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Introdution

Gradings by groups have played a key role in the study of Lie algebras,

and ontributed to understand their strutural properties. Several families of

examples an be found in [23℄. To begin with, the root spae deomposition of

a omplex semisimple Lie algebra is a grading by the group Zr
, with r the rank

of the Lie algebra. Any grading by a torsion-free abelian group is equivalent to

a oarsening of suh root spae deomposition, and these gradings have been

extensively used in representation theory. Gradings by not neessarily redued

root systems are very nie examples of this situation. In partiular, gradings by

the integers have had frequent appliations to physis, and they are speially

relevant in algebrai ontexts: if J is a Jordan algebra, the Tits-Kantor-Koeher

onstrution applied to J is a Z-graded Lie algebra L = L−1 ⊕ L0 ⊕ L1 with

L1 = J , and the produt in J an be reovered from the one in L. Some other

Jordan systems are related to `longer' Z-gradings too.

Gradings by groups with torsion are also ubiquitous: gradings by yli

groups and the orresponding �nite order automorphisms are desribed by Ka
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[38℄. They are intimately related to (in�nite-dimensional) Ka-Moody Lie al-

gebras and gradings by Z on them. In Di�erential Geometry, they are onne-

ted with symmetri spaes and their generalizations. Gradings by �nite abelian

groups are related to Lie olor algebras (a generalization of Lie superalgebras),

and sometimes to Lie algebra ontrations. An interested reader an onsult

[23, Introdution℄ for these and other examples, as well as for appliations and

referenes. Also a good and deep ompilation of results an be found in [46,

Chapter 3, �3℄, whih deals with the relationship between gradings on omplex

semisimple Lie algebras and automorphisms, and exhibit a wide variety of ex-

amples of gradings.

J. Patera and H. Zassenhaus, onvined about the relevane of gradings, ini-

tiated in [47℄ a systemati study of gradings on Lie algebras, emphasizing the

role of the so alled �ne gradings (gradings whih annot be further re�ned).

Sine then, a onsiderable number of authors have been trying to obtain a las-

si�ation of gradings on the simple Lie algebras (see, e.g. [33, 9, 21, 15, 16, 17℄),

whih has ulminated in the reent monograph [23℄, where gradings on the las-

sial simple Lie algebras and on the exeptional simple Lie algebras of types G2

and F4 are thoroughly studied. However, there is still work to be done. On one

hand, not muh is known about gradings on solvable or nilpotent Lie algebras.

On the other hand, the lassi�ation of gradings (for instane, the lassi�ation

of �ne gradings up to equivalene) is not yet �nished for the omplex exeptional

simple Lie algebras of types E7 and E8 (denoted by e7 and e8), and this is also

the ase for the simple Lie algebras of types D4 and Er (r = 6, 7, 8) over al-

gebraially losed �elds of prime harateristi. Over the real numbers, even the

lassi�ation of �ne gradings for the lassial Lie algebras is missing, although

many low-dimensional ases have been onsidered.

Our goal is the lassi�ation of the �ne gradings on the exeptional Lie

algebras e7 and e8 over an algebraially losed �eld F of harateristi zero, and

hene to �nish the lassi�ation of �ne gradings on simple Lie algebras over

the omplex numbers. (Note the result in [17, Proposition 2℄, whih shows that

the omplex ase yields a solution over arbitrary algebraially losed �elds of

harateristi 0.)

This goal has not been reahed yet. The purpose of this paper is to de-

sribe a list of known �ne gradings, whih are ompiled in our Main Theorem

(Theorem 3.3) on the exeptional simple Lie algebras of type E. Most of these

gradings make sense in muh more general ontexts but, to avoid onfusion, we

will restrit ourselves to an algebraially losed ground �eld F of harateristi

zero. The list exhausts the �ne gradings, up to equivalene, on e6, and we on-

jeture that it also exhausts them for e7 and e8. This has been announed in [23,

Figure 6.2℄, although not all the desriptions there oinide with ours. Further
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details will be provided here too.

In our setting, a �ne grading is the eigenspae deomposition relative to a

maximal quasitorus (that is, a maximal abelian diagonalizable, or MAD, sub-

group) of the group of automorphisms. This means that �ne gradings are related

to `large' abelian groups of symmetries. Hene our goal is equivalent to the las-

si�ation of the MAD-subgroups, up to onjugation, of Aut(e7) and Aut(e8).

Some of these MAD-subgroups have appeared in the literature. For instane,

Griess desribes in [31℄ the maximal elementary p-subgroups of the groups E6,

E7 and E8. A larger lass of abelian subgroups (not just MAD-subgroups) is

studied in [52℄. The Z
3
6-subgroup of E8 has been onsidered by Hang and Vogan

in [32, pp. 22-25℄. Also, Alekseevskii desribed the Jordan �nite ommutative

subgroups of the groups E6, E7 and E8 in [1℄. These inlude a MAD-subgroup

of E8 isomorphi to Z
3
5. This subgroup has gained some attention lately, as it

appeared in a talk by Kostant (see [42℄) about the ontroversial paper by the

physiist Lisi [44℄, whih proposed a theory to go beyond the Standard Model in

that it uni�es all 4 fores of nature by using as gauge group the exeptional Lie

group E8. Kostant's talk, stritly mathematial, dealt about an elaboration of

the mathematis of E8 in order to refute Lisi's Theory. This is one more evidene

of the fasination produed by the rihness of E8, and shows the relevane of

understanding as muh as possible about this group and its tangent Lie algebra.

Note that not even the �nite abelian maximal groups are onveniently well known

(onsult the reent work [14℄). In terms of gradings, some of our desriptions have

appeared in [19℄, whih uses gradings on omposition algebras to onstrut some

nie gradings on exeptional algebras (e.g. a Z5
3-grading and a Z8

2-grading on e8).

This paper then gathers a lot of known material, and desribes it in a homo-

geneous way. It is an expanded version of the talk presented by the �rst author

in the onferene Advanes in Group Theory and Appliations 2013.

The paper is strutured as follows. First there is a setion to reall the

bakground: basi onepts about gradings and their onnetion with groups of

automorphisms, and some algebrai strutures involved in the desription of the

exeptional Lie algebras: omposition (and symmetri omposition) algebras,

Jordan algebras and its generalizations, and struturable algebras. Seond, we

present several models of the exeptional Lie algebras and onstrutions leading

to them. After reviewing slightly how the exeptional Lie algebras emerged, we

fous mainly on three onstrutions due to Elduque, Kantor and Steinberg, as

they provide a onvenient way to desribe the �ne gradings we are interested in.

Finally, the third setion desribes some �ne gradings on e6, e7 and e8 starting

from gradings on the `oordinate algebras' involved in the onstrutions above.

(These algebras are usually muh simpler than e6, e7 and e8.) Fourteen �ne

gradings will be given on eah of these simple Lie algebras. The onjeture
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arises immediately of whether this is the omplete list of �ne gradings, up to

equivalene, for these algebras.

For the sake of larity of the exposition, in what follows the ground �eld F

will be assumed to be algebraially losed of harateristi 0, even though many

results are valid in more general ontexts.

1 Preliminaries

1.1 Gradings and automorphisms

We begin by realling the basis about gradings. LetA be a �nite-dimensional

algebra (not neessarily assoiative) over F, and let G be an abelian group.

De�nition 1.1. A G-grading Γ on A is a vetor spae deomposition

Γ : A =
⊕

g∈G

Ag

suh that AgAh ⊆ Ag+h for all g, h ∈ G.

One suh a deomposition is �xed, the algebra A will be alled a G-graded

algebra, the subspae Ag will be referred to as the homogeneous omponent of

degree g and its nonzero elements will be alled the homogeneous elements of

degree g. The support is the set suppΓ := {g ∈ G | Ag 6= 0}.

De�nition 1.2. If Γ: A = ⊕g∈GAg and Γ′ : A = ⊕h∈HAh are gradings by two

abelian groups G and H, Γ is said to be a re�nement of Γ′
(or Γ′

a oarsening

of Γ) if for any g ∈ G there is h ∈ H suh that Ag ⊆ Ah. In other words, any

homogeneous omponent of Γ′
is the diret sum of some homogeneous ompon-

ents of Γ. A re�nement is proper if some inlusion Ag ⊆ Ah is proper. A grading

is said to be �ne if it admits no proper re�nement.

De�nition 1.3. Let Γ be a G-grading on A and Γ′
an H-grading on another

algebra B, with supports, respetively, S and T . Then Γ and Γ′
are said to

be equivalent if there is an algebra isomorphism ϕ : A → B and a bijetion

α : S → T suh that ϕ(As) = Bα(s) for all s ∈ S. Any suh ϕ is alled an

equivalene of Γ and Γ′
.

The study of gradings is based on lassifying �ne gradings up to equivalene,

beause any grading is obtained as a oarsening of some �ne one. We will make

use of the following invariant by equivalenes:

De�nition 1.4. The type of a grading Γ is the sequene of numbers (h1, . . . , hr)
where hi is the number of homogeneous omponents of dimension i, with i =
1, . . . , r and hr 6= 0. Obviously, dimA =

∑r
i=1 ihi.
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Given a group grading Γ on an algebra A, there are many groups G suh

that Γ, regarded as a deomposition into a diret sum of subspaes suh that

the produt of any two of them lies in a third one, an be realized as a G-
grading, but there is one distinguished group among them ([47℄). De�ne U(Γ)
as the abelian group generated by S = suppΓ with de�ning relations s1s2 = s3
whenever 0 6= As1As2 ⊂ As3 (si ∈ S). It is alled the universal group of Γ,
sine it veri�es that, for any other realization of Γ as a G-grading, there exists

a unique homomorphism U(Γ) → G that restrits to identity on suppΓ. All the
gradings throughout this work will be onsidered by their universal groups.

The lassi�ation of �ne gradings on A, up to equivalene, is the same as the

lassi�ation of maximal diagonalizable subgroups (i.e., maximal quasitori) of

Aut(A), up to onjugation (see e.g. [47℄). More preisely, given a G-grading
on the algebra A = ⊕g∈GAg, any χ belonging to the group of haraters

Ĝ = Hom(G,F×), ats as an automorphism of A by means of χ.x = χ(g)x
for any g ∈ G and x ∈ Ag. In ase G is the universal group of the grading, this

allows us to identify Ĝ with a quasitorus (the diret produt of a torus and a

�nite subgroup) of the algebrai group Aut(A). This quasitorus is the subgroup
Diag(Γ) onsisting of the automorphisms ϕ of A suh that the restrition of ϕ
to any homogeneous omponent is the multipliation by a (nonzero) salar. (See

[46, Chapter 3, �3℄ or [23, �1.4℄.) Conversely, given a quasitorus Q of Aut(A),
then Q indues a Q̂-grading on A, where Ag = {x ∈ A | χ(x) = g(χ)x ∀χ ∈ Q}
for any g ∈ Q̂. In this way the �ne gradings on A, up to equivalene, orres-

pond to the onjugay lasses in Aut(A) of the maximal abelian diagonalizable

subgroups of Aut(A).

