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Abstract. For X a Hausdorff zero-dimensional topological space and E a Hausdorff non-
Archimedean locally convex space, let C(X,E) (resp. Cb(X,E)) be the space of all continuous
(resp. bounded continuous ) E-valued functions on X. Some of the properties of the spaces
C(X,E), Cb(X,E), equipped with certain locally convex topologies, are studied. Also, some
complete spaces of measures, on the algebra of all clopen subsets of X, are investigated.
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Introduction

Let K be a complete non-Archimedean valued field and let C(X,E) be the space of all con-
tinuous functions from a zero-dimensional Hausdorff topological spaceX to a non-Archimedean
Hausdorff locally convex space E. We will denote by Cb(X,E) (resp. by Crc(X,E)) the space
of all f ∈ C(X,E) for which f(X) is a bounded (resp. relatively compact) subset of E. The
dual space of Crc(X,E), under the topology tu of uniform convergence, is a space M(X,E′) of
finitely-additive E′-valued measures on the algebra K(X) of all clopen , i.e. both closed and
open, subsets of X. Some subspaces of M(X,E′) turn out to be the duals of C(X,E) or of
Cb(X,E) under certain locally convex topologies.

In section 2 of this paper, we study some of the properties of the so called Q-integrals, a
concept given by the author in [14]. In section 3, we identify the dual of Cb(X,E) under the
strict topology β1. In section 4, we prove that the dual space of C(X,E), under the topology of
uniform convergence on the bounding subsets ofX, is the space of allm ∈M(X,E′) which have
a bounding support. In section 5 it is shown that the space Ms(X) of all separable members of
M(X), under the topology of uniform convergence on the uniformly bounded equicontinuous
subsets of Cb(X), is complete. The same is proved in section 6 for the space Msυo(X) of
those separable m for which the support of the extension mβo , to all of the Banaschewski
compactification βoX of X, is contained in the N-repletion υoX of X, if we equip Msυo(X)
with the topology of uniform convergence on the pointwise bounded equicontinuous subsets of
C(X).
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1 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field, whose valua-
tion is non-trivial. By a seminorm, on a vector space over K, we will mean a non-Archimedean
seminorm. Similarly, by a locally convex space we will mean a non-Archimedean locally convex
space over K (see [25]). Unless it is stated explicitly otherwise, X will be a Hausdorff zero-
dimensional topological space , E a Hasusdorff locally convex space and cs(E) the set of all
continuous seminorms on E. The space of all K-valued linear maps on E is denoted by E⋆,
while E′ denotes the topological dual of E. A seminorm p, on a vector space G over K, is
called polar if p = sup{|f | : f ∈ G⋆, |f | ≤ p}. A locally convex space G is called polar if its
topology is generated by a family of polar seminorms. A subset A of G is called absolutely
convex if λx + µy ∈ A whenever x, y ∈ A and λ, µ ∈ K, with |λ|, |µ| ≤ 1. We will denote
by βoX the Banaschewski compactification of X (see [5]) and by υoX the N-repletion of X,
where N is the set of natural numbers. We will let C(X,E) denote the space of all continuous
E-valued functions on X and Cb(X,E) (resp. Crc(X,E)) the space of all f ∈ C(X,E) for
which f(X) is a bounded (resp. relatively compact) subset of E. In case E = K, we will sim-
ply write C(X), Cb(X) and Crc(X) respectively. For A ⊂ X, we denote by χA the K-valued
characteristic function of A. Also, for X ⊂ Y ⊂ βoX, we denote by B̄Y the closure of B in Y .
If f ∈ EX , p a seminorm on E and A ⊂ X, we define

‖f‖p = sup
x∈X

p(f(x)), ‖f‖A,p = sup
x∈A

p(f(x)).

The strict topology βo on Cb(X,E) (see [9]) is the locally convex topology generated by the
seminorms f 7→ ‖hf‖p, where p ∈ cs(E) and h is in the space Bo(X) of all bounded K-valued
functions on X which vanish at infinity, i.e. for every ǫ > 0 there exists a compact subset Y of
X such that |h(x)| < ǫ if x /∈ Y .

Let Ω = Ω(X) be the family of all compact subsets of βoX \ X. For H ∈ Ω, let CH be
the space of all h ∈ Crc(X) for which the continuous extension hβo to all of βoX vanishes
on H. For p ∈ cs(E), let βH,p be the locally convex topology on Cb(X,E) generated by the
seminorms f 7→ ‖hf‖p, h ∈ CH . For H ∈ Ω, βH is the locally convex topology on Cb(X,E)
generated by the seminorms f 7→ ‖hf‖p, h ∈ CH , p ∈ cs(E). The inductive limit of the
topologies βH , H ∈ Ω, is the topology β. Replacing Ω by the family Ω1 of all K-zero subsets of
βoX, which are disjoint from X, we get the topology β1. Recall that a K-zero subset of βoX
is a set of the form {x ∈ βoX : g(x) = 0}, for some g ∈ C(βoX). We get the topologies βu
and β′

u replacing Ω by the family Ωu of all Q ∈ Ω with the following property: There exists a

clopen partition (Ai)i∈I of X such that Q is disjoint from each Ai
βoX

. Now βu is the inductive
limit of the topologies βQ, Q ∈ Ωu. The inductive limit of the topologies βH,p, as H ranges
over Ωu, is denoted by βu,p, while β

′
u is the projective limit of the topologies βu,p, p ∈ cs(E).

For the definition of the topology βe on Cb(X) we refer to [12].

Let now K(X) be the algebra of all clopen subsets of X. We denote by M(X,E′) the
space of all finitely-additive E′-additive measures m on K(X) for which the set m(K(X)) is
an equicontinuous subset of E′. For each such m, there exists a p ∈ cs(E) such that ‖m‖p =
mp(X) <∞, where, for A ∈ K(X),

mp(A) = sup{|m(B)s|/p(s) : p(s) 6= 0, A ⊃ B ∈ K(X)}.

The space of all m ∈ M(X,E′) for which mp(X) < ∞ is denoted by Mp(X,E
′). For

m ∈Mp(X,E
′) we define Nm,p on X by

Nm,p(x) = inf{mp(V ) : x ∈ V ∈ K(X)}.
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In case E = K, we denote by M(X) the space of all finitely-additive bounded K-valued
measures on K(X). An element m of M(X) is called τ -additive if m(Vδ) → 0 for each decreas-
ing net (Vδ) of clopen subsets of X with

⋂
Vδ = ∅. In this case we write Vδ ↓ ∅. We denote by

Mτ (X) the space of all τ -additive members of M(X). Analogously, we denote by Mσ(X) the
space of all σ-additive m, i.e. those m with m(Vn) → 0 when Vn ↓ ∅. For an m ∈ M(X,E′)
and s ∈ E, we denote by ms the element of M(X) defined by (ms)(V ) = m(V )s. A subset G
of X is called a support set of an m ∈M(X,E′) if m(V ) = 0 for each V ∈ K(X) disjoint from
G.

Theorem 1 ([17). , Theorem 2.1] Let m ∈ M(X,E′) be such that ms ∈ Mτ (X), for all
s ∈ E, and let p ∈ cs(E) with ‖m‖p <∞. Then :

(1) mp(V ) = supx∈V Nm,p(x) for every V ∈ K(X).

(2) The set

supp(m) =
⋂

{V ∈ K(X) : mp(V
c) = 0}

is the smallest of all closed support sets for m.

(3) supp(m) = {x : Nm,p(x) 6= 0}.

(4) If V is a clopen set contained in the union of a family (Vi)i∈I of clopen sets, then

mp(V ) ≤ sup{mp(Vi) : i ∈ I}.

Next we recall the definition of the integral of an f ∈ EX with respect to anm ∈M(X,E′).
For a non-empty clopen subset A of X, let DA be the family of all α = {A1, A2, . . . , An;x1, x2,
. . . , xn}, where {A1, . . . , An} is a clopen partition of A and xk ∈ Ak. We make DA into a
directed set by defining α1 ≥ α2 iff the partition of A in α1 is a refinement of the one in α2.
For an α = {A1, A2, . . . , An;x1, x2, . . . , xn} ∈ DA and m ∈M(X,E′), we define

ωα(f,m) =
n∑

k=1

m(Ak)f(xk).

If the limit limωα(f,m) exists in K, we will say that f is m-integrable over A and denote this
limit by

∫
A
f dm. We define the integral over the empty set to be 0. For A = X, we write simply∫

f dm. It is easy to see that if f is m-integrable over X, then it is m-integrable over every
clopen subset A of X and

∫
A
f dm =

∫
χAf dm. If τu is the topology of uniform convergence,

then everym ∈M(X,E′) defines a τu-continuous linear functional φm on Crc(X,E), φm(f) =∫
f dm. Also every φ ∈ (Crc(X,E), τu)

′ is given in this way by some m ∈M(X,E′).

For p ∈ cs(E), we denote by Mt,p(X,E
′) the space of all m ∈ Mp(X,E

′) for which mp

is tight, i.e. for each ǫ > 0, there exists a compact subset Y of X such that mp(A) < ǫ if the
clopen set A is disjoint from Y . Let

Mt(X,E
′) =

⋃

p∈cs(E

Mt,p(X,E
′).

Every m ∈ Mt,p(X,E
′) defines a β0-continuous linear functional um on Cb(X,E), um(f) =∫

f dm. The map m 7→ um, from Mt(X,E
′) to (Cb(X,E), βo)

′, is an algebraic isomorphism.
For m ∈ Mτ (X) and f ∈ KX , we will denote by (V R)

∫
f dm the integral of f , with respect

to m, as it is defined in [25]. We will call (V R)
∫
f dm the (V R)-integral of f .

For all unexplained terms on locally convex spaces, we refer to [23] and [25].
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2 Q-Integrals

We will recall next the definition of the Q-integral which was given in [14]. Let m ∈
M(X,E′) be such that ms ∈ Mτ (X) for all s ∈ E. This in particular happens if m ∈
Mτ (X,E

′). For f ∈ EX and x ∈ X, we define

Qm,f (x) = inf
x∈V ∈K(X)

sup{|m(B)f(x)| : V ⊃ B ∈ K(X)}, ‖f‖Qm = sup
x∈X

Qm,f (x).

