australian pigs and apparently in the PiGMaP reference families. OXT genotypes did not follow simple Mendelian codominant inheritance patterns, apparently also because of the presence of a null allele, and thus the locus could not be linkage mapped.

3.5.4.2. Sequence comparison between Large White and Landrace breeds for $\boldsymbol{O X T}$

Different MspI variants were found in the Large White and Landrace samples from our collection of DNAs from unrelated Australian pig. Sequencing showed that the polymorphic MspI restriction site is located in an intron. The exon sequences for the Large White and Landrace animals were identical but there were numerous other intronic variants in addition to the MspI site (Fig 3.4). These results for porcine $O X T$ confirm the validity of Lyons et al. (1997) general approach since the conserved exons enabled amplification and the variable introns have provided polymorphism.

Fig 3.4 Alignment of OXT sequences from CATS PCR products from Landrace and Large White pigs. Exon sequences are shaded (...). The MspI variant restriction site is boxed (...).

3.5.5. Restriction enzyme digestion of mouse, hamster, and pig template for analysis of the somatic cell hybrid panel

For seven loci, namely ADRAIA, ADRA2A, ADRB1, GNASI, GNAZ, GSN and IGL@, an attempt was made to discriminate between porcine, mouse and hamster PCR products using restriction enzymes. The choice of restriction enzyme was guided by alignment of pig and rodent sequences. The restriction enzymes evaluated are summarised in Table 3.6. An example, for

ADRA2A, where the porcine product can be distinguished from the rodent PCR products, is shown in Fig 3.5.

Table 3.6 Restriction enzymes used to attempt to distinguish the porcine, mouse and hamster PCR products amplified by CATS primers.

Locus	Restriction enzymes evaluated	Enzymes providing discrimination
ADRA1A	RsaI, AluI, SacII, ApaI, NcoI	RsaI
ADRA2A	AluI, TaqI	AluI, TaqI
ADRB1	MboI, RsaI	RsaI
GNAS1	CfoI	CfoI
GNAZ	CfoI, TaqI, SacI, Ban II	TaqI, SacI, Ban II
GSN	HaeIII, HinfI, TaqI, Ban	HaeIII
IGL@	Sau3AI, RsaI, KpnI, TaqI, BanI, BstOI, NcoI	BanI, BstOI

Fig 3.5 Interspecific TaqI restriction variants for the ADRA2A products. H: Chinese hamster, M: Mouse, P: Pig, S: size standards (ϕ X174/HaeIII DNA ladder, Promega).

3.5.6. Somatic cell genetics of ADRA1A, ADRA2A, ARSA, GNAS1, OXT, TOP1

The distributions of positive PCR results from the 27 somatic hybrid clones for ADRA1A, ADRA2A, ARSA, GNAS1, OXT and TOP1 are presented in Table 3.7 and the definition of cytogenetic regions detected are presented in full in Appendix 3.3. A summary of the mapping results, including chromosomal and regional probabilities, is presented in Table 3.8. For illustration, the CATS amplification products for ARSA from the somatic hybrid panel are shown in Fig 3.6(a) and their
interpretation in Fig 3.6(b). PCR screening of the somatic cell hybrid panel assigned GNAS1 and TOPI to porcine chromosome 17, ARSA to porcine chromosome 5, ADRA2A to porcine chromosome 6 or 14, ADRAIA to porcine chromosome 16, and $O X T$ to porcine chromosome 14.

Unfortunately, 11 CATS products, namely ADRB1, ALDOB, APT1, BMII, CD40, GSN, GNAZ, IFNB1@, IGL@, OAT and PLAU could not be mapped using the somatic cell hybrid panel, mainly due to strong background amplification from every clone in the somatic cell hybrid panel. Even though restriction enzymes were found that could distinguish porcine from rodent PCR products from control DNAs for these species, the restriction digestion test could not be reliably applied to products amplified from the hybrid panel.

Table 3.7 The distribution of PCR results in somatic cell hybrid panel

Locus	Somatic cell hybrid clones ${ }^{1}$																										
	1	2	3	4	5	6	7	8	9	$\begin{aligned} & \hline 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	1 2	$\begin{aligned} & \hline 1 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 4 \\ & \hline \end{aligned}$	1 5	1	$\begin{aligned} & \hline 1 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 1 \\ 8 \\ \hline \end{array}$	1	$\begin{aligned} & \hline 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \\ & \hline \end{aligned}$
ADRA1A	-	+	-	+	-	+	+	-	+	+	+	+	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-
ADRA2A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	+	-
ARSA	-	+	+	+	-	+	+	-	+	+	+	-	+	+	-	-	+	+	+	-	-	+	-	-	-	-	+
GNAS1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-
OXT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	+	-
TOP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-

${ }^{1}+$ and - indicate the positive and negative PCR products

Table 3.8 Cytogenetic localisation, correlation coefficients and probability values of ADRA1A, ADRA2A, ARSA, GNAS1, OXT and TOP1 CATS products on the somatic cell hybrid panel.

Locus symbol	Human location	Porcine Location	Error risk ${ }^{1}$	Chromosomal probability ${ }^{2}$	Regional probability ${ }^{3}$	Comment ${ }^{4}$
ADRAIA	20	16q1.4/	0.1 \%	1	0.47/0.47	RsaI (all clones)
		16q2.2-2.3				
ADRA2A	10q23-q25	6(1/2q2.1)/	5%	0.52/0.48	0.42/0.42	TaqI (all clones)
		14q2.5-2.9				
ARSA	22q13.31-qter	5p1.1-p1.5	0.1 \%	1	1.00	
GNAS1	20q13.2-q13.3	17(1/2q2.1)-2.3	0.5 \%	0.98	0.88	CfoI (mouse background clones only)
OXT	20p13	14q2.5-2.9	5%	0.79	0.69	
TOP1	20q11.2-q13.1	17(1/2q2.1)-2.3	0.5%	0.98	0.88	

${ }^{1}$ The probability that the proposed chromosome and region are incorrect. ${ }^{2}$ The posterior probability that the locus is located on the nominated chromosome. ${ }^{3}$ The posterior probability that the locus is located in the nominated region. ${ }^{4}$ Restriction digestion required distinguishing porcine product from hamster or mouse background PCR product.
(a)

(b)

Presence of porcine
ARSA product

Fig 3.6 Example of physical mapping of a CATS product to SSC 5 using the somatic cell hybrid panel. (a) PCR amplification of ARSA product using CATS primers on the 27-clone somatic cell hybrid panel. In this case, a rodent background product did not amplify. H: Chinese hamster, M: Mouse, P: Pig, S: size standards (ϕ X174/HaeIII DNA ladder, Promega) (b) Proportion of pig chromosome 5 retained in each of the 27 somatic hybrid clones. Clones positive for the porcine $A R S A$ products are indicated by a + . The presence of product for clone 14 may be an artefact or may indicate that the description of this clone 14 is incorrect. $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D, E indicate regions of SSC 5 distinguishable by the panel.

3.5.7. Comparative map

Six loci only were physically mapped in this study from 47 pairs of CATS primers. Of these, five loci (ADRA1A, ARSA, GNAS1, OXT, TOP1) came from human chromosome 20 and 22. Only one additional locus (ADRA2A) from human chromosomes 9 and 10 was mapped from the 30 CATS primer pairs for which Zhang (1997) was previously unsuccessful. There is no significant difference between the success rates for mapping loci from human chromosomes 9 and 10 versus chromosomes 20 and 22 based on the Chi-square homogeneity test ($\chi_{1}^{2}=0.655, \mathrm{p}=0.419$). A comparison of the location of these mapped CATS loci between human and pig confirms recognised conserved synteny between these two species and agrees well with previously recognised conserved relationships between pig and human genomes (Johansson et al., 1995; Rettenberger et al., 1995b; Fröncke et al., 1996) except for the locations of $O X T$ and ADRA1A. As discussed below, the map location of $O X T$ is less certain than other loci and the porcine location of ADRA1A shows a potential confusion of gene family members. Fig 3.7 shows the map locations in pigs compared with the human physical map location, including 6 CATS loci mapped by Zhang (1997).

3.6. Discussion and conclusion

In this study, 47 consensus primer pairs, mainly based on the human and mouse sequences, were tested in pigs for identification of conserved chromosomal regions between species. However, the sequence divergence between human/mouse and pig may lead to mismatches in the primer target region and/or the creation of spurious complementarity in non-target regions. Therefore, it is highly desirable to eliminate artefact bands or at least identify target bands to enable appropriate interpretation of the CATS PCR products for linkage and physical mapping.

AmpliTaq Gold DNA Polymerase used in the slow-release protocol helped in eliminating some confusing multiple banding patterns, but did not eliminate the problem completely. Ultimately, 12 primer pairs (ACO2, ADRBK2, ASS, CHAT, CNTFR, CYP2D@, CYP2E, DBH, DNTT, HK1, LIF, $P P$) failed to yield interpretable PCR products for sequencing because of the confusing pattern of multiple smearing bands with different trials of PCR conditions. Including Zhang's (1997) results, 12 loci have now been physically mapped and 23 CATS primers have amplified PCR products that have been confirmed to match their target loci. The success rate for amplification of target PCR product was 43% (23/53) based on short single-pass sequences obtained directly from the CATS PCR products. It is possible that some of these sequences were intronic only and therefore were unlikely to find a match in the GenBank database, so the true success rate could be higher.

Figure 3.7 Physical localisation of CATS loci in pig, shown relative to their human locations. The source of human map locations is based on the human genome database (GBD, http://gdbwww.gdb.org/)

A disappointingly high proportion of CATS primers were found to amplify only coding sequences contrary to their stated design principles. The exon sequences are unlikely to be informative for linkage mapping and as a result only one locus could be linkage mapped by Zhang (1997) with a reasonable amount of effort in detecting polymorphism. More disappointingly, the nature of the CATS consensus sequence design meant that for about 50% (11/23) loci, rodent PCR products coamplified and could not be distinguished from porcine products in the somatic cell hybrid panel with the range of enzymes employed. Almost every consensus primer is based on mouse (rodent) sequence contributing to consensus. Therefore on average CATS primers will work much better with mice (rodents) than other species.

An inconsistency between Zoo-FISH and somatic cell hybrid panel results was found for the OXT and ADRAIA loci. OXT maps to SSC 14. This position is not consistent with HSA 20 but rather
with HSA 10. However, the syntenic relationship between SSC 14 and human chromosomes has not been well defined with Zoo-FISH (cytogenetic map of the pig, http://www.toulouse.inra.fr/lgc/pig/cy to/cyto.htm; August 2000). Also it was hard to tell whether this OXT map position was correct or the results of artefactual PCR bands from the somatic cell hybrid panel because the 5% error rate in the analysis is the borderline value, above which no decisions can be made on location (see Appendix 3.3) and the low number of positive clones in the somatic cell hybrid panel. If the location on SSC 14 is correct, this result indicates that there is an unidentified homologous chromosomal segment between HSA 20 and SSC 14. Also it is possible that small chromosomal segments could have been rearranged in the somatic hybrids, generating spurious mapping results (Dr. Bhanu Choudhary: Personal communication). Fortunately, OXT sequences for two pig breeds (Large White and Landrace) have been generated in this study and will provide resources to linkage and physically map this locus in the future.

Fig 3.8 ADRA1A in humans was assigned first to HSA5q and then reassigned to HSA20. SSC16 is homologous with HSA5p extending a small way into the q arm. ADRA1B (a member of the same gene family as $\operatorname{ADRA1A}$) maps on HSA5q but again outside of the region of recognised homology between HSA5 and SSC16.

The porcine ADRA1A CATS product maps to SSC 16. Human ADRA1A was initially assigned to HSA5 (Yang-Feng et al., 1990; Lomasney et al., 1991). All of SSC16 is syntenic with HSA5, but the region of synteny does not include the site of this original human assignment nor the current site of localisation of $A D R A 1 B$ to which the porcine CATS product also shows high sequence similarity (Fig 3.8). The porcine localisation of $A D R A 1 A$ is inconsistent with the current, reassigned human position on HSA20 (Loftus et al., 1994). The results suggest that a careful revision of the human localisations of $A D R A 1 A$ and $A D R A 1 B$ is required. They also suggest that more complex small rearrangements may have occurred between human and pig genomes that affect the segment containing ADRAIA.

ADRA2A was assigned with equal probability to two different physical map locations, 6(1/2q2.1) and 14q2.5-2.9. However, Rettenberger et al. (1996) have previously shown that ADRA2A maps to SSC 14, not SSC 6 , consistent with this assignment to SSC 14q2.5-2.9.

In August 1998, a prelimnary comparative mapping report was presented at the $26^{\text {th }}$ ISAG (International Society for Animal Genetics) Conference, held in Auckland, New Zealand. Results collected from several pig mapping groups showed that over 131 CATS primer pairs had been tried, with 35 CATS PCR products confirmed by sequencing, and 22 subsequently mapped, including the results presented in this Chapter.

Due to the low levels of polymorphism, frequently indistinguishable rodent and porcine products in somatic hybrids and some confusion of identity of gene family members, the CATS primers were not a very powerful tool for cross-species identification and mapping of type I markers. However these CATS primers did provide some useful information. Also if better designed, for example to ensure presence of introns in amplified product and to avoid over reliance on mouse sequences, they might more usefully contribute to the porcine-human comparative map. The comparative map, which is based on Type I markers, will permit the identification of intrachromosomal rearrangements which are not visible to Zoo-FISH, allow a more precise recognition of evolutionary breakpoints, and thus contribute to the understanding of the evolutionary relationships between mammalian genomes and the reconstruction of the evolutionary history of chromosomes within mammals.

Chapter Four

Characterising Porcine Endogenous Retroviruses (PERVs) in Westran pigs

4.1. Introduction

Porcine endogenous retroviruses (PERVs) are proviral forms of retrovirus and are inherited in a stable Mendelian fashion (Patience et al., 1997), as well as being acquired through infection. The discovery of porcine retroviruses dates back to 1970. Type-C virus particles released in two cell lines from pig kidney were first described by Breese (1970), with particles being morphologically similar to the mouse type-C leukaemia viruses. Soon after, C-type viral particles were reported in five different pig leukemia cell lines (Armstrong et al., 1971). Todaro et al. (1974) showed that porcine retroviruses were present in multiple copies in the porcine genome in DNA from different tissues and cells. Lieber et al. (1975) described the biological and immunological properties of porcine type-C viruses. Cell lines from most mammalian species were found resistant to infection with the viruses but they are otherwise very similar to other mammalian C-type viruses by morphological, biochemical and immunological criteria. Benveniste and Todaro (1975) showed that related endogenous retroviral sequences were found in close wild relatives within Suidae, like bush pig and wart hog, and were absent from the peccary and other artiodactyls, like cattle. They concluded that C-type viruses were introduced into the Suidae lineage as a result of trans-species infection by an ancestral xenotropic murine virus.

Benveniste and Todaro (1975) could not find evidence for expression of porcine endogenous retroviruses in normal non-leukomogenic tissues, but they are expressed in most cell lines and in lymphosarcomas. Lymphosarcomas occur at a frequency of 3-50 $\times 10^{-6}$ among slaughtered animals and account for more than 25% of porcine neoplasms detected in abattoirs (Bostock and Owen, 1973). Suzuka et al. (1985) reported the isolation of a swine C-type retrovirus from malignant lymphomas. This C-type retrovirus was cloned into a λ phage vector and characterised by restriction digestion of the entire 8.8 kb virus (Suzuka et al., 1986).

Due to the shortage of human organs and tissues for transplantation, the use of non-human species is considered a possible solution. Success in modulating immunological rejection by
transgenic modifications to animals has raised the possibility of clinical introduction of xenotransplantation (Cozzi and White, 1995; Sharma et al., 1996; Fodor et al., 1994). Pigs are regarded as a better source than primates for xenotransplantation into humans for safety, financial, ethical, and practical reasons. Clinical trials have been carried out with pig xenografts, including perfusion of human blood through pig livers or using porcine hepatocytes as a bridging strategy for hepatic failure, the use of pancreatic islet cells as a treatment for chronic diabetes, and the implantation of fetal neuronal tissue as a therapy for Parkinson's disease (Chari et al., 1994; Deacon et al., 1997; Groth et al., 1994).

Recently porcine retroviruses have become a focus of concern, as they infect human cells in vitro (Martin et al., 1998a; Patience et al., 1998; Wilson et al., 1998), although there is no evidence that this occurs in vivo in baboons (Martin et al., 1998b) or in humans (Paradis et al., 1999; Pitkin and Mullon, 1999; Switzer et al., 1999). Akiyoshi et al. (1998) suggested that the risk of viral infection would be increased in xenotransplantation by the presence of factors commonly associated with viral infection e.g. immune suppression, graft-versus-host disease, graft rejection, viral co-infection, and cytotoxic therapies. Very recently, the transplantation of porcine pancreatic islets into SCID (severe combined immunodeficiency) mice led to in vivo expression of PERVs, reinforcing fear about the risk of PERV infection in immunosuppressed human patients (van der Laan et al., 2000).

The viral envelope is the major determinant of host range and is essential for infection. Two main types of pig retrovirus, PERV-A and PERV-B, which differ by 507 bases in their envelope (env) gene, are widely distributed in different pig breeds, with PERV-A predominant in European pigs ($\sim 70 \%$) and PERV-B predominant in Asian ($\sim 60 \%$) pigs by Southern hybridisation (Le Tissier et al., 1997). PERVs are present at approximately 50 copies in different breeds of pig (Akiyoshi et al., 1998; Le Tissier et al., 1997).

Host range analysis initially showed that PERVs are restricted in their species tropism, infecting only porcine cells and not cell lines derived from a range of species including chimpanzee, rhesus monkey, horse, mink, bat, rabbit, cow, cat, dog, and mouse (Todaro et al., 1974). The receptor specificities of PERV-A, PERV-B, and PERV-C were investigated with LacZ pseudotype vectors (Takeuchi et al., 1998). The results showed no cross-interference, implying that these Env proteins recognise different cell surface receptors. Also, host range analyses by the vector transduction assay showed that PERV-A and PERV-B viruses have wider host ranges, including several human cell lines, compared with PERV-C viruses which infected only two pig cell lines and one human cell line (Takeuchi et al., 1998). Recently, the in vitro host range of PERV was studied in human primary cells and cell lines, as well as in cell lines from non-human primates and other species. The analysis revealed that there were three distinct patterns of susceptibility to infection among these host cells. Firstly, some cells are resistant to
infection in the assay. Secondly, other cells are infected by virus but the cells are not permissive to productive replication and spread. Thirdly, the final category of cells is permissive for productive infection and spread (Wilson et al., 2000).

In March 1994, the transplantation research group at Westmead hospital in Sydney, Australia initiated an inbreeding program in a particular stock of feral pigs, as tools for transplantation research and in the long term as potential donors for xenotransplantation. The line is called Westran (Westmead transplantation) and pigs from it are the subject of the research reported here. Specifically, this Chapter describes a detailed study of PERV env sequences in the Westran pig line in relation to the potential hazards of these viruses for xenotransplantation.

4.2. Materials

4.2.1. Animal resources

The Westran line are believed to be descended from a pair of pigs released on Kangaroo Island, off the coast of South Australia, in 1803 by a French navigator and explorer, Captain Nicholas Baudin (Cooper, 1954). Captured feral pigs from Kangaroo Island were transferred to Adelaide University for biomedical research in 1976 (McIntosh and Pointon, 1981). After being maintained as a very small colony for about 15 years, a pair of full sibs was transferred to Westmead Hospital in Sydney for transplantation research. Since then, the core breeding line has been maintained by deliberate full-sib mating up to the current $8^{\text {th }}$ generation. Assessment of genetic and immunological composition has been performed by a Westmead/Animal Science research team using ABO blood grouping and mixed lymphoctye reaction (MLR), lymphocytotoxity assay (LCA) and monitoring of hyperpolymorphic microsatellite markers. Selection during inbreeding has been based on body size, skin colour and ABO blood group. The surviving Westran pigs are smaller in size and are blood group O animals that are unreactive in MLR, implying SLA (Swine Leukocyte Antigen) class II identity, and have no reactivity to each other on LCA. Their highly inbred status has been confirmed by very high levels of microsatellite homozygosity (94% (47/50) of microsatellites are monomorphic at the $8^{\text {th }}$ generation of full sib mating) (Hawthorne et al., 1999). Cross-over skin grafts also have been performed in Westran pigs. Littermate male-to-male, female-to-female and female-to-male skin grafts are accepted longterm without evidence of rejection. The male-to-female grafts are rejected by 7 days suggesting the presence of a Y-chromosome linked minor histocompatibility antigen (Dr Phillip J. O’Connell: Personal Communication). Figure 4.1 shows typical Westran pigs with black spots on white background and solid white coat colour. A solid white coat colour is more common than spotted in Westran pigs and is fixed in the core breeding line.

The origin of Westran pig ancestors was investigated with phylogenetic analysis of mitochondrial DNA D-loop sequence (Personal commonication: Kyu-Il Kim et al). Two Westran pigs from generation two (Animal no. 1) and three (Animal no. 11) of inbreeding showed 100% homology in the D-loop sequence. Surprisingly they clustered with Asian pigs (Fig. 4.2), suggesting an Asian origin.

Endogenous retroviruses have been analyzed in this Chapter from a generation-six boar (Animal no. 115).

(b)

Fig 4.1 Typical Westran pigs with black spots on white background (a) and solid white coat colour (b).

Fig 4.2 mtDNA phylogeny showing Westran sequence clustered with predominantly Asian pig breeds.

4.2.2. Primers

4.2.2.1. PERV PCR amplification

The primers used in this work were designed using the Primer Design program (Version 2.0, Scientific and Educational Software, 1991) as described in section 2.6. The primers are based on the sequences of Akiyoshi et al. (1998) for PERV-C and Le Tissier et al. (1997) for PERV-A and PERV-B. Primers were synthesised by Life Technologies Pty Limited, Victoria, Australia.

4.2.2.2. Primers for sequencing

A pair of M13 vector primers labelled with different infrared-sensitive dyes suitable for the Li-Cor sequencing system were used for cycle sequencing. Two M13 forward dye-labeled primers called -29 and -38 are available commercially from Li-Cor Inc. After testing, the -38 M13 forward primer proved more suitable. The primer sequences and annealing temperatures for the chosen pair of primers are presented in Table 4.1 (DNA sequencing manual, Li-Cor Inc).

Table 4.1 The pair of vector primers used for sequencing.

Name of primer	Primer sequences	Annealing Temp.
M13 Forward (-38)/ IRD800 Dye-labelled primer	5^{\prime}-TTTCCCAGTCACGACGTTG-3'	$50^{\circ} \mathrm{C}$
M13 Reverse/ IRD700 Dye-labelled primer	5^{\prime}-GGATAACAATTTCACACAGG-3'	$50^{\circ} \mathrm{C}$

4.3. Methods

4.3.1. PCR conditions

4.3.1.1. PCR using Taq DNA polymerase

PCR was carried out in a $50 \mu \mathrm{l}$ volume with approximately 100 ng of template genomic DNA, 0.2 mM of each primer, $600 \mu \mathrm{M}$ of each dNTP, 1 or $2 \mathrm{mM} \mathrm{MgCl}_{2}, 5 \mu \mathrm{l} 10 \mathrm{x}$ PCR buffer (Invitrogen), and 2.5 units of Taq polymerase. This mixture was overlaid with one drop of mineral oil. Amplification was performed in a PTC-100 Programmable Thermal Controller (MJ Research Inc.) for 45 cycles with denaturation for 1 minute at $94^{\circ} \mathrm{C}$, annealing for 1 minute at 65 ${ }^{\circ} \mathrm{C}$ (PERV-A and -B) or $58^{\circ} \mathrm{C}$ (PERV-C) and extension for 1 minute $72^{\circ} \mathrm{C}$. The final extension was for 20 minutes at $72^{\circ} \mathrm{C}$.

4.3.1.2. \quad PCR using $P f u$ proof-reading DNA polymerase

The Pfu proof-reading DNA polymerase was chosen for the second set of PERV PCR reactions because its known lower error rate compared with Taq DNA polymerase. PCR using Pfu proof-reading DNA polymerase was carried out in a $50 \mu \mathrm{l}$ volume with approximately 100 ng of template genomic DNA, 0.2 mM of each primer, 0.5 mM of each $\mathrm{dNTP}, 10 \times$ PCR buffer (Stratagene), and 2.5 units of cloned Pfu polymerase (Stratagene). This mixture was overlaid with one drop of mineral oil. Amplification was performed in a MJ thermocycler with initial denaturation for 3 minutes at $95^{\circ} \mathrm{C}$, followed by 35 cycles of denaturation for 1 minute at $95^{\circ} \mathrm{C}$, annealing for 1 minute at $65^{\circ} \mathrm{C}$ and extension for 5 minutes at $72^{\circ} \mathrm{C}$. The final extension was for 10 minutes at $72^{\circ} \mathrm{C}$.

4.3.1.3. Cycle sequencing reaction

Cycle sequencing was performed using a PTC-100 Programmable Thermal Controller (MJ Research Inc.) with the pair of M13 vector primers shown in Table 4.1, and then a Li-Cor sequencer, as described in Section 2.10.2.

4.3.2. Cloning of PERV PCR products

The env PCR products were cloned into pCR^{\circledR}-Blunt plasmid vector (Invitrogen) for Pfu polymerase generated PCR products and $\mathrm{pCR}^{\circledR} 2.1-\mathrm{TOPO}$ plasmid vector (Invitrogen) for Taq polymerase generated PCR products. The detailed information for cloning is described in Section 2.11. Detailed maps of the cloning vectors are presented in Appendices 2.1 and 2.2.

4.3.3. Checking clone inserts by PCR and restriction digestion

To check that plasmid clones contained a correct insert, boiled preparation was tested as described in section 2.7.3, followed by restriction digestion. PCR was performed with Taq DNA polymerase as described in Section 4.3.1.1. Two restriction enzymes, $K p n \mathrm{I}$ and MboI , were used for preliminary screening of the clones for characteristic features of PERV-A and -B (Le Tissier et al. 1997). The detailed information for restriction enzyme digestion is described in Section 2.8.

4.3.4. Extracting plasmid DNA from bacterial cells

The plasmid DNA was extracted using a JETquick Miniprep Spin Kit as described in Section 2.4.2.

4.3.5. Sequencing of PERV clones

A SequiTherm EXCEL ${ }^{\text {TM }}$ Long-Read ${ }^{\text {TM }}$ DNA sequencing kit (Epicentre) and Li-Cor sequencer (Model 4200, Li-Cor Inc.) were used to read approximately 1.8 kb of full-length insert sequences, using the pair of vector primers (Li-Cor Inc.) shown in Table 4.1. Sequences were analyzed using Base $\mathrm{ImageIR}^{\mathrm{TM}}$ software version 4.1 (Li-Cor Inc.). The detailed protocols for sequencing using the Li-Cor sequencer are described in Section 2.10.2. Figure 4.3 shows the schematic diagram of the sequencing.

Fig 4.3 Schematic representation of single-pass sequencing with a pair of vector primers (Solid bars (一)).

4.3.6. Orientation and amalgamation of sequences

SeqEd software version 1.0.3 (Perkin-Elmer, Applied Biosystems) was used to amalgamate and orient the sequences with respect to published PERV sequences. Full sequences of the PERV env PCR products were assembled by overlapping forward and reverse sequencing products. The overlapping sequences at each end of the long reads may compensate for the less accurate reads at the ends.

4.3.7. Sequence alignment and translation

Alignment of the PERV env sequences was performed using the Clustalw and Pileup programs of the multiple sequence alignment option in GCG using the Web ANGIS interface
(http://www.angis.org.au/). The putative amino acid sequences were determined using the Translate program in GCG.

4.3.8. Phylogenetic analysis

Phylogenetic analysis of PERV env sequences was performed via PAUP software version 4 beta 3a for PPC (Swofford, 1999), using the UPGMA (unweighted pair group method using arithmetric average) method. The UPGMA method assumes that the rate of substitution is constant and distances are linear with time.

4.4. Results

4.4.1. Designing primers

The published PERV-A and -B env sequences (Le Tissier et al. 1997) were aligned using the GAP program available in WebANGIS (Appendix 4.1). The env genes of PERV-A and PERV-B are highly conserved at both the 5' and 3' ends, which flank a distinct region which forms the basis for recognising the A and B variants. The primers were chosen from the highly conserved regions in order to search for novel variants in the less conserved region and to amplify all possible PERV inserts in the pig genome (Fig 4.4). The primer information is presented in Table 4.2 and the sequence alignment between PERV-A and PERV-B is presented in Appendix 4.1.

Figure 4.4 Strategy for PERV PCR amplification using consensus PERV-A and PERV-B primers from the constant regions located at the 5^{\prime}, and 3^{\prime} ends of the $e n v$ gene.

Table 4.2 The primer sequences, PCR conditions $\left(\mathrm{MgCl}_{2}\right.$ concentration and annealing temperature) and expected product size for amplifying the PERV env sequences.

Primer sequences 1	MgCl_{2} Conc.	Annealing Temp.	Expected size (bp)
F. 5'-CATGCATCCCACGTTAAGC-3' R. 5'-ACCATCCTTCAAACCACCC-3'	2 mM	$65^{\circ} \mathrm{C}$	1784 bp (PERV-A) 1775 bp (PERV-B)
F. 5'-ATTCCTAGTCTGACCTCACC-3' R. 5'-TGTGAGTAACAGGAGGAGGA-3'	1 mM	$58^{\circ} \mathrm{C}$	1515 bp (PERV-C)

${ }^{\mathrm{T}} \mathrm{F}$: forward primer, R: reverse primer

4.4.2. PCR for PERV-C amplification

It was initially hoped that the PERV-A and -B consensus primers would also amplify PERV-C inserts and possibly even new categories of PERV. However analysis of the env sequences showed that no PERV-C insert amplified. Therefore a new set of PERV-C specific primers (Table 4.2) were designed based on the sequence of Akiyoshi et al. (1998). The PCR results for PERV-C in a Westran pig are presented in Fig 4.5, clearly showing that PERV-C is present in the Westran line of pigs but not in the Large White control DNA sample used.

Figure 4.51 .5 kb PERV-C PCR product in a Westran pig (indicated by an arrow). Lanes 1, 3 and 5 have Large White genomic DNA as template. Lanes 2, 4 and 6 have genomic DNA from Westran pig No 115 as template. Different $\mathbf{M g C l}_{\mathbf{2}}$ concentrations were tested (lanes $\mathbf{1}$ and 2: 1 mM , lane 3 and 4: 2 mM , lane 5 and 6: 3 mM). M is $\phi X 174 /$ HaeIII Marker (Promega) size standards. The only combination to give the expected size product is Westran genomic template with $1 \mathbf{m M} \mathbf{M g C l}_{2}$. PERV-C is clearly present in the Westran inbred line but amplification of PERV -C envelope sequence is sensitive to $\mathbf{M g C l}_{\mathbf{2}}$ concentration.

4.4.3. Restriction enzyme digestion for screening PERV clones

Cloned PERV-A and -B env PCR products, amplified by Taq DNA Polymerase (64 clones) and Pfu proof-reading DNA polymerase (346 clones), were screened by KpnI and MboI restriction enzymes. Four patterns of KpnI digestion (Fig 4.6(a)) and six patterns of MboI digestion (Fig 4.6(b)) were identified in PCR product amplified by Taq DNA polymerase. Each of the $K p n \mathrm{I} / P f u$ patterns corresponded to a $K p n \mathrm{I} / T a q$ pattern (A, B and D). Four of the MboI/Pfu patterns corresponded to $\mathrm{MboL} /$ Taq patterns (L, M, N and P). Three patterns of KpnI digestion (Fig 4.6(c)) and twelve patterns of MboI digestion (Fig 4.6(d)) were identified in PCR product amplified by the Pfu proof-reading DNA polymerase. Combining the results for the two restriction enzymes, nine types of clone were recognizable for Taq DNA polymerase amplified clones and thirteen types were recognizable for Pfu proof-reading DNA polymerase amplified clones (Table 4.3).

The KpnI restriction digestion pattern A is characteristic of PERV-A and pattern B of PERV-B, based on the published PERV-A and PERV-B sequences (Le Tissier et al., 1997). Digestion patterns AM, AN, AP and BL were found for clones generated with both Taq and Pfu polymerases. On the other hand, restriction digestion patterns $\mathrm{AK}, \mathrm{AO}, \mathrm{BN}, \mathrm{CL}, \mathrm{DL}$ were found only in the clones generated by Taq DNA polymerase and restriction enzyme pattern AV, AX, AQ, AR, AS, AT, AU, AW, DU showed only in the clones generated using Pfu DNA polymerase. These unique clones constitute $8 \%(5 / 64)$ for the Taq DNA polymerase clones and $5 \%(18 / 346)$ for the Pfu DNA polymerase amplified clones. Among both Taq and Pfu amplified clones, the BL type is predominant, constituting $64 \%(41 / 64)$ of the Taq polymerase amplified clones and $72 \%(248 / 346)$ of the Pfu amplified clones (Table 4.3). All restriction enzyme patterns of all clones are presented in Appendix 4.2.
(a) KpnI, Taq DNA polymerase
$\begin{array}{llllll}\text { S1 } & \text { A } & \text { B } & \text { C } & \text { D }\end{array}$

(b) MboI, Taq DNA polymerase
$\begin{array}{lllllll}\mathrm{K} & \mathrm{L} & \mathrm{M} & \mathrm{N} & \mathrm{O} & \mathrm{P} & \mathrm{S} 2\end{array}$

(c) KpnI, Pfu DNA polymerase

$$
\begin{array}{llll}
\mathrm{A} & \mathrm{~B} & \mathrm{D} & \mathrm{~S} 2
\end{array}
$$

(d) MboI, Pfu DNA polymerase
$\begin{array}{lllllllllllll}\mathrm{L} & \mathrm{M} & \mathrm{N} & \mathrm{X} & \mathrm{P} & \mathrm{Q} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{U} & \mathrm{V} & \mathrm{W} & \mathrm{S} 2\end{array}$

Fig 4.6 Restriction digestion patterns of PERV clones. (a), (b): Four patterns (A, B, C, D) of KpnI digestion and six patterns (K, L, M, N, O, P) of MboI digestion were identified in PCR product amplified by Taq DNA polymerase. (c), (d): Three patterns (A, B, D) of KpnI digestion and twelve patterns ($L, M, N, X, P, Q, R, S, T, U, V, W$) of MboI digestion were identified in PCR product amplified by Pfu proof-reading DNA polymerase. S1 and S2 are the 1 kb ladder and ϕ X174/HaeIII Marker (Promega) size standards, respectively.

Table 4.3 Restriction enzyme digestion and sequence analysis of PERV clones.

Polymerase used	Digestion pattern	Number*	No of clones sequenced (IDs)	Most likely type from sequence comparison	Premature stop codon (IDs)
Taq	AK	1	1 (1)	A+B	Yes (1)
	AM	10	$3(6,10,11)$	A	Yes ($6,10,11$)
	AN	4	$2(8,82)$	A	Yes (8, 82)
	AO	1	1 (17)	A	Yes (17)
	AP	4	$2(54,56)$	A	Yes (54)
	BL	41	$6(3,4,9,12,14,20)$	B	Yes (3, 12)
	BN	1	1 (24)	B	No
	CL	1	1 (21)	A +B	No
	DL	1	1 (29)	B	Yes (29)
Pfu	AV	2	1 (251)	A	No
	AM	15	1 (6)	A	No
	AN	17	1 (11)	A	No
	AX	1	1 (260)	A+B	Yes (260)
	AP	48	1 (3)	A	No
	AQ	5	1 (56)	A	Yes (56)
	AR	2	1 (62)	A	No
	AS	4	1 (112)	A	Yes (112)
	AT	1	1 (115)	A	Yes (115)
	AU	1	1 (232)	A+B	Yes (232)
	AW	1	1 (295)	A	Yes (295)
	BL	248	1 (1)	B	No
	DU	1	1 (345)	A + B	No

*number of clones with this digestion pattern

4.4.4. Sequences of PERV clones

4.4.4.1. \quad Sequence similarities of PERV clones

After consideration of the restriction digestion patterns and to ensure the widest possible range of clone types were included, 18 Taq amplified clones and 13 Pfu proof-reading amplified clones were sequenced (Table 4.3). Table 4.4 summarises the sequence differences among PERV clones and published PERV-A (EMBL Nucleotide Sequence Database accession number Y12238), PERV-B (EMBL Nucleotide Sequence Database accession number Y12239) and

PERV-C (GenBank accession number AF038600) published sequences (Le Tissier et al., 1997; Akiyoshi et al., 1998).

As noted previously, the PERV-A and PERV-B consensus envelope primers amplified 9 different types of Taq polymerase generated PERV clones and 13 types of Pfu polymerase generated clones recognisable by screening with two restriction enzymes. Of course any PERVs differing by substantial substitution or deletion in the primer complementary region could not be amplified by these primers. Thus there is a limit to the variety of novel PERV insertions which could be characterised in this way.

To determine the envelope types, each clone was initially aligned with the published PERV-A and PERV-B sequences. Seventeen clones were very similar to the PERV-A sequence, differing from it by only 44 to 54 bases. They are designated as PERV-A clones. Nine clones were very similar to the PERV-B sequences, differing from it by only 1 to 15 bases. These are designated as PERV-B clones. The remaining five clones differed from both PERV-A and PERV-B by at least 94 bases. Sequence comparison (Appendix 4.3) showed that these five clones are actually recombinants between PERV-A and PERV-B. Comparisons amongst all sequences are colour-coded in Table 4.4. Excluding recombinant clones, the absolute number of nucleotide differences among PERV-A clones is between 5 to 54 base pairs in 1,785 base pairs. For PERV-B clones, there were between 1 to 24 base pair differences in 1,776 base pairs. There are about 400 base pairs different between PERV-A group and PERV-B groups (Table 4.4).

Table 4.4 Absolute difference matrix of 31 PERV sequences and PERV-A, PERV-B, and PERV-C published sequences (number of nucleotides by which pairs of sequences differ). The ID of unpublished sequences is expressed as polymerase-x, where polymerase is either Taq or Pfu and \mathbf{x} is the number of the clone generated by that polymerase. The comparisons among PERV-A clones (green), PERV-B clones (blue), between PERV-A and PERV-B clones (black), and between recombinants and all other clones (red) are indicated by different font colours.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
		PERV-B	Taq-14	Taq-4	Pu-1	Taq-20	Taq-12	Taq-24	Taq-3	Taq-9	Taq-29	Taq-21	Taq-11	Taq-6	Pfu-6	Taq-10	Taq-8	Taq-82	Pfu-56	Pfu-11	Pfu-251	Pfu-112	Pfu-295	Pfu-3	Taq-56	Taq-54	Ptu-62	Taq-17	Pfu-115	PERV-A	Pfu-232	Taq-1	Pfu-260	Pfu-345	PERV,
	PERV-B																																		
	Taq-14	1																																	
3	Taq-4	2	3																																
4	Pfu-1	3	4	5																															
5	Taq-20	3	4	5	,																														
6	Taq-12	5	6	7	6	8																													
7	Taq-24	7	8	7	10	10	12																												
8	Taq-3	15	16	17	18	18	20	22																											
9	Taq-9	10	11	10	13	13	15	13	11																										
10	Taq-29	9	10	11	12	10	14	16	24	19																									
11	Taq-21	97	98	99	100	100	102	102	108	103	106																								
12	Taq-11	395	396	395	397	394	400	398	399	399	400	348																							
13	Taq-6	396	397	396	398	395	401	399	400	400	401	349	6																						
14	Pfu-6	390	391	390	392	389	395	393	394	394	395	345	11	13																					
15	Taq-10	393	394	393	395	392	398	396	397	397	398	347	18	20	11																				
16	Taq-8	400	401	400	402	399	405	404	404	404	403	352	28	30	29	36																			
17	Taq-82	403	404	403	405	402	408	407	407	407	406	355	29	31	34	41	5																		
18	Pfu-56	400	401	400	402	399	405	404	404	404	405	352	30	32	35	42	22	23																	
19	Pfu-11	397	398	397	399	396	402	401	401	401	400	350	34	36	27	24	12	17	34																
20	Pfu-251	396	397	396	398	395	401	400	400	400	399	349	39	40	34	29	22	25	42	10															
21	Pfu-112	393	394	393	395	392	398	397	397	397	396	346	41	42	34	29	32	37	32	20	12														
22	Pfu-295	389	390	389	391	388	394	392	393	393	392	342	29	30	24	21	32	35	40	22	12	12													
23	Pfu-3	393	394	393	395	392	398	397	397	397	398	349	44	46	38	32	41	46	29	30	22		21												
24	Taq-56	396	397	396	398	395	401	400	402	400	401	349	47	48	40	35	45	50	29	34	26	14	26	12											
25	Taq-54	394	395	394	396	393	399	398	398	398	399	347	47	48	40	35	46	51	30	34	26	14	26	11	10										
26	Pfu-62	390	391	390	392	389	395	393	394	394	395	343	34	35	27	22	41	46	35	29	21	17	15	17	15	15									
27	Taq-17	401	402	401	403	400	406	405	405	405	404	356	36	37	39	44	35	36	21	41	31	21	29	23	23	23	26								
28	Pfu-115	401	402	401	403	400	406	405	405	405	404	354	33	36	25	31	31	36	27	28	35	28	36	29	31	30	34	30							
29	PERV-A	394	395	394	396	393	399	398	400	398	399	341	49	51	45	47	48	53	50	45	47	44	46	48	49	48	48	54	49						
30	Pfu-232	337	338	337	339	336	342	340	344	341	342	340	62	65	60	63	76	81	82	77	84	83	73	86	90	91	77	91	81	94					
31	Taq-1	344	345	344	346	343	349	348	351	348	347	349	88	91	82	85	64	69	86	65	75	84	84	93	96	98	90	96	87	103	26				
32	Pfu-260	339	340	339	341	338	344	343	346	343	344	344	95	97	89	88	94	99	76	89	81	68	78	65	63	64	68	70	80	99	35	42			
33	Pfu-345	287	288	287	289	286	292	290	296	293	294	380	116	119	110	113	124	129	132	123	133	134	124	134	138	140	126	142	133	143	59	71	85		
${ }^{34}$	${ }^{\text {PERV- }}$	441	442	443	443	442	446	445	440	443	448	346	245	247	241	243	249	254	248	247	248	246	244	246	248	244	240	253	247	222	274	287	280	318	

4.4.4.2. Empirical cycle-sequencing error rate, using the Li-Cor sequencer

Because single-pass sequencing reaction was applied in this experiment except for the middle of the sequence where there was a short overlap, sequencing errors are to be expected. After 600 to 800 base pairs of a single long sequence read, the accuracy is expected to decline. To determine the error rate of cycle sequencing using the Li-Cor sequencer, a sample of four clones was sequenced twice under exactly the same experimental conditions and editing procedures. That is, for each of four clones, two forward and two reverse products were generated and sequenced. Table 4.5 shows the number of nucleotides by which the sequence of the two products of each primer differed. For the four clones sequenced twice, there was an error rate of $0.4 \%(28 / 7020)$. This error rate is based on comparison of two sequences, each of which are equally likely to have errors. Therefore the true error rate is $0.2 \%(0.4 / 2)$. This sequencing accuracy is better than the 99% rate indicated by the company (IR^{2} system specification, Li-Cor Inc.).