1.2 Related strutures

We will reall here some algebrai strutures involved in the onstrutions of

the exeptional Lie algebras. A very nie introdution to nonassoiative algebras

an be found in [48℄, but the neessary material of omposition algebras and

Jordan algebras is inluded here for ompleteness, as well as material about

symmetri omposition algebras and struturable algebras, whih are not so

well known.

1.2.1 Composition algebras

A Hurwitz algebra over F is a unital algebra C endowed with a nonsingular

quadrati form q : C → F whih is multipliative, that is, q(xy) = q(x)q(y). This
form q is usually alled the norm. Eah element a ∈ C satis�es

a2 − tC(a)a+ q(a)1 = 0,
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where tC(a) = q(a + 1) − q(a) − 1 is alled the trae. Denote C0 = {a ∈ C |
tC(a) = 0} the subspae of traeless elements. Note that [a, b] = ab−ba ∈ C0 for

any a, b ∈ C, sine tC(ab) = tC(ba). The map − : C → C given by ā = tC(a)1−a
is an involution and q(a) = aā holds.

There are Hurwitz algebras only in dimensions 1, 2, 4 and 8 (see e.g. [53℄).

Moreover, under our hypothesis on the �eld, there is only one (up to isomorph-

ism) Hurwitz algebra of eah possible dimension, namely:

• the ground �eld F, with q(a) = a2;

• F× F, with omponentwise produt and norm given by q(a, b) = ab;

• Mat2×2(F), with the usual matrix produt and norm given by the determ-

inant;

• the split Cayley algebra over F. This algebra an be haraterized by the

existene of a basis {e1, e2, u1, u2, u3, v1, v2, v3}, whih we all standard

basis, with multipliation given by

e1uj = uj = uje2, uivi = e1, uiui+1 = vi+2 = −ui+1ui,
e2vj = vj = vje1, viui = e2, −vivi+1 = ui+2 = vi+1vi,

all the remaining produts being 0, and the polar form of the norm (also

denoted by q) of two basi elements is zero exept for q(e1, e2) = 1 =
q(ui, vi), i = 1, 2, 3.

With the exeption of the Cayley algebra, all of these are assoiative. The Cayley

algebra is not assoiative but alternative (the algebra generated by any pair

of elements is assoiative). We will use the notations F, K, Q (usually alled

quaternion algebra) and C (usually alled otonion algebra) for eah of these

algebras, respetively.

Reall that for any a, b ∈ C, the endomorphism

da,b = [la, lb] + [la, rb] + [ra, rb]

is a derivation of C for la(b) = ab and ra(b) = ba. This will be instrumental to

onstrut Lie algebras from Hurwitz algebras.

1.2.2 Jordan algebras

A Jordan algebra is a ommutative (nonassoiative) algebra satisfying the

Jordan identity

(x2y)x = x2(yx).
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This kind of algebras were introdued by Jordan in 1933 to formalize the notion

of an algebra of observables in quantum mehanis. Suh line of researh was

abandoned time ago, but Jordan algebras have found a range of appliations

beause of their relationship to Lie algebras. A standard referene is [36℄.

If A is an assoiative algebra (with multipliation denoted by juxtaposition)

and we onsider the new produt on A given by

x ◦ y =
1

2
(xy + yx),

then (A, ◦) is a Jordan algebra, denoted by A+
. A Jordan algebra whih is

a subalgebra of A+
for some assoiative algebra A, is alled a speial Jordan

algebra, and otherwise it is alled exeptional. If (A,−) is an assoiative algebra

with involution, then the set of hermitian elements H(A,−) = {a ∈ A | ā = a}
is a subalgebra of A+

(not of A), and hene it is a speial Jordan algebra.

In partiular, if C is an assoiative Hurwitz algebra with involution given

by −, the algebra Hn(C, ∗) = {x = (xij) ∈ Matn×n(C) | xij = x̄ji} is a Jordan

algebra for any n > 3. (For n = 1 or n = 2 this is also true, but in a trivial

way, so we will assume n ≥ 3.) It is proved in [36℄ that if C is the Cayley

algebra, Hn(C, ∗) is a Jordan algebra if and only if n = 3. Besides, this is the

only exeptional Jordan algebra, whih is alled the Albert algebra, and will be

denoted by A.

If J = Hn(C, ∗) for some Hurwitz algebra and some n, onsider the lin-

ear map tJ : J → F given by tJ(x) = tr(x)
n =

∑n
i=1 xii

n . This map is alled

the normalized trae and it is the only linear map suh that tJ(1) = 1 and

tJ((xy)z) = tJ(x(yz)) for any x, y, z ∈ J . Thus we have a deomposition

J = F1 ⊕ J0, for J0 = {x ∈ J | tJ(x) = 0}, sine x ∗ y = xy − tJ(xy)1 ∈ J0. In
partiular we have a ommutative multipliation ∗ de�ned in J0.

If J is a Jordan algebra and Rx : J → J , y 7→ yx is the multipliation

operator, observe that

[[Rx, Ry], Rz] = R(yz)x−y(zx) (1)

for any x, y, z ∈ J , and thus, the struture algebra Str(J), or Lie algebra gen-

erated by the multipliation operators, oinides with RJ + [RJ , RJ ] (this sum
is diret if J is unital). It is also a onsequene of Equation (1) that [RJ , RJ ]
is an ideal of the Lie algebra of derivations Der(J) = {d ∈ gl(J) | d(xy) =
d(x)y + xd(y) ∀x, y ∈ J}. The algebra generated by the traeless multipliation

operators {Rx | x ∈ J0} is alled the inner struture algebra and it also oinides

with RJ0 + [RJ , RJ ].
In ase J = A is the Albert algebra, Der(A) is simple [37, Theorem 3℄, so

in partiular every derivation is inner (Der(A) = [RA, RA]). The inner struture
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algebra is simple too [37, Theorem 4℄, and these provide our �rst two models of

f4 and e6. Moreover, any element x ∈ A satis�es a ubi equation

x3 − T (x)x2 +Q(x)x−N(x)1 = 0, (2)

for the salars T (x) = tr(x), Q(x) = 1
2((T (x))

2−T (x2)) andN(x) = 1
6((T (x))

3−
3T (x)T (x2) + 2T (x3)). The ubi form N is also losely related to e6.

1.2.3 Symmetri omposition algebras

A symmetri omposition algebra is a triple (S, ∗, q), where (S, ∗) is a (nonas-
soiative) algebra over F with multipliation denoted by x ∗ y for x, y ∈ S, and
where q : S → F is a regular quadrati form verifying

q(x ∗ y) = q(x)q(y),
q(x ∗ y, z) = q(x, y ∗ z),

for any x, y, z ∈ S, where q(x, y) = q(x+ y)− q(x)− q(y) is the polar form of q.

Example 1.5. Let C be a Hurwitz algebra with norm q. The same vetor spae

with new produt

x ∗ y = x̄ȳ

for any x, y ∈ C is a symmetri omposition algebra for the same norm, alled

the para-Hurwitz algebra attahed to the Hurwitz algebra C. We will denote it

by pC = (C, ∗, q). Note that the unit of C beomes a paraunit in pC, that is, an

element e suh that e ∗ x = x ∗ e = q(e, x)e− x.

Example 1.6. The Okubo algebra, or pseudo-otonion algebra, is the algebra

de�ned on the subspae of trae 0 matries of degree 3: Ok = (Mat3×3(F)0, ∗, q)
with multipliation

x ∗ y = ωxy − ω2yx−
ω − ω2

3
tr(xy)1 (3)

and norm q(x) := 1
6 tr(x

2), for x, y ∈ Mat3×3(F)0, where ω is a primitive ubi

root of 1. This algebra is a symmetri omposition algebra, but it does not

have an identity element (and it is not alternative). It was introdued by Okubo

in [45℄, who was working in Partile Physis and the symmetry given by the

ompat group SU(3) (the real algebra su(3) = {x ∈ sl(3,C) | x∗ = −x}, for ∗
the unitary involution, is losed for the produt given in Equation (3)).

The lassi�ation of the symmetri omposition algebras was obtained in

[24℄.
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Theorem 1.7. Every symmetri omposition algebra over F (algebraially losed)

is isomorphi either to a para-Hurwitz algebra or to the Okubo algebra. That is,

there are only �ve symmetri omposition algebras (up to isomorphism), namely,

pF, pK, pQ, pC and Ok.

1.2.4 Struturable algebras

Let (A,−) be a unital algebra with involution �−�. Denote the multipliation

in A by juxtaposition. For x, y ∈ A, onsider the linear operator Vx,y ∈ End(A)
given by Vx,y(z) = (xȳ)z + (zȳ)x− (zx̄)y ≡ {x, y, z}. The algebra A is alled a

struturable algebra in ase the identity

{x, y, {z, w, v}} = {{x, y, z}, w, v} − {z, {y, x, w}, v}+ {z, w, {x, y, v}}

is satis�ed for any x, y, z, w, v ∈ A, or equivalently,

[Vx,y, Vz,w] = VVx,yz,w − Vz,Vy,xw.

The reader may onsult [2℄ for the de�nition and properties of struturable

algebras.

Example 1.8. Any (unital) assoiative algebra with involution (A,−) is a stru-

turable algebra.

The spae Instr(A,−) = {
∑

i Vxi,yi | xi, yi ∈ A} is a subalgebra of the Lie

algebra gl(A), alled the inner struture algebra of (A,−). The map

ε : Instr(A,−) → Instr(A,−), ε(Vx,y) = −Vy,x

if x, y ∈ A, is an involutive automorphism of this Lie algebra. Thus Instr(A,−)
turns out to be Z2-graded. The elements in H(A,−) = {x ∈ A | x̄ = x}
and S(A,−) = {x ∈ A | x̄ = −x} are alled hermitian and skew-hermitian

respetively. It follows that Instr(A,−)0̄ =
(

Instr(A,−)∩Der(A,−)
)

⊕VS(A,−),1

and Instr(A,−)1̄ = VH(A,−),1, where Der(A,−) denotes the set of derivations of

A that ommute with the involution−.

Example 1.9. If J is a Jordan algebra, then (J,−) is a struturable algebra

with the involution − given by the identity map. In this ase Vx,y = Rxy +
[Rx, Ry] for x, y ∈ J , where Rx is the multipliation operator by x. In this sense,

the inner struture algebra of (J,−) is the usual inner struture algebra for a

Jordan algebra desribed in Setion 1.2.2, and the Z2-grading produed by ε is

Instr(J,−)0̄ = [RJ , RJ ], Instr(J,−)1̄ = RJ0 .