Let S(X,E) be the linear subspace of EX spanned by the functions χAs, s ∈ E, A ∈
K(X), where χA is the K-characteristic function of A. We will write simply S(X) if E = K.

Lemma 1. If g ∈ S(X,E), then

‖g‖Qm = sup
x∈X

Qm,g(x) <∞.

Proof: The proof was given in [14], Lemma 7.2. Note that, if ‖m‖p < ∞ and d ≥ ‖g‖p,
then Qm,g(x) ≤ d ·mp(X).

Lemma 2. For g ∈ S(X,E), we have
∣∣∣∣

∫
g dm

∣∣∣∣ ≤ ‖g‖Qm .

Proof: Assume first that g = χAs, A ∈ K(X). Then

|m(A)s| ≤ |ms|(A) = sup
y∈A

Nms(y).

But, for y ∈ A, we have

Nms(y) = inf
y∈V ∈K(X)

sup
V ⊃B∈K(X)

|m(B)s| = inf
y∈V ∈K(X)

sup
V ⊃B∈K(X)

|m(B)g(y)| = Qm,g(y).

Thus |m(A)s| ≤ supy∈AQm,g(y). In the general case, there are pairwise disjoint clopen sets
A1, . . . , An covering X and sk ∈ E with g =

∑n
k=1 χAk

sk. Thus,

∣∣∣∣

∫
g dm

∣∣∣∣ =

∣∣∣∣∣

n∑

k=1

m(Ak)sk

∣∣∣∣∣ ≤ max
1≤k≤n

|m(Ak)sk| ≤ sup
x∈X

Qm,g(x) = ‖g‖Qm .

Definition 1. Let m ∈ M(X,E′) be such that ms ∈ Mτ (X) for all s ∈ E. A function
f ∈ EX is said to be Q-integrable with respect to m if there exists a sequence (gn) in S(X,E)
such that ‖f − gn‖Qm → 0. In this case, the Q-integral of f is defined by

(Q)

∫
f dm = lim

n→∞

∫
gn dm.

If f is Q-integrable with respect to m, then for A ∈ K(X) the function χAf is also
Q-integrable. We define

(Q)

∫

A

f dm = (Q)

∫
χAf dm.

As it is proved in [14], the Q-integral is well defined. If µ ∈ Mτ (X) and g ∈ KX , then
Qµ,g(x) = |g(x)|Nµ(x). Thus the Q-integral with respect to µ coincides with the integral as it
is defined in [23], which we will call (VR)-integral. Hence

(V R)

∫
g dµ = (Q)

∫
g dµ.
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Lemma 3. If f ∈ EX is Q-integrable with respect to an m ∈ M(X,E′) and if (gn) is a
sequence in S(X,E), with ‖f − gn‖Qm → 0, then

‖f‖Qm = lim
n→∞

‖gn‖Qm <∞, and

∣∣∣∣(Q)

∫
f dm

∣∣∣∣ ≤ ‖f‖Qm .

Proof: Since
Qm,h+g(x) ≤ max{Qm,g(x), Qm,h(x)},

it follows that
‖h+ g‖Qm ≤ max{‖h‖Qm , ‖g‖Qm}.

Thus

‖f‖Qm ≤ max{‖f − gn‖Qm , ‖gn‖Qm} ≤ ‖f − gn‖Qm + ‖gn‖Qm <∞.

It follows that
|‖f‖Qm − ‖gn‖Qm | ≤ ‖f − gn‖Qm → 0.

Moreover, ∣∣∣∣(Q)

∫
f dm

∣∣∣∣ = lim
n→∞

∣∣∣∣

∫
gn dm

∣∣∣∣ ≤ lim
n→∞

‖gn‖Qm = ‖f‖Qm .

Hence the result follows.

Theorem 2. Let m ∈M(X,E′) be such that ms ∈Mτ (X) for all s ∈ E, and let f ∈ EX

be Q-integrable. Define

mf : K(X) → K, mf (A) = (Q)

∫

A

f dm.

Then mf ∈Mτ (X).

Proof: Since |mf (A)| ≤ ‖f‖Qm , it is easy to see that mf ∈ M(X). Let now Vδ ↓ ∅ and
ǫ > 0. Choose a g =

∑n
k=1 χAk

sk ∈ S(X,E) such that ‖f − g‖Qm < ǫ. Then

∫

Vδ

g dm =

n∑

k=1

(msk)(Vδ ∩Ak) → 0.

Let δo be such that
∣∣∣
∫
Vδ
g dm

∣∣∣ < ǫ if δ ≥ δo. Now, for δ ≥ δo, we have

∣∣∣∣(Q)

∫

Vδ

f dm

∣∣∣∣ ≤ max{

∣∣∣∣(Q)

∫

Vδ

(f − g) dm

∣∣∣∣ ,
∣∣∣∣

∫

Vδ

g dm

∣∣∣∣}

≤ max{‖f − g‖Qm ,

∣∣∣∣

∫

Vδ

g dm

∣∣∣∣} < ǫ.

Thus mf (Vδ) → 0.

Lemma 4. If f ∈ EX is Q-integrable with respect to an m ∈ M(X,E′), then the map
x→ Qm,f (x) is upper semicontinuous.

Proof: We need to show that, for each α > 0, the set

V = {x : Qm,f (x) < α}

is open. So let x ∈ V and choose ǫ > 0 such that Qm,f (x) < α − 2ǫ. Let g ∈ S(X,E) be
such that ‖f − g‖Qm < ǫ. Let A1, . . . , An be a clopen partition of X and sk ∈ E such that
g =

∑n
k=1 χAk

sk. Let k be such that x ∈ Ak. There exists a clopen set B, containing x and
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contained in Ak, such that |m(D)g(x)| < Qm,g(x) + ǫ for every clopen set D contained in B.
If y ∈ B, then for B ⊃ D ∈ K(X) we have

|m(D)g(y)| = |m(D)g(x)| < Qm,g(x) + ǫ

≤ max{Qm,g−f (x), Qm,f (x)}+ ǫ

≤ Qm,f (x) + 2ǫ.

Thus Qm,g(y) ≤ Qm,f (x) + 2ǫ < α. Hence x ∈ B ⊂ V and the result follows.

Lemma 5. If f ∈ EX is Q-integrable with respect to an m ∈ M(X,E′), then Nmf
≤

Qm,f .

Proof: Let x ∈ X and ǫ > 0. In view of the preceding Lemma, there exists a clopen
neighborhood V of X such that Qm,f (y) ≤ Qm,f (x) + ǫ for all y ∈ V . If V ⊃ B ∈ K(X), then

|mf (B)| ≤ sup
y∈B

Qm,f (y) ≤ Qm,f (x) + ǫ

and so
Nmf

(x) ≤ |mf |(V ) ≤ Qm,f (x) + ǫ.

Hence the result follows.

Lemma 6. Let m ∈ M(X,E′) be such that ms ∈ Mτ (X) for all s ∈ E. If g ∈ S(X,E),
then Qm,g = Nmg .

Proof: Let {A1, . . . , An} be a clopen partition ofX and sk ∈ E such that g =
∑n

k=1 χAk
sk.

Suppose that Nmg (x) < α. Then, there exists a clopen neighborhood V of x such that
|mg|(V ) < α. Let x ∈ Ak. If B is a clopen set contained in Ak ∩ V , then

mg(B) = (Q)

∫

B

g dm =

∫

B

g dm = m(B)g(x)

since g = g(x) on B. Thus

Qm,g(x) ≤ sup
B⊂Ak∩V

|m(B)g(x)| ≤ |mg|(V ) < α.

This proves that Qm,g ≤ Nmg and the result follows.

Theorem 3. If f ∈ EX is Q-integrable with respect to an m ∈ M(X,E′), then Qm,f =
Nmf

.

Proof: Assume that Nmf
(x) < α and let 0 < ǫ < α. There exists a clopen neighborhood

V of x such that |mf |(V ) < α. Let g ∈ S(X,E) be such that ‖f − g‖Qm < ǫ. For A clopen
contained in V , we have

|mf (A)−mg(A)| =

∣∣∣∣(Q)

∫
(f − g) dm

∣∣∣∣ ≤ ‖f − g‖Qm < ǫ

and so
|mg(A)| ≤ max{ǫ, |mf (A)|} < α.

Thus
Qm,g(x) = Nmg (x) ≤ |mg|(V ) ≤ α.

Now
Qm,f (x) ≤ max{Qm,f−g(x), Qm,g(x)} ≤ α,

which proves that Qm,f ≤ Nmf
and the result follows by Lemma 5.
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Theorem 4. Let m ∈M(X,E′) be such that ms ∈Mτ (X), for all s ∈ E, and let f ∈ EX

be Q-integrable with respect to m. If g ∈ KX is Q-integrable with respect to mf , then gf is
Q-integrable with respect to m and

(Q)

∫
gf dm = (Q)

∫
g dmf .

Proof: If h ∈ KX , then

Qm,hf (x) = |h(x)|Qm,f (x) = |h(x)|Nmf
(x) = Qmf ,h(x).

Let (gn) be a sequence in S(X) such that ‖g − gn‖Qmf
→ 0. We have

‖g − gn‖Qmf
= sup

x∈X
|g(x)− gn(x)| ·Nmf

(x)

= sup
x∈X

Qm,(g−gn)f (x) = ‖gf − gnf‖Qm .

If A ∈ K(X), then χAf is Q-integrable with respect to m and

(Q)

∫
χAf dm = (Q)

∫

A

f dm = mf (A) =

∫
χA dmf .

It follows that, for all n, gnf is Q-integrable with respect to m and

(Q)

∫
gnf dm =

∫
gn dmf → (Q)

∫
g dmf .

