
Note di Matematica 25, n. 1, 2005/2006, 29–34.

On not open linear continuous operators

between Banach spaces

Angela A. Albanese
Dipartimento di Matematica “E. De Giorgi”
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Abstract. Let X and Y be infinite–dimensional Banach spaces. Let T : X → Y be a linear
continuous operator with dense range and T (X) 6= Y . It is proved that, for each ε > 0, there
exists a quotient map q : Y → Y1, such that Y1 is an infinite–dimensional Banach space with a
Schauder basis and q ◦T is a nuclear operator of norm ≤ ε. Thereby, we obtain with respect to
the quotient spaces the proper analogue result of Kato concerning the existence of not trivial
nuclear restrictions of not open linear continuous operators between Banach spaces.

As a consequence, it is derived a result of Ostrovskii concerning Banach spaces which
are completions with respect to total nonnorming subspaces.
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Introduction

A well-known result of Kato is the following (see [6, Proposition 2.c.4]):

Let X and Y be infinite–dimensional Banach spaces. Let T : X → Y be a
linear continuous operator with T (X) not closed subspace of Y . Then, for every
ε > 0 there is an infinite–dimensional subspace Z of X so that Z has a Schauder
basis and T|Z is a nuclear operator with norm ≤ ε.

This result played a central role in the study of the strictly singular operators
and of the perturbation theory of Fredholm operators in the setting of Banach
spaces (see [6, Section 2.c]).

The aim of this paper is to prove the proper analogue result of Kato with
respect to the quotient spaces (see Theorems 1 and 2 of § 2). This type of result
has been motivated by the study of some topological invariants in the context
of Fréchet spaces (see [1,2]).

As a consequence, in §3 we derive a result of Ostrovskii [7] concerning Ba-
nach spaces which are completions with respect to total nonnorming subspaces.
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Let us recall some basic definitions.

Let (X, || ||) be a Banach space and (X∗, || ||∗) be its dual topological space.
We denote by BX (BX∗ respectively) the closed unit ball of X (X∗ respectively).

A closed subspace M of X∗ is said to be total if for every 0 6= x ∈ X there
is an f ∈M such that f(x) 6= 0.

A sequence (xn)n∈N in X is said to be a Schauder basis if for every x ∈ X
there is a unique sequence of scalars (αn)n∈N such that x =

∑∞
n=1 αnxn. A

sequence (xn)n∈N of X is said to be a basic sequence if it is a Schauder basis
for its closed linear span [xn]n∈N. A pair of sequences ((xn, x

∗
n))n∈N in X ×X∗

is said to be a biorthogonal system if x∗n(xn) = δnm for every n, m ∈ N.

Let T : X → Y be a linear continuous map with (X, || ||) and (Y, | |) Banach
spaces. We denote by ||T || its operator norm and by Rg(T ) its range. The map
T is said to be a quotient map if TBX = BY . The map T is said to be nuclear
if there exist a bounded sequence (x∗n)n∈N in X∗, a bounded sequence (yn)n∈N

in Y , and an element (λn)n∈N ∈ `1 such that T (x) =
∑∞

n=1 λnx
∗
n(x)yn for every

x ∈ X. The notation T|Z means the restriction of T to the subspace Z of X.

Moreover, T is called strictly cosingular if there exists no closed subspace
N of Y with codimN =∞ such that q ◦ T : X → Y/N is onto where q denotes
the canonical quotient map from Y onto Y/N (see [8]).

For a subset A of X, A,
◦
A and A⊥ denote the closure of A in the strong

topology, the set {x∗ ∈ X∗ : ∀x ∈ A |x∗(x)| ≤ 1} and the set {x∗ ∈ X∗ : ∀x ∈
A x∗(x) = 0} respectively. For a subset A of X∗, A

w∗

,
•
A and A> denote the

closure of A in the weak*–topology, the set {x ∈ X : ∀x∗ ∈ A x∗(x) = 0} and
the set {x ∈ X : ∀x∗ ∈ A x∗(x) = 0} respectively.

Other notation for Banach spaces is standard and we refer the reader, for
example, to [6].

1 Main Result

In this section we will prove the proper analogue result of Kato with respect
to the quotient spaces. The proof of this result is inspired by the ones given
in [3, Theorem 1.2, (2) implies (3)] and [9, Lemma 3].