Example 1.10. If (C1,−) and (C2,−) are omposition algebras over the �eld F,

then (C1⊗C2,−) is a struturable algebra (see [6, Example 6.6℄) for the produt

given by (a⊗ b)(c⊗ d) = ac⊗ bd and the involution given by a⊗ b = ā⊗ b̄.
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2 Models of the exeptional Lie algebras

The study of the Lie algebras began at the end of the XIX entury, one

Lie had translated ertain problem of transformation groups to an algebrai

ontext. The �rst fundamental ontributions are due to Killing, who lassi�ed the

omplex simple Lie algebras in four key papers published during the years 1886

and 1890. Initially he thought that the only possible ases were the Lie algebras

of the speial linear group SLn(C) and of the orthogonal and sympleti groups

O(n,C) and Sp(n,C), now alled the lassial Lie algebras. But, during his work,

he obtained that, besides the lassial Lie algebras, there were a few other Lie

algebras, of dimensions 78, 133, 248, 52 and 14, now denoted as e6, e7, e8, f4 and

g2. Atually, he only proved the existene for g2, but he desribed all possibilities

for rank, dimension and root systems. He found six algebras, sine he did not

notie that two of them were isomorphi (ase f4). This is a marvelous result, but

the standard referene for it is Cartan's thesis in 1894, whih ompleted Killing's

lassi�ation, giving a rigorous treatment. This is a fundamental ontribution,

where Cartan proved the existene of all the exeptional simple Lie algebras.

2.1 First Models

The history of these algebras has been growing in parallel to the one of

the related Lie groups. The �rst desription of the smallest of the exeptional

Lie groups was due to Engel ([25℄), who, in 1900, desribed it as the isotropy

group of a generi 3-form in 7 dimensions. Élie Cartan was the �rst to onsider

the group G2 as the automorphism group of the otonion algebra in 1914 ([11,

p. 298℄ although he ommented about it earlier), as well the Lie algebra g2 as

the derivation algebra of the otonions (both on the split and ompat forms).

Jaobson generalized this result to arbitrary �elds ([34℄). This approah beame

popular through the artile [26℄ by Hans Freudenthal, in 1951. But, for rather a

long time, G2 was the only Lie group for whih further results were obtained.

The following model of a exeptional Lie algebra had to wait until 1950,

when Chevalley and Shafer ([12℄) showed that the set of derivations of the

Albert algebra A is f4. Tomber proved in [51℄ the onverse: a Lie algebra over

a �eld of harateristi 0 is of type F4 if and only if it is isomorphi to the

derivation algebra of an exeptional simple Jordan algebra. This fat led Tits,

among other authors, to study the relationship between Jordan algebras and the

remaining exeptional simple Lie algebras, whih were onstruted in a uni�ed

way [49℄. We will revise this onstrution in the following subsetion.

The algebra e6 is also losely related to the Albert algebra. On one hand,

it is the inner struture algebra of the Albert algebra (the Lie algebra gener-

ated by the right multipliation operators Ra for a ∈ A with zero trae, as
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in Setion 1.2.2). On the other hand, if N : A → F is the ubi norm as in

Equation (2), and N(a, b, c) denotes the trilinear form obtained by polarization,

then the Lie algebra e6 an be haraterized as the Lie algebra {f ∈ End(A) |
N(f(a), b, c) +N(a, f(b), c) +N(a, b, f(c)) = 0} ([35℄ and [26℄).

The �rst model of e7 related to the Albert algebra was provided in [50℄, as

the algebra de�ned on the vetor spae (A⊗ sl2(F))⊕Der(A) with the produt

[x⊗ a+ d1, y ⊗ b+ d2] = xy ⊗ [a, b] + d2(x)⊗ a− d1(y)⊗ b
−1

2 tr(ad a ad b)[Rx, Ry] + [d1, d2],

for x, y ∈ A, a, b ∈ sl2(F) and d1, d2 ∈ Der(A). The details of this onstrution

appear in [37, �9℄. This is a version of what nowadays is alled the Tits-Kantor-

Koeher onstrution applied to the Albert algebra. The name refers to several

onstrutions whih appeared almost simultaneously, and turned out to be es-

sentially equivalent. In Koeher's onstrution [41℄, one forms A⊕ Ā⊕Str(A),
where Ā is simply a opy of the vetor spae A, with the antiommutative

produt given by [x, y] = 0 = [x̄, ȳ], [x, ȳ] = 2Rxy + 2[Ry, Rx] if x, y ∈ A,

and [L, x] = L(x), [L, x̄] = L̄(x), if L = Rx +
∑

i[Rxi
, Ryi ] ∈ Str(A), where

L̄ = −Rx +
∑

i[Rxi
, Ryi ]. This onstrution will be generalized in Setion 2.4.

Similar to the situation for e6, the Lie algebra e7 an be haraterized too as

the set of linear transformations of ertain vetor spae M leaving invariant a

quarti form [27℄. Here, as a vetor spae, M is A⊕ Ā⊕F⊕ F̄. This will play an

important role in our desription of the gradings with automorphisms of order

4 involved, in Setions 3.7 and 3.8.

Finally, the di�ulty of �nding a good model for e8 (oordinate free, that is,

not given by means of generators and relations obtained from the root system)

is that the nontrivial representation of minimal dimension for e8 is the adjoint

representation, so there is no hope to embed e8 as a subalgebra of gl(V ) for

some vetor spae V of smaller dimension. However, some other `linear models'

an help in this purpose. Let V be a vetor spae of dimension 9, then we an

onstrut e8 as the vetor spae

3
∧

V ∗ ⊕ sl(V )⊕
3
∧

V,

with Lie braket as in [29, Exerise 22.21℄, based on the trilinear map given by

the usual wedge produt

∧3 V ⊗
∧3 V ⊗

∧3 V →
∧9 V ∼= F.

We refer to [37, 48, 28, 26℄ for these and other algebrai onstrutions of

the exeptional Lie algebras. We stress the referene [46℄, where many models

appear: [46, Chapter 5, �1℄ is devoted to models of exeptional Lie algebras

assoiated to a Cayley algebra (over arbitrary �elds of harateristi zero, with

several referenes to the reals), while [46, Chapter 5, �2℄ provides other models
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based on gradings. This shows the interations between nie models and ertain

gradings, and this philosophy is ertainly present in Setions 3.9 and 3.10.

2.2 Tits onstrution

In 1966, Tits gave a uni�ed onstrution of the exeptional simple Lie algeb-

ras (over �elds of harateristi not two and three) in [49℄. The onstrution used

a ouple of ingredients: an alternative algebra of degree 2 and a Jordan algebra of

degree 3. In ase these ingredients are hosen to be Hurwitz algebras and Jordan

algebras of hermitian 3× 3 matries over Hurwitz algebras, Freudenthal's magi

square [28℄ is obtained. We reall the onstrution in our onrete ase.

Let C be a Hurwitz algebra over F with norm q, and let J = H3(C
′, ∗) be

the Jordan algebra of hermitian 3×3-matries over another Hurwitz algebra C ′
.

Consider the vetor spae

T (C, J) = Der(C)⊕ (C0 ⊗ J0)⊕Der(J)

with antiommutative multipliation spei�ed by

• Der(C) and Der(J) are Lie subalgebras,

• [Der(C),Der(J)] = 0,

• [d, a⊗ x] = d(a)⊗ x, [D, a⊗ x] = a⊗D(x),

• [a⊗ x, b⊗ y] = tJ(xy)da,b + [a, b]⊗ x ∗ y + 2tC(ab)[Rx, Ry]

for all d ∈ Der(C), D ∈ Der(J), a, b ∈ C0 and x, y ∈ J0, with the notations of

Setions 1.2.1 and 1.2.2. Now, using all the possibilities for C and C ′
, we obtain

Freudenthal's Magi Square as follows [49℄ (note that we have added a olumn

with J = F to obtain G2 with the same onstrution):

J

C

T (C, J) F H3(F) H3(F× F) H3(Mat2×2(F)) H3(C)

F 0 a1 a2 c3 f4
F× F 0 a2 a2 ⊕ a2 a5 e6

Mat2×2(F) a1 c3 a5 d6 e7
C g2 f4 e6 e7 e8
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2.3 Some symmetri onstrutions

In spite of the apparent asymmetry in the usage of the two Hurwitz algebras

in Tits onstrution, the Magi Square is symmetri. This lead several authors to

look for more symmetri onstrutions. Suh an approah was taken by Vinberg

in [46, p. 177℄, and interpreted by Barton and Sudbery in [10℄ as a onstrution

depending on two omposition algebras and losely related to the triality prin-

iple. A similar onstrution was provided by Landsberg and Manivel in [43℄,

inspired by previous work of Allison and Faulkner [6℄.

The onstrution we are going to reall here (and use later on), is the on-

strution in [18℄, based on two symmetri omposition algebras, whih has turned

to be very useful in �nding �ne gradings on exeptional Lie algebras [19℄.

Let (S, ∗, q) be a symmetri omposition algebra and let

o(S, q) = {d ∈ EndF(S) | q(d(x), y) + q(x, d(y)) = 0 ∀x, y ∈ S}

be the orresponding orthogonal Lie algebra. Consider the subalgebra of o(S, q)3

de�ned by

tri(S, ∗, q) = {(d0, d1, d2) ∈ o(S, q)3 | d0(x ∗ y) = d1(x) ∗ y+x ∗ d2(y) ∀x, y ∈ S},

whih is alled the triality Lie algebra. The order three automorphism ϑ given

by

ϑ : tri(S, ∗, q) −→ tri(S, ∗, q), (d0, d1, d2) 7−→ (d2, d0, d1),

is alled the triality automorphism. Take the element of tri(S, ∗, q) (denoted by

tri(S) when it is no ambiguity) given by

tx,y :=

(

σx,y,
1

2
q(x, y)id− rxly,

1

2
q(x, y)id− lxry

)

,

where σx,y(z) = q(x, z)y − q(y, z)x, rx(z) = z ∗ x, and lx(z) = x ∗ z for any

x, y, z ∈ S.

Let (S, ∗, q) and (S′, ⋆, q′) be two symmetri omposition algebras over F.