Since gnf is Q-integrable with respect to m and ‖gf − gnf‖Qm → 0, it follows that gf is
Q-integrable and

(Q)

∫
gf dm = lim

n→∞
(Q)

∫
gnf dm = lim

n→∞

∫
gn dmf = (Q)

∫
g dmf ,

which completes the proof.

Theorem 5. Let m ∈ M(X,E′) be such that ms ∈ Mτ (X), for all s ∈ E, and let
p ∈ cs(E) with ‖m‖p < ∞. If f ∈ EX is Q-integrable with respect to m, then, given ǫ > 0,
there exists α > 0 such that

∣∣(Q)
∫
A
f dm

∣∣ < ǫ if mp(A) < α.

Proof: Let g ∈ S(X,E) with ‖f − g‖Qm < ǫ. For a clopen set A, we have
∣∣∫

A
g dm

∣∣ ≤
‖g‖p ·mp(A). Let α > 0 be such that α · ‖g‖p < ǫ. If mp(A) < α, then

∣∣∣∣(Q)

∫

A

f dm

∣∣∣∣ ≤ max{

∣∣∣∣(Q)

∫

A

(f − g) dm

∣∣∣∣ ,
∣∣∣∣

∫

A

g dm

∣∣∣∣}

≤ max{‖f − g‖Qm , ‖g‖p ·mp(A)} < ǫ.

Lemma 7. Let m ∈Mτ (X) and let g ∈ KX be (VR)-integrable. Then, given ǫ > 0, there
exists δ > 0 such that ‖g‖A,Nm ≤ ǫ if |m|(A) < δ.

Proof: There exists h ∈ S(X) such that ‖g − h‖Nm ≤ ǫ. It suffices to choose δ > 0 such
that δ · ‖h‖ < ǫ.

Let m ∈M(X). For A ⊂ X, we define

|m|∧(A) = inf{|m|(V ) : V ∈ K(X), A ⊂ V }.

Recall that a sequence (gn) in KX converges in measure to an f ∈ KX , with respect to m
(see [14], Definition 2.12) if, for each α > 0, we have

lim
n→∞

|m|∧{x : |gn(x)− g(x)| ≥ α} = 0.
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Theorem 6 (Dominated Convergence Theorem). Let m ∈ Mτ (X) and let (fn) be a
sequence of (VR)-integrable, with respect to m, functions, which converges in measure to some
f ∈ KX . If there exists a (VR)-integrable function g ∈ KX such that |fn| ≤ |g| for all n, then
f is (VR)-integrable and

(V R)

∫
f dm = lim

n→∞
(V R)

∫
fn dm.

Proof: Let ǫ > 0 and choose inductively n1 < n2 < . . . such that |m|∧(Vk) < 1/k, where

Vk = {x : |fnk
(x)− f(x) ≥ 1/k}.

Let V =
⋂∞

N=1

⋃
k≥N Vk. If x ∈ V , then Nm(x) = 0. Indeed, for every N , there exists k ≥ N

with x ∈ Vk and so Nm(x) ≤ |m|(Vk) < 1/k ≤ 1/N , which proves that Nm(x) = 0. Also,
for x ∈ X \ V , we have f(x) = limk→∞ fnk

(x). In fact, there exists N such that x /∈ Vk for
k ≥ N and so |fnk

(x) − f(x)| < 1/k → 0. It follows that |f(x)| ≤ |g(x)| when x /∈ V . Since
g is (VR)-integrable, there exists (by the preceding Lemma) δ > 0 such that ‖g‖A,Nm < ǫ if
|m|(A) < δ. Let now α > 0 be such that α · ‖m‖ < ǫ. For each n, let

Gn = {x : |fn(x)− f(x)| ≥ α}

and choose a clopen setWn containing Gn with |m|(Wn) < 1/n+|m|∧(Gn). Since |m|∧(Gn) →
0, there exists no such that |m|(Wn) < δ if n ≥ no. Let now n ≥ no and x ∈ X. If x ∈ V , then
Nm(x) = 0. Suppose that x /∈ V . Then |f(x)| ≤ |g(x)| and so

|f(x)− fn(x)|Nm(x) ≤ |g(x)|Nm(x).

If x ∈Wn, then |g(x)|Nm(x) ≤ ǫ, since |m|(Wn) < δ, while for x /∈Wn we have

|f(x)− fn(x)|Nm(x) ≤ α · ‖m‖ < ǫ.

Thus, for n ≥ no, we have ‖f − fn‖Nm ≤ ǫ. Since fn is (VR)-integrable, it follows that f is
(VR)-integrable and

(V R)

∫
f dm = lim

n→∞
(V R)

∫
fn dm

since ∣∣∣∣(V R)
∫

(f − fn) dm

∣∣∣∣ ≤ ‖f − fn‖Nm → 0.

This completes the proof.
Let now τ be the topology of X and let Kc(X) be the collection of all subsets A of X such

that A ∩ Y is clopen in Y for each compact subset Y of X. It is easy to see that if A, A1, A2

are in Kc(X), then each of the sets Ac, A1 ∩A2 and A1 ∪A2 is also in Kc(X). Now Kc(X) is
a base for a zero-dimensional topology τk on X finer than τ . We will denote by X(k) the set
X equipped with the topology τk. We have the following easily established

Theorem 7. (1) τ and τk have the same compact sets.

(2) τ and τk induce the same topology on each τ -compact subset of X.

(3) A subset B of X is τk-clopen iff B ∈ Kc(X).

(4) If Y is a zero-dimensional topological space and f : X → Y , then f is τk-continuous iff
the restriction of f to every compact subset of X is τ -continuous.

Let now m ∈M(X,E′) be such that ms ∈Mτ (X) for each s ∈ E.

Lemma 8. If B ∈ Kc(X), s ∈ E and h = χBs, then h is Q-integrable with respect to m.
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Proof: Let ǫ > 0. Since ms ∈ Mτ (X), there exists a compact subset Y of X such that
|ms|(V ) < ǫ for each clopen subset V of X disjoint from Y . Since B∩Y is clopen in Y and Y is
compact, there exists A ∈ K(X) with B∩Y = A∩Y (see [25], p. 188). Let g = χAs, f = h−g.
If x ∈ A∆B, then x is not in Y and so there exists V ∈ K(X) such that x ∈ V ⊂ Y c. If
W ∈ K(X) is contained in V , then |m(W )f(x)| = |m(W )s| ≤ |ms|(V ) < ǫ and so Qm,f (x) ≤ ǫ.
Thus ‖h− g‖Qm ≤ ǫ. Hence the Lemma follows.

Now for B ∈ Kc(X), we define

m(k)(B) : E → K, m(k)(B)s = (Q)

∫
χBs dm.

Clearly m(k) is linear. Let p ∈ cs(E) be such that mp(X) <∞.

Theorem 8. Let A ∈ Kc(X), and let V ∈ K(X) with A ⊂ V . Then :

(1) |m(k)(A)s| ≤ |ms|(V ) ≤ mp(V ) · p(s) for all s ∈ E.

(2) m(k) ∈Mp(X
(k), E′).

(3) m(k)s ∈Mτ (X
(k)) for all s ∈ E.

(4) If m ∈Mt,p(X,E
′), then m(k) ∈Mt,p(X

(k), E′).

Proof: Let s ∈ E, h = χAs and x ∈ A ⊂ V . If W is a clopen subset of X contained in V ,
then |m(W )h(x)| ≤ |ms|(V ) and so Qm,h(x) ≤ |ms|(V ), which implies that

|m(k)(A)s| ≤ sup
x∈A

Qm,h(x) ≤ |ms|(V ) ≤ mp(V ) · p(s).

This proves that m(k)(A) ∈ E′ and ‖m(k)(A)‖p ≤ mp(V ). Clearly m(k) ∈ Mp(X
(k), E′) and

‖m(k)‖p ≤ ‖m‖p.
Let now s ∈ E and ǫ > 0. There exists a compact subset Y of X such that |ms|(Z) < ǫ

for each Z ∈ K(X) disjoint from Y . Let B ∈ Kc(X) be disjoint from Y and let x ∈ B. Then
x /∈ Y and so there exists a D ∈ K(X) containing x ad contained in Y c. For h = χBs, we
have Qm,h(x) ≤ |ms|(D) < ǫ. Thus |m(k)(A)s| ≤ ǫ. It follows that |m(k)s|(B) ≤ ǫ for each
B ∈ Kc(X) disjoint from Y and so m(k)s ∈ Mτ (X

(k)). Finally, assume that m ∈ Mt,p(X.E).
Given ǫ > 0, there exists a compact subset Y of X such that mp(V ) < ǫ for each V ∈ K(X)
disjoint from Y . If s ∈ E, with p(s) > 0, then for V ∈ K(X) disjoint from Y we have |ms|(V ) ≤
mp(V ) · p(s) < ǫ · p(s). Thus, for B ∈ Kc(X) disjoint from Y we have |m(k)s|(B) ≤ ǫ · p(s) and

so m
(k)
p (B) ≤ ǫ. This clearly completes the proof.

Theorem 9. Let m ∈M(X,E′) be such that ms ∈Mτ (X) for each s ∈ E. Then:

(1) If A ∈ K(X), then |ms|(A) = |m(k)s|(A) for all s ∈ E.

(2) If m ∈Mp(X,E
′), then mp(A) = m

(k)
p (A) for each A ∈ K(X).

(3) If f ∈ EX is Q-integrable with respect to m, then f is Q-integrable with respect to m(k)

and Qm,f ≤ Qm(k),f . Moreover

(Q)

∫
f dm = (Q)

∫
f dm(k).

Proof: Let A ∈ K(X). Clearly |ms|(A) ≤ |m(k)s|(A). On the other hand, let |m(k)s|(A) >
θ > 0. There exists D ∈ Kc(X), D ⊂ A, such that |m(k)(D)s| > θ. Let h = χDs. Since
|m(k)(D)s| ≤ supx∈D Qm,h(x), there exists x ∈ D such that Qm,h(x) > θ. The set Y =
{z ∈ X : Qm,h(z) ≥ θ} is compact. Hence there exists Z ∈ K(X) with Z ∩ Y = D ∩ Y .
Since x ∈ Z ∩ A and Qm,h(X) > θ, there exists W ∈ K(X) contained in Z ∩ A and such
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that |m(W )h(x)| > θ. Then h(x) = s and so |m(W )s| > θ, which proves that |ms|(A) > θ.

