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Abstract: This paper describes the Bayesian inference and forecasting as applied to the full range 
autoregressive (FRAR) model. The FRAR model provides an acceptable alternative to the existing 
methodology. The main advantage associated with the new method is that one is completely 
avoiding the problem of order determination of the model as in the existing methods. 
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1. Introduction  
The Bayesian approach to the analyses of the FRAR model consists in determining the posterior 
distribution of the parameters of the FRAR model and the predictive distribution of future 
observations. From the former, one makes posterior inferences about the parameters of the FRAR 
model including the variance of the white noise. From the latter, one may forecast future 
observations. All these techniques are illustrated by Broemeling (1985) for autoregressive models. 
This paper will develop posterior and predictive distributions of the FRAR model, introduced by 
Venkatesan et. al. (2008). 
An outline of this paper is as follows. In section 2 the FRAR model is described and the stationarity 
conditions are given. In section 3 and 4 the posterior analysis of the FRAR model is discussed and . 
the predictive density of a single future observation is derived. In section 5 the summary and 
conclusion is given. 
 
2. The Full Range Autoregressive Model 
The FRAR model, introduced by Venkatesan et. al. (2000) and defined by a discrete time stochastic 
process ( )tX  is given by  

∑∞

= − +=
1r trtrt eXaX , ,...2,1,0 ±±=t  

where ( ) ( ) ( )φθα rrka r
r cossin/= , k , α , θ  and φ  are parameters, 1e , 2e , 3e , … are independent 

and identically distributed normal random variables with mean zero and variance 02 >σ . That is 
( ),...,/ 21 −− ttt XXX  has the normal distribution with mean ∑∞

= −1r rtr Xa  and variance 2σ . It is 
assumed that the domain of the parameters is S  given by 

( ) [ ) [ ){ }2/,0,,0,,1,,,, πφπθαφθα ∈∈∞∈∈= RkkS , which ensures that the model is identifiable 
and the FRAR model is asymptotically stationary up to order 2 provided 11 −<<− αα k . 
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The problem is to estimate the unknown parameters k , α , θ , φ  and 2σ , using the Bayesian 
methodology on the basis of a past random realization of { }tX  say ( )Nxxxx ,...,, 21= . 
 
3. The Posterior Analysis  
The joint probability density of NXXX ,...,, 21  is given by 

( )Θ/XP   α   ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −− ∑ ∑=

∞

= −
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σ
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where ( )Nxxxx ,...,, 21= , ( )2,,,, σφθαk=Θ and ( ) ( ) ( )φθα rrar cossin/1 2= .  
Here P  is used as a general notation for the probability density function of the random variables 
given within the parentheses following P  and ,...,, 210 −− XXX  are the past realizations on tX  
which are unknown. Following Priestley (1981) and Broemeling (1985), these are assumed to be 
zero for the purpose of deriving the posterior distribution of Θ . Therefore, the range for the index r, 
viz., 1 through ∞, reduces to 1 through N and so, in the joint probability density function of the 
observations given by (2), the range of the summation 1 through ∞ can be replaced by 1 through N. 
By expanding the square in the exponent and simplifying, one gets 
( )Θ/XP  α  ( ) )2/(exp 222 σσ QN

−
−         (3) 
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The prior distribution for the parameters are assigned as follows :  

1. α  is distributed as the displaced exponential distribution with parameter β , that is, 
 ( ) ( )[ ]1exp −−= αββαP ; 1>α , 0>β . 
2. 2σ  has the inverted gamma distribution with parameter ν and δ, that is, 

( ) ( ) ( ) ( )122 2
+−− δ

σ
υ
σασ eP ; 02 >σ , 0>υ , 0>δ  

3. k , θ  and φ  are uniformly distributed over their domain, that is,  ( ) CkP =φθ ,, , a constant, 
πθ <≤0 , 2/0 πφ <≤ . 

So, the joint prior density function of Θ  ( )S∈Θ is given by     

( ) ( )( )( ) ( )122/1exp +−
−−−Θ

δ
σσναβαβP         (4) 

Using (3), (4), and Bayes’ theorem, the joint posterior density of k , α , θ , φ  and 2σ  is obtained as  

( )XP /Θ   α   ( ) )2/(exp 222 σσ QN
−

−   [ ] )1(22 )(/)1(exp +−−−− δσσναβ   
α  [ ])1(exp −− αβ  α [ ] ( )[ ]12/22 )()2(2/1exp ++−+− δσνσ NQ   (5) 

Integrating (5) with respect to 2σ , the joint posterior density of k , α , θ  and φ  is obtained as 
( )XkP /,,, φθα  α  [ ])1(exp −− αβ  ( )[ ]δν +−+ 2)2( NQ       (6) 
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Thus, the above joint posterior density of k , α , θ , φ  can be rewritten as 