Table 4.5 The empirical error rate of cycle sequencing using the Li-Cor sequencer estimated from duplicate sequencing of the same clones

Clone	Vector primer used	Differences
Taq-11	M13 Forward	$5 / 900$
	M13 Reverse	$7 / 900$
Taq-54	M13 Forward	$4 / 900$
	M13 Reverse	$3 / 650$
Taq-56	M13 Forward	$3 / 1000$
	M13 Reverse	$4 / 900$
Taq-6	M13 Forward	$1 / 900$
	M13 Reverse	$1 / 870$
Total		$28 / 7020$

4.4.4.3. Frame shift mutations and premature stop codons

The nucleotide sequence alignments of the 17 PERV-A clones, 9 PERV-B clones, and 5 recombinant clones are presented in Appendix 4.3. The alignment of deduced amino acid sequences of the PERV clones is presented in Appendix 4.4 together with PERV-A, PERV-B, and PERV-C published sequences. 55% of the clones (17/31) sequenced have premature stop codons within the envelope protein-encoding region, which would prevent the retrovirus from making full length envelope protein recognizable by cell surface receptor for the virus. The positions of premature stop codons and their causes are listed in Table 4.6. Fourteen stops were caused by frame-shift mutation and only three were caused by base substitutions. A hot spot for frame-shift mutations was found at nucleotide position 1134, with ten of fourteen found at this
position. Three clones, namely Taq-10, Taq-11 and Pfu-232, have two frame-shift mutations. An example of a premature stop codon caused by a deletion is illustrated for clone Taq-29 in Fig 4.7.

Table 4.6 Sequence analyses of 17 clones with premature stop codons.

Clone ID	Stop codon position ${ }^{1}$	Causes of stop codon ${ }^{2}$
Taq-1	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Taq-3	578	Base substitution C1733T
Taq-6	467	$\Delta \mathrm{A}$ nt 1250 (Frame shift mutation)
Taq-8	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Taq-10	330	$\Delta \mathrm{C}$ nt 815 (Frame shift mutation), $\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Taq-11	428	$\Delta \mathrm{G}$ nt 1134, $\Delta \mathrm{A}$ nt 1250 (Frame shift mutation)
Taq-12	242	Base substitution A725T
Taq-17	394	Base substitution C1184T
Taq-29	373	$\Delta \mathrm{A}$ nt 1042 (Frame shift mutation)
Taq-54	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Taq-82	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Pfu-56	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Pfu-112	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Pfu-115	511	Base substitution A1532T
Pfu-232	438	$\Delta \mathrm{G}$ nt 1134, $\Delta \mathrm{A} \mathrm{nt} 1250$ (Frame shift mutation)
Pfu-260	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)
Pfu-295	416	$\Delta \mathrm{G}$ nt 1134 (Frame shift mutation)

${ }^{1}$ The position of stop codon is in amino acid sequence
${ }^{2}$ The position of mutation in nucleotide sequence. The number of nucleotide starts from the 5 , forward primer sequence as nt number 1
normal

G C A T A G

Taq-29 deletion

Fig 4.7 Example of premature stop codon in clone Taq-29 caused by an upstream (adenine) deletion giving a frame shift mutation.

Fig 4.8 Phylogenetic tree of 18 Taq and 13 Pfu generated clones as well as PERV-A, PERVB and PERV-C published sequences.

4.4.5. Phylogenetic analysis

A dendrogram summarising the results of phylogenetic analysis of all 34 PERV env sequences considered in this study, including the PERV-A, -B, -C published sequences, is presented in Fig 4.8. 21 sequences cluster with PERV-A and 10 with PERV-B. PERV-C is more closely related to PERV-A than PERV-B. The absolute number of nucleotide sequence differences between PERV-A and PERV-C is 222 base pairs and between PERV-B and PERV-C is 441 base pairs (Table 4.4). The recombinant five clones, namely Taq-1, Taq-21, Pfu-232, Pfu260 , Pfu-345, do not show the same pattern of clustering as the other clones, having more distant nodes relative to the published sequences.

4.4.6. Recombinant clones between PERV-A and PERV-B

The recombinant clones were classified into three groups based on the patterns of break points between PERV-A and -B sequences (Fig 4.9). In the case of Taq-1, Pfu-232 and Pfu-260, two different polymerases gave the same break points in these recombinant clones suggesting that at least one of these recombinant sequences reflect genuine PERV sequence in the pig genome and are not artefacts of the PCR process. The clone Taq-21 shows double recombination between PERV-A and PERV-B. The sequence alignments and position of recombination are presented in Appendix 4.3. (c).
(a) Taq-1, Pfu-232, Pfu-260

(b) Pfu-345

(c) Taq-21

Fig 4.9 Three types of recombinant envelope gene sequence between PERV-A and PERV-B.

4.5. Discussion

This chapter reports studies of PERV env sequences obtained from an inbred pig from the Westran line, which is being investigated as a source of tissue for transplantation into humans. A total of thirty-one 1.8 kb PERV env clones, generated by either Taq and Pfu DNA polymerase, were fully sequenced.

About 30% of the 31 envelope sequences described in the Chapter are classified as PERVA, whether from Taq or Pfu Polymerase amplified clones. To check whether the number of clones generated in each class is significantly different with Taq and Pfu polymerase, chi-squire contingency analysis was performed $\left(\chi^{2}=2.508, \mathrm{df}=2\right.$, not significant; for details see Appendix 4.5). The results indicated that the frequency of A, B and recombinant clones is not significantly different between the clones generated by Taq and Pfu. However, the clones sequenced in this study are a non-random sample because selection of clones for sequencing was based on restriction enzyme digestion results. The restriction digestion results for 410 randomly chosen clones (Table 4.3) show that 27.8 \% (114/410) are PERV-A, $71 \%(291 / 410)$ are PERV-B and $1.2 \%(3 / 410)$ can be classified as recombinant clones between PERV-A and PERV-B, providing a more accurate representation of the relative occurrence of these three classes. In any case, it is important to realise that the sequences presented here do not necessarily reflect the relative number of PERV-A and -B inserts in Westran pigs. In the next Chapter of this thesis, FISH provides a much more accurate idea of the number of PERV-A and -B inserts in Westran pigs, subject to some possible hybridisation of PERV-A and PERV-B probes with each other or with PERV-C inserts.

Initially Taq DNA polymerase was used to generate PCR products for cloning. However due to a substantial level of minor sequence differences between clones, which might have been artefacts of the inability of Taq to correct errors during DNA replication, a proof-reading polymerase, Pfu, was then tried. Taq DNA polymerase has no 3'-proof reading exonuclease activity and a relatively high misincorporation of bases is expected. The usually quoted figure for rate of misincorporation using Taq polymerase is about 2×10^{-4} per nucleotide (Watson, 1992; Lewin, 1994). However Cantor and Smith (1999) have shown that the overall misincorporation depends not only on the rate of misincorporation of the Taq polymerase but also on the PCR reaction conditions and the length of DNA amplified. The number of misincorporations observed in a particular product in a particular set of PCR conditions is predicted by:

Number of misincorporations $=\operatorname{LnX} \mathrm{X}_{\text {mis }}$.(equation 1)
where L is the length of DNA amplified, n is the number of the PCR cycles, and $X_{\text {mis }}$ is the fractional misincorporation rate per nucleotide per PCR cycle (Cantor and Smith, 1999). Taq DNA polymerease fidelity has been measured using a PCR based forward mutation assay based on the lacI target gene. This provided an estimated fractional misincorporation rate of 8.0×10^{-6} per nucleotide per duplication (Instruction manual for Pfu DNA polymerase, Stratagene). Pfu has a lower fractional misincorporation rate of 1.3×10^{-6} per nucleotide per duplication, based on the same lacI based fidelity assay (Instruction manual for Pfu DNA polymerase, Stratagene). Applying these fractional misincorporation rates and the equation to the PERV amplifications (1800 bp product, 45 cycles ($T a q$) or 35 cycles (Pfu) of PCR), equation 1 predicts the misincorporation for Taq DNA polymerase to be 0.65 nucleotide and for Pfu DNA polymerase to be 0.08 nucleotide. Thus two Taq clones on average would be expected to differ by 1.3 nucleotides, a Taq clone sequence versus a Pfu clone sequence by 0.73 nucleotides and a pair of Pfu clones by 0.16 nucleotides if misincorporation during PCR was the only source of difference between them. We can conclude that comparisons of Pfu clone sequences with other Pfu sequences or Taq clone sequences are very unlikely to show artefactual differences due to PCR. Even the comparison of Taq sequences with other Taq sequences are unlikely to be seriously affected by amplification artefacts, as only about one nucleotide difference is expected on average.

Sequencing errors are an additional more important source of artefactual sequence differences between clones. Financial constraints meant that only single-pass sequencing using Li-Cor long-range sequencing was possible. Double pass sequencing would have resolved many ambiguities but it was beyond the resources available to this project to do so. An empirical single-pass cycle-sequence error rate for the Li-Cor sequencer was also calculated in this study by cycle-sequencing four PERV clones in duplicate. Each clone was sequenced bidirectionally providing 8 duplicate sequence comparisons in size from 650 to 1000 bp . The number of discrepancies ranged from a low of $1 / 900$ to a high of $7 / 900$. The data were tested for heterogeneity (Appendix 4.6) by Chi-square analysis ($\chi^{2}=7.855, \mathrm{df}=7, \mathrm{p}=0.347$). The nonsignificant result justifies pooling of the data to obtain an estimate of the sequence comparison error rate, p of $0.00398860(28 / 7,020)$. Using this observed estimate of p, the cumulative frequency distribution of errors for a comparison of two sequences 1800 bp long ($\mathrm{n}=1800$) was calculated in Minitab (Minitab Inc., Version 10 Xtra) using the exact Binomial distribution (Table 4.7). This table enables interpretation of the results of comparison of all clones shown in Table 4.4. The probability of getting a comparison differing by more than 12 nucleotides due to sequencing errors alone is 3.18% (ie less than the 5% significance threshold). If the difference is more than 16 nucleotides the probability is 0.12%. By choosing an appropriate threshold stringency, it is possible to reliably distinguish between those clones in Table 4.4 showing
genuine genetic differences and those where genetic and artefactual differences cannot be reliably distinguished. Applying this threshold, at least 12 PERV-A, 5 PERV-B and 5 recombinant clones are distinct sequences due to biological differences or PCR introduced errors.

Table 4.7 The Binomial cumulative frequency distribution for comparison error in cycle sequencing for a 1800 bp sequence comparison ($p=0.00398860, n=1800$).

Error number (x)	Probability $(\mathrm{X} \leq \mathrm{x})$
11	0.9385
12	0.9682
13	0.9846
14	0.9930
15	0.9970
16	0.9988
17	0.9995
18	0.9998
19	0.9999

Toward the end of this study, PERV-C specific primers were tested in Westran pigs and amplified the expected size PCR product in several trials. However, these PERV-C PCR amplifications were unreliable, suggesting that there may be mismatch(es) between the PERV-C primers and template. Therefore a new set of PERV-C primers may be needed for efficient PCR amplification and further analysis of this class of PERV. Nevertheless the results indicate that the Westran line is PERV-C positive. The copy number of PERV-C has been estimated as 8 to 15 copies per genome for specific strains of inbred and outbred miniature pig (Akiyoshi et al., 1998). There is evidence of variable PERV-C copy number in other pigs. Some pigs have even been found to be negative for PERV-C (Herring et al., 1999; Bösch et al., 1999). Even though PERV-C has a narrower host range compared to PERV-A and PERV-B (Takeuchi et al., 1998), it will be important to further characterise PERV-C in Westran pigs if they are ever to be used for xenotransplantation.

The sequencing results suggest that a large proportion of PERVs (17/31) are defective due to premature stop codons in the envelope gene. Indeed, eleven clones have a frame-shift mutation caused by a deletion of the same nucleotide at position 1135 . While some of these clones may simply reflect resampling of the same PERV insertion from the PCR product, it is unlikely that all 11 are. Thus this site may be a hot spot for deletion or reflect independent insertions of PERVs with the same deletion during the evolutionary history of the pig. Bebenek et al. (1989) indicated that the reverse transcriptase of HIV-1 is relatively error prone and that errors are nonrandomly distributed. They found base substitution and one-base frame shift mutational hot spots
mainly due to the template-primer slippage. Subject to further verification, these results are encouraging as they indicate that a substantial proportion of the PERVs in the Westran line constitute little potential hazard in xenotransplantation as they are non-functional.

There are a few strategies to identify all potentially active PERVs in the porcine genome. First, screening a genomic library for intact PERVs could chive this. Secondly, a cDNA approach could be applied to identify actively transcribed PERVs. Thirdly, an immunological approach can be used to identify expressed viruses. To eliminate these active PERVs for xenotransplantation, either knockouts via homologous recombination or breeding strategies could be considered. Insertional mutation by homologous recombination would knockout the gene. However it would be difficult or impossible to knockout all active PERVs because there are too many integration sites over the chromosomes. Further insertionally inactivated PERVs could regain infectivity through recombination. A breeding strategy also has obstacles. Due to the large number of integration sites, very (impossibly) large numbers of animals would have to be bred to identity the small number of animals lacking PERV sites. At the end of the breeding program, there would still be some constant PERV sites would present and the constant possibility of reinfection.

Retroviruses package two complete viral genomic RNAs in each virion and this specific configuration facilitates recombination. Recombination between retrovirus genomes has been demonstrated during mixed infection with genetically marked avian tumor viruses (Blair et al., 1976; Kawai and Hanafusa, 1972; Vogt, 1971; Wyke and Beamand, 1979; Wyke et al., 1975), murine leukaemia viruses (Faller and Hopkins, 1978; Wong and McCarter, 1973) and human retroviruses (Clavel et al., 1989). Also, exogenous viruses can recombine with endogenous retroviral sequences (Elder et al., 1977; Stephenson et al., 1974; Weiss et al., 1973). Recently, new recombinants between species have been discovered. For example, BaEV (baboon endogenous retrovirus) is a recombinant retrovirus containing type C gag-pol genes and type C env gene which probably arose by recombination of two primate viruses (Mang et al., 1999; van der Kuyl et al., 1997). Similarly, RD-114 of cats is a recombinant between env of BaEV and gag-pol of PcEV (Papio cynocephalus endogenous retrovirus) (van der Kuyl et al., 1999). The three types of recombinant PERVs reported here thus have ample precedent among retroviruses in other species.

However, the possibility that the recombinant clones are PCR artefacts can not be excluded. Zylstra et al. (1998) reported artefactual recombinant sequences for the murine immunoglobulin germline V gene generated by PCR and detected by sequencing about 1 kb of cloned PCR products. Interestingly they found that Pfu polymerase generated a higher percentage of recombinant artefacts than Taq. The number of artefacts increased with the number of amplification cycles, and pseudo-recombination events were located throughout the whole PCR
product with no preferred sites of template exchange. In the present study, at least one of the apparent recombinant PERVs is more likely to be a genuine recombinant because three clones showing the same recombination pattern with two DNA polymerase were found (Fig 4.9). However, conformation of the reality of the recombinant clones will require their amplification directly from genomic DNA template using recombinant-specific primers. This remains an important task for the immediate future.

Recombinant sequences create a problem for phylogenetic analysis. Most phylogenetic analyses assume that sequences evolve independently. Therefore more different sequences separated further in the past. In other words, more similar sequences shared a common ancestor at a less distant time. Recombination draws some odd conclusions in the phylogenetic analysis because the relationship of the sequences does not reflect independent evolutionary history but a genetic exchange. To solve this problem, a method called "sister-scanning" was recently developed to detect the occurrence of recombination, allow for it in the phylogenetic analysis, and provides some systematic way of representing its occurrence (Gibbs et al., 2000). Unfortunately, sister-scanning analyses of the PERV sequences reported in this present study could not be performed in time for inclusion in this thesis.

The occurrence of recombinant PERVs also provides a salutary reminder of the potential for recombinational repair of defective retroviruses and for recombination of human and porcine retroviruses during xenotransplantation. Defective PERVs could possibly regain infectious potential through recombination. Furthermore PERVs could recombine with human endogenous retroviruses to generate totally novel retrovirus. Thus these results corroborate the recombinogenic potential of retroviruses and highlight the potential danger of intra and/or interspecies recombination of PERVs in xenotransplantation.

Chapter Five

Physically Mapping PERVs

5.1. Introduction

Pigs (Sus Scrofa) have a diploid chromosome number of 38 (18 pair of autosomes and XY sex chromosomes). The standard G-banding and R-banding karyotypes have been reported in pig, dividing the chromosomes into cytogenetically defined regions by systematically described landmarks (Gustavsson, 1988). The standard R-banded karyotype has been used for mapping PERVs. Fig 5.1 shows the pig R band karyogram and its ideogram.

PERVs, as described in Chapter 4, have a potential infectious risk in relation to xenotransplantation. Le Tissier et al. (1997) and Akiyoshi et al. (1998) reported about 50 copies of PERV in the pig genome, of which 10 to 20 copies could correspond to full-length proviruses (Akiyoshi et al., 1998).

Rogel-Gaillard et al. (1999) reported 62 PERV-positive clones found by screening a Large White porcine BAC (bacterial artificial chromosome) library using specific primers for the protease gene of type-C retrovirus. The PERV clones were analysed using PERV-A and -B specific envelope primers, showing that 28 clones contained PERV-B, 12 clones contained PERV-A envelope, 6 clones were positive for both types and 16 clones were negative for both A and B envelope types. Ultimately, 33 BAC clones containing PERV sequences were mapped by FISH to 22 distinct locations on 14 chromosomes including X and Y . The pig used for making the BAC clones for FISH mapping of PERV in this study was an outbred commercial Large White animal (Rogel-Gaillard et al., 1999). Of course such outbred animals may not be the most suitable for xenografts. In this study, the main focus is on the inbred Westran line of pigs where there is expected to be no or little variation between animals in the sites of hybridisation. The locations found in two Westran animals will be compared with those reported in Large White.

The FISH experiments presented here were carried out at both The Queen Elizabeth Hospital and the Waite Campus, University of Adelaide, Australia with the help of Dr Graham C. Webb, a molecular cytogenetist. I generated all the clones, made all the probes and assisted in the hybridisation. Dr Webb scored all PERV signals on the Westran pig chromosomes.

In addition to the FISH experiment, PERVs were physically mapped using a technique developed by Dr Yi-Mo Deng from the Department of Microbiology, Prince of Wales Hospital,

NSW, Australia in conjunction with A/Prof Chris Moran, to amplify by PCR one of the two unique flanks of a repetitive locus (in this, a PERV) and then use this to map the insert physically. This method yields a unique sequence tag for the site and this enables physical mapping on, for example, a somatic cell hybrid panel. The overall process for this method is illustrated in Fig 5.2. The porcine genomic sequences were first amplified by PCR using a PERV-specific primer and a porcine SINE-specific primer. PCR products were cloned and those sequences that contained PERV-flanking regions were selected using a second-round PCR and cloning. This method obviates the need for individual library construction or linker/adaptor ligation, and can be used to locate individual sites of moderately repeated, dispersed DNA sequences in the genome (Deng et al., submitted). To evaluate this method, a PCR product comprising a sequence flanking a PERV was mapped using a porcine-rodent somatic cell hybrid panel.

Fig 5.1 Pig R-band karyotype and ideogram (Source: Rønne et al., 1987).

Fig 5.2 Strategy to amplify a PERV junction fragment. A PERV flanking sequence was initially amplified with a PERV-specific envelope primer and a SINE primer. New flanking primers (p 4 and $\mathrm{p5}$) were designed based on the flanking sequence information and used to physically map the site using the French somatic cell hybrid panel (Figure courtesy of Dr Yi-Mo Deng and A/Prof Chris Moran).

Thus two separate mapping experiments are presented in this Chapter; large scale, comprehensive FISH mapping of PERVs in two inbred Westran pigs and evaluation of a new mapping method for dispersed repetitive loci using semi-specific PCR cloning and a somatic cell hybrid panel.

5.2. Materials

5.2.1. Animals

White blood cells were cultured from two male Westran animals (No 115 and No 167). No 115 is the most inbred animal from the $5^{\text {th }}$ generation of full-sib mating. No 167 is the son of No 115 from a sib mating.

5.2.2. Probes for FISH

Two randomly chosen PERV clones, Taq-82 and Taq-9, were used to as probes for PERVA and PERV-B, respectively as previously described (Section 4.4). To improve the efficiency and specificity, the PERV inserts were excised from the vector by EcoRI restriction digestion (Section 2.8).

5.2.3. Primers for precise mapping of a PERV junction

A pair of primers, p4 and p5, was designed by Dr Yi-Mo Deng based on a PERV junction fragment sequence (Table 5.1 and Fig 5.2) obtained from a commercial Large White x Landrace crossbred animal.

Table 5.1 The primer sequences, $\mathbf{P C R}$ conditions $\left(\mathbf{M g C l}_{\mathbf{2}}\right.$ concentration and annealing temperature) and expected product size for amplifying the genomic junction fragment flanking a PERV-B.

Primer sequences 1	MgCl_{2} concentration	Annealing Temperature	Expected size (bp)
p4. 5'-TCACACCACCTGCTACCTTTCC-3' p5. 5'-TCTGATGTGCCAACTGTGATTA-3'	2 mM	$60^{\circ} \mathrm{C}$	115 bp

${ }^{1} \mathrm{p} 4$: forward primer; p5: reverse primer

5.2.4. Somatic cell hybrid panel

The somatic cell hybrid panel and the methods for its analysis are as previously described (Sections 1.3.2.2 and 3.4.8).

5.3. Methods

5.3.1 FISH

5.3.1.1. Lymphocyte cell culture

Westran pig blood was collected in 10 ml vacutainers containing lithium heparin by Dr Wayne Hawthorne and Dr Richard Allen at the Westran breeding facility at Karuah, NSW. The vacutainers were inverted to mix the lithium heparin to prevent coagulation and were transported by air to Adelaide within 12 hours of collection. 5 ml cultures are prepared under aseptic
conditions and cultured at $37{ }^{\circ} \mathrm{C}$ for 72 hours. The cultures were inverted once or twice in this time to optimise growth of the cells by preventing the cells from sedimenting out of the solution. The composition of the culture media is outlined below.

Aminomax Basal + supplement medium (Gibco-BRL)	100 ml
Phytohaemagglutinin (PHA, M-form, Gibco-BRL)*	2 ml
Pokeweed Mitogen (PWM, $1 \mathrm{mg} / \mathrm{ml}$, Sigma)	$500 \mu \mathrm{l}$
Penicillin (10,000 Units/ml), Streptomycin (10,000 Units/ml),	
\quad and Fungizone ($25 \mu \mathrm{~g} / \mathrm{ml}$) (PSF, Commonwealth Serum Laboratories)	$200 \mu \mathrm{l}$
Glutamine (0.2 M)	1 ml
Heparin	$200 \mu \mathrm{l}$

*Given the unidentified nature of this extract, it is not possible to assign weight/volume values on the active material in the final product (Gibco BRL product and reference guide, Life Technologies)
$300 \mu \mathrm{l}$ blood was added to each 5 ml of culture medium and incubated at $37^{\circ} \mathrm{C}$. To synchronise cells in mid-S phase, $300 \mu \mathrm{~g} / \mathrm{ml}$ of thymidine (Sigma) was added 24 hours before finishing cell culture. At day three, the cells were rinsed three times with Dulbecco's phosphate buffer saline (PBS, Commonwealth serum labs), each time centrifuging at $1,000 \mathrm{rpm}$ for 10 minutes and then discarding the supernatant. They were suspended once again in the culture medium to which 5-bromodeoxyuridine ($5-\mathrm{BrdU}$, Sigma) was added to a final concentration of $20 \mu \mathrm{~g} / \mathrm{ml}$ and FDU (5-flourodeoxyuridine, Sigma) to a final concentration of $0.5 \mu \mathrm{~g} / \mathrm{ml}$. After incubating for six and half hours, Colchicine (Sigma) (2 drops of $100 \mu \mathrm{~g} / \mathrm{ml}$ from a 1 ml syringe per culture) was added 10 to 20 minutes before finishing incubation in order to disrupt the mitotic spindle and accumulate cells at metaphase.

To harvest the cells, they were first centrifuged at $1300 \mathrm{rpm}(695 \mathrm{xg}$) for 10 minutes. The supernatant was removed and 12 ml hypotonic 0.075 M KCl solution (pre-warmed to $37^{\circ} \mathrm{C}$) was added. The cells were incubated at $37{ }^{\circ} \mathrm{C}$ for 20 minutes in the hypotonic. 3 ml fixative ($3: 1$ methanol-acetic acid) was then added to the cells in the hypotonic solution. This was centrifuged at $1400 \mathrm{rpm}(745 \mathrm{xg})$ for 10 minutes. The supernatant was removed. 6 ml of $3: 1$ fixative was then added directly to the cells which were resuspended and then centrifuged at $1600 \mathrm{rpm}(850 \mathrm{x}$ g) for 7 minutes. This fixation and centrifugation step was repeated. Finally 1 ml fixative was added to the pellet and the cell was resuspended. A drop of the suspension was dropped onto a slide to check cell density under a light microscope. If it was necessary to alter cell density, either additional fixative was added or the cells were spun down in 6 ml fixative by centrifugation at $1600 \mathrm{rpm}(850 \mathrm{x} g$) for 7 minutes and then resuspended in a smaller volume. Finally slides were
prepared by dropping 3 drops of the suspension from a Pasteur pipette onto each slide. slides, cleaned at manufacture, were further cleaned by soaking in 5% Decon 90 (Selby) and rinsing with running tap water, each for approximately 2 hours. The slides were then rinsed in distilled water and three changes of 100% ethanol. They were then dried vertically.

5.3.1.2. Making PERV FISH probes

To label PERV probes with Biotin, a BioNick ${ }^{\text {TM }}$ Labeling System (Life Technologies) was employed for nick translation. To check the efficiency of incorporation of the biotin label, tritiated label was incorporated at the same time. $1 \mu \mathrm{Ci}$ of ${ }^{3} \mathrm{H}$ dATP (Amersham) was dried in a 1.5 ml Eppendorf tube. The following were then added:

10 x dNTP mix containing biotin-14-dATP (kit)	$5 \mu \mathrm{l}$
$1 \mu \mathrm{~g}$ of probe DNA	$1 \mu \mathrm{l}$
distilled $\mathrm{H}_{2} \mathrm{O}$ bring total volume up to	$45 \mu \mathrm{l}$
10x enzyme mix containing DNA polymerase I and DNase I (kit)	$5 \mu \mathrm{l}$
Total	$50 \mu \mathrm{l}$

The reaction tube was briefly centrifuged and the labeling reaction was incubated for 1 hour at $16{ }^{\circ} \mathrm{C} .5 \mu \mathrm{l}$ of Stop Buffer (BioNick ${ }^{\mathrm{TM}}$ Labeling System, Life Technologies) was then added. Unincorporated nucleotides were separated from the labeled DNA probe using a 5 cm Sephadex G 50 (Pharmacia) column in a short Pasteur pipette plugged with sterile, non-absorbent cotton wool. The column was washed twice with TE (pH 7.6). Then $55 \mu \mathrm{l}$ of reaction mixture (50 μl of reaction and $5 \mu \mathrm{l}$ of Stop Buffer) was carefully layered onto the column. For the first fraction, $445 \mu 1$ of TE was carefully layered and the first fraction was collected. After that, the following fractions were collected by adding the same amount of TE in Eppendorf tubes:

Fraction number	$\underline{\text { Volume }}$
1	$500 \mu 1$
$2-10$	$100 \mu 1$
$11-14$	$500 \mu 1$

To determine the success of the nick translation reaction, a Liquid Scintillation Counter (Beckman) was used to measure incorporation of the tritiated tracer in a small aliquot from each
fraction. $2 \mu \mathrm{l}$ samples of each fraction were mixed with $150 \mu \mathrm{l}$ distilled water and 1.5 ml BCS scintillation fluid (Amersham) in a numbered scintillation tube. The tubes were dipped in ethanol and wiped carefully to remove any static electricity before counting. The scintillation counts for each fraction showed that there are two major peaks, indicating the incorporated tritium $\left({ }^{3} \mathrm{H}\right)$ for the first peak and unincorporated tritium for the second peak. The fractions representing the first peak were pooled into a single tube and the incorporation percent was calculated. Over 10% is considered adequate incorporation. $50 \mu \mathrm{~g}$ sheared salmon sperm DNA (Promega) was added per 100 ng of probe to assist in precipitating the probe and to compete with the probe for nonspecific binding to the chromosomes, thus reducing background labelling. $1 / 10^{\text {th }}$ volume of 3 M sodium acetate (pH 5.2) and 2.5 volume of absolute alcohol was added to precipitate the probe, which was mixed well and left at $-80^{\circ} \mathrm{C}$ for 30 minutes. After centrifugation for 10 minutes at $14,000 \mathrm{rpm}$, the supernatant was discarded and $200 \mu \mathrm{l}$ of 70% ice-cold ethanol was added to the tube. Again, the supernatant was removed and the pellet was air dried at $37^{\circ} \mathrm{C}$ for 10 minutes. 40 $\mu \mathrm{l}$ of probe mix, containing $12 \mu \mathrm{l}$ of probe in water, $8 \mu \mathrm{l}$ of $10 \mathrm{xSSCP}(1.2 \mathrm{M} \mathrm{NaCl}, 0.15 \mathrm{M}$ NaCitrate, $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 6.0$) and $20 \mu \mathrm{l}$ of 20% dextran sulfate in formamide, were then combined.

5.3.1.3. In situ hybridisation of PERV probes to chromosomes

Slides were immersed for 1 hour at $37^{\circ} \mathrm{C}$ in $100 \mu \mathrm{~g} / \mathrm{ml}$ RNase solution in $2 \times \mathrm{SSC}$. The slides were rinsed 4 times with $2 \times$ SSC for 2 minutes each and dehydrated through $35 \%, 70 \%$, 95% and 100% ethanol for 2 minutes, respectively. The slides were then air-dried. Two Coplin jars, one containing slide denaturation mix (70% deionised formimide, $2 \times \mathrm{SSC}, \mathrm{pH} 7.0$) and another empty jar were pre-heated at $70{ }^{\circ} \mathrm{C}$. Slides were pre-heated in the empty jar and transferred to the denaturation mix for 2 minutes with gentle agitation. The denatured slides were immediately put into the cold (about $-10^{\circ} \mathrm{C}$) 70% ethanol and agitated for 2 minutes. This step allows the chromosomes to stay denatured. The slides were then dehydrated through an ethanol series $(70 \%, 80 \%, 95 \%, 100 \%)$ for 2 minutes each and drained with the frosted end down.

Meanwhile, 22 X 50 mm coverslips were dipped into 70% ethanol, dried and polished. The pre-made probe mix was briefly heated to $75{ }^{\circ} \mathrm{C}$ and mixed thoroughly. After brief centrifugation, the probe mix were denatured at $75^{\circ} \mathrm{C}$ for 10 minutes and placed on ice for at least 2 minutes. 40μ l probe mix then were loaded onto each slide in a line of droplets. The slides were covered with coverslip and sealed with rubber cement. The slides were hybridised overnight at $37{ }^{\circ} \mathrm{C}$ in a sealed box. After hybridisation, they were stored at $4^{\circ} \mathrm{C}$.

5.3.1.4. Stringency rinses

To remove any non-specifically bound probe, high stringency rinsing solution (50% formamide, 2 X SSC) was dispensed into three Coplin jars and two of them heated to $39^{\circ} \mathrm{C}$ in a water bath. To remove the hybridisation mix, the slides were quickly rinsed in the rinse solution at room temperature. The slides were then washed twice in the high stringency rinse solution for 10 minutes at $39{ }^{\circ} \mathrm{C}$ with shaking to remove any non-specifically bound probe. The slides were then rinsed twice in 2 X SSC solution for 5 minutes at $37^{\circ} \mathrm{C}$ with shaking and rinsed in 1 X SSC solution for 10 minutes at room temperature with shaking. The final washing was carried out in a solution containing 4 X SSC and 0.05% Tween 20 (Promega) for 3 minutes at room temperature with shaking.

5.3.1.5. Immunochemical detection of biotin label

When all rinsing steps were finished, excess moisture was removed from the slides by tapping the edge of slides on paper towel. $100 \mu \mathrm{l}$ of $4 \mathrm{X} \mathrm{SSC} / 1.0 \% \mathrm{w} / \mathrm{v}$ bovine serum albumin (BSA) was dropped onto each slide. The slides were then covered with coverslip and incubated in a moist chamber for 10 minutes. $1.0 \mu \mathrm{l}$ of Avidin-FITC (Vector Labs) per $200 \mu \mathrm{l}$ of $4 \mathrm{X} \mathrm{SSC} / 1$ \% BSA was thoroughly mixed. The coverslips were removed and the edge of each slide was tapped on a paper towel to remove excess moisture. 70μ l Avidin-FITC mix was placed onto each slide. The slides were covered with coverslips and incubated in the moist chamber for a minimum 40 minutes at $37{ }^{\circ} \mathrm{C}$. The coverslips were again removed and rinsed twice with 4 X SSC/0.05 \% Tween 20 for 5 minutes each at $37{ }^{\circ} \mathrm{C}$ with agitation. $1.0 \mu \mathrm{l}$ of biotinylated goat anti-Avidin (Vector Labs) per $100 \mu \mathrm{l}$ of $4 \mathrm{X} \mathrm{SSC} / 1$ \% BSA was thoroughly mixed. Then $70 \mu \mathrm{l}$ biotinylated goat anti-Avidin mix was placed onto each slide. The slides were covered with coverslips and incubated in the moist chamber for at least 40 minutes at $37^{\circ} \mathrm{C}$. The coverslips were then removed and the slides rinsed twice with 4 X SSC/0.05 \% Tween 20 for 5 minutes each at $37{ }^{\circ} \mathrm{C}$ with agitation. Again, $70 \mu \mathrm{l}$ Avidin-FITC mix was placed onto each slide. The slides were covered with a coverslip and incubated in the moist chamber for a minimum of 40 minutes at $37^{\circ} \mathrm{C}$.

After finishing the above amplification step, the final rinsing was carried out. The coverslips were removed and rinsed twice with 4 X SSC/0.05 \% Tween 20 for 5 minutes each at $37{ }^{\circ} \mathrm{C}$ with agitation. The slides were rinsed once with 2 X SSC for 2 minutes and then rinsed twice with PBS for 2 minutes respectively.

5.3.1.6. Staining and viewing of chromosomes

The chromosomes were stained in $5 \mu \mathrm{~g} / \mathrm{ml}$ of propidium iodide in PBS for 5 minutes with agitation. The slides were then rinsed three times in PBS for 20 seconds each with agitation. The excess PBS on the slides was removed by tapping on paper towel and $80 \mu \mathrm{l}$ of PPD11 (pphenylenediamine dihydrochloride, pH 11) (Lemieux et al., 1992) mountant was placed on the slide. A 24 X 60 mm coverslip were placed onto the slide and the excess mountant was removed. The slides were dried and then sealed with nail varnish.

The slides were examined under blue excitation to give yellow FISH signals and orange stained chromosomes. Photos were then taken of well spread metaphases using colour-positive slide film (ASA 400, Fujichrome).

5.3.1.7. Scoring of FISH signals

FISH signal, appearing as yellow grains on R-banded chromosomes, was scored and the data plotted onto pig standard R-band ideograms of about 300 bands (Gustavsson, 1988). 20 cells were counted in each animal (No 167 and No 115) for each of the PERV-A and PERV-B probes.

5.3.1.8. Statistical analysis of hybridisation signals

The $\mathrm{Z}_{\text {max }}$ test (Ewens et al., 1992) was used in this study to analyse the cumulative FISH data from 20 metaphase cells to determine the significance of each hybridisation location. This test was originally designed for analysing grain counts from radioactive in situ hybridisation but is ideally suited for the present situation where there are multiple sites of hybridisation which must be distinguished from background labelling. The null hypothesis is that there is no preferred site of hybridisation. This hypothesis is equivalent to the assumption that any given hybridisation event will occur on segment i with probability p_{i} ($p_{i}=$ length of segment i, relative to the length of all chromosomes combined) and is to be tested against the alternative hypothesis that there is some (unknown) segment, called segment j, containing a hybridisation site at which there is an increased probability of hybridisation. In statistical terms, if $\operatorname{Prob}(i)$ is the probability of hybridisation to segment i, the null hypothesis and alternative hypothesis become

Ho: $\operatorname{Prob}(i)=p_{i}$,
$\mathrm{H}_{1}: \operatorname{Prob}(i)=\theta p_{i}, \quad i \neq j$,
$\operatorname{Prob}(j)=1-\theta+\theta p_{i}$
where θ is an unknown parameter $(0 \leq \theta \leq 1)$,
j is an unknown number of set $(1,2, \ldots, k)$
(Ewens et al., 1992).

To calculate $Z_{\text {max }}$, the test statistic Z_{i} is calculated for each segment i using the equation.

$$
\left.Z_{i}=\left(n_{i}-n p_{i}\right) / \sqrt{n p_{i}(1-} p_{i}\right)
$$

where $n_{i}=$ the number of grains counted in $\mathrm{i}^{\text {th }}$ chromosomal segment
$n=$ total number of grains
$p_{i}=$ length of segment i, relative to the length of all chromosomes combined
(Ewens et al., 1992).

The site(s) giving the highest Z_{i} (ie $Z_{\max }$) is identified. If this value is significant as judged by comparison with threshold values provided by Ewens et al. (1992) (see Table 5.2), the site(s) is eliminated from the analysis. A new set of Z_{i} are calculated excluding the significant site, and the next $Z_{\text {max }}$ is identified and tested for significance. The process is applied recursively until $Z_{\max }$ is no longer significant.

Table $5.25 \%, 1 \%$, and 0.1% significance points for $Z_{\text {max }}$ (taken from Ewens et al., 1992).

k^{1}	5%	1%	0.1%
70	3.19	3.63	4.18
80	3.23	3.66	4.21
90	3.26	3.69	4.24
100	3.29	3.72	4.26
110	3.32	3.74	4.29
120	3.34	3.77	4.31
130	3.36	3.79	4.32
140	3.39	3.80	4.34
150	3.40	3.82	4.35

${ }^{1}$ number of segments being tested.

