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Introdu
tion

Gradings by groups have played a key role in the study of Lie algebras,

and 
ontributed to understand their stru
tural properties. Several families of

examples 
an be found in [23℄. To begin with, the root spa
e de
omposition of

a 
omplex semisimple Lie algebra is a grading by the group Zr
, with r the rank

of the Lie algebra. Any grading by a torsion-free abelian group is equivalent to

a 
oarsening of su
h root spa
e de
omposition, and these gradings have been

extensively used in representation theory. Gradings by not ne
essarily redu
ed

root systems are very ni
e examples of this situation. In parti
ular, gradings by

the integers have had frequent appli
ations to physi
s, and they are spe
ially

relevant in algebrai
 
ontexts: if J is a Jordan algebra, the Tits-Kantor-Koe
her


onstru
tion applied to J is a Z-graded Lie algebra L = L−1 ⊕ L0 ⊕ L1 with

L1 = J , and the produ
t in J 
an be re
overed from the one in L. Some other

Jordan systems are related to `longer' Z-gradings too.

Gradings by groups with torsion are also ubiquitous: gradings by 
y
li


groups and the 
orresponding �nite order automorphisms are des
ribed by Ka
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[38℄. They are intimately related to (in�nite-dimensional) Ka
-Moody Lie al-

gebras and gradings by Z on them. In Di�erential Geometry, they are 
onne
-

ted with symmetri
 spa
es and their generalizations. Gradings by �nite abelian

groups are related to Lie 
olor algebras (a generalization of Lie superalgebras),

and sometimes to Lie algebra 
ontra
tions. An interested reader 
an 
onsult

[23, Introdu
tion℄ for these and other examples, as well as for appli
ations and

referen
es. Also a good and deep 
ompilation of results 
an be found in [46,

Chapter 3, �3℄, whi
h deals with the relationship between gradings on 
omplex

semisimple Lie algebras and automorphisms, and exhibit a wide variety of ex-

amples of gradings.

J. Patera and H. Zassenhaus, 
onvin
ed about the relevan
e of gradings, ini-

tiated in [47℄ a systemati
 study of gradings on Lie algebras, emphasizing the

role of the so 
alled �ne gradings (gradings whi
h 
annot be further re�ned).

Sin
e then, a 
onsiderable number of authors have been trying to obtain a 
las-

si�
ation of gradings on the simple Lie algebras (see, e.g. [33, 9, 21, 15, 16, 17℄),

whi
h has 
ulminated in the re
ent monograph [23℄, where gradings on the 
las-

si
al simple Lie algebras and on the ex
eptional simple Lie algebras of types G2

and F4 are thoroughly studied. However, there is still work to be done. On one

hand, not mu
h is known about gradings on solvable or nilpotent Lie algebras.

On the other hand, the 
lassi�
ation of gradings (for instan
e, the 
lassi�
ation

of �ne gradings up to equivalen
e) is not yet �nished for the 
omplex ex
eptional

simple Lie algebras of types E7 and E8 (denoted by e7 and e8), and this is also

the 
ase for the simple Lie algebras of types D4 and Er (r = 6, 7, 8) over al-

gebrai
ally 
losed �elds of prime 
hara
teristi
. Over the real numbers, even the


lassi�
ation of �ne gradings for the 
lassi
al Lie algebras is missing, although

many low-dimensional 
ases have been 
onsidered.

Our goal is the 
lassi�
ation of the �ne gradings on the ex
eptional Lie

algebras e7 and e8 over an algebrai
ally 
losed �eld F of 
hara
teristi
 zero, and

hen
e to �nish the 
lassi�
ation of �ne gradings on simple Lie algebras over

the 
omplex numbers. (Note the result in [17, Proposition 2℄, whi
h shows that

the 
omplex 
ase yields a solution over arbitrary algebrai
ally 
losed �elds of


hara
teristi
 0.)

This goal has not been rea
hed yet. The purpose of this paper is to de-

s
ribe a list of known �ne gradings, whi
h are 
ompiled in our Main Theorem

(Theorem 3.3) on the ex
eptional simple Lie algebras of type E. Most of these

gradings make sense in mu
h more general 
ontexts but, to avoid 
onfusion, we

will restri
t ourselves to an algebrai
ally 
losed ground �eld F of 
hara
teristi


zero. The list exhausts the �ne gradings, up to equivalen
e, on e6, and we 
on-

je
ture that it also exhausts them for e7 and e8. This has been announ
ed in [23,

Figure 6.2℄, although not all the des
riptions there 
oin
ide with ours. Further



Fine gradings on the simple Lie algebras of type E 55

details will be provided here too.

In our setting, a �ne grading is the eigenspa
e de
omposition relative to a

maximal quasitorus (that is, a maximal abelian diagonalizable, or MAD, sub-

group) of the group of automorphisms. This means that �ne gradings are related

to `large' abelian groups of symmetries. Hen
e our goal is equivalent to the 
las-

si�
ation of the MAD-subgroups, up to 
onjugation, of Aut(e7) and Aut(e8).

Some of these MAD-subgroups have appeared in the literature. For instan
e,

Griess des
ribes in [31℄ the maximal elementary p-subgroups of the groups E6,

E7 and E8. A larger 
lass of abelian subgroups (not just MAD-subgroups) is

studied in [52℄. The Z
3
6-subgroup of E8 has been 
onsidered by Hang and Vogan

in [32, pp. 22-25℄. Also, Alekseevskii des
ribed the Jordan �nite 
ommutative

subgroups of the groups E6, E7 and E8 in [1℄. These in
lude a MAD-subgroup

of E8 isomorphi
 to Z
3
5. This subgroup has gained some attention lately, as it

appeared in a talk by Kostant (see [42℄) about the 
ontroversial paper by the

physi
ist Lisi [44℄, whi
h proposed a theory to go beyond the Standard Model in

that it uni�es all 4 for
es of nature by using as gauge group the ex
eptional Lie

group E8. Kostant's talk, stri
tly mathemati
al, dealt about an elaboration of

the mathemati
s of E8 in order to refute Lisi's Theory. This is one more eviden
e

of the fas
ination produ
ed by the ri
hness of E8, and shows the relevan
e of

understanding as mu
h as possible about this group and its tangent Lie algebra.

Note that not even the �nite abelian maximal groups are 
onveniently well known

(
onsult the re
ent work [14℄). In terms of gradings, some of our des
riptions have

appeared in [19℄, whi
h uses gradings on 
omposition algebras to 
onstru
t some

ni
e gradings on ex
eptional algebras (e.g. a Z5
3-grading and a Z8

2-grading on e8).

This paper then gathers a lot of known material, and des
ribes it in a homo-

geneous way. It is an expanded version of the talk presented by the �rst author

in the 
onferen
e Advan
es in Group Theory and Appli
ations 2013.

The paper is stru
tured as follows. First there is a se
tion to re
all the

ba
kground: basi
 
on
epts about gradings and their 
onne
tion with groups of

automorphisms, and some algebrai
 stru
tures involved in the des
ription of the

ex
eptional Lie algebras: 
omposition (and symmetri
 
omposition) algebras,

Jordan algebras and its generalizations, and stru
turable algebras. Se
ond, we

present several models of the ex
eptional Lie algebras and 
onstru
tions leading

to them. After reviewing slightly how the ex
eptional Lie algebras emerged, we

fo
us mainly on three 
onstru
tions due to Elduque, Kantor and Steinberg, as

they provide a 
onvenient way to des
ribe the �ne gradings we are interested in.

Finally, the third se
tion des
ribes some �ne gradings on e6, e7 and e8 starting

from gradings on the `
oordinate algebras' involved in the 
onstru
tions above.

(These algebras are usually mu
h simpler than e6, e7 and e8.) Fourteen �ne

gradings will be given on ea
h of these simple Lie algebras. The 
onje
ture
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arises immediately of whether this is the 
omplete list of �ne gradings, up to

equivalen
e, for these algebras.

For the sake of 
larity of the exposition, in what follows the ground �eld F

will be assumed to be algebrai
ally 
losed of 
hara
teristi
 0, even though many

results are valid in more general 
ontexts.

1 Preliminaries

1.1 Gradings and automorphisms

We begin by re
alling the basi
s about gradings. LetA be a �nite-dimensional

algebra (not ne
essarily asso
iative) over F, and let G be an abelian group.

De�nition 1.1. A G-grading Γ on A is a ve
tor spa
e de
omposition

Γ : A =
⊕

g∈G

Ag

su
h that AgAh ⊆ Ag+h for all g, h ∈ G.

On
e su
h a de
omposition is �xed, the algebra A will be 
alled a G-graded

algebra, the subspa
e Ag will be referred to as the homogeneous 
omponent of

degree g and its nonzero elements will be 
alled the homogeneous elements of

degree g. The support is the set suppΓ := {g ∈ G | Ag 6= 0}.

De�nition 1.2. If Γ: A = ⊕g∈GAg and Γ′ : A = ⊕h∈HAh are gradings by two

abelian groups G and H, Γ is said to be a re�nement of Γ′
(or Γ′

a 
oarsening

of Γ) if for any g ∈ G there is h ∈ H su
h that Ag ⊆ Ah. In other words, any

homogeneous 
omponent of Γ′
is the dire
t sum of some homogeneous 
ompon-

ents of Γ. A re�nement is proper if some in
lusion Ag ⊆ Ah is proper. A grading

is said to be �ne if it admits no proper re�nement.

De�nition 1.3. Let Γ be a G-grading on A and Γ′
an H-grading on another

algebra B, with supports, respe
tively, S and T . Then Γ and Γ′
are said to

be equivalent if there is an algebra isomorphism ϕ : A → B and a bije
tion

α : S → T su
h that ϕ(As) = Bα(s) for all s ∈ S. Any su
h ϕ is 
alled an

equivalen
e of Γ and Γ′
.

The study of gradings is based on 
lassifying �ne gradings up to equivalen
e,

be
ause any grading is obtained as a 
oarsening of some �ne one. We will make

use of the following invariant by equivalen
es:

De�nition 1.4. The type of a grading Γ is the sequen
e of numbers (h1, . . . , hr)
where hi is the number of homogeneous 
omponents of dimension i, with i =
1, . . . , r and hr 6= 0. Obviously, dimA =

∑r
i=1 ihi.
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Given a group grading Γ on an algebra A, there are many groups G su
h

that Γ, regarded as a de
omposition into a dire
t sum of subspa
es su
h that

the produ
t of any two of them lies in a third one, 
an be realized as a G-
grading, but there is one distinguished group among them ([47℄). De�ne U(Γ)
as the abelian group generated by S = suppΓ with de�ning relations s1s2 = s3
whenever 0 6= As1As2 ⊂ As3 (si ∈ S). It is 
alled the universal group of Γ,
sin
e it veri�es that, for any other realization of Γ as a G-grading, there exists

a unique homomorphism U(Γ) → G that restri
ts to identity on suppΓ. All the
gradings throughout this work will be 
onsidered by their universal groups.

