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Introduction

Gradings by groups have played a key role in the study of Lie algebras,
and contributed to understand their structural properties. Several families of
examples can be found in [23]. To begin with, the root space decomposition of
a complex semisimple Lie algebra is a grading by the group Z", with r the rank
of the Lie algebra. Any grading by a torsion-free abelian group is equivalent to
a coarsening of such root space decomposition, and these gradings have been
extensively used in representation theory. Gradings by not necessarily reduced
root systems are very nice examples of this situation. In particular, gradings by
the integers have had frequent applications to physics, and they are specially
relevant in algebraic contexts: if J is a Jordan algebra, the Tits-Kantor-Koecher
construction applied to J is a Z-graded Lie algebra L = L_; & Ly & L1 with
L1 = J, and the product in J can be recovered from the one in L. Some other
Jordan systems are related to ‘longer’ Z-gradings too.

Gradings by groups with torsion are also ubiquitous: gradings by cyclic
groups and the corresponding finite order automorphisms are described by Kac
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[38]. They are intimately related to (infinite-dimensional) Kac-Moody Lie al-
gebras and gradings by Z on them. In Differential Geometry, they are connec-
ted with symmetric spaces and their generalizations. Gradings by finite abelian
groups are related to Lie color algebras (a generalization of Lie superalgebras),
and sometimes to Lie algebra contractions. An interested reader can consult
[23, Introduction]| for these and other examples, as well as for applications and
references. Also a good and deep compilation of results can be found in [46,
Chapter 3, §3], which deals with the relationship between gradings on complex
semisimple Lie algebras and automorphisms, and exhibit a wide variety of ex-
amples of gradings.

J. Patera and H. Zassenhaus, convinced about the relevance of gradings, ini-
tiated in [47] a systematic study of gradings on Lie algebras, emphasizing the
role of the so called fine gradings (gradings which cannot be further refined).
Since then, a considerable number of authors have been trying to obtain a clas-
sification of gradings on the simple Lie algebras (see, e.g. [33, 9, 21, 15, 16, 17]),
which has culminated in the recent monograph [23], where gradings on the clas-
sical simple Lie algebras and on the exceptional simple Lie algebras of types Go
and Fj are thoroughly studied. However, there is still work to be done. On one
hand, not much is known about gradings on solvable or nilpotent Lie algebras.
On the other hand, the classification of gradings (for instance, the classification
of fine gradings up to equivalence) is not yet finished for the complex exceptional
simple Lie algebras of types F7 and Eg (denoted by e7 and eg), and this is also
the case for the simple Lie algebras of types Dy and E, (r = 6,7,8) over al-
gebraically closed fields of prime characteristic. Over the real numbers, even the
classification of fine gradings for the classical Lie algebras is missing, although
many low-dimensional cases have been considered.

Our goal is the classification of the fine gradings on the exceptional Lie
algebras ey and eg over an algebraically closed field F of characteristic zero, and
hence to finish the classification of fine gradings on simple Lie algebras over
the complex numbers. (Note the result in [17, Proposition 2|, which shows that
the complex case yields a solution over arbitrary algebraically closed fields of
characteristic 0.)

This goal has not been reached yet. The purpose of this paper is to de-
scribe a list of known fine gradings, which are compiled in our Main Theorem
(Theorem 3.3) on the exceptional simple Lie algebras of type E. Most of these
gradings make sense in much more general contexts but, to avoid confusion, we
will restrict ourselves to an algebraically closed ground field F of characteristic
zero. The list exhausts the fine gradings, up to equivalence, on eg, and we con-
jecture that it also exhausts them for ez and eg. This has been announced in [23,
Figure 6.2], although not all the descriptions there coincide with ours. Further
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details will be provided here too.

In our setting, a fine grading is the eigenspace decomposition relative to a
maximal quasitorus (that is, a maximal abelian diagonalizable, or MAD, sub-
group) of the group of automorphisms. This means that fine gradings are related
to ‘large’ abelian groups of symmetries. Hence our goal is equivalent to the clas-
sification of the MAD-subgroups, up to conjugation, of Aut(e7) and Aut(eg).

Some of these MAD-subgroups have appeared in the literature. For instance,
Griess describes in [31] the maximal elementary p-subgroups of the groups Fj,
E; and FEg. A larger class of abelian subgroups (not just MAD-subgroups) is
studied in [52]|. The Z%—subgroup of Fg has been considered by Hang and Vogan
in [32, pp. 22-25]. Also, Alekseevskii described the Jordan finite commutative
subgroups of the groups Fg, E7 and Eg in [1]. These include a MAD-subgroup
of Eg isomorphic to Z2. This subgroup has gained some attention lately, as it
appeared in a talk by Kostant (see [42]) about the controversial paper by the
physicist Lisi [44], which proposed a theory to go beyond the Standard Model in
that it unifies all 4 forces of nature by using as gauge group the exceptional Lie
group Fg. Kostant’s talk, strictly mathematical, dealt about an elaboration of
the mathematics of Eg in order to refute Lisi’s Theory. This is one more evidence
of the fascination produced by the richness of Fg, and shows the relevance of
understanding as much as possible about this group and its tangent Lie algebra.
Note that not even the finite abelian maximal groups are conveniently well known
(consult the recent work [14]). In terms of gradings, some of our descriptions have
appeared in [19], which uses gradings on composition algebras to construct some
nice gradings on exceptional algebras (e.g. a Z3-grading and a Z§-grading on ¢g).

This paper then gathers a lot of known material, and describes it in a homo-
geneous way. It is an expanded version of the talk presented by the first author
in the conference Advances in Group Theory and Applications 20135.

The paper is structured as follows. First there is a section to recall the
background: basic concepts about gradings and their connection with groups of
automorphisms, and some algebraic structures involved in the description of the
exceptional Lie algebras: composition (and symmetric composition) algebras,
Jordan algebras and its generalizations, and structurable algebras. Second, we
present several models of the exceptional Lie algebras and constructions leading
to them. After reviewing slightly how the exceptional Lie algebras emerged, we
focus mainly on three constructions due to Elduque, Kantor and Steinberg, as
they provide a convenient way to describe the fine gradings we are interested in.
Finally, the third section describes some fine gradings on eg, ¢y and eg starting
from gradings on the ‘coordinate algebras’ involved in the constructions above.
(These algebras are usually much simpler than eg, e; and es.) Fourteen fine
gradings will be given on each of these simple Lie algebras. The conjecture
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arises immediately of whether this is the complete list of fine gradings, up to
equivalence, for these algebras.

For the sake of clarity of the exposition, in what follows the ground field F
will be assumed to be algebraically closed of characteristic 0, even though many
results are valid in more general contexts.

1 Preliminaries

1.1 Gradings and automorphisms

We begin by recalling the basics about gradings. Let A be a finite-dimensional
algebra (not necessarily associative) over F, and let G be an abelian group.

Definition 1.1. A G-grading T on A is a vector space decomposition

F:A:@Ag

geG
such that Ay A, C Agyyp, for all g,h € G.

Once such a decomposition is fixed, the algebra A will be called a G-graded
algebra, the subspace A, will be referred to as the homogeneous component of
degree g and its nonzero elements will be called the homogeneous elements of
degree g. The support is the set suppI' := {g € G | A, # 0}.

Definition 1.2. If I': A = @4cq Ay and I': A = @pep Aj, are gradings by two
abelian groups G and H, T is said to be a refinement of I (or I a coarsening
of T) if for any g € G there is h € H such that A; C Ay. In other words, any
homogeneous component of I is the direct sum of some homogeneous compon-
ents of I'. A refinement is proper if some inclusion A, C A, is proper. A grading
is said to be fine if it admits no proper refinement.

Definition 1.3. Let I" be a G-grading on A and IV an H-grading on another
algebra B, with supports, respectively, S and T. Then I' and I' are said to
be equivalent if there is an algebra isomorphism ¢: A — B and a bijection
a: S — T such that p(As) = By for all s € S. Any such ¢ is called an
equivalence of T' and T".

The study of gradings is based on classifying fine gradings up to equivalence,
because any grading is obtained as a coarsening of some fine one. We will make
use of the following invariant by equivalences:

Definition 1.4. The type of a grading I is the sequence of numbers (h1, ..., h,)
where h; is the number of homogeneous components of dimension ¢, with i =
1,...,r and h, # 0. Obviously, dim A = >, ih;.
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Given a group grading I on an algebra A, there are many groups G such
that T', regarded as a decomposition into a direct sum of subspaces such that
the product of any two of them lies in a third one, can be realized as a G-
grading, but there is one distinguished group among them ([47]). Define U(I")
as the abelian group generated by S = supp " with defining relations s1s9 = s3
whenever 0 # Ag As, C Ay (s; € 5). It is called the universal group of T,
since it verifies that, for any other realization of I' as a G-grading, there exists
a unique homomorphism U(I') — G that restricts to identity on suppI'. All the
gradings throughout this work will be considered by their universal groups.