Thus, |ms|(A)| ≥ |m(k)s|(A). Assume next that m
(k)
p (A) > α > 0. There exists B ∈ Kc(X)

contained in A and s ∈ E with |m(k)(B)s|/p(s) > α. Now |ms|(A) = |m(k)s|(A) > α · p(s).

Thus mp(A) ≥ |ms|(A)/p(s) > α, which shows that mp(A) = m
(k)
p (A). Thus (1) and (2) hold.

(3). Assume that f ∈ EX is Q-integrable with respect to m.

Claim : If x ∈ D ∈ K(X), then

sup
Z∈Kc(X),Z⊂D

|m(k)(Z)f(x)| = sup
Z∈K(X),Z⊂D

|m(Z)f(x)|.

Indeed, suppose that there exists a Z ∈ Kc(X) contained inD such that |m(k)(Z)f(x)| > θ > 0.
For h = χZf(x), we have

θ < |m(k)(Z)f(x)| ≤ sup
z∈Z

Qm,h(z).

Thus, there exists z ∈ Z with Qm,h(z) > θ. Since z ∈ Z ⊂ D, there exists W ∈ K(X)
contained in D such that |m(W )h(z)| = |m(W )f(x)| > θ. This clearly proves the claim. Now

Qm,f (x) = inf
x∈D∈K(X)

sup
D⊃Z∈K(X)

|m(Z)f(x)|

= inf
x∈D∈K(X)

sup
D⊃Z∈Kc(X)

|m(k)(Z)f(x)| ≥ Qm(k),f (x).

Since f is Q-integrable with respect tom, there exists a sequence (gn) ⊂ S(X,E) ⊂ S(X(k), E)
such that ‖f−gn‖Qm → 0. But then ‖f−gn‖Q

m(k)
≤ ‖f−gn‖Qm → 0. Hence f is Q-integrable

with respect to m(k) and

(Q)

∫
f dm(k) = lim

n→∞

∫
gn dm

(k) = lim
n→∞

∫
gn dm = (Q)

∫
f dm.

This completes the proof of the Theorem.

Next we recall the definition of the topology β̄o which was given in [14]. Let Cb,k(X,E) be
the space of all bounded E-valued functions on X whose restriction to every compact subset
of X is continuous. By Theorem 7 we have that Cb,k(X,E) = Cb(X

(k), E). For p ∈ cs(E),
we denote by β̄o,p the locally convex topology on Cb,k(X,E) generated by the seminorms
f 7→ ‖hf‖p, h ∈ Bo(X). Since X and X(k) have the same compact sets, we have that
Bo(X) = Bo(X

(k)) and so β̄o,p coincides with the topology βo,p on Cb(X
(k), E). The topology

β̄o is defined to be the locally convex projective limit of the topologies β̄o,p, p ∈ cs(E). Thus
β̄o coincides with topology βo on Cb(X

(k), E).

Theorem 10. (1) If m ∈ Mt(X,E
′), then every f ∈ Cb,k(X,E) is Q-integrable with

respect to m and

(Q)

∫
f dm =

∫
f dm(k).

Thus the map

φm : Cb,k(X,E) → K, φm(f) = (Q)

∫
f dm

is β̄o-continuous.

(2) If E is polar, then every β̄o-continuous linear functional φ on Cb,k(X,E) is of the form
φm for some m ∈Mt(X,E

′).
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Proof: 1. Let p ∈ cs(E) be such that m ∈ Mt,p(X,E
′) and ‖m‖p < 1. Let d > ‖f‖p and

ǫ > 0. There exists a compact subset Y of X such that mp(V ) < ǫ/d for every V ∈ K(X)
disjoint from Y . For each x ∈ Y , the set

Dx = {y ∈ Y : p(f(y)− f(x)) < ǫ}

is clopen in Y and Dx = Dy if Dx ∩ Dy 6= ∅. In view of the compactness of Y , there are
x1, . . . , xn in Y such that the sets Dx1 , . . . , Dxn form a partition of Y . For each k, there exists
a clopen subset Vk of X such that Vk ∩Y = Dxk

. If Wk = Vk \
⋃

i 6=k Vi, then Wk ∩ Y = Dxk
.

Let g =
∑n

k=1 χWk
f(xk). Then ‖f − g‖Qm ≤ ǫ. Indeed, let x ∈ X.

Case I: x /∈ Y . There is a clopen neighborhood V of x disjoint from Y . If B ∈ K(X) is
contained in V , then

|m(B)[f(x)− g(x)]| ≤ p(f(x)− g(x)) ·mp(V ) ≤ ǫ

and so Qm,f−g(x) ≤ ǫ.
Case II : x ∈ Y . There exists a k such that x ∈ Wk and so g(x) = f(xk). If a clopen set

B is contained in Wk, then

|m(B)[f(x)− g(x)]| = |m(B)[f(x)− f(xk]| ≤ mp(Vk) · p(f(x)− f(xk)) ≤ ǫ,

and so again Qm,f−g(x) ≤ ǫ. This proves that ‖f − g‖Qm ≤ ǫ and so f is Q-integrable. Now

φm(f) = (Q)

∫
f dm = (Q)

∫
f dm(k) =

∫
f dm(k).

Thus φm is β̄o-continuous on Cb,k(X,E).
Finally assume that E is polar and let φ be a β̄o-continuous linear functional on Cb,k(X,E).

Since β̄o induces the topology βo on Cb(X,E), there exists an m ∈Mt(X,E
′) such that

φ(f) =

∫
f dm = (Q)

∫
f dm

for each f ∈ Cb(X,E). Now φ and φm are both β̄o-continuous on Cb,k(X,E) and they coincide
on the β̄o-dense subspace Cb(X,E) of Cb,k(X,E). Thus φ = φm and the proof is complete.

3 The Dual Space of (Cb(X,E), β1)

For u a linear functional on Cb(X,E), p ∈ cs(E) and h ∈ KX , we define

|u|p(h) = sup{|u(g)| : g ∈ Cb(X,E), p ◦ g ≤ |h|}.

Theorem 11. For a linear functional u on Cb(X,E), the following are equivalent :

(1) u is β1-continuous.

(2) For each sequence (Vn) of clopen sets, with Vn ↓ ∅, there exists p ∈ cs(E) such that
‖u‖p <∞ and limn→∞ |u|p(χVn) = 0.

(3) For each sequence (hn) in Cb(X), with hn ↓ 0, there exists p ∈ cs(E) such that ‖u‖p <∞
and limn→∞ |u|p(hn) → 0.

Proof: (1) ⇒ (2). Let Vn ↓ ∅ andH =
⋂
Vn

βoX
. ThenH ∈ Ω1 and so u is βH,p-continuous

for some p ∈ cs(E). Let ǫ > 0 and h ∈ CH be such that

W1 = {f ∈ Cb(X,E) : ‖hf‖p ≤ 1} ⊂W = {f : |u(f)| ≤ ǫ}.
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It is easy to see that ‖u‖p < ∞. Let M = {x ∈ X : |h(x)| ≥ 1}. There exists no such that
M ⊂ V c

no
. Let now n ≥ no and f ∈ Cb(X,E) with p ◦ f ≤ |χVn |. Let f1 = χMf, f2 = f − f1.

If x ∈ M , then x ∈ V c
n and so p(f(x)) = 0. This implies that f1 ∈ W1 ⊂ W . Also, if x /∈ M ,

then |h(x)| ≤ 1 and so |h(x)|p(f(x)) ≤ 1, which proves that f2 ∈ W1. Thus f = f1 + f2 ∈ W ,
which shows that |u|p(χVn) ≤ ǫ.

(2) ⇒ (3). Let hn ↓ 0. Without loss of generality, we may assume that ‖h1‖ ≤ 1. Let
λ ∈ K, 0 < |λ| < 1 and set

Vn = {x : |hn(x) ≥ |λ|}.

Then Vn ↓ ∅. By (2), there exists p ∈ cs(E) with ‖u‖p <∞ and |u|p(χVn) → 0.We may choose
p so that ‖u‖p ≤ 1. Choose no such that |u|p(χVn) < |λ| if n ≥ no. Let now n ≥ no. We will
show that |u|p(hn) ≤ |λ|. In fact, let f ∈ Cb(X,E) with p ◦ f ≤ |hn|, g1 = χVnf , g2 = f − g1.
If x ∈ Vn, then p(g1(x)) ≤ |hn(x)| and so p ◦ g1 ≤ |χVn |, which implies that |u(g1)| ≤ |λ|.
If x /∈ Vn, then p(g2(x)) = p(f(x)) ≤ |hn(x)| < |λ|. Hence |u(g2)| ≤ ‖u‖p · ‖g2‖p ≤ |λ|, and
therefore |u(f)| ≤ |λ|. This proves that |u|p(hn) ≤ |λ|.

(3) ⇒ (2). It is trivial.

(2) ⇒ (1). Let

W = {f ∈ Cb(X,E) : |u(f)| ≤ 1}

and letH ∈ Ω1. There exists a decreasing sequence (Vn) of clopen subsets ofX with
⋂
Vn

βoX
=

H. Let p ∈ cs(E) be such that ‖u‖p ≤ 1 and |u|p(χVn) → 0. Let λ be a nonzero element of K
and choose n so that |u|(χVn) < |λ|−1. Now

W1 = {f ∈ Cb(X,E) : ‖f‖p ≤ |λ|, ‖f‖V c
n ,p ≤ 1} ⊂W.

Indeed, let f ∈ W1 and set f1 = χVnf, f2 = f − f1. Since |λ−1f1| ≤ |χVn |, we have that
|u(f1)| ≤ 1. Also |u(f2)| ≤ ‖f2‖p ≤ 1, and so |u(f)| ≤ 1, which proves that W1 ⊂ W . By
[13], Theorem 2.2, it follows that W is a βH,p-neighborhood of zero. This, being true for all
H ∈ Ω1, implies that W is a β1-neighborhood of zero, i.e. u is β1-continuous, which completes
the proof.