The 
lassi�
ation of �ne gradings on A, up to equivalen
e, is the same as the


lassi�
ation of maximal diagonalizable subgroups (i.e., maximal quasitori) of

Aut(A), up to 
onjugation (see e.g. [47℄). More pre
isely, given a G-grading
on the algebra A = ⊕g∈GAg, any χ belonging to the group of 
hara
ters

Ĝ = Hom(G,F×), a
ts as an automorphism of A by means of χ.x = χ(g)x
for any g ∈ G and x ∈ Ag. In 
ase G is the universal group of the grading, this

allows us to identify Ĝ with a quasitorus (the dire
t produ
t of a torus and a

�nite subgroup) of the algebrai
 group Aut(A). This quasitorus is the subgroup
Diag(Γ) 
onsisting of the automorphisms ϕ of A su
h that the restri
tion of ϕ
to any homogeneous 
omponent is the multipli
ation by a (nonzero) s
alar. (See

[46, Chapter 3, �3℄ or [23, �1.4℄.) Conversely, given a quasitorus Q of Aut(A),
then Q indu
es a Q̂-grading on A, where Ag = {x ∈ A | χ(x) = g(χ)x ∀χ ∈ Q}
for any g ∈ Q̂. In this way the �ne gradings on A, up to equivalen
e, 
orres-

pond to the 
onjuga
y 
lasses in Aut(A) of the maximal abelian diagonalizable

subgroups of Aut(A).

1.2 Related stru
tures

We will re
all here some algebrai
 stru
tures involved in the 
onstru
tions of

the ex
eptional Lie algebras. A very ni
e introdu
tion to nonasso
iative algebras


an be found in [48℄, but the ne
essary material of 
omposition algebras and

Jordan algebras is in
luded here for 
ompleteness, as well as material about

symmetri
 
omposition algebras and stru
turable algebras, whi
h are not so

well known.

1.2.1 Composition algebras

A Hurwitz algebra over F is a unital algebra C endowed with a nonsingular

quadrati
 form q : C → F whi
h is multipli
ative, that is, q(xy) = q(x)q(y). This
form q is usually 
alled the norm. Ea
h element a ∈ C satis�es

a2 − tC(a)a+ q(a)1 = 0,
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where tC(a) = q(a + 1) − q(a) − 1 is 
alled the tra
e. Denote C0 = {a ∈ C |
tC(a) = 0} the subspa
e of tra
eless elements. Note that [a, b] = ab−ba ∈ C0 for

any a, b ∈ C, sin
e tC(ab) = tC(ba). The map − : C → C given by ā = tC(a)1−a
is an involution and q(a) = aā holds.

There are Hurwitz algebras only in dimensions 1, 2, 4 and 8 (see e.g. [53℄).

Moreover, under our hypothesis on the �eld, there is only one (up to isomorph-

ism) Hurwitz algebra of ea
h possible dimension, namely:

• the ground �eld F, with q(a) = a2;

• F× F, with 
omponentwise produ
t and norm given by q(a, b) = ab;

• Mat2×2(F), with the usual matrix produ
t and norm given by the determ-

inant;

• the split Cayley algebra over F. This algebra 
an be 
hara
terized by the

existen
e of a basis {e1, e2, u1, u2, u3, v1, v2, v3}, whi
h we 
all standard

basis, with multipli
ation given by

e1uj = uj = uje2, uivi = e1, uiui+1 = vi+2 = −ui+1ui,
e2vj = vj = vje1, viui = e2, −vivi+1 = ui+2 = vi+1vi,

all the remaining produ
ts being 0, and the polar form of the norm (also

denoted by q) of two basi
 elements is zero ex
ept for q(e1, e2) = 1 =
q(ui, vi), i = 1, 2, 3.

With the ex
eption of the Cayley algebra, all of these are asso
iative. The Cayley

algebra is not asso
iative but alternative (the algebra generated by any pair

of elements is asso
iative). We will use the notations F, K, Q (usually 
alled

quaternion algebra) and C (usually 
alled o
tonion algebra) for ea
h of these

algebras, respe
tively.

Re
all that for any a, b ∈ C, the endomorphism

da,b = [la, lb] + [la, rb] + [ra, rb]

is a derivation of C for la(b) = ab and ra(b) = ba. This will be instrumental to


onstru
t Lie algebras from Hurwitz algebras.

1.2.2 Jordan algebras

A Jordan algebra is a 
ommutative (nonasso
iative) algebra satisfying the

Jordan identity

(x2y)x = x2(yx).
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This kind of algebras were introdu
ed by Jordan in 1933 to formalize the notion

of an algebra of observables in quantum me
hani
s. Su
h line of resear
h was

abandoned time ago, but Jordan algebras have found a range of appli
ations

be
ause of their relationship to Lie algebras. A standard referen
e is [36℄.

If A is an asso
iative algebra (with multipli
ation denoted by juxtaposition)

and we 
onsider the new produ
t on A given by

x ◦ y =
1

2
(xy + yx),

then (A, ◦) is a Jordan algebra, denoted by A+
. A Jordan algebra whi
h is

a subalgebra of A+
for some asso
iative algebra A, is 
alled a spe
ial Jordan

algebra, and otherwise it is 
alled ex
eptional. If (A,−) is an asso
iative algebra

with involution, then the set of hermitian elements H(A,−) = {a ∈ A | ā = a}
is a subalgebra of A+

(not of A), and hen
e it is a spe
ial Jordan algebra.

In parti
ular, if C is an asso
iative Hurwitz algebra with involution given

by −, the algebra Hn(C, ∗) = {x = (xij) ∈ Matn×n(C) | xij = x̄ji} is a Jordan

algebra for any n > 3. (For n = 1 or n = 2 this is also true, but in a trivial

way, so we will assume n ≥ 3.) It is proved in [36℄ that if C is the Cayley

algebra, Hn(C, ∗) is a Jordan algebra if and only if n = 3. Besides, this is the

only ex
eptional Jordan algebra, whi
h is 
alled the Albert algebra, and will be

denoted by A.

If J = Hn(C, ∗) for some Hurwitz algebra and some n, 
onsider the lin-

ear map tJ : J → F given by tJ(x) = tr(x)
n =

∑n
i=1 xii

n . This map is 
alled

the normalized tra
e and it is the only linear map su
h that tJ(1) = 1 and

tJ((xy)z) = tJ(x(yz)) for any x, y, z ∈ J . Thus we have a de
omposition

J = F1 ⊕ J0, for J0 = {x ∈ J | tJ(x) = 0}, sin
e x ∗ y = xy − tJ(xy)1 ∈ J0. In
parti
ular we have a 
ommutative multipli
ation ∗ de�ned in J0.

If J is a Jordan algebra and Rx : J → J , y 7→ yx is the multipli
ation

operator, observe that

[[Rx, Ry], Rz] = R(yz)x−y(zx) (1)

for any x, y, z ∈ J , and thus, the stru
ture algebra Str(J), or Lie algebra gen-

erated by the multipli
ation operators, 
oin
ides with RJ + [RJ , RJ ] (this sum
is dire
t if J is unital). It is also a 
onsequen
e of Equation (1) that [RJ , RJ ]
is an ideal of the Lie algebra of derivations Der(J) = {d ∈ gl(J) | d(xy) =
d(x)y + xd(y) ∀x, y ∈ J}. The algebra generated by the tra
eless multipli
ation

operators {Rx | x ∈ J0} is 
alled the inner stru
ture algebra and it also 
oin
ides

with RJ0 + [RJ , RJ ].
In 
ase J = A is the Albert algebra, Der(A) is simple [37, Theorem 3℄, so

in parti
ular every derivation is inner (Der(A) = [RA, RA]). The inner stru
ture
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algebra is simple too [37, Theorem 4℄, and these provide our �rst two models of

f4 and e6. Moreover, any element x ∈ A satis�es a 
ubi
 equation

x3 − T (x)x2 +Q(x)x−N(x)1 = 0, (2)

for the s
alars T (x) = tr(x), Q(x) = 1
2((T (x))

2−T (x2)) andN(x) = 1
6((T (x))

3−
3T (x)T (x2) + 2T (x3)). The 
ubi
 form N is also 
losely related to e6.

1.2.3 Symmetri
 
omposition algebras

A symmetri
 
omposition algebra is a triple (S, ∗, q), where (S, ∗) is a (nonas-
so
iative) algebra over F with multipli
ation denoted by x ∗ y for x, y ∈ S, and
where q : S → F is a regular quadrati
 form verifying

q(x ∗ y) = q(x)q(y),
q(x ∗ y, z) = q(x, y ∗ z),

for any x, y, z ∈ S, where q(x, y) = q(x+ y)− q(x)− q(y) is the polar form of q.

Example 1.5. Let C be a Hurwitz algebra with norm q. The same ve
tor spa
e

with new produ
t

x ∗ y = x̄ȳ

for any x, y ∈ C is a symmetri
 
omposition algebra for the same norm, 
alled

the para-Hurwitz algebra atta
hed to the Hurwitz algebra C. We will denote it

by pC = (C, ∗, q). Note that the unit of C be
omes a paraunit in pC, that is, an

element e su
h that e ∗ x = x ∗ e = q(e, x)e− x.

Example 1.6. The Okubo algebra, or pseudo-o
tonion algebra, is the algebra

de�ned on the subspa
e of tra
e 0 matri
es of degree 3: Ok = (Mat3×3(F)0, ∗, q)
with multipli
ation

x ∗ y = ωxy − ω2yx−
ω − ω2

3
tr(xy)1 (3)

and norm q(x) := 1
6 tr(x

2), for x, y ∈ Mat3×3(F)0, where ω is a primitive 
ubi


root of 1. This algebra is a symmetri
 
omposition algebra, but it does not

have an identity element (and it is not alternative). It was introdu
ed by Okubo

in [45℄, who was working in Parti
le Physi
s and the symmetry given by the


ompa
t group SU(3) (the real algebra su(3) = {x ∈ sl(3,C) | x∗ = −x}, for ∗
the unitary involution, is 
losed for the produ
t given in Equation (3)).

The 
lassi�
ation of the symmetri
 
omposition algebras was obtained in

[24℄.
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Theorem 1.7. Every symmetri
 
omposition algebra over F (algebrai
ally 
losed)

is isomorphi
 either to a para-Hurwitz algebra or to the Okubo algebra. That is,

there are only �ve symmetri
 
omposition algebras (up to isomorphism), namely,

pF, pK, pQ, pC and Ok.

1.2.4 Stru
turable algebras

Let (A,−) be a unital algebra with involution �−�. Denote the multipli
ation

in A by juxtaposition. For x, y ∈ A, 
onsider the linear operator Vx,y ∈ End(A)
given by Vx,y(z) = (xȳ)z + (zȳ)x− (zx̄)y ≡ {x, y, z}. The algebra A is 
alled a

stru
turable algebra in 
ase the identity

{x, y, {z, w, v}} = {{x, y, z}, w, v} − {z, {y, x, w}, v}+ {z, w, {x, y, v}}

is satis�ed for any x, y, z, w, v ∈ A, or equivalently,

[Vx,y, Vz,w] = VVx,yz,w − Vz,Vy,xw.

The reader may 
onsult [2℄ for the de�nition and properties of stru
turable

algebras.

Example 1.8. Any (unital) asso
iative algebra with involution (A,−) is a stru
-

turable algebra.

The spa
e Instr(A,−) = {
∑

i Vxi,yi | xi, yi ∈ A} is a subalgebra of the Lie

algebra gl(A), 
alled the inner stru
ture algebra of (A,−). The map

ε : Instr(A,−) → Instr(A,−), ε(Vx,y) = −Vy,x

if x, y ∈ A, is an involutive automorphism of this Lie algebra. Thus Instr(A,−)
turns out to be Z2-graded. The elements in H(A,−) = {x ∈ A | x̄ = x}
and S(A,−) = {x ∈ A | x̄ = −x} are 
alled hermitian and skew-hermitian

respe
tively. It follows that Instr(A,−)0̄ =
(

Instr(A,−)∩Der(A,−)
)

⊕VS(A,−),1

and Instr(A,−)1̄ = VH(A,−),1, where Der(A,−) denotes the set of derivations of

A that 
ommute with the involution−.