The classification of fine gradings on A, up to equivalence, is the same as the
classification of maximal diagonalizable subgroups (i.e., maximal quasitori) of
Aut(A), up to conjugation (see e.g. [47]). More precisely, given a G-grading
on the algebra A = @®4ecqAy, any x belonging to the group of characters
G = Hom(G,F*), acts as an automorphism of A by means of y.z = x(g)z
for any g € G and x € A,. In case G is the universal group of the grading, this
allows us to identify G with a quasitorus (the direct product of a torus and a
finite subgroup) of the algebraic group Aut(.A). This quasitorus is the subgroup
Diag(I") consisting of the automorphisms ¢ of A such that the restriction of ¢
to any homogeneous component is the multiplication by a (nonzero) scalar. (See
[46, Chapter 3, §3| or [23, §1.4].) Conversely, given a quasitorus @ of Aut(A),
then Q induces a Q-grading on A, where A, = {x € A | x(2) = g(x)zVx € Q}
for any g € Q In this way the fine gradings on 4, up to equivalence, corres-
pond to the conjugacy classes in Aut(.A) of the maximal abelian diagonalizable
subgroups of Aut(.A).

1.2 Related structures

We will recall here some algebraic structures involved in the constructions of
the exceptional Lie algebras. A very nice introduction to nonassociative algebras
can be found in [48|, but the necessary material of composition algebras and
Jordan algebras is included here for completeness, as well as material about
symmetric composition algebras and structurable algebras, which are not so
well known.

1.2.1 Composition algebras

A Hurwitz algebra over F is a unital algebra C' endowed with a nonsingular
quadratic form ¢: C' — F which is multiplicative, that is, ¢(zy) = q(x)q(y). This
form ¢ is usually called the norm. Each element a € C satisfies

a® —tc(a)a + g(a)1 =0,
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where tc(a) = g(a + 1) — g(a) — 1 is called the trace. Denote Cy = {a € C |
tc(a) = 0} the subspace of traceless elements. Note that [a,b] = ab—ba € Cy for
any a,b € C, since t¢(ab) = tc(ba). The map —: C — C given by a = tc(a)l—a
is an involution and ¢(a) = aa holds.

There are Hurwitz algebras only in dimensions 1, 2, 4 and 8 (see e.g. [53]).
Moreover, under our hypothesis on the field, there is only one (up to isomorph-
ism) Hurwitz algebra of each possible dimension, namely:

e the ground field F, with q(a) = a?;
e [F x IF, with componentwise product and norm given by ¢(a,b) = ab;

e Matgyo(F), with the usual matrix product and norm given by the determ-
inant;

e the split Cayley algebra over F. This algebra can be characterized by the
existence of a basis {ejy,es, us, u2, us, v1,ve,v3}, which we call standard
basis, with multiplication given by

€lU; = Uj = Uj€2, UijV; = €1, UiUi+1 = Vi+2 = —Uj+1Us,
€2V; = Vv = vjeéq, Viuy = €2,  —Ujli41 = Ui4+2 = Vi+1V5,

all the remaining products being 0, and the polar form of the norm (also
denoted by ¢q) of two basic elements is zero except for g(ej,e2) = 1 =
q(ui,v;), 1 =1,2,3.

With the exception of the Cayley algebra, all of these are associative. The Cayley
algebra is not associative but alternative (the algebra generated by any pair
of elements is associative). We will use the notations F, K, Q (usually called
quaternion algebra) and C (usually called octonion algebra) for each of these
algebras, respectively.

Recall that for any a,b € C', the endomorphism

dap = [la, o) + [la:76) + [Fa, 7]

is a derivation of C' for l,(b) = ab and 7,(b) = ba. This will be instrumental to
construct Lie algebras from Hurwitz algebras.

1.2.2 Jordan algebras

A Jordan algebra is a commutative (nonassociative) algebra satisfying the
Jordan identity

(z%y)z = 2*(y=).



Fine gradings on the simple Lie algebras of type E 59

This kind of algebras were introduced by Jordan in 1933 to formalize the notion
of an algebra of observables in quantum mechanics. Such line of research was
abandoned time ago, but Jordan algebras have found a range of applications
because of their relationship to Lie algebras. A standard reference is [36].

If A is an associative algebra (with multiplication denoted by juxtaposition)
and we consider the new product on A given by

1
zoy =g (zy +yz),

then (A,0) is a Jordan algebra, denoted by A*. A Jordan algebra which is
a subalgebra of AT for some associative algebra A, is called a special Jordan
algebra, and otherwise it is called ezceptional. If (A, —) is an associative algebra
with involution, then the set of hermitian elements H(A,—) = {a € A|a = a}
is a subalgebra of A" (not of A), and hence it is a special Jordan algebra.

In particular, if C' is an associative Hurwitz algebra with involution given
by —, the algebra H,(C,*) = {z = (zi;) € Mat,xn(C) | 255 = Zj;} is a Jordan
algebra for any n > 3. (For n = 1 or n = 2 this is also true, but in a trivial
way, so we will assume n > 3.) It is proved in [36] that if C is the Cayley
algebra, H,(C,x) is a Jordan algebra if and only if n = 3. Besides, this is the
only exceptional Jordan algebra, which is called the Albert algebra, and will be
denoted by A.

If J = H,(C,%) for some Hurwitz algebra and some n, consider the lin-
ear map ty: J — F given by t;(z) = trq(f) = Z?:nl Tii This map is called
the normalized trace and it is the only linear map such that ¢;(1) = 1 and
ti((zy)z) = tyj(z(yz)) for any x,y,z € J. Thus we have a decomposition
J=F1& Jy, for Jo = {x € J | t;(z) =0}, since zxy = zy — t;(zy)l € Jy. In
particular we have a commutative multiplication * defined in Jy.

If J is a Jordan algebra and R,: J — J, y — yx is the multiplication
operator, observe that

[[Rmv Ry]v RZ] = R(yz)$—y(zz) (1)

for any x,y,z € J, and thus, the structure algebra Ste(J), or Lie algebra gen-
erated by the multiplication operators, coincides with Ry + [Ry, R;] (this sum
is direct if J is unital). It is also a consequence of Equation (1) that [R;, R/]
is an ideal of the Lie algebra of derivations Der(J) = {d € gl(J) | d(zy) =
d(z)y + zd(y) Y,y € J}. The algebra generated by the traceless multiplication
operators { R, | © € Jy} is called the inner structure algebra and it also coincides
with Ry, + [Ry, Rj].

In case J = A is the Albert algebra, Der(A) is simple [37, Theorem 3|, so
in particular every derivation is inner (Der(A) = [Ra, Ral). The inner structure
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algebra is simple too |37, Theorem 4|, and these provide our first two models of
f4 and eg. Moreover, any element x € A satisfies a cubic equation

23— T(x)2? + Q(z)x — N(x)1 = 0, (2)

for the scalars T'(z) = tr(z), Q(z) = 5((T(2))*~T(2?)) and N(z) = :((T(2))*—
3T(z)T(x?) + 2T (x3)). The cubic form N is also closely related to eg.

1.2.3 Symmetric composition algebras

A symmetric composition algebra is a triple (S, *, ¢), where (S, *) is a (nonas-
sociative) algebra over F with multiplication denoted by = x y for z,y € S, and
where ¢q: S — F is a regular quadratic form verifying

q(z *y) = q(x)q(y),
q(z xy,2) = q(z,y * 2),

for any z,y, z € S, where ¢(z,y) = q(z +y) — ¢(z) — q(y) is the polar form of q.

Example 1.5. Let C' be a Hurwitz algebra with norm ¢. The same vector space
with new product
TxYy =2y

for any z,y € C' is a symmetric composition algebra for the same norm, called
the para-Hurwitz algebra attached to the Hurwitz algebra C'. We will denote it
by pC' = (C, %, q). Note that the unit of C' becomes a paraunit in pC, that is, an
element e such that e xx =z xe = q(e,x)e — x.

Example 1.6. The Okubo algebra, or pseudo-octonion algebra, is the algebra
defined on the subspace of trace 0 matrices of degree 3: Ok = (Matsy3(F)o, *, q)
with multiplication

w—w2

Ty = wry — wiyr — tr(zy)l (3)

and norm ¢(z) := & tr(z?), for 2,y € Matsx3(F)o, where w is a primitive cubic
root of 1. This algebra is a symmetric composition algebra, but it does not
have an identity element (and it is not alternative). It was introduced by Okubo
in [45], who was working in Particle Physics and the symmetry given by the
compact group SU(3) (the real algebra su(3) = {z € sl(3,C) | 2* = —z}, for %
the unitary involution, is closed for the product given in Equation (3)).

The classification of the symmetric composition algebras was obtained in
[24].
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Theorem 1.7. Every symmetric composition algebra over F (algebraically closed)
1s isomorphic either to a para-Hurwitz algebra or to the Okubo algebra. That is,
there are only five symmetric composition algebras (up to isomorphism), namely,

pF, pIC, pQ, pC and Ok.

1.2.4 Structurable algebras

Let (A, —) be a unital algebra with involution “—". Denote the multiplication
in A by juxtaposition. For ,y € A, consider the linear operator V,, € End(A)
given by V, ,(2) = (2y)z + (2y)x — (2T)y = {z,y, 2z}. The algebra A is called a
structurable algebra in case the identity

{zy,{z,w,0}} = {z,y, 2}, w,0} = {2, {y, 2, w}, 0} + {z,w, {z,y, v}}

is satisfied for any x,y, z,w,v € A, or equivalently,

[Vx,ya VVZ,u;] = VVLyz,w - ‘/Z,Vy@w-

The reader may consult [2] for the definition and properties of structurable
algebras.