Consider the following vetor spae, whih depends symmetrially on S and S′
:

g(S, S′) := tri(S, ∗, q)⊕ tri(S′, ⋆, q′)⊕ (
2

⊕

i=0

ιi(S ⊗ S′))

where ιi(S ⊗ S′) is just a opy of S ⊗ S′
(i = 0, 1, 2), and the antiommutative

produt on g(S, S′) is determined by the following onditions:

• tri(S, ∗, q)⊕ tri(S′, ⋆, q′) is a Lie subalgebra of g(S, S′);
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• [(d0, d1, d2), ιi(x ⊗ x′)] = ιi(di(x) ⊗ x′), [(d′0, d
′
1, d

′
2), ιi(x ⊗ x′)] = ιi(x ⊗

d′i(x
′)), for any (d0, d1, d2) ∈ tri(S), (d′0, d

′
1, d

′
2) ∈ tri(S′), x ∈ S and x′ ∈ S′

;

• [ιi(x ⊗ x′), ιi+1(y ⊗ y′)] = ιi+2((x ∗ y) ⊗ (x′ ⋆ y′)) (indies modulo 3), for

any i = 0, 1, 2, x, y ∈ S and x′, y′ ∈ S′
;

• [ιi(x⊗x′), ιi(y⊗y′)] = q′(x′, y′)ϑi(tx,y)+q(x, y)ϑ′i(t′x′,y′) ∈ tri(S)⊕ tri(S′),
for any i = 0, 1, 2, x, y ∈ S and x′, y′ ∈ S′

, ϑ and ϑ′
being the orresponding

triality automorphisms.

The antiommutative algebra g(S, S′) de�ned in this way turns out to be a

Lie algebra ([18, Theorem 3.1℄), and we reover Freudenthal's Magi Square if

symmetri omposition algebras of all possible dimensions are onsidered:

dimS

dimS′

1 2 4 8

1 a1 a2 c3 f4
2 a2 a2 ⊕ a2 a5 e6
4 c3 a5 d6 e7
8 f4 e6 e7 e8

If C1 and C2 are two Hurwitz algebras over F, the Lie algebra g(pC1, pC2)
is isomorphi to T (C1, H3(C2, ∗)) [23, Theorem 6.25℄.

2.4 Kantor's onstrution

Let (A,−) be a struturable algebra. Denote by S ≡ S(A,−) its set of skew-
hermitian elements. Endow the Z-graded vetor spae K = K−2 ⊕ K−1 ⊕ K0 ⊕
K1 ⊕K2, for

K2 = S, K1 = A,
K−2 = S˜ K−1 = A ,̃

K0 = Instr(A,−),

where S˜ and A˜ are simply opies of S and A respetively, with a graded

Lie algebra struture given by the antiommutative multipliation suh that

Instr(A,−) = VA,A is a subalgebra and the following onditions hold:

[T, a] = T (a), [T, ã ] = (T εa)̃ ,

[T, s] = T (s) + sT (1), [T, s̃ ] = (T ε(s) + sT ε(1))̃ ,
[a+ s, a′ + s′] = 2(ss̄′ − s′s̄) ∈ K2,
[ã + s̃ , a′̃ + s′̃ ] = 2(ss̄′ − s′s̄)̃ ∈ K−2,
[a+ s, a′̃ + s′̃ ] = (−s′a)̃ + LsLs′ + 2Va,a′ + (sa′) ∈ K−1 ⊕K0 ⊕K1,

(4)

for T ∈ Instr(A,−), a, a′ ∈ A, s, s′ ∈ S, where Ls : A → A denotes the left mul-

tipliation by s ∈ S (so that 2LsLs′ = Vss′,1 − Vs,s′ ∈ Instr(A,−)). Following
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[4, � 6.4℄, this is a Z-graded Lie algebra denoted by Kan(A,−), whih is alled

the Kantor onstrution attahed to the struturable algebra A. The onstru-

tion takes its name from Kantor, who introdued it �rst in [40℄, although in a

somewhat di�erent way.

In onnetion with Example 1.9, if J is a Jordan algebra, the Kantor on-

strution Kan(J,−) oinides (up to isomorphism) with the lassial Tits-Kantor-

Koeher Lie algebra onstruted from the Jordan algebra J .
A neessary and su�ient ondition for a Lie algebra to be isomorphi to the

Kantor's onstrution attahed to a struturable algebra is given by the existene

of an sl2-triple {e, h, f} (that is, [h, e] = 2e, [h, f ] = −2f, [e, f ] = h) in L suh

that L is the diret sum of irreduible modules for 〈{e, h, f}〉 of dimensions 1, 3,

and 5; the only ideal of L whih entralizes {e, h, f} is {0}, and L is generated

by the eigenspaes 2 and −2 for adh [4, Theorem 6.10℄.

The relevane for our purposes omes from the fat that exeptional Lie

algebras are obtained in terms of Kantor's onstrutions attahed to ertain

struturable algebras. Some examples of this situation are shown next:

Example 2.1. Consider the tensor produts of omposition algebras: C = F⊗C,
K ⊗ C, Q ⊗ C, and C ⊗ C. These are struturable algebras aording to Ex-

ample 1.10. Kantor's onstrution gives the following Lie algebras:

Kan(C) ∼= f4, Kan(K ⊗ C) ∼= e6, Kan(Q⊗ C) ∼= e7, Kan(C ⊗ C) ∼= e8,

as stated in [40℄ (see, alternatively, [3, �8()℄).

Example 2.2. Let J = H4(C, ∗) be the Jordan algebra de�ned in Setion 1.2.2

for C a Hurwitz assoiative algebra. This algebra is a �nite-dimensional simple

Jordan algebra, with generi trae tJ(x) =
1
4 tr(x). We an use a sort of Cayley-

Dikson proess with J in order to onstrut a struturable algebra as follows.

Take a nonzero µ ∈ F and the algebra de�ned on the vetor spae

A = J ⊕ vJ,

where v is simply a onvenient mark to indiate the artesian produt of two

opies of J , with multipliation and involution given by

(x1 + vx2)(x3 + vx4) := x1x3 + µ(x2x
ϑ
4 )

ϑ + v(xϑ1x4 + (xϑ2x
ϑ
3 )

ϑ),

x1 + vx2 := x1 − vxϑ2
(5)

for any xi ∈ J for i = 1, 2, 3, 4, where the multipliation in J is denoted by juxta-

position, with xϑ := −x+2tJ(x)1 (so that 1ϑ = 1) for any x ∈ J . The resulting
algebra (A,−) is denoted by CD(H4(C)). Aording to [5℄ (see, alternatively,

[4, Example 6.7℄), this algebra is struturable with the extra property that the
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spae of skew-hermitian elements has dimension 1. The Lie algebra obtained by

means of Kantor's onstrution Kan(CD(H4(C))) is e6, e7 and e8, respetively,

in ase dimC = 1, 2 or 4.

2.5 Steinberg's onstrution

Consider the following example [6℄.

Example 2.3. Let (A,−) be a unital assoiative algebra with involution and

onsider the unitary Lie algebra un(A,−) = {x ∈ Matn×n(A) | x̄
t = −x}. Some

remarkable elements are uij(a) = aeij − āeji, where eij are the usual matrix

units. These elements are subjet to the following relations:

uij(a) = uji(−ā),
a 7→ uij(a) is a linear map,
[uij(a), ujk(b)] = uik(ab) for distint i, j, k,
[uij(a), ukl(b)] = 0 for distint i, j, k, l.

(6)

Now, let (A,−) be a unital algebra with involution, and let stun(A,−) denote
the Lie subalgebra generated by elements uij(a), for 1 6 i 6= j 6 n, n ≥ 3, and
a ∈ A, subjet to the relations (6). Then the ondition uij(a) = 0 implies a = 0 if

and only if either n > 4 and A is assoiative or n = 3 and (A,−) is struturable.
This Lie algebra is alled the Steinberg unitary Lie algebra by analogy with the

Steinberg group in K-theory.

During the proof of the previous result, Allison and Faulkner used the fol-

lowing onstrution (also developed in [6℄).

Let (A,−) be a struturable algebra. For T ∈ gl(A), de�ne T̄ by T̄ (x) = T (x̄).
A set T = (T1, T2, T3) ∈ gl(A)3 is said to be a related triple if

T̄i(xy) = Ti+1(x)y + xTi+2(y)

for all x, y ∈ A and for all i = 1, 2, 3, where the subindies are taken modulo 3.
These triples form a Lie algebra denoted by trip(A). A remarkable triple is the

following:

Ti = Lb̄La − LāLb,
Ti+1 = Rb̄Ra −RāRb,
Ti+2 = Rāb−b̄a + LbLā − LaLb̄,

(7)

for a, b ∈ A, where La and Ra denote the left and right multipliations by a in

A.

Consider now the vetor spae

U(A,−) := trip(A)⊕ u12(A)⊕ u23(A)⊕ u31(A)
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with antiommutative multipliation suh that trip(A) is a subalgebra and the

following onditions hold:

[T, ui,i+1(a)] = ui,i+1(Ti+2(a)),

[ui,i+1(a), ui+1,i+2(b)] = −ui+2,i(ab),
[ui,i+1(a), ui,i+1(b)] = T as in (7),

for any a, b ∈ A and T = (T1, T2, T3) ∈ trip(A). Then U(A,−) is a Lie algebra

isomorphi to stu3(A,−)/z, where z is the enter of stu3(A,−) ([6, Theorem 4.3℄).

This algebra U(A,−) is simple if and only if (A,−) is so. We all this algebra

the Steinberg onstrution attahed to the struturable algebra A. Moreover, it

turns out that U(A,−) is isomorphi to the Lie algebra given by the Kantor's

onstrution Kan(A,−) onsidered in the previous subsetion.

3 Desription of the gradings

3.1 Gradings on Hurwitz algebras

Given a Hurwitz algebra C with norm q, we an onstrut, for eah 0 6= α ∈
F, a new unital algebra with involution, denoted by CD(C,α), by means of the

so alled Cayley-Dikson doubling proess. This is the algebra de�ned on C×C
with the multipliation given by

(a, b)(c, d) = (ac+ αd̄b, da+ bc̄)

and the quadrati form

q(a, b) = q(a)− αq(b).

The resulting algebra CD(C,α) is a Hurwitz algebra if and only if C is assoi-

ative. Thus, aording to our list of Hurwitz algebras, CD(F, α) is isomorphi

to K, CD(K, α) is isomorphi to Q and CD(Q, α) is isomorphi to C. The al-

gebra CD(C,α) is always Z2-graded, with even part {(a, 0) | a ∈ C} and odd

part {(0, b) | b ∈ C}. In partiular K is Z2-graded, Q is Z2
2-graded and C is

Z
3
2-graded.

On the other hand the standard basis of C is assoiated to a �ne Z2
-grading,

alled the Cartan grading on C, whih is given by

C(0,0) = Fe1 ⊕ Fe2,

C(1,0) = Fu1, C(−1,0) = Fv1,

C(0,1) = Fu2, C(0,−1) = Fv2,

C(−1,−1) = Fu3, C(1,1) = Fv3.