Example 1.9. If J is a Jordan algebra, then (J,−) is a stru
turable algebra

with the involution − given by the identity map. In this 
ase Vx,y = Rxy +
[Rx, Ry] for x, y ∈ J , where Rx is the multipli
ation operator by x. In this sense,

the inner stru
ture algebra of (J,−) is the usual inner stru
ture algebra for a

Jordan algebra des
ribed in Se
tion 1.2.2, and the Z2-grading produ
ed by ε is

Instr(J,−)0̄ = [RJ , RJ ], Instr(J,−)1̄ = RJ0 .

Example 1.10. If (C1,−) and (C2,−) are 
omposition algebras over the �eld F,

then (C1⊗C2,−) is a stru
turable algebra (see [6, Example 6.6℄) for the produ
t

given by (a⊗ b)(c⊗ d) = ac⊗ bd and the involution given by a⊗ b = ā⊗ b̄.
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2 Models of the ex
eptional Lie algebras

The study of the Lie algebras began at the end of the XIX 
entury, on
e

Lie had translated 
ertain problem of transformation groups to an algebrai



ontext. The �rst fundamental 
ontributions are due to Killing, who 
lassi�ed the


omplex simple Lie algebras in four key papers published during the years 1886

and 1890. Initially he thought that the only possible 
ases were the Lie algebras

of the spe
ial linear group SLn(C) and of the orthogonal and symple
ti
 groups

O(n,C) and Sp(n,C), now 
alled the 
lassi
al Lie algebras. But, during his work,

he obtained that, besides the 
lassi
al Lie algebras, there were a few other Lie

algebras, of dimensions 78, 133, 248, 52 and 14, now denoted as e6, e7, e8, f4 and

g2. A
tually, he only proved the existen
e for g2, but he des
ribed all possibilities

for rank, dimension and root systems. He found six algebras, sin
e he did not

noti
e that two of them were isomorphi
 (
ase f4). This is a marvelous result, but

the standard referen
e for it is Cartan's thesis in 1894, whi
h 
ompleted Killing's


lassi�
ation, giving a rigorous treatment. This is a fundamental 
ontribution,

where Cartan proved the existen
e of all the ex
eptional simple Lie algebras.

2.1 First Models

The history of these algebras has been growing in parallel to the one of

the related Lie groups. The �rst des
ription of the smallest of the ex
eptional

Lie groups was due to Engel ([25℄), who, in 1900, des
ribed it as the isotropy

group of a generi
 3-form in 7 dimensions. Élie Cartan was the �rst to 
onsider

the group G2 as the automorphism group of the o
tonion algebra in 1914 ([11,

p. 298℄ although he 
ommented about it earlier), as well the Lie algebra g2 as

the derivation algebra of the o
tonions (both on the split and 
ompa
t forms).

Ja
obson generalized this result to arbitrary �elds ([34℄). This approa
h be
ame

popular through the arti
le [26℄ by Hans Freudenthal, in 1951. But, for rather a

long time, G2 was the only Lie group for whi
h further results were obtained.

The following model of a ex
eptional Lie algebra had to wait until 1950,

when Chevalley and S
hafer ([12℄) showed that the set of derivations of the

Albert algebra A is f4. Tomber proved in [51℄ the 
onverse: a Lie algebra over

a �eld of 
hara
teristi
 0 is of type F4 if and only if it is isomorphi
 to the

derivation algebra of an ex
eptional simple Jordan algebra. This fa
t led Tits,

among other authors, to study the relationship between Jordan algebras and the

remaining ex
eptional simple Lie algebras, whi
h were 
onstru
ted in a uni�ed

way [49℄. We will revise this 
onstru
tion in the following subse
tion.

The algebra e6 is also 
losely related to the Albert algebra. On one hand,

it is the inner stru
ture algebra of the Albert algebra (the Lie algebra gener-

ated by the right multipli
ation operators Ra for a ∈ A with zero tra
e, as
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in Se
tion 1.2.2). On the other hand, if N : A → F is the 
ubi
 norm as in

Equation (2), and N(a, b, c) denotes the trilinear form obtained by polarization,

then the Lie algebra e6 
an be 
hara
terized as the Lie algebra {f ∈ End(A) |
N(f(a), b, c) +N(a, f(b), c) +N(a, b, f(c)) = 0} ([35℄ and [26℄).

The �rst model of e7 related to the Albert algebra was provided in [50℄, as

the algebra de�ned on the ve
tor spa
e (A⊗ sl2(F))⊕Der(A) with the produ
t

[x⊗ a+ d1, y ⊗ b+ d2] = xy ⊗ [a, b] + d2(x)⊗ a− d1(y)⊗ b
−1

2 tr(ad a ad b)[Rx, Ry] + [d1, d2],

for x, y ∈ A, a, b ∈ sl2(F) and d1, d2 ∈ Der(A). The details of this 
onstru
tion

appear in [37, �9℄. This is a version of what nowadays is 
alled the Tits-Kantor-

Koe
her 
onstru
tion applied to the Albert algebra. The name refers to several


onstru
tions whi
h appeared almost simultaneously, and turned out to be es-

sentially equivalent. In Koe
her's 
onstru
tion [41℄, one forms A⊕ Ā⊕Str(A),
where Ā is simply a 
opy of the ve
tor spa
e A, with the anti
ommutative

produ
t given by [x, y] = 0 = [x̄, ȳ], [x, ȳ] = 2Rxy + 2[Ry, Rx] if x, y ∈ A,

and [L, x] = L(x), [L, x̄] = L̄(x), if L = Rx +
∑

i[Rxi
, Ryi ] ∈ Str(A), where

L̄ = −Rx +
∑

i[Rxi
, Ryi ]. This 
onstru
tion will be generalized in Se
tion 2.4.

Similar to the situation for e6, the Lie algebra e7 
an be 
hara
terized too as

the set of linear transformations of 
ertain ve
tor spa
e M leaving invariant a

quarti
 form [27℄. Here, as a ve
tor spa
e, M is A⊕ Ā⊕F⊕ F̄. This will play an

important role in our des
ription of the gradings with automorphisms of order

4 involved, in Se
tions 3.7 and 3.8.

Finally, the di�
ulty of �nding a good model for e8 (
oordinate free, that is,

not given by means of generators and relations obtained from the root system)

is that the nontrivial representation of minimal dimension for e8 is the adjoint

representation, so there is no hope to embed e8 as a subalgebra of gl(V ) for

some ve
tor spa
e V of smaller dimension. However, some other `linear models'


an help in this purpose. Let V be a ve
tor spa
e of dimension 9, then we 
an


onstru
t e8 as the ve
tor spa
e

3
∧

V ∗ ⊕ sl(V )⊕
3
∧

V,

with Lie bra
ket as in [29, Exer
ise 22.21℄, based on the trilinear map given by

the usual wedge produ
t

∧3 V ⊗
∧3 V ⊗

∧3 V →
∧9 V ∼= F.

We refer to [37, 48, 28, 26℄ for these and other algebrai
 
onstru
tions of

the ex
eptional Lie algebras. We stress the referen
e [46℄, where many models

appear: [46, Chapter 5, �1℄ is devoted to models of ex
eptional Lie algebras

asso
iated to a Cayley algebra (over arbitrary �elds of 
hara
teristi
 zero, with

several referen
es to the reals), while [46, Chapter 5, �2℄ provides other models
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based on gradings. This shows the intera
tions between ni
e models and 
ertain

gradings, and this philosophy is 
ertainly present in Se
tions 3.9 and 3.10.

2.2 Tits 
onstru
tion

In 1966, Tits gave a uni�ed 
onstru
tion of the ex
eptional simple Lie algeb-

ras (over �elds of 
hara
teristi
 not two and three) in [49℄. The 
onstru
tion used

a 
ouple of ingredients: an alternative algebra of degree 2 and a Jordan algebra of

degree 3. In 
ase these ingredients are 
hosen to be Hurwitz algebras and Jordan

algebras of hermitian 3× 3 matri
es over Hurwitz algebras, Freudenthal's magi


square [28℄ is obtained. We re
all the 
onstru
tion in our 
on
rete 
ase.

Let C be a Hurwitz algebra over F with norm q, and let J = H3(C
′, ∗) be

the Jordan algebra of hermitian 3×3-matri
es over another Hurwitz algebra C ′
.

Consider the ve
tor spa
e

T (C, J) = Der(C)⊕ (C0 ⊗ J0)⊕Der(J)

with anti
ommutative multipli
ation spe
i�ed by

• Der(C) and Der(J) are Lie subalgebras,

• [Der(C),Der(J)] = 0,

• [d, a⊗ x] = d(a)⊗ x, [D, a⊗ x] = a⊗D(x),

• [a⊗ x, b⊗ y] = tJ(xy)da,b + [a, b]⊗ x ∗ y + 2tC(ab)[Rx, Ry]

for all d ∈ Der(C), D ∈ Der(J), a, b ∈ C0 and x, y ∈ J0, with the notations of

Se
tions 1.2.1 and 1.2.2. Now, using all the possibilities for C and C ′
, we obtain

Freudenthal's Magi
 Square as follows [49℄ (note that we have added a 
olumn

with J = F to obtain G2 with the same 
onstru
tion):

J

C

T (C, J) F H3(F) H3(F× F) H3(Mat2×2(F)) H3(C)

F 0 a1 a2 c3 f4
F× F 0 a2 a2 ⊕ a2 a5 e6

Mat2×2(F) a1 c3 a5 d6 e7
C g2 f4 e6 e7 e8
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2.3 Some symmetri
 
onstru
tions

In spite of the apparent asymmetry in the usage of the two Hurwitz algebras

in Tits 
onstru
tion, the Magi
 Square is symmetri
. This lead several authors to

look for more symmetri
 
onstru
tions. Su
h an approa
h was taken by Vinberg

in [46, p. 177℄, and interpreted by Barton and Sudbery in [10℄ as a 
onstru
tion

depending on two 
omposition algebras and 
losely related to the triality prin-


iple. A similar 
onstru
tion was provided by Landsberg and Manivel in [43℄,

inspired by previous work of Allison and Faulkner [6℄.

The 
onstru
tion we are going to re
all here (and use later on), is the 
on-

stru
tion in [18℄, based on two symmetri
 
omposition algebras, whi
h has turned

to be very useful in �nding �ne gradings on ex
eptional Lie algebras [19℄.

Let (S, ∗, q) be a symmetri
 
omposition algebra and let

o(S, q) = {d ∈ EndF(S) | q(d(x), y) + q(x, d(y)) = 0 ∀x, y ∈ S}

be the 
orresponding orthogonal Lie algebra. Consider the subalgebra of o(S, q)3

de�ned by

tri(S, ∗, q) = {(d0, d1, d2) ∈ o(S, q)3 | d0(x ∗ y) = d1(x) ∗ y+x ∗ d2(y) ∀x, y ∈ S},

whi
h is 
alled the triality Lie algebra. The order three automorphism ϑ given

by

ϑ : tri(S, ∗, q) −→ tri(S, ∗, q), (d0, d1, d2) 7−→ (d2, d0, d1),

is 
alled the triality automorphism. Take the element of tri(S, ∗, q) (denoted by

tri(S) when it is no ambiguity) given by

tx,y :=

(

σx,y,
1

2
q(x, y)id− rxly,

1

2
q(x, y)id− lxry

)

,

where σx,y(z) = q(x, z)y − q(y, z)x, rx(z) = z ∗ x, and lx(z) = x ∗ z for any

x, y, z ∈ S.