5.3.2. PCR conditions for somatic cell hybrid mapping

PCR amplication was performed using 20 ng of somatic cell hybrid panel DNAs, $1 \times$ PCR buffer (Perkin Elmer), $2 \mathrm{mM} \mathrm{MgCl} 2,40 \mu \mathrm{M}$ each of dNTPs, 0.5 unit of AmpliTaq Gold DNA polymerase (Perkin Elmer) and 400 nM of each primer (Table 5.1) in a $25 \mu 1$ reaction volume. The PCR cycling conditions included an initial denaturation of 1 min at $95^{\circ} \mathrm{C}$ followed by 35
cycles of 30 seconds at $95^{\circ} \mathrm{C}, 30$ seconds at $60^{\circ} \mathrm{C}$, and 30 seconds at $72{ }^{\circ} \mathrm{C}$, with a final 20 minutes extension at $72{ }^{\circ} \mathrm{C}$ using a PTC-100 Programmable Thermal Controller (MJ Research, Inc).

5.4. Results

5.4.1. Incorporation of biotin

The incorporation of biotin was inferred from the incorporation of tritium tracer in the BioNick labelling process. Table 5.3 shows incorporation \% for the tritium label estimated by comparing the counts incorporated into the probe with the total count for the PERV-A and PERV-B labelling reactions. Noting that $5 \mu \mathrm{l}$ of 0.1 mM biotin were used in the BioNick process, The biotin incorporation was estimated from these percentages (Table 5.3). It is evident that the efficiency of biotin incorporation into the PERV-A and PERV-B probes is very similar, indicating that there should be no difference in FISH signals due to properties of the probes.

Table 5.3 Calculated incorporation rate of tritium ($\left.{ }^{3} \mathrm{H}\right)$ and the amount of biotin incorporation for each PERV probe labelling reaction.

PERV-A			
Probe counts (cpm)	Total Counts (cpm)	${ }^{3} \mathrm{H}$ incorporation	Biotin incorporation
3863	38903	9.93%	49.65 pM
Probe counts (cpm)	Total Counts (cpm)	${ }^{3} \mathrm{H}$ incorporation	Biotin incorporation
4080	43293	9.42%	47.1 pM

5.4.2. Chromosomal distributions of PERVs

For animal 115 with the PERV-A probe, 478 grains were found distributed over 106 chromosomal segments (Fig 5.3), giving an average density of 4.51 grains per segment. 745 grains were found over 131 positions from animal 167 with the same PERV-A probe (Fig 5.4), giving a higher mean grain density of 5.69. The pooled PERV-A FISH signals across these two animals $(115+167)$ are presented on a secondary plot with mean density of 7.84 (1223 grains/156 chromosomal positions) (Fig 5.5).

Fig 5.3 The locations of PERV-A in animal 115 detected by FISH. The vertical scale is number of grains. The 5% significance threshold for the $\mathbf{Z}_{\text {max }}$ test is indicated. Arrows indicate most likely band location of PERVs.

Fig 5.4 The locations of PERV-A in animal 167 detected by FISH. The vertical scale is number of grains. The 5% significance threshold for the $\mathbf{Z}_{\text {max }}$ test is indicated. Arrows indicate most likely band location of PERVs.

Fig 5.5 The results of PERV-A hybridisation pooled across two animals ($115+\mathbf{1 6 7}$). The vertical scale is number of grains. The $\mathbf{5 \%}$ significance threshold for the $\mathbf{Z}_{\text {max }}$ test is indicated. Arrows indicate most likely band location of PERVs.

Similarly, hybridisation of the PERV-B probe to metaphases from animal 115 and animal 167 were scored (Fig 5.6 and Fig 5.7). Pooled PERV-B FISH results were also obtained (Fig 5.8). The mean grain density with this probe is 3.6 (342 grains/95 positions) for animal 115. Again animal 167 had a higher mean density of 4.44 (560 grains $/ 126$ positions). The pooled mean density is 6.05 (902 grains/ 149 positions) from the results across two animals ($115+167$). The hybridisation data for animals 115,167 , and the pooled results across the two animals for the PERV-A and PERV-B probes at each chromosomal locations are presented in Appendix 5.1.

Fig 5.6 The locations of PERV-B in animal 115 detected by FISH. The vertical scale is number of grains. The 5% significance threshold for the $\mathbf{Z}_{\text {max }}$ test is indicated. Arrows indicate most likely band location of PERVs.

Fig 5.7 The locations of PERV-B in animal 167 detected by FISH. The vertical scale is number of grains. The 5% significance threshold for the $\mathbf{Z}_{\text {max }}$ test is indicated. Arrows indicate most likely band location of PERVs.

Fig 5.8 The results of PERV-B hybidisation pooled across two animals (115 + 167). The vertical scale is number of grains. The 5% significance threshold for the $Z_{\text {max }}$ test is indicated. Arrows indicate most likely band location of PERVs.

The results just quoted (and summarised in Table 5.4) show that the PERV-A probes generated stronger signal (more grains) that the PERV-B. Also it is evident that the overall signal intensity is stronger in animal 167 than animal 115. A difference in the quality of the cultures, where cells from animal 167 grew better than cells from 115 , which had to be treated with Fungizone, is the likely explanation for this difference.

Table 5.4 Chi-square contingency analysis of number of grains for PERV-A and PERV-B probes in animals 115 and 167. The expected values based on the null hypothesis of equal total numbers of grains for each probe and each animal are shown in parentheses.

Animal	Probe		
	PERV-A	PERV-B	Total
115	478	342	820
	(471.93)	(348.07)	1305
167	745	560	
Total	(751.07)	(553.93)	2125

$X_{1}^{2}=0.299, \mathrm{p}=0.585$

Chi-square homogeneity analysis (Mead et al., 1993) shows that there is no interaction between animal and probe (Table 5.4). This means that it is valid to test the pooled marginal totals separately for the effects of animal and probe against the null hypothesis of equal number of grains (signal intensity). For the comparison of PERV-A versus PERV-B signal intensity, the result is $X^{2}=48.79$ with one degree of freedom, indicating a very highly significant deviation from expectation: the PERV-A probe hybridised much more strongly than PERV-B, presumably due to a larger number of PERV-A inserts. Another chi-square test was performed to compare the results of the two animals. The result provides even more significant evidence $\left(X_{1}^{2}=\right.$ 110.69) for deviation from the expected equal signal intensity. The most likely explanation for this difference is the superior quality of the chromosome cultures and spreads from animal 167.
$\mathrm{Z}_{\text {max }}$ test statistics have been calculated for the hybridisation data from animals 115 and 167, and the pooled results across the two animals (Tables 5.5 to 5.10). In this analysis, each site of hybridisation was taken as a different segment. It was assumed as a first approximation that each segment, is the same size. It should be noted that since both animals were males, segments on the sex chromosomes (X and Y chromosomes) occur only half as often as autosomal segments in these two animals, and this has been taken into account in the $\mathrm{Z}_{\text {max }}$ statistic.

Table $5.5 \mathrm{Z}_{\text {max }}$ test for PERV-A hybridisation in animal 115 (20 cells scored).

Chromosomal location	Number of grains	$\mathrm{Z}_{\text {max }}$	Significance level
13 q 4.1	46	19.064	0.1 \%
Yq	14	9.049	
5q2.1	22	8.549	
12p1.3	18	6.845	
Yq	9	6.117	
1 q 1.2	16	6.031	
Yp1.1	8	5.714	
7 p 1.3	15	5.679	
9q2.4	15	5.679	
Xp2.1	6	4.797	
12p1.2	12	4.552	
Yq	5	4.163	1%
1 q 1.8	11	4.118	
3 p 1.4	11	4.118	
17q1.4	11	4.118	
2p1.4	10	3.856	
6 q 3.5	10	3.856	
7q1.5	9	3.464	5%
12p1.4	9	3.464	
12q1.1	9	3.464	
5p1.1	8	3.223	N.S.
6p1.5	8	3.223	
6 q 3.4	8	3.223	
13 q 4.1	8	3.223	
Xp2.2	4	2.920	
Xq1.3	4	2.920	

Table $5.6 \mathrm{Z}_{\text {max }}$ test for PERV-A hybridisation in animal 167 (20 cells scored).

Chromosomal location	Number of grains	$\mathrm{Z}_{\text {max }}$	Significance level
13q4.1	46	16.467	0.1 \%
Yp1.1	22	12.979	
9q2.4	36	12.840	
12p1.3	32	11.508	
17 q 1.4	30	10.962	
7 q 1.5	27	9.927	
Yq	14	9.364	
5q2.1	24	8.823	
5q1.2	19	6.920	
6 q 3.5	19	6.920	
5p1.2	17	6.265	
12p1.2	17	6.265	
1q1.2	16	6.048	
7 p 1.3	16	6.048	
12p1.4	16	6.048	
6 p 1.4	15	5.955	
9q2.5	15	5.955	
1q1.1	12	5.408	
2p1.4	13	5.311	
3 p 1.4	13	5.311	
5p1.3	13	5.311	
5q1.1	13	5.311	
12q1.1	13	5.311	
Xp2.1	7	5.061	
Yp1.3	6	4.440	
12q1.2	9	3.741	1%
5p1.4	8	3.211	N.S.
7 q 1.4	8	3.211	
13 q 4.3	8	3.211	

Table $5.7 \mathrm{Z}_{\text {max }}$ test for PERV-A hybridisation data pooled across two animals (115+167).

Chromosomal location	Number of grains	$\mathrm{Z}_{\text {max }}$	Significance level
13 q 4.1	92	29.346	0.1 \%
12p1.3	50	15.790	
9q2.4	51	15.738	
Yp1.1	30	15.639	
5q2.1	46	14.713	
17q1.4	41	13.179	
Yq	23	13.166	
7 q 1.5	36	11.549	
$1 \mathrm{q1.2}$	32	10.224	
7 p 1.3	31	10.041	
6 q 3.5	29	9.676	
12p1.2	29	9.676	
Yq	15	9.533	
Xp2.1	13	8.499	
5p1.2	25	8.395	
12p1.4	25	8.395	
3 p 1.4	24	8.309	
5q1.2	24	8.309	
2p1.4	23	8.217	
9q2.5	22	8.141	
12q1.1	22	8.141	
5q1.1	20	7.551	
6 p 1.4	20	7.551	
1 q 1.8	18	6.901	
1 p 1.1	16	6.043	
12q1.2	16	6.043	
5p1.3	15	5.777	
13 q 4.3	14	5.506	
Yp1.3	7	5.169	
6p1.5	13	5.081	
5p1.4	12	4.753	
6p1.3	12	4.753	
6 q 3.4	12	4.753	
13 q 4.1	12	4.753	
16q2.1	12	4.753	
7 q 1.4	11	4.674	
Xp2.2	6	4.524	
Yq	6	4.524	
5p1.2	10	4.181	
3 p 1.5	9	3.667	
17q2.1	9	3.667	
1 q 1.7	8	3.198	
2q2.1	8	3.198	
12q1.3	8	3.198	
14q1.3	8	3.198	
17q1.2	8	3.198	

Table $5.8 \mathbf{Z}_{\text {max }}$ test for PERV-B hybridisation in animal 115 (20 cells scored).

Chromosomal location	Number of grains	$\mathrm{Z}_{\max }$	Significance level
12 q 1.1	38	17.995	0.1%
14 q 1.3	32	15.873	
16 q 2.1	21	10.475	
9 q 2.4	19	9.762	
17 q 2.1	18	9.588	
17 q 2.1	13	6.816	
12 q 1.2	11	5.750	
1 p 2.2	9	4.595	
5 q 2.1	9	4.595	
11 p 1.3	9	4.595	
12 p 1.2	8	4.333	
5 q 1.2	7	3.739	
7 p 1.2	7	3.739	0
14 q 1.4	6	3.212	
17 q 2.2	6	3.212	N.S.

Table 5.9 $\mathrm{Z}_{\text {max }}$ test for PERV-B hybridisation in animal 167 (20 cells scored).

Chromosomal location	Number of grains	$\mathrm{Z}_{\text {max }}$	Significance level
12q1.1	50	21.386	0.1 \%
9q2.4	31	14.252	
14 q 1.3	33	14.154	
16q2.1	33	14.154	
1 p 2.2	22	9.988	
17q2.1	18	8.102	
Xp1.3	10	8.024	
11 p 1.3	17	7.769	
5q1.2	16	7.413	
13 q 4.1	15	7.035	
17q2.1	15	7.035	
9q2.5	12	5.614	
12p1.2	12	5.614	
12q1.2	12	5.614	
11 p 1.1	11	5.416	
17 q 1.3	10	4.907	
8p2.2	9	4.504	
Yq	5	4.303	
7 p 1.1	8	3.933	1%
14 q 1.5	8	3.933	
Xp2.1	4	3.467	5 \%
5q2.1	7	3.417	
7 p 1.2	7	3.417	
9q2.3	7	3.417	
5q1.1	6	2.928	N.S
16 q 2.2	6	2.928	
17q1.2	6	2.928	

Table $5.10 \mathrm{Z}_{\text {max }}$ test for PERV-B hybridisation in pooled across two animals (115+167).

Chromosomal location	Number of grains	$\mathrm{Z}_{\text {max }}$	Significance level
12q1.1	88	33.032	0.1 \%
14q1.3	65	25.151	
16 q 2.1	54	21.471	
9q2.4	50	20.548	
17q2.1	36	14.812	
1 p 2.2	31	12.884	
17q2.1	28	11.790	
11 p 1.3	26	11.121	
5q1.2	23	9.891	
12q1.2	23	9.891	
12p1.2	20	8.826	
Xp1.3	11	8.165	
$13 q 4.1$	17	7.415	
5q2.1	16	7.032	
9q2.5	16	7.032	
7 p 1.2	14	6.217	
14 q 1.5	14	6.217	
11p1.1	13	5.904	
Yp1.1	7	5.633	
17q1.4	12	5.437	
7 p 1.1	11	4.948	
16 q 2.2	11	4.948	
8p2.2	10	4.648	
9q2.3	10	4.648	
7 p 1.2	9	4.197	0.5 \%
17q1.2	9	4.197	
1p2.1	8	3.707	5%
5q1.1	8	3.707	
17q2.3	8	3.707	
Xp2.1	4	3.254	N.S.
Xp1.1	4	3.254	
7p1.3	7	3.246	
12p1.3	7	3.246	
16 q 2.1	7	3.246	

5.4.2.1. PERV-A locations

There are 20 significant sites in animal 115 and 26 in animal 167 (Table 5.5 and Table 5.6). For the pooled data, there are 41 significant sites (Table 5.7). However, it is highly unlikely that there are so many sites of PERV-A insertion. In many cases, significant sites are in adjacent or contiguous bands and are almost certainly the results of "spillover" of signal between bands. To choose one example from many, the site at 9 q 2.5 in Fig 5.5 is almost certainly spillover from the major peak at 9q2.4.

After making allowances for adjacent/contiguous significant sites, there are 14 major PERV-A peaks identified in animal 115 and 17 major PERV-A peaks identified in animal 167 (indicated with vertical arrows in Fig 5.3 and Fig 5.4). The differences in PERV-A major peaks between 167 and 115 are on chromosomes 1,5 and 6 . In chromosome 1 , there are two significant peaks (1q1.2 and 1q1.8) observed in animal 115 but only one location (1q1.2) was significant in animal 167. The peak in the position 1q1.8 is significant in the pooled results across two animals (Fig 5.5). Animal 167 has a peak at the same location but it falls below the significant threshold in the analysis of 167 data alone. On the basis of pooled results it is assumed that the location 1q1.8 is a genuine PERV-A location in Westran pigs. There are four significant locations (5p1.3, 5 p 1.2 , 5 q 1.2 and 5 q 2.1) on chromosome 5 in animal 167 . Only one location (5q2.1) was observed in animal 115. When the pooled results across two animals were analysed, all four locations are significant. It is quite clear from the pattern of peaks and troughs that chromosome 5 has at least 3 PERVs sites. These sites are apparent in animal 115 but due to the lower overall hybridisation intensity are not significant in this animal. Similarly, the site on 6 p 1.4 is significant in animal 167 but is not significant in animal 115, lying below the significance threshold in the analysis of 115 data alone. The significant pooled results indicate that the location 6 p 1.4 is also a genuine PERV-A location in Westran pigs.

Thirteen of the significant PERV-A major peaks identified above (1q1.2, 2p1.4, 3p1.4, $5 q 2.1,6 q 3.8,7 \mathrm{p} 1.3,7 q 1.5,9 \mathrm{q} 2.4,12 \mathrm{p} 1.3,13 \mathrm{q} 4.1,17 \mathrm{q} 1.4, \mathrm{Xp} 2.1, \mathrm{Yq})$ are identical in animals 115 and 167, confirming that these locations have genuine PERV-A insertions. There are another five strongly suggestive PERV-A locations (1q1.8, 5p1.3, 5p1.2, 5q1.2, 6p1.4), which are significant in one animal but are present below the significance threshold in the other animal. The site at 16 q 2.1 is also a suggestive PERV-A location: although it is significant only in pooled results, the pattern of peaks is identical in both animals. Therefore there are 19 PERV-A locations, including suggestive locations, identified in the Westran line. The results are quite consistent between the two Westran animals, as expected. However, the Westran PERV-A locations are quite different from those of Large White pig (Table 5.11).

Table 5.11 Sites of significant major PERV-A peaks in Westran animals 115, 167 and pooled results for these two animals. The published PERV-A locations in Large White pig are also presented.

Animals			Published PERV-A locations ${ }^{1}$
115 (20 cells)	167 (20 cells)	115+167 (40 cells)	
$\begin{aligned} & \hline \text { 1q1.2 } \\ & \text { 1q1.8 } \end{aligned}$	1q1.2	$\begin{aligned} & \hline \text { 1q1.2 } \\ & \text { 1q1.8 } \end{aligned}$	
			$\begin{aligned} & \text { 1q2.1 } \\ & \text { 1q2.3 } \\ & \text { 1q2.4 } \end{aligned}$
2p1.4	2p1.4	2p1.4	
3 p 1.4	3 p 1.4	3 p 1.4	
5q2.1	5p1.3	5p1.3	
	5 p 1.2	5 p 1.2	
	5q1.2	5q1.2	
	5q2.1	5q2.1	
6q3.5	6 p 1.4	6 p 1.4	
	6 q 3.5	6 q 3.5	
$\begin{aligned} & 7 \mathrm{p} 1.3 \\ & 7 \mathrm{q} 1.5 \end{aligned}$	7 p 1.3	7 p 1.3	
	7 q 1.5	7q1.5	
			8p1.2
9q2.4	9q2.4	9q2.4	
12p1.3	12p1.3	12p1.3	
13q4.1	13q4.1	13q4.1	
			13 q 4.2
			13 q 4.3
			$13 q 4.9$
		16q2.1	
17q1.4	17q1.4	17 q 1.4	
Xp2.1	Xp2.1	Xp2.1	
Yq	Yp1.1	Yp1.1	Yp1.2

${ }^{1}$ Based on Rogel-Gaillard et al. (1999).

5.4.2.2. PERV-B locations

There are 10 significant sites of hybridisation in animal 115 and 17 significant sites in animal 167 (Table 5.8 and Table 5.9). However, after allowing for the adjacent and contiguous sites apparently affected by "spillover" of hybridisation signal (Fig 5.6 and Fig 5.7), it is reasonable to conclude that there are 9 significant major peaks in animal 115 and 13 in animal 167. The differences between animals 115 and 167 are the peaks on chromosomes $8,13, X$, and Y. All these different PERV-B locations are significant in animal 167 but are not above background in animal 115 (Fig 5.6 and Fig 5.7). However, they are significant in the pooled results across the two animals (Fig 5.8).

Nine significant PERV-B major peaks (1p2.2, 5q2.1, 7p1.2, 9q2.4, 11p1.3, 12q1.1, 14q1.3, $16 q 2.1,17 q 2.1$) are identical in animals 115 and 167 , confirming these 9 as unequivocal PERVB locations in the Westran line. There are 4 more suggestive locations ($8 \mathrm{p} 2.2,13 \mathrm{q} 4.1, \mathrm{Xp} 1.3$, Yq) in Westran pigs. When these PERV-B locations are compared with the published PERV-B locations in Large White (Gogel-Galliard et al., 1999), 4 PERV-B sites, located on chromosomes $7,9,13$, and 17 , are identical or very close, indicating that these are probably common PERV-B insertions in these two breeds (Table 5.12).

Table 5.12 Significant PERV-B location in animals 115, 167 and pooled results for these two animals. The published PERV-B locations in a Large White pig are also presented.

Animals			Published PERV-B locations 1
$115(20$ cells $)$	$167(20$ cells $)$	$115+167(40$ cells $)$	
1 p 2.2	1 p 2.2	1 p 2.2	4 p 1.1
5 q 2.1	5 q 1.2	5 q 1.2	$7 \mathrm{p} 1.2 \rightarrow \mathrm{p} 1.1$
7 p 1.2	7 p 1.1	7 p 1.2	
	8 p 2.2	8 p 2.2	9 q 2.6
9 q 2.4	9 q 2.4	9 q 2.4	10 p 1.2
			11 q 1.4
11 p 1.3	11 p 1.3	11 p 1.3	
12 q 1.1	12 q 1.1	12 q 1.1	13 q 4.2
	13 q 4.1	13 q 4.1	14 q 2.8
14 q 1.3	14 q 1.3	14 q 1.3	
16 q 2.1	16 q 2.1	16 q 2.1	17 q 2.1
17 q 2.1	17 q 2.1	17 q 2.1	
	Xp1.3	Xp1.3	
	Yq	Yq	

${ }^{1}$ Based on Rogel-Gaillard et al. (1999)

5.4.3. A physical location for a PERV junction fragment

To evaluate the method presented in Fig 5.2, the PERV junction fragment cloned by Dr Y-Mo Deng was mapped on the somatic cell hybrid panel. Analysis of the amplification pattern in the 27 porcine-rodent somatic cell hybrid clones (Yerle et al., 1996) allowed regional assignment of the PERV junction PCR product to porcine chromosome 17 (1/2 q2.1) - q2.3 with 98% concordance (Chevalet et al., 1997) (Fig 5.9, Fig 5.10 and Appendix 5.2).

Rogel-Gaillard et al. (1999) have reported that two BAC clones containing PERV-B envelope sequences map to porcine chromosome 17 q 2.1 in a Large White pig. This suggests that the PERV junction reported here is the same as the PERV-B site mapped by them. Also, analysis of PERV-B FISH data in the inbred Westran pig shows strong positive signals at this same location on pig chromosome 17 with a PERV-B envelope sequence probe (See Fig 5.6, 5.7 and 5.8).

Fig 5.9 PCR results of the PERV-B junction fragment in the $\mathbf{2 7}$ somatic cell hybrid clones from the French panel, separated in a 2% agarose gel. Clones 1-19, hybrid cells with Chinese hamster background; Clones 20-27, hybrids with mouse background. Note that the hybrid clones 21 and 22 are positive for the $\mathbf{1 1 5}$ bp fragment, as is the pig control DNA template (P). Mouse and hamster controls were run on a separate gel and no PCR products were obtained under the same PCR conditions.

Pig chromosome 17

Fig 5.10 Diagram representing the presence of fragments of porcine chromosome 17 in each hybrid clone deduced from cytogenetic and genetic analysis of the hybrid panel (Yerle et al., 1996). Note that amplification in clones 21 and 22 is consistent with the site being located in region C (ie $17 q^{1 / 2} \mathbf{2} .1$ - q2.3).

5.5. Discussion

To investigate the distributions of PERVs in the Westran line of pigs, PERV-A and PERVB envelope probes were hybridised onto the metaphase chromosome spreads of two highly inbred and closely related animals. The FISH results show that there are at least 13 PERV-A and 9 PERV-B definite locations and a further 6 PERV-A and 4 PERV-B possible locations. The higher number of locations for PERV-A than PERV-B is more like the pattern that Le Tissier et al. (1997) found for European pigs than for Asian pigs and is contrary to the expectation from analysis of Westran mitochondrial DNA sequence. However the European versus Asian distribution of PERV-A and PERV-B was not accurately estimated by Le Tissier et al. (1997) and some Asian breeds could possibly have more PERV-A than PERV-B. Alternatively the Asian mitochondrial DNA found in Westran pigs may be the result of introgression into a predominantly European nuclear genetic background. Le Tissier et al. (1997) showed that PERV-A proviruses are present at between 10 to 23 copies and PERV-B between 7 to 12 copies in different pig breeds, providing without any information of PERV locations. On average, inbreeding is as likely to cause loss of a PERV site as it will fixation. Thus an inbred line might be expected to have fewer sites compared with an outbred animal. However, there is a possibility that some PERV locations could not be detected by the method used in the present studies because of mismatch between the probe and target causing weak hybridisation signals.

FISH photos are not presented because it is impossible to illustrate representative hybridisation. The average number of grains per site from 20 metaphase cells is about 17 for PERV-A in animal 167 and the highest number of grains per site is 46 on 1q4.1. If homozygous
hybridisation signals are present for all 20 cells, then the maximum possible number of grains per site is 80 (20 cells X 2 chromosomes X 2 chromatids). Therefore in most cells, particular specific sites are not represented.

Comparison of the FISH results between animal 115 and 167 indicates consistent hybridisation patterns except for four locations detected with the PERV-B probe ($8 \mathrm{p} 2.2,13 q 4.1$, Xp1.3, Yq) (Fig 5.6 and Fig 5.7). Based on the high level of inbreeding and close relationship of these animals, these differences are unlikely to be due to differences in the presence of hybridisation targets. In each case, the sites are present in animal 167 which has an overall higher signal intensity and absent from 115. Thus it would appear that they slipped below the threshold for detection in animal 115, due to the lower efficiency of hybridisation and/or signal detection in this animal.

The peaks over 12 p 1.3 and Yp1.1 with the PERV-A probe (Fig 5.5) and 17 q 2.1 with the PERV-B probe (Fig 5.8) are quite broad compared other narrow peaks such as the PERV-A peak at $13 q 4.1$. These locations may result from more than one PERV insert, even though they have been counted as one single PERV location at the point of the highest (major) peak. Clusters of retroviral integration sites have been reported in three different chromosomal locations, 1q2.3, 3p1.1 and 7p1.1, in pig (Rogel-Gaillard et al., 1999). Similar retroviral clusters have been reported in mouse (Frankel et al., 1990; Tereba, 1983) and chicken (Tereba, 1983).

A PERV-B site has been mapped to 7p1.2 (Fig 5.8), very close to the known location of the swine major histocompatibility complex (SLA complex) class I region. Two distinct PERV-B integration loci, position 7 p 1.1 and $7 \mathrm{p} 1.2-1.1$, were identified very close to the SLA complex using BAC clones as FISH probes. Therefore it is very likely that this is one of the SLA-close PERV-B locations mapped by Rogel-Gaillard et al. (1999) (Table 5.12).

Hybridisation of PERV-A and PERV-B probes to the same site is also possible. There are five possible sites ($5 \mathrm{q} 2.1,9 \mathrm{q} 2.4,13 \mathrm{q} 4.1,16 \mathrm{q} 2.1, \mathrm{Yp} 1.1$) showing hybridisation peaks in the same chromosomal locations with PERV-A and PERV-B probes (Fig 5.5 and Fig 5.8). There are three possible explanations. First, PERV-A and PERV-B insertions may lie close to each other. Second, there are small regions of highly conserved sequence between PERV-A and PERV-B probes where the forward and reverse primers are located (See Appendix 4.1 for the sequence alignment between PERV-A and PERV-B env gene). This could obviously contribute to some cross-hybridisation although the cross signal would be expected to be very small. Third, recombinant PERVs (Fig 4.8) will also generate hybridisation signals with both probes, likely to be more equal in intensity. Sequence analysis of PERV clones (Chapter 4) has shown the existence of three possible types of recombinant PERV clones. These three sites might correspond to these three different recombinant PERVs.

When the PERV FISH signals were counted, there was some confusion over the identity of chromosome 5 and 10. These chromosomes are of similar size and their R-banding pattern is very similar. This may have caused some mis-allocation of the hybridisation signal between the chromosomes. Similarly, the identification of arms was difficult for chromosome 12. The sizes of the p-arm and q-arm are very similar for SSC12 and the R-banding pattern is almost identical. However, for all other chromosomes, there was no confusion of chromosome or arm identification (Webb, pers. comm.).

The PERV-A locations in Westran pigs, compared with Large White pig, are quite different (Table 5.11). Rogel-Gaillard et al. (1999) reported 8 PERV-A locations on four different chromosomes $(1,8,13$, and Y$)$ of their Large White pig. On the other hand, consistent significant PERV-A sites are observed on 13 different chromosomes in Westran pigs. The PERV-A locations on 10 chromosomes $(2,3,5,6,7,9,12,16,17$, and X$)$ are so far unique to Westran pigs. However, a PERV-A site on the Y chromosome seems to be the same in Large Whites and the Westran line. On chromosome 1, there are two significant PERV-A sites (1q1.2 and 1 q 1.8) in Westran pig and 3 sites (1q2.1, 1q2.3, 1q2.4) in the Large White pig. Of these, only the site at 1q1.8 in Westran and 1q2.1 in the Large White pig could possibly be the same and mis-allocation is highly unlikely given that the sites are far away. It is possible that the significant PERV-A site on 13q4.1 in Westran pigs could be the same as that in the Large White pig allocated to the adjacent location at 13 q 4.2 .

About half of the PERV-B locations appear to be located in the same or adjacent chromosomal bands in Westran and Large White (Table 5.12). They are the sites on chromosomes 7, 9, 13, and 17. Seven different chromosomes (chromosomes 1, 5, 8, 12, 16, X and Y) have PERV-B sites in Westran pigs which are absent in Large White. Two chromosomes (chromosomes 4 and 10) have PERV-B inserts in Large White which are absent in Westran pig. For chromosomes 11 and 14, a single PERV-B site has been identified in Westran and Large White. However, the locations are so far apart (14q1.3 in Westran and 14q2.8 in Large White), being located on different arms for chromosome 11 (11p1.3 in Westran and 11q1.4 in Large White), that they clearly represent different insertions in Large White and Westran pigs. Thus as expected, different pig breeds have some identical PERV insertions in their genome but also have other unique locations.

Laboratory was not set up for Southern hybridisation at the time these experiments were performed. Further it was hoped that sequence and FISH analysis would give more definitive results than Southern hybridisation. It would therefore be desirable in future to use Southern hybridisation to attempt an independent estimate of PERV copy number in Westran pigs.

Finally it has been demonstrated that a strategy for PCR amplification of PERV insertion junctions without cloning, employing PERV and SINE primers, actually works. A physical
location of a genuine junction PERV fragment was obtained using a somatic cell hybrid panel. The mapping data for this first junction fragment obtained in this way is consistent with an identified PERV-B site on porcine chromosome 17. In the very near future, this method will be extended to all PERV sites in the genome so that ultimately simple PCR genotyping tests can be devised using the unique sequence tagged site and PERV sequence to test for the presence of all PERVs in the genome.

Chapter Six

Discovery of Endogenous Retrovirus in Collared Peccaries (Tayassu tajacu)

6.1. Introduction

Peccaries belong to the order Artiodactyla (even-toed ungulates) and to the suborder Suiformes, in which three families are listed, namely Hippopotamidae (hippos), Tayassuidae (peccaries) and Suidae (pigs) (Ruvinsky and Rothschild, 1998; Miyamoto et al., 1993). They look like small hairy pigs, have a snout disc, long hair, thin legs, small eyes, and small rounded ears (Fig 6.1). Fossil records of Tayassuidae have been found in Eurasia and even in Africa suggesting that they were separated from Suidae not later than in the Oligocene era (30 million years before present, MYBP). However, modern peccary species live only in the Americas (Ducrocq, 1994; Hendey, 1976). The family Tayassuidae seems to have originated in South East Asia and then migrated into the New World, because the most morphologically primitive fossils are found in Thailand (Ducrocq, 1994).

According to the most recent classification, the Tayassuidae family includes three extant species; Collared peccary (Tayassu tajacu or Pecari tajacu), White-lipped peccary (Tayassu pecari) and Chacoan peccary (Catagonus wagneri) (Ruvinsky and Rothschild, 1998). The diploid chromosome numbers of Collared peccary, White-lipped peccary and Chacoan peccary are 30, 26 and 20 respectively (Benirschke et al., 1985; Benirschke and Kumamoto, 1989; Hufty et al., 1973). Controversy remains about the chromosome evolution of peccary species. Anatomical evidence suggests that the Chacoan peccary is the most primitive species compared to the Collared peccary and White-lipped Peccary. This suggests that the chromosome number of 26 for the White-lipped Peccary and 30 for the Collared peccary have evolved from the lower Chacoan peccary number through chromosomal fission (Todd, 1985). On the other hand, others have proposed that chromosomal fusion has reduced the large chromosome number found in the Collared peccary to smaller numbers in the White-lipped and Chacoan peccaries (Benirschke and Kumamoto, 1989; Hufty et al., 1973).

The phylogenetic relationships among species within the Suiformes have been examined using sequence data from the gene for 12 S rRNA. The results show monophyly of pigs and peccaries within the order Artiodactyla (Douzery and Catzeflis, 1995). Mitochondrial DNA sequence has also been used. The estimated divergence time between Suidae and Tayassuidae, based on the analysis of mitochondrial cytochrome b sequences, is 33 to 37 MYBP (Theimer and Keim, 1998) and 31 to 33 MYBP (Randi et al., 1996). The analysis of SINE (Short Interspersed Nuclear Element) and LINE (Long Interspersed Nuclear Element) elements has confirmed the 12 S rRNA results, namely that pigs and peccaries form a monophyletic group to the exclusion of hippopotamuses (Nikaido et al., 1999). Analysis of SINE sequences has suggested that the separation of Tayassuidae and Suidae occurred about 43.2 MYBP (Yasue and Wada, 1996). However, by contrast, recent analysis of 13 swine PRE-1 (a swine SINE) loci in peccaries suggested the divergence time between the two families was about 16.8 MYBP (Sulandari et al., 1997), though this divergence time is not consistent with the fossil records described above.

The C-type retroviruses are widespread as both endogenous and exogenous agents within mammalian species including humans (Tristem et al., 1996b). Tristem et al. (1996b) designed degenerate primers based on conserved motifs in the protease and reverse transcriptase gene of Murine leukemia viruses (MLVs) for amplifying retroviral sequences in a variety of mammalian species. Other degenerate primers were also designed based on conserved motifs of the retroviral protease and reverse transcriptase protein for the same purpose (Tristem et al., 1996b). These primers are capable of amplifying retroviruses and long terminal repeats (LTR) retrotransposons in wide range of vertebrate taxa including mammals, reptiles, amphibians and fish (Herniou et al., 1998; Martin et al., 1997; Tristem, 1996; Tristem et al., 1996a).

Based on very early work of DNA hybridisation, which has limited sensitivity when the probe and target DNA have diverged, it has been claimed that peccaries do not contain virogene sequences related to the pig and mouse type C-virus (Benveniste and Todaro, 1975). Related viruses were detected by this method in members of the Suidae and in the mouse and this was interpreted as evidence for the horizontal transfer of retroviruses from mouse to pig before the divergence of wart hogs, bush pigs and domestic pigs from a common ancestor, but after divergence of the Suidae and Tayassuidae lineages. It was claimed that this transfer from mouse to the pig lineage occurred about 5 to 10 million years ago. A specific objective of this study was to re-examine peccaries for evidence of C type retroviruses.

Mr. Jaime Góngora visited the University of Sydney from Colombia for three months in 1999 to pursue his interest in the cytogenetics and molecular genetics of peccaries. He brought Collared Peccary (Tayassu Tajacu) genomic DNAs for his research and provided access to these
samples for this research. This provided an opportunity to re-evaluate the older studies on retroviruses in peccaries using modern molecular methods.

The aim of the work reported here is to investigate the existence and nature of endogenous retroviral sequences in the Collared peccary using the degenerate primers of Tristem et al. (1996b).

Fig 6.1 A Collared Peccary (Tayassu tajacu) (Courtesy of Jaime Góngora).

6.2. Materials

6.2.1. The Peccary genomic DNA samples

Five Collared peccary genomic DNAs were supplied by Mr. Jaime Góngora who was a visiting scholar in University of Sydney from Colombia for 3 months in 1999. They were collected in 1999 at Santa Cruz Zoo which is located near Bogota, Colombia.

6.2.2. Primers

6.2.2.1. Degenerate primers

The degenerate primers are based on two motifs conserved in a representative set of C-type retroviruses, especially in MLVs. Retroviral sequences have been selectively and specifically amplified in many different mammalian species using these primers (Tristem, 1996; Tristem et al., 1996b). The primer sequences are presented in Table 6.1. The primers were synthesised by Life Technologies Pty Limited, Victoria, Australia.

Table 6.1 The primer sequences, $\mathbf{P C R}$ conditions $\left(\mathbf{M g C l}_{2}\right.$ concentration and annealing temperature) and two conserved protein motifs from MLVs. The motif LVDTGA is in the protease protein and the motif QYVDDL is in the reverse transcriptase.

Primer sequences 1	MgCl_{2} concentration	Annealing temp.	Peptide motifs
F. 5'-(C/T)TI(T/G)TIGA(T/C)ACIGGIGCI(G/C)A-3' R. 5'-AGIAGGTC(A/G)TCIAC(A/G)TA(C/G)TG-3'	1 mM	$47{ }^{\circ} \mathrm{C}$	LVDTGA QYVDDL

${ }^{1} \mathrm{~F}$: forward primer; R: reverse primer; I in the primer sequences stand for inosine

6.2.2.2. Internal primers

Based on the peccary retroviral sequence information obtained during the present study, internal primers were designed to amplify peccary-specific MLV-homologous PCR products. The primer information is presented in Table 6.2 and the locations of each primer are shown in Fig 6.4.

Table 6.2 The homologous primer sequences, $\mathbf{P C R}$ conditions $\left(\mathbf{M g C l}_{\mathbf{2}}\right.$ concentration and annealing temperature) of the internal primers.

Primer sequences ${ }^{1}$	MgCl_{2} concentration	Annealing Temperature
F. 5'-CTACCGGAGTCAGACGTTAC-3'	2 mM	$60^{\circ} \mathrm{C}$
R. 5'-TTCGATACTCACTGAGGTCC-3'		

${ }^{1} \mathrm{~F}$: forward primer; R: reverse primer

6.3. Methods

6.3.1. PCR conditions

6.3.1.1. PCR conditions for amplifying MLV homologues using degenerate primers

PCR was carried out in a $25 \mu \mathrm{l}$ volume with approximately 100 ng of template genomic DNA, 0.4 mM of each primer, $600 \mu \mathrm{M}$ of each dNTP, $1 \mathrm{mM} \mathrm{MgCl} 2,10 \times$ PCR buffer, and 2.5 units of Taq polymerase. This mixture was overlaid with one drop of mineral oil. Amplification was performed in a PTC-100 Programmable Thermal Controller (MJ Research Inc.) for 45 cycles with denaturation for 1 minute at $95^{\circ} \mathrm{C}$, annealing for 30 seconds at $47^{\circ} \mathrm{C}$ and extension for 1 minute at $72^{\circ} \mathrm{C}$. The final extension was for 20 minutes at $72^{\circ} \mathrm{C}$.

6.3.1.2. PCR conditions for internal primers

AmpliTaq Gold Taq polymerase (Perkin Elmer) was employed. Amplification was performed with initial denaturation for 5 minutes at $95^{\circ} \mathrm{C}$, followed by 35 cycles with denaturation for 30 seconds at $95^{\circ} \mathrm{C}$, annealing for 30 seconds at $60^{\circ} \mathrm{C}$ and extension for 1 minute at $72^{\circ} \mathrm{C}$. The final extension was for 20 minutes at $72^{\circ} \mathrm{C}$.

6.3.1.3. Cycle sequencing reaction

DNA fragments for cycle sequencing were generated using a PTC-100 Programmable Thermal Controller (MJ Research Inc.) with two M13 dye-labelled vector primers (Table 4.2) as described in Section 2.10.2.

6.3.2. Purifying PCR products from agarose gels

To get clean PCR products for cloning, PCR bands were isolated from the agarose gel slice using a BRESAclean ${ }^{\mathrm{TM}}$ DNA purification kit (Bresatec Inc.) as described in Section 2.4.3.1.

6.3.3. Cloning of PCR products

The peccary retroviral PCR products were cloned into the $\mathrm{pCR}^{\oplus}{ }^{\text {2 }}$.1-TOPO plasmid vector (Invitrogen). The detailed information for cloning has been described in Section 2.11 and a detailed map of the cloning vector is presented in Appendix 2.1.

6.3.4. Quick PCR method to check clones for correct inserts

To check whether the plasmid clones had an appropriate insert, preparations of DNA were made by boiling as described in Section 2.7.3 and PCR was carried out with Taq DNA polymerase as in section 4.3.1.1.

6.3.5. Extraction of plasmid DNA from bacterial cells

After identifying clones with the insert, high quality plasmid DNA was extracted using the alkaline minilysis method or a JETquick Plasmid Miniprep Spin Kit (GENOMED Inc.) as described in Section 2.4.2.

6.3.6. Restriction enzyme digestion

The plasmid DNA with insert was further verified with EcoRI restriction enzyme digestion as described in Section 2.8.