(8)
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The subalgebra 〈e1, e2, u1, v1〉 an be identi�ed with Q, whih turns out to be

Z-graded, for

Q0 = Fe1 ⊕ Fe2, Q1 = Fu1, Q−1 = Fv1. (9)

3.2 Gradings on symmetri omposition algebras

Gradings on symmetri omposition algebras were lassi�ed in [19, The-

orem 4.5℄. Every group grading on a Hurwitz algebra C is a grading on pC
(sine the involution preserves the homogeneous omponents), and the grad-

ings on both the Hurwitz algebra C and its para-Hurwitz ounterpart oinide

when C has dimension at least 4. In partiular we have a Z2-grading on pK, a

Z
2
2-grading and a Z-grading on pQ and a Z

3
2-grading and a Z

2
-grading on pC.

There is a remarkable Z3-grading in the ase of dimension 2 whih does not

ome from a grading on the orresponding Hurwitz algebra, namely,

pK0̄ = 0, pK1̄ = Fe1 pK2̄ = Fe2,

where e1 and e2 are the orthogonal idempotents (1, 0) and (0, 1) in K = F× F,

whih in pK satisfy e1 ∗ e1 = e2 and e2 ∗ e2 = e1.
Also, a natural Z2

3-grading appears on the pseudo-otonion algebra Ok =
(sl3(F), ∗, q), determined by

Ok(1̄,0̄) = F





1 0 0
0 ω 0
0 0 ω2





and Ok(0̄,1̄) = F





0 1 0
0 0 1
1 0 0





(reall that ω is a primitive ubi root of 1).

3.3 Gradings on Lie algebras indued from gradings on sym-

metri omposition algebras

If S and S′
are two symmetri omposition algebras, the Lie algebra g(S, S′)

is always Z2
2-graded, for

g(S, S′)(0,0) = tri(S)⊕ tri(S′), g(S, S′)(1,1) = ι0(S ⊗ S′),

g(S, S′)(1,0) = ι1(S ⊗ S′), g(S, S′)(0,1) = ι2(S ⊗ S′).
(10)

Moreover, if S = ⊕g∈GSg is G-graded, and S′ = ⊕g∈G′S′
g is G′

-graded, these

gradings an be ombined with the one in Equation (10), thus obtaining a grad-

ing on g(S, S′) by the group Z
2
2 ×G×G′

.

As a onsequene, if we onsider the gradings by the groups Z
r
2 on the sym-

metri omposition algebras as in S Setion 3.2, we get gradings on:



Fine gradings on the simple Lie algebras of type E 71

(6g1) e6 = g(pK, pC) by the group Z
2
2 × Z2 × Z

3
2 = Z

6
2, of type (48, 1, 0, 7);

(7g1) e7 = g(pQ, pC) by the group Z
2
2 × Z

2
2 × Z

3
2 = Z

7
2, of type (96, 0, 3, 7);

(8g1) e8 = g(pC, pC) by the group Z
2
2 × Z

3
2 × Z

3
2 = Z

8
2, of type (192, 0, 0, 14).

Moreover, there is a distinguished Z3-grading on g(S, S′), obtained as the

eigenspae deomposition of an order 3 automorphism Θ indued by the triality

automorphisms ϑ and ϑ′
of S and S′

respetively. It is given by

Θ|tri(S) = ϑ, Θ|tri(S′) = ϑ′, Θ(ιi(x⊗ x′)) = ιi+1(x⊗ x′).

This Z3-grading on g(S, S′) indued by Θ an be ombined with any G and

G′
-gradings on S and S′

respetively, to get a grading by the group Z3×G×G′

on g(S, S′). If this proedure is applied to the Z3-grading on pK and to the

Z2
3-grading on Ok, we get gradings on:

(6g2) e6 = g(pK,Ok) by the group Z3 × Z3 × Z
2
3 = Z

4
3, of type (72, 0, 2);

(8g2) e8 = g(Ok,Ok) by the group Z3 × Z2
3 × Z2

3 = Z5
3, of type (240, 0, 0, 2).

And if we ombine some of the gradings above (related to the primes 2 and 3),
we obtain gradings on:

(6g3) e6 = g(pK, pC) by the group Z3 × Z3 × Z
3
2 = Z

3
2 × Z

2
3, of type (64, 7);

(6g4) e6 = g(pK,Ok) by the group Z3 × Z2 × Z
2
3 = Z2 × Z

3
3, of type (26, 26);

(7g2) e7 = g(pQ,Ok) by the group Z3 × Z2
2 × Z2

3 = Z2
2 × Z3

3, of type (81, 26);

(8g3) e8 = g(pC,Ok) by the group Z3 × Z
3
2 × Z

2
3 = Z

3
2 × Z

3
3 = Z

3
6, of type

(182, 33).

Finally, we an also ombine the above Z3-grading on g(S, S′) indued by

Θ with gradings on S and S′
by in�nite groups, namely, the Z-grading on pQ

and the Z2
-grading on pC as in Equations (9) and (8) respetively. Thus we get

gradings on:

(6g5) e6 = g(pK, pC) by the group Z3 × Z3 × Z
2 = Z

2 × Z
2
3, of type (60, 9);

(7g3) e7 = g(pQ,Ok) by the group Z3 × Z× Z2
3 = Z× Z3

3, of type (55, 0, 26);

(8g4) e8 = g(pC,Ok) by the group Z3×Z2×Z2
3 = Z2×Z3

3, of type (168, 1, 26).
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Now, onsider the Z-grading on g(S, S′) desribed in [7, �4.2℄ as follows: Let

1 and 1′ be the unit elements of two Hurwitz algebras C and C ′
. They beome

the paraunits of the orresponding para-Hurwitz algebras S = pC and S′ = pC ′
.

Consider the inner derivation d := ad(ι0(1⊗1′)) of g(S, S′), whih is a semisimple

derivation with eigenvalues ±2,±1, 0. Thus, the eigenspae deomposition gives

the following Z-grading (5-grading) on g(S, S′):

g(S, S′)±2 = Σ±(S0, S
′
0),

g(S, S′)±1 = ν±(S ⊗ S′),

g(S, S′)0 = tS0,S0 ⊕ tS′
0,S

′
0
⊕ ι0(S0 ⊗ S′

0)⊕ Fι0(1⊗ 1′),

(11)

where S0 and S′
0 denote the subspaes of zero trae elements in C and C ′

(here

S = pC and S′ = pC ′
), and where

Σ±(y, y
′) := t1,y + t′1,y′ ± iι0(y ⊗ 1 + 1⊗ y′),

ν±(y ⊗ y′) := ι1(y ⊗ y′)∓ iι2(ȳ ⊗ ȳ′),

for all y ∈ S, y′ ∈ S′
, and for a �xed salar i ∈ F suh that i

2 = −1. It is

lear that this Z-grading an be re�ned with gradings oming from S or S′
. In

partiular, when the Zr
2-gradings on pC and pC ′

are used, we get gradings on:

(6g6) e6 = g(pK, pC) by the group Z× Z2 × Z3
2 = Z× Z4

2, of type (57, 0, 7);

(7g4) e7 = g(pQ, pC) by the group Z× Z2
2 × Z3

2 = Z× Z5
2, of type (106, 3, 7);

(8g5) e8 = g(pC, pC) by the group Z× Z
3
2 × Z

3
2 = Z× Z

6
2, of type (206, 0, 14).

Next we reall the Z
4
-grading on g(pC, S′) desribed in [7, �4.3℄. Take the

anonial generators a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), g1 = (0, 0, 1, 0), g2 =
(0, 0, 0, 1) of the group Z4

, and write a0 = −a1 − a2, g0 = −g1 − g2. Set the

degrees of the Z4
-grading as follows:

deg ιi(e1 ⊗ s) = ai = − deg ιi(e2 ⊗ s),
deg ιi(ui ⊗ s) = gi = − deg ιi(vi ⊗ s),

deg ιi(ui+1 ⊗ s) = ai+2 + gi+1 = − deg ιi(vi+1 ⊗ s),
deg ιi(ui+2 ⊗ s) = −ai+1 + gi+2 = − deg ιi(vi+2 ⊗ s),

(12)

where s ∈ S′
and B = {e1, e2, u0, u1, u2, v0, v1, v2} is the standard basis of the

algebra C desribed in Setion 1.2.1. Also set deg(t) = (0, 0, 0, 0) for all t ∈
tri(S′), and deg tx,y = deg ι0(x⊗s)+deg ι0(y⊗s), if x, y ∈ B. A straightforward

omputation shows that the Z
4
-grading on g(pC, S′) provided by this assignment

is ompatible with any grading on pC and on S′
. In partiular, the following

gradings are obtained:
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(6g7) A grading on e6 = g(pC, pK) by the group Z
4 × Z2, of type (72, 1, 0, 1);

(7g5) A grading on e7 = g(pC, pQ) by the group Z4 × Z2
2, of type (120, 0, 3, 1);

(8g6) A grading on e8 = g(pC, pC) by the group Z
4 × Z

3
2, of type (216, 0, 0, 8).

Observe that a Z3
-grading an be de�ned on g(pQ, S′) and a Z2

-grading on

g(pK, S′), both of them inherited diretly from the Z
4
-grading on g(pC, S′) given

by Equation (12). (Here {e1, e2, u1, v1} is a basis of pQ and {e1, e2} is a basis of

pK.) The grading on g(pQ, S′) is given by the following assignment of degrees:

deg ιi(e1 ⊗ s) = ai = − deg ιi(e2 ⊗ s),
deg ι1(u1 ⊗ s) = (0, 0, 1) = − deg ι1(v1 ⊗ s),
deg ι2(u1 ⊗ s) = (0, 1, 1) = − deg ι2(v1 ⊗ s),
deg ι0(u1 ⊗ s) = (1, 1, 1) = − deg ι0(v1 ⊗ s),

deg(te1,e2) = (0, 0, 0) = deg(tu1,v1),
deg(te1,u1) = (−1, 0, 1) = − deg(te2,v1),
deg(te1,v1) = (−1,−2,−1) = − deg(te2,u1),

for a1 = (1, 0, 0), a2 = (0, 1, 0), a0 = (−1,−1, 0), with deg(tri(S′)) = (0, 0, 0).
The grading on g(pK, S′) is given by:

deg ι1(e1 ⊗ s) = (1, 0) = − deg ι1(e2 ⊗ s),
deg ι2(e1 ⊗ s) = (0, 1) = − deg ι2(e2 ⊗ s),
deg ι0(e1 ⊗ s) = (−1,−1) = − deg ι0(e2 ⊗ s),

with deg(tri(pK)) = (0, 0) = deg(tri(S′)). Again these gradings an be ombined

with the Z
3
2-grading on the symmetri omposition algebra pC to get:

(6g8) A grading on e6 = g(pK, pC) by the group Z
2 × Z

3
2, of type (48, 1, 0, 7);

(7g6) A grading on e7 = g(pQ, pC) by the group Z3 × Z3
2, of type (102, 0, 1, 7).