Let (S, ∗, q) and (S′, ⋆, q′) be two symmetri
 
omposition algebras over F.

Consider the following ve
tor spa
e, whi
h depends symmetri
ally on S and S′
:

g(S, S′) := tri(S, ∗, q)⊕ tri(S′, ⋆, q′)⊕ (
2

⊕

i=0

ιi(S ⊗ S′))

where ιi(S ⊗ S′) is just a 
opy of S ⊗ S′
(i = 0, 1, 2), and the anti
ommutative

produ
t on g(S, S′) is determined by the following 
onditions:

• tri(S, ∗, q)⊕ tri(S′, ⋆, q′) is a Lie subalgebra of g(S, S′);
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• [(d0, d1, d2), ιi(x ⊗ x′)] = ιi(di(x) ⊗ x′), [(d′0, d
′
1, d

′
2), ιi(x ⊗ x′)] = ιi(x ⊗

d′i(x
′)), for any (d0, d1, d2) ∈ tri(S), (d′0, d

′
1, d

′
2) ∈ tri(S′), x ∈ S and x′ ∈ S′

;

• [ιi(x ⊗ x′), ιi+1(y ⊗ y′)] = ιi+2((x ∗ y) ⊗ (x′ ⋆ y′)) (indi
es modulo 3), for

any i = 0, 1, 2, x, y ∈ S and x′, y′ ∈ S′
;

• [ιi(x⊗x′), ιi(y⊗y′)] = q′(x′, y′)ϑi(tx,y)+q(x, y)ϑ′i(t′x′,y′) ∈ tri(S)⊕ tri(S′),
for any i = 0, 1, 2, x, y ∈ S and x′, y′ ∈ S′

, ϑ and ϑ′
being the 
orresponding

triality automorphisms.

The anti
ommutative algebra g(S, S′) de�ned in this way turns out to be a

Lie algebra ([18, Theorem 3.1℄), and we re
over Freudenthal's Magi
 Square if

symmetri
 
omposition algebras of all possible dimensions are 
onsidered:

dimS

dimS′

1 2 4 8

1 a1 a2 c3 f4
2 a2 a2 ⊕ a2 a5 e6
4 c3 a5 d6 e7
8 f4 e6 e7 e8

If C1 and C2 are two Hurwitz algebras over F, the Lie algebra g(pC1, pC2)
is isomorphi
 to T (C1, H3(C2, ∗)) [23, Theorem 6.25℄.

2.4 Kantor's 
onstru
tion

Let (A,−) be a stru
turable algebra. Denote by S ≡ S(A,−) its set of skew-
hermitian elements. Endow the Z-graded ve
tor spa
e K = K−2 ⊕ K−1 ⊕ K0 ⊕
K1 ⊕K2, for

K2 = S, K1 = A,
K−2 = S˜ K−1 = A ,̃

K0 = Instr(A,−),

where S˜ and A˜ are simply 
opies of S and A respe
tively, with a graded

Lie algebra stru
ture given by the anti
ommutative multipli
ation su
h that

Instr(A,−) = VA,A is a subalgebra and the following 
onditions hold:

[T, a] = T (a), [T, ã ] = (T εa)̃ ,

[T, s] = T (s) + sT (1), [T, s̃ ] = (T ε(s) + sT ε(1))̃ ,
[a+ s, a′ + s′] = 2(ss̄′ − s′s̄) ∈ K2,
[ã + s̃ , a′̃ + s′̃ ] = 2(ss̄′ − s′s̄)̃ ∈ K−2,
[a+ s, a′̃ + s′̃ ] = (−s′a)̃ + LsLs′ + 2Va,a′ + (sa′) ∈ K−1 ⊕K0 ⊕K1,

(4)

for T ∈ Instr(A,−), a, a′ ∈ A, s, s′ ∈ S, where Ls : A → A denotes the left mul-

tipli
ation by s ∈ S (so that 2LsLs′ = Vss′,1 − Vs,s′ ∈ Instr(A,−)). Following
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[4, � 6.4℄, this is a Z-graded Lie algebra denoted by Kan(A,−), whi
h is 
alled

the Kantor 
onstru
tion atta
hed to the stru
turable algebra A. The 
onstru
-

tion takes its name from Kantor, who introdu
ed it �rst in [40℄, although in a

somewhat di�erent way.

In 
onne
tion with Example 1.9, if J is a Jordan algebra, the Kantor 
on-

stru
tion Kan(J,−) 
oin
ides (up to isomorphism) with the 
lassi
al Tits-Kantor-

Koe
her Lie algebra 
onstru
ted from the Jordan algebra J .
A ne
essary and su�
ient 
ondition for a Lie algebra to be isomorphi
 to the

Kantor's 
onstru
tion atta
hed to a stru
turable algebra is given by the existen
e

of an sl2-triple {e, h, f} (that is, [h, e] = 2e, [h, f ] = −2f, [e, f ] = h) in L su
h

that L is the dire
t sum of irredu
ible modules for 〈{e, h, f}〉 of dimensions 1, 3,

and 5; the only ideal of L whi
h 
entralizes {e, h, f} is {0}, and L is generated

by the eigenspa
es 2 and −2 for adh [4, Theorem 6.10℄.

The relevan
e for our purposes 
omes from the fa
t that ex
eptional Lie

algebras are obtained in terms of Kantor's 
onstru
tions atta
hed to 
ertain

stru
turable algebras. Some examples of this situation are shown next:

Example 2.1. Consider the tensor produ
ts of 
omposition algebras: C = F⊗C,
K ⊗ C, Q ⊗ C, and C ⊗ C. These are stru
turable algebras a

ording to Ex-

ample 1.10. Kantor's 
onstru
tion gives the following Lie algebras:

Kan(C) ∼= f4, Kan(K ⊗ C) ∼= e6, Kan(Q⊗ C) ∼= e7, Kan(C ⊗ C) ∼= e8,

as stated in [40℄ (see, alternatively, [3, �8(
)℄).

Example 2.2. Let J = H4(C, ∗) be the Jordan algebra de�ned in Se
tion 1.2.2

for C a Hurwitz asso
iative algebra. This algebra is a �nite-dimensional simple

Jordan algebra, with generi
 tra
e tJ(x) =
1
4 tr(x). We 
an use a sort of Cayley-

Di
kson pro
ess with J in order to 
onstru
t a stru
turable algebra as follows.

Take a nonzero µ ∈ F and the algebra de�ned on the ve
tor spa
e

A = J ⊕ vJ,

where v is simply a 
onvenient mark to indi
ate the 
artesian produ
t of two


opies of J , with multipli
ation and involution given by

(x1 + vx2)(x3 + vx4) := x1x3 + µ(x2x
ϑ
4 )

ϑ + v(xϑ1x4 + (xϑ2x
ϑ
3 )

ϑ),

x1 + vx2 := x1 − vxϑ2
(5)

for any xi ∈ J for i = 1, 2, 3, 4, where the multipli
ation in J is denoted by juxta-

position, with xϑ := −x+2tJ(x)1 (so that 1ϑ = 1) for any x ∈ J . The resulting
algebra (A,−) is denoted by CD(H4(C)). A

ording to [5℄ (see, alternatively,

[4, Example 6.7℄), this algebra is stru
turable with the extra property that the
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spa
e of skew-hermitian elements has dimension 1. The Lie algebra obtained by

means of Kantor's 
onstru
tion Kan(CD(H4(C))) is e6, e7 and e8, respe
tively,

in 
ase dimC = 1, 2 or 4.

2.5 Steinberg's 
onstru
tion

Consider the following example [6℄.

Example 2.3. Let (A,−) be a unital asso
iative algebra with involution and


onsider the unitary Lie algebra un(A,−) = {x ∈ Matn×n(A) | x̄
t = −x}. Some

remarkable elements are uij(a) = aeij − āeji, where eij are the usual matrix

units. These elements are subje
t to the following relations:

uij(a) = uji(−ā),
a 7→ uij(a) is a linear map,
[uij(a), ujk(b)] = uik(ab) for distin
t i, j, k,
[uij(a), ukl(b)] = 0 for distin
t i, j, k, l.

(6)

Now, let (A,−) be a unital algebra with involution, and let stun(A,−) denote
the Lie subalgebra generated by elements uij(a), for 1 6 i 6= j 6 n, n ≥ 3, and
a ∈ A, subje
t to the relations (6). Then the 
ondition uij(a) = 0 implies a = 0 if

and only if either n > 4 and A is asso
iative or n = 3 and (A,−) is stru
turable.
This Lie algebra is 
alled the Steinberg unitary Lie algebra by analogy with the

Steinberg group in K-theory.

During the proof of the previous result, Allison and Faulkner used the fol-

lowing 
onstru
tion (also developed in [6℄).

Let (A,−) be a stru
turable algebra. For T ∈ gl(A), de�ne T̄ by T̄ (x) = T (x̄).
A set T = (T1, T2, T3) ∈ gl(A)3 is said to be a related triple if

T̄i(xy) = Ti+1(x)y + xTi+2(y)

for all x, y ∈ A and for all i = 1, 2, 3, where the subindi
es are taken modulo 3.
These triples form a Lie algebra denoted by trip(A). A remarkable triple is the

following:

Ti = Lb̄La − LāLb,
Ti+1 = Rb̄Ra −RāRb,
Ti+2 = Rāb−b̄a + LbLā − LaLb̄,

(7)

for a, b ∈ A, where La and Ra denote the left and right multipli
ations by a in

A.

Consider now the ve
tor spa
e

U(A,−) := trip(A)⊕ u12(A)⊕ u23(A)⊕ u31(A)
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with anti
ommutative multipli
ation su
h that trip(A) is a subalgebra and the

following 
onditions hold:

[T, ui,i+1(a)] = ui,i+1(Ti+2(a)),

[ui,i+1(a), ui+1,i+2(b)] = −ui+2,i(ab),
[ui,i+1(a), ui,i+1(b)] = T as in (7),

for any a, b ∈ A and T = (T1, T2, T3) ∈ trip(A). Then U(A,−) is a Lie algebra

isomorphi
 to stu3(A,−)/z, where z is the 
enter of stu3(A,−) ([6, Theorem 4.3℄).

This algebra U(A,−) is simple if and only if (A,−) is so. We 
all this algebra

the Steinberg 
onstru
tion atta
hed to the stru
turable algebra A. Moreover, it

turns out that U(A,−) is isomorphi
 to the Lie algebra given by the Kantor's


onstru
tion Kan(A,−) 
onsidered in the previous subse
tion.

3 Des
ription of the gradings

3.1 Gradings on Hurwitz algebras

Given a Hurwitz algebra C with norm q, we 
an 
onstru
t, for ea
h 0 6= α ∈
F, a new unital algebra with involution, denoted by CD(C,α), by means of the

so 
alled Cayley-Di
kson doubling pro
ess. This is the algebra de�ned on C×C
with the multipli
ation given by

(a, b)(c, d) = (ac+ αd̄b, da+ bc̄)

and the quadrati
 form

q(a, b) = q(a)− αq(b).