6.3.7. Sequencing with Li-Cor sequencer

A SequiTherm EXCEL ${ }^{\text {TM }}$ Long-Read ${ }^{\text {TM }}$ DNA sequencing kit (Epicentre) and Li-Cor sequencer (Model 4200, Li-Cor Inc.) were used to read peccary insert sequences, using two vector primers (Li-Cor Inc.) labeled with different dyes (Table 4.2). Sequences were analyzed using Base ImageIR ${ }^{\mathrm{TM}}$ software version 4.1 (Li-Cor Inc.). The detailed protocols for sequencing using a Li-Cor sequencer are described in Section 2.10.2.

6.3.8. Analysis of sequence data

DNA sequences were stored and analysed using the programs provided by the Australian Genomic Information Service (ANGIS). The most similar sequences in GenBank were identified
by FASTA database searching (Pearson and Lipman, 1988). The GAP program (Needleman and Wunsch, 1970) was used to compare peccary sequences in detail with the most similar sequences identified by FASTA searching. The GAP program considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps.

6.4. Results

6.4.1. PCR amplification for retroviral sequences in Collared peccary

The degenerate primer pairs (Table 6.1) were tested in five different collared peccary genomic DNAs. The agarose gel shows that the PCR reactions produced two bands in some peccary samples (Fig 6.2). The 434 bp product was common to all templates but the 840 bp products amplified in only two peccary DNA samples. The 840 bp PCR product was found to amplify variably depending upon the PCR conditions (data not shown). Most mammalian species, including pig, gave only a 950 bp product with these degenerate primers (data not shown) as described by Tristem et al. (1996b). Therefore, neither the 434 nor 840 bp PCR products were expected as correctly amplified retroviral fragments.

Fig 6.2 PCR products of five Collared Peccaries amplified by degenerate primers (Table 6.1). A 434 bp product is common to all amplifications but the $\mathbf{8 4 0} \mathrm{bp}$ product occurs in only two samples (lane two and five). Marker (M) is ϕ X174/HaeIII Marker (Promega) size standard.

6.4.2. Checking the insert by EcoRI Restriction digestion

After cloning, EcoRI digestion was used to release the insert from the vector to confirm its size. The recognition site of this enzyme is located in the multi-cloning site and can be used to excise the DNA insert (The map of vector is shown in Appendix 2.1). Fig 6.3 shows the EcoRI restriction enzyme digestion pattern of a series of peccary clones derived from the PCR product of lane number 5 in Fig 6.2. The attempt to clone the " 434 " bp PCR products gave inserts of varying size (Fig 6.3 lane 1 to 10). Only one clone with the 840 bp insert was analysed (Fig 6.3 lane 11). The clones from the putatively 434 bp PCR product of lane 5 Fig 6.2 are designated as clones S1 to S10 based on their order in Fig 6.3. The 840 bp insert clone (Fig 6.3 lane 11) is designated as clone L1.

Fig 6.3 EcoRI restriction digestion of peccary clones. Lanes 1 to 10 (designated as clones S1 to S10) are the putatively 434 bp insert clones. Lane 11 (designated as clone L1) is the putative 840 bp insert clone. M is $\boldsymbol{\phi} \mathbf{X 1 7 4 / H a e I I I}$ Marker (Promega) size standards.

6.4.3. Sequences of peccary retroviral clones

Six peccary putative 434 bp clones (clone S1, S2, S5, S6, S9, S10) which were selected to cover all insert sizes and the one 840 bp clone (clone L1) were fully sequenced. The FASTA sequence search results showed that clones S1 and S2 were the only clones with strong matches to retroviral sequences. They were both well matched with known murine leukemia virus sequences in GenBank (Table 6.3), demonstrating that at least some of the putative 434 bp PCR products are from endogenous retroviral sequences in Collared peccary. Interestingly, the FASTA
results show that the peccary retroviral sequences are better matched with mouse sequences than with pig retroviruses, although the match with pig retroviral sequence is also excellent.

The alignments of the two peccary retroviral sequences are presented in Fig 6.4, showing that there are eight base-pair differences between these two clones. The 0.4% error rate for the Li-Cor sequencer has been calculated previously (see Section 4.4.3.2) from analysis of very long $(\sim 1.8 \mathrm{~kb})$ sequence reads from porcine endogenous retrovirus clones. However, most of these sequencing errors are located at the end of the sequences, after $600-800 \mathrm{bp}$. These shorter peccary retroviral sequences are fully overlapped in both forward and reverse directions and thus are confirmed double pass sequences. Thus it can be assumed that these peccary retroviral sequences are truly different and represent multiple copies, as in other species.

Alignment of one of the peccary endogenous retroviral sequences with the GenBank nucleotide sequences shows that it is not continuously matched with the mouse C-type retroviral sequences (Fig 6.5). The sequence from the beginning to 319 bp is matched closely with mouse retroviral sequence but the match disappears abruptly at this point (Fig 6.5a). When the peccary sequence after 319 bp is separated and used to screen GenBank, this remaining sequence also matches best with the same mouse C-type retroviral sequence (Fig 6.5b) but further along the sequence. There is a large deletion of the peccary endogenous retroviral sequence compared to the mouse and other species retroviruses. In fact, these two peccary retroviral sequences have a 534 bp deletion from nucleotide number 2627 to 3160 of the total 8282 nucleotide gag-pol-env gene compared with published murine leukemia retrovirus sequences (Fig 6.5a, b).

The sequence search results for the 840 bp insert clone (clone L1) show that this PCR product is not derived from an endogenous retrovirus. The only match in GenBank is with an unknown sequence in human. The sequence information and sequence search results for this clone are presented in Appendix 6.1. It is always possible that non-target sequences will be amplified when degenerate primers are used. Similarly the four other clones containing the putative 434 bp insert, namely S5, S6, S9 and S10, failed to match with any retroviral sequences in FASTA sequence searches of GenBank. The information on these non-retroviral inserts is fully described in Section 6.4.5.

Table 6.3 Comparison of the two peccary putative retroviral sequences with the nucleotide
sequences in the Genbank database (both sequences gave exactly the same output).


```
Clone s1 1 TTGTTGGACACGGGGGCGCAACATTCGGTCTTAGTCAAATCTCATGGAAA 50
```

Clone s1 1 TTGTTGGACACGGGGGCGCAACATTCGGTCTTAGTCAAATCTCATGGAAA 50
Clone s2 1 CTGGTGGACACGGGGGCGCAACATTCGGTCTTAGTCAAATCTCATGGAAA 50
Clone s2 1 CTGGTGGACACGGGGGCGCAACATTCGGTCTTAGTCAAATCTCATGGAAA 50
Clone s1 51 AATCTCTGACAAATCCTCCTGGGCCCAAGGGGCTACCGGAGTCAGACGTT 100
Clone s1 51 AATCTCTGACAAATCCTCCTGGGCCCAAGGGGCTACCGGAGTCAGACGTT 100
|||||||||||||||||||||| | | | | | | | ||||||||||||||||
|||||||||||||||||||||| | | | | | | | ||||||||||||||||
Clone s2 51 AATCTCTGACAAATCCTCCTGGGTCCAAGGGGCTACCGGAGTCAGACGTT 100
Clone s2 51 AATCTCTGACAAATCCTCCTGGGTCCAAGGGGCTACCGGAGTCAGACGTT 100
Clone s1 101 ACCCCTGGACTACTCAGAGAACTGTGGACTTGGGTACCGGGAAAGTGACT 150
Clone s1 101 ACCCCTGGACTACTCAGAGAACTGTGGACTTGGGTACCGGGAAAGTGACT 150
|||
|||
Clone s2 101 ACCCCTGGACTACTCAGAGAACTGTGGACTTGGGTACCGGGAAAGTGACT 150
Clone s2 101 ACCCCTGGACTACTCAGAGAACTGTGGACTTGGGTACCGGGAAAGTGACT 150
Clone s1 151 CACTCCTTCTTAGTAATCCCCGATAGCCCCTGCCCCTTACTGGGGAGAGA 200
Clone s1 151 CACTCCTTCTTAGTAATCCCCGATAGCCCCTGCCCCTTACTGGGGAGAGA 200
|||||||||||||||||||||||||||||||||| ||||||||||||||
|||||||||||||||||||||||||||||||||| ||||||||||||||
Clone s2 151 CACTCCTTCTTAGTAATCCCCGATAGCCCCTGCCCTTTACTGGGGAGAGA 200
Clone s2 151 CACTCCTTCTTAGTAATCCCCGATAGCCCCTGCCCTTTACTGGGGAGAGA 200
Clone s1 201 CTTACTCACCAAGATGGGAGTGCAAATTCACTTTCGACTAGGAGAACCAA 250
Clone s1 201 CTTACTCACCAAGATGGGAGTGCAAATTCACTTTCGACTAGGAGAACCAA 250
||| ||||||||||||||||||||||||||||||||
||| ||||||||||||||||||||||||||||||||
Clone S2 201 CTTATTCACCAAGATGGGAGTGCAAATTCACTTTCGACTAGGAGAACCAA 250
Clone S2 201 CTTATTCACCAAGATGGGAGTGCAAATTCACTTTCGACTAGGAGAACCAA 250
Clone S1 251 TTGTAACCGGACCACAAGAACTCCCTATATCGGTGCTCACCCTAAGATTA 300
Clone S1 251 TTGTAACCGGACCACAAGAACTCCCTATATCGGTGCTCACCCTAAGATTA 300
|||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||
Clone S2 251 TTGTAACCGGACCACAAGAACTCCCTATATCGGTGCTTACCCTAAGATTA 300
Clone S2 251 TTGTAACCGGACCACAAGAACTCCCTATATCGGTGCTTACCCTAAGATTA 300
Clone s1 301 GACGATGAATACCGACTTCCACAAGGATTCAACAATTCACCCACCCTGTT 350
Clone s1 301 GACGATGAATACCGACTTCCACAAGGATTCAACAATTCACCCACCCTGTT 350
|||
|||
Clone S2 301 GACGATGAATACCGACTTCCACAAGGATTCAACAATTCACCCACCCTGTT 350
Clone S2 301 GACGATGAATACCGACTTCCACAAGGATTCAACAATTCACCCACCCTGTT 350
Clone S1 351 TGATGAAGCCCTCCATGAGGACCTCAGTGAGTATCGAAAACAGAACCCAG 400
Clone S1 351 TGATGAAGCCCTCCATGAGGACCTCAGTGAGTATCGAAAACAGAACCCAG 400
|||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||
Clone S2 351 TGATGAAGCCCTCCATGGGGACCTCAGTGAGTATCGAAAACAGAACCCAG 400
Clone S2 351 TGATGAAGCCCTCCATGGGGACCTCAGTGAGTATCGAAAACAGAACCCAG 400
Clone S1 401 ATATAACCCTCCTACACTATGTCGACGACCTCCT 434
Clone S1 401 ATATAACCCTCCTACACTATGTCGACGACCTCCT 434
|||||||||||||||||| |||||||||||||
|||||||||||||||||| |||||||||||||
Clone S2 401 ATATAACCCTCCTACACTACGTCGACGACCTCCT 434

```
Clone S2 401 ATATAACCCTCCTACACTACGTCGACGACCTCCT 434
```

Fig 6.4 Alignment of two peccary retroviral sequences. The clone S 1 sequence is shown above and the clone $S 2$ sequence below. They are the identical in length (434 bp) and show over $\mathbf{9 8 \%}$ (426/434) sequence similarity. The positions of the internal primers (see sections 6.2.2.2 and 6.4.4) are shaded (...). The position of the 534 bp deletion in the peccary retroviral sequences relative to mouse sequences (see Fig 6.5) is shown with an arrow ($\boldsymbol{\nabla}$).

Fig 6.5 Separate alignments of the first 319 bp and the final 115 bp of one of the 434 bp peccary endogenous retroviral sequences (clone $\mathbf{S 2}$) with the same murine leukemia virus sequence (GenBank accession number MULV13893). After 319 bp, there is complete loss of similarity in the sequence alignment (a). The final 115 bp from nt 320 to 434 re-establishes a good match with this same MuLV sequence further downstream (b). Relative to the MuLV sequence, this peccary endogenous retrovirus has a 534 bp deletion. The final 115 bp sequence is shown shaded (...).
(a)

(b)

6.4.4. $\quad P C R$ with internal primers

To confirm the validity of the PCR product generated with degenerate primers and the existence of the 534 bp deletion in Collared peccary retroviral sequences, a new set of internal primers was designed (Table 6.2) from the new sequence. The internal primers are located either side of the 534 bp deletion break point. Only the expected 306 bp product has been amplified from four peccary DNAs. Interestingly it has been amplified (weakly) from pig control DNA but is absent in mouse DNA (Fig 6.6a, b). This deleted retrovirus is thus not closely related to any full length retroviruses in the peccary genome, but surprisingly appears to be detecting a similarly deleted endogenous virus in the pig. Given the sequence alignments shown in Fig 6.5, it is not surprising that these primers do not amplify a product from mouse template.

Fig 6.6 (a) The PCR products of four different Collared peccaries (from lane one to four) amplified by internal primers (Table 6.2). (b) The PCR product from pig (lane 1), mouse (lane 2) and one of the peccary DNAs (lane 3) amplified by internal primers. M is ϕ X174/HaeIII Marker (Promega) size standards.

6.4.5. The sequences of non-retroviral inserts

Four clones (clone S5, S6, S9, S10) contained sequences of non-retroviral origin. Clones S6 and S9 do not closely match any known genes in GenBank, but do match sequences of unknown functions in human (see Appendix 6.2 for sequence alignments). An (AG)n microsatellite sequence was found in clone S6 (Appendix 6.2a).

The clone S 10 sequence aligns best with the porcine cofilin gene, but also shows excellent alignment with human, mouse and rat cofilin sequences, implying that clone S10 contains part of the Collared peccary cofilin gene (Fig 6.7). The putative peccary cofilin sequence and the pig cofilin gene show 93% identity in nucleotide sequences after 190 bp . The sequence alignment with the pig cofilin cDNA sequence commences just after the initial methionine (ATG), indicating that the preceding porcine sequence is the 5 ' UTR. The corresponding peccary sequence commences with AG at the beginning of the alignment suggesting that this is the splice acceptor site at the end of a putative peccary cofilin intron. Thus it is assumed that the preceding peccary sequence is intronic (Fig 6.7).

The sequence of clone S 5 is a SINE sequence having both forward and reverse complementary sequences in GenBank (See Appendix 6.3). Until now only three Collared peccary SINE sequences were available (Furutani et al., 1998; Sulandari et al., 1997). The comparison of these published peccary SINE sequences with S5 sequence is presented in Figure 6.8. The comparison among these peccary SINE sequences shows that they are not highly conserved, indicating that there are different types of SINEs in peccaries. Since PRE-1 is the most typical of porcine SINEs, Fig 6.9 shows the alignment of porcine PRE-1 with the S5 peccary SINE sequence. The sequence homology of pig and peccary SINEs is presented in Table 6.4. Interestingly all three peccary SINE sequences are more similar to the porcine PRE-1 SINE than they are to each other. The S5 peccary SINE sequence can be classified as a peccary PRE-1, and PRE-1 sequences in collared peccaries are more divergent than between peccaries and the pig sequence.
The best scores are:
PIGCOFIL Pig cofilin mRNA, complete cds
HSU21909 Human cofilin mRNA, partial cds
AW239319 xb38h05.y1 NCI_CGAP_Lu31 Homo s
HSNMCFL1 H.sapiens mRNA for non-muscle t
AW249211 2821075.5prime NIH_MGC_7 Homo s
AW250264 2821137.5prime NIH_MGC_7 Homo s
AW247672 2820161.5prime NIH_MGC_7 Homo s
HUMCOF Human cofilin mRNA
AW248338 2820462.5prime NIH_MGC_7 Homo s
AW322927 uo54b11.y1 NCI_CGAP_Lu29 Mus mu
MUSCOF Mus musculus mRNA for cofilin, co
AW323540 uo73e01.y1 NCI_CGAP_Mam1 Mus mu
AL022775 s7c19b51 Beddington mouse disse
AW260598 um84a04.y1 Sugano mouse liver m
RNCOFIL R.norvegicus mRNA for cofilin

(1390)	1116	1116	1147	1078.7	2.6e-53
960)	1080	1080	1101	1037.4	$7.6 \mathrm{e}-51$
521)	1080	1080	1101	1040.7	$79.1 e-51$
(1059)	1071	1071	1092	1028.3	$32.2 e-50$
643)	1071	1071	1092	1031.1	$12.5 e-50$
511)	1071	1071	1092	1032.3	$32.7 e-50$
504)	1071	1071	1092	1032.4	$42.7 e-50$
501)	1071	1071	1092	1032.4	$42.7 e-50$
333)	1071	1071	1092	1034.7	$3.1 \mathrm{e}-50$
618)	1035	1035	1047	988.9	$5.9 \mathrm{e}-48$
(1134)	1017	1017	1029	968.6	$4.3 \mathrm{e}-47$
(623)	1017	1017	1029	971.9	$5.2 e-47$
551)	1017	1017	1029	972.5	$5.4 \mathrm{e}-47$
(542)	1017	1017	1029	972.6	$5.4 \mathrm{e}-47$
(1039)	999	999	1020	960.6	$1.3 \mathrm{e}-46$

Fig 6.7 The GenBank search results and the best sequence alignment of clone $\mathbf{S 1 0}$ show that it contains peccary cofilin gene sequences. The start codon (shaded (ATG)) for the pig cofilin cDNA sequence shows that the preceding sequence is the 5^{\prime} ' UTR. An apparent splice acceptor site at the end of a cofilin intron in the peccary sequence is indicated by a box (AG)

Fig 6.8 Alignment of three SINE sequences derived from Collared peccary. Published peccary SINE sequences (DDBJ accession numbers AB000378 and AB000379, Sulandari et al., 1997; GenBank accession number AB003283, Furutani et al., 1998) are aligned with a SINE sequence from clone $\mathbf{S 5}$ in this experiment. * indicates identical nucleotide sequences in the four SINEs. The shaded regions correspond to PRE-1 from pigs as defined by Singer et al. (1987).

Fig 6.9 Comparison of novel peccary SINE sequence from Clone $\mathbf{S 5}$ with porcine PRE-1 sequence (GenBank accession number Y00104) showing the structural features based on Singer et al. (1987) (indicated by shading (...)).

Table 6.4 PRE-1 sequence homology of pig and peccary.

	Clone S5	${ }^{1}$ SSPRE1	${ }^{2}$ Peccary SINE1	${ }^{3}$ Peccary SINE2
${ }^{1}$ SSPRE1	85.2%	-		
${ }^{2}$ Peccary SINE1	70.1%	81.5%	-	
${ }^{3}$ Peccary SINE2	77.2%	84.1%	70.4%	-
${ }^{4}$ Peccary SINE3	76.0%	83.5%	71.9%	79.1%

${ }^{\mathrm{T}}$ GenBank accession number Y00104.
${ }^{2,3}$ DDBJ accession numbers AB000378 and AB000379.
${ }^{4}$ GenBank accession number AB003283 and located in the trappin gene.

6.5. Discussion

Degenerate primers based on conserved motifs derived from Murine leukemia viruses (Tristem et al., 1996b) have been used to amplify fragments from peccary genomic DNA. Two clones show close homology, albeit with a large deletion, to mouse and pig retroviral sequences. These are the first retroviral sequences identified in peccary. They clearly contradict the observations of Benveniste and Todaro (1975) based on Southern hybridisation that pigs only, and not peccaries, contain C-type retroviruses which they claimed were derived from an invasion of the pig genome by murine retroviruses after the split of the Suidae and Tayassuidae lineages. This chapter clearly shows that endogenous retroviral sequences are present in the peccary genome and that these sequences are very similar to mouse retroviral sequences.

Pigs and peccaries are inarguably more closely related to each other than to mouse (Douzery and Catzeflis, 1995). However the FASTA alignment of the peccary endogenous retroviral sequences generated in this study suggested they are more similar to mouse retrovirus than pig retrovirus. To test this contradictory result more carefully, pig (GenBank accession number AF038600) and mouse (GenBank accession number MULV13893) endogenous retroviral sequences were aligned with peccary sequences, after removing the region corresponding to sequences deleted in peccary. This alignment showed $62 \%, 65 \%$ and 65% sequence identity between pig and mouse, pig and peccary, and mouse and peccary, respectively. Thus the pig and peccary endogenous retroviral sequences have identical levels of sequence identity as mouse and peccary, but the pig and mouse sequences have slightly less identity. Thus the FASTA results are misleading since they are based only on the alignments either side of the deletion in the peccary. This misleading impression is reinforced by the fact that there are so many mouse retroviral sequences in GenBank that a large number of mouse "hits" are observed before the first pig "hit".

Only two clones (S1, S2) of six containing the smaller (putative 434 bp) inserts (S1, S2, S5, S9, S10) were verified to contain target peccary endogenous retroviral sequences. This raises the possibility that if additional clones containing the larger insert (840 bp PCR products) were analysed, a complete, undeleted retroviral sequence may have been found. However, due to time constraints, only one larger product clone was analysed in this study.

By using internal primers which span the 534 bp deletion point, PCR amplification has confirmed that this deletion is common to all available Collared peccary samples from Colombia. Also it is clear that the endogenous retroviruses in which the deletion occurred has at least some sequence differences from full-length retroviruses in the peccary, otherwise the Tristem (1996b) degenerate primers would have amplified full-length product. The 534 bp deletion in the pol gene
coding sequences is incompatible with this deleted endogenous retrovirus completing the retroviral life cycle without assistance from complete competent retrovirus. The sequence comparison of two retroviral clones shows that these two clones are not identical, implying that these two retroviral sequences were amplified from different copies in the peccary genome. Therefore, it can be assumed that the deletion occurred before this retrovirus was inserted into multiple sites in the peccary host genome. The amplification, albeit more weakly, of a similar sized PCR product from a pig control DNA sample using these same internal primers, indicates that a similar deleted retrovirus also is present in pigs. The relationship between the pig and peccary deleted viruses is unclear. If they are both nonfunctional and were incorporated before the separation of the Suidae and Tayassuidae lineage, then mutational decay might be expected to have caused substantial divergence, so that amplification of pig product with peccary-specific primers would be unlikely. Sequence analysis of the pig PCR product will give some clue to the origin of the deleted viruses found in both pigs and peccaries.

Four non-target sequences were amplified from peccary with the degenerate retroviral primers. Clone S10 contains part of the peccary cofilin gene sequence. Cofilin is a widedistributed, intracellular, actin binding protein which is involved in the translocation of actincofilin complex from cytoplasm to nucleus. Two cofilin isoforms have been identified in human, which are called non-muscle type cofilin (CFL1) and muscle-type cofilin (CFL2) (Gillett et al., 1996). The cofilin sequence in this study could contribute to understanding the evolution of cofilin in pigs and their relatives. The microsatellite sequence in clone S 6 can be used as a marker for population, parentage and mapping studies in the peccary. It may also be useful in the pig. Góngora et al. (unpublished data) found that 87% of eighteen porcine microsatellite primers amplified microsatellite products in Collared peccaries, suggesting the potential for reciprocal cross species use of peccary microsatellite primers in pigs.

The novel peccary SINE sequence found in this study could be a useful indicator of evolutionary history (Sulandari et al., 1997; Yasue and Wada, 1996). PRE-1 sequences are present in the genomes of Collared peccary (Tayassu tajacu) at almost the same frequency as in pig, at least as determined by dot blot hybridisation (Yasue and Wada, 1996). Sulandari et al. (1997) successfully amplified peccary SINE sequences using individual locus-specific porcine PRE-1 primers and used their sequences to calculate the divergence time for pigs and peccaries. In pig, PRE-1 loci have been tested as candidates for SSCP markers in genetic linkage analysis (Harumi et al., 1995). Also, length polymorphisms of the PRE-1 poly (A) tail have been evaluated as genetic markers (Ellegren, 1993) because of their abundance in the porcine genome.

Therefore this newly discovered peccary SINE sequence could also be used as a marker and for population studies.

Although the only peccary endogenous retroviruses analysed in this study have a large deletion, it is highly probable that complete functional retroviruses are present in the peccary genome, as they have been found in all other species extensively investigated. The degenerate primers of Tristem et al. (1996b) failed to amplify full-length retroviral sequences in peccaries although they have worked well in other mammalian species such as dog, red fox, American mink, Eurasian badger, grey seal, cow, sheep, horse, rabbit, free-tailed bat and pig. An alternative approach, other than the use of these degenerate primers, will be required to extract the full-length peccary endogenous retroviral sequences for the reverse transcriptase gene, in order to further advance the comparative evolutionary studies of peccary and porcine endogenous viruses. Do peccaries have a similar number of endogenous retroviruses as the pig? What proportion are functional? Are different classes of endogenous retroviruses recognisable by envelope sequences and analogous to PERV-A, -B and -C of pigs, found in peccaries? Such questions remain for future studies.

Chapter Seven

Final Discussion and Conclusion

7.1. Development of pig - human comparative map

Comparative mapping enables recognition of the conservation of genomic segments across species and will be a valuable tool for data-mining of the genomic and QTL mapping efforts in many species. Some time ago, Zoo-FISH established the broad chromosomal relationships between human and pig chromosomes (Fröncke et al., 1996; Goureau et al., 1996; Johansson et al., 1995; Rettenberger et al., 1995b). As a supplement to this, an international effort has been made to map Comparative Anchor Tagged Sequences (CATS) markers in the pig. As part of this collaboration, consensus primers for 53 coding sequences (Type I markers), which map to human chromosome 9, 10, 20, and 22 were allotted to our Sydney group and used to generate PCR products from pig genomic DNA. Six of these CATS loci were previously mapped by Zhang (1997). In this thesis, 47 CATS primers comprising new primers for chromosomes 20 and 22 or primers for products not mapped by Zhang (1997) have been used to amplify porcine PCR products (Chapter 3). Sequencing of the porcine PCR products confirmed that 43% (23/53) of the products are from expected porcine homologues, including Zhang's (1997) sequencing results for unmapped products. Subsequently, 6 newly identified loci were physically assigned to pig chromosomes with a French somatic cell hybrid panel. The porcine locations of OXT and ADRA1A show inconsistency with the known syntenic relationships between pig and human chromosomes. In the former case, this reflects imperfect knowledge of pig/human synteny for pig chromosomes, but in the latter case, the result reflects the complications inherent in mapping members of a multi-gene family.

The major identified problem of the CATS primers is that they are designed from consensus nucleotide sequences including rodent species. However, rodents have been used as the background genome for the somatic cell hybrid panel. Therefore, rodent PCR products are frequently coamplified and often could not be distinguished from the porcine products. In such cases, it is impossible to map the gene.

Despite the problems, the comparative mapping results have provided a useful, albeit limited, contribution for exchanging information between species.

7.2. Characterising and mapping PERVs

PERVs have potential infectious risk in relation to xenotransplantation. As the inbred Westran line of pigs may be used as a xenotransplantation donor in future, it is very important that any PERVs in it be characterised and mapped (Chapter 4 and Chapter 5).

7.2.1. Characterising PERVs

The conserved region of the PERV-A and PERV-B env gene was used to make PCR primers to amplify all possible variants of PERVs. 410 PERV clones, amplified by Taq and Pfu polymerases, were initially analysed by restriction enzyme digestion pattern to provide a basis for the selection of clones for further analysis. 31 PERV clones were fully sequenced by singlepass sequencing. The sequence results show that 55% of the clones ($17 / 31$) have premature stop codons within the protein coding sequences, suggesting that they could not make infectious virus particles.

Five clone sequences were classified as recombinants between PERV-A and PERV-B. The implication of these recombinant clones is that defective PERVs could regain infectivity through recombination and potentially more dangerously PERVs could even recombine with HERVs. However, it has still not been unequivocally established that these recombinant clones are not artefacts of PCR. A very important job for the near future will be to attempt to amplify recombinant product directly from Westran genomic template using primers specific for these recombinant viruses.

7.2.2. \quad Physically mapping of PERVs

FISH has established that there are at least 13 PERV-A and 9 PERV-B sites in Westran pigs. The comparison of these PERV locations between Westran and a Large White pig (RogelGaillard et al., 1999) indicates that the PERV-A locations are quite different in the two breeds, but about half of the PERV-B locations are common. These mapping results corroborate the expectation that different breeds will have different PERV locations but may share some common PERV sites.

A method is evaluated in this thesis for cloning PERV insertion junctions using a strategy employing PERV and SINE primers. So far, only a single junction has been mapped. Somatic cell hybrid data show that this particular PERV junction fragment maps to a known PERV-B site on pig chromosome 17 (Chapter 5). The result of this method indicates that PERV inserts in Westran pigs can be mapped precisely, especially if the technique is applied using a radiation hybrid panel. However, it still remains to correlate each of the PERV sequences generated in

Chapter 4 with the chromosomal locations described in Chapter 5. This is an important task for the future.

7.3. Endogenous retroviruses in Collared peccaries

Peccaries are classified in a different mammalian family to pigs, although the Tayassuidae are the closest relatives of the Suidae. Benveniste and Todaro (1975) claimed that peccaries do not contain endogenous retroviruses and produced an elaborate scenario for the recent invasion of the pig genome by C-type retroviruses from rodents, after the divergence of Tayassuidae and Suidae. A study (Chapter 6) was carried out to determine the existence and nature of endogenous retroviral sequences in the Collared peccary (Tayassu tajacu) using the degenerate retroviral primers designed by Tristem et al. (1996b). The sequence of putative retroviral clones showed that some matched well with known retroviral sequences. Ironically, given the claims of Benveniste and Todaro (1975), the peccary retroviral sequence matched mouse sequence just as well as that of pig. In any case, the results established for the first time that peccaries have endogenous retroviruses in their genome. Strangely the peccary retroviral sequences have a 534 bp deletion, also confirmed by new set of internal primers. Pigs also appear to have the same deleted sequences in some of their endogenous viruses. The comparison of deleted retroviral sequences between pigs and peccaries will give some clues to the origin and evolution of the deletion. It is virtually certain that peccaries also have full-length endogenous retroviruses in their genome as in other species, but this remains to be established in future studies.

7.4. Future research

At this stage, there is no correlation of the PERV sequences and functional characterisation with the mapping results in Westran pigs. A priority for the future is to assign specific PERV sequences to their physical map locations. Ultimately it would be very useful to have a set of genotyping primers capable of recognising presence or absence of all known retroviral inserts in the pig.

Recombinant PERVs are a particular concern in relation to xenotransplantation. For this reason, it is vitally important to determine whether the recombinant PERV sequences are genuine or artefacts of PCR. Specific primers will be designed for use on Westran genomic DNA to test whether they are genuine recombinants or not.

Preliminary results indicate that Westran pigs are positive for PERV-C endogenous retroviruses. Further characterisation of the PERV-C insert(s) in Westran pigs is also an important task for the future work.

Finally, only endogenous retroviruses with 534 bp deleted from the protease gene have so far been amplified in Collared peccaries. It is very unlikely that there are no full-length retroviruses in peccaries. It will be highly desirable in future to extract full-length peccary endogenous retroviral sequences in order to better investigate the relationship between and evolution of peccary and porcine endogenous retroviruses.

Bibliography

Akiyoshi, D. E., Denaro, M., Zhu, H., Greenstein, J. L., Banerjee, P. and Fishman, J. A., 1998, Identification of a full-length cDNA for an endogenous retrovirus of miniature swine, Journal of Virology 72(5):4503-4507.
Aleyasin, A. and Barendse, W., 1999, Comparative mapping of genes from human chromosome 12 by genetic linkage mapping in cattle, Journal of Heredity 90(5):537-542.

Andersson, L., Archibald, A., Ashburner, M., Audun, S., Barendse, W., Bitgood, J., Bottema, C., Broad, T., Brown, S., Burt, D., Charlier, C., Copeland, N., Davis, S., Davisson, M., Edwards, J., Eggen, A., Elgar, G., Eppig, J. T., Franklin, I., Grewe, P., Gill, T., Graves, J. A. M., Hawken, R., Hetzel, J., Hillyard, A., Jacob, H., Jaswinska, L., Jenkins, N., Kunz, H., Levan, G., Lie, O., Lyons, L., Maccarone, P., Mellersh, C., Montgomery, G., Moore, S., Moran, C., Morizot, D., Neff, M., Nicholas, F. W., O'Brien, S. J., Parsons, Y., Peters, J., Postlethwait, J., Raymond, M., Rothschild, M., Schook, L., Sugimoto, Y., Szpirer, C., Tate, M., Taylor, J., Vandeberg, J., Wakefield, M., Wienberg, J. and Womack, J., 1996, Comparative genome organization of vertebrates, Mammalian genome 7:717-734.
Andersson, L., Edfors-Lilja, I., Ellegren, H., Johansson, M. and Marklund, L., 1994a, Mapping trait loci by crossbreeding genetically divergent populations of domestic animals, Animal Biotechnology 5(2):225-231.
Andersson, L., Haley, C. S., Ellegren, H., Knott, S. A., Johansson, M. andersson, K. andersson-Eklund, L., Edfors-Lilja, I., Fredholm, M. and Hansson, I., 1994b, Genetic mapping of quantitative trait loci for growth and fatness in pigs, Science 263(5154):1771-4.

Archibald, A. L., 1994, From mapping to manipulating the vertebrate genome, Animal Biotechnology 5(2):233-242.

Archibald, A. L., Couperwhite, S., Haley, C. S., Beattie, C. W. and Alexander, L. J., 1994, RFLP and linkage analysis of the porcine casein loci--CASAS1, CASAS2, CASB and CASK, Animal Genetics 25(5):349-51.

Archibald, A. L. and Haley, C. S., 1998, Genetic linkage maps, in: The genetics of the pig (M. F. Rothschild and A. Ruvinsky, eds.), CAB International, New York, pp. 265-294.
Archibald, A. L., Haley, C. S., Brown, J. F., Couperwhite, S., McQueen, H. A., Nicholson, D., Coppieters, W., Van de Weghe, A., Stratil, A., Winterø, A. K., Fredholm, M., Larsen, N. J., Nielsen, V. H., Milan, D., Woloszyn, N., Robic, A., Dalens, M., Riquet, J., Gellin, J., Caritez, J.-C., Burgaud, G., Ollivier, L., Bidanel, J.-P., Vaiman, M., Renard, C., Geldermann, H., Davoli, R., Ruyter, D., Verstege, E. J. M., Groenen, M. A. M., Davies, W., Høyheim, B., Keiserud, A. andersson, L., Ellegren, H., Johansson, M., Marklund, L., Miller, J. R. anderson Dear, D. V., Signer, E., Jeffreys, A. J., Moran, C., Le Tissier, P., Muladno, Rothschild, M. F., Tuggle, C. K., Vaske, D., Helm, J., Liu, H.-C., Rahman, A., Yu, T.-P., Larson, R. G. and Schmitz, C.
B., 1995, The PiGMaP consortium linkage map of the pig (Sus scrofa), Mammalian Genome 6:157-175.

Armstrong, J. A., Porterfield, J. S. and deMadrid, A. T., 1971, C-type virus particles in pig kidney cell lines, Journal of General Virology 10:195-198.
Bailey, L. L., Nehlsen-Cannarella, S. L., Concepcion, W. and Jolley, W. B., 1985, Baboon-to-human cardiac xenotransplantation in a neonate, JAMA 254(23):3321-9.
Bebenek, K., Abbotts, J., Roberts, J. D., Wilson, S. H. and Kunkel, T. A., 1989, Specificity and machanism of error-prone replication by Human Immunodeficiency Virus-1 Reverse Transcriptase, The Journal of Biological Chemistry 264(28):16948-16956.
Beier, D. R., 1993, Single-strand conformation polymorphism (SSCP) analysis as a tool for genetic mapping, Mammalian Genome 4(11):627-31.
Benirschke, K. and Kumamoto, A. T., 1989, Further studies on the chromosomes of three species of peccary, in: Advances in Neotropical Mammalogy (K. H. Redford and J. F. Esenberg, eds.), Sandhill Crane Press, Gainesville, FL, pp. 309-316.
Benirschke, K., Kumamoto, A. T. and Meritt, D. A., 1985, Chromosomes of the Chacoan peccary, Catagonus wagneri (Rusconi), The Journal of Heridity 76:95-98.
Benveniste, R. E. and Todaro, G. J., 1975, Evolution of type C viral genes: Preservation of ancestral murine type C viral sequences in pig cellular DNA, Proceedings of the National Academy of Sciences of the United States of America 72(10):4090-4094.
Bhatti, F. N., Zaidi, A., Schmoeckel, M., Cozzi, E., Chavez, G., Wallwork, J., White, D. J. and Friend, P. J., 1998, Survival of life-supporting HDAF transgenic kidneys in primates is enhanced by splenectomy, Transplantation Proceedings 30(5):2467.
Bird, A. P., 1995, Gene number, noise reduction and biological complexity, Trends in Genetics 11(3):94100.

Birnboim, H. C. and Doly, J., 1979, A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Research 7:1513.
Blair, D. G., Mason, W. S., Hunter, E. and Vogt, P. K., 1976, Temperature-sensitive mutants of avian sarcoma viruses: genetic recombination between multiple or coordinate mutants and avian leukosis viruses, Virology 75(1):48-59.
Boeke, J. D. and Stoye, J. P., 1997, Retrotransposons, endogenous retroviruses and the evolution of retroelements, in: Retroviruses (J. M. Coffin, S. H. Hughes and H. E. Varmus, eds.), Cold Sprong Harbor Laboratory Press, New York, pp. 343-435.

Bosch, A., Nunes, V., Patterson, D. and Estivill, X., 1993, Isolation and characterization of 14 CA-repeat microsatellites from human chromosome 21, Genomics 18(1):151-5.
Bösch, S., Arnauld, C., Cariolet, R. and Jestin, A., 1999, Characterisation of endogenous retroviral sequences in specific-pathogen-free swine, in: The 5th Congress of the International Xenotransplantation Association, Nagoya, Japan, pp. 117, Abstract number 1156.

Bostock, D. E. and Owen, L. N., 1973, Porcine and ovine lymphosarcoma: a review, Journal of the National Cancer Institute 50(4):933-9.

Botstein, D., White, R. L., Skolnick, M. and Davis, R. W., 1980, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, American Journal of Human Genetics 32(3):314-31.

Bradbury, J., 2000, Cloned pigs bring xenotransplatation nearer, The Lancet 355:991.
Breese, S. S., 1970, Virus-like particles occurring in culture of stable pig kidney cell line, Archiv für die Gesamte Virusforschung 30:401-404.
Broad, T. E., Lambeth, M., Burkin, D. J., Jones, C., Pearce, P. D., Maher, D. W. and Ansari, H. A., 1996, Physical mapping confirms that sheep chromosome 10 has extensive conserved synteny with cattle chromosome 12 and human chromosome 13, Animal Genetics 27(4):249-53.
Brookes, A. J., 1999, The essence of SNPs, Gene 234(2):177-86.
Bruch, J., Rettenberger, G., Leeb, T., Meier-Ewert, S., Klett, C., Brenig, B. and Hameister, H., 1996, Mapping of type I loci from human chromosome 7 reveals segments of conserved synteny on pig chromosomes 3, 9 and 18, Cytogenetics \& Cell Genetics 73(3):164-7.
Bruford, M. W. and Wayne, R. K., 1993, Microsatellites and their application to population genetic studies, Current Opinion in Genetics \& Development 3(6):939-43.
Byrne, G. W., McCurry, K. R., Martin, M. J., McClellan, S. M., Platt, J. L. and Logan, J. S., 1997, Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage, Transplantation 63(1):149-55.
Caetano, A. R., Pomp, D., Murray, J. D. and Bowling, A. T., 1999, Comparative mapping of 18 equine type I genes assigned by somatic cell hybrid analysis, Mammalian Genome 10(3):271-6.
Cantor, C. R. and Smith, C. L., 1999, genomics: The science and technology behind the human genome project, John Wiley and Sons, Inc.
Chari, R. S., Collins, B. H., Magee, J. C., DiMaio, J. M., Kirk, A. D., Harland, R. C., McCann, R. L., Platt, J. L. and Meyers, W. C., 1994, Brief report: treatment of hepatic failure with ex vivo pigliver perfusion followed by liver transplantation, New England Journal of Medicine 331(4):234-7.
Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winkler, J., Lockhart, D. J., Morris, M. S. and Fodor, S. P., 1996, Accessing genetic information with high-density DNA arrays, Science 274(5287):610-4.
Chen, C. G., Salvaris, E. J., Romanella, M., Aminian, A., Katerelos, M., Fisicaro, N., d'Apice, A. J. and Pearse, M. J., 1998, Transgenic expression of human alpha1,2-fucosyltransferase (Htransferase) prolongs mouse heart survival in an ex vivo model of xenograft rejection, Transplantation 65(6):832-7.
Chen, Z. Q., Lautenberger, J. A., Lyons, L. A., McKenzie, L. and O'Brien, S. J., 1999, A human genome map of comparative anchor tagged sequences, Journal of Heredity 90(4):477-84.
Chevalet, C., Gouzy, J. and SanChristobal-Gaudy, M., 1997, Regional assignment of genetic markers using a somatic cell hybrid panel: a WWW interactive program available for the pig genome, Computer Appincations in the Biosciences 13:69-73.