3.4 Gradings on some Jordan algebras

We are going to desribe some gradings on the Jordan algebra H4(C, ∗) =
{x = (xij) ∈ Mat4×4(C) | xij = x̄ji} for C some assoiative Hurwitz al-

gebra (that is, up to isomorphism, C ∈ {F,K,Q}). The reader may onsult

[23, Chapter 5℄ for the desription of gradings on simple Jordan algebras.

Observe �rst that the Kroneker produt gives an isomorphism of assoiative

algebras:

Mat2×2(F)⊗Mat2×2(F) → Mat4×4(F), a⊗ b 7→ a⊗ b =

(

a11b a12b
a21b a22b

)

.
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Also, there is the natural isomorphism of assoiative algebras,

Mat4×4(F)⊗ C ∼= Mat4×4(C), (aij)⊗ x 7→ (aijx). (13)

As Mat2×2(F) is isomorphi to Q, it inherits a Z-grading and a Z2
2-grading, so

that the previous identi�ations allow us to de�ne gradings on Mat4×4(F) by

the groups Z
2
2 × Z

2
2 and Z× Z

2
2, on Mat4×4(K) by the groups Z

2
2 × Z

2
2 × Z2 and

Z× Z2
2 × Z2, and on Mat4×4(Q) by the groups Z2

2 × Z2
2 × Z2

2 and Z× Z2
2 × Z2

2.

Trivially any grading on the assoiative algebra Mat4×4(C) is a grading of the

Jordan algebra Mat4×4(C)+. The point is that, for the previously desribed

gradings, the Jordan subalgebra H4(C, ∗) 6 Mat4×4(C)+ is a graded subspae,

so that:

• H4(F, ∗) is Z
4
2 and Z× Z2

2-graded;

• H4(K, ∗) is Z5
2 and Z× Z3

2-graded;

• H4(Q, ∗) is Z6
2 and Z× Z

4
2-graded.

Let us explain this with some extra detail. Let us denote by q0 the identity

matrix of degree 2, and onsider the matries

q1 =

(

0 1
1 0

)

, q2 =

(

1 0
0 −1

)

, q3 =

(

0 −1
1 0

)

= q1q2. (14)

Then the assignment deg(q1) = (1̄, 0̄) and deg(q2) = (0̄, 1̄) gives the Z
2
2-grading

on Mat2×2(F). The Z4
2-grading on Mat4×4(F) has 16 one-dimensional homo-

geneous omponents, where qi ⊗ qj has degree (deg(qi), deg(qj)). The subset

of homogeneous elements {qi ⊗ qj , q3 ⊗ q3 | i, j = 0, 1, 2} spans H4(F, ∗), and
hene the 10-dimensional spae H4(F, ∗) is also Z

4
2-graded. Moreover, as the

Z2-grading on K is given by K0̄ = 〈1 = e1 + e2〉 and K1̄ = 〈e1 − e2〉, then
H4(K, ∗) ⊂ Mat2×2(F) ⊗ Mat2×2(F) ⊗ K is spanned by the following subset

of homogeneous elements for the Z5
2-grading: {qi ⊗ qj ⊗ 1, q3 ⊗ q3 ⊗ 1 | i, j =

0, 1, 2}∪{qi⊗ q3⊗ (e1− e2), q3⊗ qi⊗ (e1− e2) | i = 0, 1, 2}. The remaining ases

are dealt with in the same way.

3.5 Gradings on Lie algebras obtained from Kantor's and Stein-

berg's onstrutions

Reall that we an get the exeptional Lie algebras of the E series by means

of Kantor's onstrution applied to the struturable algebras CD(H4(C, ∗)), for
an assoiative Hurwitz algebra C. In turn, these struturable algebras are ob-

tained from the Jordan algebras J = H4(C, ∗) by means of the Cayley-Dikson
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doubling proess explained in Example 2.2. This doubling proess provides a

Z2-grading as usual, with even part J and odd part vJ , learly ompatible with

any grading on J . At the same time, any G-grading on a struturable algebra

(A,−) provides a Z×G-grading on Kan(A,−) and a Z2
2×G-grading on U(A,−)

(whih is isomorphi to Kan(A,−)). Thus we have another soure of gradings

on our Lie algebras. If Kantor's onstrution is applied to CD(H4(C, ∗)), and
the Z2-grading indued by the Cayley-Dikson doubling proess and the �nite

gradings on Setion 3.4 are ombined, we obtain gradings on:

(6g9) e6 = Kan(CD(H4(F))) by the group Z× Z5
2, of type (73, 0, 0, 0, 1);

(7g7) e7 = Kan(CD(H4(K))) by the group Z× Z
6
2, of type (127, 0, 0, 0, 0, 1);

(8g7) e8 = Kan(CD(H4(Q))) by the group Z× Z
7
2, of type (241, 0, 0, 0, 0, 0, 1).

In the same vein, but using the in�nite gradings on Setion 3.4, we get

gradings on:

(6g10) e6 = Kan(CD(H4(F))) by the group Z
2 × Z

3
2, of type (60, 7, 0, 1);

(7g8) e7 = Kan(CD(H4(K))) by the group Z
2 × Z

4
2, of type (102, 13, 0, 0, 1);

(8g8) e8 = Kan(CD(H4(Q))) by the group Z2 × Z5
2, of type (180, 31, 0, 0, 0, 1).

Moreover, if we use Steinberg's onstrution applied to CD(H4(C, ∗)), the Z2-

grading indued by the Cayley-Dikson doubling proess and the �nite gradings

in Setion 3.4 an be ombined to get gradings on:

(6g11) e6 = U(CD(H4(F))) by the group Z7
2, of type (72, 0, 0, 0, 0, 1);

(7g9) e7 = U(CD(H4(K))) by the group Z
8
2, of type (126, 0, 0, 0, 0, 0, 1);

(8g9) e8 = U(CD(H4(Q))) by the group Z
9
2, of type (240, 0, 0, 0, 0, 0, 0, 1).

It is not di�ult to see that the Z×Z
5
2-grading (respetively Z×Z

6
2 and Z×Z

7
2)

obtained in e6 = U(CD(H4(F))) (respetively e7 = U(CD(H4(K))) and e8 =
U(CD(H4(Q)))) is isomorphi to the grading (6g9) (respetively (7g7) and

(8g7)).

Remark 3.1. As we know [17℄ about the existene of a Z4 × Z4
2-grading on

e6, of type (48, 13, 0, 1), we would like to �nd a Z4-grading on the Lie algebra

obtained by means of Kantor's onstrution attahed to a struturable algebra.

That an be done for A = CD(H4(C)) = J ⊕ vJ , with J = H4(C, ∗) the Jordan
algebra of hermitian matries with oe�ients in an assoiative Hurwitz algebra
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C. In suh a ase, S = Fv, and it is an straightforward omputation, taking into

aount Equations (4) and (5), that L = Kan(A) is Z4-graded as follows:

L0̄ = Fv˜⊕ (VJ,J + VvJ,vJ)⊕ Fv,
L1̄ = J ⊕ (vJ )̃ ,
L2̄ = VJ,vJ ,
L3̄ = J˜⊕ vJ.

This grading is ompatible with any grading on J , so that we an ombine it with

the gradings desribed in Setion 3.4 to get gradings on e6 = Kan(CD(H4(F)))
by the group Z4 × Z4

2, on e7 = Kan(CD(H4(K))) by the group Z4 × Z5
2, and on

e8 = Kan(CD(H4(Q))) by the group Z4×Z6
2. But these are not �ne!, so we must

ontinue the searh in order to explain several gradings by groups with fators

Z4.

3.6 A Z4 × Z3
2-grading on the Jordan algebra H4(Q) and related

gradings on the exeptional Lie algebras

A graded division (assoiative) algebra D is a graded algebra suh that every

homogeneous element is invertible. If the support of suh a grading is H and

G is a group ontaining H as a subgroup, and we have a G-graded right D-

module V (that is, VgDh ⊂ Vg+h for any g ∈ G and h ∈ H), then the division

property of D fores V to be a free right D-module ontaining bases onsisting of

homogeneous elements, aording to [21, �2℄. Then we have a G-grading indued

on R = EndD(V ) given by f ∈ Rg if f(Vg′) ⊂ Vg+g′ for any g′ ∈ G.

Let τ : D → D be a graded antiautomorphism, that is, τ is an antiauto-

morphism with τ(Dh) = Dh for any h ∈ H (whih implies that neessarily τ is

an involution, that is τ2 = idD). Let b : V × V → D a sesquilinear form (b is F-

bilinear, b(v1, v2) = τ(b(v2, v1)) and b(v1, v2d) = b(v1, v2)d for any v1, v2 ∈ V and

d ∈ D) ompatible with the grading, that is, b(Vg, Vg′) ⊂ Dg+g′ . Let ∗ be the ad-

joint relative to this form (b(f(v1), v2) = b(v1, f
∗(v2)) if f ∈ R). The point is that

the sets of hermitian and skew-hermitian elements H(R, ∗) = {f ∈ R | f∗ = f}
and K(R, ∗) = {f ∈ R | f∗ = −f} are graded subspaes. Moreover, it is proven

in [21℄ that essentially all the gradings in K(R, ∗) and in H(R, ∗) are obtained

in this way.

Note that the quaternion algebra Q = Mat2×2(F) is a Z2
2-graded division

algebra with the grading given by the matries in Equation (14),

Q(0̄,0̄) = F1, Q(1̄,0̄) = Fq1, Q(0̄,1̄) = Fq2, Q(1̄,1̄) = Fq3. (15)

There are two involutions ompatible with this grading. The involution τ o given

by

qτ
o

1 = q1, qτ
o

2 = q2, qτ
o

3 = −q3,
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is the usual transpose involution (an orthogonal involution); while the involution

τ s = − given by

q̄i = −qi, ∀i = 1, 2, 3,

is the standard onjugation of the quaternion algebra Q (a sympleti involu-

tion).

Take (D = Q, τ o) as above but with the following grading, equivalent to

(15),

Q(0̄,0̄) = F1, Q(2̄,0̄) = Fq1, Q(0̄,1̄) = Fq2, Q(2̄,1̄) = Fq3.