Example 1.8. Any (unital) associative algebra with involution (A, —) is a struc-
turable algebra.

The space Jnste(A, —) = {>°, Va,us | i yi € A} is a subalgebra of the Lie
algebra gl(A), called the inner structure algebra of (A, —). The map

e: Jnste(A, —) — Tnstr(A, —), eVay) = —Vyu

if x,y € A, is an involutive automorphism of this Lie algebra. Thus Jnstr(A, —)
turns out to be Zg-graded. The elements in H(A,—) = {z € A | = = z}
and S(A,—) = {z € A | T = —x} are called hermitian and skew-hermitian
respectively. It follows that Jnste(A, —)5 = (Inste(A, —)NDer(A4, —)) ®Vs(a, )1
and Jnste(A, —)7 = Vig(a,—),1, where Der(4, —) denotes the set of derivations of
A that commute with the involution—.

Example 1.9. If J is a Jordan algebra, then (J,—) is a structurable algebra
with the involution — given by the identity map. In this case V,, = Ry, +
Ry, Ry] for z,y € J, where R, is the multiplication operator by x. In this sense,
the inner structure algebra of (J, —) is the usual inner structure algebra for a
Jordan algebra described in Section 1.2.2, and the Zs-grading produced by € is
Inste(J, —)g = [Ry, Ry], Inste(J, —)1 = Ry,.

Example 1.10. If (C}, —) and (Co, —) are composition algebras over the field F,
then (C1 ®Cy, —) is a structurable algebra (see |6, Example 6.6]) for the product
given by (a ® b)(c ® d) = ac ® bd and the involution given by a ® b = a ® b.
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2 DModels of the exceptional Lie algebras

The study of the Lie algebras began at the end of the XIX century, once
Lie had translated certain problem of transformation groups to an algebraic
context. The first fundamental contributions are due to Killing, who classified the
complex simple Lie algebras in four key papers published during the years 1886
and 1890. Initially he thought that the only possible cases were the Lie algebras
of the special linear group SL,,(C) and of the orthogonal and symplectic groups
O(n, C) and Sp(n, C), now called the classical Lie algebras. But, during his work,
he obtained that, besides the classical Lie algebras, there were a few other Lie
algebras, of dimensions 78, 133, 248, 52 and 14, now denoted as ¢g, ¢7, ¢, f4 and
go. Actually, he only proved the existence for g, but he described all possibilities
for rank, dimension and root systems. He found six algebras, since he did not
notice that two of them were isomorphic (case f4). This is a marvelous result, but
the standard reference for it is Cartan’s thesis in 1894, which completed Killing’s
classification, giving a rigorous treatment. This is a fundamental contribution,
where Cartan proved the existence of all the exceptional simple Lie algebras.

2.1 First Models

The history of these algebras has been growing in parallel to the one of
the related Lie groups. The first description of the smallest of the exceptional
Lie groups was due to Engel ([25]), who, in 1900, described it as the isotropy
group of a generic 3-form in 7 dimensions. Elie Cartan was the first to consider
the group G4 as the automorphism group of the octonion algebra in 1914 (|11,
p. 298| although he commented about it earlier), as well the Lie algebra go as
the derivation algebra of the octonions (both on the split and compact forms).
Jacobson generalized this result to arbitrary fields ([34]). This approach became
popular through the article [26] by Hans Freudenthal, in 1951. But, for rather a
long time, G5 was the only Lie group for which further results were obtained.

The following model of a exceptional Lie algebra had to wait until 1950,
when Chevalley and Schafer ([12]) showed that the set of derivations of the
Albert algebra A is f4. Tomber proved in [51] the converse: a Lie algebra over
a field of characteristic 0 is of type Fj if and only if it is isomorphic to the
derivation algebra of an exceptional simple Jordan algebra. This fact led Tits,
among other authors, to study the relationship between Jordan algebras and the
remaining exceptional simple Lie algebras, which were constructed in a unified
way [49]. We will revise this construction in the following subsection.

The algebra eg is also closely related to the Albert algebra. On one hand,
it is the inner structure algebra of the Albert algebra (the Lie algebra gener-
ated by the right multiplication operators R, for a € A with zero trace, as
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in Section 1.2.2). On the other hand, if N: A — [ is the cubic norm as in
Equation (2), and N(a, b, c) denotes the trilinear form obtained by polarization,
then the Lie algebra eg can be characterized as the Lie algebra {f € End(A) |
N(f(a),b,c) 4+ N(a, f(b),c) + N(a,b, f(c)) =0} (|35] and [26]).

The first model of e7 related to the Albert algebra was provided in [50], as
the algebra defined on the vector space (A ® sla(F)) @ Der(A) with the product

[T®a+d,yR@b+ds] = zy®[a,b]+da(z)@a—di(y) @b
—ttr(adaadb)[Ry, Ry] + [d1, da],

for z,y € A, a,b € sl5(F) and d;,ds € Der(A). The details of this construction
appear in [37, §9]. This is a version of what nowadays is called the Tits-Kantor-
Koecher construction applied to the Albert algebra. The name refers to several
constructions which appeared almost simultaneously, and turned out to be es-
sentially equivalent. In Koecher’s construction [41], one forms A & A @ Str(A),
where A is simply a copy of the vector space A, with the anticommutative
product given by [z,y] = 0 = [z,9], [z,9] = 2Rgy + 2[Ry, R,] if z,y € A,
and [L,z] = L(z), [L,7] = L(z), if L = Ry + Y_;[Ra;, Ry;] € Ste(A), where
L = —R; + Y_;[Rz;, Ry,]. This construction will be generalized in Section 2.4.
Similar to the situation for eg, the Lie algebra e; can be characterized too as
the set of linear transformations of certain vector space M leaving invariant a
quartic form [27]. Here, as a vector space, M is A @ A @ F @ F. This will play an
important role in our description of the gradings with automorphisms of order
4 involved, in Sections 3.7 and 3.8.

Finally, the difficulty of finding a good model for eg (coordinate free, that is,
not given by means of generators and relations obtained from the root system)
is that the nontrivial representation of minimal dimension for eg is the adjoint
representation, so there is no hope to embed eg as a subalgebra of gl(V') for
some vector space V of smaller dimension. However, some other ‘linear models’
can help in this purpose. Let V be a vector space of dimension 9, then we can
construct eg as the vector space

3 3
AVvees(v)e AV,

with Lie bracket as in |29, Exercise 22.21], based on the trilinear map given by
the usual wedge product A*V o A* Vo A*V = AV = F.

We refer to [37, 48, 28, 26] for these and other algebraic constructions of
the exceptional Lie algebras. We stress the reference [46], where many models
appear: [46, Chapter 5, §1] is devoted to models of exceptional Lie algebras
associated to a Cayley algebra (over arbitrary fields of characteristic zero, with
several references to the reals), while [46, Chapter 5, §2| provides other models
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based on gradings. This shows the interactions between nice models and certain
gradings, and this philosophy is certainly present in Sections 3.9 and 3.10.

2.2 Tits construction

In 1966, Tits gave a unified construction of the exceptional simple Lie algeb-
ras (over fields of characteristic not two and three) in [49]. The construction used
a couple of ingredients: an alternative algebra of degree 2 and a Jordan algebra of
degree 3. In case these ingredients are chosen to be Hurwitz algebras and Jordan
algebras of hermitian 3 x 3 matrices over Hurwitz algebras, Freudenthal’s magic
square [28] is obtained. We recall the construction in our concrete case.

Let C be a Hurwitz algebra over F with norm ¢, and let J = H3(C’,*) be
the Jordan algebra of hermitian 3 x 3-matrices over another Hurwitz algebra C”.
Consider the vector space

T(C,J) =Der(C)® (Co ® Jo) ® Der(J)

with anticommutative multiplication specified by

e Der(C) and Der(J) are Lie subalgebras,

e [Der(C),Der(J)] =0,

o [da®zx]=d(a)®z, [D,a®x] =a® D(z),

o [a®z,bRy|=ts(zy)dey + [a,b] @ z * y+ 2tc(ab)[Ry, Ry
for all d € Der(C), D € Der(J), a,b € Cy and z,y € Jy, with the notations of
Sections 1.2.1 and 1.2.2. Now, using all the possibilities for C' and C’, we obtain

Freudenthal’s Magic Square as follows [49] (note that we have added a column
with J =T to obtain G2 with the same construction):

J
T(C, J) F H3(]F) Hg(IF X IF) Hg(MatQXQ(IF)) H3(C)
F 0 aq [o5) C3 f4
FxTF 0 as as &P as as ¢g
Mat2><2(F) ay 3 as 06 e7
c g2 fa e6 e7 es
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2.3 Some symmetric constructions

In spite of the apparent asymmetry in the usage of the two Hurwitz algebras
in Tits construction, the Magic Square is symmetric. This lead several authors to
look for more symmetric constructions. Such an approach was taken by Vinberg
in |46, p. 177|, and interpreted by Barton and Sudbery in [10] as a construction
depending on two composition algebras and closely related to the triality prin-
ciple. A similar construction was provided by Landsberg and Manivel in [43],
inspired by previous work of Allison and Faulkner [6].

The construction we are going to recall here (and use later on), is the con-
struction in [18], based on two symmetric composition algebras, which has turned
to be very useful in finding fine gradings on exceptional Lie algebras [19].