Chowdhary, B. P., Frönicke, L., Gustavsson, I. and Scherthan, H., 1996, Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies, Mammalian Genome 7(4):297-302.
Clavel, F., Hoggan, M. D., Willey, R. L., Strebel, K., Martin, M. A. and Repaske, R., 1989, Genetic recombination of human immunodeficiency virus, Journal of Virology 63(3):1455-9.

Coffin, J. M., 1992, Structure and classification of retroviruses, in: The retroviridae (J. A. levy, ed.), Plenum press, New York and London, pp. 19-49.
Cole, S. E., Wiltshire, T. and Reeves, R. H., 1998, Physical mapping of the evolutionary boundary between human chromosomes 21 and 22 on mouse chromosome 10, Genomics 50(1):109-11.
Collins, F. S., 1995, Positional cloning moves from perditional to traditional [published erratum appears in Nat Genet 1995 Sep;11(1):104], Nature Genetics 9(4):347-50.
Cooper, D. N., Smith, B. A., Cooke, H. J., Niemann, S. and Schmidtke, J., 1985, An estimate of unique DNA sequence heterozygosity in the human genome, Human Genetics 69(3):201-5.
Cooper, H. M., 1954, Kangaroo Island's wild pigs, The South Australian Naturalist 28(5):57-61.
Cozzi, E. and White, D. J., 1995, The generation of transgenic pigs as potential organ donors for humans, Nature Medicine 1(9):964-6.
Crawford, A. M., Dodds, K. G. and McEwan, J. C., 2000, DNA markers, genetic maps and the identification of QTL: general principles, in: Breeding for disease resistance in farm animals (R. F. E. Axfrod, S. C. Bishop, F. W. Nicholas and J. B. Owen, eds.), CABI Publishing, New York, pp. 3-26.
Dabkowski, P. L., Vaughan, H. A., McKenzie, I. F. C. and Sandrin, M. S., 1994, Isolation of a cDNA clone encoding the pig alpha1,3 Galactosyltransferase, Transplantation Proceedings 26(3):1335.
Daggett, C. W., Yeatman, M., Lodge, A. J., Chen, E. P., Van Trigt, P., Byrne, G. W., Logan, J. S., Lawson, J. H., Platt, J. L. and Davis, R. D., 1997, Swine lungs expressing human complementregulatory proteins are protected against acute pulmonary dysfunction in a human plasma perfusion model, Journal of Thoracic \& Cardiovascular Surgery 113(2):390-8.

Deacon, T., Schumacher, J., Dinsmore, J., Thomas, C., Palmer, P., Kott, S., Edge, A., Penney, D., Kassissieh, S., Dempsey, P. and Isacson, O., 1997, Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease, Nature Medicine 3(3):350-3.
DeBry, R. W. and Seldin, M. F., 1996, Human/mouse homology relationships, Genomics 33:337-351.
DeMartini, J. C., de la Concha-Bermejillo, A., Carlson, J. O. and Bowen, R. A., 2000, Diseases caused by Maedi-visna and other ovine lentiviruses, in: Breeding for disease registance in farm animals (R. F. E. Axford, S. C. Bishop, F. W. Nicholas and J. B. Owen, eds.), CABI Publishing, New York, pp. 301-324.
Deng, Y.-M., Lee, J.-H., Moran, C., Tuch, B. and Rawlinson, W. D., 2000, Mapping dispersed repetitive loci using semi-specific PCR cloning and somatic cell hybrid mapping, submitted .

Dodgson, J. B., Cheng, H. H. and Okimoto, R., 1997, DNA marker technology: a revolution in animal genetics, Poultry Science 76(8):1108-14.
Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K. and Mattick, J. S., 1991, 'Touchdown' PCR to circumvent spurious priming during gene amplification, Nucleic Acids Research 19(14):4008.

Douzery, E. and Catzeflis, F. M., 1995, Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia), Journal of Molecular Evolution 41(5):622-36.
Drake, J. W., 1969, Comparative rates of spontaneous mutation, Nature 221(5186):1132.
Ducrocq, S., 1994, An Eocene peccary from Thailand and the biogeographical origins of the artiodactyl family Tayassuidae, Palaeontology 37(Part 4):765-779.
Dunham, I., Shimizu, N., Roe, B. A., Chissoe, S., Hunt, A. R., Collins, J. E., Bruskiewich, R., Beare, D. M., Clamp, M., Smink, L. J., Ainscough, R., Almeida, J. P., Babbage, A., Bagguley, C., Bailey, J., Barlow, K., Bates, K. N., Beasley, O., Bird, C. P., Blakey, S., Bridgeman, A. M., Buck, D., Burgess, J., Burrill, W. D. and O'Brien, K. P., 1999, The DNA sequence of human chromosome 22 [published erratum appears in Nature 2000 Apr 20;404(6780):904], Nature 402(6761):489-95.
Echard, G., 1990, The gene map of the pig (Sus Scrofa domestica L.), in: Genetic maps - locus maps of complex traits (S. J. O'Brien, ed.), Cold Spring Harbour Laboratory Press, pp. 4.110.
Echard, G., Milan, D., Yerle, M., Lahbib-Mansais, Y. and Gellin, J., 1992, The gene map of the pig (Sus scrofa domestica L.): a review, Cytogenetics \& Cell Genetics 61(2):146-51.
Elder, J. H., Gautsch, J. W., Jensen, F. C., Lerner, R. A., Hartley, J. W. and Rowe, W. P., 1977, Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants, Proceedings of the National Academy of Sciences of the United States of America 74(10):4676-80.
Ellegren, H., 1993, Variable SINE 3' poly (A) sequences:an abundant class of genetic markers in the pig genome, Mammalian Genome 4:429-434.
Ellegren, H., Chowdhary, B. P., Johansson, M., Marklund, L., Fredholm, M., Gustavsson, I. and Andersson, L., 1994, A primary linkage map of the porcine genome reveals a low rate of genetic recombination, Genetics 137(4):1089-100.
Ellegren, H., Fredholm, M., Edfors-Lilja, I., Winterø, A. K. and Andersson, L., 1993, Conserved syntany between pig chromosome 8 and human chromisome 4 but rearranged and distorted linkage maps, Genomics 17:599-603.

Ellermann, V. and Bang, O., 1908, Experimentelle Leukämie bei Hühnern, Zentralblatt Fur Bakteriologie Parasitenkunde Infektionskrankheiten Und Hyg 46:595-609.
Eppig, J. T., 1996, Comparative maps:adding pieces to the mammalian jigsaw puzzle, Current Opinion in Genetics and Development 6:723-730.
Eppig, J. T. and Nadeau, J. H., 1995, Comparative maps: the mammalian jigsaw puzzle, Current Opinion in Genetics and Development 5:709-716.

Ewens, W. J., Griffiths, R. C., Ethier, S. N., Wilcox, S. A. and Graves, J. A., 1992, Statistical analysis of in situ hybridization data: derivation and use of the $\mathrm{Z}_{\max }$ test, Genomics $\mathbf{1 2}(4): 675-82$.

Faller, D. V. and Hopkins, N., 1978, T1 oligonucleotides that segregate with tropism and with properties of gp70 in recombinants between N- and B-tropic murine leukemia viruses, Journal of Virology 26(1):153-8.

Fodor, W. L., Williams, B. L., Matis, L. A., Madri, J. A., Rollins, S. A., Knight, J. W., Velander, W. and Squinto, S. P., 1994, Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection, Proceedings of the National Academy of Sciences of the United States of America 91(23):11153-7.
Frankel, W. N., Stoye, J. P., Taylor, B. A. and Coffin, J. M., 1990, A linkage map of endogenous murine leukemia proviruses [published erratum appears in Genetics 1990 Jun;125(2):455], Genetics 124(2):221-36.

Frönicke, L., Chowdhary, B. P., Scherthan, H. and Gustavsson, I., 1996, A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies, Mammalian Genome 7:285-290.
Fujii, J., Otsu, K., Zorzato, F., de Leon, S., Khanna, V. K., Weiler, J. E., O'Brien, P. J. and MacLennan, D. H., 1991, Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia, Science 253(5018):448-51.
Furutani, Y., Kato, A., Yasue, H., Alexander, L. J., Beattie, C. W. and Hirose, S., 1998, Evolution of the trappin multigene family in the Suidae, Journal of Biochemistry 124(3):491-502.
Gao, Q. and Womack, J. E., 1997, Comparative mapping of anchor loci from HSA19 to cattle chromosomes 7 and 18, Journal of Heredity 88(6):524-7.

Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J., 2000, Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences, Bioinformatics in press.
Gillett, G. T., Fox, M. F., Rowe, P. S., Casimir, C. M. and Povey, S., 1996, Mapping of human non-muscle type cofilin (CFL1) to chromosome 11q13 and muscle-type cofilin (CFL2) to chromosome 14, Annals of Human Genetics 60:201-11.

Gillois, M., 1991, Gene mapping today: applications to farm animals, Genetics, Selection, Evolution 1(suppl1):19s-48s.
Gojobori, T. and Yokoyama, S., 1985, Rates of evolution of the retroviral oncogene of Moloney murine sarcoma virus and of its cellular homologues, Proceedings of the National Academy of Sciences of the United States of America 82(12):4198-201.

Gonda, M. A., 1992, The lentiviruses of cattle, in: The retroviridae (J. A. levy, ed.), Plenum press, New York and London, pp. 83-109.
Góngora, J., Bernal, J., Chen, Y., Moran, C. and Nicholas, F., Cytogenetic and molecular genetic studies of Colombian Collared peccaries, Unpublished .
Goureau, A., Yerle, M., Schmitz, A., Riquet, J., Milan, D., Pinton, P., Frelat, G. and Gellin, J., 1996, Human and porcine correspondence of chromosome segments using bidirectional chromosome painting, Genomics 36:252-262.

Groth, C. G., Korsgren, O., Tibell, A., Tollemar, J., Moller, E., Bolinder, J., Ostman, J., Reinholt, F. P., Hellerstrom, C. and Andersson, A., 1994, Transplantation of porcine fetal pancreas to diabetic patients, Lancet 344(8934):1402-4.

Gustavsson, I., 1988, Standard karyotype of the domestic pig, Heriditas 109:151-157.
Gyapay, G., Schmitt, K., Fizames, C., Jones, H., Vega-Czarny, N., Spillett, D., Muselet, D., Prud'Homme, J. F., Dib, C., Auffray, C., Morissette, J., Weissenbach, J. and Goodfellow, P. N., 1996, A radiation hybrid map of the human genome, Human Molecular Genetics 5(3):339-46.
Haldane, J. B. S., 1927, The comparative genetics of colour in rodents and carnivora, Biological Reviews and Biological Proceedings of the Cambridge Philosophical Society 2(3):199-212.
Haley, C. S., Archibald, A. andersson, L., Bosma, A. A., Davies, W., Fredholm, M., Geldermann, H., Groenen, M., Gustavsson, I., Ollivier, L., Tucker, E. M. and Van de Weghe, A., 1990, The pig gene mapping project - PiGMaP, in: Proceeding of the 4th World Congress on Genetics Applied to Livestock Production, Edinburgh, pp. 67-70.

Hallouin, F., Goupille, C., Bureau, V., Meflah, K. and Le Pendu, J., 1999, Increased tumorigenicity of rat colon carcinoma cells after alpha1,2-fucosyltransferase FTA anti-sense cDNA transfection, International Journal of Cancer 80(4):606-11.
Hamann, J., Vogel, B., van Schijndel, G. M. and van Lier, R. A., 1996, The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF), Journal of Experimental Medicine 184(3):1185-9.

Hameister, H., Klett, C., Bruch, J., Dixkens, C., Vogel, W. and Christensen, K., 1997, Zoo-FISH analysis: The American mink (Mustela vison) closely resembles the cat karyotype, Chromosome Research 5:5-11.

Hardy, W. D., 1992, Feline oncoretroviruses, in: The retroviridae (J. A. levy, ed.), Plenum press, New York and London, pp. 109-180.
Harumi, T., Kimura, M. and Yasue, H., 1995, Survey on swine SINEs (PRE-1) as candidates for SSCP markers in genetic linkage analysis, Animal Genetics 26:403-406.
Hawthorne, W. J., Burgess, J. S., Chen, Y., Walters, S., Patel, T., Clarke, J., Weston, L., O'Connell, P. J., Moran, C., Chapman, J. R. and Allen, R. D. M., 1999, A pig colony suitable for xenotransplantation, in: 7th World Congress of the International Pancreas and Islet Transplantation Association, Sydney, Australia, pp. 143.

Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., Toyoda, A., Ishii, K., Totoki, Y., Choi, D. K., Soeda, E., Ohki, M., Takagi, T., Sakaki, Y., Taudien, S., Blechschmidt, K., Polley, A., Menzel, U., Delabar, J., Kumpf, K., Lehmann, R., Patterson, D., Reichwald, K., Rump, A., Schillhabel, M. and Schudy, A., 2000, The DNA sequence of human chromosome 21. The chromosome 21 mapping and sequencing consortium, Nature 405(6784):311-9.
Hayes, H., 1995, Chromosome painting with human ahromosome specific DNA libraries reveals the extent and the distribution of conserved segments in the bovine chromosomes, Cytogenetics and Cell Genetics 71:168-174.

Hecht, S. J., Stedman, K. E., Carlson, J. O. and DeMartini, J. C., 1996, Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals, Proceedings of the National Academy of Sciences of the United States of America 93(8):3297-302.

Hendey, Q. B., 1976, Fossil Peccary from the Pliocene of South Africa, Science 192:787-789.
Heneine, W., Tibell, A., Switzer, W. M., Sandstrom, P., Rosales, G. V., Mathews, A., Korsgren, O., Chapman, L. E., Folks, T. M. and Groth, C. G., 1998, No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts [published erratum appears in Lancet 1998 Oct 31;352(9138):1478], Lancet 352(9129):695-9.

Herniou, E., Martin, J., Miller, K., Cook, J., Wilkinson, M. and Tristem, M., 1998, Retroviral diversity and distribution in vertebrates, Journal of Virology 72(7):5955-5966.

Herring, C., Whittam, A., Cunningham, D., Fernandez-Suarez, X., Gu, M.-L., Long, Z. and Langford, G., 1999, Analysis of porcine endogenous retrovirus variants in hDAF transgenic pigs, in: The 5th Congress of the International Xenotransplantation Association, Nagoya, Japan, pp. 116, Abstract number 1153.
Hoebee, B., Stoppelaar, J. M., Suijkerbuijk, R. F. and S. Monard, S., 1994, Isolation of rat chromosomespecific paint probes by bivariate flow sorting followed by degenerate oligonucleotide primed-PCR, Cytogenetics and Cell Genetics 66:277-282.

Hourcade, D., Holers, V. M. and Atkinson, J. P., 1989, The regulators of complement activation (RCA) gene cluster, Advances in Immunology 45:381-416.
Hu, W. S. and Temin, H. M., 1990, Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination, Proceedings of the National Academy of Sciences of the United States of America 87(4):1556-60.

Hu, Z., Rohrer, G. A., Murtaugh, M. P., Stone, R. T. and Beattie, C. W., 1997, Mapping genes to swine X chromosome provides reference loci for comparative mapping, Mammalian Genome 8(8):608-10.

Hufty, M. P., Sedgwick, C. J. and Benirschke, K., 1973, The karyotypes of the White-lipped and Collared peccaries, aspects of their chromosomal evolution, Genen Phaenen 16(3):81-86.

Hutchison, C. A., Hardies, S. C., Loeb, D. D., Shehee, W. R. and Edgell, M. H., 1989, LINEs and related retroposons: long interspersed repeated sequences in the eukaryotic genome, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), Americal Society for Microbiology, Washington DC, pp. 593-617.
Iles, D. E., Segers, B., Heytens, L., Sengers, R. C. and Wieringa, B., 1992, High-resolution physical mapping of four microsatellite repeat markers near the RYR1 locus on chromosome 19q13.1 and apparent exclusion of the MHS locus from this region in two malignant hyperthermia susceptible families, Genomics 14(3):749-54.

Jeffreys, A. J., Wilson, V. and Thein, S. L., 1985, Hypervariable 'minisatellite' regions in human DNA, Nature 314(6006):67-73.

Jiang, Z., Priat, C., Galibert, F., 1998, Traced othologous amplified sequence tags (TOASTs) and mammalian comparative maps, Mammalian Genome 9:577-587.

Johansson, M., Ellegren, H. and Andersson, L., 1995, Comparative mapping reveals extensive linkage conservation-but with gene order rearrangements-between the pig and the human genomes, Genomics 25:682-690.
Juneja, R. K. and Vögeli, P., 1998, Biochemical genetics, in: The genetics of the pig (M. F. Rothschild and A. Ruvinsky, eds.), CAB International, New York, pp. 105-134.

Kawai, S. and Hanafusa, H., 1972, Genetic recombination with avian tumor virus, Virology 49(1):37-44.
Kettmann, R., Burny, A., Callebaut, I., Droogmans, L., Mammerickx, M., Willems, L. and Portetelle, D., 1992, Bovine leukemia virus, in: The retroviridae (J. A. levy, ed.), Plenum press, New York and London, pp. 39-81.
Kim, K.-I., Lee, J.-H., Li, K., Zhang, Y.-P., Lee, S.-S., Gongora, J. and Moran, C., Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism, submitted to Animal Genetics.
Kozak, C. A. and Ruscetti, S., 1992, Retroviruses in rodents, in: The retroviridae (J. A. levy, ed.), Plenum press, New York and London, pp. 405-481.
Kwok, C., Korn, R. M., Davis, M. E., Burt, D. W., Critcher, R., McCarthy, L., Paw, B. H., Zon, L. I., Goodfellow, P. N. and Schmitt, K., 1998, Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates, Nucleic Acids Research 26(15):3562-6.
Lahbib-Mansais, Y., Dalias, G., Milan, D., Yerle, M., Robic, A., Gyapay, G. and Gellin, J., 1999, A successful strategy for comparative mapping with human ESTs: 65 new regional assignments in the pig, Mammalian Genome $\mathbf{1 0}$ (2):145-53.
Lahbib-Mansais, Y., Yerle, M., Pinton, P. and Gellin, J., 1996, Chromosomal localization of homeobox genes and associated markers on porcine chromosomes 3, 5, 12, 15, 16 and 18: comparative mapping study with human and mouse, Mammalian Genome 7(3):174-9.
Langford, G. A., Yannoutsos, N., Cozzi, E., Lancaster, R., Elsome, K., Chen, P., Richards, A. and White, D. J. G., 1994, Production of Pigs Transgenic For Human Decay Accelerating Factor, Transplantation Proceedings 26(3):1400-1401.
Lanneluc, I., Mulsant, P., Saidi-Mehtar, N. and Elsen, J. M., 1996, Synteny conservation between parts of human chromosome 4 q and bovine and ovine chromosomes 6, Cytogenetics \& Cell Genetics 72(2-3):212-4.
Lee, J. H., Zhang, W., Chen, Y., Lyons, L. A., Robic, A. and Moran, C., 1998, Developing a comparative porcine map relative to human chromosomes 9, 10, 20 and 22, Animal Genetics 29(Suppl. 1):39.

Leis, J., Baltimore, D., Bishop, J. M., Coffin, J., Fleissner, E., Goff, S. P., Oroszlan, S., Robinson, H., Skalka, A. M. and Temin, H. M., 1988, Standardized and simplified nomenclature for proteins common to all retroviruses, Journal of Virology 62(5):1808-9.
Lemieux, N., Dutrillaux, B. and Viegas, P. E., 1992, A simple method for simultaneous R or G-banding and fluorescence in situ hybridization of small single-copy genes, Cytogenetics \& Cell Genetics 59(4):311-312.

Le Tissier, P., Stoye, J. P., Takeuchi, Y., Patience, C. and Weiss, R. A., 1997, Two sets of human-tropic pig retrovirus, Nature 389(6652):681-2.
Lewin, B., 1994, Genes V, Oxford University Press, Oxford.
Lieber, M. M., Sherr, C. J., Benveniste, R. E. and Todaro, G. J., 1975, Biological and immunological properties of porcine type C viruses, Virology 66:616-619.

Loftus, S. K., Shiang, R., Warrington, J. A., Bengtsson, U., McPherson, J. D. and Wasmuth, J. J., 1994, Genes encoding adrenergic receptors are not clustered on the long arm of human chromosome 5, Cytogenetics \& Cell Genetics 67(2):69-74.

Lomasney, J. W., Cotecchia, S., Lorenz, W., Leung, W. Y., Schwinn, D. A., Yang-Feng, T. L., Brownstein, M., Lefkowitz, R. J. and Caron, M. G., 1991, Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5, Journal of Biological Chemistry 266(10):6365-9.
Lyons, L. A., Kehler, J. S. and O'Brien, S. J., 1999, Development of comparative anchor tagged sequences (CATS) for canine genome mapping, Journal of Heredity 90(1):15-26.
Lyons, L. A., Laughlin, T. F., Copeland, N. G., Jenkins, N. A., Womack, J. E. and O'Brien, S. J., 1997, Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes, Nature Genetics 15:47-56.

Mang, R., Goudsmit, J. and van der Kuyl, A. C., 1999, Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry, Journal of Virology 73(8):7021-6.

Marklund, L., Johansson Moller, M., Hoyheim, B., Davies, W., Fredholm, M., Juneja, R. K., Mariani, P., Coppieters, W., Ellegren, H. and Andersson, L., 1996, A comprehensive linkage map of the pig based on a wild pig-Large White intercross, Animal Genetics 27(4):255-69.

Martin, S. L., 1991, LINEs, Current Opinion in Genetics \& Development 1(4):505-8.
Martin, J., Herniou, E., Cook, J., Waugh O'Neill, R. and Tristem, M., 1997, Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates, Journal of Virology 71(1):437-43.

Martin, U., Kiessig, V., Blusch, J. H., Haverich, A., von der Helm, K., Herden, T. and Steinhoff, G., 1998a, Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells, Lancet 352(9129):692-4.
Martin, U., Steinhoff, G., Kiessig, V., Chikobava, M., Anssar, M., Morschheuser, T., Lapin, B. and Haverich, A., 1998b, Porcine endogenous retrovirus (PERV) was not transmitted from transplanted porcine endothelial cells to baboons in vivo, Transplant International 11(4):247-51.

McCarthy, L. C., 1996, Whole genome radiation hybrid mapping, Trends in Genetics 12(12):491-3.
McCurry, K. R., Kooyman, D. L., Diamond, L. E., Byrne, G. W., Martin, M. J., Logan, J. S. and Platt, J. L., 1995, Human complement regulatory proteins in transgenic animals regulate complement activation in xenoperfused organs, Transplantation Proceedings 27(1):317-8.

McGuire, T. C., O'Rourke, K. I., Knowles, D. P. and Cheevers, W. P., 1990, Caprine arthritis encephalitis lentivirus transmission and disease, Current Topics in Microbiology \& Immunology 160:6175.

McIntosh, G. M. and Pointon, A., 1981, The Kangaroo Island strain of pig in biomedical research, Australian Veterinary Journal 57:182-185.

Mead, R., Curnow, R. N. and Hasted, A. M., 1993, Statistical Methods in Agriculture and Experimental Biology, Chapman and Hall, London.
Melton, L., 1999, Inroads made into transplantation problems, The Lancet 354:1272.
Michaels, M. G. and Simmons, R. L., 1994, Xenotransplant-associated zoonoses. Strategies for prevention, Transplantation 57(1):1-7.

Miller, J. R., 1994, Use of porcine interspersed repeat sequences in PCR-mediated genotyping, Mammalian Genome 5(10):629-32.

Miyamoto, M. M., Kraus, F., Laipis, P. J., Tanhauser, S. M. and Webb, S. D., 1993, Mitochondrial DNA phylogenies within Artiodactyla, in: Mammal Phylogeny (F. S. Szalay, M. J. Novacek and M. C. McKenna, eds.), Springer-Verlag, New York, pp. 268-281.

Mollnes, T. E. and Fiane, A. E., 1999, Xenotransplantation: how to overcome the complement obstacle?, Molecular Immunology 36(4-5):269-76.
Moran, C., 1998, Molecular genetics, in: The genetics of the pig (M. F. Rothschild and A. Ruvinsky, eds.), CAB International, New York, pp. 135-161.
Murphy, W. J., Menotti-Raymond, M., Lyons, L. A., Thompson, M. A. and O'Brien, S. J., 1999, Development of a feline whole genome radiation hybrid panel and comparative mapping of human chromosome 12 and 22 loci, Genomics 57(1):1-8.

Nadeau, J. H. and Sankoff, D., 1997, Landmarks in the Rosetta Stone of mammalian comparative maps, Nature Genetics 15:6-7.
Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M. and Kumlin, E., 1987, Variable number of tandem repeat (VNTR) markers for human gene mapping, Science 235(4796):1616-22.
Needleman, S. B. and Wunsch, C. D., 1970, A general method applicable to the search for similarities in the amino acid sequence of two proteins, Journal of Molecular Biology 48(3):443-53.
Nicholas, F. W. and Harper, P., 1996, Inherited disorders: the comparative picture, Australian Veterinay Journal 73(2):64-66.
Nikaido, M., Rooney, A. P. and Okada, N., 1999, Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales, Proceedings of the National Academy of Sciences of the United States of America 96(18):10261-6.
O'Brien, S. J., Cevario, S. J., Martenson, J. S., Thompson, M. A., Nash, W. G., Chang, E., Graves, J. A., Spencer, J. A., Cho, K. W., Tsujimoto, H. and Lyons, L. A., 1997, Comparative gene mapping in the domestic cat (Felis catus), Journal of Heredity 88(5):408-14.

O'Brien, S. J., Seuánez, H. N. and Womack, J. E., 1988, Mammalian genome organization: an evolutionary view, Annual Review of Genetics. 22:323-351.
O'Brien, S. J., Womack, J. E., Lyons, L. A., Moore, K. J., Jekins, N. A. and Copeland, N. G., 1993, Anchored reference loci for comparative genome mapping in mammals, Nature Genetics 3:103-112.

Ogawa, H., Kobayashi, T., Yokoyama, I., Nagasaka, T., Namii, Y., Hayashi, S., Kadomatsu, K., Muramatsu, T. and Takagi, H., 1999, Suppression of porcine xenoantigen expression by dorminant-negative effect of alpha-1,3-Galactosyltransferase (alpha-1,3-GT) splicing variants, Transplantation Proceedings 32:58.
Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. and Sekiya, T., 1989, Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proceedings of the National Academy of Sciences of the United States of America 86(8):2766-70.

Paradis, K., Langford, G., Long, Z., Heneine, W., Sandstrom, P., Switzer, W. M., Chapman, L. E., Lockey, C., Onions, D. and Otto, E., 1999, Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue, Science 285(5431):1236-41.
Pathak, V. K., Hu, W.-S. and Temmin, H. M., 1990, Hypermutation and other variations in retroviruses, in: Somatic hypermutation in V-regions (E. J. Steele, ed.), CRC Press, pp. 149-157.

Pathak, V. K. and Temin, H. M., 1990a, Broad spectrum of in vivo forward mutations, hypermutations and mutational hotspots in a retroviral shuttle vector after a single replication cycle: deletions and deletions with insertions, Proceedings of the National Academy of Sciences of the United States of America 87(16):6024-8.
Pathak, V. K. and Temin, H. M., 1990b, Broad spectrum of in vivo forward mutations, hypermutations and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts and hypermutations, Proceedings of the National Academy of Sciences of the United States of America 87(16):6019-23.
Patience, C., Patton, G. S., Takeuchi, Y., Weiss, R. A., McClure, M. O., Rydberg, L. and Breimer, M. E., 1998, No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys, Lancet 352(9129):699-701.
Patience, C., Takeuchi, Y. and Weiss, R. A., 1997a, Infection of human cells by an endogenous retrovirus of pigs, Nature Medicine 3(3):282-6.
Patience, C., Wilkinson, D. A. and Weiss, R. A., 1997b, Our retroviral heritage, Trends in Genetics 13(3):116-20.
Payen, E., Saidi-Mehtar, N., Pailhoux, E. and Cotinot, C., 1995, Sheep gene mapping: assignment of ALDOB, CYP19, WT and SOX2 by somatic cell hybrid analysis, Animal Genetics 26(5):331-3.

Payne, L. N., 1992, Biology of avian retroviruses, in: The retroviridae (J. A. levy, ed.), Plenum press, New York and London, pp. 299-404.

Pearson, W. R. and Lipman, D. J., 1988, Improved Tools for Biological Sequence Analysis, Proceedings of the National Academy of Sciences of the United States of America 85:2444-2448.

Pelzer, K. D. and Sprecher, D. J., 1993, Controlling BLV infection on dairy operations, Veterinary Medicine 88:275-281.
Petropoulos, C., 1997, Appendix 2, Retroviral taxonomy, protein structure, sequences and genetic maps, in: Retroviruses (J. M. Coffin, S. H. Hughes and H. E. Varmus, eds.), Cold Sprong Harbor Laboratory Press, New York, pp. 757-805.
Pitkin, Z. and Mullon, C., 1999, Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system, Artificial Organs 23(9):829-33.
Platt, J. L. and Bach, F. H., 1991, The barrier to xenotransplantation, Transplantation 52(6):937-47.
Platt, J. L. and Lin, S. S., 1998, The future promises of xenotransplantation, in: Annals of the New York Academy of Sciences (J. Fishman, D. Sachs and R. Shaikh, eds.), The New York Academy of Sciences, New York, pp. 5-18.
Platt, J. L., Vercellotti, G. M., Lindman, B. J., Oegema, T. R., Jr., Bach, F. H. and Dalmasso, A. P., 1990, Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection, Journal of Experimental Medicine 171(4):1363-8.
Postlethwait, J. H., Yan, Y.-L., Gates, M. A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan, E. S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, M., Abduljabbar, T. S., Yelick, P., Beier, D., Joly, J.-S., Larhammar, D., Rosa, F., Westerfield, M., Zon, L. I., Johnson, S. L. and Talbot, W. S., 1998, Vetebrate genome evolution and the zebrafish gene map, Nature Genetics 18:345-349.
Preston, B. D., Poiesz, B. J. and Loeb, L. A., 1988, Fidelity of HIV-1 reverse transcriptase, Science 242(4882):1168-71.

Rabbitts, P., Impey, H., Heppell-Parton, A., Langford, C., Tease, C., Lowe, N., Bailey, D., FergusonSmith, M. and Carter, N., 1995, Chromosome specific paints from a high flow karyotype of the mouse, Nature Genetics 9:369-375.
Randi, E., Lucchini, V. and Diong, C. H., 1996, Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing, Journal of Mammalian Evolution 3(2):163-194.
Raudsepp, T., Fronicke, L., Scherthan, H., Gustavsson, I. and Chowdhary, B. P., 1996, Zoo-FISH delineates conserved chromosomal segments in horse and man, Chromosome Research 4:218-225.
Rettenberger, G., Bruch, J., Beattie, C. W., Moran, C., Fries, R. and Hameister, H., 1995a, Chromosomal assignment of seventeen porcine microsatellites and genes by use of a somatic cell hybrid mapping panel, Animal Genetics 26(4):269-73.
Rettenberger, G., Bruch, J., Fries, R., Archibald, A. L. and Hameister, H., 1996, Assignment of 19 porcine type I loci by somatic cell hybrid analysis detects new regions of conserved synteny between human and pig, Mammalian Genome 7(4):275-9.
Rettenberger, G., Fries, R., Engel, W., Scheit, K. H., Dolf, G. and Hameister, H., 1994, Establishment of a partially informative porcine somatic cell hybrid panel and assignment of the loci for
transition protein 2 (TNP2) and protamine 1 (PRM1) to chromosome 3 and polyubiquitin (UBC) to chromosome 14, Genomics 21(3):558-66.

Rettenberger, G., Klett, C., Zechner, U., Bruch, J., Just, W., Vogel, W. and Hameister, H., 1995a, ZooFISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype, Chromosome Research 3:479-486.
Rettenberger, G., Klett, C., Zechner, U., Kunz, J., Vogel, W. and Hameister, H., 1995b, Visualization of the conservation of synteny between humans and pig by heterologous chromosomal painting, Genomics 26:372-378.
Robic, A., Riquet, J., Yerle, M., Milan, D., Lahbib-Mansais, Y., Dubut-Fontana, C. and Gellin, J., 1996, Porcine linkage and cytogenetic maps integrated by regional mapping of 100 microsatellites on somatic cell hybrid panel, Mammalian Genome 7(6):438-45.
Rogel-Gaillard, C., Bourgeaux, N., Billault, A., Vaiman, M. and Chardon, P., 1999, Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements, Cytogenetics \& Cell Genetics 85(3-4):205-11.
Rohrer, G. A., Alexander, L. J., Hu, Z., Smith, T. P., Keele, J. W. and Beattie, C. W., 1996, A comprehensive map of the porcine genome, Genome Research 6(5):371-91.
Rohrer, G. A., Alexander, L. J., Keele, J. W., Smith, T. P. and Beattie, C. W., 1994, A microsatellite linkage map of the porcine genome, Genetics 136(1):231-45.
Rønne, M., Stefanova, V., Di Berardino, D. and Strandby Poulsen, B., 1987, The R-banded karyotype of the domestic pig (Sus scrofa domestica L.), Hereditas 106(2):219-31.
Rosenberg, N. and Jolicoeur, P., 1997, Retroviral pathogenesis, in: Retroviruses (J. M. Coffin, S. H. Hughes and H. E. Varmus, eds.), Cold Sprong Harbor Laboratory Press, New York, pp. 475585.

Rous, P., 1911, A sarcoma of the fowl transmissible by an agent separable from the tumor cells, The Journal of Experimental Medicine 13:397-411.
Rous, P. and Murphy, J. B., 1913, Variations in a chicken sarcoma caused by a filterable agent, The Journal of Experimental Medicine 17:219-231.

Ruddle, F. H., 1981, A new era in mammalian gene mapping: somatic cell genetics and recombinant DNA methodologies, Nature 294(5837):115-20.
Ruvinsky, A. and Rothschild, M. F., 1998, Systematics and evolution of the Pig, in: The Genetics of the Pigs (A. Ruvinsky and M. F. Rothschild, eds.), CAB International, Oxon and New York, pp. 1-16.

Sambrook, J., Fritsch, E. F. and Maniatis, T., 1989, Molecular Cloning: a laboratory manual, Cold Spring Harbour Laboratory Press.
Sanger, F., Nicklen, S. and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences of the United States of America 74:54635467.

Scherthan, H., Cremer, T., Arnason, U., Weier, H., Lima-de-Faria, A. and Frönicke, L., 1994, Comaprative chromosome painting disclosures homologous egments in distantly related mammals, Nature Genetics 6:342-347.
Schlapfer, J., Gallagher, D. S., Jr., Burzlaff, J. D., Womack, J. E., Stelly, D. M., Taylor, J. F. and Davis, S. K., 1998, Comparative mapping of bovine chromosome 13 by fluorescence in situ hybridization, Animal Genetics 29(4):265-72.
Schmitz, A., Chardon, P., Gainche, I., Chaput, B., Guilly, M. N., Frelat, G. and Vaiman, M., 1992, Pig standard bivariate flow karyotype and peak assignment for chromosomes $\mathrm{X}, \mathrm{Y}, 3$ and 7, Genomics 14:357-362.
Schmitz, A., Oustry, A., Chaput, B., Yerle, M., Milan, D., Frelat, G. and Cribui, E. P., 1995, The bovine bivariate flow karyotype and peak identification by chromosome painting with PCRgenerated probes, Mammalian Genome 6:415-420.

Schmoeckel, M., Bhatti, F. N., Zaidi, A., Cozzi, E., Waterworth, P. D., Tolan, M. J., Pino-Chavez, G., Goddard, M., Warner, R. G., Langford, G. A., Dunning, J. J., Wallwork, J. and White, D. J., 1998, Orthotopic heart transplantation in a transgenic pig-to-primate model [published erratum appears in Transplantation 1998 Oct 15;66(7):943], Transplantation 65(12):1570-7.
Schumacher, J. M., Ellias, S. A., Palmer, E. P., Kott, H. S., Dinsmore, J., Dempsey, P. K., Fischman, A. J., Thomas, C., Feldman, R. G., Kassissieh, S., Raineri, R., Manhart, C., Penney, D., Fink, J. S. and Isacson, O., 2000, Transplantation of embryonic porcine mesencephalic in patients with PD, Neurology 54(5): 1042-1050.

Sharma, A., Okabe, J., Birch, P., McClellan, S. B., Martin, M. J., Platt, J. L. and Logan, J. S., 1996, Reduction in the level of $\operatorname{Gal}($ alpha1,3 $) \mathrm{Gal}$ in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase, Proceedings of the National Academy of Sciences of the United States of America 93(14):7190-5.
Singer, D. H., Parent, L. J. and Ehrlich, R., 1987, Identification and DNA sequence of an interspersed repetitive DNA element in the genome of the miniature swine, Nucleic Acids Research 15(6):2780.

Singer, M. F., 1982, SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes, Cell 28(3):433-4.
Smith, E. J., Lyons, L. A., Cheng, H. H. and Suchyta, S. P., 1997, Comparative mapping of the chicken genome using the East Lansing reference population, Poultry Science 76:743-747.
Solinas-Toldo, S., Lengauer, C. and Fries, R., 1995, Comparative genome map of human and cattle, Genomics 27:489-496.
Soller, M., 1994, Marker assisted selection - an review, Animal Biotechnology 5(2):193-207.
Spinardi, L., Mazars, R. and Theillet, C., 1991, Protocols for an improved detection of point mutations by SSCP, Nucleic Acids Research 19(14):4009.
Stephenson, J. R. anderson, G. R., Tronick, S. R. and Aaronson, S. A., 1974, Evidence for genetic recombination between endogenous and exogenous mouse RNA type C viruses, Cell 2(2):87-94.

Stewart, E. A., McKusick, K. B., Aggarwal, A., Bajorek, E., Brady, S., Chu, A., Fang, N., Hadley, D., Harris, M., Hussain, S., Lee, R., Maratukulam, A., O'Connor, K., Perkins, S., Piercy, M., Qin, F., Reif, T., Sanders, C., She, X., Sun, W. L., Tabar, P., Voyticky, S., Cowles, S., Fan, J. B. and Cox, D. R., 1997, An STS-based radiation hybrid map of the human genome, Genome Research 7(5):422-33.

Stoye, J. P. and Coffin, J. M., 1995, The dangers of xenotransplantation, Nature Medicine 1(11):1100.
Stoye, J. P., Le Tissier, P., Takeuchi, Y., Patience, C. and Weiss, R. A., 1998, Endogenous retroviruses: a potential problem for xenotransplantation?, in: Annals of the New York Academy of Sciences (J. Fishman, D. Sachs and R. Shaikh, eds.), The New York Academy of Sciences, New York, pp. 67-74.

Stuhlmann, H. and Berg, P., 1992, Homologous recombination of copackaged retrovirus RNAs during reverse transcription, Journal of Virology 66(4):2378-88.

Sulandari, S., Muladno, Harumi, T., Yanai, S., Wada, Y. and Yasue, H., 1997, Localization of swine PRE1 homologues in 13 loci of Phacochoerus aethiopicus and Tayassu tajacu genomes and their sequence divergence, Animal Genetics 28:210-215.

Sun, H. S., Yerle, M., Pinton, P., Chardon, P., Rogel-Gaillard, C., Lyons, L. A., Laughlin, T. F. and Tuggle, C. K., 1999, Physical assignments of human chromosome 13 genes on pig chromosome 11 demonstrate extensive synteny and gene order conservation between pig and human, Animal Genetics 30(4):304-308.

Suzuka, I., Sekiguchi, K. and Kodama, M., 1985, Some characteristics of a porcine retrovirus from a cell line derived from swine malignant lymphomas, FEBS Letters 183(1):124-8.
Suzuka, I., Shimizu, N., Sekiguchi, K., Hoshino, H., Kodama, M. and Shimotohno, K., 1986, Molecular cloning of unintegrated closed circular DNA of porcine retrovirus, FEBS Letters 198(2):33943.

Swindle, M. M., 1998, Defining appropriate health status and magement program for specific pathogen free (SPF) swine for xenotransplantation, in: Annals of the New York Academy of Sciences (J. Fishman, D. Sachs and R. Shaikh, eds.), The New York Academy of Sciences, New York, pp. 111-120.

