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Abstract. A recently proposed axiom system for André’s central translation structures is
improved upon. First, one of its axioms turns out to be dependent (derivable from the other
axioms). Without this axiom, the axiom system is indeed independent. Second, whereas most
of the original independence models were infinite, finite independence models are available.
Moreover, the independence proof for one of the axioms employed proof-theoretic techniques
rather than independence models; for this axiom, too, a finite independence model exists. For
every axiom, then, there is a finite independence model. Finally, the axiom system (without
its single dependent axiom) is not only independent, but completely independent.
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1 Introduction

Pambuccian has offered two axiom systems Σ and Σ′ [9] for André’s cen-
tral translation structures [2]. (Σ′ is Σ together with the Fano principle that
diagonals of parallelograms are not parallel.) In this note we further develop
Pambuccian’s work by showing that:

• Σ′ has a dependent axiom. Without this axiom, the axiom system is indeed
independent.

• Without the dependent axiom, finite independence models exist for all
axioms, whereas most of the independence proofs offered in [9] used infinite
models. In particular, one of the independence proofs was accomplished
by proof-theoretic methods rather than by a independence model; but for
this axiom, too, there is a finite independence model;

• Without its dependent axiom, Σ′ is not just independent, but completely
independent.
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For the sake of completeness, we repeat here the definitions of the axiom
systems Σ and Σ′. Both are based on classical one-sorted first-order logic with
identity. Variables are intended to range over points. A single language is used
for both axiom systems; the language has three constants, a0, a1, and a2, a
ternary relation L for collinearity, and a single ternary function symbol τ for
central translations: τab(c) is the image of c under the translation that shifts a
to b. With the the binary operation symbol σ understood as

σa(b) = τba(a),

(essentially a point reflection), the axioms of Σ are as follows:

A3 a 6= b ∧ L(abc) ∧ L(abd)→ L(acd)

B1 L(abc)→ L(bac)

B2 τab(c) = τac(b)

B3 L(abσa(b))

B4 L(abc)→ L(xτab(x)τac(x))

B5 τab(x) = x→ a = b

B6 τab(x) = τcτab(x)(x)

B7 ¬L(a0a1a2)

(The appearance of A3 without A1 and A2 is not an error. In the the official
definition of Σ from [9], rather than duplicating an axiom from André’s axiom
system, the names of whose axioms all have the prefix “A”, under a new name,
it is simply reused and the “B” axioms are offered.) The axiom system Σ′ is Σ
together with

B8 σa(b) = b→ a = b

B8 captures the Fano principle that diagonals of parallelograms are not parallel.
Universal quantifiers will usually be suppressed.

2 A dependent axiom

It was claimed in [9] that Σ′ is independent. This requires qualification: B5
is indeed an independent axiom of Σ (Proposition 1), but B5 can be proved
from Σ \ {B5} with the help of the Fano principle B8 (Proposition 2).
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Triple τ L

(1, 1, 1) 2 −
(1, 1, 2) 2 +
(1, 2, 1) 2 −
(1, 2, 2) 2 +
(2, 1, 1) 2 −
(2, 1, 2) 2 +
(2, 2, 1) 2 −
(2, 2, 2) 2 −

Table 1. A model of Σ \ {B5} ∪ {¬B5}

Proposition 1. Σ \ {B5} 6⊢ B5.

Proof. Consider the domain { 1, 2 } and interpret L and τ according to Table 1.
A counterexample to

τab(x) = x→ a = b

is provided by (a, b, x) := (1, 2, 2).

For each pair (a, b), τa,b fails to be a transitive action because 1 is never a
value of τ .

QED

Lemma 1. Σ′ ⊢ τab(c) = τdc(τab(d))

Proof. The desired conclusion follows from B2 and B6 (B5 is not
needed). QED

Lemma 2. Σ′ ⊢ τab(a) = b

Proof. This is equation (3) of [9]. It is derived without the help of B5. (Indeed,
{B2,B6,B8 } suffices). QED

Proposition 2. Σ′ \ {B5} ⊢ B5.

Proof. Suppose τab(x) = x. From Lemmas 1 and 2, we have

τuv(w) = τuw(v), (2.1)

as well as

ττtu(v)w(u) = τvt(w) (2.2)
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for all t, u, v, and w. Thus, by (2.1), τax(b) = x, whence (by Lemma 1 and (2.2),

τua(v) = τub(v)

for all u and v. Lemma 2 then gives us the desired conclusion a = b. QED

In light of Proposition 2, we define:

Definition 1. Σ∗ := Σ′ \ {B5}.
In the following, the theory in focus is Σ∗ rather than Σ′.