Let (S, *,q) be a symmetric composition algebra and let

0(S,q) = {d € Endp(S5) | q(d(x),y) + q(x, d(y)) = 0Vz,y € S}

be the corresponding orthogonal Lie algebra. Consider the subalgebra of 0(S, ¢)*
defined by

tei(.S, %, q) = {(do,d1,d2) € o(S, q)3 | do(xxy) = di(x) xy+x*da(y) Yo,y € S},

which is called the triality Lie algebra. The order three automorphism ¥ given
by
v: ttl(S, *, Q) — tt1(57 *, Q)v (dOa d17 d?) — (d27 dOa d1)7

is called the triality automorphism. Take the element of tti(.S, , ¢) (denoted by
tri(.S) when it is no ambiguity) given by

1 ) 1 )
loy = <Ux,ya ~q(x,y)id — rzly, §Q($7 y)id — lxry> )

2
where 0,.4(2) = q(z, 2)y — q(y, 2)x, ro(2) = z x z, and l(2) = x * z for any
x,y,z €8.
Let (S,*,q) and (S’,%,¢’) be two symmetric composition algebras over F.
Consider the following vector space, which depends symmetrically on S and S’:

2
8. 5') i= tei(S, ,q) @ iS5, %, ¢) & (P u(S © )
=0

where (;(S ® S’) is just a copy of S ® S’ (i = 0,1,2), and the anticommutative
product on g(S,S’) is determined by the following conditions:

o tri(S, x,q) ® tri(S’, %, ¢') is a Lie subalgebra of g(S, S’);
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o [(doy i, da), iz ® 2)] = 1i(da(x) ® 27, [(dy, i, dy),vs(z @ )] = e @
di(z")), for any (dp, d1, dz) € ti(S), (df), d}, d,) € ti(S"), z € Sand 2’ € §';

o Li(z®2),Li1(y®Y)] = tira((x xy) @ (' xy')) (indices modulo 3), for
any : = 0,1,2, z,y € S and 2/,y/ € 5';

o Li(z®2),L(yRy)] = q’(:z:’,y’)z?i(tw7y)—|—q(a:,y)ﬁ”(t;/7y,) € tri(S) e tri(9),
forany i =0,1,2, 2,y € Sand 2/, y’ € S', ¥ and ¢ being the corresponding
triality automorphisms.

The anticommutative algebra g(S,S’) defined in this way turns out to be a
Lie algebra (|18, Theorem 3.1]), and we recover Freudenthal’s Magic Square if
symmetric composition algebras of all possible dimensions are considered:

dim S
1 2 4 8
Lo az 3 fa
dim S’ 2|l ay as®ay as e
4| ¢3 as 0 e7
8| fa e e7  ¢eg

If C; and Cy are two Hurwitz algebras over F, the Lie algebra g(pCi, pCs)
is isomorphic to T (C1, H3(Ca, %)) |23, Theorem 6.25].

2.4 Kantor’s construction

Let (A, —) be a structurable algebra. Denote by S = S(A, —) its set of skew-
hermitian elements. Endow the Z-graded vector space K = K_os ®K_1 D Ky ®
K1 @® Ko, for

Ko=S, Ki=A4,

Koy=S K_j—A, Ko = Inste(A, —),

where S and A™ are simply copies of S and A respectively, with a graded
Lie algebra structure given by the anticommutative multiplication such that
Jnste(A, —) = Vi 4 is a subalgebra and the following conditions hold:

[T, a] = T(a), [T,a] = (T¢a)",

[T, s] = T(s) + sT(1), [T, s7] = (T%(s) + sT=(1)),

[a+s a +s]—2(ss §'5) € Ko, (4)
[+ s7,d"+ 7] =2(s5 — s'5)" € K_g,

l[a+s,d +57)=(=5a)"+ LsLy +2V, o + (sa’) € K_1 & Ko @ K4,

for T € Onste(A,—), a,d’ € A, s, € S, where Ly: A — A denotes the left mul-
tiplication by s € S (so that 2L,Ly = Vi1 — Vs ¢ € Tnste(A, —)). Following
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|4, §6.4], this is a Z-graded Lie algebra denoted by RKan(A, —), which is called
the Kantor construction attached to the structurable algebra A. The construc-
tion takes its name from Kantor, who introduced it first in [40|, although in a
somewhat different way.

In connection with Example 1.9, if J is a Jordan algebra, the Kantor con-
struction Kan(.J, —) coincides (up to isomorphism) with the classical Tits-Kantor-
Koecher Lie algebra constructed from the Jordan algebra J.

A necessary and sufficient condition for a Lie algebra to be isomorphic to the
Kantor’s construction attached to a structurable algebra is given by the existence
of an sly-triple {e, h, f} (that is, [h,e] = 2e, [h, f] = —2f,[e, f] = h) in L such
that L is the direct sum of irreducible modules for ({e, h, f}) of dimensions 1, 3,
and 5; the only ideal of L which centralizes {e, h, f} is {0}, and L is generated
by the eigenspaces 2 and —2 for ad h [4, Theorem 6.10].

The relevance for our purposes comes from the fact that exceptional Lie
algebras are obtained in terms of Kantor’s constructions attached to certain
structurable algebras. Some examples of this situation are shown next:

Example 2.1. Consider the tensor products of composition algebras: C = FRC,
K®C, Q®C, and C ® C. These are structurable algebras according to Fx-
ample 1.10. Kantor’s construction gives the following Lie algebras:

RKan(C) = fy, KK ®C) Zeg, RKan(QRC)Zey, RKan(CRC) = eg,
as stated in [40] (see, alternatively, [3, §8(c)]).

Example 2.2. Let J = Hy4(C, %) be the Jordan algebra defined in Section 1.2.2
for C' a Hurwitz associative algebra. This algebra is a finite-dimensional simple
Jordan algebra, with generic trace t;(z) = } tr(z). We can use a sort of Cayley-
Dickson process with J in order to construct a structurable algebra as follows.

Take a nonzero p € F and the algebra defined on the vector space
A=Jdvl,

where v is simply a convenient mark to indicate the cartesian product of two
copies of J, with multiplication and involution given by

(x1 + vao)(xs + vay) == x123 + ,u(xgaz:}f)l9 + v(xifm + (a:ga:g)ﬁ), 5)
9

r1 + v =T — Vg
for any z; € J for i = 1,2, 3,4, where the multiplication in J is denoted by juxta-
position, with ¥ := —x + 2t ;(2)1 (so that 1V = 1) for any = € J. The resulting

algebra (A, —) is denoted by C'D(H4(C)). According to [5] (see, alternatively,
[4, Example 6.7]), this algebra is structurable with the extra property that the
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space of skew-hermitian elements has dimension 1. The Lie algebra obtained by
means of Kantor’s construction Kan(C'D(H4(C))) is eg, e7 and es, respectively,
in case dimC =1, 2 or 4.

2.5 Steinberg’s construction

Consider the following example [6].

Example 2.3. Let (A, —) be a unital associative algebra with involution and
consider the unitary Lie algebra u, (A, —) = {z € Mat,xn(A) | ' = —z}. Some
remarkable elements are u;j(a) = ae;; — aej;, where e;; are the usual matrix
units. These elements are subject to the following relations:

uij(a) = uji(=a),

a — u;j(a) is a linear map,

[uij(a), ur(b)] = wix(ab) for distinct 4, j, k,
[uij(a), uk (b)] = 0 for distinct 4, j, k, L.

(6)

Now, let (A, —) be a unital algebra with involution, and let stu,, (A, —) denote
the Lie subalgebra generated by elements u;;(a), for 1 <i # j <n, n > 3, and
a € A, subject to the relations (6). Then the condition u;j(a) = 0 implies a = 0 if
and only if either n > 4 and A is associative or n = 3 and (A, —) is structurable.
This Lie algebra is called the Steinberg unitary Lie algebra by analogy with the
Steinberg group in K-theory.

During the proof of the previous result, Allison and Faulkner used the fol-
lowing construction (also developed in [6]).

Let (A4, —) be a structurable algebra. For T € gl(A), define T by T'(z) = T(z).
A set T = (T1, Ty, T3) € gl(A)? is said to be a related triple if

Ti(zvy) = Tiva1(z)y + 2Ti42(y)

for all z,y € A and for all i = 1,2, 3, where the subindices are taken modulo 3.
These triples form a Lie algebra denoted by trip(A). A remarkable triple is the
following:

T; = LyLo — LaLy,

Ti+1 = RyR, — Ra Ry, (7)

Tiyo = Rab—l_za + LyLa — LaLfn

for a,b € A, where L, and R, denote the left and right multiplications by a in
A.

Consider now the vector space

Z/{(A, —) = ftlp(A) ) ulg(A) ) U23(A) D usz1 (A)



Fine gradings on the simple Lie algebras of type E 69

with anticommutative multiplication such that trip(A) is a subalgebra and the
following conditions hold:

[T, uii+1(a)] = wiir1(Tipa(a)),

[wiit1(a), wit1,i+2(b)] = —uiyoi(ab),
[wiit1(a), uiir1(b)] =T asin (7),

for any a,b € A and T = (T1,T»,T3) € teip(A). Then U(A, —) is a Lie algebra
isomorphic to stuz(A, —)/3, where 3 is the center of stuz(A, —) (|6, Theorem 4.3]).
This algebra U(A, —) is simple if and only if (A, —) is so. We call this algebra
the Steinberg construction attached to the structurable algebra A. Moreover, it
turns out that U(A, —) is isomorphic to the Lie algebra given by the Kantor’s
construction Kan(A, —) considered in the previous subsection.