( )XkP /,,, φθα   α   ( ))1(exp −− αβ   ( )[ ]{ } d
BkAC

−
−+ 2

111      (7) 
where ( )S∈θ , ( ) δ+= 2/Nd . 
This shows that, given α , θ  and φ  the conditional distribution of k  is t located at 1B  with ( )12 −d  
degrees of freedom. 
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For proper Bayesian inference on k , α , θ  and φ  one needs their marginal distributions. The joint 
posterior density of α , θ  and φ , namely ( )xP /,, φθα , can be obtained by integrating (7) with 
respect to k . Thus, the joint posterior density function of α , θ  and φ  is obtained as 
( )xP /,, φθα   α   ( ))1(exp −− αβ   2/1

1
−− AC d        (8) 

with 1>α ,  πθ <≤0  and 2/0 πφ <≤ .  
The above joint posterior density of α , θ  and φ  in (8) is a very complicated expression and is 
analytically intractable. For instance, it seems impossible to integrate it with respect to α  and φ  in 
order to obtain the marginal posterior density of θ  and similarly for φ , which are essential for the 
purposes of posterior inference. One way of solving the problem is to find the marginal posterior 
density of α , θ  and φ  from the joint density (8) using numerical integration. 
 
4. One-step-ahead prediction  
In order to forecast 1+Nx  using the random realization Nxxx ,...,, 21  on ( )NXXX ,...,, 21 , one must 
find the conditional distribution of 1+NX  given the past observations. This is the predictive 
distribution of 1+NX  and will be derived by multiplying the conditional density of 1+NX  given 

NXXX ,...,, 21 , Θ  and the posterior density of Θ  given NXXX ,...,, 21  and then integrating with 
respect to Θ .  
That is,  
( )NN XXXXP ,...,,/ 211+ = ( ) ( )∫Θ + ΘΘΘ dXXXPXXXXP NNN ,...,,/,,...,,/ 21211 . 

In the present context, from (1) and (7), with RxN ∈+1 , we get 
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The square in the exponent in the above expression, say 1Q , can be rewritten, after expanding the 
square, as 
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where iNi XP −+= 1  and jNiNij XXP −+−+= 11 . Now multiplying (9) by the joint posterior density of θ  
and integrating over the parameter space Θ , we obtain, 
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First, integrating out 2σ  in (10), one gets the joint distribution of 1+Nx , k , α , θ  and φ  as 
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⎠
⎞

⎜
⎝
⎛ +

+

++ δυ 2
1

1 2
N

QQ     (11) 
where ( ) ( ) ( ) ( )υυ 222 00

2
114321

2
1 ++++−+=++ ++ TxxddkddkQQ NN , 

∑∑ =<=
+=

N

iji ijji
N

i iii TaaTad
1;1

2
1 2 , ∑∑ =<=

+=
N

iji ijji
N

i ii PaaPad
1;1

22
2 2 , ∑ =

=
N

i iiTad
1 03 , 

∑ =
=

N

i ii Pad
14 .  

Therefore,  
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Hence,  
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−
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Further, integrating out k  from (12) we get 
( )NN xxxkxP ,...,,/,,,, 211 φθα+ α   ( )( )1exp −− αβ   ( )21

11
−− EC d      (13)  

with ( ) 2/1+= υd which is the conditional predictive distribution of 1+Nx  given α , θ  and φ . 
Further elimination of the parameters α , θ  and φ  from (13) is not possible analytically. So the 
marginal posterior density of 1+Nx  can not be expressed in a closed form. Since the distribution in 
(13) is analytically not tractable, a complete Bayesian analysis is possible only by numerical 
integration technique or by viewing (13) as the conditional distribution of 1+Nx  given α , θ  and φ . 
Suppose one wants a point estimate of 1+Nx , then one should compute the marginal posterior 
density of 1+Nx  from (13) and use it to calculate the marginal posterior mean of 1+Nx . Thus four 
dimensional numerical integration is necessary in order to estimate 1+Nx . But it is a very difficult 
problem. 
Practically, to perform four dimensional numerical integration is very difficult and therefore to 
reduce the dimensions of the numerical integration one may substitute the estimators α̂ , θ̂  and φ̂  
respectively in the place of α , θ  and φ  and then perform one dimensional numerical integration to 
find the conditional mean of 1+NX . That is, one may eliminate the parameters as much as possible 
by analytical methods and then use the conditional estimates for the remaining parameters to 
compute the marginal posterior mean of the future observation. 
 
5. Summary and conclusion  
The Full Range Autoregressive model provides an acceptable alternative to the existing 
methodology. The main advantage associated with the new method is that one is completely 
avoiding the problem of order determination of the model as in the existing methods. 
Thus, it is not unreasonable to claim the FRAR model proposed by Venkatesan et. al. (2008) and its 
Bayesian analysis presented above certainly provides a viable alternative to the existing time series 
methodology, completely avoiding the problem of order determination. 
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