The resulting algebra CD(C,α) is a Hurwitz algebra if and only if C is asso
i-

ative. Thus, a

ording to our list of Hurwitz algebras, CD(F, α) is isomorphi


to K, CD(K, α) is isomorphi
 to Q and CD(Q, α) is isomorphi
 to C. The al-

gebra CD(C,α) is always Z2-graded, with even part {(a, 0) | a ∈ C} and odd

part {(0, b) | b ∈ C}. In parti
ular K is Z2-graded, Q is Z2
2-graded and C is

Z
3
2-graded.

On the other hand the standard basis of C is asso
iated to a �ne Z2
-grading,


alled the Cartan grading on C, whi
h is given by

C(0,0) = Fe1 ⊕ Fe2,

C(1,0) = Fu1, C(−1,0) = Fv1,

C(0,1) = Fu2, C(0,−1) = Fv2,

C(−1,−1) = Fu3, C(1,1) = Fv3.

(8)
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The subalgebra 〈e1, e2, u1, v1〉 
an be identi�ed with Q, whi
h turns out to be

Z-graded, for

Q0 = Fe1 ⊕ Fe2, Q1 = Fu1, Q−1 = Fv1. (9)

3.2 Gradings on symmetri
 
omposition algebras

Gradings on symmetri
 
omposition algebras were 
lassi�ed in [19, The-

orem 4.5℄. Every group grading on a Hurwitz algebra C is a grading on pC
(sin
e the involution preserves the homogeneous 
omponents), and the grad-

ings on both the Hurwitz algebra C and its para-Hurwitz 
ounterpart 
oin
ide

when C has dimension at least 4. In parti
ular we have a Z2-grading on pK, a

Z
2
2-grading and a Z-grading on pQ and a Z

3
2-grading and a Z

2
-grading on pC.

There is a remarkable Z3-grading in the 
ase of dimension 2 whi
h does not


ome from a grading on the 
orresponding Hurwitz algebra, namely,

pK0̄ = 0, pK1̄ = Fe1 pK2̄ = Fe2,

where e1 and e2 are the orthogonal idempotents (1, 0) and (0, 1) in K = F× F,

whi
h in pK satisfy e1 ∗ e1 = e2 and e2 ∗ e2 = e1.
Also, a natural Z2

3-grading appears on the pseudo-o
tonion algebra Ok =
(sl3(F), ∗, q), determined by

Ok(1̄,0̄) = F





1 0 0
0 ω 0
0 0 ω2





and Ok(0̄,1̄) = F





0 1 0
0 0 1
1 0 0





(re
all that ω is a primitive 
ubi
 root of 1).

3.3 Gradings on Lie algebras indu
ed from gradings on sym-

metri
 
omposition algebras

If S and S′
are two symmetri
 
omposition algebras, the Lie algebra g(S, S′)

is always Z2
2-graded, for

g(S, S′)(0,0) = tri(S)⊕ tri(S′), g(S, S′)(1,1) = ι0(S ⊗ S′),

g(S, S′)(1,0) = ι1(S ⊗ S′), g(S, S′)(0,1) = ι2(S ⊗ S′).
(10)

Moreover, if S = ⊕g∈GSg is G-graded, and S′ = ⊕g∈G′S′
g is G′

-graded, these

gradings 
an be 
ombined with the one in Equation (10), thus obtaining a grad-

ing on g(S, S′) by the group Z
2
2 ×G×G′

.

As a 
onsequen
e, if we 
onsider the gradings by the groups Z
r
2 on the sym-

metri
 
omposition algebras as in S Se
tion 3.2, we get gradings on:
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(6g1) e6 = g(pK, pC) by the group Z
2
2 × Z2 × Z

3
2 = Z

6
2, of type (48, 1, 0, 7);

(7g1) e7 = g(pQ, pC) by the group Z
2
2 × Z

2
2 × Z

3
2 = Z

7
2, of type (96, 0, 3, 7);

(8g1) e8 = g(pC, pC) by the group Z
2
2 × Z

3
2 × Z

3
2 = Z

8
2, of type (192, 0, 0, 14).

Moreover, there is a distinguished Z3-grading on g(S, S′), obtained as the

eigenspa
e de
omposition of an order 3 automorphism Θ indu
ed by the triality

automorphisms ϑ and ϑ′
of S and S′

respe
tively. It is given by

Θ|tri(S) = ϑ, Θ|tri(S′) = ϑ′, Θ(ιi(x⊗ x′)) = ιi+1(x⊗ x′).

This Z3-grading on g(S, S′) indu
ed by Θ 
an be 
ombined with any G and

G′
-gradings on S and S′

respe
tively, to get a grading by the group Z3×G×G′

on g(S, S′). If this pro
edure is applied to the Z3-grading on pK and to the

Z2
3-grading on Ok, we get gradings on:

(6g2) e6 = g(pK,Ok) by the group Z3 × Z3 × Z
2
3 = Z

4
3, of type (72, 0, 2);

(8g2) e8 = g(Ok,Ok) by the group Z3 × Z2
3 × Z2

3 = Z5
3, of type (240, 0, 0, 2).

And if we 
ombine some of the gradings above (related to the primes 2 and 3),
we obtain gradings on:

(6g3) e6 = g(pK, pC) by the group Z3 × Z3 × Z
3
2 = Z

3
2 × Z

2
3, of type (64, 7);

(6g4) e6 = g(pK,Ok) by the group Z3 × Z2 × Z
2
3 = Z2 × Z

3
3, of type (26, 26);

(7g2) e7 = g(pQ,Ok) by the group Z3 × Z2
2 × Z2

3 = Z2
2 × Z3

3, of type (81, 26);

(8g3) e8 = g(pC,Ok) by the group Z3 × Z
3
2 × Z

2
3 = Z

3
2 × Z

3
3 = Z

3
6, of type

(182, 33).

Finally, we 
an also 
ombine the above Z3-grading on g(S, S′) indu
ed by

Θ with gradings on S and S′
by in�nite groups, namely, the Z-grading on pQ

and the Z2
-grading on pC as in Equations (9) and (8) respe
tively. Thus we get

gradings on:

(6g5) e6 = g(pK, pC) by the group Z3 × Z3 × Z
2 = Z

2 × Z
2
3, of type (60, 9);

(7g3) e7 = g(pQ,Ok) by the group Z3 × Z× Z2
3 = Z× Z3

3, of type (55, 0, 26);

(8g4) e8 = g(pC,Ok) by the group Z3×Z2×Z2
3 = Z2×Z3

3, of type (168, 1, 26).



72 C. Draper, A. Elduque

Now, 
onsider the Z-grading on g(S, S′) des
ribed in [7, �4.2℄ as follows: Let

1 and 1′ be the unit elements of two Hurwitz algebras C and C ′
. They be
ome

the paraunits of the 
orresponding para-Hurwitz algebras S = pC and S′ = pC ′
.

Consider the inner derivation d := ad(ι0(1⊗1′)) of g(S, S′), whi
h is a semisimple

derivation with eigenvalues ±2,±1, 0. Thus, the eigenspa
e de
omposition gives

the following Z-grading (5-grading) on g(S, S′):

g(S, S′)±2 = Σ±(S0, S
′
0),

g(S, S′)±1 = ν±(S ⊗ S′),

g(S, S′)0 = tS0,S0 ⊕ tS′
0,S

′
0
⊕ ι0(S0 ⊗ S′

0)⊕ Fι0(1⊗ 1′),

(11)

where S0 and S′
0 denote the subspa
es of zero tra
e elements in C and C ′

(here

S = pC and S′ = pC ′
), and where

Σ±(y, y
′) := t1,y + t′1,y′ ± iι0(y ⊗ 1 + 1⊗ y′),

ν±(y ⊗ y′) := ι1(y ⊗ y′)∓ iι2(ȳ ⊗ ȳ′),

for all y ∈ S, y′ ∈ S′
, and for a �xed s
alar i ∈ F su
h that i

2 = −1. It is


lear that this Z-grading 
an be re�ned with gradings 
oming from S or S′
. In

parti
ular, when the Zr
2-gradings on pC and pC ′

are used, we get gradings on:

(6g6) e6 = g(pK, pC) by the group Z× Z2 × Z3
2 = Z× Z4

2, of type (57, 0, 7);

(7g4) e7 = g(pQ, pC) by the group Z× Z2
2 × Z3

2 = Z× Z5
2, of type (106, 3, 7);

(8g5) e8 = g(pC, pC) by the group Z× Z
3
2 × Z

3
2 = Z× Z

6
2, of type (206, 0, 14).

Next we re
all the Z
4
-grading on g(pC, S′) des
ribed in [7, �4.3℄. Take the


anoni
al generators a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), g1 = (0, 0, 1, 0), g2 =
(0, 0, 0, 1) of the group Z4

, and write a0 = −a1 − a2, g0 = −g1 − g2. Set the

degrees of the Z4
-grading as follows:

deg ιi(e1 ⊗ s) = ai = − deg ιi(e2 ⊗ s),
deg ιi(ui ⊗ s) = gi = − deg ιi(vi ⊗ s),

deg ιi(ui+1 ⊗ s) = ai+2 + gi+1 = − deg ιi(vi+1 ⊗ s),
deg ιi(ui+2 ⊗ s) = −ai+1 + gi+2 = − deg ιi(vi+2 ⊗ s),

(12)

where s ∈ S′
and B = {e1, e2, u0, u1, u2, v0, v1, v2} is the standard basis of the

algebra C des
ribed in Se
tion 1.2.1. Also set deg(t) = (0, 0, 0, 0) for all t ∈
tri(S′), and deg tx,y = deg ι0(x⊗s)+deg ι0(y⊗s), if x, y ∈ B. A straightforward


omputation shows that the Z
4
-grading on g(pC, S′) provided by this assignment

is 
ompatible with any grading on pC and on S′
. In parti
ular, the following

gradings are obtained:



Fine gradings on the simple Lie algebras of type E 73

(6g7) A grading on e6 = g(pC, pK) by the group Z
4 × Z2, of type (72, 1, 0, 1);

(7g5) A grading on e7 = g(pC, pQ) by the group Z4 × Z2
2, of type (120, 0, 3, 1);

(8g6) A grading on e8 = g(pC, pC) by the group Z
4 × Z

3
2, of type (216, 0, 0, 8).

Observe that a Z3
-grading 
an be de�ned on g(pQ, S′) and a Z2

-grading on

g(pK, S′), both of them inherited dire
tly from the Z
4
-grading on g(pC, S′) given

by Equation (12). (Here {e1, e2, u1, v1} is a basis of pQ and {e1, e2} is a basis of

pK.) The grading on g(pQ, S′) is given by the following assignment of degrees:

deg ιi(e1 ⊗ s) = ai = − deg ιi(e2 ⊗ s),
deg ι1(u1 ⊗ s) = (0, 0, 1) = − deg ι1(v1 ⊗ s),
deg ι2(u1 ⊗ s) = (0, 1, 1) = − deg ι2(v1 ⊗ s),
deg ι0(u1 ⊗ s) = (1, 1, 1) = − deg ι0(v1 ⊗ s),

deg(te1,e2) = (0, 0, 0) = deg(tu1,v1),
deg(te1,u1) = (−1, 0, 1) = − deg(te2,v1),
deg(te1,v1) = (−1,−2,−1) = − deg(te2,u1),

for a1 = (1, 0, 0), a2 = (0, 1, 0), a0 = (−1,−1, 0), with deg(tri(S′)) = (0, 0, 0).
The grading on g(pK, S′) is given by:

deg ι1(e1 ⊗ s) = (1, 0) = − deg ι1(e2 ⊗ s),
deg ι2(e1 ⊗ s) = (0, 1) = − deg ι2(e2 ⊗ s),
deg ι0(e1 ⊗ s) = (−1,−1) = − deg ι0(e2 ⊗ s),

with deg(tri(pK)) = (0, 0) = deg(tri(S′)). Again these gradings 
an be 
ombined

with the Z
3
2-grading on the symmetri
 
omposition algebra pC to get:

(6g8) A grading on e6 = g(pK, pC) by the group Z
2 × Z

3
2, of type (48, 1, 0, 7);

(7g6) A grading on e7 = g(pQ, pC) by the group Z3 × Z3
2, of type (102, 0, 1, 7).