Take B = {v0, v1} a homogeneous D-basis in V , a graded right free D-module

of dimension 2, with deg(v0) = (0̄, 0̄) and deg(v1) = (1̄, 0̄). We have hosen the

degrees suh that the sesquilinear form b : V × V → D given by the matrix A =
(

1 0
0 q1

)

relative to B is ompatible with the grading (sine 2 deg(v0) = deg(1)

and 2 deg(v1) = deg(q1)). Now for x =

(

p1 p2
p3 p4

)

∈ Mat2×2(Q) ≃ EndQ(V ) =

R, we have x∗ = A−1(τ o(x))tA =

(

τ o(p1) τ o(p3)q1
−q1τ

o(p2) −q1τ
o(p4)q1

)

, and hene

K(Mat2×2(Q), ∗) =

{(

αq3 −τ o(p)q1
p βq2

)

| α, β ∈ F, p ∈ Q

}

=: K

inherits the Z4 × Z2-grading, with 6 piees of dimension one,

K = K(2̄,1̄) ⊕K(0̄,1̄) ⊕K(1̄,0̄) ⊕K(3̄,0̄) ⊕K(1̄,1̄) ⊕K(3̄,1̄),

and also, for H := H(Mat2×2(Q), ∗),

H =

{(

p1 τ o(p)q1
p p2

)

| p1 ∈ 〈1, q1, q2〉, p2 ∈ 〈1, q1, q3〉, p ∈ Q

}

inherits the Z4 × Z2-grading,

H = H(2̄,1̄) ⊕H(0̄,1̄) ⊕H(1̄,0̄) ⊕H(3̄,0̄) ⊕H(1̄,1̄) ⊕H(3̄,1̄) ⊕H(0̄,0̄) ⊕H(2̄,0̄),

of type (6, 2) sine all the above homogeneous omponents are one-dimensional

exept for two of them, namely,

H(0̄,0̄) = 〈

(

1 0
0 0

)

,

(

0 0
0 1

)

〉, H(2̄,0̄) = 〈

(

q1 0
0 0

)

,

(

0 0
0 q1

)

〉.

Next we identify Mat4×4(Q) with Mat2×2(F) ⊗ Mat2×2(F) ⊗ Q and hene

with Q ⊗ Mat2×2(Q) = Q ⊗ R, and onsider here the (sympleti) involution
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given by τ s⊗∗. The Jordan algebra J = H4(Q) lives here as J = {q⊗x ∈ Q⊗R |
τ s(q)⊗x∗ = q⊗x}, whih an be identi�ed with K(Q, τ s)⊗K(Mat2×2(Q), ∗)⊕
H(Q, τ s) ⊗ H(Mat2×2(Q), ∗). In this way, by ombining the Z

2
2-grading on Q

given by Equation (15) with the above Z4 ×Z2-grading on R, we get a Z4 ×Z3
2-

grading on J = H4(Q) of type 3(6, 0) + 1(6, 2) = (24, 2). Also we get a Z4 ×Z3
2-

grading on K(Q ⊗ R, τ s ⊗ ∗) ∼= Der(H4(Q)) (a Lie algebra of type c4) of type

1(6, 0) + 3(6, 2) = (24, 6).

Of ourse this grading on J indues a Z4 × Z4
2-grading on the struturable

algebra CD(H4(Q)), of type (48, 4). Now note that, aording to [3℄,

Der(CD(H4(Q)),−) ≃ e6, Instr(CD(H4(Q))) ≃ e7, U(CD(H4(Q))) ≃ e8.
(16)

In partiular, every G-grading on CD(H4(Q)) indues a G-grading on e6, a G×
Z2-grading on e7 and a G× Z2

2-grading on e8. In our ase we get gradings on:

(6g12) e6 = Der(CD(H4(Q))) by the group Z4 × Z
4
2, of type (48, 13, 0, 1);

(7g10) e7 = Instr(CD(H4(Q))) by the group Z4 × Z
5
2, of type (98, 15, 0, 0, 1);

(8g10) e8 = U(CD(H4(Q))) by the group Z4 × Z
6
2, of type (192, 25, 0, 0, 0, 1).

3.7 A Z3
4-grading on the struturable algebra CD(H4(Q))

There is a Z
3
4-grading on the struturable algebra A = CD(H4(Q)) whih is

not explained in terms of the Cayley-Dikson proess. This is a very interesting

grading in whih every nonzero homogeneous omponent is one-dimensional. Let

us desribe it. The information is extrated from [8℄.

Identify, as in Equation (13),Mat4×4(Q) withMat4×4(F)⊗Q. The involution

(qij)
∗ = (q̄ji) in Mat4×4(Q) is, under suh orrespondene, the tensor produt of

the matrix transpose on Mat4×4(F) and the standard involution on Q (under the

identi�ation of Q with Mat2×2(F), this involution ats as follows: Ē11 = E22,

Ē22 = E11, Ē12 = −E12, Ē21 = −E21). In partiular, the Jordan subalgebra of

symmetri elements H4(Q) = {q = (qij) ∈ Mat4×4(Q) | q∗ = q} is identi�ed

with H4(F) ⊗ 〈E11 + E22〉 ⊕ K4(F) ⊗ 〈E11 − E22, E12, E21〉, where H4(F) and

K4(F) denote the subspaes of symmetri and skewsymmetri matries of size

4, respetively, and hene with

J =

{(

z x
y zt

)

| x = −xt, y = −yt, x, y, z ∈ Mat4×4(F)

}

.
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Consider the following Z4-grading on the struturable algebra A = J ⊕ vJ :

A0̄ =

{(

z 0
0 zt

)

| z ∈ Mat4×4(F)

}

,

A1̄ =

{(

0 x
0 0

)

+ v

(

0 0
y 0

)

| x, y ∈ K4(F)

}

,

A2̄ = vA0̄,

A3̄ =

{

v

(

0 x
0 0

)

+

(

0 0
y 0

)

| x, y ∈ K4(F)

}

.

(17)

Note that if u ∈ GL(4,F) is an invertible matrix, we an onsider the following

automorphism of H4(Q),

Ψ(u) :

(

z x
y zt

)

7→

(

uzu−1 uxut

(u−1)tyu−1 (uzu−1)t

)

,

whih extends to A in a natural way (also denoted Ψ(u)). For any natural

number n, let ξ be a primitive nth root of 1 and onsider the following matries

Pn =















1 0 . . . . . . 0
0 ξ 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 ξn−2 0
0 . . . . . . 0 ξn−1















, Qn =















0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 0 1
1 0 . . . . . . 0















, (18)

also alled Pauli matries (Pn sometimes will be denoted by Pξ). Take now the

Pauli matries X = P4 and Y = Q4 and note that then Ψ(X) and Ψ(Y ) are

order four automorphisms of A (whih neither ommute nor antiommute).

Also, onsider for any skew-symmetri 4× 4 matrix, its Pfa�an adjoint x̂:

x =









0 α β γ
−α 0 δ ε
−β −δ 0 ζ
−γ −ε −ζ 0









∈ K4(F), x̂ =









0 −ζ ε −δ
ζ 0 −γ β
−ε γ 0 −α
δ −β α 0









.

(Note that this di�ers from [8℄, where −x̂ is onsidered.) Now onsider the order

4 automorphism π : A → A, whose restrition to A0̄ ⊕ A2̄ is the identity, and

suh that:

π

(

0 x
y 0

)

= v

(

0 −ŷ
x̂ 0

)

, π

(

v

(

0 x
y 0

))

=

(

0 −ŷ
x̂ 0

)

,

on A1̄⊕A3̄. If ξ ∈ F is hosen suh that ξ2 = i, then πΨ(ξX) and Ψ(Y ) are two
order 4 ommuting automorphisms that preserve the Z4-grading given by Equa-

tion (17), and a Z3
4-grading on A is obtained whose homogeneous omponents
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are the intersetion of the homogeneous omponents of the Z4-grading with the

ommon eigenspaes for πΨ(ξX) and Ψ(Y ).

Remark 3.2. This struturable algebra of dimension 56 (the only simple one of

suh dimension) has a model whih is better known. It is de�ned on the vetor

spae

(

F A

A F

)

with multipliation given by

(

α1 x1
x′1 β1

)(

α2 x2
x′2 β2

)

=

(

α1α2 + T (x1, x
′
2) α1x2 + β2x1 + x′1 × x′2

α2x
′
1 + β1x

′
2 + x1 × x2 β1β2 + T (x2, x

′
1)

)

,

where T denotes the map T : A×A → F given by T (x, y) = T (xy) and × denotes

the so alled Freudenthal ross produt de�ned by T (x × y, z) = N(x, y, z) if

x, y, z ∈ A. The involution is given by

(

α x
x′ β

)

=

(

β x
x′ α

)

.

Although this is isomorphi (as an algebra with involution), to CD(H4(Q)), it
was previously studied as an example of Brown algebra. Garibaldi [30℄ disusses

the onnetions between this algebra and the groups of types E6 and E7.

3.8 More gradings on the exeptional Lie algebras by groups

with fators Z4

The Z3
4-grading above on CD(H4(Q)) immediately indues the following

gradings on:

(8g11) e8 = Kan(CD(H4(Q))) by the group Z× Z3
4, of type (123, 40, 15);

(8g12) e8 = U(CD(H4(Q))) by the group Z2
2 × Z3

4, of type (216, 14, 0, 1);

if we take into onsideration the Z-grading provided by Kantor's onstrution

and the Z
2
2-grading provided by Steinberg's onstrution.

Furthermore, reall that the algebras e6 and e7 an be obtained too from the

struturable algebra CD(H4(Q)) as in (16). Hene we get also gradings on:

(6g13) e6 = Der(CD(H4(Q))) by the group Z3
4, of type (48, 15);

(7g11) e7 = Instr(CD(H4(Q))) by the group Z3
4 × Z2, of type (102, 14, 1).
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The restrition of the Z
3
4-grading on CD(H4(Q)) to its struturable subal-

gebra CD(H4(K)) provides a Z
2
4 × Z2-grading on CD(H4(K)), whih of ourse

an be used to get gradings on:

(7g12) e7 = Kan(CD(H4(K))) by the group Z× Z
2
4 × Z2, of type (67, 27, 4);

(7g13) e7 = U(CD(H4(K))) by the group Z
2
2 × Z

2
4 × Z2 = Z

3
2 × Z

2
4, of type

(123, 3, 0, 1).

3.9 A �ne Z3
5-grading

There is a Z3
5-grading on e8 whih seems not to be related with any of the

previous onstrutions or strutures. This grading appears in several ontexts

(for instane, [1℄ and [20℄, and lately in [42℄), due to its interesting properties:

the zero homogeneous omponent is trivial (as in any �ne grading by a �nite

group, see [16, Corollary 5℄) and all the other homogeneous omponents (in this

ase 124) have the same dimension (so that in this ase suh dimension must

be 2) and onsist of semisimple elements ([17, Lemma 1℄). Moreover, given any

0 6= g ∈ Z
3
5, the subspae

⊕4
i=1

(

e8
)

ig
is a Cartan subalgebra. The following

desription an be found in [20℄.