Theorem 12. For a set H of linear functionals on Cb(X,E), the following are equivalent
:

(1) H is β1-equicontinuous.

(2) If (Vn) is a sequence of clopen subsets of X which decreases to the empty set, then there
exists p ∈ cs(E) such that supu∈H ‖u‖p <∞ and |u|p(χVn) → 0 uniformly for u ∈ H.

(3) If (hn) is a sequence in Cb(X) with hn ↓ 0, then there exists p ∈ cs(E) such that
supu∈H ‖u‖p <∞ and |u|p(hn) → 0 uniformly for u ∈ H.

Proof: (1) ⇒ (2). Let Vn ↓ ∅. Then Z =
⋂
Vn

βoX ∈ Ω1. Let λ ∈ K, λ 6= 0. Since H
is β1-equicontinuous, the set λHo is a β1-neighborhood of zero. Thus, there exists p ∈ cs(E)
such that λHo is a βZ,p-neighborhood of zero. Let h ∈ CZ be such that

W1 = {f : ‖hf‖p ≤ 1} ⊂ λHo.

It follows now easily that supu∈H ‖u‖p <∞. Also, as in the proof of the implication (1) ⇒ (2)
in the preceding Theorem, we prove that |u|p(χVn) → 0 uniformly for u ∈ H. For the proofs
of the implications (2) ⇒ (3) ⇒ (2) ⇒ (1) we use an argument analogous to the one used in
the proof of the preceding Theorem.

Theorem 13. In the space Cb(X), β1 is the finest of all locally solid topologies γ with the

following property: If (fn) ⊂ Cb(X) with fn ↓ 0, then fn
γ
→ 0.
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Proof: By [12], Theorems 3.7 and 3.8, β1 is locally solid and fn
β1
→ 0 when fn ↓ 0. Consider

now the family U of all solid absolutely convex subsetsW of Cb(X) such that fn ∈W eventually
when fn ↓ 0. Clearly U is a base at zero for the finest locally solid topology γo on Cb(X) having
the property mentioned in the Theorem.

Claim I : γo is coarser than τu. Indeed, let W ∈ U and let λ ∈ K, 0 < |λ| < 1. For each
n, let gn be the constant function λn. Since gn ↓ 0, there exists an n with gn ∈ W . If now
f ∈ Cb(X) with ‖f‖ ≤ |λ|n, then f ∈W , which implies that W is a τu-neighborhood of zero.

Claim II : β1 is finer than γo and hence β1 = γo. Indeed, let W ∈ U , Z ∈ Ω1 and r > 0.
There exists ǫ > 0 such that

W1 = {f ∈ Cb(X) : ‖g‖ ≤ ǫ} ⊂W.

Choose µ ∈ K with |µ| ≥ r. There exists a decreasing sequence (Vn) of clopen subsets of X

with Z =
⋂
Vn

βoX
. Since µχVn ↓ 0, there exists n such that µχVn ∈ W . Let now f ∈ Cb(X)

with ‖f‖ ≤ r, ‖f‖V c
n

≤ ǫ, and let g = f · χVn , h = f − g. Then |g| ≤ |µχVn |and so g ∈ W
since W is solid. Also, ‖h‖ ≤ ǫ and so h ∈W , which implies that f ∈W . This proves that W
is a βZ-neighborhood of zero for all Z ∈ Ω1 and hence W is a β1-neighborhood of zero. This
clearly completes the proof.

The proofs of the following two Theorems are analogous to the ones of Theorems 12 and 13.

Theorem 14. For a subset H of linear functionals on Cb(X,E), the following are equiv-
alent :

(1) H is β-equicontinuous.

(2) For each net (Vδ), of clopen subsets of X with Vδ ↓ 0, there exists p ∈ cs(E) such that
supu∈H ‖u‖)p <∞ and |u|p(χVδ

) → 0 uniformly for u ∈ H.

(3) For each net (hδ) in Cb(X) with hδ ↓ 0, there exists p ∈ cs(E) such that supu∈H ‖u‖p <
∞ and |u|p(hδ) → 0 uniformly for u ∈ H.

Theorem 15. In the space Cb(X), β is the finest of all locally solid topologies γ with the

following property: If (fδ) ⊂ Cb(X) with fδ ↓ 0, then fδ
γ
→ 0.

4 The Space Mb(X,E ′)

A subset A of X is called bounding if every f ∈ C(X) is bounded on A. Note that several
authors use the term bounded set instead of bounding. But in this paper we will use the term
bounding to distinguish from the notion of a bounded set in a topological vector space. A set

A ⊂ X is bounding iff A
υoX

is compact. In this case (as it is shown in [1], Theorem 4.6) we

have that A
υoX

= A
βoX

. Clearly a continuous image of a bounding set is bounding.

Theorem 16 ([17). , Theorem 3.4] If G is a locally convex space (not necessarily Haus-
dorff), then every bounding subset A of G is totally bounded.

We denote by Mb(X,E
′) the space of all m ∈ M(X,E′) which have a bounding support,

i.e. there exists a bounding subset B of X such that m(V ) = 0 for all clopen V disjoint from
B. In case E = K, we write simply Mb(X).

Theorem 17. If m ∈ Mb(X,E
′), then every f ∈ C(X,E) is m-integrable. Moreover, if

B is a bounding support of m and p ∈ cs(E) with mp(X) <∞, then

∣∣∣∣

∫
f dm

∣∣∣∣ ≤ ‖f‖B,p · ‖m‖p.
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Proof: Let f ∈ Cb(X,E) and let B be a bounding subset of X which is a support set
for m. Since the closure of a bounding set is bounding, we may assume that B is closed. Let
p ∈ cs(E) with mp(X) < ∞. The set f(B) is bounding in E and hence totaly bounded by
Theorem 4.1. Thus, given ǫ > 0, there are x1, . . . , xn in B such that the sets

Vk = {x : p(f(x)− f(xk)) ≤ ǫ/‖m‖p}, k = 1, . . . , n,

are pairwise disjoint and cover B. Let Vn+1 = X\
⋃n

k=1 Vk and choose xn+1 ∈ Vn+1 if Vn+1 6= ∅.
Let {W1, . . . ,WN} be a clopen partition of X which is a refinement of {V1, . . . , Vn+1} and
yj ∈Wj . We may assume that

⋃n
i=1 Vi =

⋃k
j=1Wj . If Wj ⊂ Vi for some i ≤ n, then

|m(Wj)[f(yj)− f(xi)]| ≤ ‖m‖p · p(f(yj)− f(xi)) ≤ ǫ,

while, for Wj ⊂ Vn+1, we have m(Wj) = 0. Thus

∣∣∣∣∣

N∑

j=1

m(Wj)f(yj)−
n∑

i=1

m(Vi)f(xi)

∣∣∣∣∣ ≤ ǫ.

This proves that f is m-integrable and
∣∣∣∣∣

∫
f dm−

n∑

i=1

m(Vi)f(xi)

∣∣∣∣∣ ≤ ǫ.

Since |m(Vi)f(xi)| ≤ ‖f‖B,p · ‖m‖p, it follows that
∣∣∣∣

∫
f dm

∣∣∣∣ ≤ max{‖f‖B,p · ‖m‖p, ǫ},

for each ǫ > 0, and the proof is complete.
We denote by τb the topology on C(X,E) of uniform convergence on the bounding subsets

of X.

Lemma 9. The space S(X,E) is τb-dense in C(X,E).

Proof: Let f ∈ C(X,E), p ∈ cs(E), ǫ > 0 and B a bounding subset of X. There are
x1, . . . , xn in B such that the sets

Vk = {x : p(f(x)− f(xk)) ≤ ǫ}, k = 1, . . . , n,

are pairwise disjoint and cover B. If g =
∑n

k=1 χVk
f(xk), then ‖f − g‖B,p ≤ ǫ and the Lemma

follows.

Theorem 18. For m ∈Mb(X,E
′), let

ψm : C(X,E) → K, ψm(f) =

∫
f dm.

Then ψm is τb-continuous and Mb(X,E
′) is algebraically isomorphic to the dual space of

(C(X,E), τb) via the isomorphism m 7→ ψm.

Proof: In view of Theorem 4.2, ψm is an element of G = (C(X,E), τb)
′. On the other

hand, let ψ ∈ G. Since τb|Crc(X,E) is coarser than the topology τu of uniform convergence,
there exists m ∈ M(X,E′) such that ψ(f) =

∫
f dm for all f ∈ Crc(X,E). Let B a bounding

subset of X and p ∈ cs(E) be such that

{f ∈ C(X,E) : ‖f‖B,p ≤ 1} ⊂ {f : |ψ(f)| ≤ 1}.
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It follows that B is a support set for m and so m ∈ Mb(X,E
′). Now ψ and ψm are both

τb-continuous and they coincide on the τb-dense subspace S(X,E) of C(X,E). Thus ψ = ψm

and the result follows.
Recall that, for p ∈ cs(E), Mu,p(X,E

′) denotes the space of all m ∈Mp(X,E
′) such that

mp(Aδ) → 0 for each decreasing net (Aδ) of clopen subsets of X for which
⋂
Aδ

βoX ∈ Ωu (see
[13], p. 123).

Theorem 19. Let m ∈ Mb(X,E
′). If p ∈ cs(E) is such that ‖m‖p < ∞, then m ∈

Mu,p(X,E
′).

Proof: Let B be a bounding support for m and let (Vi)i∈I be a clopen partition of X.

The set B
θoX

is compact and

B
θoX ⊂ θoX ⊂

⋃

i

Vi
βoX

.

Hence, there exists a finite subset J of I such that

B
θoX ⊂

⋃

i∈J

Vi
βoX

and so B ⊂
⋃

i∈J Vi, which implies that mp(
⋃

i/∈J Vi) = 0. Thus m ∈ Mu,p(X,E
′) by [13],

Theorem 5.7.