3 Description of the gradings

3.1 Gradings on Hurwitz algebras

Given a Hurwitz algebra C' with norm ¢, we can construct, for each 0 # a €
F, a new unital algebra with involution, denoted by €®(C, «), by means of the
so called Cayley-Dickson doubling process. This is the algebra defined on C' x C
with the multiplication given by

(a,b)(c,d) = (ac + adb,da + be)

and the quadratic form
q(a,b) = q(a) — aq(b).

The resulting algebra €D(C, «) is a Hurwitz algebra if and only if C' is associ-
ative. Thus, according to our list of Hurwitz algebras, €D (F, «) is isomorphic
to IC, €D(K, a) is isomorphic to @ and €D(Q, a) is isomorphic to C. The al-
gebra €9(C, ) is always Zy-graded, with even part {(a,0) | a € C} and odd
part {(0,b) | b € C}. In particular K is Zp-graded, Q is Z2-graded and C is
Z3-graded.

On the other hand the standard basis of C is associated to a fine Z2-grading,
called the Cartan grading on C, which is given by

C(o,o) = Fe; @ Feo,

C(1,0) = Fua, C(-1,0) = Fu,

Ci0,1) = Fua, Cio,—1) = Fug,
C(-1,-1) = Fus, C(1,1) = Fus.
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The subalgebra (e, e2,u1,v;) can be identified with Q, which turns out to be
Z-graded, for

Qo = Fe; @ Fey, Q1 = Fuy, Q_1 = Fuy. 9)

3.2 Gradings on symmetric composition algebras

Gradings on symmetric composition algebras were classified in [19, The-
orem 4.5|. Every group grading on a Hurwitz algebra C is a grading on pC
(since the involution preserves the homogeneous components), and the grad-
ings on both the Hurwitz algebra C' and its para-Hurwitz counterpart coincide
when C has dimension at least 4. In particular we have a Zs-grading on pkK, a
Z3-grading and a Z-grading on pQ and a Z3-grading and a Z2-grading on pC.

There is a remarkable Zs-grading in the case of dimension 2 which does not
come from a grading on the corresponding Hurwitz algebra, namely,

pKs =0, pKi =Fe;  pKs5 =Fey,

where e; and ey are the orthogonal idempotents (1,0) and (0,1) in K =F x F,
which in pK satisfy e; x e; = eg and eg * es = €.

Also, a natural Z%—grading appears on the pseudo-octonion algebra Ok =
(sl3(F), x, q), determined by

1 0 0 01 0
Ok(L(‘)):F 0 w 0 and Ok(()j):F 0 0 1
0 0 w? 1 00

(recall that w is a primitive cubic root of 1).

3.3 Gradings on Lie algebras induced from gradings on sym-
metric composition algebras

If S and S are two symmetric composition algebras, the Lie algebra g(.S,S")
is always Z2-graded, for

9(5,5) 00 = ti(S) @ t6i(S),  9(5,8) 1) = 10(S © ),
! / ! / (10)
9(5,5) 1,0 =u(d®9), 9(5,5) (0, = (S®9).
Moreover, if S = @geq Sy is G-graded, and §' = Qe Sy is G'-graded, these
gradings can be combined with the one in Equation (10), thus obtaining a grad-
ing on g(S,5’) by the group Z3 x G x G'.
As a consequence, if we consider the gradings by the groups Zj on the sym-
metric composition algebras as in S Section 3.2, we get gradings on:
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(6g1) ¢ = g(pk, pC) by the group Z2 x Zs x Z3 = Z§, of type (48,1,0,7);
(7g1) e7 = g(pQ,pC) by the group Z3 x Zj x Z3 = 73, of type (96,0,3,7);
(8g1) es = g(pC,pC) by the group Z3 x Z3 x Z3 = 7§, of type (192,0,0,14).

Moreover, there is a distinguished Zs-grading on g(S,S’), obtained as the
eigenspace decomposition of an order 3 automorphism © induced by the triality
automorphisms 9 and 9 of S and S’ respectively. It is given by

Oluis) =7, Olwitsy =9, O((z®@1a")) = 1ip1(z @2).
This Zs-grading on g(S,S’) induced by © can be combined with any G and
G’-gradings on S and S’ respectively, to get a grading by the group Zs x G x G’
on g(S,S5’). If this procedure is applied to the Zs-grading on pK and to the
Z%—grading on Ok, we get gradings on:
(6g2) ¢ = g(pk, Ok) by the group Zs x Z3 x Z3 = Z3, of type (72,0,2);
(8g2) ¢s = g(Ok, Ok) by the group Zs x Z3 x Z3 = 73, of type (240,0,0, 2).

And if we combine some of the gradings above (related to the primes 2 and 3),
we obtain gradings on:

(6g3) ¢ = g(pk, pC) by the group Zs x Zs x Zj = 73 x 73, of type (64,7);

6g4) ¢ = g(pk, Ok) by the group Zs x Zg x 72 = Zy x 73, of type (26, 26);
3

(7g2) e7 = g(pQ, Ok) by the group Zs x Z3 x Z% = Z3 x Z3, of type (81,26);

8g3) ez = g(pC, Ok) by the group Zs x Z3 x 72 = 73 x 73 = 73, of type
2 X 43 9 X 43 6
(182, 33).

Finally, we can also combine the above Zs-grading on g(S,5S’) induced by
© with gradings on S and S’ by infinite groups, namely, the Z-grading on pQ
and the Z?-grading on pC as in Equations (9) and (8) respectively. Thus we get
gradings on:

(6g5) ¢ = g(pk, pC) by the group Zs x Zs x Z* = Z* x Z3, of type (60,9);
(7g3) e7 = g(pQ, Ok) by the group Z3 x Z x Z3 = 7 x Z3, of type (55,0, 26);

(8g4) es = g(pC, Ok) by the group Zs x Z? x Z3 = Z? x 73, of type (168,1,26).
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Now, consider the Z-grading on g(S, S’) described in [7, §4.2| as follows: Let
1 and 1’ be the unit elements of two Hurwitz algebras C' and C’. They become
the paraunits of the corresponding para-Hurwitz algebras S = pC and S’ = pC’.
Consider the inner derivation d := ad(tp(1®1")) of g(.S, S’), which is a semisimple
derivation with eigenvalues £2, +1,0. Thus, the eigenspace decomposition gives
the following Z-grading (5-grading) on g(5, S"):

g(S7 Sl):l:Q = Zi(S(), S(/))a
g(S, Sl):ﬂ = V:t(S X S/), (11)
9(5,5")0 = tsy,50  tsy.s ® to(So @ Sp) @ Fro(l @ 17),
where Sy and S{), denote the subspaces of zero trace elements in C' and C’ (here
S =pC and S’ = pC’), and where
Si(y,y) =ty + t’l,y, +Tilyel+1ey),
vi(y®y) =ulyey) Fieyey),

for all y € S, v/ € S, and for a fixed scalar i € F such that i> = —1. It is

clear that this Z-grading can be refined with gradings coming from S or S’. In
particular, when the Zj-gradings on pC' and pC” are used, we get gradings on:

(6g6) ¢¢ = g(pkC, pC) by the group Z x Zy x Z3 = 7 x 73, of type (57,0,7);
(7g4) e7 = g(pQ,pC) by the group Z x Z3 x Z3 = 7 x 73, of type (106,3,7);
(8g5) es = g(pC, pC) by the group Z x Z3 x Z3 = Z x 75, of type (206,0, 14).

Next we recall the Z*-grading on g(pC, S’) described in |7, §4.3|. Take the
canonical generators a; = (1,0,0,0), a2 = (0,1,0,0), ¢1 = (0,0,1,0), go =
(0,0,0,1) of the group Z*, and write ag = —a; — a2, go = —g1 — g2. Set the
degrees of the Z*-grading as follows:

deg ti(e1 ®s) = a; = —deg ti(e2 ® s),

deg Li(ui ® 8) = gi = - deg LZ(U ) (12)
deg ti(uit1®s) = a2 +gir1 = —deg (vt ®s),
deg ti(ujyo ® S) = —ait1+ give = —deg ti(vipa® s),

where s € S" and B = {ey, €2, ug, u1, uz, v, v1,v2} is the standard basis of the
algebra C described in Section 1.2.1. Also set deg(t) = (0,0,0,0) for all ¢ €
tei(S’), and degt,, = dego(x ®s) +dego(y®s), if x,y € B. A straightforward
computation shows that the Z*-grading on g(pC, S’) provided by this assignment
is compatible with any grading on pC and on S’. In particular, the following
gradings are obtained:
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g grading on eg = g(pC, p. y the group 4 X Zg, ot type (72,1,0,1);
6g7) A gradi C,pK) by th 74 X Zg, of 72,1,0,1
(7g5) A grading on e7 = g(pC, pQ) by the group Z* x Z3, of type (120,0,3,1);
g grading on eg = g(pC, pC) by the group Z* X Zj, of type ,0,0,8).
8g6) A gradi C,pC) by th 74 x 73, of 216,0,0,8