3.4 Gradings on some Jordan algebras

We are going to des
ribe some gradings on the Jordan algebra H4(C, ∗) =
{x = (xij) ∈ Mat4×4(C) | xij = x̄ji} for C some asso
iative Hurwitz al-

gebra (that is, up to isomorphism, C ∈ {F,K,Q}). The reader may 
onsult

[23, Chapter 5℄ for the des
ription of gradings on simple Jordan algebras.

Observe �rst that the Krone
ker produ
t gives an isomorphism of asso
iative

algebras:

Mat2×2(F)⊗Mat2×2(F) → Mat4×4(F), a⊗ b 7→ a⊗ b =

(

a11b a12b
a21b a22b

)

.
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Also, there is the natural isomorphism of asso
iative algebras,

Mat4×4(F)⊗ C ∼= Mat4×4(C), (aij)⊗ x 7→ (aijx). (13)

As Mat2×2(F) is isomorphi
 to Q, it inherits a Z-grading and a Z2
2-grading, so

that the previous identi�
ations allow us to de�ne gradings on Mat4×4(F) by

the groups Z
2
2 × Z

2
2 and Z× Z

2
2, on Mat4×4(K) by the groups Z

2
2 × Z

2
2 × Z2 and

Z× Z2
2 × Z2, and on Mat4×4(Q) by the groups Z2

2 × Z2
2 × Z2

2 and Z× Z2
2 × Z2

2.

Trivially any grading on the asso
iative algebra Mat4×4(C) is a grading of the

Jordan algebra Mat4×4(C)+. The point is that, for the previously des
ribed

gradings, the Jordan subalgebra H4(C, ∗) 6 Mat4×4(C)+ is a graded subspa
e,

so that:

• H4(F, ∗) is Z
4
2 and Z× Z2

2-graded;

• H4(K, ∗) is Z5
2 and Z× Z3

2-graded;

• H4(Q, ∗) is Z6
2 and Z× Z

4
2-graded.

Let us explain this with some extra detail. Let us denote by q0 the identity

matrix of degree 2, and 
onsider the matri
es

q1 =

(

0 1
1 0

)

, q2 =

(

1 0
0 −1

)

, q3 =

(

0 −1
1 0

)

= q1q2. (14)

Then the assignment deg(q1) = (1̄, 0̄) and deg(q2) = (0̄, 1̄) gives the Z
2
2-grading

on Mat2×2(F). The Z4
2-grading on Mat4×4(F) has 16 one-dimensional homo-

geneous 
omponents, where qi ⊗ qj has degree (deg(qi), deg(qj)). The subset

of homogeneous elements {qi ⊗ qj , q3 ⊗ q3 | i, j = 0, 1, 2} spans H4(F, ∗), and
hen
e the 10-dimensional spa
e H4(F, ∗) is also Z

4
2-graded. Moreover, as the

Z2-grading on K is given by K0̄ = 〈1 = e1 + e2〉 and K1̄ = 〈e1 − e2〉, then
H4(K, ∗) ⊂ Mat2×2(F) ⊗ Mat2×2(F) ⊗ K is spanned by the following subset

of homogeneous elements for the Z5
2-grading: {qi ⊗ qj ⊗ 1, q3 ⊗ q3 ⊗ 1 | i, j =

0, 1, 2}∪{qi⊗ q3⊗ (e1− e2), q3⊗ qi⊗ (e1− e2) | i = 0, 1, 2}. The remaining 
ases

are dealt with in the same way.

3.5 Gradings on Lie algebras obtained from Kantor's and Stein-

berg's 
onstru
tions

Re
all that we 
an get the ex
eptional Lie algebras of the E series by means

of Kantor's 
onstru
tion applied to the stru
turable algebras CD(H4(C, ∗)), for
an asso
iative Hurwitz algebra C. In turn, these stru
turable algebras are ob-

tained from the Jordan algebras J = H4(C, ∗) by means of the Cayley-Di
kson



Fine gradings on the simple Lie algebras of type E 75

doubling pro
ess explained in Example 2.2. This doubling pro
ess provides a

Z2-grading as usual, with even part J and odd part vJ , 
learly 
ompatible with

any grading on J . At the same time, any G-grading on a stru
turable algebra

(A,−) provides a Z×G-grading on Kan(A,−) and a Z2
2×G-grading on U(A,−)

(whi
h is isomorphi
 to Kan(A,−)). Thus we have another sour
e of gradings

on our Lie algebras. If Kantor's 
onstru
tion is applied to CD(H4(C, ∗)), and
the Z2-grading indu
ed by the Cayley-Di
kson doubling pro
ess and the �nite

gradings on Se
tion 3.4 are 
ombined, we obtain gradings on:

(6g9) e6 = Kan(CD(H4(F))) by the group Z× Z5
2, of type (73, 0, 0, 0, 1);

(7g7) e7 = Kan(CD(H4(K))) by the group Z× Z
6
2, of type (127, 0, 0, 0, 0, 1);

(8g7) e8 = Kan(CD(H4(Q))) by the group Z× Z
7
2, of type (241, 0, 0, 0, 0, 0, 1).

In the same vein, but using the in�nite gradings on Se
tion 3.4, we get

gradings on:

(6g10) e6 = Kan(CD(H4(F))) by the group Z
2 × Z

3
2, of type (60, 7, 0, 1);

(7g8) e7 = Kan(CD(H4(K))) by the group Z
2 × Z

4
2, of type (102, 13, 0, 0, 1);

(8g8) e8 = Kan(CD(H4(Q))) by the group Z2 × Z5
2, of type (180, 31, 0, 0, 0, 1).

Moreover, if we use Steinberg's 
onstru
tion applied to CD(H4(C, ∗)), the Z2-

grading indu
ed by the Cayley-Di
kson doubling pro
ess and the �nite gradings

in Se
tion 3.4 
an be 
ombined to get gradings on:

(6g11) e6 = U(CD(H4(F))) by the group Z7
2, of type (72, 0, 0, 0, 0, 1);

(7g9) e7 = U(CD(H4(K))) by the group Z
8
2, of type (126, 0, 0, 0, 0, 0, 1);

(8g9) e8 = U(CD(H4(Q))) by the group Z
9
2, of type (240, 0, 0, 0, 0, 0, 0, 1).

It is not di�
ult to see that the Z×Z
5
2-grading (respe
tively Z×Z

6
2 and Z×Z

7
2)

obtained in e6 = U(CD(H4(F))) (respe
tively e7 = U(CD(H4(K))) and e8 =
U(CD(H4(Q)))) is isomorphi
 to the grading (6g9) (respe
tively (7g7) and

(8g7)).

Remark 3.1. As we know [17℄ about the existen
e of a Z4 × Z4
2-grading on

e6, of type (48, 13, 0, 1), we would like to �nd a Z4-grading on the Lie algebra

obtained by means of Kantor's 
onstru
tion atta
hed to a stru
turable algebra.

That 
an be done for A = CD(H4(C)) = J ⊕ vJ , with J = H4(C, ∗) the Jordan
algebra of hermitian matri
es with 
oe�
ients in an asso
iative Hurwitz algebra
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C. In su
h a 
ase, S = Fv, and it is an straightforward 
omputation, taking into

a

ount Equations (4) and (5), that L = Kan(A) is Z4-graded as follows:

L0̄ = Fv˜⊕ (VJ,J + VvJ,vJ)⊕ Fv,
L1̄ = J ⊕ (vJ )̃ ,
L2̄ = VJ,vJ ,
L3̄ = J˜⊕ vJ.

This grading is 
ompatible with any grading on J , so that we 
an 
ombine it with

the gradings des
ribed in Se
tion 3.4 to get gradings on e6 = Kan(CD(H4(F)))
by the group Z4 × Z4

2, on e7 = Kan(CD(H4(K))) by the group Z4 × Z5
2, and on

e8 = Kan(CD(H4(Q))) by the group Z4×Z6
2. But these are not �ne!, so we must


ontinue the sear
h in order to explain several gradings by groups with fa
tors

Z4.

3.6 A Z4 × Z3
2-grading on the Jordan algebra H4(Q) and related

gradings on the ex
eptional Lie algebras

A graded division (asso
iative) algebra D is a graded algebra su
h that every

homogeneous element is invertible. If the support of su
h a grading is H and

G is a group 
ontaining H as a subgroup, and we have a G-graded right D-

module V (that is, VgDh ⊂ Vg+h for any g ∈ G and h ∈ H), then the division

property of D for
es V to be a free right D-module 
ontaining bases 
onsisting of

homogeneous elements, a

ording to [21, �2℄. Then we have a G-grading indu
ed

on R = EndD(V ) given by f ∈ Rg if f(Vg′) ⊂ Vg+g′ for any g′ ∈ G.

Let τ : D → D be a graded antiautomorphism, that is, τ is an antiauto-

morphism with τ(Dh) = Dh for any h ∈ H (whi
h implies that ne
essarily τ is

an involution, that is τ2 = idD). Let b : V × V → D a sesquilinear form (b is F-

bilinear, b(v1, v2) = τ(b(v2, v1)) and b(v1, v2d) = b(v1, v2)d for any v1, v2 ∈ V and

d ∈ D) 
ompatible with the grading, that is, b(Vg, Vg′) ⊂ Dg+g′ . Let ∗ be the ad-

joint relative to this form (b(f(v1), v2) = b(v1, f
∗(v2)) if f ∈ R). The point is that

the sets of hermitian and skew-hermitian elements H(R, ∗) = {f ∈ R | f∗ = f}
and K(R, ∗) = {f ∈ R | f∗ = −f} are graded subspa
es. Moreover, it is proven

in [21℄ that essentially all the gradings in K(R, ∗) and in H(R, ∗) are obtained

in this way.

Note that the quaternion algebra Q = Mat2×2(F) is a Z2
2-graded division

algebra with the grading given by the matri
es in Equation (14),

Q(0̄,0̄) = F1, Q(1̄,0̄) = Fq1, Q(0̄,1̄) = Fq2, Q(1̄,1̄) = Fq3. (15)

There are two involutions 
ompatible with this grading. The involution τ o given

by

qτ
o

1 = q1, qτ
o

2 = q2, qτ
o

3 = −q3,
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is the usual transpose involution (an orthogonal involution); while the involution

τ s = − given by

q̄i = −qi, ∀i = 1, 2, 3,

is the standard 
onjugation of the quaternion algebra Q (a symple
ti
 involu-

tion).

Take (D = Q, τ o) as above but with the following grading, equivalent to

(15),

Q(0̄,0̄) = F1, Q(2̄,0̄) = Fq1, Q(0̄,1̄) = Fq2, Q(2̄,1̄) = Fq3.