3 Small finite independence models

The next several propositions show that every axiom of Σ∗ has a finite
independence model. (Incidentally, the cardinalities of the independence models
are minimal: when it is claimed that there is a independence model for φ of
cardinality n, it is also claimed that φ is true in every model of Σ∗ \ {φ} of
cardinality less than n.)

In the independence models that follow we give only the interpretation of the
predicate L and the function τ . Strictly speaking, this is not enough, because
we need to interpret the constants a0, a1, and a2 so that B7 holds. But in
the independence models there is always at least one triangle; from any one,
an interpretation of the constants a0, a1, and a2 can be chosen so that B7 is
satisfied.

Proposition 3. There exists an independence model for A3 of cardinality 3.

Proof. Without A3 one cannot prove

L(aab) ∧ L(aba) ∧ L(abb),

the failure of which opens the door to geometrically counterintuitive models.
Consider the domain {1, 2, 3}, interpret L and τ as in Table 2. Note that the
model is “collinear” in the sense that L(α(1)α(2)α(3)) for any permutation
α of {1, 23}; nonetheless, for many pairs (u, v) of distinct points, the various
collinearity statements one can make about u and v are false. A counterexample
to

a 6= b ∧ L(abc) ∧ L(abd)→ L(acd)

is (a, b, c, d) := (3, 2, 1, 1).
QED

Proposition 4. There exists an independence model for B1 of cardinality 3.
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Triple τ L Triple τ L Triple τ L

(1, 1, 1) 1 + (2, 1, 1) 3 + (3, 1, 1) 2 −
(1, 1, 2) 2 − (2, 1, 2) 1 − (3, 1, 2) 3 +
(1, 1, 3) 3 + (2, 1, 3) 2 + (3, 1, 3) 1 +
(1, 2, 1) 2 + (2, 2, 1) 1 + (3, 2, 1) 3 +
(1, 2, 2) 3 − (2, 2, 2) 2 + (3, 2, 2) 1 +
(1, 2, 3) 1 + (2, 2, 3) 3 − (3, 2, 3) 2 −
(1, 3, 1) 3 − (2, 3, 1) 2 + (3, 3, 1) 1 −
(1, 3, 2) 1 + (2, 3, 2) 3 + (3, 3, 2) 2 +
(1, 3, 3) 2 + (2, 3, 3) 1 − (3, 3, 3) 3 +

Table 2. A model of Σ∗ \ {A3} ∪ {¬A3}

Triple τ L Triple τ L Triple τ L

(1, 1, 1) 1 + (2, 1, 1) 3 + (3, 1, 1) 2 +
(1, 1, 2) 2 + (2, 1, 2) 1 − (3, 1, 2) 3 +
(1, 1, 3) 3 + (2, 1, 3) 2 + (3, 1, 3) 1 −
(1, 2, 1) 2 − (2, 2, 1) 1 + (3, 2, 1) 3 +
(1, 2, 2) 3 + (2, 2, 2) 2 + (3, 2, 2) 1 +
(1, 2, 3) 1 + (2, 2, 3) 3 + (3, 2, 3) 2 −
(1, 3, 1) 3 − (2, 3, 1) 2 + (3, 3, 1) 1 +
(1, 3, 2) 1 + (2, 3, 2) 3 − (3, 3, 2) 2 +
(1, 3, 3) 2 + (2, 3, 3) 1 + (3, 3, 3) 3 +

Table 3. A model of Σ∗ \ {B1} ∪ {¬B1}

Proof. The difficulty here is that

L(aba)

fails without B1. Consider the domain {1, 2, 3} and the interpretations of L and
τ as in Table 3. From the standpoint of L, the model is nearly trivialized; the
only triples (a, b, c) where L(abc) fails are where a 6= b and a = c. An example
where

L(abc)→ L(bac)

fails is (a, b, c) := (1, 2, 3).
QED

Proposition 5. There exists an independence model for B2 of cardinality 3.
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Triple τ L Triple τ L Triple τ L

(1, 1, 1) 1 + (2, 1, 1) 1 + (3, 1, 1) 1 +
(1, 1, 2) 1 + (2, 1, 2) 1 + (3, 1, 2) 1 +
(1, 1, 3) 1 − (2, 1, 3) 1 − (3, 1, 3) 1 −
(1, 2, 1) 2 + (2, 2, 1) 2 + (3, 2, 1) 2 +
(1, 2, 2) 2 + (2, 2, 2) 2 + (3, 2, 2) 2 +
(1, 2, 3) 2 − (2, 2, 3) 2 − (3, 2, 3) 2 −
(1, 3, 1) 2 + (2, 3, 1) 1 + (3, 3, 1) 2 +
(1, 3, 2) 2 + (2, 3, 2) 1 + (3, 3, 2) 2 +
(1, 3, 3) 2 − (2, 3, 3) 1 − (3, 3, 3) 2 −