Switzer, W. M., Shanmugam, V., Chapman, L. and Heneine, W., 1999, Polymerase chain reaction assays for the diagnosis of infection with the porcine endogenous retrovirus and the detection of pig cells in human and nonhuman recipients of pig xenografts, Transplantation 68(2):183-8.
Takeuchi, Y., Patience, C., Magre, S., Weiss, R. A., Banerjee, P. T., Le Tissier, P. and Stoye, J. P., 1998, Host range and interference studies of three classes of pig endogenous retrovirus, Journal of Virology 72(12):9986-91.
Teich, N., 1982, Taxonomy of retroviruses, in: RNA tumor viruses (R. Weiss, N. Teich, H. Varmus and J. Coffin, eds.), Cold Sprong Harbor laboratory, pp. 25-207.
Temin, H., Hannink, M., Hu, W.-S. and Pathak , V. K., 1991, Retrovirus Variation and Regulation of c-rel, in: Viruses That Affect the Immune System (H. Fan, I. Chen, N. Rosenberg and W. Sugden, eds.), American Society for Microbiology, pp. 135-142.

Temin, H. M., 1991, Sex and recombination in retroviruses, Trends in Genetics 7(3):71-4.
Tereba, A., 1983, Asymmetric chromosomal distribution of endogenous retrovirus loci in chickens and mice, Current Topics in Microbiology \& Immunology 107:29-50.
Theimer, T. C. and Keim, P., 1998, Phylogenetic relationships of the peccaries based on mitochondrial cytochrome b DNA sequences, Journal of Mammalogy 79(2):566-572.

Thomas, J. W., Lee-Lin, S. Q. and Green, E. D., 1999, Human-mouse comparative mapping of the genomic region containing CDK6: localization of an evolutionary breakpoint, Mammalian Genome 10(7):764-767.
Thomsen, P. D. and Miller, J. R., 1996, Pig genome analysis: differential distribution of SINE and LINE sequences is less pronounced than in the human and mouse genomes, Mammalian Genome 7(1):42-6.
Todaro, G. J., Benveniste, R. E., Lieber, M. M. and Sherr, C. J., 1974, Characterization of a type C virus released from the porcine cell line PK (15), Virology 58:65-74.
Todd, N. B., 1985, Significance of a diploid number of 20 in the peccary Catagonus wagneri, Journal of Heredity 76(4):310.
Trask, B. J., 1991a, Fluorescence in situ hybridization: applications in cytogenetics and gene mapping, Trends in Genetics 7(5):149-54.

Trask, B. J., 1991b, Gene mapping by in situ hybridization, Current Opinion in Genetics \& Development 1(1):82-7.
Tristem, M., 1996, Amplification of divergent retroelements by PCR, Biotechniques 20(4):608-12.
Tristem, M., Herniou, E., Summers, K. and Cook, J., 1996a, Three retroviral sequences in amphibians are distinct from those in mammals and birds, Journal of Virology 70(7):4864-4870.

Tristem, M., Kabat, P., Lieberman, L., Linde, S., Karpas, A. and Hill, F., 1996b, Characterization of a novel murine leukemia virus-related subgroup within mammals, Journal of Virology 70(11):8241-6.
United Kingdom Transplant Services Association, 1998, Transplant Statistics.
van der Kuyl, A. C., Dekker, J. T. and Goudsmit, J., 1999, Discovery of a new endogenous type C retrovirus (FcEV) in cats: evidence for RD-114 being an $\mathrm{FcEV}(\mathrm{Gag}-\mathrm{Pol}) /$ baboon endogenous virus BaEV(Env) recombinant, Journal of Virology 73(10):7994-8002.
van der Kuyl, A. C., Mang, R., Dekker, J. T. and Goudsmit, J., 1997, Complete nucleotide sequence of simian endogenous type D retrovirus with intact genome organization: evidence for ancestry to simian retrovirus and baboon endogenous virus, Journal of Virology 71(5):3666-76.
van der Laan, L. J. W., Lockey, C., Griffeth, B. C., Frasier, F. S., Wilson, C. A., Onions, D. E., Hering, B. J., Long, Z., Otto, E., Torbett, B. E. and Salomon, D. R., 2000, Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice, Nature 407:501-504.
Vanhove, B., Renard, J.-P. and Soulillou, J.-P., 1998, Genetic engineering in the pig - Gene knockout and alternative technoloques, in: Annals of the New York Academy of Sciences (J. Fishman, D. Sachs and R. Shaikh, eds.), The New York Academy of Sciences, New York, pp. 28-36.

Van Poucke, M., Tornsten, A., Mattheeuws, M., Van Zeveren, A., Peelman, L. J. and Chowdhary, B. P., 1999, Comparative mapping between human chromosome 3 and porcine chromosome 13, Cytogenetics and Cell Genetics 85(3-4):279-284.

Venta, P. J., Brouillette, J. A., Yuzbasiyan-Gurkan, V., Brewer, G. J., 1996, Gene-specific universal mammalian sequence-tagged sites: Application to the canine genome, Biochemical Genetics 34(7/8):321-341.
Vogt, P. K., 1971, Genetically stable reassortment of markers during mixed infection with avian tumor viruses, Virology 46(3):947-52.
Vogt, P. K., 1997, Historical introduction to the general properties of retroviruses, in: Retroviruses (J. M. Coffin, S. H. Hughes and H. E. Varmus, eds.), Cold Sprong Harbor Laboratory Press, New York, pp. 1-25.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J. and Kuiper, M., 1995, AFLP: a new technique for DNA fingerprinting, Nucleic Acids Research 23(21):4407-14.
Wakefield, M. J. and Graves, J. A. M., 1996, Comparative maps of vertebrates, Mammalian Genome 7:715-716.
Watson, J. D., 1992, Recombinant DNA, Scientific American Books, New York.
Weiss, R. A., Mason, W. S. and Vogt, P. K., 1973, Genetic recombinants and heterozygotes derived from endogenous and exogenous avian RNA tumor viruses, Virology 52(2):535-52.
Wieslander, L., 1979, A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling temperature agarose gels, Analytical Biochemistry 98:305-309.

Weiss, R. A., 1998, Transgenic pigs and virus adaptation, Nature 391(6665):327-8.
White, S. A. and Nicholson, M. L., 1999, Xenotransplantation, British Journal of Surgery 86(12):1499514.

Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Research 18(22):6531-5.

Williamson, P., Holt, S., Townsend, S. and Boyd, Y., 1995, A somatic cell hybrid panel for mouse gene mapping characterized by PCR and FISH, Mammalian Genome 6(6):429-32.

Wilson, C. A., Wong, S., Muller, J., Davidson, C. E., Rose, T. M. and Burd, P., 1998, Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells, Journal of Virology 72(4):3082-7.
Wilson, C. A., Wong, S., VanBrocklin, M. and Federspiel, M. J., 2000, Extended analysis of the in vitro tropism of porcine endogenous retrovirus, Journal of Virology 74(1):49-56.

Womack, J. E., Johnson, J. S., Owens, E. K., Rexroad, C. E., 3rd, Schlapfer, J. and Yang, Y. P., 1997, A whole-genome radiation hybrid panel for bovine gene mapping, Mammalian Genome 8(11):854-6.

Womack, J. E. and Kata, S. R., 1995, Bovine genome mapping: evolutionary inference and the power of comparative genomics, Current Opinion in Genetics and Development 5:725-733.
Wong, P. K. and McCarter, J. A., 1973, Genetic studies of temperature-sensitive mutants of Moloneymurine leukemia virus, Virology 53(2):319-26.
Wyke, J. A. and Beamand, J. A., 1979, Genetic recombination in Rous sarcoma virus: the genesis of recombinants and lack of evidence for linkage between pol, env and src genes in three factor crosses, Journal of General Virology 43(2):349-64.
Wyke, J. A., Bell, J. G. and Beamand, J. A., 1975, Genetic recombination among temperature-sensitive mutants of Rous sarcoma virus, Cold Spring Harbor Symposia on Quantitative Biology 39:897-905.

Yang, F., Muller, S., Just, R., Ferguson-Smith, M. A. and Weinberg, J., 1997, Comparative chromosome painting in mammals: human and the Indian muntjak (Muntiacus muntjak vaginalis), Genomics 39:396-401.

Yang, Y. P., Rexroad, C. E., 3rd, Schlapfer, J. and Womack, J. E., 1998, An integrated radiation hybrid map of bovine chromosome 19 and ordered comparative mapping with human chromosome 17, Genomics 48(1):93-9.
Yang-Feng, T. L., Xue, F. Y., Zhong, W. W., Cotecchia, S., Frielle, T., Caron, M. G., Lefkowitz, R. J. and Francke, U., 1990, Chromosomal organization of adrenergic receptor genes, Proceedings of the National Academy of Sciences of the United States of America 87(4):1516-20.
Yasue, H. and Wada, Y., 1996, A swine SINE (PRE-1 sequence) distribution in swine-related animal species and its phylogenetic analysis in swine genome, Animal Genetics 27:95-98.
Yerle, M., Echard, G., Robic, A., Mairal, A., Dubut-Fontana, C., Riquet, J., Pinton, P., Milan, D., LahbibMansais, Y. and Gellin, J., 1996, A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics, Cytogenetics \& Cell Genetics 73(3):194-202.
Yerle, M., Lahbib-Mansais, Y., Pinton, P., Robic, A., Goureau, A., Milan, D. and Gellin, J., 1997, The cytogenetic map of the domestic pig (Sus scrofa domestica), Mammalian Genome 8:592607.

Yerle, M., Pinton, P., Robic, A., Alfonso, A., Palvadeau, Y., Delcros, C., Hawken, R., Alexander, L., Beattie, C., Schook, L., Milan, D. and Gellin, J., 1998, Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs, Cytogenetics \& Cell Genetics 82(3-4):182-8.
Zaidi, A., Schmoeckel, M., Bhatti, F., Waterworth, P., Tolan, M., Cozzi, E., Chavez, G., Langford, G., Thiru, S., Wallwork, J., White, D. and Friend, P., 1998, Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors, Transplantation 65(12):1584-90.
Zhang, W., 1997, Pig gene mapping and genetic markers, Ph.D. Thesis, The University of Sydney.
Zhang, W., Chen, Y. and Moran, C., 1996, Use of comparative anchor-tagged sequence (CATS) markers in pig gene mapping, Animal Genetics 27(Suppl. 2):84.

Zijlstra, C., Bosma, A. A., de Haan, N. A. and Mellink, C., 1996, Construction of a cytogenetically characterized porcine somatic cell hybrid panel and its use as a mapping tool, Mammalian Genome 7(4):280-4.
Zylstra, P., Rothenfluh, H. S., Weiller, G. F., Blanden, R. V. and Steele, E. J., 1998, PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts, Immunology \& Cell Biology 76(5):395-405.

Appendices

Appendix 2.1 A physical map of the plasmid vector pCR^{\circledR} 2.1-TOPO and the sequence surrounding the TOPO $^{\text {TM }}$ cloning site (source: Invitrogen, TOPO ${ }^{\text {TM }}$ TA Cloning Instruction Manual, version E, pp 6).

Appendix 2.2 A physical map of the plasmid vector, pCR^{\circledR}-Blunt and the sequence surrounding the cloning site (source: Invitrogen, Zero Blunt ${ }^{\text {TM }}$ PCR Cloning Kit Instruction Manual, version D, pp 4).

Appendix 2.3 Conversion of centrifugation force (g) to centrifugation speed (rpm).
(1) Beckman J2-21 M/E centrifuge

$$
\begin{array}{lr}
4,000 \mathrm{rpm}=1,935 \mathrm{~g} & 5,000 \mathrm{rpm}=3,024 \mathrm{~g} \\
10,000 \mathrm{rpm}=12,096 \mathrm{~g} & 15,000 \mathrm{rpm}=27,216 \mathrm{~g}
\end{array}
$$

(2)Beckman microfuge E^{TM} centrifuge
$12,500 \mathrm{rpm}=14,000 \mathrm{~g}$

Appendix 3.1 CATS sequences and verification of the PCR products for ADRA1A (a), ADRA2A (b), ARSA (c), BMI1 (d), CD40 (e), GNAS1 (f), GNAZ (g), IGL@ (h), OXT (i), TOP1 (j) using the GenBank database.
(a) $A D R A 1 A$

(b) ADRA2A

(c) $A R S A$

(d) BMII

(e) $C D 40$

(f) GNAS1

(g) GNAZ

(h) IGL@

(i) $O X T$

(j) TOP1

Appendix 3.2 OXT genotypes in PiGMaP reference families and their pedigree structure.

Genotype of reference family Britain-1

G-227LW A	
G-1104M AB	
G-497M AB	
G-521LW A	
P-9606 (227X1104)	A
P-9818 (497X521)	AB
P-9810 (497X521)	B
(9606X9818)	
O-6111	A
O-6112	AB
O-6113	A
O-6114	A
O-6115	A
O-6118	B
O-6119	A
O-6120	AB
O-6122	B
(9606X9810)	
O-5204	AB
O-5205	AB
O-5206	AB
O-5207	AB
O-5208	A
O-5209	A
O-5210	B
O-5211	B
O-5213	A
O-5214	A
O-5215	B

Appendix 3.2 continued

Genotype of reference family Britain-2

G-153M		
G-833LW		
G-956LW		
G-433M		
P-9591 (153X833)	A	
P-9360 (956X433)	A	
P-9365 (956X433)	B	
(9591X9360)		
O-4564	A	
O-4565	$?$	
O-4566	$?$	
O-4568	$?$	
O-4569	A	
O-4570	$?$	
O-4571	A	
O-4572	$?$	
O-4573	$?$	
O-4574	A	
(9591X9365)		
O-5296	A	
O-5297	B	
O-5300	A	
O-5303	B	
O-5304	A	
O-5306	$?$	
O-5307	B	
O-5308	$?$	
O-5310	A	
O-5311	A	

Appendix 3.2 continued

Genotype of reference family German

G-181WB	$?$	
G-128PT	AB	
G-115PT	AB	
G-113PT	B	
P-281 (181X113)	$?$	
P-203 (181X128)	A	
P-232 (181X115)	B	
P-233 (181X115)	A	
P-282 (181X128)	B	
P-202 (181X113)	B	

(203X281)		(232X281)
O-20301	B	O-23201
O-20302	B	O-23202
O-20303	B	O-23203
O-20304	AB	O-23204
O-20305	B	O-23205
O-20306	AB	O-23206
O-20307	B	O-23207
O-20316	AB	O-23208
O-20318	AB	O-23209
O-20319	B	O-23210
O-20320	B	O-23211
O-20322	B	O-23212
O-20323	AB	
O-20324	AB	
(233X281)		(282X202)
O-23301	B	O-20201
O-23302	B	O-20202
O-23306	B	O-20204
O-23307	B	O-20205
O-23308	B	O-20206
O-23310	B	
O-23311	AB	
O-23315	AB	
O-23316	AB	

Appendix 3.2 continued

Genotype of reference family France

G-30607LW	A
G-20755M	A
G-30608LW	A
G-20690M	A
G-30848LW	A
G-20738M	A
P-10012(607x755)	A
P-10010(608x690)	A
P-10011(848x738)	A
P-10002(608x690)	A
(012×010)	N.T.
O-6748	N.T.
O-6749	N.T.
O-6750	N.T.
O-6751	N.T.
O-6752	N.T.
O-6753	N.T.
O-6754	N.T.
O-6755	N.T.
O-6756	N.T.
O-6757	N.T.
O-6759	N.T.
O-6760	N.T.
O-6761	N.T.
(002x011)	N.T.
O-6732	N.T.
O-6733	N.T.
O-6735	N.T.
O-6749	
O-6741	
	N.T.

Note: N.T. - Not Tested

Appendix 3.2 continued

Genotype of reference family Netherlands

G-12M	A
G-6818LW	$?$
G-17M	A
G-Z95V4LW	B
P-6664(12x6818)	A
P-ZSK43(17xZ95V4)	A
$(6664 x Z S K 43)$	N.T.
O-7725	N.T.
O-7726	N.T.
O-7727	N.T.
O-7728	N.T.
O-7729	N.T.
O-7730	N.T.
O-7733	N.T.
O-7735	N.T.
O-7740	N.T.
	N.T.

Note: N.T. - Not Tested

Appendix 3.2 continued

Genotype of reference family Sweden

G-2WB	B
G-8LW	A
G-1WB	A
G-5LW	A
P-79(2x8)	A
P-51(1x5)	A
(79x51)	
O-199	N.T.
O-200	N.T.
O-201	N.T.
O-202	N.T.
O-203	N.T.
O-204	N.T.
O-205	N.T.
O-206	N.T.
O-207	N.T.
O-208	N.T.
O-368	N.T.
O-369	N.T.
O-371	N.T.
O-372	N.T.
O-373	N.T.
O-374	N.T.
O-375	N.T.
O-376	N.T.
O-377	N.T.
O-378	N.T.

Note: N.T. - Not Tested

Appendix 3.4 Interpreting PCR data of ADRA1A (a), ADRA2A (b), ARSA (c), GNASI (d), OXT (e), TOP1 (f) in somatic cell hybrid panel

(a) ADRA1A

(b) ADRA2A

(c) ARSA

(d) GNSA1

(e) $O X T$

```
    *************** MARKER OXT ***************
Supposed discordant rates : False +: 0.10, False - : 0.10
clone : 0 0 0 0 0 0 0 0 0 0 0 0 1.clllllllllllllllllllllll
    1
profile : - - - - - - - - - - - - - - - - - - - - - + - - - + -
*** CAUTION : Low frequency of positive results ( 0.07 ) ***
Reliability of the following results:
*** ERROR RISK ABOUT 5% Maximal Correlation = 0.80
    RERUN YOUR PCR
```

Chromosome probabilities

0	$0.15 \mathrm{E}-05$	2	$0.11 \mathrm{E}-02$	3	0.25E-09		4	$0.16 \mathrm{E}-06$		5	$0.33 \mathrm{E}-11$		
60	$0.10 \mathrm{E}+00$	7	$0.44 \mathrm{E}-08$	8	$0.16 \mathrm{E}-05$		9	$0.25 \mathrm{E}-10$		10	$0.58 \mathrm{E}-12$		
110	$0.22 \mathrm{E}-10$	12	$0.11 \mathrm{E}-03$	13	$0.19 \mathrm{E}-01$		14	$0.79 \mathrm{E}+00$		15	$0.28 \mathrm{E}-05$		
160	$0.18 \mathrm{E}-08$	17	$0.87 \mathrm{E}-01$	18	$0.14 \mathrm{E}-03$		X	$0.42 \mathrm{E}-14$					
Chrom	m 6: $P=0$.10,	Region	Proba, Correl,			$\mathrm{R}+\mathrm{M}+$ / R-M+			/ $\mathrm{R}+\mathrm{M}-$ / $\mathrm{R}-\mathrm{M}-$			
C06E2	$21 / 2 \mathrm{q} 21$			0.0086		0.3500	1		1	2	23		
C06F	q22-q23			0.0770		0.4600	1		1	1	24		
C06G1	1 q24-(1/2 q31)			0.0086		0.3500	1		1	2	23		
C06G2	$2 \quad 1 / 2$ q31			0.0086		0.3500	1		1	2	23		
Chrom	m 14: P	0.79	Region	Proba,		Correl,	$\mathrm{R}+\mathrm{M}+/ \mathrm{R}-\mathrm{M}+$			/ R+M	- / R-M-		
C14C	-			0.0086		0.5933	2		20	3	35	22	
C14D1	1 -			0.0001		0.4781	2		0	520			
C14D2	$2-$			0.0010		0.5292	2		0	4		4	21
C14E	-			0.0086		0.5933	2		0	3	3	22	
C14F	-			0.0770		0.6782	2		0	2	23		
C14G	-			0.6933		0.8000	20			1		24	

(f) TOP1

```
    MARKER TOP1
        ***************
Supposed discordant rates : False +: 0.10, False -: 0.10
```



```
    1
profile : - - - - - - - - - - - - - - - - - - - - + + - - - - - 
*** CAUTION : Low frequency of positive results ( 0.07 ) ***
Reliability of the following results:
Error risk lower than 0.5% Maximal Correlation = 1.00
```

Chromosome probabilities

Appendix 4.1. Alignment of published PERV-A and PERV-B env sequences (EMBL accession numbers Y12238 and Y12239) showing highly conserved regions are located at each end, flanking a variable region. Primer sequences were presented with underline (underline).


```
6 5 1 \text { GAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTCTTTTGTTAACA 700}
    |||||||| |||||| || ||| | |||| | ||| ||||
1342 GAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTG...... 1385
7 0 1 ~ A T C C T A C C A G T T A T A A T C A A T T T A A T T A T G G C C A T G G G A G A T G G A A A G A T ~ 7 5 0 ~
```



```
7 5 1 \text { TGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTCA 800}
        | | || |||| | | ||||
```



```
801 TTCGTTAGACCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAAC 850
            | |||| ||||||| |||| |||||||||||||||||||||||||
1444 CCCATCAGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAAC 1493
81 AAGAAAATATTCAAAAGTGGGTAAATGGTATATCTTGGGGAATAGTGTAC 900
    | |||||||||||||||| |||||||||| |||||||||||
1 4 9 4 \text { AGGAAAATATTCAAAAGTGGATAAATGGTATGAGCTGGGGAATAGTTTTT 1543}
    901 TATGGAGGCTCTGGGAGAAAGAAAGGATCTGTTCTGACTATTCGCCTCAG 950
    || | | ||| | ||| || | | | | ||||||| ||
1544 TATAAA...TATGGCGGGGGAGCAGGGTCCACTTTAACCATTCGCCTTAG 1590
9 5 1 ~ A A T A G A A A C T C A G A T G G A A C C T C C G G T T G C T A T A G G A C C A A A T A A G G G T T ~ 1 0 0 0 ~
    |||| || || ||||| || || || | ||||| |||| |
1 5 9 1 \text { GATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACCCGATAAAGTAC 1640}
1001 TGGCCGAACAAGGACCTCCAATCCAAGA....................... 1028
    ||| ||||| || || || || ||
1 6 4 1 \text { TGGCTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGTG 1690}
1029 .............ACAGAGGCCATCTCCTAACCCCTCTGATTACAATAC 1064
                        | |||| | | | | |||
1 6 9 1 \text { CCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGG 1740}
```



```
        || |||||| | || || | || |
1741 TACCACTGGATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTC 1790
1100 CTATTAAAACAGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAA 1149
    | ||| |||| || || || | ||||||||||||||||
1791 CTGTTAAGACAGGACAGAGACTCTTCAGTCTCATCCAGGGAGCTTTCCAA 1840
1150 GCTCTTAACTCCACGACTCCAGAGGCTACCTCTTCTTGTTGGCTTTGCTT 1199
    || | ||||||| || || || || |||||||||||||||| |
1 8 4 1 ~ G C C A T C A A C T C C A C C G A C C C T G A T G C C A C T T C T T C T T G T T G G C T T T G T C T ~ 1 8 9 0 ~
1200 AGCTTCGGGCCCACCTTACTATGAGGGAATGGCTAGAGGAGGGAAATTCA 1249
    | | | || || ||||| ||||||| ||||||| || ||| ||||||
1 8 9 1 ~ A T C C T C A G G G C C T C C T T A T T A T G A G G G G A T G G C T A A A G A A G G A A A A T T C A ~ 1 9 4 0 ~
1 2 5 0 ~ A T G T G A C A A A G G A A C A T A G A G A C C A A T G T A C A T G G G G A T C C C A A A A T A A G ~ 1 2 9 9 ~
    |||||| || || |||||| | |||||||||||||| |||| |||||||
1 9 4 1 ~ A T G T G A C C A A A G A G C A T A G A A A T C A A T G T A C A T G G G G G T C C C G A A A T A A G ~ 1 9 9 0 ~
1300 CTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGATGGTTCC 1349
    |||||||| ||||| ||||| || || || | | |||||||| | | |||
1 9 9 1 ~ C T T A C C C T C A C T G A A G T T T C C G G G A A G G G G A C A T G C A T A G G A A A A G C T C C ~ 2 0 4 0 ~
1350 CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCT 1399
```



```
1400 CTGAGAGTCAATATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAAT 1449
    | || | ||| ||| | |||||||||||| |||||||||||||||| |||
2091 CAGAAAATCAGTATTTAGTACCTGGTTATAACAGGTGGTGGGCATGCAAT 2140
1450 ACTGGATTAACCCCTTGTGTTTCCACCTTGGTTTTCAACCAAACTAAAGA 1499
    ||||| |||||||| ||||||||||||| | | | |||||||| | ||||
2 1 4 1 ~ A C T G G G T T A A C C C C C T G T G T T T C C A C C T C A G T C T T C A A C C A A T C C A A A G A ~ 2 1 9 0 ~
1500 CTTTTGCGTTATGGTCCAAATTGTCCCCCGGGTGTACTACTATCCCGAAA 1549
    || || || |||||||||| |||||||| ||||||||||||||
2 1 9 1 ~ T T T C T G T G T C A T G G T C C A A A T C G T C C C C C G A G T G T A C T A C C A T C C T G A G G ~ 2 2 4 0
1 5 5 0 \text { AAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCCAAAAAGAGAG 1599}
    |||||||||||||||||||||| ||||| || |||||||||||
2 2 4 1 \text { AAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGAA 2290}
1600 CCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG 1649
    ||||||||| || ||||||||||||||||||| || ||| | ||
2291 CCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGG 2340
1650 CGTGGGAACAGGAACGGCTGCCCTAATCACAGGACCGCAACAGCTGGAGA 1699
    ||| |||||||| || |||||||| ||||||||||| || ||||| ||||
2341 CGTAGGAACAGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGA 2390
1700 AAGGACTTAGTAACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTA 1749
    ||||||||| ||||| | || ||||||||||||
2391 AAGGACTTGGTGAGCTACATGCGGCCATGACAGAAGATCTCCGAGCCTTA 2440
1 7 5 0 \text { GAAAAATCTGTCAGTAACCTGGAGGAATCCCTAACCTCCTTATCTGAAGT 1799}
    | | ||||| || ||||| || || ||||| | | | | | |||||||
2 4 4 1 \text { GAGGAGTCTGTTAGCAACCTAGAAGAGTCCCTGACTTCTTTGTCTGAAGT 2490}
1800 GGTTCTACAGAACAGAAGGGGGTTAGATCTGTTATTTCTAAAAGAAGGAG 1849
    ||||||||||||| | ||||| ||||||||| | | |||||| | ||||| |
2 4 9 1 \text { GGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCTAAGAGAAGGTG 2540}
1850 GGTTATGTGTAGCCTTAAAAGAGGAATGCTGCTTCTATGTAGATCACTCA 1899
    ||||||||| |||||||||||| ||||| |||||||||||||||||||||
2541 GGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTCA 2590
1900 GGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG 1949
    |||||||||||||||||||||||||||||||||||||||||||||
2 5 9 1 \text { GGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG 2640}
1950 TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGTTCAACA 1999
    |||||||||||||||||||||||||||||||||||||||||
2641 TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGTTCAACA 2690
2000 GGTCTCCTTGGATGACCACCCTGCTTTCTGCTCTGACGGGGCCCCTAGTA 2049
    ||||||||||||||||||||||||||||||||||||||| ||||||||
2 6 9 1 \text { GGTCTCCTTGGATGACCACCCTGCTTTCTGCTCTGACGGGACCCCTAGTA 2740}
2050 GTCCTGCTCCTGTTACTTACAGTTGGGCCTTGCTTAATTAATAGGTTTGT 2099
    |||||||||||||||||||||||||||||||||||||||||||||||||
2 7 4 1 \text { GTCCTGCTCCTGTTACTTACAGTTGGGCCTTGCTTAATTAATAGGTTTGT 2790}
2100 TGCCTTTGTTAGAGAACGAGTGAGTGCAGTCCAGATCATGGTACTTAGGC 2149
    |||||||||||||||||||||||||||||||||||||||||||||||||
2791 TGCCTTTGTTAGAGAACGAGTGAGTGCAGTCCAGATCATGGTACTTAGGC 2840
2 1 5 0 ~ A A C A G T A C C A A G G C C T T C T G A G C C A A G G A G A A A C T G A C C T C T A G C C T T C C ~ 2 1 9 9 ~
    |||||||||||||||||||||||||||||||||||||||||||||||||
2 8 4 1 ~ A A C A G T A C C A A G G C C T T C T G A G C C A A G G A G A A A C T G A C C T C T A G C C T T C C ~ 2 8 9 0 ~
```

```
2200 CAGTTCTAAGATTAGAACTATTAACAAGACAAGAAGTGGGGAATGAAAGG 2249
    |||||||||||||||||||||||||||||||||||||||||||||||||
2 8 9 1 ~ C A G T T C T A A G A T T A G A A C T A T T A A C A A G A C A A G A A G T G G G G A A T G A A A G G ~ 2 9 4 0
2250 ATGAAAATG\dot{CAACCTAACCCTCCCAGAACCCAGGAAGTTȦATAAAAAGCT }2299
    |||||||||||||||||||||||||||||||||||||||||||||||||
2941 ATGAAAATGCAACCTAACCCTCCCAGAACCCAGGAAGTTAATAAAAAGCT 2990
2 3 0 0 \text { CTAAATGCCCCCGAATTCCAGACCCTGCTGGCTGCCAGTAAATAGGTAGA 2349}
    |||||||||||||||||||||||||||||||||||||||||||||||||
2991 CTAAATGCCCCCGAATTCCAGACCCTGCTGGCTGCCAGTAAATAGGTAGA 3040
2350 AGGTCACACTTCCTATTGTTCCAGGGCCT\dot{C}CTATCCTGGC्CTAAGTAAGA}239
    |||||||||||||||||||||||||||||||||||||||||||||
3041 AGGTCACACTTCCTATTGTTCCAGGGCCTGCTATCCTGGCCTAAGTAAGA 3090
2400 TAACAGGAAATGAGTTGACTAATCGCTTATCTGGATTCTGTAAAACCGAC 2449
    |||||||||||||||||||||||||||||||||||||||||||||||
3 0 9 1 ~ T A A C A G G A A A T G A G T T G A C T A A T C G C T T A T C T G G A T T C T G T A A A A C C G A C ~ 3 1 4 0 ~
240 TGGCACCATAGAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }246
    |||||||||||||
3141 TGGCACCATAGAAGAATTGATTACACATTGACAGCCCTAGTGACCTATCT }319
```


Appendix 4.2.

(a) Restriction enzyme digestion patterns for PERV env gene clones amplified by Taq polymerase.

Clone No.	Kpnl type	Mbol Type	Combined Types	Clone No.	Kpnl type	Mbol Type	Combined Types
1	A	K	AK	66	B	L	BL
3	B	L	BL	68	B	L	BL
4	B	L	BL	72	B	L	BL
6	A	M	AM	73	A	P	AP
8	A	N	AN	74	B	L	BL
9	B	L	BL	76	B	L	BL
10	A	M	AM	77	B	L	BL
11	A	M	AM	78	B	L	BL
12	B	L	BL	79	B	L	BL
14	B	L	BL	80	B	L	BL
16	A	M	AM	81	B	L	BL
17	A	O	AO	82	A	N	AN
20	B	L	BL	83	B	L	BL
21	C	L	CL	84	B	L	BL
22	A	M	AM	86	B	L	BL
24	B	N	BN	87	B	L	BL
29	D	L	DL	89	B	L	BL
30	B	L	BL	90	B	L	BL
34	B	L	BL	92	B	L	BL
35	A	M	AM	93	B	L	BL
36	B	L	BL	95	A	P	AP
37	B	L	BL	96	B	L	BL
38	A	M	AM	97	A	N	AN
39	B	L	BL	98	A	N	AN
40	A	M	AM	99	B	L	BL
41	B	L	BL	100	B	L	BL
45	B	L	BL				
48	B	L	BL				
49	A	M	AM				
50	A	M	AM				
53	B	L	BL				
54	A	P	AP				
55	B	L	BL				
56	A	P	AP				
60	B	L	BL				
61	B	L	BL				
62	B	L	BL				
65	B	L	BL				

(b) Restriction enzyme digestion patterns for PERV env gene clones amplified by Pfu proof reading polymerase.

Clone No.	Kpnl type	Mbol Type	Combined Types	Clone No.	Kpnl type	Mbol Type	Combined Types
1	B	L	BL	43	B	L	BL
2	B	L	BL	44	B	L	BL
3	A	P	AP	45	A	P	AP
4	B	L	BL	46	B	L	BL
5	A	L	AP	47	B	L	BL
6	A	M	AM	48	B	L	BL
7	B	L	BL	49	B	L	BL
8	B	L	BL	50	B	L	BL
10	B	L	BL	51	B	L	BL
11	A	N	AN	52	B	L	BL
12	B	L	BL	53	B	L	BL
13	B	L	BL	54	B	L	BL
14	B	L	BL	55	B	L	BL
15	B	L	BL	56	A	Q	AQ
16	A	P	AP	57	A	M	AM
17	B	L	BL	58	A	P	AP
18	B	L	BL	60	A	M	AM
20	B	L	BL	61	B	L	BL
21	B	L	BL	62	A	R	AR
22	B	L	BL	63	A	M	AM
23	B	L	BL	64	B	L	BL
24	B	L	BL	65	B	L	BL
25	A	N	AN	66	A	M	AM
26	B	L	BL	67	A	M	AM
27	B	L	BL	68	B	L	BL
28	B	L	BL	69	B	L	BL
29	B	L	BL	71	A	N	AN
30	B	L	BL	72	A	N	AN
31	B	L	BL	73	A	P	AP
32	B	L	BL	74	B	L	BL
33	B	L	BL	75	A	P	AP
34	B	L	BL	76	B	L	BL
35	B	L	BL	77	B	L	BL
36	B	L	BL	78	B	L	BL
37	B	L	BL	79	B	L	BL
38	B	L	BL	80	B	L	BL
39	B	L	BL	81	A	P	AP
40	B	L	BL	82	B	L	BL
42	B	L	BL	83	B	L	BL

$\left.$| Clone No. | Kpnl type | Mbol Type | Combined
 Types | Clone No. | Kpnl type | Mbol Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Combined |
| :---: |
| Types | \right\rvert\,

Clone No.	Kpnl type	Mbol Type	Combined Types	Clone No.	Kpnl type	Mbol Type	Combined Types
168	B	L	BL	213	A	P	AP
169	B	L	BL	214	A	P	AP
170	A	P	AP	215	A	M	AM
171	B	L	BL	216	A	N	AN
172	A	P	AP	217	B	L	BL
174	B	L	BL	218	B	L	BL
175	B	L	BL	219	B	L	BL
176	B	L	BL	220	A	N	AN
177	A	N	AN	221	B	L	BL
178	B	L	BL	222	A	P	AP
179	A	P	AP	224	A	N	AN
181	A	P	AP	225	B	L	BL
182	B	L	BL	226	A	N	AN
183	A	P	AP	227	B	L	BL
184	B	L	BL	228	B	L	BL
186	B	L	BL	229	B	L	BL
187	B	L	BL	230	A	P	AP
189	B	L	BL	231	A	P	AP
190	B	L	BL	232	A	U	AU
192	B	L	BL	233	B	L	BL
193	A	Q	AQ	234	B	L	BL
194	B	L	BL	235	B	L	BL
195	B	L	BL	236	A	N	AN
196	B	L	BL	237	B	L	BL
197	A	Q	AQ	238	A	N	AN
198	B	L	BL	239	B	L	BL
199	B	L	BL	240	A	P	AP
200	B	L	BL	241	B	L	BL
201	B	L	BL	242	A	Q	AQ
202	B	L	BL	243	B	L	BL
203	B	L	BL	244	B	L	BL
204	B	L	BL	246	A	P	AP
205	A	P	AP	247	B	L	BL
206	B	L	BL	248	B	L	BL
207	A	P	AP	249	B	L	BL
208	B	L	BL	250	A	N	AN
209	B	L	BL	251	A	V	AV
211	B	L	BL	252	B	L	BL
212	B	L	BL	254	A	L	AP

Clone No.	Kpnl type	Mbol Type	Combined Types	Clone No.	Kpnl type	Mbol Type	Combined Types
255	B	L	BL	304	B	L	BL
257	B	L	BL	305	B	L	BL
260	A	X	AX	306	B	L	BL
261	B	L	BL	307	A	P	AP
263	B	L	BL	308	B	L	BL
264	B	L	BL	311	A	P	AP
265	B	L	BL	312	A	P	AP
266	B	L	BL	314	A	M	AM
267	B	L	BL	315	B	L	BL
268	B	L	BL	316	B	L	BL
270	A	N	AN	317	B	L	BL
271	A	Q	AQ	318	B	L	BL
273	A	N	AN	319	A	N	AN
274	B	L	BL	320	B	L	BL
275	B	L	BL	321	A	P	AP
276	A	P	AP	322	B	L	BL
277	B	L	BL	323	B	L	BL
279	B	L	BL	324	B	L	BL
281	B	L	BL	325	B	L	BL
282	B	L	BL	326	A	P	AP
284	B	L	BL	327	A	S	AS
285	B	L	BL	328	B	L	BL
286	A	P	AP	329	B	L	BL
287	B	L	BL	331	B	L	BL
288	A	P	AP	332	B	L	BL
289	B	L	BL	333	B	L	BL
290	B	L	BL	334	B	L	BL
291	B	L	BL	336	B	L	BL
293	B	L	BL	337	B	L	BL
294	B	L	BL	338	A	P	AP
295	A	W	AW	339	B	L	BL
296	B	L	BL	340	B	L	BL
297	B	L	BL	341	B	L	BL
298	B	L	BL	342	B	L	BL
299	B	L	BL	343	B	L	BL
300	B	L	BL	344	B	L	BL
301	B	L	BL	345	D	U	DU
302	B	L	BL	347	B	L	BL
303	A	P	AP	348	A	N	AN

Clone No.	Kpnl type	Mbol Type	Combined Types
349	B	L	BL
350	B	L	BL
351	A	V	AV
352	B	L	BL
354	B	L	BL
355	B	L	BL
357	B	L	BL
358	A	M	AM
359	A	M	AM
360	B	L	BL
362	A	P	AP
363	A	S	AS
364	B	L	BL
365	B	L	BL
366	B	L	BL
367	A	P	AP
368	B	L	BL
369	B	L	BL
370	A	R	AR
371	B	L	BL
372	A	S	AS
373	B	L	BL
374	A	P	AP
375	B	L	BL
376	B	L	BL
377	B	L	BL
379	B	L	BL
380	B	L	BL
381	B	L	BL
382	B	L	BL
383	B	L	BL
384	B	L	BL
385	B	L	BL
386	B	L	BL

Appendix 4.3.

(a) Alignment of nucleotide sequences of 17 PERV-A clones with PERV-A published sequences.

The start codon is indicated with box. Sequences undersigned with + are the primer used for
PCR and sequences undersigned with * are consensus sequences.
PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

10	20	30	40
qATGCATCCCACGTTAAGCCGGCGCCACCTCCCGATTCGGGGTGGAAAGCCGAAAAGACT			
\&ATGCATCCCACGTTAAGCCGGTGCCACCTCCCGATTCGGGGTGGAGAGCTGAAAAGACT			
\&ATGCATCCCACGTTAAGCCGGTGCCACCTCCCGATTCGGGGTGGAGAGCTGAAAAGACT			

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

GAAAATCCCCTTAAGCTTCGCCTCCATCGCGTGGTTCCTTACTCTGTCAATAACTCCTCA GAAAATCCCCTTAAGCTTCGCCTCCATCGCTTGGTTCCTTACTCTGTCAATAACTCCTCA GAAAATCCCCTTAAGCTACGCCTCCATCGCTTGGTTCCTTACTCTGTCAATAACTCCTCA GAAAATCCCCTTAAGCTTCGCCTCCATCGCTTGGTTCCTTACTCTGTCAATAACTCCTCA GAAAATCCCCTTAAGCTTCGCCTCCGTCGCTTGGTTCCTTACTCTGTCAATAACTCCTCA

130140150160180 AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGCGGACAGCCCGAACTTCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG AGTTAATGGTAAACGCCTTGTGGACAGCCCGAACTCCCATAAACCCTTATCTCTCACCTG $\star \star \star \star * * * * * * * * * * * * * * * * ~ * ~$
19020021022020

GTTACTTACTGACTCCGGTACAGGTATTAATATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTATCAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT GTTACTTACTGACTCCAGTACAGGTATTACTATTAACAGCACTCAAGGGGAGGCTCCCTT

GGGGACCTGGTGGCCTGAATTATATGTCTGCCTTCGATCAGTAATCCCTGGTCTCAATGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATTGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATTGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATTGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATTGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACAA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACAA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACAA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACAA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTGATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATCGGTAATCCCTGGTCTCAACAA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATTGGTAATCCCTGGTCTCAACGA AGGGACCTGGTGGCCTGAGTTATATGTCTGCCTTCGATTGGTAATCCCTGGTCTCAACGA
 CCAGGCCACACCCCCCGATGTACTCCGTGCTTACGGGTTTTACGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCCGTGCTTACGGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCCGTGCTTACGGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCCGATGTACTCCGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

CCAGGCCACACCCCCTGATGTACTCCGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCCGATGTACTCCGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCCGATGTACTCCGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCCGTGCTTACGGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCCGTGCTTACGGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCCGATGTACTCCGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC CCAGGCCACACCCCCTGATGTACTCTGTGCTTACAGGTTTAATGTTTGCCCAGGACCCCC

370	380	390	400	410

AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAATGGAGCTGCAT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCAT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCAT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCAT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCAT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGGAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCAT AAATAATGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCAT ******** ***)

430	440	450	460	470	480

AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCTAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC AACTTCCAATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTC

490	500	510	520	530	540
.	