Theorem 20. The topology induced by τb on Cb(X,E) is coarser than β′
u.

Proof: Let B be a bounding subset of X, p ∈ cs(E) and H ∈ Ωu. There exists a clopen
partition (Vi)i∈I) of X such that

H ⊂ βoX \
⋃

i∈I

Vi
βoX

.

As in the proof of the preceding Theorem, there exists a finite subset J of I such that B ⊂⋃
i∈J Vi = V . If h = χV , then hβo = χ

V
βoX vanishes on H and

{f ∈ Cb(X,E) : ‖hf‖p ≤ ǫ} ⊂ {f : ‖f‖B,p ≤ ǫ}

which clearly completes the proof.

5 Ms(X) as a Completion

The spaceMs(X) was introduced in [12]. It is the space of the so called separable members
of Mσ(X). For m ∈ M(X), d a continuous ultrapseudometric on X and A a d-clopen subset
of X, we define

|m|d(A) = sup{|m(B)| : B ⊂ A, B d− clopen}.

For F ⊂ X, we define
|m|⋆d(F ) = inf sup

n
|m|d(An),

where the infimum is taken over the family of all sequences (An) of d-clopen sets which cover
F . An element m of Mσ(X) is said to be separable if, for each continuous ultrapseudometric
d on X, there exists a d-closed, d-separable subset G of X such that |m|⋆d(X \G) = 0. As it is
shown in [12], ifm ∈Ms(X), then every f ∈ Cb(X) ism-integrable. Let now G = (Cb(X), τu)

′,
where τu is the topology of uniform convergence. For each x ∈ X, let δx be the corresponding
Dirac measure. Thus δx ∈ G, δx(f) = f(x). Let L(X) be the subspace of G spanned by the
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set {δx : x ∈ X}. Let Eu be the collection of all equicontinuous τu-bounded subsets of Cb(X).
Consider the dual pair < Cb(X), L(X) >.

For d a bounded continuous ultrapseudometric on X, let

πd : X → Xd, x 7→ x̃d,

be the quotient map and let

Td : (Cb(Xd), β) → (Cb(X), βe)

be the induced linear map. The dual of the space (Cb(X), βe) is the space Ms(X) (see [12],
Theorem 6.4 ) and

T ⋆
d (Ms(X)) ⊂Mτ (Xd) =Ms(Xd).

Theorem 21. For an m ∈Mσ(X), the following are equivalent :

(1) m ∈Ms(X).

(2) For each continuous ultrapseudometric d on X, there exists a d-closed, d-separable subset
G of X such that m(V ) = 0 for each d-clopen set V disjoint from G.

Proof: (1) ⇒ (2). Let d be a continuous ultrapseudometric on X and let µ = T ⋆
dm ∈

Mτ (Xd). By [12], Theorem 6.2, there exists a closed separable subset Z of Xd such that
|µ|⋆(Xd \Z) = 0. If z ∈ Xd \Z, then Nµ(z) = 0. In fact, given ǫ > 0, there is a sequence (An)
of clopen subsets of Xd covering Xd \Z and supn |µ|(An) < ǫ and so Nµ(z) < ǫ. If now B is a
clopen subset of Xd disjoint from Z, then |µ|(B) = supz∈B Nµ(z) = 0. If G = π−1

d (Z), then G
is d-closed, d-separable and m(V ) = 0 for each d-clopen set V disjoint from G.

(2) ⇒ (1). Let (Vi)i∈I be a clopen partition of X and let fi = χVi . Define

d(x, y) = sup
i

|fi(x)− fi(y)|.

Then, d is a continuous ultrapseudometric on X. Each Vi is d-clopen and hence
⋃

i∈J Vi is
d-clopen for each subset J of I. Since G is d-separable (and hence d-Lindelöf ), there exists a
countable subset J = {i1, i2, . . .} such that G ⊂

⋃
k Vik . Let J1 = I \ J . The set V =

⋃
i∈J1

Vi

is d-clopen and m(V ) = 0. Also, m(Vi) = 0 for i ∈ J1. Since m is σ-additive, we have that

m(X) = m(V ) +
∞∑

k=1

m(Vik ) =
∞∑

k=1

m(Vik ) =
∑

i∈I

m(Vi).

This (In view of [12], Theorem 6.9) proves that m ∈Ms(X) and the result follows.

Lemma 10. If B ∈ Eu, then the bipolar Boo of B, with respect to < Cb(X), L(X) >, is
also in Eu.

Proof: Let σ = σ(Cb(X), L(X)). By [21], Proposition 4.10, we have that Boo =
(
co(B)

σ
)e

,

where co(B) is the absolutely convex hull of B , co(B)
σ
the σ-closure of co(B) and, for A an

absolutely convex subset of a vector space E over K, Ae is the edged hull of A (see [25] ).
Thus, if |λ| > 1, we have

Boo ⊂ λco(B)
σ
.

So it suffices to show that the set B1 = co(B)
σ
is in Eu. But

sup
f∈B1

‖f‖ = sup
f∈B

‖f‖ <∞.
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Given x ∈ X, and ǫ > 0, there exists a neighborhood V of x such that |f(x) − f(y)| ≤ ǫ for
every f ∈ B and every y ∈ V . It is easy to see , for f ∈ B1 and y ∈ V , we have |f(x)−f(y)| ≤ ǫ.
This proves that Boo ∈ Eu and the result follows.

Consider now on L(X) the topology eu of uniform convergence on the members of Eu.
Thus eu is generated by the family of seminorms pB , B ∈ Eu, where pB(u) = supf∈B |u(f)|.
Let

∆ : X → L(X), x 7→ δx.

Clearly ∆ is one-to-one.

Theorem 22. The map

∆ : X → (∆(X), eu|∆(X)
)

is a homeomorphism.

Proof: Let (xγ) be a net in X converging to some x ∈ X and let B ∈ Eu and ǫ > 0. There
exists a neighborhood V of x such that

pB(δx − δy) = sup
f∈B

|f(x)− f(y)| < ǫ

if y ∈ V . Let γo be such that xγ ∈ V if γ ≥ γo. Now, for γ ≥ γo, we have that pB(δx−δxγ ) < ǫ,
which proves that ∆ is continuous. Conversely, suppose that for a net (xγ) in X, we have that

δxγ

eu−→ δx and let V be a clopen neighborhood of x. Let f = χV , B = {f} ∈ Eu. There exists
a γo such that pB(x − xγ) = |f(x) − f(y)| < 1 when γ ≥ γo. But then xγ ∈ V when γ ≥ γo,
which proves that xγ → x, and the result follows.

In view of the preceding Theorem, we may consider X as a topological subspace of
(L(X), eu).

Theorem 23. eu is the finest of all polar locally convex topologies γ on L(X) which induce
on X its topology and for which X is a bounded subset of (L(X), γ).

Proof: The topology eu is clearly polar. We show first that X is eu-bounded. Indeed, let
B ∈ Eu and choose λ ∈ K with |λ| > supf∈B ‖f‖. Since |δx(f)| ≤ |λ|, for all f ∈ B, we have
that X ⊂ λBo, and so X is eu-bounded. Suppose now that γ is a polar topology on L(X) which
induces on X its topology and for which X is γ-bounded. Let W be a polar γ-neighborhood
of zero in L(X) and take B = {φ|X : φ ∈W o}, where W o is the polar of W in the dual space
of (L(X), γ). Every f ∈ B is continuous on X. Since X is γ-bounded, there exists λ ∈ K,
such that X ⊂ λW and so supf∈B ‖f‖ ≤ |λ|. Also, B is an equicontinuous set. In fact, let
x ∈ X ⊂ λW . Let α be a non-zero element of K and take V = (x + αW ) ∩ X. Then V is a
neighborhood of x in X. If y ∈ V , then for φ ∈ W o and f = φ|X , we have |fy)− f(x)| ≤ |α|.
This proves that B ∈ Eu. Moreover Bo ⊂ W oo = W , which proves that W is a neighborhood
of zero in L(X) for the topology eu. This completes the proof.

Theorem 24. The dual space of F = (L(X), eu) coincides with Cb(X).

Proof: Since eu is finer than the weak topology σ(L(X), Cb(X)), it follows that Cb(X) is
contained in F ′ (considering every element of Cb(X) as a linear functional on L(X) ). On the
other hand, let φ ∈ F ′ and define f : X → K, f(x) = φ(δx). Then f is continuous. Since X
is eu-bounded, there exists λ ∈ K such that X ⊂ λD, where D = {u ∈ L(X) : |φ(u)| ≤ 1}. It
follows that ‖f‖ ≤ |λ| and so f ∈ Cb(X). It is now clear that φ(u) =< f, u >, for all u ∈ L(X),
and the result follows.

Next we will look at the completion F̂ of the space F = (L(X), eu). Since F is a Hausdorff
polar space, F̂ is the space of all linear functionals on F ′ = Cb(X) which are σ(Cb(X), L(X))-
continuous on each eu-equicontinuous subset of Cb(X) (by [16]). We will prove that F̂ coincides
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with the space Ms(X) equipped with the topology of uniform convergence on the members of
Eu.

Lemma 11. A subset B of Cb(X) is eu-equicontinuous iff B ∈ Eu.

Proof: If B ∈ Eu, then B
o is an eu-neighborhood of zero and so Boo (and hence also its

subset B) is eu-equicontinuous . Conversely, let B be an eu-equicontinuous subset of Cb(X).
There exists B1 ∈ Eu such that B ⊂ Boo

1 . Since Boo
1 ∈ Eu, the same holds for B and the

Lemma follows.

Theorem 25. The completion of the space F = (L(X), eu) is the space Ms(X) equipped
with the topology of uniform convergence on the members of Eu.

Proof: Let u ∈ F̂ . Then u is a linear functional on F ′ = Cb(X).

Claim I. u is τu-continuous. In fact, Let (fn) be a sequence in Cb(X) with fn
τu−→ 0.