1 Theorem. Let (X, || ||) and (Y, | |) be infinite–dimensional Banach spaces.
Let T : X → Y be a linear continuous map with dense range and T (X) 6= Y .
Then for each ε > 0 there exists a quotient map q : Y → Y1, such that Y1 is an
infinite–dimensional Banach space with a Schauder basis and the map q ◦ T is
nuclear with norm ≤ ε.

Proof. We first notice that, by Closed Range Theorem, if T has no closed
range then T ∗ hasn’t, and also T ∗ restricted to any finite–codimensional sub-
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space of Y ∗ hasn’t.
Let ε > 0 be fixed. We choose a sequence (An)n∈N of positive real numbers

with A1 > 1 and An+1 > 1 +
∑n

k=1Ak for all n ∈ N, and we construct by
induction a biorthogonal system ((yn, y

∗
n))n∈N in Y × Y ∗ such that

|yn| ≤ An, |y∗n|∗ = 1 and ||T ∗y∗n||∗ ≤
ε

An
2−n (1)

for all n ∈ N.
Clearly, there exist y1 ∈ Y and y∗1 ∈ Y ∗ such that y∗1(y1) = 1 and (1)

holds with n = 1. Turning to our induction step, we assume that (yk)
n
k=1 ⊂

Y and (y∗k)
n
k=1 ⊂ Y ∗ have been chosen in such a way that ((yk, y

∗
k))

n
k=1 is a

biorthogonal system and (1) is satisfied for k ∈ {1, . . . , n}. Let define P : Y → Y
by Py =

∑n
k=1 y

∗
k(y)yk. Then we set Q = I − P and choose y∗n+1 ∈ Rg(Q∗) =

span{y1, . . . , yn}⊥ ⊂ Y ∗ so that

|y∗n+1|∗ = 1 and ||T ∗y∗n+1||∗ ≤
ε

An+1
2−(n+1).

Since y∗n+1 = Q∗(y∗n+1), we have

1 = |y∗n+1|∗ = sup
|y|≤1

|y∗n+1(Qy)| ≤ sup
z∈Rg(Q), |z|≤||Q||

|y∗n+1(z)|.

By construction An+1 > 1 + ||P || ≥ ||Q|| so that we can find yn+1 in Y with the
desired properties.

Next, let S : X → Y be the map so defined

Sx :=

∞∑

n=1

(T ∗y∗n)(x)yn, x ∈ X. (2)

Then S ∈ L(X,Y ) is nuclear with norm ≤ ε. Since

S∗y∗ =

∞∑

n=1

y∗(yn)T ∗y∗n

for all y∗ ∈ Y ∗, we obtain that T ∗ = S∗ on span{y∗1, y∗2, . . . }. We set Z =
{y ∈ Y : ∀n ∈ N y∗n(y) = 0}. Clearly Y/Z is infinite–dimensional. Since
y∗n(Tx − Sx) = ((T ∗ − S∗)y∗n)(x) = 0 for all n ∈ N and x ∈ X, we have that
q ◦ T = q ◦ S where q : Y → Y/Z is the canonical quotient map. Consequently,
q ◦ T is a nuclear map with norm ≤ ε.

In order to obtain a quotient with a Schauder basis, we notice that Rg(q ◦
T ) is dense in Y/Z and Rg(q ◦ S) is separable. Therefore the Banach space
Y/Z is separable and then we can apply [6, Theorem 1.b.7] (see [5]) to get



32 A.A. Albanese

an infinite–dimensional quotient of Y/Z with a Schauder basis. Finally, the
composition of the quotient maps fulfills all required properties and the proof
is complete. QED

As an immediate consequence, we obtain the following:

2 Theorem. Let (X, || ||) and (Y, | |) be infinite–dimensional Banach spaces.
Let T : X → Y be a not open linear continuous operator. Then for each ε > 0
there exists a quotient map q : Y → Y1, such that Y1 is an infinite–dimensional
Banach space and q ◦ T is a nuclear operator of norm ≤ ε.