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

TTTTGTTAACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAATCCTACCAGTTACAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAGTCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAGTCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAGTCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAGA TTTTGTTAACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAAA TTTTGTTAACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAAA

550	560	570	580	590

TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTCATTCGTTAGA TTGGCAACAGCAGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTTGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCAGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTTGTTAGA TTGGCAACAGCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGATATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTCGTTAGA TTGGCAACAGCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAACTCGTTAGA TTGGCAACAGCAGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTTGTTAGA TTGGCAACAGCAGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTTGTTAGA
$610 \quad 620 \quad 630 \quad 640 \quad 650$
CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG TCTAGATTACTTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG CCTAGATTACTTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTG

GGTAAATGGTATATCTTGGGGAATAGTGTACTATGGAGGCTCTGGGAGAAAGAAAGGATC GgTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCTCTGGGAGAAGGAAAGGATT GgTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGATC GgTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCTCTGGGAGAAGGAAAGGATT GgTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCTCTGGGAGAAGGAAAGGATT GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGTTCTGGGAGGAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGATC GgTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGTTCTGGGAGGAGGAAAGGATC

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

GgTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGTTCTGGGAGGAGGAAAGGATC GGTAAATGGTATGTCTCGGGGAATAATGTACTATGGAGGTTCTGGGAGGAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGCACTATGGAGGCACTGGGAGAAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGTTCTGGGAGGAGGAAAGGATC GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCTCTGGGAGAAGGAAAGGATT GGTAAATGGTATGTCTTGGGGAATAATGTACTATGGAGGCTCTGGGAGAAGGAAAGGATT ************ *** ******** ** ********** ******* * ********

730	740	750	760	770

TGTTCTGACTATTCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACC TGTTCTGACTATTCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACC

790	800	810	820	830	840

AAATAAGGGTTTGGCCGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCTAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCTAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCCAATC-AAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCTGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCCAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCTAATCCAAGAACAGAGGCCATCTCCTAACCC AAATAAGGGTTTGGCCGAACAAGGACCTCTAATCCAAGAACAGAGGCCATCTCCTAACCC

$\begin{array}{rrrrrr}850 & 860 & 870 & 880 & 890 & 900 \\ . & . & . & . & .\end{array}$ CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGTTTACAATACAACCTCTGGATTAGTCCCCCCTGAGCCTAACTTCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC CTCTGATTACAATACAACCTCTGGATCAGTCCCCACTGAGCCTAACATCACTATTAAAAC

910	920	930	940	950

AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGTGGTGAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGCGGCAAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGTGGTGAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGCGGCAAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGCGGCAAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGCGGCAAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTTCAAGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTTTCCAAGCTCTTAACTCCACGACTCC AGGGGCGAAACTTTTTAGCCTCATCCAGGGAGCTCTTCAAGCTCTTAACTCCACGACTCC AGCGGCAAAACTTTTTAGCCTCATCCAGGGAGGTTTTCAGGCTCTTAACTCCACGACTCC AGTGGTGAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC AGTGGTGAAACTTTTTAGCCTCATCCAGGGAGATTTTCAGGCTCTTAACTCCACGACTCC
$970980 \quad 99010001010$

AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAGT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGAGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTTGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT AGAGGCTACCTCTTCTTGTTGGCTTTGCTTAGCTTCGGGCCCACCTTACTATGAGGGAAT

$103010401050 \quad 1060 \quad 1070 \quad 1080$ GgCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GgCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GgCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GgCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC GGCTAGAGGAGGGAAATTCAATGTGACAAAGGAACATAGAGACCAATGTACATGGGGATC

$10901100 \quad 1110 \quad 1120 \quad 1130 \quad 1140$

CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGATGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAAGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAAGGTTCC CCAAAATAAGCTTACACTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACTCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACCCTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGAGGGTTCC CCAAAATAAGCTTACACTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC CCAAAATAAGCTTACACTTACTGAGGTTTCTGGAAAAGGCACCTGCATAGGGA-GGTTCC

$11501160 \quad 1170 \quad 1180 \quad 1190 \quad 1200$

CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTСССАССААСАССТTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATTGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTСССАССААСАССТTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССАTСССАССААСАССТTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATTGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CССATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATCGAACCTCTGAGAGTCA CCCATCCCACCAACACCTTTGTAACCACACTGAAGCCTTTAATTGAACCTCTGAGAGTCA CССАTСССАССАAСАССТTTGTAACCACACTGAAGCCTTTAATTGAACCTCTGAGAGTCA

$1210122012301240 \quad 1250 \quad 1260$ ATATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTA-CCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATCAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTACCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTA-CCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT GTATCTGGTACCTGGTTATGACAGGTGGTGGGCATGTAATACTGGATTAACCCCTTGTGT
$\star \star \quad \star \star \star \star \star *$
$12701280 \quad 1290 \quad 1300 \quad 1310 \quad 1320$
TTCCACCTTGGTTTTCAACCAAACTAAAGACTTTTGCGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCCTGGTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGCTTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGCGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTACGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAGACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGTGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGCGTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGCTTTATGGTCCAAATTGTCCCCCG TTCCACCCTGGTTTTCAACCAAACTAAAGACTTTTGCTTTATGGTCCAAATTGTCCCCCG

1330	1340	1350	1360	1370	1380

GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCAAAAAAGCGGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCGGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCAAAAAAGCGGTCCTTGATGAATATGGCTATAGATATAATCGGCC GGTGTACTACTATCCCAAAAAAGCGGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCGAAAAAGCAGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCAAAAAAGCGGTCCTTGATGAATATGGCTGTAGATATAATCGGCC GGTGTACTACTATCCCAAAAAAGCGGTCCTTGATGAATATGACTATAGATATAATCGGCC GGTGTACTACTATCCCAAAAAAGCGGTCCTTGATGAATATGACTATAGATATAATCGGCC **************** ******* **************** ** ***************
$139014001410 \quad 1420 \quad 1430 \quad 1440$ AAAAAGAGAGCCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGAGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG AAAAAGAGAACCCATATCCCTGACACTAGCTGTAATGCTCGGATTGGGAGTGGCTGCAGG
 $\begin{array}{llllll}1450 & 1460 & 1470 & 1480 & 1490 & 1500\end{array}$ CGTGGGAACAGGAACGGCTGCCCTAATCACAGGACCGCAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGGAACAGGAATGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CATGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACAGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CATGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CATGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CGTGGAAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CATGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CATGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG CATGGGAACAGGAACGGCTGCCCTAATCACAGGACCACAACAGCTGGAGAAAGGACTTAG

$\begin{array}{llllll}1510 & 1520 & 1530 & 1540 & 1550 & 1560\end{array}$ TAACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAAATCTCTAAGCCCTAGAAAAATCTGTCTGTAACCA TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCTGTAACCA TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAACGGAAGATCTCCAAGCCCTAGAAAAGTCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT TGACCTACATCGAATTGTAATGGAAGATCTCCAAGCCCTAGAAAAATCTGTCAGTAACCT

$157015801590 \quad 1600 \quad 1610 \quad 1620$ GGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT

Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6
Pfu-62
Taq-10
Taq-11
Taq-17
Taq-54
Taq-56
Taq-6
Taq-8
Taq-82

PERV-A
Pfu-11
Pfu-112
Pfu-115
Pfu-251
Pfu-295
Pfu-3
Pfu-56
Pfu-6

AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AGGGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AAAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGAGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT AGAGGAATCCCTAACCTCCTTATCTGAAGTGGTTCTACAGAACAGAAGGGGGTTAGATCT
$\star \star \star *$
$163016401650 \quad 1660 \quad 1670 \quad 1680$

GTTATTTCTAAAAGAAGGAGGGTTATGTGTAGCCTTAAAAGAGGAATGCTGCTTCTATGT GTTATTTCTAAAAGAAGGTGGGTTATGTGTAGCCTTAAAAGAAGAATGTTGCTTCTATGT GTTATTTCTAAAAGAAGGTGGGTTATGTGTAGCCTTAAAAGAAGAATGTTGCTTCTATGT

$1690 \quad 1700 \quad 1710 \quad 1720 \quad 1730 \quad 1740$
AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA AGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG AGATCACTCAGGAGCCAACAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA GGATCACTCAGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCG GGATCACTCAGGAGCCATCGGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCA

```
    **************** * *******************************************
```

$1750 \quad 1760 \quad 1770 \quad 1780$
TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCAAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT

Pfu-62	TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-10	TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-11	TCAAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-17	TCAAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-54	TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-56	TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-6	TCAAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-8	TCGAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-82	TCAAAGGGAAAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT

(b) Alignment of nucleotide sequences of 9 PERV-B clones with PERV-B published sequences.

The start codon is indicated with box. Sequences undersigned with + are the primer used for PCR and sequences undersigned with * are consensus sequences.

	10	20	30	40	50	60
Pfu-1	\&ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-12	\&ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-14	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-20	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-24	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-29	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-3	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-4	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
Taq-9	¢ATGCATCCCACGTTAAGCTGGCGCCACCTCCCGACTCGGGGTGGAGAGCCGAAAAGACT					
	70	80	90	100	110	120
PERV-B	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Pfu-1	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Taq-12	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAGCTCCCCA					
Taq-14	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Taq-20	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Taq-24	GAGAATCCCCTTAAGCTTCGCCTCCACCGCCTGGTTCCTTACTCTAACAATAACTCCCA					
Taq-29	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Taq-3	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Taq-4	GAGAATCCCCTTAAGCTTCGCCTCCATCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
Taq-9	GAGAATCCCCTTAAGCTTCGCCTCCACCGCCTGGTTCCTTACTCTAACAATAACTCCCCA					
	************************** *************************************)					
	130	140	150	160	170	180
	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
PERV-B						
Pfu-1	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-12	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-14	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-20	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-24	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-29	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-3	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG					
Taq-4	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCGTAGACCTTTATCCCTTACCTG					
Taq-9	GGCCAGTAGTAAACGCCTTATAGACAGCTCGAACCCCCATAGACCTTTATCCCTTACCTG ************************************** **************************					
	190	200	210	220	230	240
PERV-B		GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG				
Pfu-1	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-12	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-14	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-20	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-24	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-29	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-3	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-4	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG					
Taq-9	GCTGATTATTGACCCTGATACGGGTGTCACTGTAAATAGCACTCGAGGTGTTGCTCCTAG **					
	250	260	270	280	290	300

PERV-B	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Pfu-1	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-12	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-14	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-20	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-24	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-29	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-3	AGGCACCTGGTGGCCTGAGCTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-4	AGGCACCTGGTGGCCTGAACTGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
Taq-9	AGGCACCTGGTGGCCTGAACCGCATTTCTGCCTCCGATTGATTAACCCCGCTGTTAAAAG
	*** * ************************************
	$\begin{array}{lllll}310 & 320 & 330 & 340 & 350\end{array}$
PERV-B	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Pfu-1	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-12	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-14	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-20	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-24	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-29	CACACCTCCCAACCTAGTCTGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-3	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-4	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
Taq-9	CACACCTCCCAACCTAGTCCGTAGTTATGGGTTCTATTGCTGCCCAGGCACAGAGAAAGA
	370 380 3000400
PERV-B	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Pfu-1	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-12	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-14	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-20	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-24	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-29	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-3	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-4	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
Taq-9	GAAATACTGTGGGGGTTCTGGGGAATCCTTCTGTAGGAGATGGAGCTGCGTCACCTCCAA
	$\begin{array}{llllll}430 & 440 & 450 & 460 & 470 & 480\end{array}$
PERV-B	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Pfu-1	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-12	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-14	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-20	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-24	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-29	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-3	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-4	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
Taq-9	CGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTTTGTCAA
	490500510520 530 540
PERV-B	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Pfu-1	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-12	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-14	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-20	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-24	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAGGAGCTGCTCCCCATC
Taq-29	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-3	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-4	TTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC
Taq-9	tTCCGGCCCGGGCAAGTACAAAGTGATGAAACTATATAAAGATAAGAGCTGCTCCCCATC

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24

AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAATTATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA AGACTTAGATTATCTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAA
$610 \quad 620 \quad 630 \quad 640 \quad 650$ GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGGGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGCATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC GTGGATAAATGGTATGAGCTGGGGAATAGTTTTTTATAAATATGGCGGGGGAGCAGGGTC

$\begin{array}{llllll}670 & 680 & 690 & 700 & 710 & 720\end{array}$ CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGTACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACGGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC CACTTTAACCATTCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACC $\star \star \star \star *$
$\begin{array}{lllll}730 & 740 & 750 & 760 & 770\end{array}$ CGATAAAGTACTGGCTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCCCCGGCCTGGGAGCCACCGCATAACTTGCCGGT CGATTAAGTACTGGCTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCTCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACGGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCTCCGGCCCTGGAGCCACCGCATAACTTGCCGGT CGATAAAGTACTGGCTGAACAGGGGCCTCCGGCCCTGGAGCCACCGCATAACTTGCCGGT

$\begin{array}{lllll}790 & 800 & 810 & 820 & 830\end{array}$ GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1

GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGAACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCACCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCGCCTAGCAACGGTACCACTGG GCCCCAATTAACCTCGCTGCGGCCTGACATAACACAGCCACCTAGCAACGGTACCACTGG

850860870880800
ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG ATTGATTCCTACCAACACGCCTAGAAACTCCCCAGGTGTTCCTGTTAAGACAGGACAGAG

$\begin{array}{lllll}910 & 920 & 930 & 940 & 950\end{array}$ ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCTGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCTGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCGAGCCATCAACTCCACCGACCCTGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCTGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCAACCCTGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCTGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCTGATGCCAC ACCCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCCGATGCCAC ACTCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCTGATGCCAC ACCCTTCAGTCTCATCCAGGGAGCTTTCCAAGCCATCAACTCCACCGACCCCGATGCCAC ** ************************** **************** **** ********

970	980	990	1000	1010	1020

TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAAA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAGA TTCTTCTTGTTGGCTTTGTCTATCCTCAGGGCCTCCTTATTATGAGGGGATGGCTAAAAA

1030	1040	1050	1060	1070	1080

AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAACTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAA-GAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA AGGAAAATTCAATGTGACCAAAGAGCATAGAAATCAATGTACATGGGGGTCCCGAAATAA
 GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA

Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA GCTTACCCTCACTGAAGTTTCCGGGAAGGGGACATGCATAGGAAAAGCTCCCCCATCCCA $\star \star \star \star *$
$\begin{array}{llllll}1150 & 1160 & 1170 & 1180 & 1190 & 1200\end{array}$
CCAACACCTTTGCTATAGTACTGTGGTTTATGAGCAGGCCTCAGAAAATCAGTATTTAGT **

1210	1220	1230	1240	1250	1260

ACCTGGTTATAACAGGTGGTGGGCATGCAATACTGGGTTAACCCCCTGTGTTTCCACCTC **)

| 1270 | 1280 | 1290 | 1300 | 1310 | 1320 |
| :--- | :--- | :--- | :--- | :--- | :--- | AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCGATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAGCTCGTCCCCCGGGTATACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA AGTCTTCAACCAATCCAAAGATTTCTGTGTCATGGTCCAAATCGTCCCCCGAGTGTACTA *********** *************************** ********** ** *****

| 1330 | 1340 | 1350 | 1360 | 1370 | 1380 |
| :--- | :--- | :--- | :--- | :--- | :--- | CCATCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCACCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCACCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCATCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCATCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCATCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCATCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCATCCCGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCGAAAAGAGA CCATCCTGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCAAAAAGAGA CCATCCCGAGGAAGTGGTCCTTGATGAATATGACTATCGGTATAACCGACCGAAAAGAGA

13901400141014201430

Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3
Taq-4
Taq-9

PERV-B
Pfu-1
Taq-12
Taq-14
Taq-20
Taq-24
Taq-29
Taq-3

ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTGATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGTGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGCGTAGGAAC ACCCGTATCCCTTACCCTAGCTGTAATGCTCGGATTAGGGACGGCCGTTGGTGTAGGAAC
 AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAACTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA AGGGACAGCTGCCCTGATCACAGGACCACAGCAGCTAGAGAAAGGACTTGGTGAGCTACA ******** **

1510	1520	1530	1540	1550	1560

TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAATCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC TGCGGCCATGACAGAAGATCTCCGAGCCTTAGAGGAGTCTGTTAGCAACCTAGAAGAGTC $\star \star \star \star \star \star \star \star \star \star *$
$15701580 \quad 1590 \quad 1600 \quad 1610 \quad 1620$ CCTGACTTCTITGICTGAAGIGGITCACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAAGTGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT CCTGACTTCTTTGTCTGAAGTGGTTCTACAGAACCGGAGGGGATTAGATCTGCTGTTTCT

1630	1640	1650	1660	1670	1680

AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTACGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTACGTAGATCACTC AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC

Taq-9	AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC
	AAGAGAAGGTGGGTTATGTGCAGCCTTAAAAGAAGAATGTTGCTTCTATGTAGATCACTC
	16901700171017201740
	- • • • •
PERV-B	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Pfu-1	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Taq-12	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Taq-14	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Taq-20	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Taq-24	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTCAGAGAGGCGTCGAAGGGA
Taq-29	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Taq-3	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTTGAAGGGA
Taq-4	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
Taq-9	AGGAGCCATCAGAGACTCCATGAGCAAGCTTAGAGAAAGGTTAGAGAGGCGTCGAAGGGA
	175017601770
	- • -
PERV-B	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Pfu-1	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-12	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-14	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-20	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-24	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-29	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-3	AAGAGAGGCTGAGCAGGGGTGGTTTGAAGGATGGT
Taq-4	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
Taq-9	AAGAGAGGCTGACCAGGGGTGGTTTGAAGGATGGT
	************ ***+++++++++++++++++++

(c) Alignment of nucleotide sequences of 5 recombinant clones with PERV-A and PERV-B published sequences. The start codon is indicated with an arrow. Sequences undersigned with + are the primer used for PCR and sequences. Sequences undersigned with (1), (2), (3), (4) are the breaking point between PERV-A and PERV-B. (1): Taq-21 PERV-B sequences change to PERV-A, (2): Taq-21 PERV-A sequences change to PERV-B, (3): Pfu-345 PERV-A sequences change to PERV-B, (4):Taq-1, Pfu-232, Pfu-260 PERV-A sequences change to PERV-B.

Taq-1	TGAAGAATATTGTGGAAATCTTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCATAACTTCT	427
Pfu-260	TGAAGAATATTGTGGAAATCCTCAGGATTTCTITTGCAAGCAAGGGAGCTGCGIAACTTCT	7
Pfu-345	TGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAAGGGAGCTGCGTAACTTCT	7
PERV-A	IGAAGAATATTGTGGAAATCCTCAGGATTTCTTTTGCAAGCAATGGAGCTGCAIAACTTCT	427
	40 * 460	
PERV-B	CGATGGAGA CTGGAAATGGCCGATCTCTCTCCAGGACcGGGTAAAATTCTCCTI	476
Taq-21	AACGATGGAGACTGGAAATGGCCGATCTCTCTCCAGGACCGGGTAAAATTCTCCTITG-	476
Pfu-232	AATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTCTTTTGTTA	488
Taq-1	AATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTCTTTTGTTA	488
Pfu-260	AATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTCTTTTGTTA	488
Pfu-345	AATGATGGGAATTGGAAATGGCCAATCTCTCAGCAAGACAGAGTAAGTTACTCTTTTGTTA	488
PERV-A	AATGATGGGAATTGGAAATGGCCAGTCTCTCAGCAAGACAGAGTAAGTTACTCTTTTGTTA	48
	500 * 520 * 540	
PERV-B	TccGGCCCGGGCAAGTACAAAETGATG	10
Taq-21	-TCAATTCCGGCCCGGGCAAGTACAAAGTGATGA	510
Pfu-232	ACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAACATTGGCAACA	549
Taq-1	ACAATACTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAAAATTGGCAACA	549
Pfu-260	ACAGTCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAACATTGGCAACA	549
Pfu-345	ACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAGATGGAAACATTGGCAACA	549
PERV-A	ACAATCCTACCAGTTATAATCAATTTAATTATGGCCATGGGAgATGGAAAGATTGGCAACA	549
	560 * 580 * 600	
PERV-B	ACTATATAAAGATAAGAGCTGCTCCCCATCAGACTTAGATTAT	553
Taq-21	ACTATATAAAGATAAGAGTTGCTCCCCATCAGACTTAGATTAT	553
Pfu-232	GCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGACCTAGATTAC	610
Taq-1	GCAGGTACAAAAAGATGTACGAAATAAGCAAATAAGCTGTAATTTGTTAGACCTAGATTAC	610
Pfu-260	GCGGGTACAAAAAGATGTACGATATAAGCAAATAAGCTGTAATTCGTTAGATCTAGATTA	610
Pfu-345	GCGGGTACAAAAATATGTACGAAATAAGCAACGAAGCTGTAATTCGTTAGACCTAGATTAC	10
PERV-A	GCGGGTACAAAAAGATGTACGAAAATAAGCAAATAAGCTGTCATTCGTTAGACCTAGATTAC	610
	620 * 640 * 660	
PERV-B	CTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAAGTGGATAAATGGTA	614
Taq-21	CTAAAGATAAGTTTCACTGAAAAAGGAAAACAGGAAAATATTCAAAAGTGGATAAATGGTA	614
Pfu-232	TTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTGGGTAAATGGTA	671
Taq-1	TTAAAAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTGGGTAAA	67
Pfu-260	TTAATAATAAGTTTTACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTGGGTAAATGGT	67
Pfu-345	TTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTGGGTAAATGGTA	671
PERV-A	TTAAAAATAAGTTTCACTGAAAAAGGAAAACAAGAAAATATTCAAAAGTGGGTAAATGGTA	671
	680 * 700 * 720	
PERV-B	TGAGCTGGGGAATAGTTTTTTATAAA---TATGGCGGGGGAGCAGGGTCCACTTTAACCAT	672
Taq-21	tGAGCTGGGGAATAGTTTTTTATAAA---TATGGCGGGGGAGCAGGGTCCACTTTAACCAT	672
Pfu-232	TCTTGGGGAATAATGTACTATGGAGGTTCTGGGAGGAGGAAAGGATCTGTTCTGACTAT	732
Taq-1	tGTCTTGGGGAATAATGTACTATGGAGGCTCTGGGAGAAGGAAAGGATTTGTTCTGACTAT	732
Pfu-260	TCTIGGGGAATAATGTACTATGGAGGCACTGGGAGAAGGAAAGGTTCTGTTCTGACTAT	732
Pfu-345	CCTtGGGGAAtAAtGTACTATGGAGGTTCTGGGAGGAGGAAAGGATCTGTtctGActat	732
PERV-A	TATCTTGGGGAATAGTGTACTATGGAGGCTCTGGGAGAAAGAAAGGATCTGTTCTGACTAT	732
	740 * 760 * 780	
PERV-B	TCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACCCGATAAAGTACTG	733
Taq-21	TCGCCTTAGGATAGAGACGGGGACAGAACCCCCTGTGGCAGTGGGACCCGATAAAATACTG	733
Pfu-232	tCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACCAAATAAGGGTTTG	793
Taq-1	TCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACCAAATAAGGGTTTG	793
Pfu-260	TCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACCAAATAAGGGTTTG	793
Pfu-345	TCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACCAAATAAGGGTTTG	93
PER	TCGCCTCAGAATAGAAACTCAGATGGAACCTCCGGTTGCTATAGGACCAAATAAGGGTTTG	793
	800 * 820 * 840	
PERV-B	GCTGAACAGGGGCCCCCGGCCCTGGAgCCACCGCATAACTTGCCGGTGCCCCAATTAACCT	794
Taq-21	CTGAACAGGGGCCCCCGGCCCTGGAGCCACCGCATAACTTGCCGGTGCCCCAATTAACCT	794
Pfu-232	GAACAAGGACCTCCAATCCAAGA	819
Taq-1	GAACAAGGACCTCTAATC	819
Pfu-260	GAACAAGGACCTCCAATCC	81
Pfu-345	CGAACAAGGACCTCTAATCC	81
PERV-A	GCCGAACAAGGACCTCCAATCCAAGA	819
PERV-B	ARCACAGCCGCCTAGCAACGGTACCACTGGATTGATTCCTA CCAR	855
Taq-21	CGCTGCGGCCTGACATAACACAGCGGCCTAGCAACGGTACCACTGGATTGATTCCTACCA	855

PERV-B : ATGGT : 1775
Taq-21: ATGGT : 1775
Pfu-232 : ATGGT : 1782
Taq-1 : ATGGT : 1783
Pfu-260 : ATGGT : 1783
Pfu-345 : ATGGT : 1784
PERV-A: ATGGT: 1784

Appendix 4.4. Alignment of deduced amino acid sequences 31 PERV clones with PERV-A, PERV-B and PERV-C published sequences. * indicates a stop codon.

Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

PERVB
Taq-20 Pfu-1 Taq-4
Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56 Pfu-3
Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

PERVB
Taq-20 Pfu-1 Taq-4 Taq-14 Taq-12 Taq-24 Taq-9 Taq-3

MHPTLSRRHL PIRGGEPKRL KIPLSFASIA WFLTLSITPQ VNGKRLADSP MHPTLSWRHL PIRGGEPKRL KIPLSFASIA WFLTLSITPQ VNGKRLADSP MHPTLSRRHL PIQGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRRHL PIRGGKPKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRRHL PIQGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLNRRHL PIRGGKPKRL KIPLSFASIA WFLTLSITSQ TNGMRIGDSL MHPTLSRCHL PIRGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRCHL PIRGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRRHL PIRGGEPKKL KIPLSFASIA WFLTLSITPQ VNGKRLADSP MHPTLSRCHL PIRGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRCHL PIRGGELKRL KIPLSFASVA WFLTLSITPQ VNGKRLVDSP MHPTLSRCHL PIRGGEPKKL KIPLSFASIA WFLTLSITPQ VNGKRLADSP MHPTLSRRHL PIRGGEPKKL KIPLSFASIA WFLTLSITPQ VNGKRLADSP MHPTLSRCHL PIRGGELKRL KIPLSFAPIA WFLTLSITPQ VNGKRLVDSP MHPTLSRRHL PIQGGELKRL KIPLSYASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRCHL PIRGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRRHL PIQGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSRRHL PIQGGELKRL KIPLSFASIA WFLTLSITPQ VNGKRLVDSP MHPTLSWRHL PTRGGEPKRL RIPLSFASIA WFLTLTITPQ ASSKRLIDSS

NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV.. NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV.. NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV.. NPRRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV.. NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPEPHFC LRLINPAV.. NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV.. NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV.. NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLND NFHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLNN NFHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLNN NSHKPLSLTW LLTDSGTGIN INSTQGEAPL GTWWPELYVC LRSVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLNN NSHKPLSLTW LITDSGTGIN INNTQGEAPL GTWWPDLYVC LRSVIPSL.. NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLND NFHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLND NFHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLND NFHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLND NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRLVIPGLNN NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLNN NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLNN NSHKPLSLTW LLTDSSTGIT INSTQGEAPL GTWWPELYVC LRSVIPGLNN NSHKPLSLTW LLTDSSTGIT IISTQGEAPL GTWWPELYVC LRSVIPGLNN NPHRPLSLTW LIIDPDTGVT VNSTRGVAPR GTWWPELHFC LRLINPAV..

KSTPPNLVRS YGFYCCPG.T EKEKYCGGSG ESFCRRWSCV TSNDGDWKWP KSTPPNLVRS YGFYCCPG.T EKEKYCGGSG ESFCRRWSCV TSNDGDWKWP

Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56 Pfu-3
Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

PERVB
Taq-20 Pfu-1 Taq-4
Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56 Pfu-3
Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

RSTPPNLVRS YGFYCCPG.T EKEKYCGGSG ESFCRRWSCV TSNDGDWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCI TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCI TSNDGNWKWP QATPPDVLRA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLRA YGFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLRA YGFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLRA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLRA YGFYVCPGPP NNEEYCGNPQ DFFCKQWSCI TSNDGNWKWP QATPPDVLRA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP .TSPPDILHA HGFYVCPGPP NNGKHCGNPR DFFCKQWNCV TSNDGYWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCI TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCI TSNDGNWKWP QATPPDVLRA YGFNVCPGPP NNGEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCI TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCI TSNDGNWKWP QATPPDVLRA YGFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLRA YGFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP QATPPDVLCA YRFNVCPGPP NNEEYCGNLQ DFFCKQGSCI TSNDGNWKWP QATPPDVLRA YRFNVCPGPP NNEEYCGNPQ DFFCKQGSCV TSNDGNWKWP KSTPPNLVCS YGFYCCPG.T EKEKYCGGSG ESFCRRWSCV TSNDGDWKWP

151
200
ISLQDRVKFS FVNS...... ...GPGKYK.VMKLYK DK..SCSPSD ISLQDRVKFS FVNS...... ...GPGKYK.VMKLYK DR..SCSPSD ISLQDRVKFS FVNS...... ...GPGKYK.VMKLYK DK..SCSPSD ISLQDRVKFS FVNS...... ...GPGKYK.VMKLYK DK..SCSPSD ISLQDRVKFS FVNS...... ...GPGKYK.VMKLYK DK..SCSPSD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKN WQQQVQKDVR NKQISCNLLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKN WQQQVQKDVR NKQISCNLLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKD WQQRVQKYVR NKQRSCNSLD VSQQDRVSYS FVNSPTSYNQ FNYGHGRWKD WQQRVQKDVR NKQISCNSLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKD WQQRVQKYVR NKQRSCNSLD VSQQDRVSYS FVNNPTSYNQ FNYGHGRWKD WQQRVQKDVR NKQISCHSLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKD WQQRVQKYVR NKQRSCNSLD TSQQDRVSFS YVNTYTSSGQ FNY.......LTWIR TGSPKCSPSD VSQQDRVSYS FVNSPTSYNQ FNYGHGRWKD WQQRVQKDVR NKQISCNSLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKD WQQRVQKYVR NKQRSCNSLD VSQQDRVSYS FVNSPTSYNQ FNYGHGRWKD WQQRVQKDVR NKQISCNSLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKN WQQQVQKDVR NKQISCNLLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKN WQQQVQKDVR NKQISCNLLD VSQQDRVSYS FVNSPTSYNQ FNYGHGRWKD WQQRVQKDVR YKQISCNSLD VSQQDRVSYS FVNSPTSYNQ FNYGHGRWKD WQQRVQKDVR YKQISCNSLD ISQQDRVSYS FVNNTTSYNQ FNYGHGRWKN WQQQVQKDVR NKQISCNLLD ISQQDRVSYS FVNNPTSYNQ FNYGHGRWKD WQQRVQKYVR NKQRSCNSLD ISLQDRVKFS FVNS...... ...GPGKYK.VMKLYK DK..SCSPSD

LDYLKISFTE KGKQENIQKW INGMSWGIVF YKYGG.GAGS TLTIRLRIET LDYLKISFTE KGKQENIQKW INGMSWGIVF YKYGG.GAGS TLTIRLRIET LDYLKISFTE KGKQENIQKW INGMSWGIVF YKYGG.GAGS TLTIRLRIET

Taq-4

Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56 Pfu-3
Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

PERVB

Taq-20
Pfu-1
Taq-4
Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56
Pfu-3
Taq-17
Pfu-115
Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260
Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10

LDYLKISFTE KGKQENIQKW INGMSWGIVF YKYGG.GAGS TLTIRLRIET LDYLKISFTE KGKQEIIQKW INGMSWGIVF YKYGG. GAGS TLTIRLRIET LDYLKISFTE KGKQENIQKW INGMSWGIVF YKYGG.GAGS TLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGF VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGF VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMH YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGF VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGISWGIVY YGGSGRKKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMPWGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENILKW VNGMSWGMVY YGGSGKQPGS ILTIRLKIN. LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGF VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGF VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLIISFTE KGKQENIQKW VNGMSWGIMY YGGTGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGF VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSRGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW VNGMSWGIMY YGGSGRRKGS VLTIRLRIET LDYLKISFTE KGKQENIQKW INGMSWGIVF YKYGG.GAGS TLTIRLRIET

251300
GTEPPVAVGP DKVLAEQGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG GTEPPVAVGP DKVLAEQGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG GTEPPVAVGP DKVLAEQGPP AWEPPHNLPV PQLTSLRPDI TQPPSNGTTG GTEPPVAVGP DKVLAEQGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG GTVPPVAVGP DKVLAEQGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG GTEPPVAVGP D*VLAEQGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG GTEPPVAVGP DKVLAEQGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG QMEPPVAIGP NKGLAEQGPL IQEQ......RPSP NPSDYNTTSG QMEPPVAIGP NKGLAEQGPL IQEQ......RPSP NPSVYNTTSG QMEPPVAIGP NKGLAEQGPP IQEQ......RPSP NPSDYNTTSG QMEPPVAIGP NKGLAEQGPP IQEQ......RPSP NPSDYNTTSG QMEPPVAIGP NKGLAEQGPP IQEQ......RPSP NPSDYNTTSG QMEPPVAIGP NKGLAEQGPL IQEQ......RPSP NPSDYNTTSG QLEPPMAIGP NTVLTGQRPP TQGP......GPSSNITSG QMEPPVAIGP NKGLAEQGPP IQEQRP.... SPNPSV YNTTS.... G QMEPPVAIGP NKGLAEQGPP IQEQRP....SPNPSV YNTTS....G QMEPPVAIGP NKGLAEQGPP IQEQRP....SPNPSV YNTTS....G QMEPPVAIGP NKGLAEQGPL IQEQRP....SPNPSD YNTTS....G QMEPPVAIGP NKGLAEQGPL IQEQRP....SPNPSD YNTTS....G QMEPPVAIGP NKGLAEQGPP IQEQRP....SPNPSD YNTTS.... G QMEPPVAIGP NKGLAEQGPP IQEQRP....SPNPSV YNTTS.... G QMEPPVAIGP NKGLAEQGPL IQEQRP....SPNPSD YNTTS....G QMEPPVAIGP NKGLAEQGPP IQEQRP.... SPNPSD YNTTS.... G QMEPPVAIGP NKGLAEQGPP IQEQRP....SPNPSD YNTTS....G QMEPPVAIGP NKGLAEQGPP IQEQRP.... SPNPSD YNTTS.... G QMEPPVAIGP NKGLAEQGPP IKNRGHLL.. TPLITIQPLD QSPLS...LT

Taq-29
GTEPPVAVGP DKVLAERGPP ALEPPHNLPV PQLTSLRPDI TQPPSNGTTG

301
350
PERVB
Taq-20
Pfu-1
Taq-4
Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251 Pfu-62 Taq-56 Pfu-3 Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295 Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

PERVB
Taq-20 Pfu-1 Taq-4
Taq-14
Taq-12
Taq-24 Taq-9 Taq-3 Taq-21 Pfu-11
Pfu-251 Pfu-62
Taq-56 Pfu-3
Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54
Taq-8
Taq-82
Pfu-56
LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTNPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFR AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR PFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR PFSLIQGAFQ AINSTDPDAT SSCWLCLSSG LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG SVPTE..... PNITIKTVVK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALG LVPPE..... PNFTIKTGAK LFSLIQGALQ ALNSTTPEAT SSCWLCLALG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALG LVPPE.... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALS SVPTE.... PNITIKTAAK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SVPTE.... PNITIKTAAK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SVPTE..... PNITIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLASG SVPTE..... PNITIKTVVK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SDPTE.... SSSTTKMGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLASG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALG SVPTE.... PNITIKTVVK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SVPTE.... PNITIKTVVK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SVPTE.... PNITIKTVVK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG LVPPE..... PNFTIKTGAK LFSLIQGAFQ ALNSTTPEAT SSCWLCLALS SVPTE.... PNITIKTVVK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SVPTE..... PNITIKTAAK LFSLIQGGFQ ALNSTTPEAT SSCWLCLASG SVPTE.... PNITIKTAAK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SVPTE..... PNITIKTAAK LFSLIQGDFQ ALNSTTPEAT SSCWLCLASG SLLKQ..... RQNFLASSRE IFRLLTPRLQ RLPLLVGFA* LWAHLTM... LIPTNTPRNS PGVPVKTGQR LFSLIQGAFQ AINSTDPDAT SSCWLCLSSG

PPYYEGMAKE GKFNVTKEHR NQCTWGSRNK LTLTEVSGKG TCIGKAPPSH PPYYEGMAKE GKLNVTKEHR NQCTWGSRNK LTLTEVSGKG TCIGKAPPSH PPYYEGMAKE GKFNVTKEHR NQCTWGSRNK LTLTEVSGKG TCIGKAPPSH PPYYEGMAKK GKFNVTKEHR NQCTWGSRNK LTLTEVSGKG TCIGKAPPSH PPYYEGMAKK GKFNVTKEHR NQCTWGSRNK LTLTEVSGKG TCIGKAPPSH PPYYEGMAKE GKFNVTKEHR NQCTWGSRNK LTLTEVSGKG TCIGKVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGKVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGKVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGMVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGKAPPSH PPYYEGMARR GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGKVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRFPHPT PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRFPHPT

| Pfu-260 | PPYYEGMARG GKFNVTKEHR DQCTWGSQNK | | |
| ---: | :--- | :--- | :--- | :--- |
| Taq-1 | PPYYEGMARG GKFNVTKEHR | DQCTWGSQNK | LTLTEVSGKG |

PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRFPHPT PPYYEGMARG GKFNVTKEHR DQCTGSQN LILIEVSGKG TCIGRVPPSH PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRFPHPT PPYYEGMARG GKFNVTKEHR DQCTWGSQNK LTLTEVSGKG TCIGRFPHPT REWLEEGNM QRNIEMV G....DPKIS LPLLRLEKA PA GGSPIPP

401
450
俍 QHLCYSTVVY E.QAS ENQYIVRGYN RWWACNTGLT PCVSTSVFNQ QHLCYSTVVY E......QAS ENQYLVPGYN RWWACNTGLT PCVSTSVFNQ QHLCYSTVVY E......QAS ENQYLVPGYN RWWACNTGLT PCVSTSVFNQ QhLCYSTVVY E.....QAS RNQLVPGY RWHCNTGLT PCVSTSVFNR QHLCYSTVVY E.......QAS ENQHLVPGY RWWACNGGLI PCVSISVFNR QHLCYSTVVY E......QAS ENQYLVPGYN RWWACNTGLT PCVSTSVFNQ QHLCNHTEAF N......QTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCNHTEAF N......RTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCNHTEAF N.......RTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCNHTEAF N......RTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCNHTEAF N.......RTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCNHTEAF N.......RTS ESQYLVPGYD RWWACNTGLT PCVSTPGFNQ QHLCNHTEAF N.......*TS ESQYLVPGYD RWWACNTGST PCVSTLVFNQ QHLCNHTEAF N.......RTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCNHTEAF N.......RTS ESQYLVPGYD RWWACNTGLT PCVSTLVFNQ QHLCYSTVVY E.......AS ENOYLVPGYN RWHACNTGLT PCVSTSVFNQ QHLCYSIVVY E......QAS ENQYLVPGYN RWWACNTGLT PCVSTSVFNQ QTE. VTTL KPI....QRS TWYIVMTGG H.VID*P NTF...VTTL KPLIEPLRVS TWYLVMTGGG H...VILD*P LVFPPWFSTK NTF...VTTL KPLIEPLRVS TWYLVMTGGG H...VILD*P LVFPPWFSTR ..VIIL KPLIEPLRVS IWYLVMIGGG H...VILD*P LVFPPWFSIK NTF...VTTL KPLIEPLRVS IWYLVMTGGG H...VILD*P LVFPPWFSTK NTF...VTTL KPLIEPLRVS TWYLVMTGGG H...VILD*P LVFPPWFSTK NTF...VTTL KPLIEPLRVS IWYLVMTGGG H...VILD*P LVFLPWFSTK QHL...CNHT EAFN...RTS ESQYLVPGYD RWWACNTGLP LVFPPWFSTK NTF...VTTL KPLIEPLRVS IWYLVMTGGG H...VILDYP LCFHPGFQPN NTF...VTTL KPLIEPLRVS IWYLVMTGGG H...VILDYP LCFHPGFQPN TPL*PH*SL* SNL*ESVPGT WL*QVV...G M....*YWINP LCFHPGFQPN NTF...AIVL WFMSRPQKIS I*YLVITGGG H...AILG*P PVFPPQSSTN

SKDFCVMVQI VPRVYYHPEE VVLDEYDYRY NRPKREPVSL TLAVMLGLGT SKDF SKDFCVMVQI VPRVYYHPEE VVLDEYDYRY NRPKREPVSL TLAVMLGLGT TKDFCIMVQI VPRVYYYPEK AILDEYDYRN HRQKREPISL TLAVMLGLGV TKDFCVMVQI VPRVYYYPEK AVLDEYDYRY NRPKREPISL TLAVMLGLGV
 TKDFCVTVQI VPRVYYYPKK AVLDEYDYRY NRPKREPISL TLAVMLGLGV RY NRPKREPISL TLAVMLGLGV TKDFCVMVQI VPRVYYYPEK AVLDEYDYRY NRPKREPISL TLAVMLGLGV SKDFCVMVQI VPRVYYHPEE VVLDEYDYRY NRPKREPVSL TLAVMLGLGT
TKDFCIMVQI VPRVYYYPEK AILDEYDYRN HRQKREPISL TLAVMLGLGV

Pfu-112
Pfu-295
Taq-54 Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

PERVB
Taq-20
Pfu-1
Taq-4
Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56
Pfu-3
Taq-17
Pfu-115 Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54
Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

LKTFVLWSKL SPGCTTIPKK QSLMNMTIDI IGQKENPYP* H..........
LKTFVLWSKL SPGCTTIPKK QSLMNMTIDI IGQKENPYP* H............. LKTFVLWSKL SPGCTTIPKK QSLMNMTIDI IGQKENPYP* H........... LKTFALWSKL SPGCTTIPKK RSLMNMTIDI IGQKENPYP* H.......... LKTFALWSKL SPGCTTIPKK RSLMNMTIDI IGQKENPYP* H........... LKTFALWSKL SPGCTTIPKK RSLMNMTIDI IGQKENPYP* H.......... LKTFVLWSKL SPGCTTIPKK RSLMNMTIGI TDQKENPYPL P........... LKTFVLWSKL SPGCTTIPKK RSLMNMTIGI TDQKENPYPL P.......... LKTFALWSKL SPGCTTIPKK RSLMNMAVDI IGQKENPYP* H.......... *R.LLRYGPN CPPGVLLSQK SGP**I*LSV *PTKKRT.RI P........... *R.LLRYGPN CPPGVLLSQK SGP**IWL*I *SAKKRT.HI P........... *R.LLCYGPN CPPGVLLSRK SSP**I*L*I *SAKKRT.HI P........... PKISVSWSSS SPGYTTILRK WSLMNMTIGI TDQKENPYPL P..........