The set B = {fn : n ∈ N} belongs to Eu and fn → 0 in the weak topology σ(Cb(X), L(X)).
Since u ∈ F̂ , we have that u(fn) → 0, which proves that u is τu-continuous.

Claim II. u is βu-continuous. To prove this, it suffices to show that, on every member
of Eu, u is continuous with respect to the topology of simple convergence (by [12], Theorem
6.4). But the last topology coincides with σ(Cb(X), L(X)). Hence the claim follows.

By [12], Theorem 6.4, there exists an m ∈ Ms(X) such that u(f) =
∫
f dm, for all f ∈

Cb(X). Conversely, if m ∈ Ms(X), then the linear functional um on Cb(X), um(f) =
∫
f dm,

is in F̂ by Lemma 11 and by [12], Theorem 6.4. This clearly completes the proof.

Theorem 26. Let E be a Hausdorff polar locally convex space and let f : X → E be
continuous such that f(X) is bounded. Then there exists a unique continuous linear map T :
(L(X), eu) → E such that T = f on X. If E is in addition complete, then there exists a
continuous linear map T : (Ms(X), eu) → E such that T = f on X.

Proof: Let T : (L(X), eu) → E be the unique continuous linear extension of f . We need
to show that T is eu-continuous. Let τo be the polar topology of E. Then τ1 = T−1(τo) is polar
and so the supremum τ2 = eu ∨ τ1 is polar. It is easy to see that X is τ2-bounded. Also τ2|X
coincides with the topology of X. In view of Theorem 23, τ2 coincide with eu which clearly
implies that T is eu-continuous. In case E is complete, T has a continuous linear extension
T̂ : (Ms(X), eu) → E since (L(X), eu) is a dense topological subspace of (Ms(X), eu). Hence
the result follows.

A linear functional φ on Cb(X) is said to be bounded if it is τu-continuous. Equivalently,
φ is bounded if

‖φ‖ = sup{|φ(f)|/‖f‖ : f ∈ Cb(X), f 6= 0} <∞.

Theorem 27. For a linear functional φ on Cb(X) the following are equivalent :

(1) There exists m ∈Ms(X) such that φ(f) =
∫
f dm for all f ∈ Cb(X).

(2) φ is bounded and, for each equicontinuous net (fδ) in Cb(X), with fδ ↓ 0, we have that
φ(fδ) → 0.

Proof: (1) ⇒ (2) . Let m ∈ Ms(X) be such that φ = um, um(f) =
∫
f dm. By

Theorem 25, φ belongs to the completion of F = (L(X), eu). Then φ is bounded. Let (fδ)δ∈∆
be an equicontinuous net with fδ ↓ 0. If δo ∈ ∆, then taking the subnet (fδ)δ≥δo we see that
{fδ : δ ≥ δo} ∈ Eu. Since fδ(x) → 0 for all x, we have that φ(fδ) → 0.

(2) ⇒ (1). Since φ is bounded, there exists an m ∈ M(X) such that φ(f) =
∫
f dm for

all f ∈ Crc(X).
Claim I. m ∈ Ms(X). Indeed, let (Vi)i∈I be a clopen partition of X. For each fi-

nite subset J of I, let AJ =
⋃

i∈J Vi, BJ = Ac
J . If fJ = χBJ

, then fJ ↓ 0. Also (fJ)
is equicontinuous and fJ → 0 pointwise. By our hypothesis, m(BJ) = φ(fJ ) → 0. Thus
m(X)−

∑
i∈J m(Vi) = m(BJ) → 0, and so m ∈Ms(X) by [12], Theorem 6.9.
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Claim II. φ = um. Indeed, let f ∈ Cb(X) and ǫ > 0. consider the equivalence relation ∼
on X, x ∼ y iff |f(x)− f(y)| ≤ ǫ. Let (Vi)i∈I be the clopen partition of X corresponding to ∼.
Let xi ∈ Vi, αi = f(xi). For each finite subset J of I, let gJ =

∑
i∈J αiχVi , hJ =

∑
i/∈J αiχVi .

Then (hJ) is equicontinuous and hJ ↓ 0. By our hypothesis, φ(hj) → 0. Also, um(hJ) → 0.
Hence there exists J such that |um(hJ)| < ǫ, |φ(hj)| < ǫ. Let g = f − gJ − hJ . Then ‖g‖ ≤ ǫ.
Hence

|φ(g)| ≤ ‖φ‖ · ‖g‖ ≤ ǫ‖φ‖, |um(g)| ≤ ǫ‖m‖.

Since φ(gJ ) = um(gJ), it follows that

|φ(f)− um(f)| ≤ max{ǫ‖φ‖, ǫ‖m‖}.

As ǫ > 0 was arbitrary, we conclude that φ(f) = um(f) and the proof is complete.

Lemma 12. For d a bounded continuous ultrapseudometric on X the map

T ⋆
d : (Ms(X), eu) → (Mτ (Xd), eu)

is continuous.

Proof: It follows from the fact that, if A ∈ Eu(Xd), then B = Td(A) ∈ Eu(X) and
T ⋆
d (B

o) ⊂ Ao.

Theorem 28. (Ms(X), eu) is the projective limit of the spaces (Mτ (Xd), eu), with respect
to the maps T ⋆

d , where d ranges over the family of all bounded continuous ultrapseudometrics
on X.

Proof: We need to show that the topology eu is the weakest of all locally convex topologies
τ on Ms(X) for which each

T ⋆
d : (Ms(X), τ) → (Mτ (Xd), eu)

is continuous. Let τ be such a topology and let B ∈ Eu(X). Define d(x, y) = supf∈B |f(x) −
f(y)|. Then d is a bounded continuous ultrapseudometric on X. For each f ∈ B, the function

f̃ : Xd → K, f̃(x̃d) = f(x),

is well defined and continuous. Clearly the set A = {f̃ : f ∈ B} is uniformly bounded. Let
x̃d ∈ Xd and ǫ > 0. The set

V = {ỹd : d̃(x̃d, ỹd) ≤ ǫ}

is a neighborhood of x̃d and, for ỹd ∈ V and f ∈ B, we have

|f̃(ỹd)− f̃(x̃d)| ≤ d̃(x̃d, ỹd) ≤ ǫ.

Thus A ∈ Eu(Xd). Since T
⋆
d is τ -continuous, the set M = (T ⋆

d )
−1(Ao) is a τ -neighborhood of

zero. But M ⊂ Bo. Thus Bo is a τ -neighborhood of zero, which proves that τ is finer than eu.
Hence the result follows.

6 Msυo(X) as a Completion

For X ⊂ Y ⊂ βoX, and m ∈ M(X), we denote by mY the element of M(Y ) defined
by mY (V ) = m(V ∩ X). We denote by mυo and mβo the mY for Y = υoX and Y = βoX,
respectively.

Theorem 29. ([17], Theorem 2.4 ) Let m ∈Mp(X,E
′) and µ = mβo . The following are

equivalent:
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(1) supp(µ) ⊂ υoX.

(2) If Vn ↓ ∅, then there exists an no such that m(Vn) = 0 for every n ≥ no.

(3) If Vn ↓ ∅, then there exists an n such that m(V ) = 0 for every clopen set V contained
in Vn.

(4) For every Z ∈ Ω1 there exists a clopen subset A on βoX disjoint from Z and such that
supp(µ) ⊂ A.

(5) If Vn ↓ ∅, then there exists an n such that mp(Vn) = 0.

For each x ∈ X, δx may be considered as an element of the algebraic dual C(X)⋆ of
the space C(X). Let L(X) be the subspace of C(X)⋆ spanned by the set {δx : x ∈ X}. Let
E = E(X) be the family of all pointwise bounded equicontinuous subsets of C(X).

Lemma 13. The bidual Boo, of a set B ∈ E, with respect to the pair < C(X), L(X) >,
is also in E.

Proof: The proof is analogous to the one of Lemma 10.
Consider on L(X) the locally convex topology e of uniform convergence on the members

of E . As in Theorem 30, we have the following

Theorem 30. If ∆ : X → L(X), x 7→ δx, then the map

∆ : X → (∆(X), e|∆(X)
)

is a homeomorphism.

In view of the preceding Theorem, we may consider X as a topological subspace of
(L(X), e).

Theorem 31. e is the finest of all polar topologies on L(X) which induce on X its topol-
ogy.

Proof: The proof is analogous to the one of Theorem 11.
The proof of the following Theorem is analogous to the one of Theorem 24.

Theorem 32. The dual space of G = (L(X), e) coincides with C(X).

Lemma 14. A subset B, of the dual space C(X) of G = (L(X), e), is e-equicontinuous
iff B ∈ E.

Proof: The proof is analogous to that of Lemma 11.
Next we will look at the completion of the space G = (L(X), e). Since G is Hausdorff

and polar, its completion Ĝ coincides with the space of all linear functionals on G′ = C(X)
which are σ(C(X), L(X))-continuous ( equivalently continuous with respect to the topology
of simple convergence on e-equicontinuous subsets of C(X), i.e. on the members of E . The
topology of Ĝ is that of uniform convergence on the members of E . Let Msυo(X) be the space
of all m ∈ Ms(X) for which supp(mβo) ⊂ υoX. For m ∈ Msυo(X), we will show that every
f ∈ C(X) is m-integrable . Thus m defines a linear functional um on C(X), um(f) =

∫
f dm.

We will prove that Msυo(X) is algebraically isomorphic to Ĝ via the isomorphism m 7→ um.

Theorem 33. If m ∈Mb(X), then um ∈ Ĝ.

Proof: Let D be a bounding subset of X which is a support set for m. The set Z = D̄βoX

is contained in θoX. Let B ∈ E and let (fδ) be a net in B which converges pointwise to the zero
function. Since the set Bθo = {fθo : f ∈ B} is in E(θoX) (by [17] Theorem 3.10), given z ∈ Z
and ǫ > 0, there exists a clopen neighborhood Wz of z in θoX such that |fθo(z) − fθo(y)| ≤
ǫ/‖m‖ for all f ∈ B and all y ∈ Wz. In view of the compactness of Z, there are z1, . . . , zn in
Z such that Z ⊂

⋃n
k=1Wzk . Let Vk = X ∩Wzk . If a, b ∈ Vk, then |f(a)− f(b)| ≤ ǫ/‖m‖ for all
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f ∈ B. Let A1 = V1, Ak+1 = Vk+1\
⋃k

i=1 Vk, for k = 1, . . . , n−1. Keeping those Ai which are
not empty, we may assume that Ai 6= ∅ for all i. Choose xi ∈ Ai. Clearly |m|(X\

⋃n
k=1Ak) = 0.