Observe that a Z3-grading can be defined on g(pQ, S’) and a Z2-grading on
a(pK, S"), both of them inherited directly from the Z*-grading on g(pC, S’) given
by Equation (12). (Here {ej, e2,u1,v1} is a basis of pQ and {ej, e2} is a basis of
pK.) The grading on g(pQ, S’) is given by the following assignment of degrees:

deg ti(e1 ®s) = a; = —deg ti(e2 ®s),
deg t1(u1 ® s) = (0,0,1) = —deg 11(v1 ®s),
deg a(u1 ®s) = (0,1,1) = —deg t2(v1 ® ),
deg to(u1 ® s) = (1,1,1) = —deg tp(v; ® ),
de (t61, 2) = (070?0) = deg<tu1,’01)a
deg( e1,u1) = (_ 0, 1) = = deg(t€2,v1)v
deg(t€1 vl) = (_17 -2, _1) = - deg(te%ul),

for ap = (1,0,0), as = (0,1,0), ap = (—1,—1,0), with deg(tti(S")) = (0,0,0).
The grading on g(pk, S’) is given by:

deg u(er®@s) = (1,00 = —degu(e2®s),
deg 2(e1®s) = (0,1) = —degiafe2®s),
deg wo(er ®@s) = (—1,—-1) = —deg ez ® s),

with deg(tri(pk)) = (0,0) = deg(tri(S")). Again these gradings can be combined
with the Z3-grading on the symmetric composition algebra pC to get:

(6g8) A grading on ¢g = g(pk,pC) by the group Z? x Z3, of type (48,1,0,7);

g6 grading on ey = g(p<, p y the group X L5, of type ,0,1,7).
7g6) A gradi Q,pC) by th 73 x 73, of 102,0,1,7

3.4 Gradings on some Jordan algebras

We are going to describe some gradings on the Jordan algebra Hy(C, ) =
{x = (zi5) € Matyxa(C) | xi; = zj} for C some associative Hurwitz al-
gebra (that is, up to isomorphism, C € {F,K, Q}). The reader may consult
[23, Chapter 5| for the description of gradings on simple Jordan algebras.

Observe first that the Kronecker product gives an isomorphism of associative
algebras:

Matgxg(F) & MatQXQ(IF) — Mat4x4(IF), a@b—a®b= anb b .
a1b ab
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Also, there is the natural isomorphism of associative algebras,
Mat4><4(F) ®C= Mat4><4(0), (aij) KR x > (aijx). (13)

As Matgxo(IF) is isomorphic to Q, it inherits a Z-grading and a Z3-grading, so
that the previous identifications allow us to define gradings on Maty4(F) by
the groups Z3 x Z3 and Z x Z3, on Matyx4(K) by the groups Z3 x Z3 x Zs and
Z x 73 x Zsa, and on Matyy4(Q) by the groups Z3 x 73 x 73 and Z x 72 x Z3.
Trivially any grading on the associative algebra Matsx4(C) is a grading of the
Jordan algebra Matyx4(C)T. The point is that, for the previously described
gradings, the Jordan subalgebra Hy(C,*) < Matyx4(C)" is a graded subspace,
so that:

o Hy(F,*)is Z3 and Z x Z3-graded;
o Hy(K,*)is Z3 and Z x Z3-graded;
o Hy(Q,x)is Z§ and Z x Z3-graded.

Let us explain this with some extra detail. Let us denote by q¢ the identity
matrix of degree 2, and consider the matrices

0 1 1 0 0 —1
Q1—(1 0>7 Q2—(0 _1>, q3—<1 0 )—qlqz- (14)

Then the assignment deg(q;) = (1,0) and deg(g2) = (0,1) gives the Z3-grading
on Matayz(F). The Zj-grading on Matyx4(F) has 16 one-dimensional homo-
geneous components, where ¢; ® ¢; has degree (deg(g;),deg(g;)). The subset
of homogeneous elements {¢; ® g;j,q3 ® g3 | 4,5 = 0,1,2} spans Hy(F,*), and
hence the 10-dimensional space Hy(F,*) is also Zj-graded. Moreover, as the
Zs-grading on K is given by K = (1 = e; + e2) and K7 = (e1 — e2), then
Hy (K, %) C Mataxa(F) ® Mataxa(F) ® K is spanned by the following subset
of homogeneous elements for the Zg—grading: {621, 30¢ 14,5 =
0,1,2}U{qi®qz®(e1 —e€2),g3®¢ @ (e1 —e2) | i = 0,1,2}. The remaining cases
are dealt with in the same way.

3.5 Gradings on Lie algebras obtained from Kantor’s and Stein-
berg’s constructions

Recall that we can get the exceptional Lie algebras of the E series by means
of Kantor’s construction applied to the structurable algebras €9 (H4(C, %)), for
an associative Hurwitz algebra C'. In turn, these structurable algebras are ob-
tained from the Jordan algebras J = H4(C, %) by means of the Cayley-Dickson
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doubling process explained in Example 2.2. This doubling process provides a
Zo-grading as usual, with even part J and odd part vJ, clearly compatible with
any grading on J. At the same time, any G-grading on a structurable algebra
(A, —) provides a Z x G-grading on fan(A, —) and a Z2 x G-grading on U(A, —)
(which is isomorphic to Ran(A, —)). Thus we have another source of gradings
on our Lie algebras. If Kantor’s construction is applied to €D (Hy(C, x)), and
the Zs-grading induced by the Cayley-Dickson doubling process and the finite
gradings on Section 3.4 are combined, we obtain gradings on:

(6g9) ¢ = Ran(CD(H,(F))) by the group Z x Z3, of type (73,0,0,0,1);
(7g7) e7 = Ran(CD(Hy(K))) by the group Z x Z§, of type (127,0,0,0,0,1);
(8g7) eg = Ran(¢D(H,(Q))) by the group Z x Z3, of type (241,0,0,0,0,0,1).

In the same vein, but using the infinite gradings on Section 3.4, we get
gradings on:

6g10) e = Kan(CD(Hy(F))) by the group Z? x Z3, of type (60,7,0,1);

2
(7g8) e7 = Ran(CD(H4(K))) by the group Z? x Z3, of type (102,13,0,0,1);
(8g8) e = Ran(€D(H4(Q))) by the group Z2 x Z3, of type (180,31,0,0,0,1).

Moreover, if we use Steinberg’s construction applied to €0 (H4(C, *)), the Zo-
grading induced by the Cayley-Dickson doubling process and the finite gradings
in Section 3.4 can be combined to get gradings on:

(6g11) e = U(CD(H4(F))) by the group Z3, of type (72,0,0,0,0,1);
(7g9) e7 = U(ED(H4(K))) by the group Z§, of type (126,0,0,0,0,0,1);
(8g9) ¢s = U(CD(H4(Q))) by the group Z9, of type (240,0,0,0,0,0,0,1).

It is not difficult to see that the Z x Z3-grading (respectively Z x Z$ and Z x Z5)
obtained in ¢g = U(CD(Hy(F))) (respectively ez = U(ED(H4(K))) and eg =
U(CD(H4(Q)))) is isomorphic to the grading (6g9) (respectively (7g7) and
(887)).

Remark 3.1. As we know [17] about the existence of a Z; x Zj-grading on
¢g, of type (48,13,0,1), we would like to find a Z4-grading on the Lie algebra
obtained by means of Kantor’s construction attached to a structurable algebra.
That can be done for A = €D(Hy(C)) = J @ vJ, with J = Hy(C, *) the Jordan
algebra of hermitian matrices with coefficients in an associative Hurwitz algebra
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C. In such a case, S = Fv, and it is an straightforward computation, taking into
account Equations (4) and (5), that L = Ran(A) is Z-graded as follows:

L() =Fv & (VJ,J + VUJ,”UJ) @ Fo,

Li=J® (vJ),
Ls =Vjyuy,
Ly=J @&vl.

This grading is compatible with any grading on J, so that we can combine it with
the gradings described in Section 3.4 to get gradings on e¢g = Kan(€D(Hy(F)))
by the group Z4 x Z3, on ¢7 = Ran(€D(H(K))) by the group Z4 x Z3, and on
g = Ran(€D(Hy(Q))) by the group Z4 x Z$. But these are not fine!, so we must
continue the search in order to explain several gradings by groups with factors
Zy.

3.6 A Z, x Z3-grading on the Jordan algebra H,(Q) and related
gradings on the exceptional Lie algebras

A graded division (associative) algebra D is a graded algebra such that every
homogeneous element is invertible. If the support of such a grading is H and
G is a group containing H as a subgroup, and we have a G-graded right D-
module V' (that is, VgD C Vyyp, for any g € G and h € H), then the division
property of D forces V to be a free right D-module containing bases consisting of
homogeneous elements, according to [21, §2]. Then we have a G-grading induced
on R =Endp(V) given by f € Ry if f(Vy) C Vyyy for any ¢’ € G.

Let 7: D — D be a graded antiautomorphism, that is, 7 is an antiauto-
morphism with 7(Dp) = Dy, for any h € H (which implies that necessarily 7 is
an involution, that is 72 =idp). Let b: V x V — D a sesquilinear form (b is F-
bilinear, b(v1, v2) = 7(b(ve,v1)) and b(vy, vad) = b(vy, v2)d for any v1,ve € V and
d € D) compatible with the grading, that is, b(Vy, Vi) C Dgyg. Let * be the ad-
joint relative to this form (b(f(v1),v2) = b(v1, f*(v2)) if f € R). The point is that
the sets of hermitian and skew-hermitian elements H(R,*) ={f € R| f* = f}
and K(R,«) ={f € R| f* = —f} are graded subspaces. Moreover, it is proven
in [21] that essentially all the gradings in K(R,*) and in H(R,*) are obtained
in this way.