Proof. Let Z = T (X). By assumption, T is a linear continuous map from
X into Z with dense range and T (X) 6= Z. Taking any ε > 0, by Theorem 1,
there exists a quotient map qZ : Z → Z1, such that Z1 is an infinite dimensional
space with a Schauder basis and qZ ◦ T is a nuclear operator of norm ≤ ε.

Put N = ker qZ . Clearly, N ⊂ Z is also a closed subspace of Y and Z1 is
isometrically isomorph to a closed subspace of Y1 = Y/N via the canonical map
j : Z1 → Y1 defined by j(x+N) = x+N for all x ∈ Z. Consequently, denoting
by q the canonical quotient map from Y onto Y1, j ◦ qZ = q ◦ i (where i : Z → Y
is the canonical inclusion) and hence q ◦ T = j ◦ qZT is also a nuclear operator
of norm ≤ ε. This completes the proof. QED

2 A Consequence

Let (X, || ||) be an infinite–dimensional Banach space. Let M be a total
subspace of X∗. Define the completion of X with respect to M as the completion
of X under the norm

||x||M = sup{|x∗(x)| : x∗ ∈M, ||x∗||∗ ≤ 1}.

Denote by XM this completion.
If the norm || ||M is equivalent to the initial norm of X, then the subspace

M is said to be norming. It is clear that if M is norming, then XM = X. If M

is a total nonnorming subspace of X, then X∗
M = spanB

σ(X∗,X)
M ⊃M .

Total nonnorming subspaces were studied by many authors. In particular,
in [4] Davis and Lindenstrauss proved that a Banach space X has a total
nonnorming subspace in its dual if and only if X has infinite codimension in its
second dual.

In [7] Ostrovskii considered the problem to characterize what kind of Ba-
nach spaces are completions of some other Banach spaces with respect to a total
nonnorming subspace. In particular, he showed that:

3 Theorem. If a Banach space Z is the completion of some other Banach
space with respect to a total nonnorming subspace, then Z∗ contains a norming
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subspace M and a σ(Z∗, Z)–closed infinite–dimensional subspace N such that
δ(M,N) > 0 and the quotient Z/N> is separable.

Recall that if U and V are subspaces of a Banach space (X, || ||) the number
δ(U, V ) = inf{||u− v|| : u ∈ U and ||u|| = 1, v ∈ V } is called the inclination of
U to V .

Now, this result follows from Theorem 1 as a consequence. Indeed:

Proof. Let Z = XM for some Banach space (X, || ||) and a total nonnorm-
ing subspace M of X∗. Every element of M is a linear functional on XM with
the same norm. Further, M considered as a subspace of Z∗ is clearly norming.

Since the inclusion iM : (X, || ||) ↪→ (XM , || ||M ) is a linear continuous map
with dense range and not open, taking e.g. ε = 1/2, as it was proved in Theo-
rem 1, there is a biorthogonal system ((xn, x

∗
n))n∈N in XM ×X∗

M satisfying the
conditions in (1) such that, if we set M1 = {x ∈ XM : x∗n(x) = 0 for all n ∈ N},
the quotient space XM/M1 is infinite–dimensional and separable.

Let N = M⊥
1 ⊂ X∗

M . Clearly, N is σ(X∗
M , XM )–closed. Since XM/M1 is

separable as already observed, it remains only to show that δ(M,N) > 0.

Let z∗ ∈M with ||z∗||∗M = 1 = ||z∗||∗. Then, taking any ε > 0, there is x ∈ X
with ||x|| = 1 such that z∗(x) ≥ 1 − ε. Put w = x −∑∞

n=1 x
∗
n(x)xn = x − Sx

(cf. (2)). Then w ∈M1 = N> and ||w − x|| ≤ 1/2. It follows that

z∗(w) ≥ z∗(x) + z′(w − x) ≥ 1− ε− 1

2
=

1

2
− ε;

hence, for each y∗ ∈ N ,

||z∗ − y∗||∗M ≥
2

3
|(z∗ − y∗)(w)| = 2

3
|z∗(w)| ≥ 2

3
(
1

2
− ε) =

1

3
− 2

3
ε.

By the arbitrarity of ε, it follows that ||z∗− y∗||∗M ≥ 1/3 for all y∗ ∈ N , thereby
implying that δ(M,N) ≥ 1/3 > 0. QED
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