501 550
AVGVGTGTAA LITGPQQLEK GLGELHAAMT EDLRALEESV SNLEESLTSL AVGVGTGTTA LITGPQQLEK GLGELHAAMT EDLRALEESV SNLEESLTSL AVGVGTGTAA LITGPQQLEK GLGELHAAMT EDLRALEESV SNLEESLTSL AVGVGTGTAA LITGPQQLEK GLGELHAAMT EDLRALEESV SNLEESLTSL AAGVGTGTAA LVTGPQQLET GLSNLHRIVT EDLQALEESV SNLEESLTSL AAgVetgtan litgreqlek glsdlhrivt edlQaleksv snleesitsl AAGVETGTAA LITGPQQLEK GLSDLHRIVT EDLQALEKSV SNLEESLTSL AAGMGTGTAA LITGPQQLEK GLSDLHRIVM EDLQALEKSV SNLGESLTSL AAGVGTGMAA LITGPQQLEK GLSDLHRIVM ENL*ALEKSV CNQEESLTSL AAgVGTGTAA LITGPQQLEK GLSDLHRIVT EDLQALEKSV CNQEESLTSL AAGVGTGTAA LITGPQQLEK GLSNLHRIVT EDLQALEKSV SNLEESLTSL AVGVGTGTAA LITGPQQLEK GLGELHAAMT EDLRALEESV SNLEESLTSL AAGVGTGTAA LVTGPQQLET GLSNLHRIVT EDLQALEKSV SNLEESLTSL ..*L*CSDWE WLQAWKQERL P*SQDHNSWR KDLVTYIEL* RKISKP*KNL ..*L*CSDWE WLQAWEQERL P*SQDHNSWR KDLVTYIEL* RKISKP*KNL ..*L*CSDWE WLQAWKQERL P*SQDHNSWR KDLVTYIEL* RKISKP*KNL ..*L*CSDWE WLQAWEQERL P*SQDHNSWR KDLVTYIEL* WKISKP*KNL ..*L*CSDWE WLQAWEQERL P*SQDHNSWR KDLVTYIEL* WKISKP*KNL ..*L*CSDWE WLQAWEQERL P*SQDHNSWR KDLVTYIEL* WKISKP*KNL ..*L*CSD*G RPLA*EQGQL P*SQDHSS*R KDLVSYMRP* QKISEP*RSL ..*L*CSD*G RPLA*EQGQL P*SQDHSS*R KDLVSYMRP* QKISEP*RSL ..*L*CSDWE WLQAWEQERL P*SQDHNSWR KDLVTYIEL* WKISKP*KNL ..YPSCNARI RDGRWRRNRD SCPDHRTTAA RERTW*ATCG HDRRSPSLRG ..DTSCNARI GSGCRHGNRN GCPNHRTTTA GERT**PTSN CNGRSPSPRK ..DTSCNARI GRGCRRGNRN GCPNHRTTTA GERT**PTSN CNGRSPSPRK ..*L*CSD*G RPLA*EQGQL P*SQDHSS*R KDLVSYMRP* QKISEP*RSL

PERVB
Taq-20 Pfu-1 Taq-4 Taq-14
Taq-12
Taq-24 Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56 Pfu-3 SEVVLQNRRG LDLLFLREGG LCAALKEECC FYVDHSGAIR DSMSKLRERL SEVVLQNRRG LDLLFLREGG LCAALKEECC FYVDHSGAIR DSMSKLRERS SEVVLQNRRG LDLLFLREGG LCAALKEECC FYVDHSGAIR DSMSKLRERL SEVVLQKWRG LDLLFLREGG LCAALKEECC FYVDHSGAIR DSMSKLRERL SEVVLQNRRG LDLLFLREGG LCAALKEECC FYVDHSGAIR DSMSKLRERL SEVVLQNRRG LDLLFLKEGG LCVALKEECC FYVDHSGANR DSMSKLRERL SEVVLQNRRG LDLLFLKEGG LCVALKEECC FYVDHSGAIR DSMSKLRERL

Taq-17
Pfu-115
Pfu-6 PERVA
Pfu-345 PERVC
Pfu-112
Pfu-295
Taq-54
Taq-8
Taq-82
Pfu-56
Pfu-260 Taq-1 Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

SEVVLQNRRG LDLLFLKEGG LCVALKEECC FYVDHSGAIR DSMSKLRERL SEVVLQNRRG LDLLFLREGG LCAALKEECC FYVDHSGAIR DSMSKLRERL SEVVLQNRRG LDLLFLKEGG LCVALKEECC FYVDHSGAIR DSMNKLRERL SVT*RNP*PP YLKWFYRTEE G*ICYF*KKV GYV*P*KKNV ASM*ITQEPS SVT*RNP*PP YLKWFYRTEE G*ICYF*KKV GYV*P*KKNV ASM*ITQEPS SVT*RNP*PP YLKWFYRTEE G*ICYF*KKV GYV*P*KKNV ASM*ITQEPS SVT*RNP*PP YLKWFYRTEG G*ICYF*KKV GYV*P*KKNV ASMWITQEPS SVT*RNP*PP YLKWFYRTEG G*ICYF*KKV GYV*P*KKNV ASMWITQEPS SVT*RNP*PP YLKWFYRTEG G*ICYF*KKV GYV*P*KKNV ASMWITQEPS LAT*KSP*LL CLKWFYRTGG D*ICCF*EKV GYVQP*KKNV ASM*ITQEPS LAT*KSP*LL CLKWFYRTGG D*ICCF*EKV GYVQP*KKNV ASM*ITQEPS SVT*RNP*PP YLKWFYRTEG G*ICYF*KKV GYV*P*KKNV ASMWITQEPS VC*QPRRVPD FFV*SGSTEP EGIRSAVSKR RWVMCSLKRR MLLLCRSLRS ICQ*PRGIPN LLI*SGSTEQ KGVRSVISKR RWVMCSLKRR MLLLCGSLRS ICQ*PRGIPN LLI*SGSTEQ KRVRSVISKR RWVMCSLKRR MLLLCRSLRS LAT*KSP*LL CLKWFYRTGG D*ICCF*EKV GYVQP*KKNV AST*ITQEPS

601631
PERVB
Taq-20
Pfu-1 Taq-4
Taq-14
Taq-12
Taq-24
Taq-9 Taq-3
Taq-21
Pfu-11
Pfu-251
Pfu-62
Taq-56 Pfu-3
Taq-17
Pfu-115
Pfu-6 PERVA
Pfu-345
PERVC
Pfu-112
Pfu-295
Taq-54
Taq-8
Taq-82
Pfu-56
Pfu-260
Taq-1
Taq-6
Pfu-232
Taq-11
Taq-10
Taq-29

ERRRREREAD QGWFEGW.
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW.
ERRRREREAD QGWFEGW...
ERR*REREAE QGWFEGW.
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW.
ERHRREREAD QGWFEGW...
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW.
ERRRREREAD QGWFEGW...
ERHQREREAD QGWFEGW.
ERRRREREAD QGWFEGW...
ERRRREREAD QGWFEGW... ERRRREREAD QGWFEGW... ERRRREREAD QGWFEGW... EKRRREKETT QGWFEGW... ETP*ASLEKG *RGVEGKERL TRGGLKDG.. . ETP*ASLEKG *RGIEGKERL TRGGLKDG.. . ETP*ASLEKG *RGVEGKERL TRGGLKDG.. . ETP*ASLEKG *RGVEGKERL TRGGLKDG.. . ETP*ASLEKG *RGIKGKERL TRGGLKDG.. . ETP*ASLEKG *RGIKGKERL TRGGLKDG.. . ETP*ASLEKG *RGVEGKERL TRGGLKDG.. . ETP*ASLEKG *RGVEGKERL TRGGLKDG.. . ETP*ASLEKG *RGIKGKERL TRGGLKDG.. . HQRLH..EQA *RKVREASKG KRG*PGVV*R M HQRLH..EQA *RKVREASKG KRG*PGVV*R M HQRLH..EQA *RKVREASKG KRG*PGVV*R M ETP*ASLEKG *RGVEGKERL TRGGLKDG.. .

Appendix 4.5. Chi-square test for the number of clones in each class.

Chi-Square Test

```
Expected counts are printed below observed counts
\begin{tabular}{rrrr} 
& Taq & Pfu & Total \\
A & 19 & 95 & 114 \\
& 17.80 & 96.20 &
\end{tabular}
\begin{tabular}{rrrr} 
B & 43 & 248 & 291 \\
& 45.42 & 245.58 &
\end{tabular}
\begin{tabular}{crrr} 
Recom & 2 & 3 & 5 \\
& 0.78 & 4.22 &
\end{tabular}
\begin{tabular}{llll} 
Total & 64 & 346 & 410
\end{tabular}
ChiSq = 0.082 + 0.015 + 0.129 + 0.024 + 1.905 + 0.352 = 2.508
df = 2
* WARNING * 1 cells with expected counts less than 1.0
    * Chisquare approximation probably invalid
2 \text { cells with expected counts less than 5.0}
```


1.1.1 Cumulative Distribution Function

```
Chisquare with 2 d.f.
```

x	$P(X<=x)$
2.5080	0.7146

Appendix 4.6. Chi-square homogeneity analysis for the cycle sequence comparison error rate based on 8 duplicate sequences from 4 clones. The non-significant result justifies pooling of the data to estimate sequence comparison error rate $(\mathbf{2 8} / 7,020)$.

```
Expected counts are printed below observed counts
```


Appendix 5.1. Hybridisation data for animals 115, 167, and the pooled results across two animals for the PERV-A and PERV-B probes at each chromosomal location.

PERV-A, animal 115

location	grains	location	grains	location	grains
1p2.2	1	7p1.3	1	13q3.6	1
1p1.1	4	7p1.3	15	13q4.1	8
191.2	16	7p1.2	1	13q4.1	46
191.4	1	7p1.2	3	13q4.3	6
191.5	1	7p1.1	1	13q4.7	1
191.7	4	7q1.1	3	$13 q 4.8$	1
191.8	11	791.4	3	14q1.2	1
1 q 2.1	1	7q1.5	9	14q1.3	1
1 q 2.3	1	7p2.6	1	14q1.5	1
1 q 2.6	1	8p2.3	1	1591.4	1
2p1.4	10	8p2.2	1	15q2.1	1
2 q 1.2	1	8p1.1	1	15q2.5	2
2 q 2.1	2	$8 \mathrm{q1.2}$	1	15q2.6	1
2 q 2.5	1	8 q 2.3	1	16q1.3	1
3 p 1.5	2	8 q 2.5	1	16q2.1	6
3p1.4	11	9p2.2	1	17q1.2	4
3 p 1.1	1	9p1.1	1	1791.4	11
3p2.6	2	9p2.3	1	17q2.1	5
4 q 1.5	1	9q2.4	15	17q2.1	2
5p1.4	4	9 q 2.6	7	1792.3	2
5p1.3	2	10p1.5	1	18q1.3	1
5p1.2	5	10p1.4	2	18q2.2	1
5p1.1	8	10p1.1	1	Xp2.4	1
5q1.1	7	10q1.3	1	Xp2.2	2
5 q 1.2	5	10q1.6	1	Xp2.1	6
5q2.1	22	11p1.4	1	Xp2.1	2
5q2.2	4	11p1.3	3	Xq1.1	1
5 q 2.4	5	11p1.3	1	Yp1.3	1
6 p 1.5	1	1191.1	1	Yp1.1	8
6p1.5	8	12p1.4	9	Yq	9
6p1.4	5	12p1.3	18	Yq	14
6p1.3	7	12p1.2	12	Yq	5
6p1.2	4	$12 \mathrm{q1.1}$	9		
6 q 2.1	1	12q1.2	7		
6 q 2.7	1	$12 \mathrm{q1.3}$	6		
6 q 3.4	8	12 q 1.4	4		
693.5	10	$13 \mathrm{q3.4}$	1		

PERV-A, animal 167

location	grains	location	grains	location	grains	location	grains
1p2.2	1	5 q 2.4	2	9q1.4	4	15q1.3	1
1p1.3	4	6p1.5	1	9q2.2	4	15q2.2	1
1p1.2	2	6p1.5	5	9q2.4	36	15q2.3	3
191.1	12	6p1.4	15	9 q 2.5	15	15q2.4	2
191.2	16	6p1.3	5	10p1.5	1	15q2.5	3
191.4	5	6 q 2.2	1	10p1.4	2	16q1.3	1
191.6	2	6 q 2.4	2	10p1.1	1	16q2.1	1
191.7	4	$6 \mathrm{q3.3}$	1	10q1.3	1	16 q 2.1	6
191.8	7	6 q 3.4	4	10q1.6	1	17q1.2	4
1 q 2.7	1	$6 \mathrm{q3.5}$	19	11p1.4	1	17q1.4	30
1 q 2.8	1	7p1.3	16	11p1.3	4	17q2.1	4
2p1.4	13	7p1.3	6	1191.1	2	17q2.1	3
2 q 1.3	2	7p1.2	2	1191.7	1	18q1.1	2
2q1.4	6	7p1.1	1	12p1.5	1	18q1.3	1
2q2.1	3	$7 \mathrm{q1.4}$	8	12p1.4	16	Xp2.4	1
2 q 2.6	2	7 q 1.5	27	12p1.3	32	Xp2.3	2
3p1.5	7	7 q 2.3	1	12p1.2	17	Xp2.2	4
3p1.4	13	7 q 2.5	1	12q1.1	13	Xp2.1	7
3p1.3	1	7p2.6	3	12q1.2	9	Xq1.2	2
3p1.1	2	8p2.2	3	12q1.3	2	Xq1.3	4
3q1.1	1	8p2.1	4	12 q 1.4	2	Xq2.1	1
3q2.2	1	8p2.1	2	12q1.5	2	Yp1.3	6
4p1.4	4	8p1.2	1	13q1.3	1	Yp1.1	22
4p1.2	1	8 q 1.1	1	13q1.4	1	Yq	14
$4 \mathrm{q1} 1.3$	1	$8 \mathrm{q1.2}$	1	13q3.1	1	Yq	1
4 q 1.4	1	8q2.1	3	13q3.2	1	Yq	1
4q2.3	1	8 q 2.2	4	13q4.1	4		
5p1.4	8	8 q 2.5	4	13q4.1	46		
5p1.3	13	8 q 2.6	1	13q4.3	8		
5p1.2	5	9p2.3	2	13q4.5	2		
5p1.1	17	9p2.1	3	14q1.1	2		
591.1	13	9p1.3	2	14q1.3	7		
5q1.2	19	9p1.2	1	14q1.5	4		
5q2.1	24	9p1.1	2	14q2.2	1		
5q2.2	3	$9 \mathrm{q1.2}$	2	$14 q 2.5$	1		

PERV-A, pooled results across two animals

location	grains	location	grains	location	grains	location	grains
1p2.2	2	5q2.4	7	9p1.2	2	14q1.5	5
1p1.3	4	6p1.5	2	9p1.1	2	14q2.2	1
1p1.2	2	6p1.5	13	9 q 1.2	2	14q2.5	1
1p1.1	16	6p1.4	20	9a1.4	4	15q1.3	1
191.2	32	6p1.3	12	9q2.3	5	15q1.4	1
191.4	6	6p1.2	4	9q2.4	51	15q2.1	1
191.5	3	6q2.1	1	9q2.5	22	15q2.2	1
191.7	8	6q2.2		10p1.5	2	15q2.4	3
191.8	18	6 q 2.4	2	10p1.4	4	15q2.5	4
192.1	1	6q2.7	1	10p1.1	2	15q2.6	4
192.3	1	6q3.3	1	10q1.3	2	16q1.3	1
1 q 2.6	1	6 q 3.4	12	10q1.6	2	16q1.3	1
192.7	1	6q3.5	29	11p1.4	1	16q2.1	1
1 q 2.8	1	7p1.3	1	11 p 1.3	4	16q2.1	12
2p1.4	23	7p1.3	31	11p1.3	5	17q1.2	8
2q1.2	1	7p1.2	7	1191.1	3	1791.4	41
$2 \mathrm{q1.3}$	2	7p1.1	5	1191.7	1	17q2.1	9
2 q 2.1	8	7 q 1.1	2	12p1.5	1	17q2.1	5
$2 \mathrm{q2.1}$	3	7q1.3	3	12p1.4	25	17q2.3	2
2q2.5	3	791.4	11	12p1.3	50	18q1.1	2
3p1.5	9	7q1.5	36	12p1.2	29	18q1.3	2
3p1.4	24	7q2.3	1	12q1.1	22	18q2.2	1
3p1.3	1	7q2.5	1	12q1.2	16	Xp2.4	1
3p1.1	3	7q2.6	4	12 q 1.3	8	Xp2.4	3
3 P 1.1	1	8p2.3	1	$12 \mathrm{q1.4}$	6	Xp2.2	6
3q2.2	1	8p2.2	4	12q1.5	2	Xp2.1	13
3p2.6	2	8p2.1	4	13q1.3	1	Xp2.1	2
4p1.4	4	8p2.1	3	13q1.4	1	Xq1.1	1
4p1.2	1	8p1.2	1	13q3.1	1	Xq1.2	2
$4 \mathrm{q1.4}$	1	891.1	1	13q3.2	1	Xq1.3	4
4q1.5	2	8 q 1.2	2	13q3.4	1	Xq2.1	1
4q2.3	1	8 q 2.1	3	13q3.6	1	Yp1.3	7
5p1.4	12	8q2.2	4	13 q 4.1	12	Yp1.1	30
5p1.3	15	8 q 2.3	1	13q4.1	92	Yq	23
5p1.2	10	8q2.5	5	$13 q 4.3$	14	Yq	15
5p1.1	25	8q2.6	1	$13 q 4.5$	2	Yq	6
5q1.1	20	9p2.3	2	13q4.7	1		
5 q 1.2	24	9p2.2	1	$13 q 4.8$	1		
5q2.1	46	9p2.1	3	14q1.2	3		
5q2.2	7	9p1.3	2	14q1.3	8		

PERV-B, animal 115

location	grains	location	grains	location	grains
$1 p 2.2$	9	$7 q 1.3$	3	$14 q 1.4$	6
1p2.1	4	$7 q 1.5$	1	$14 q 2.8$	1
1p1.1	1	$7 q 1.5$	1	$14 q 2.9$	1
$1 q 1.2$	1	$7 q 2.5$	1	$15 q 1.4$	1
$1 q 1.3$	1	$7 q 2.6$	1	$15 q 1.5$	1
$1 q 1.7$	1	$8 p 2.2$	1	$16 q 2.1$	4
$1 q 1.8$	1	$8 p 2.1$	1	$16 q 2.1$	21
$2 p 1.4$	3	$8 p 1.2$	1	$16 q 2.2$	5
$2 q 1.1$	2	$8 q 2.1$	2	$17 q 1.2$	3
$2 q 1.4$	1	$9 p 2.1$	2	$17 q 1.4$	2
$2 q 2.5$	1	$9 q 2.1$	1	$17 q 2.1$	13
$2 q 2.9$	1	$9 q 2.2$	3	$17 q 2.1$	18
$3 p 1.5$	1	$9 q 2.4$	19	$17 q 2.2$	6
$3 p 1.4$	1	$9 q 2.5$	4	$18 q 1.2$	1
$3 p 1.3$	1	$10 p 1.3$	2	$18 q 2.1$	1
$3 p 1.1$	2	$10 p 1.2$	1	Xp2.3	1
$3 q 1.1$	2	$10 q 1.3$	1	Xp2.2	3
$3 q 1.4$	1	$10 q 1.4$	1	Yp1.1	1
$3 q 2.5$	1	$10 q 1.6$	1	Yq	2
$3 q 2.6$	1	$11 p 1.3$	3		
$4 q 2.1$	1	$11 p 1.2$	9		
$5 p 1.3$	1	$11 p 1.1$	2		
$5 p 1.2$	1	$11 q 1.1$	1		
$5 p 1.1$	1	$11 q 1.3$	3		
$5 q 1.1$	2	$11 q 1.6$	1		
$5 q 1.2$	7	$12 p 1.4$	2		
$5 q 2.1$	9	$12 p 1.3$	2		
$6 p 1.5$	1	$12 p 1.2$	8		
$6 p 1.4$	1	$12 q 1.1$	38		
$6 p 1.3$	1	$12 q 1.2$	11		
$6 q 2.1$	1	$12 q 1.4$	1		
$6 q 3.1$	1	$12 q 1.5$	1		
$6 q 3.3$	1	$13 q 3.1$	1		
$6 q 3.4$	1	$13 q 4.1$	1		
$7 p 1.3$	3	$13 q 4.3$	2		
$7 p 1.3$	5	$13 q 4.8$	2		
$7 p 1.2$	7	$14 q 1.2$	1		
$7 p 1.1$	3	$14 q 1.3$	32		

PERV-B, animal 167

location	grains	location	grains	location	grains	location	grains
1p2.3	4	6p1.5	1	10q1.5	3	18 q 1.3	1
1p2.2	22	6p1.5	2	11p1.5	1	18q2.1	1
1p2.1	4	6p1.4	3	11p1.3	1	18 q 2.3	1
1p1.4	2	6p1.3	1	11p1.2	17	Xp2.1	4
1p1.1	1	6p1.2	4	11p1.1	11	Xp2.3	10
191.6	2	6 q 2.8	1	1191.3	1	Xq1.1	1
192.1	1	6 q 3.2	2	1191.5	1	Yp1.1	2
192.3	1	$6 q 3.3$	1	12p1.4	1	Yq	5
2p1.6	1	6q3.4	3	12p1.3	5	Yq	2
2p1.5	2	7p1.3	1	12p1.2	12		
2p1.4	2	7p1.3	4	$12 \mathrm{q1.1}$	50		
$2 \mathrm{q1.1}$	1	7p1.2	4	12 q 1.3	12		
2q1.2	1	7p1.1	7	$12 \mathrm{q1.4}$	5		
2q1.3	1	$7 \mathrm{7q1.1}$	8	12 q 1.5	1		
2 q 2.1	2	7q1.3	2	13q2.1	1		
2q2.2	1	7 q 1.5	5	13 q 2.2	1		
2q2.6	1	7q2.1	1	13q3.4	1		
3p1.6	4	7q2.4	1	13 q 4.1	1		
3p1.4	2	7q2.5	1	$13 q 4.1$	15		
3p1.3	2	8p2.3	1	13 q 4.3	3		
3p1.1	3	8p2.2	9	14q1.2	1		
3q1.1	1	8p2.1	1	14q1.3	33		
3q1.3	1	8p1.2	1	14q1.5	8		
3q1.4	1	8p1.1	1	14 q 2.6	1		
3q2.5	2	8q2.1	1	14q2.9	1		
4p1.4	2	8q2.1	4	15q1.2	1		
4p1.3	1	8q2.2	1	1591.5	1		
4p1.2	1	8 q 2.3	2	15q2.3	1		
4p1.1	1	8q2.5	1	15q2.5	4		
4q2.1	1	8 q 2.7	1	15 q 2.6	1		
4q2.5	1	9p1.3	1	1691.4	3		
5p1.4	1	9 q 1.4	2	16 q 2.1	33		
5p1.1	2	9q2.1	1	16q2.2	6		
591.1	6	9q2.3	7	1791.2	6		
5q1.2	16	9q2.4	31	1791.3	10		
5q2.1	7	9 q 2.5	12	17q2.1	15		
5q2.2	1	10p1.4	1	17q2.1	18		
5q2.3	3	10p1.3	1	1792.2	2		
5q2.4	4	10p1.2	1	18q1.2	1		

PERV-B, pooled results across two animals

location	grains	location	grains	location	grains	location	grains
1p2.3	4	5p1.2	1	8q2.3	2	13 q 4.3	3
1p2.2	31	5p1.1	3	8 q 2.5	1	13 q 4.8	2
1p2.1	8	591.1	8	8 q 2.7	1	14q1.2	2
1p1.4	2	591.2	23	9 p 2.1	2	14q1.3	65
1p1.1	2	5 q 2.1	16	9p1.3	1	14q1.5	14
191.2	1	5 q 2.2	1	$9 \mathrm{q1.4}$	2	14q2.6	1
191.3	1	5 q 2.3	3	9q2.1	2	14q2.8	1
191.7	3	5 q 2.4	4	9q2.3	10	14q2.9	2
191.8	1	6p1.5	1	9q2.4	50	15q1.2	1
1 q 2.1	1	6p1.5	3	9q2.5	16	15q1.5	1
1 q 2.7	1	6p1.4	4	10p1.4	1	15q1.5	2
2p1.6	1	6p1.3	2	10p1.3	3	15q2.3	1
2p1.4	5	6p1.2	4	10p1.2	2	15q2.5	4
2p1.3	2	6q2.3	1	10q1.3	1	15q2.6	1
$2 \mathrm{q1.1}$	3	6q2.8	1	10q1.4	1	16 q 2.1	7
2q1.2	1	$6 \mathrm{q3.1}$	1	10q1.5	3	16q2.1	54
2 q 1.3	2	$6 \mathrm{q3.2}$	2	10q1.6	1	16 q 2.2	11
2q2.1	2	693.3	2	11p1.5	1	17q1.2	9
2 q 2.2	1	6 q 3.4	4	11p1.3	4	1791.4	12
2q2.5	2	7p1.3	1	11p1.2	26	17q2.1	28
2 q 2.9	1	7p1.3	7	11p1.1	13	17q2.2	36
3 p 1.5	5	7p1.2	9	1191.1	1	17q2.3	8
3p1.4	3	7p1.2	14	1191.3	4	1891.2	2
3p1.3	3	7p1.1	11	1191.5	1	18q2.1	1
3p1.1	5	$7 \mathrm{q1.3}$	5	1191.6	1	18q2.1	2
3q1.1	3	$7 \mathrm{q1.5}$	1	12p1.4	3	18q2.4	1
3q1.3	1	7 q 1.5	6	12p1.3	7	Xp2.1	4
3q1.4	2	7 q 2.1	1	12p1.2	20	xp1.3	11
3q2.5	3	7 q 2.4	1	$12 \mathrm{q1.1}$	88	Xp1.1	4
3q2.6	1	7 q 2.5	2	12q1.2	23	Yp1.1	3
4p1.4	2	7 q 2.6	1	12q1.3	5	Yp1.1	7
4p1.3	1	8p2.3	1	12q1.4	2	Yq	2
4p1.2	1	8p2.2	10	12q1.5	1		
4p1.1	1	8p2.1	2	13q2.1	1		
4 q 1.5	1	8p1.2	2	13q2.2	1		
4q2.1	1	891.1	1	13q3.1	1		
4q2.5	1	8 q 2.1	1	13q3.4	1		
5p1.4	1	8 q 2.1	6	13 q 4.1	2		
5p1.3	1	8 q 2.2	1	13 q 4.1	17		

Appendix 5.2. Interpreting PCR data of a PERV junction fragment in somatic cell hybrid panel.

MARKER PERV-Junction
MARKER PERV-Junction
Supposed discordant rates : False +: 0.10, False - : 0.10
Supposed discordant rates : False +: 0.10, False - : 0.10
clone : 0 0 0 0 0 0 0 0 0 0 0 0 1.clllllllllllllllllllllll
clone : 0 0 0 0 0 0 0 0 0 0 0 0 1.clllllllllllllllllllllll
1
1
profile :
profile :
*** CAUTION : Low frequency of positive results (0.07) ***
Reliability of the following results:
Error risk lower than 0.5\% Maximal Correlation $=1.00$
Chromosome probabilities

1	$0.21 \mathrm{E}-06$	2	$0.12 \mathrm{E}-01$	3	$0.35 \mathrm{E}-10$	4	$0.23 \mathrm{E}-07$	5	$0.46 \mathrm{E}-12$
6	$0.18 \mathrm{E}-03$	7	$0.50 \mathrm{E}-07$	8	$0.28 \mathrm{E}-08$	9	$0.35 \mathrm{E}-11$	10	$0.31 \mathrm{E}-11$
11	$0.38 \mathrm{E}-13$	12	$0.15 \mathrm{E}-04$	13	$0.27 \mathrm{E}-02$	14	$0.14 \mathrm{E}-02$	15	$0.39 \mathrm{E}-06$
16	$0.25 \mathrm{E}-09$	17	$0.98 \mathrm{E}+00$	18	$0.20 \mathrm{E}-04$	X	$0.73 \mathrm{E}-17$		

Appendix 6.1. (a) The sequence from Collared peccary 840 bp PCR products (clone L1), (b)

GenBank search results and the best sequence alignment of this sequence show that this sequence is not a retroviral sequence.
(a)

Abstract

CTGTTGGATACGGGGGCGCACGTTATCTCTTTGAATTAAGAGTTTTCATCTTTTCCCAAACTCTCTTTTATTGCAGAGTCTTTCTCTTA TCCCATGGGCAAAATATGGTGGTGAGCACACTGATTCCCAGCTGAAGCTTCTGCTCAGTGTGCAGGGGCTGCCCAGCTTGCTGGCTGAT CTGGCCAACGGACATCCAATCTTAGAAGAAAGGGGCCATCATGGATTGATTAGCGATGGCTGATGGGGGTGGCGGGCTGGGGCTAGAAG TGAAAGGTGCTGAGCTGCCCAATCCTGATCTGGAGTCATGAGAGTGTCTTGAGCTGTAGGTTTGGTTGTATACATGAAATCACACTGAA GTTAGGACTGCCTGTCTGTGTCTAACACTGCTGCCTCCTCCTCTTGCTCCTCCCCTCCCCTTCATCCTCTTGCAGCATAAAATAGGATG CCCTGGCTTGAAGGAGGAGCTCAGAGCTCTGACTGTGGTCCACCACCCTGGGTGCTCCTCTTACCACTAGATGCCTTGCATTCCCAGTT CTGAAGAGCCTGGCATCTAAAGTAAGTCTGCTTGCAGCTTCACTGATGAGTCCAGACTTCAAGCTAAATGCATCAAATGCCAAAATTAT TGACTTGTCTAGCCTGATGCCAGGCCTTCAGTGAAAATTTCTGTTCTAATGTGTTTTTCTCAATTCATACTTACTATTTCAGTTTAATT AAGTTTTTTGAGGACAAAACAGGAAGGGAAAGCCAAAGTAAAAGATGAGATCTCTGCTTTGAACCTGAGACGGGAAGCCTTTTTCCTT CCTAAGAGGGAGTCATAAACCCTACGTCGACGACCTCCT

(b)

Appendix 6.2. (a) The GenBank search results for clone $S 6$ and its best alignment. The (AG)n microsatellite sequence is indicated by shading (...).
(b) The GenBank search results of clone S 9 and its best alignment.

Abstract

(a)

The best scores are: AC018910 Homo sapiens clone RP11-17G13, AC007590 Homo sapiens BAC 161A6, complet AP000070 Homo sapiens genomic DNA, chrom AP000070 Homo sapiens genomic DNA, chrom AC005099 Homo sapiens BAC clone RG351J01 AC005099 Homo sapiens BAC clone CTA-351J U73479 Homo sapiens cosmid clone U138C3 HS269M15 Human DNA sequence from clone 2 HS269M15 Human DNA sequence from clone R ACOO7878 Homo sapiens clone NHO236P02, c AC018552 Homo sapiens chromosome 16 clon HS390013 Human DNA sequence from clone 3 AC007056 Homo sapiens clone from human c HS438L4 Human DNA sequence from clone 43 AC003691 Human Chromosome 11q23 PAC clon AC004100 Homo sapiens chromosome 17, clo AC006328 Homo sapiens clone NH0102005, C AC003668 Homo sapiens Xp22 Bin 95 PAC 23 HS34B21 Human DNA sequence from clone 34 AC016883 Homo sapiens chromosome 8 clone

n init1 opt z-sc					
179941)	316	136	425	23	- 6.7e-19
0364)	57	157	40	400	. $2 \mathrm{e}-17$
0)	15	157	401	400	
0)	15	157	401	400	.
	172	79	382	378.	. $9 \mathrm{e}-16$
31611)	172	79	382	378	
	227	124	368	370.	. 8
77562)	169	169	361	353	
2)	169	69	361	353.	7 4.9e-15
(85134)	244	04	60	352	
82714)	146	146	43	34	6e-14
44676)	378	45	340	332	. $6 \mathrm{e}-14$
1)	159	159	335	325	3 1.8e-13
(100)	157	96	336	330.8	. 9
(5020)	18	15	327	322.7	. $1 \mathrm{e}-13$
5604)	263	107	324	17.	. $9 \mathrm{e}-13$
177769)	78	33	321	310	31.3e-12
46058)	202	115	32	310	1. $6 \mathrm{e}-12$
394)	269	110	317	306	2.3
180479)	14	149	31	304	2.6e-12

(b)

Appendix 6.3. Comparison of the clone 55 sequences with nucleotide sequences in the GenBank database. The inquiry sequences are matched with different kinds of porcine sequences both forward sequences (a) and reverse complementary sequences (b) suggesting that the clone $\mathbf{S 5}$ sequences are Peccary SINE sequences.
(a)

(b)

The best scores are:
SSRYRA S.scrofa gene for skeletal muscle SSC131112 Sus scrofa MHC class I SLA gen SSC131112 Sus scrofa MHC class I SLA gen SSC251914 Sus scrofa MHC class I SLA gen SSC251829 Sus scrofa MHC class I SLA gen SSC237667 Sus scrofa SPP1 gene, exons 6 SSC237667 Sus scrofa SPP1 gene, exons 6 PIGB2AR Sus scrofa beta-2-adrenergic rec AF036005 Sus scrofa interleukin-2 recept SSCRCRYR1 S.scrofa gene for skeletal mus SSAJ5412 Sus scrofa DNA for endogenous r SSTMP835 S.scrofa tmp83.5 gene PIGPRE1H Pig HincII fragment of genomic PIGCYP1 Sus scrofa 17-alpha-hydroxylase SSRYRCRC1 S.scrofa gene for skeletal mus AB018743 Sus scrofa mRNA for 25-hydroxyv SSY16039 Sus scrofa A-FABP gene for fatt SSY16039 Sus Scrofa A-FABP gene PIGUTBIND Sus scrofa uteroferrin gene, 5 SSBAT1G S.scrofa BAT1 gene
AB003363 Sus scrofa S100C gene, complete SSU28757 Sus scrofa lysozyme gene, compl SSAJ3752 Sus scrofa V-ATPase gene, exon SSC9912 Sus scrofa plp gene
PIGAPOLIP Sus scrofa apolipoprotein B ge SSMSAT27 Sus scrofa microsatellite DNA i PIGAPOB02 Pig apolipoprotein B gene (Lpb PIGAPOLPB7 Sus scrofa apolipoprotein B (SSSP835 S.scrofa sp83.5 mRNA
AW315575 13018 MARC 2PIG Sus scrofa cDNA SSFABP2 S.scrofa H-FABP protein, exons 2 AW312312 4010 MARC 1PIG Sus scrofa cDNA SSU00793 Sus scrofa POU-domain protein (SSGPIE8 S.scrofa gpi gene for glucosepho SSJ001202 Sus scrofa mRNA for apoptosisAW314207 10134 MARC 2PIG Sus scrofa cDNA SSR236928 Sus scrofa mRNA for hypothetic AW307624 1706 MARC 1PIG Sus scrofa cDNA AB003281 Phacochoerus aethiopicus gene f AB003283 Pecari tajacu gene for trappin, SSR236936 Sus scrofa mRNA for hypothetic AF021874 Sus scrofa carboxypeptidase E g AW308493 3630 MARC 1PIG Sus scrofa cDNA AB003282 Phacochoerus aethiopicus gene f SSR236939 Sus scrofa mRNA for hypothetic SSU96150 Sus scrofa tear lipocalin/von E SSU14331 Sus scrofa myogenin gene, compl PIGWAPC Pig DNA for elafin family member AB003285 Sus scrofa gene for elafin homo AW307727 1643 MARC 1PIG Sus scrofa cDNA

		init	opt
9699)	614	614	937890.2 3.9e-44
(154867)	629	629	$921865.41 .8 \mathrm{e}-43$
(154867)	629	629	$921865.41 .8 \mathrm{e}-43$
(158063)	611	611	918862.3 2.6e-43
(152211)	620	620	879824.7 3.4e-41
(1295)	835	602	883855.3 7.8e-41
1295)	835	602	883855.3 7.8e-41
(5288)	739	360	850815.3 3.2e-39
(8480)	796	602	833796.2 2.3e-38
(28080)	807	535	830786.5
574)	825	553	831809.3 6.4e-38
(21737)	553	553	817 775.3 1.3e-37
(2161)	772	531	817788.3 2.5e-37
(1759)	682	413	$811783.65 .6 \mathrm{e}-37$
(14910)	740	575	$795756.12 .3 e-36$
(2316)	818	593	$778750.0 \quad 3.2 \mathrm{e}-35$
(8144)	667	492	$775740.0 \quad 3.2 \mathrm{e}-35$
(8144)	667	492	$775740.03 .2 \mathrm{e}-35$
(1958)	565	535	$773746.16 .2 e-35$
(10674)	443	443	$734698.75 \mathrm{e}-33$
(7650)	571	465	$694661.78 \mathrm{e}-31$
(12975)	553	463	$688652.91 .5 \mathrm{e}-30$
(2091)	391	391	683658.3 4.5e-30
(20957)	491	430	$676638.65 .7 e-30$
(10686)	462	275	$669635.51 .6 \mathrm{e}-29$
(499)	604	464	669652.7 3.9e-29
(7117)	453	266	$660629.15 .6 \mathrm{e}-29$
(7117)	453	266	$660629.15 .6 \mathrm{e}-29$
(2374)	594	508	657632.3 1.1e-28
(407)	437	437	658643.2 1.6e-28
(3344)	479	278	651624.6 2.1e-28
(341)	434	434	653639.3 3.2e-28
(2695)	584	584	643618.0 6.2e-28
(790)	493	398	642623.9 9.8e-28
(2600)	451	451	$639614.31 \mathrm{e}-27$
(348)	426	386	628614.9 7.1e-27
(1452)	614	324	621600.1 1.1e-26
(412)	482	313	620606.2 1.8e-26
(1128)	445	275	603584.0 1.1e-25
(1169)	412	357	602582.8 1.3e-25
(1576)	451	356	$596575.32 .5 e-25$
(1034)	497	305	$585567.01 .1 \mathrm{e}-24$
(261)	662	466	581570.8 2.7e-24
(1325)	398	288	$576556.93 .2 \mathrm{e}-24$
(2496)	536	328	$573550.43 .9 \mathrm{e}-24$
(4631)	465	353	$571545.04 .2 e-24$
(6511)	457	284	$563535.31 \mathrm{e}-23$
(3670)	382	294	557532.7 2.5e-23
(1054)	393	232	$558540.73 .2 \mathrm{e}-23$
(339)	502	408	559548.0 3.9e-23