Let V1 and V2 be two vetor spaes over F of dimension 5 and let us onsider

the following Z5-graded vetor spae L = L0̄ ⊕ L1̄ ⊕ L2̄ ⊕ L3̄ ⊕ L4̄, for

L0̄ = sl(V1)⊕ sl(V2),

L1̄ = V1 ⊗
∧2 V2,

L2̄ =
∧2 V1 ⊗

∧4 V2,

L3̄ =
∧3 V1 ⊗ V2,

L4̄ =
∧4 V1 ⊗

∧3 V2.

(19)

We an endow L with a struture of Z5-graded Lie algebra, with the natural a-

tion of the semisimple algebra L0̄ on eah of the other homogeneous omponents.

The brakets involving elements in di�erent homogeneous omponents are given

by suitable salar multiples of the only L0̄-invariant maps from Lī × Lj̄ → Lī+j̄

(these salars have been omputed expliitly in [13℄). The Lie algebra de�ned in

this way is simple of dimension 248, and hene it provides a linear model of e8.

The philosophy of this kind of linear models an be found in [46, Chapter 5, �2℄.

Let ξ ∈ F be a primitive �fth root of 1, and take B1 and B2 bases of V1

and V2 respetively, and endomorphisms b1, c1 ∈ End(V1) and b2, c2 ∈ End(V2)
whose oordinate matries in the bases Bi are

b1 = Pξ, c1 = Q5,
b2 = Pξ2 , c2 = Q5,
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de�ned as in Equation (18).

Now the unique automorphisms Ψ,Ψ′ ∈ Aut(L) whose restritions to L1̄ are

given by

Ψ|L1̄
= b1 ⊗ ∧2b2,

Ψ′|L1̄
= c1 ⊗ ∧2c2,

are order 5 automorphisms whih ommute with the automorphism produing

the Z5-grading on L given by Equation (19). Thus we obtain the desired grading

by the group Z3
5, of type (0, 124).

3.10 Gradings indued from other linear models

We would like to explain a little bit the history of the searh for the gradings

desribed in Setion 3.8, whih eventually lead to the quest for the grading by

Z3
4 on the simple struturable algebra of dimension 56.

Consider the hain E6 ⊂ E7 ⊂ E8 of exeptional groups. The maximal

abelian subgroup Z
3
4 of E6 is then also an abelian subgroup of E7 and also of

E8, preditably non-toral. This fored us to onsider the order 4 automorphisms

of e7 and e8. First note that if we look at the subgroup Z
3
4 of E6, the three

opies of Z4 involved do not play the same role. One omes from ϑ, an outer

automorphism of e6 produing the grading

e6 = (a3 ⊕ sl(V ))⊕ (V (2λ1)⊗ V )⊕ (V (2λ2)⊗ F)⊕ (V (2λ3)⊗ V ) , (20)

for a two-dimensional vetor spae V , where the λi's are the fundamental dom-

inant weights for a3. The other opies of Z4, restrited to a3, produe the Z
2
4-

grading obtained by means of Pauli matries. More preisely, they orrespond

to the group

〈(P4, P2), (Q4, Q2)〉 ⊂
SL(4)× SL(2)

〈(iI4,−I2)〉
≃ CentE6〈ϑ〉.

The Z3
4-grading on e6 is easily handled in this way, sine we obtain onrete

desriptions of the homogeneous omponents in terms of tensors of the natural

representations of sl(4) and sl(2).

Inspired by this, one an onsider the automorphism of e7 obtained by re-

moving the blak node of the extended Dynkin diagram (see [39, Chapter 8℄)

❡ ❡ ❡ ✉ ❡ ❡ ❡

❡

1 2 3 4 3 2 1

2
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whih produes a Z4-grading L = L0̄ ⊕L1̄ ⊕L2̄ ⊕L3̄ on the Lie algebra L ∼= e7,

where

L0̄ = sl(W1)⊕ sl(V )⊕ sl(W2),
L1̄ = W1 ⊗ V ⊗W2,

L2̄ =
∧2W1 ⊗ F⊗

∧2W2,

L3̄ =
∧3W1 ⊗ V ⊗

∧3W2,

for W1 = W2 and V vetor spaes of dimensions 4 and 2 respetively. (This gives

the struture of the homogeneous omponents as modules for L0̄.) We onsider

now the order four automorphisms whose restritions to L1̄ are P4 ⊗ P2 ⊗ P4,

Q4 ⊗ Q2 ⊗ Q4, with Pn and Qn de�ned as in Equation (18), and the order

2 automorphism determined by w1 ⊗ v ⊗ w2 7→ w2 ⊗ v ⊗ w1. In this way, a

Z3
4 × Z2-grading on e7 is obtained (equivalent to (7g11)).

The same kind of arguments an be used to study Z4-gradings on e8. Again,

remove the blak node of the extended Dynkin diagram of e8

❡ ❡ ❡ ❡ ❡ ❡ ✉ ❡

❡

1 2 3 4 5 6 4 2

3

to get an automorphism ϑ ∈ Aut(e8) produing a Z4-grading L = L0̄ ⊕ L1̄ ⊕
L2̄ ⊕ L3̄ on the Lie algebra L ∼= e8 where, as L0̄-modules, we have:

L0̄ = sl(W )⊕ sl(V ),

L1̄ =
∧2W ⊗ V,

L2̄ =
∧4W ⊗ F,

L3̄ =
∧6W ⊗ V,

for W and V vetor spaes of dimensions 8 and 2 respetively. The entralizer

an be heked to be

CentE8(ϑ) ≃
PSL(8)× PSL(2)

〈(iI8,−I2)〉
,

where the automorphism ϑ orresponds to the lass [(ξI8, I2)] for ξ ∈ F suh that

ξ2 = i. The MAD-groups of E8 ontaining ϑ are MAD-groups of CentE8(ϑ). In
partiular, if we take ϑ together with

[(I2 ⊗ P4, P2)], [(P2 ⊗ I4, I2)],
[(I2 ⊗Q4, Q2)], [(Q2 ⊗ I4, I2)],

we obtain a Z3
4 × Z2

2-grading on e8 (equivalent to (8g12)); and if we take it

together with

[(I2 ⊗ P4, P2)], [(I2 ⊗Q4, Q2)], [(
(

α 0
0 1

α

)

⊗ I4, I2)],
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we obtain the produt of a one-dimensional torus and Z
3
4, and hene a Z

3
4 × Z-

grading on e8 (equivalent to (8g11)).

Aording to [22℄, this latter grading has to be indued by a �ne grading

with universal group Z3
4 on the simple struturable algebra of dimension 56.

Unfortunately, the gradings on the struturable algebras are not yet lassi�ed,

but in any ase it was worth to �nd suh a Z
3
4-grading, beause it lies behind

several gradings on the simple Lie algebras e6, e7 and e8 (those in Setion 3.8).

This was the starting point of [8℄.

However, the models based on the Z3
4-grading on the simple 56-dimensional

struturable algebra have a disadvantage over the linear models above, as the

desription of the homogeneous omponents involving piees of trip(CD(H4(C)))
is not an easy task, and the type of the grading or the onjugay lasses of the

automorphisms are neither easy to ompute.

3.11 Conlusion

A large list of gradings on exeptional Lie algebras has been ompiled here.

All of them are �ne and are desribed by their universal grading groups. We

summarize them in the next result.

Theorem 3.3. The following gradings on the simple Lie algebras of type E are

all �ne:

• The gradings on e6 desribed as (6gi), i = 1, . . . , 13, whose universal

groups are: Z6
2, Z

4
3, Z

3
2 ×Z2

3, Z2 ×Z3
3, Z

2 ×Z2
3, Z×Z4

2, Z
4 ×Z2, Z

2 ×Z3
2,

Z× Z
5
2, Z

2 × Z
3
2, Z

7
2, Z4 × Z

4
2, Z

3
4.

• The gradings on e7 desribed as (7gi), i = 1, . . . , 13, whose universal

groups are: Z7
2, Z2

2 × Z3
3, Z × Z3

3, Z × Z5
2, Z4 × Z2

2, Z3 × Z3
2, Z × Z6

2,

Z
2 × Z

4
2, Z

8
2, Z4 × Z

5
2, Z

3
4 × Z2, Z× Z

2
4 × Z2, Z

3
2 × Z

2
4.

• The gradings on e8 desribed as (8gi), i = 1, . . . , 13, whose universal

groups are: Z8
2, Z5

3, Z3
6, Z2 × Z3

3, Z × Z6
2, Z4 × Z3

2, Z × Z7
2, Z2 × Z5

2,

Z9
2, Z4 × Z6

2, Z× Z3
4, Z

2
2 × Z3

4, Z
3
5.

Conjeture:We think that these gradings exhaust the list of �ne gradings, up to

equivalene, on e6, e7 and e8, with the exeption of the root spae deompositions

relative to a Cartan subalgebra.

If this onjeture were true, then there would be, up to equivalene, 14 �ne

gradings on eah of the simple Lie algebras of type E. Therefore, there would

be exatly 14 onjugay lasses of maximal abelian diagonalizable subgroups of

the algebrai group Aut(er), r = 6, 7, 8.
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This onjeture has been proved for e6 in [17℄. The ases of e7 and e8 remain

open. An strategy for the �nite ase is that every automorphism belonging to

a MAD-subgroup of a onneted and simply-onneted group (like E8) �xes a

semisimple subalgebra, so that it orresponds to removing only one node in the

extended Dynkin diagram. That fat implies that only a handful of automorph-

isms are possible and we are working in eah ase (see [14℄) by studying the

orresponding entralizers as in Setion 3.10. The group Aut(e7) is not simply

onneted, but one one gets all the MAD-subgroups of E8, muh of the work is

already done. In order to deal with in�nite MAD-groups, note that every grad-

ing by an in�nite group is related to a grading by a root system, as proved in

[22℄. As these root-gradings are well known, the problem redues to study some

speial gradings on the oordinate algebras. In many ases these are struturable

algebras or related to them. Hene the problem is redued to study gradings in

algebras of relative low dimension (ompared to the dimension of the exeptional

simple Lie algebras).

The reent results by Y. Ju (Maximal abelian subgroups of ompat simple Lie

groups of type E, arXiv:1403.2680) and of A. Elduque (Gradings on algebras over

algebraially losed �elds, arXiv:1407.0480) imply that the gradings in Theorem

3.3 exhaust the �ne gradings, up to equivalene, in e6, e7 and e8.
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