Table 4. A model of Σ∗ \ {B2} ∪ {¬B2}

Proof. Consider the domain {1, 2, 3} and the interpretations of L and τ are as
in Table 4. A counterexample to

τab(c) = τac(b)

in this structure is (a, b, c) := (1, 3, 1).
QED

Proposition 6. There exists an independence model for B3 of cardinality 1.

Proof. B3 is the only axiom that outright asserts that some points are collinear.
Thus, if every triple (a, b, c) of points constitutes a triangle (that is, ¬L(abc)
holds for all a, b, and c), then clearly B3 would be falsified. So take a 1-element
structure and interpret L so that L(abc) for the unique triple (a, b, c) of the
structure is false. The interpretations of τ , a0, a1, and a2 are forced. One can
check that all axioms, except B3, are satisfied. QED

Pambuccian was unable to find an independence model of B4. To show that
B4 is independent of the other axioms, methods of structural proof analysis [8]
were employed. Specifically, an analysis of all possible formal derivations starting
from Σ was made, and by a syntactic-combinatorial argument it was found that
B4 is underivable from Σ\{B4}. By the completeness theorem, then, there must
exist an independence model. Here is one:

Proposition 7. There exists an independence model for B4 of cardinal-
ity 27.

Proof. For lack of space, we omit an explicit description of the 27×27×27 table.
The model was found by the finite model-finding program Mace4 [6]. QED
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Triple τ L Triple τ L Triple τ L

(1, 1, 1) 2 + (2, 1, 1) 1 + (3, 1, 1) 2 +
(1, 1, 2) 2 + (2, 1, 2) 1 + (3, 1, 2) 2 +
(1, 1, 3) 2 − (2, 1, 3) 2 − (3, 1, 3) 2 −
(1, 2, 1) 2 + (2, 2, 1) 1 + (3, 2, 1) 2 +
(1, 2, 2) 2 + (2, 2, 2) 1 + (3, 2, 2) 2 +
(1, 2, 3) 2 − (2, 2, 3) 2 − (3, 2, 3) 2 −
(1, 3, 1) 2 + (2, 3, 1) 2 + (3, 3, 1) 2 +
(1, 3, 2) 2 + (2, 3, 2) 2 + (3, 3, 2) 2 +
(1, 3, 3) 2 − (2, 3, 3) 1 − (3, 3, 3) 2 −

Table 5. A model of Σ∗ \ {B6} ∪ {¬B6}

Consideration of B5 is skipped because it is a dependent axiom of Σ (and
in any case is not officially an axiom of Σ∗).

Proposition 8. There exists a independence model for B6 of cardinality 3.

Proof. Consider the domain {1, 2, 3} and the interpretations of L and τ as in
Table 5. A counterexample to

τab(x) = τcτab(x)(x)

is given by (a, b, c, x) := (2, 2, 1, 2).
QED

We are unable to improve upon the independence proof for B7 given in [9]:
the independence model given there has cardinality 1.

Proposition 9. There exists an independence model for B8 of cardinality 2.

Proof. Indeed, a suitable structure is already available: the countermodel M
for B5 (over Σ) also falsifies B8; since B5 is not an axiom of Σ∗, M works. A
counterexample to

σa(b) = b→ a = b

is given by (a, b) := (1, 2). In this structure, the value of τ , and hence σ, is
always 2. QED
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4 Complete independence

The notion of completely independent set was proposed by E. H. Moore [7].
It is a considerably stronger property of an axiom system than the familiar
notion of independence.

Definition 2. An axiom system X is said to be completely independent if,
for all subsets A of X, the set A ∪ {φ ∈ X \A : ¬φ} is satisfiable.

If an axiom system X is completely independent then it is also independent:
for every sentence φ of X, we have that X \ {φ}∪{¬φ} is satisfiable, or (by the
completeness theorem), that X \ {φ} 6⊢ φ. When an axiom system is completely
independent, no Boolean combination of its axioms can be proved from the
other axioms.

Theorem 1. Σ is completely independent.