Take B = {v0, v1} a homogeneous D-basis in V , a graded right free D-module

of dimension 2, with deg(v0) = (0̄, 0̄) and deg(v1) = (1̄, 0̄). We have 
hosen the

degrees su
h that the sesquilinear form b : V × V → D given by the matrix A =
(

1 0
0 q1

)

relative to B is 
ompatible with the grading (sin
e 2 deg(v0) = deg(1)

and 2 deg(v1) = deg(q1)). Now for x =

(

p1 p2
p3 p4

)

∈ Mat2×2(Q) ≃ EndQ(V ) =

R, we have x∗ = A−1(τ o(x))tA =

(

τ o(p1) τ o(p3)q1
−q1τ

o(p2) −q1τ
o(p4)q1

)

, and hen
e

K(Mat2×2(Q), ∗) =

{(

αq3 −τ o(p)q1
p βq2

)

| α, β ∈ F, p ∈ Q

}

=: K

inherits the Z4 × Z2-grading, with 6 pie
es of dimension one,

K = K(2̄,1̄) ⊕K(0̄,1̄) ⊕K(1̄,0̄) ⊕K(3̄,0̄) ⊕K(1̄,1̄) ⊕K(3̄,1̄),

and also, for H := H(Mat2×2(Q), ∗),

H =

{(

p1 τ o(p)q1
p p2

)

| p1 ∈ 〈1, q1, q2〉, p2 ∈ 〈1, q1, q3〉, p ∈ Q

}

inherits the Z4 × Z2-grading,

H = H(2̄,1̄) ⊕H(0̄,1̄) ⊕H(1̄,0̄) ⊕H(3̄,0̄) ⊕H(1̄,1̄) ⊕H(3̄,1̄) ⊕H(0̄,0̄) ⊕H(2̄,0̄),

of type (6, 2) sin
e all the above homogeneous 
omponents are one-dimensional

ex
ept for two of them, namely,

H(0̄,0̄) = 〈

(

1 0
0 0

)

,

(

0 0
0 1

)

〉, H(2̄,0̄) = 〈

(

q1 0
0 0

)

,

(

0 0
0 q1

)

〉.

Next we identify Mat4×4(Q) with Mat2×2(F) ⊗ Mat2×2(F) ⊗ Q and hen
e

with Q ⊗ Mat2×2(Q) = Q ⊗ R, and 
onsider here the (symple
ti
) involution
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given by τ s⊗∗. The Jordan algebra J = H4(Q) lives here as J = {q⊗x ∈ Q⊗R |
τ s(q)⊗x∗ = q⊗x}, whi
h 
an be identi�ed with K(Q, τ s)⊗K(Mat2×2(Q), ∗)⊕
H(Q, τ s) ⊗ H(Mat2×2(Q), ∗). In this way, by 
ombining the Z

2
2-grading on Q

given by Equation (15) with the above Z4 ×Z2-grading on R, we get a Z4 ×Z3
2-

grading on J = H4(Q) of type 3(6, 0) + 1(6, 2) = (24, 2). Also we get a Z4 ×Z3
2-

grading on K(Q ⊗ R, τ s ⊗ ∗) ∼= Der(H4(Q)) (a Lie algebra of type c4) of type

1(6, 0) + 3(6, 2) = (24, 6).

Of 
ourse this grading on J indu
es a Z4 × Z4
2-grading on the stru
turable

algebra CD(H4(Q)), of type (48, 4). Now note that, a

ording to [3℄,

Der(CD(H4(Q)),−) ≃ e6, Instr(CD(H4(Q))) ≃ e7, U(CD(H4(Q))) ≃ e8.
(16)

In parti
ular, every G-grading on CD(H4(Q)) indu
es a G-grading on e6, a G×
Z2-grading on e7 and a G× Z2

2-grading on e8. In our 
ase we get gradings on:

(6g12) e6 = Der(CD(H4(Q))) by the group Z4 × Z
4
2, of type (48, 13, 0, 1);

(7g10) e7 = Instr(CD(H4(Q))) by the group Z4 × Z
5
2, of type (98, 15, 0, 0, 1);

(8g10) e8 = U(CD(H4(Q))) by the group Z4 × Z
6
2, of type (192, 25, 0, 0, 0, 1).

3.7 A Z3
4-grading on the stru
turable algebra CD(H4(Q))

There is a Z
3
4-grading on the stru
turable algebra A = CD(H4(Q)) whi
h is

not explained in terms of the Cayley-Di
kson pro
ess. This is a very interesting

grading in whi
h every nonzero homogeneous 
omponent is one-dimensional. Let

us des
ribe it. The information is extra
ted from [8℄.

Identify, as in Equation (13),Mat4×4(Q) withMat4×4(F)⊗Q. The involution

(qij)
∗ = (q̄ji) in Mat4×4(Q) is, under su
h 
orresponden
e, the tensor produ
t of

the matrix transpose on Mat4×4(F) and the standard involution on Q (under the

identi�
ation of Q with Mat2×2(F), this involution a
ts as follows: Ē11 = E22,

Ē22 = E11, Ē12 = −E12, Ē21 = −E21). In parti
ular, the Jordan subalgebra of

symmetri
 elements H4(Q) = {q = (qij) ∈ Mat4×4(Q) | q∗ = q} is identi�ed

with H4(F) ⊗ 〈E11 + E22〉 ⊕ K4(F) ⊗ 〈E11 − E22, E12, E21〉, where H4(F) and

K4(F) denote the subspa
es of symmetri
 and skewsymmetri
 matri
es of size

4, respe
tively, and hen
e with

J =

{(

z x
y zt

)

| x = −xt, y = −yt, x, y, z ∈ Mat4×4(F)

}

.
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Consider the following Z4-grading on the stru
turable algebra A = J ⊕ vJ :

A0̄ =

{(

z 0
0 zt

)

| z ∈ Mat4×4(F)

}

,

A1̄ =

{(

0 x
0 0

)

+ v

(

0 0
y 0

)

| x, y ∈ K4(F)

}

,

A2̄ = vA0̄,

A3̄ =

{

v

(

0 x
0 0

)

+

(

0 0
y 0

)

| x, y ∈ K4(F)

}

.

(17)

Note that if u ∈ GL(4,F) is an invertible matrix, we 
an 
onsider the following

automorphism of H4(Q),

Ψ(u) :

(

z x
y zt

)

7→

(

uzu−1 uxut

(u−1)tyu−1 (uzu−1)t

)

,

whi
h extends to A in a natural way (also denoted Ψ(u)). For any natural

number n, let ξ be a primitive nth root of 1 and 
onsider the following matri
es

Pn =















1 0 . . . . . . 0
0 ξ 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 ξn−2 0
0 . . . . . . 0 ξn−1















, Qn =















0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 0 1
1 0 . . . . . . 0















, (18)

also 
alled Pauli matri
es (Pn sometimes will be denoted by Pξ). Take now the

Pauli matri
es X = P4 and Y = Q4 and note that then Ψ(X) and Ψ(Y ) are

order four automorphisms of A (whi
h neither 
ommute nor anti
ommute).

Also, 
onsider for any skew-symmetri
 4× 4 matrix, its Pfa�an adjoint x̂:

x =









0 α β γ
−α 0 δ ε
−β −δ 0 ζ
−γ −ε −ζ 0









∈ K4(F), x̂ =









0 −ζ ε −δ
ζ 0 −γ β
−ε γ 0 −α
δ −β α 0









.

(Note that this di�ers from [8℄, where −x̂ is 
onsidered.) Now 
onsider the order

4 automorphism π : A → A, whose restri
tion to A0̄ ⊕ A2̄ is the identity, and

su
h that:

π

(

0 x
y 0

)

= v

(

0 −ŷ
x̂ 0

)

, π

(

v

(

0 x
y 0

))

=

(

0 −ŷ
x̂ 0

)

,

on A1̄⊕A3̄. If ξ ∈ F is 
hosen su
h that ξ2 = i, then πΨ(ξX) and Ψ(Y ) are two
order 4 
ommuting automorphisms that preserve the Z4-grading given by Equa-

tion (17), and a Z3
4-grading on A is obtained whose homogeneous 
omponents



80 C. Draper, A. Elduque

are the interse
tion of the homogeneous 
omponents of the Z4-grading with the


ommon eigenspa
es for πΨ(ξX) and Ψ(Y ).

Remark 3.2. This stru
turable algebra of dimension 56 (the only simple one of

su
h dimension) has a model whi
h is better known. It is de�ned on the ve
tor

spa
e

(

F A

A F

)

with multipli
ation given by

(

α1 x1
x′1 β1

)(

α2 x2
x′2 β2

)

=

(

α1α2 + T (x1, x
′
2) α1x2 + β2x1 + x′1 × x′2

α2x
′
1 + β1x

′
2 + x1 × x2 β1β2 + T (x2, x

′
1)

)

,

where T denotes the map T : A×A → F given by T (x, y) = T (xy) and × denotes

the so 
alled Freudenthal 
ross produ
t de�ned by T (x × y, z) = N(x, y, z) if

x, y, z ∈ A. The involution is given by

(

α x
x′ β

)

=

(

β x
x′ α

)

.

Although this is isomorphi
 (as an algebra with involution), to CD(H4(Q)), it
was previously studied as an example of Brown algebra. Garibaldi [30℄ dis
usses

the 
onne
tions between this algebra and the groups of types E6 and E7.

3.8 More gradings on the ex
eptional Lie algebras by groups

with fa
tors Z4

The Z3
4-grading above on CD(H4(Q)) immediately indu
es the following

gradings on:

(8g11) e8 = Kan(CD(H4(Q))) by the group Z× Z3
4, of type (123, 40, 15);

(8g12) e8 = U(CD(H4(Q))) by the group Z2
2 × Z3

4, of type (216, 14, 0, 1);

if we take into 
onsideration the Z-grading provided by Kantor's 
onstru
tion

and the Z
2
2-grading provided by Steinberg's 
onstru
tion.

Furthermore, re
all that the algebras e6 and e7 
an be obtained too from the

stru
turable algebra CD(H4(Q)) as in (16). Hen
e we get also gradings on:

(6g13) e6 = Der(CD(H4(Q))) by the group Z3
4, of type (48, 15);

(7g11) e7 = Instr(CD(H4(Q))) by the group Z3
4 × Z2, of type (102, 14, 1).
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The restri
tion of the Z
3
4-grading on CD(H4(Q)) to its stru
turable subal-

gebra CD(H4(K)) provides a Z
2
4 × Z2-grading on CD(H4(K)), whi
h of 
ourse


an be used to get gradings on:

(7g12) e7 = Kan(CD(H4(K))) by the group Z× Z
2
4 × Z2, of type (67, 27, 4);

(7g13) e7 = U(CD(H4(K))) by the group Z
2
2 × Z

2
4 × Z2 = Z

3
2 × Z

2
4, of type

(123, 3, 0, 1).

3.9 A �ne Z3
5-grading

There is a Z3
5-grading on e8 whi
h seems not to be related with any of the

previous 
onstru
tions or stru
tures. This grading appears in several 
ontexts

(for instan
e, [1℄ and [20℄, and lately in [42℄), due to its interesting properties:

the zero homogeneous 
omponent is trivial (as in any �ne grading by a �nite

group, see [16, Corollary 5℄) and all the other homogeneous 
omponents (in this


ase 124) have the same dimension (so that in this 
ase su
h dimension must

be 2) and 
onsist of semisimple elements ([17, Lemma 1℄). Moreover, given any

0 6= g ∈ Z
3
5, the subspa
e

⊕4
i=1

(

e8
)

ig
is a Cartan subalgebra. The following

des
ription 
an be found in [20℄.