Since fδ → 0 pointwise, there exists δo such that

max{|fδ(xk)| : 1 ≤ k ≤ n} ≤ ǫ/‖m‖

for all δ ≥ δo. Let now δ ≥ δo. Then
∣∣∣∣

∫

Ak

fδ dm−m(Ak)fδ(xk)

∣∣∣∣ ≤ ǫ and |m(Ak)fδ(xk)| ≤ ǫ,

which implies that |
∫
Ak
fδ dm| ≤ ǫ. Thus, for δ ≥ δo, we have

∣∣∣∣

∫
fδ dm

∣∣∣∣ =

∣∣∣∣∣

n∑

k=1

∫

Ak

fδ dm

∣∣∣∣∣ ≤ ǫ,

which completes the proof.

Theorem 34. Let m ∈Msυo(X), g ∈ C(X) and d a continuous ultrapseudometric on X
be such that g is d-uniformly continuous. Then :

(1) g is m-integrable.

(2) If µ = T ⋆
dm ∈Mτ (Xd), then µ has compact support.

(3) The function
g̃ : Xd → K, g̃(x̃d) = g(x),

is well defined and continuous. Moreover
∫
g̃ dµ =

∫
g dm.

(4) um ∈ Ĝ.

Proof: (1). Let Vn = {x ∈ X : |g(x)| ≤ n}, Wn = V c
n . Since Wn ↓ 0 and supp(mβo) ⊂

υoX, there exists n such that |m|(Wn) = 0 (by Theorem 29). Let h = g · χVn . Then f = h
m.a.e. (see [14, Definition 2.4]), and so f is m-integrable since h is m-integrable. Moreover∫
g dm =

∫
h dm.

(2) Since µ is τ -additive, we have

supp(µβo) = supp(µ)
βoXd

.

Now it suffices to show that supp(µ) is bounding since Xd is a µo-space. So we need to prove
that supp(µβo) ⊂ υoXd. To show this it is enough to prove that

supp(µβo) ⊂ πβo(supp(mβo)) = D,

where π : X → Xd is the quotient map. So, let W be a clopen subset of βoX which is disjoint
from D. Then (πβo)−1(W ) is disjoint from supp(mβo) and

µβo(W ) = µ(W ∩Xd) =< T ⋆
dm,χW∩Xd

>

= m(π−1(W ∩Xd)) = mβo

(
π−1(W ∩Xd)

βoX
)
.

But
π−1(W ∩Xd) ⊂ (πβo)−1(W ) and so π−1(W ∩Xd)

βoX
⊂ (πβo)−1(W )

which implies that µβo(W ) = 0. It follows that the support of µβo is contained in D and this
proves (2).



82 A. K. Katsaras

(3). It is easy to see that g̃ is well defined and continuous. Let

An = {x ∈ X : |g(x)| ≤ n}.

There exists an n such that |m|(Ac
n) = 0. If h = g · χAn , then π(An) is d-clopen and h̃ =

g̃ · χπ(An). If Y is a clopen subset of Xd disjoint from π(An), then µ(Y ) = m(π−1(Y )) = 0
since π−1(Y ) is disjoint from An. Thus

∫
g dm =

∫
h dm =

∫
h̃ dµ =

∫
g̃ dµ.

(4). Let B ∈ E and let (fδ) be a net in B which converges pointwise to the zero function.
Define d(x, y) = supf∈B |f(x) − f(y)|. Now B̃ = {f̃ : f ∈ B} ∈ E(Xd) and f̃δ → 0 pointwise.

Since µ has a bounding support, we have that
∫
fδ dm =

∫
f̃δ dµ → 0 by the preceding

Theorem. This proves that um ∈ G̃ and the result follows.

Theorem 35. If φ ∈ Ĝ, then there exists an m ∈Msυo(X) such that φ = um.

Proof: Let B ∈ Eu and let (fδ) be a net in B which converges pointwise to the zero
function. Then φ(fδ) → 0, which proves that φ|Cb(X) belongs to the completion of the space
F = (L(X), eu). Thus, by Theorem 5.7, there exists m ∈ Ms(X) such that φ(f) =

∫
f dm for

all f ∈ Cb(X). We will show first that supp(mβo) ⊂ υoX. In fact, assume that there exists
a z ∈ supp(mβo) \ υoX. Let (Vn) be a sequence of clopen subsets of X, with Vn ↓ ∅ and

z ∈ Vn
βoX

for all n. Since z ∈ supp(mβo), there exists a clopen subset An of Vn
βoX

with
mβo(An) = αn 6= 0. Let Bn = An ∩X and fn = α−1

n χBn . Given x ∈ X, there exists no such
that x /∈ Vno . For y /∈ Vno , we have fn(y) = 0 for all n ≥ no. Hence (fn) ∈ E and fn → 0
pointwise. Thus

1 = α−1
n m(Bn) =

∫
fn dm→ 0,

a contradiction. This proves that m ∈ Msυo(X). We will finish the proof by showing that
φ(f) =

∫
f dm for all f ∈ C(X). So, let f ∈ C(X). For each positive integer n, let

An = {x : |f(x)| ≥ n}, fn = f · χAn , gn = f − fn.

Then (fn) ∈ E and fn → 0 pointwise. Thus φ(fn) → 0 and um(fn) → 0. Also, φ(gn) = um(gn).
It follows that φ(f)− um(f) = 0, which completes the proof.

Combining Theorems 34 and 35, we get

Theorem 36. The completion of the space G = (L(X), e) coincides with the spaceMsυo(X)
equipped with the topology of uniform convergence on the members of E.

By Theorem 33, Mb(X) is a subspace of Msυo(X). We will denote also by e the topology
on Mb(X) of uniform convergence on the members of E . For d a continuous ultrapseudometric
on X, let πd : X → Xd be the quotient map and let Sd : C(Xd) → C(X) be the induced
linear map. As it is shown in Theorem 34, if m ∈ Msυo(X), then S∗

dm has compact support,
i.e. S⋆

dm ∈Mc(Xd).

Lemma 15. For each continuous ultrapseudometric d on X, the map

S⋆
d : (Msυo(X), e) → (Mc(Xd), e)

is continuous.

Proof: Let A ∈ E(Xd), B = Sd(A). Then B ∈ E(X). If Bo is the polar of B in Msυo(X)
and Ao the polar of A in Mb(Xd) =Mc(Xd), then S

⋆
d(B

o) ⊂ Ao and the result follows.

Theorem 37. (Msυo(X), e) is the projective limit of the spaces (Mc(Xd), e), with respect
to the maps S⋆

d , where d ranges over the family of all continuous ultrapseudometrics on X.
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Proof: We need to show that e is the weakest of all locally convex topologies τ onMsυo(X)
for which each of the maps

S⋆
d : (Msυo(X), τ) → (Mc(Xd), e)

is continuous. So, let τ be such a topology and let B ∈ E(X). Define

d(x, y) = sup
f∈B

|f(x)− f(y)|.

Then d is a continuous ultrapseudometric on X. For each f ∈ B, the function

f̃ : Xd → K, f̃(x̃d) = f(x)

is well defined and continuous. Clearly the set A = {f̃ : f ∈ B} is in E(Xd). Since S
⋆
d is

τ -continuous, the set M = (S⋆
d)

−1(Ao) is a τ -neighborhood of zero. But M ⊂ Bo. Thus Bo is
a τ -neighborhood of zero, which proves that τ is finer that e. Hence the result follows.

Theorem 38. For an m ∈M(X), the following are equivalent:

(1) m ∈Msυo(X).

(2) For each continuous ultrapseudometric d on X the measure

md : K(Xd) → K, md(A) = m(π−1
d (A))

has compact support.

(3) For each clopen partition (Ai)i∈I of X, there exists a finite subset Jo of I such that
m(
⋃

i/∈J Ai) = 0 for all finite subsets J of I which contain Jo.

Proof: (1) ⇒ (2). It follows from the fact that md = S⋆
dm.

(2) ⇒ (3). Let (Ai)i∈I be a clopen partition of X and take fi = χAi . If Bi = πd(Ai), then
(Bi)i∈I is a clopen partition of Xd. Let Z be a compact support of md. There exists a finite
subset Jo of I such that Z ⊂

⋃
i∈Jo

Bi. Let the finite subset J of I contain Jo. If A =
⋃

i/∈J Ai

and B = πd(A), then 0 = md(B) = m(π−1
d (B)) = m(A).

(3) ⇒ (1). Let (Ai)i∈I be a clopen partition of X and let Jo be as in (3). Clearly
m(Ai) = 0 for all i /∈ Jo. Thus

m(X) = m

(
⋃

i∈Jo

Ai

)

+m




⋃

i/∈Jo

Ai



 =
∑

i∈Jo

m(Ai) =
∑

i∈I

m(Ai),

and so m ∈Ms(X) by [12], Theorem 6.9. To show that

supp(mβo)) ⊂ υoX

it suffices, by Theorem 6.1, to show that if (Wn) is a sequence of clopen subsets of X, with
Wn ↓ ∅, then there exists no such that m(Wn) = 0 if n ≥ no. Given such a sequence, let
D1 = W c

1 , Dn+1 = Wn \Wn+1 for n ≥ 1. Then (Dn) is a clopen partition of X. By our
hypothesis, there exists no such that m(

⋃
n≥n1

Dn) = 0 if n1 ≥ no. For each n, we have
Wn =

⋃
k>nDk. Hence, for n ≥ no, we have m(Wn) = 0, which completes the proof.
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