Proof. Since Σ has 8 axioms, by following the definition of complete indepen-
dence one sees that there are 28 sets of formulas to check for satisfiability. (Such
an enumeration of cases is best executed mechanically rather than by hand;
we were assisted by the Tipi program [1].) But for all cases, very small finite
models can be found with the help of a finite model-finder for first-order classi-
cal logic (e.g., Paradox [3]). For lack of space we do not present all the models
here. QED

Theorem 2. Σ∗ is completely independent.

Proof. As with Σ, Σ∗ has 8 axioms, so again one has 28 sets of formulas to
check for satisfiability. Except for two cases, very small finite models can be
found almost immediately. The only cases—both involving B4—that cannot be
immediately dispensed with are:

(1) Σ∗ \ {B4} ∪ {¬B4}, and

(2) Σ∗ \ {B4,B7} ∪ {¬B4,¬B7}.

Case (1): The satisfiability of Σ∗\{B4}∪{¬B4} is, by the completeness theorem,
the same thing as the independence of B4. The proof in [9] works. Recall that
the smallest independence model for this axiom (27) is much larger than the
other independence models (which are all size 3 or less). Case (2): Σ∗\{B4,B7}∪
{¬B4,¬B7} is satisfiable. Take a model M of Σ∗ \ {B4} in which B4 is false.
Since B4 fails, there exists points a, b, c, and d in M such that L(abc) but
¬L(dτab(d)τac(d)). An appropriate model is obtained from M by changing M ’s
interpretation of a0, a1, and a2 to, respectively, a, τab(d), and τac(d). QED
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The treatment of case (2) in the preceding proof might be regarded as some-
what odd. The model at work there did contain triangles (that is, it was “non-
linear”) and it falsified B7. But if B7 is false, shouldn’t the model be “linear”?
It is worth noting that Σ∗ is just barely completely independent; a seemingly
innocent change to one of its axioms destroys complete independence. Consider
the existential generalization of B7

B7′ ∃a, b, c [¬L(abc)]

and let Σ′
∗ be Σ∗ \ {B7} ∪ {B7′}.

Intuitively, B7′ says the same thing as B7. Every model of Σ∗ is, by ignoring
the interpretations of a0, a1, and a2, a model of Σ′

∗. And every model of Σ′
∗ can

be extended to a model of Σ∗ by choosing, for the interpretation of a0, a1, and
a2, any witness to the truth of B7′. Nonetheless, the two theories are subtly
different:

Proposition 10. Σ′
∗ is independent but not completely independent.

Proof. The independence proofs for Σ∗ are easily adapted to Σ′
∗. As for complete

independence, note that B7′ is true in every model of Σ′
∗ \ {B4}∪{¬B4}. Thus,

Σ′
∗ \ {B4,B7′} ∪ {¬B4,¬B7′} is unsatisfiable. QED

In other words, if B4 is false, then there is a triangle, i.e., B7′ holds. Such a
relationship among the axioms of Σ′

∗ that is ruled out by the notion of complete
independence.

Σ′
∗ is quite far from being completely independent. Although B7′ cannot be

proved from the other axioms, with seven exceptions (see Table 6), if any of
Σ′
∗’s axiom is negated, B7′ becomes provable; that is, the other 28 − 7 Boolean

combinations are incompatible with ¬B7′. In a rough sense, then, B7′ is “almost”
a theorem of Σ′

∗ \ {B7′}.

A3 B1 B2 B3 B4 B5 B6 B8

+ + + − + + − −
+ + + + + + − −
+ + + − + + + −
+ + + − + + − +
+ + + + + + + −
+ + + + + + − +
+ + + − + + + +

Table 6. Boolean combinations of axioms of Σ∗ compatible with ¬B7′.
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The difference between B7 and B7′ is now clear. B7 makes an assertion about
three specific (though undetermined) points which are not mentioned anywhere
else in the axioms and are thus “semantically inert”. By contrast, B7′ is a purely
existential sentence that can “interact” with the other axioms (specifically, B4).

Similarly, in the foundations of logic, a result similar to Proposition 10 was
discovered by Dines [4]: among several axioms, only one (also having the flavor
of a minimal-cardinality principle) was an obstacle to complete independence.
In another geometric system (this time for linear betweeness structures) Hunt-
ington also encoutered an axiom that was, strictly speaking, necessary, as well
as independent, but at the same time was also, in a sense, passive (he called the
curious axiom “detached”) [5, p. 275].

Interestingly, the axiom system Γ from which Σ is derived has many depen-
dent axioms. Γ is, moreover, very far from being completely independent. Thus
Σ is, from a certain methodological standpoint, to be preferred to Γ.
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