Note that the quaternion algebra Q = Mataxo(F) is a Z3-graded division
algebra with the grading given by the matrices in Equation (14),

Qoo =F1l, Qug =Faq, Qon=TFq, Qi =7Fg. (15)

There are two involutions compatible with this grading. The involution 7° given

by

QIO = (1, qgo = q2, Q§ = —(s,
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is the usual transpose involution (an orthogonal involution); while the involution
7% = — given by

Cji:_%‘a Vi:172737

is the standard conjugation of the quaternion algebra Q (a symplectic involu-
tion).

Take (D = Q,7°) as above but with the following grading, equivalent to
(15),

Qoo =FL, Quo =Fa, Qo1 =Fe, Qa1 ="Fg.

Take B = {vp,v1} a homogeneous D-basis in V, a graded right free D-module
of dimension 2, with deg(vg) = (0,0) and deg(v1) = (1,0). We have chosen the
degrees such that the sesquilinear form b: V' x V' — D given by the matrix A =

0 @
and 2 deg(vy) = deg(q1)). Now for x = < b1 P2 ) € Matoy2(Q) ~ Endg(V) =

< L0 ) relative to B is compatible with the grading (since 2 deg(vg) = deg(1)

b3 P4

R, we have x* = A71(7°(z))!A = < T (51) T (gg)q1 >, and hence
—7°(p2) —qu7°(pa)q

__ o0
KMatza(@)) = {( °F TP ) jaserpe o=k
p Bq2
inherits the Z4 x Zo-grading, with 6 pieces of dimension one,
K=Kan® Ko ® Ko ® Ko ®Kan® Kan,

and also, for H := H(Matax2(Q), *),

H= {( 1;1 ’ g;)m > | p1€(1,q1,92),p2 € (1,q1,43),p € Q}

inherits the Z4 x Zo-grading,
H=Hgp1)®Hoy © Hao ®Hgo © Haip © Hen © Hpo) © Hizp),

of type (6,2) since all the above homogeneous components are one-dimensional
except for two of them, namely,

o3 8)- (8 ) (5 2)-(5 )

Next we identify Matyx4(Q) with Matoyo(F) @ Mataxa(F) ® Q and hence
with @ ® Matayx2(Q) = Q ® R, and consider here the (symplectic) involution
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given by 7°®=. The Jordan algebra J = H4(Q) lives here as J = {g®z € QR R |
7%(¢) ® x* = q®x}, which can be identified with K(Q, 7°) ® K (Matax2(Q), *) ®
H(Q,7%) ® H(Matax2(Q),*). In this way, by combining the Z3-grading on Q
given by Equation (15) with the above Z4 x Zy-grading on R, we get a Z4 x Z3-
grading on J = Hy(Q) of type 3(6,0) + 1(6,2) = (24,2). Also we get a Zy x Z3-
grading on K(Q ® R, 7° ® *) = Der(H4(Q)) (a Lie algebra of type ¢4) of type
1(6,0) + 3(6,2) = (24,6).

Of course this grading on J induces a Z4 x Zj-grading on the structurable
algebra €D (Hy(Q)), of type (48,4). Now note that, according to [3],

Der(€D(H4(Q)),—) ~ ¢, Inste(CD(H4(Q))) ~e7, U(CD(H4(Q))) = es.
(16)
In particular, every G-grading on €9 (H4(Q)) induces a G-grading on ¢g, a G X
Zs-grading on e7 and a G x Z3-grading on ¢g. In our case we get gradings on:

(6g12) ¢ = Der(€D(H4(Q))) by the group Zy x Zi, of type (48,13,0,1);
(7g10) e7 = Jnstr(¢D(H4(Q))) by the group Zy x Z3, of type (98,15,0,0,1);

(8g10) es = U(CD(H4(Q))) by the group Zy x Z$, of type (192,25,0,0,0,1).

3.7 A Z3-grading on the structurable algebra €D (H,(Q))

There is a Z3-grading on the structurable algebra A = €D (Hy(Q)) which is
not explained in terms of the Cayley-Dickson process. This is a very interesting
grading in which every nonzero homogeneous component is one-dimensional. Let
us describe it. The information is extracted from |[8].

Identify, as in Equation (13), Matsx4(Q) with Matsyx4(F)® Q. The involution
(gij)* = (gji) in Matyyx4(Q) is, under such correspondence, the tensor product of
the matrix transpose on Mat4(F) and the standard involution on Q (under the
identification of Q with Matayo(IF), this involution acts as follows: E1; = FEao,
Ey = E11, E1o = —E1o, By = —Fj51). In particular, the Jordan subalgebra of
symmetric elements Hy(Q) = {¢ = (¢;j) € Matax4(Q) | ¢* = ¢} is identified
with Hy(F) ® (E11 + E22) @ K4(F) ® (E11 — Eag, Fh2, E91), where Hy(F) and
K, (F) denote the subspaces of symmetric and skewsymmetric matrices of size
4, respectively, and hence with

Z T

J = {( y > |z = -2t y=—y', 2,9,z eMat4X4(IE")}.
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Consider the following Z4-grading on the structurable algebra A =7 & v J:

0
A(‘): S Zt>‘Z€Mat4X4(F) ,
0 =z 00
a={(5) (Y o) imvemef

As = vAg,

Ag:{v(g g>+(2 8>\x,yeK4(F)}.

Note that if u € GL(4,F) is an invertible matrix, we can consider the following
automorphism of Hy(Q),

W(u) : AN uzu~! uzut
\y 2 (w Hlyu™t  (uzu=b)t )
which extends to A in a natural way (also denoted ¥(u)). For any natural
number n, let £ be a primitive nth root of 1 and consider the following matrices

1 0 ... 0 0 1 0O ... 0
0 € 0 ... 0 00 1 ... 0
P, = .. .. ) Qni Lo ’ ’ (18)
0 ... 0 5”72 0 0O ... 0 0 1
0 ... ... 0 ¢t 1 0 ... ... 0

also called Pauli matrices (P, sometimes will be denoted by P¢). Take now the

Pauli matrices X = P, and Y = @4 and note that then U(X) and ¥(Y) are

order four automorphisms of A (which neither commute nor anticommute).
Also, consider for any skew-symmetric 4 x 4 matrix, its Pfaffian adjoint Z:

0 o B ~ 0 —¢ & =9

| a0 6 e . ¢ 0 - B
T = B -5 0 ¢ € Ky(F), z= Ze 4 0 —a
—y — —C 0 6 -8 a O

(Note that this differs from [8], where —& is considered.) Now consider the order
4 automorphism 7: A — A, whose restriction to Ag @ A; is the identity, and
such that:

(yo)=o(2 ) 0(35)-(27)

on A7 @ As. If € € F is chosen such that £2 = i, then 7¥(£X) and ¥(Y) are two
order 4 commuting automorphisms that preserve the Z4-grading given by Equa-
tion (17), and a Z3-grading on A is obtained whose homogeneous components
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are the intersection of the homogeneous components of the Z4-grading with the
common eigenspaces for 7U(£X) and ¥(Y).

Remark 3.2. This structurable algebra of dimension 56 (the only simple one of
such dimension) has a model which is better known. It is defined on the vector

space
F A
A F
with multiplication given by
al T ay @y ) _ agag + T(x1, ) a1z + Paxy + ) x o,
o B zh [ oz + frzh + 1 X X9 B18B2 + T (x2,x)) ’

where T" denotes the map 7: Ax A — F given by T'(z,y) = T'(zy) and x denotes
the so called Freudenthal cross product defined by T'(z X y,z) = N(z,y, z) if
x,y,z € A. The involution is given by

a xz\ (B =
2 B) \2 o)
Although this is isomorphic (as an algebra with involution), to €D (H4(Q)), it

was previously studied as an example of Brown algebra. Garibaldi [30] discusses
the connections between this algebra and the groups of types Eg and E7.

3.8 More gradings on the exceptional Lie algebras by groups
with factors Z,

The Z3-grading above on €D (H4(Q)) immediately induces the following
gradings on:

(8g11) eg = Ran(CD(H4(Q))) by the group Z x Z3, of type (123,40, 15);
(8g12) e = U(CD(H4(Q))) by the group Z2 x Z3, of type (216,14,0,1);

if we take into consideration the Z-grading provided by Kantor’s construction
and the Z2-grading provided by Steinberg’s construction.

Furthermore, recall that the algebras ¢g and e7 can be obtained too from the
structurable algebra €D (H,(Q)) as in (16). Hence we get also gradings on:

(6g13) ¢ = Der(€D(H,(Q))) by the group Z3, of type (48,15);

(7g11) e7 = Inste(€D(H4(Q))) by the group Z3 x Zs, of type (102,14, 1).
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The restriction of the Z3-grading on €®(Hy(Q)) to its structurable subal-
gebra €D (H4(K)) provides a Z3 x Zo-grading on €D (Hy(K)), which of course
can be used to get gradings on:

(7g12) e¢7 = Kan(CD(H4(K))) by the group Z x Z3 x Zs, of type (67,27, 4);

(7g13) ¢7 = U(CD(H4(K))) by the group Z3 x Z3 x Zs = 73 x 73, of type
(123,3,0,1).