Let V1 and V2 be two ve
tor spa
es over F of dimension 5 and let us 
onsider

the following Z5-graded ve
tor spa
e L = L0̄ ⊕ L1̄ ⊕ L2̄ ⊕ L3̄ ⊕ L4̄, for

L0̄ = sl(V1)⊕ sl(V2),

L1̄ = V1 ⊗
∧2 V2,

L2̄ =
∧2 V1 ⊗

∧4 V2,

L3̄ =
∧3 V1 ⊗ V2,

L4̄ =
∧4 V1 ⊗

∧3 V2.

(19)

We 
an endow L with a stru
ture of Z5-graded Lie algebra, with the natural a
-

tion of the semisimple algebra L0̄ on ea
h of the other homogeneous 
omponents.

The bra
kets involving elements in di�erent homogeneous 
omponents are given

by suitable s
alar multiples of the only L0̄-invariant maps from Lī × Lj̄ → Lī+j̄

(these s
alars have been 
omputed expli
itly in [13℄). The Lie algebra de�ned in

this way is simple of dimension 248, and hen
e it provides a linear model of e8.

The philosophy of this kind of linear models 
an be found in [46, Chapter 5, �2℄.

Let ξ ∈ F be a primitive �fth root of 1, and take B1 and B2 bases of V1

and V2 respe
tively, and endomorphisms b1, c1 ∈ End(V1) and b2, c2 ∈ End(V2)
whose 
oordinate matri
es in the bases Bi are

b1 = Pξ, c1 = Q5,
b2 = Pξ2 , c2 = Q5,
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de�ned as in Equation (18).

Now the unique automorphisms Ψ,Ψ′ ∈ Aut(L) whose restri
tions to L1̄ are

given by

Ψ|L1̄
= b1 ⊗ ∧2b2,

Ψ′|L1̄
= c1 ⊗ ∧2c2,

are order 5 automorphisms whi
h 
ommute with the automorphism produ
ing

the Z5-grading on L given by Equation (19). Thus we obtain the desired grading

by the group Z3
5, of type (0, 124).

3.10 Gradings indu
ed from other linear models

We would like to explain a little bit the history of the sear
h for the gradings

des
ribed in Se
tion 3.8, whi
h eventually lead to the quest for the grading by

Z3
4 on the simple stru
turable algebra of dimension 56.

Consider the 
hain E6 ⊂ E7 ⊂ E8 of ex
eptional groups. The maximal

abelian subgroup Z
3
4 of E6 is then also an abelian subgroup of E7 and also of

E8, predi
tably non-toral. This for
ed us to 
onsider the order 4 automorphisms

of e7 and e8. First note that if we look at the subgroup Z
3
4 of E6, the three


opies of Z4 involved do not play the same role. One 
omes from ϑ, an outer

automorphism of e6 produ
ing the grading

e6 = (a3 ⊕ sl(V ))⊕ (V (2λ1)⊗ V )⊕ (V (2λ2)⊗ F)⊕ (V (2λ3)⊗ V ) , (20)

for a two-dimensional ve
tor spa
e V , where the λi's are the fundamental dom-

inant weights for a3. The other 
opies of Z4, restri
ted to a3, produ
e the Z
2
4-

grading obtained by means of Pauli matri
es. More pre
isely, they 
orrespond

to the group

〈(P4, P2), (Q4, Q2)〉 ⊂
SL(4)× SL(2)

〈(iI4,−I2)〉
≃ CentE6〈ϑ〉.

The Z3
4-grading on e6 is easily handled in this way, sin
e we obtain 
on
rete

des
riptions of the homogeneous 
omponents in terms of tensors of the natural

representations of sl(4) and sl(2).

Inspired by this, one 
an 
onsider the automorphism of e7 obtained by re-

moving the bla
k node of the extended Dynkin diagram (see [39, Chapter 8℄)

❡ ❡ ❡ ✉ ❡ ❡ ❡

❡

1 2 3 4 3 2 1

2
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whi
h produ
es a Z4-grading L = L0̄ ⊕L1̄ ⊕L2̄ ⊕L3̄ on the Lie algebra L ∼= e7,

where

L0̄ = sl(W1)⊕ sl(V )⊕ sl(W2),
L1̄ = W1 ⊗ V ⊗W2,

L2̄ =
∧2W1 ⊗ F⊗

∧2W2,

L3̄ =
∧3W1 ⊗ V ⊗

∧3W2,

for W1 = W2 and V ve
tor spa
es of dimensions 4 and 2 respe
tively. (This gives

the stru
ture of the homogeneous 
omponents as modules for L0̄.) We 
onsider

now the order four automorphisms whose restri
tions to L1̄ are P4 ⊗ P2 ⊗ P4,

Q4 ⊗ Q2 ⊗ Q4, with Pn and Qn de�ned as in Equation (18), and the order

2 automorphism determined by w1 ⊗ v ⊗ w2 7→ w2 ⊗ v ⊗ w1. In this way, a

Z3
4 × Z2-grading on e7 is obtained (equivalent to (7g11)).

The same kind of arguments 
an be used to study Z4-gradings on e8. Again,

remove the bla
k node of the extended Dynkin diagram of e8

❡ ❡ ❡ ❡ ❡ ❡ ✉ ❡

❡

1 2 3 4 5 6 4 2

3

to get an automorphism ϑ ∈ Aut(e8) produ
ing a Z4-grading L = L0̄ ⊕ L1̄ ⊕
L2̄ ⊕ L3̄ on the Lie algebra L ∼= e8 where, as L0̄-modules, we have:

L0̄ = sl(W )⊕ sl(V ),

L1̄ =
∧2W ⊗ V,

L2̄ =
∧4W ⊗ F,

L3̄ =
∧6W ⊗ V,

for W and V ve
tor spa
es of dimensions 8 and 2 respe
tively. The 
entralizer


an be 
he
ked to be

CentE8(ϑ) ≃
PSL(8)× PSL(2)

〈(iI8,−I2)〉
,

where the automorphism ϑ 
orresponds to the 
lass [(ξI8, I2)] for ξ ∈ F su
h that

ξ2 = i. The MAD-groups of E8 
ontaining ϑ are MAD-groups of CentE8(ϑ). In
parti
ular, if we take ϑ together with

[(I2 ⊗ P4, P2)], [(P2 ⊗ I4, I2)],
[(I2 ⊗Q4, Q2)], [(Q2 ⊗ I4, I2)],

we obtain a Z3
4 × Z2

2-grading on e8 (equivalent to (8g12)); and if we take it

together with

[(I2 ⊗ P4, P2)], [(I2 ⊗Q4, Q2)], [(
(

α 0
0 1

α

)

⊗ I4, I2)],
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we obtain the produ
t of a one-dimensional torus and Z
3
4, and hen
e a Z

3
4 × Z-

grading on e8 (equivalent to (8g11)).

A

ording to [22℄, this latter grading has to be indu
ed by a �ne grading

with universal group Z3
4 on the simple stru
turable algebra of dimension 56.

Unfortunately, the gradings on the stru
turable algebras are not yet 
lassi�ed,

but in any 
ase it was worth to �nd su
h a Z
3
4-grading, be
ause it lies behind

several gradings on the simple Lie algebras e6, e7 and e8 (those in Se
tion 3.8).

This was the starting point of [8℄.

However, the models based on the Z3
4-grading on the simple 56-dimensional

stru
turable algebra have a disadvantage over the linear models above, as the

des
ription of the homogeneous 
omponents involving pie
es of trip(CD(H4(C)))
is not an easy task, and the type of the grading or the 
onjuga
y 
lasses of the

automorphisms are neither easy to 
ompute.

3.11 Con
lusion

A large list of gradings on ex
eptional Lie algebras has been 
ompiled here.

All of them are �ne and are des
ribed by their universal grading groups. We

summarize them in the next result.

Theorem 3.3. The following gradings on the simple Lie algebras of type E are

all �ne:

• The gradings on e6 des
ribed as (6gi), i = 1, . . . , 13, whose universal

groups are: Z6
2, Z

4
3, Z

3
2 ×Z2

3, Z2 ×Z3
3, Z

2 ×Z2
3, Z×Z4

2, Z
4 ×Z2, Z

2 ×Z3
2,

Z× Z
5
2, Z

2 × Z
3
2, Z

7
2, Z4 × Z

4
2, Z

3
4.

• The gradings on e7 des
ribed as (7gi), i = 1, . . . , 13, whose universal

groups are: Z7
2, Z2

2 × Z3
3, Z × Z3

3, Z × Z5
2, Z4 × Z2

2, Z3 × Z3
2, Z × Z6

2,

Z
2 × Z

4
2, Z

8
2, Z4 × Z

5
2, Z

3
4 × Z2, Z× Z

2
4 × Z2, Z

3
2 × Z

2
4.

• The gradings on e8 des
ribed as (8gi), i = 1, . . . , 13, whose universal

groups are: Z8
2, Z5

3, Z3
6, Z2 × Z3

3, Z × Z6
2, Z4 × Z3

2, Z × Z7
2, Z2 × Z5

2,

Z9
2, Z4 × Z6

2, Z× Z3
4, Z

2
2 × Z3

4, Z
3
5.

Conje
ture:We think that these gradings exhaust the list of �ne gradings, up to

equivalen
e, on e6, e7 and e8, with the ex
eption of the root spa
e de
ompositions

relative to a Cartan subalgebra.

If this 
onje
ture were true, then there would be, up to equivalen
e, 14 �ne

gradings on ea
h of the simple Lie algebras of type E. Therefore, there would

be exa
tly 14 
onjuga
y 
lasses of maximal abelian diagonalizable subgroups of

the algebrai
 group Aut(er), r = 6, 7, 8.
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This 
onje
ture has been proved for e6 in [17℄. The 
ases of e7 and e8 remain

open. An strategy for the �nite 
ase is that every automorphism belonging to

a MAD-subgroup of a 
onne
ted and simply-
onne
ted group (like E8) �xes a

semisimple subalgebra, so that it 
orresponds to removing only one node in the

extended Dynkin diagram. That fa
t implies that only a handful of automorph-

isms are possible and we are working in ea
h 
ase (see [14℄) by studying the


orresponding 
entralizers as in Se
tion 3.10. The group Aut(e7) is not simply


onne
ted, but on
e one gets all the MAD-subgroups of E8, mu
h of the work is

already done. In order to deal with in�nite MAD-groups, note that every grad-

ing by an in�nite group is related to a grading by a root system, as proved in

[22℄. As these root-gradings are well known, the problem redu
es to study some

spe
ial gradings on the 
oordinate algebras. In many 
ases these are stru
turable

algebras or related to them. Hen
e the problem is redu
ed to study gradings in

algebras of relative low dimension (
ompared to the dimension of the ex
eptional

simple Lie algebras).

The re
ent results by Y. Ju (Maximal abelian subgroups of 
ompa
t simple Lie

groups of type E, arXiv:1403.2680) and of A. Elduque (Gradings on algebras over

algebrai
ally 
losed �elds, arXiv:1407.0480) imply that the gradings in Theorem

3.3 exhaust the �ne gradings, up to equivalen
e, in e6, e7 and e8.
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