3.9 A fine Z3-grading

There is a Z3-grading on eg which seems not to be related with any of the
previous constructions or structures. This grading appears in several contexts
(for instance, [1] and [20], and lately in [42]), due to its interesting properties:
the zero homogeneous component is trivial (as in any fine grading by a finite
group, see [16, Corollary 5]) and all the other homogeneous components (in this
case 124) have the same dimension (so that in this case such dimension must
be 2) and consist of semisimple elements ([17, Lemma 1]). Moreover, given any
0 # g € Z3, the subspace @?:1 (eg)ig is a Cartan subalgebra. The following
description can be found in [20].

Let V7 and V5 be two vector spaces over F of dimension 5 and let us consider
the following Zs-graded vector space L = Lg@® L1 ® L3 & L3 ® L, for

L() 25[(V1) @SI(VQ),

Li = Vi @ \* Vs,

Ly = N Vio A\ e, (19)
Ly=N\"Vi®,

LgZ/\4V1®/\3V2.

We can endow L with a structure of Zs-graded Lie algebra, with the natural ac-
tion of the semisimple algebra Lg on each of the other homogeneous components.
The brackets involving elements in different homogeneous components are given
by suitable scalar multiples of the only Lg-invariant maps from L; X L; — L7, ;
(these scalars have been computed explicitly in [13]). The Lie algebra defined in
this way is simple of dimension 248, and hence it provides a linear model of eg.
The philosophy of this kind of linear models can be found in [46, Chapter 5, §2].

Let £ € F be a primitive fifth root of 1, and take By and By bases of V;
and Vs respectively, and endomorphisms b1, c; € End(V7) and by, co € End(V32)
whose coordinate matrices in the bases B; are

by =P, c1=Qs,
b2:P§2a CZZQEN
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defined as in Equation (18).
Now the unique automorphisms ¥, ¥/ € Aut(L) whose restrictions to L are
given by
‘l”Li =b ® /\2b2,
UL, =c1 ® Aey,

are order 5 automorphisms which commute with the automorphism producing
the Zs-grading on L given by Equation (19). Thus we obtain the desired grading
by the group Z, of type (0,124).

3.10 Gradings induced from other linear models

We would like to explain a little bit the history of the search for the gradings
described in Section 3.8, which eventually lead to the quest for the grading by
Z3 on the simple structurable algebra of dimension 56.

Consider the chain Fg C E7 C FEg of exceptional groups. The maximal
abelian subgroup Zj of Eg is then also an abelian subgroup of E7; and also of
Ejg, predictably non-toral. This forced us to consider the order 4 automorphisms
of e7 and eg. First note that if we look at the subgroup Z3 of Eg, the three
copies of Zy4 involved do not play the same role. One comes from ¢, an outer
automorphism of eg producing the grading

e = (a3 @sl(V))d (VM) @V)®d (V(2A) @F) @ (V(2A3) @ V), (20)

for a two-dimensional vector space V', where the \;’s are the fundamental dom-
inant weights for ag. The other copies of Zg4, restricted to az, produce the Z3-
grading obtained by means of Pauli matrices. More precisely, they correspond
to the group

SL(4) x SL(2)

((Pr, P2), (Qu, Qo)) © =7 =5

~ Centg, (9).

The Z3-grading on e¢g is easily handled in this way, since we obtain concrete
descriptions of the homogeneous components in terms of tensors of the natural
representations of s[(4) and sl(2).

Inspired by this, one can consider the automorphism of e; obtained by re-
moving the black node of the extended Dynkin diagram (see [39, Chapter 8|)

1 2 3 4 3 2 1

2
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which produces a Z4-grading £ = L5 @ L1 ® L5 @ L5 on the Lie algebra £ = ey,
where
=sl(W7) & sl(V) @ sl(W3),
=WV W,
= N°W1 @F @ \* Wa,
5= N Wi eV e\ W,
for W1 = Wy and V vector spaces of dimensions 4 and 2 respectively. (This gives
the structure of the homogeneous components as modules for £5.) We consider
now the order four automorphisms whose restrictions to £7 are Py ® P» ® Py,
Q1 ® Q2 ® Q4, with P, and @, defined as in Equation (18), and the order
2 automorphism determined by w; ® v ® wo — we ® v ® wi. In this way, a
Z3 x Zo-grading on ey is obtained (equivalent to (7gl1)).

The same kind of arguments can be used to study Z4-gradings on eg. Again,
remove the black node of the extended Dynkin diagram of eg

(IR N N
N =l Ol

6 4

)

1 2
O @ O
<£3

to get an automorphism ¢ € Aut(eg) producing a Zs-grading £ = L5 @ L1 ®
L5 @ L5 on the Lie algebra £ = eg where, as Lg-modules, we have:

sI(W) @ sl(V),

o
ow
O
Qo

Ly

Li=NWaV,
Ls=N\'WaF,
Ly=NWaV,

for W and V vector spaces of dimensions 8 and 2 respectively. The centralizer
can be checked to be

PSL(8) x PSL(2)
((Is,—12)) ~
where the automorphism ¥ corresponds to the class [({Ig, I2)] for £ € F such that
€2 = i. The MAD-groups of Eg containing 1 are MAD-groups of Cent g, (9). In
particular, if we take 9 together with
[(Iy ® Py, P)],  [(P2® Iy, I2)],
[(I2®Q4,Q2)],  [(Q2® Iy, I1)],

we obtain a Z3 x Z3-grading on eg (equivalent to (8g12)); and if we take it
together with

(L@ PP, [(©Que)), [((52)en L),

Cent g, (V) ~
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we obtain the product of a one-dimensional torus and Z3, and hence a Z3 x Z-
grading on eg (equivalent to (8g11)).

According to |22, this latter grading has to be induced by a fine grading
with universal group Z3 on the simple structurable algebra of dimension 56.
Unfortunately, the gradings on the structurable algebras are not yet classified,
but in any case it was worth to find such a Z3-grading, because it lies behind
several gradings on the simple Lie algebras eg, ¢; and eg (those in Section 3.8).
This was the starting point of [8].

However, the models based on the Z3-grading on the simple 56-dimensional
structurable algebra have a disadvantage over the linear models above, as the
description of the homogeneous components involving pieces of trip(€D (Hy(C)))
is not an easy task, and the type of the grading or the conjugacy classes of the
automorphisms are neither easy to compute.

3.11 Conclusion

A large list of gradings on exceptional Lie algebras has been compiled here.
All of them are fine and are described by their universal grading groups. We
summarize them in the next result.

Theorem 3.3. The following gradings on the simple Lie algebras of type E are
all fine:

e The gradings on ¢ described as (6gi), i = 1,...,13, whose universal
groups are: 7.8, 73, T3 x 72, To x 73, 72 x 7%, T x 73, T* x L, 7% x 73,
Zx75, 72 <73, 75, 7y x 74, 73.

e The gradings on e; described as (7gi), i = 1,...,13, whose universal
groups are: 7, 73 x 73, . x 73, 7. x 73, 7Z* x 73, 7> x 73, 7 x 7§,
72 <75, 78, Zg x 73, 73 X Lo, T x 73 X Lo, T x 73.

e The gradings on eg described as (8gi), i = 1,...,13, whose universal
groups are: Zg, Zg, Zg, 7? x Zg, 7 x Zg, Z* x Z%, 7 x Zg, Z? x Zg,
79, Ty x 78, Zx 73, 73 x 73, Z3.

Conjecture: We think that these gradings exhaust the list of fine gradings, up to
equivalence, on ¢g, ¢7 and eg, with the exception of the root space decompositions
relative to a Cartan subalgebra.

If this conjecture were true, then there would be, up to equivalence, 14 fine
gradings on each of the simple Lie algebras of type E. Therefore, there would
be exactly 14 conjugacy classes of maximal abelian diagonalizable subgroups of
the algebraic group Aut(e,), r =6,7,8.
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This conjecture has been proved for ¢g in [17]. The cases of e7 and eg remain
open. An strategy for the finite case is that every automorphism belonging to
a MAD-subgroup of a connected and simply-connected group (like Eg) fixes a
semisimple subalgebra, so that it corresponds to removing only one node in the
extended Dynkin diagram. That fact implies that only a handful of automorph-
isms are possible and we are working in each case (see [14]) by studying the
corresponding centralizers as in Section 3.10. The group Aut(e;) is not simply
connected, but once one gets all the MAD-subgroups of Eg, much of the work is
already done. In order to deal with infinite MAD-groups, note that every grad-
ing by an infinite group is related to a grading by a root system, as proved in
[22]. As these root-gradings are well known, the problem reduces to study some
special gradings on the coordinate algebras. In many cases these are structurable
algebras or related to them. Hence the problem is reduced to study gradings in
algebras of relative low dimension (compared to the dimension of the exceptional
simple Lie algebras).

The recent results by Y. Ju (Mazimal abelian subgroups of compact simple Lie
groups of type E, arXiv:1403.2680) and of A. Elduque (Gradings on algebras over
algebraically closed fields, arXiv:1407.0480) imply that the gradings in Theorem
3.3 exhaust the fine gradings, up to equivalence, in ¢g, e7 and eg.
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