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Abstract. The tangent bundle of a Riemannian manifold (M, g) with a non-degenerate g−
natural metric G that admits a Killing vector field is investigated. Using Taylor’s formula
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1 Introduction

Geometry of a tangent bundle goes back to 1958 when Sasaki published
([16]). Having given Riemannian metric g on a differentiable manifold M, he
constructed a Riemannian metric G on the tangent bundle TM of M, known
today as the Sasaki metric. Since then different topics of geometry of the tangent
bundle were studied by many geometers. Other metrics on the tangent bundle,
obtained from the base metric g (as lifts), had been considered and studied.
Actually, all these metrics belong to a large class of metrics on TM, known as
g− natural ones, constructed in ([13]), see also ([5]). g− natural metrics can be
regarded as jets of a Riemannian metric g on a manifold M ([2]).

In this paper we are interested in the classification of Killing vector field
on the tangent bundle TM endowed with an arbitrary g− natural metric G.
The same subject had been studied in ([3]), ([17]) and ([18]) in the particular
cases where G is the Cheeger-Gromoll metric gCG, the complete lift gc and the
Sasaki metric gS , respectively. In all the cases, a classification of Killing vector
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fields on the tangent bundle had been obtained. Similar results were obtained
independently in ([15]).

We start by developing the method by Tanno ([18]) to investigate Killing
vector fields on TM with arbitrary, non-degenerate g− natural metrics. The
method applies Taylor’s formula to components of the vector field that is sup-
posed to be an infinitesimal affine transformation, in particular an infinitesimal
isometry. The infinitesimal affine transformation is determined by the values of
its components and their first partial derivatives at a point ([12], p. 232). It
appears by applying the Taylor’s formula there are at most four ”generators”
of the infinitesimal isometry: two vectors and two tensors of type (1, 1).

The paper is organized as follows. In Chapter 2 we describe the conventions
and give basic formulas we shall need. We also give a short resumé on a tangent
bundle of a Riemannian manifold. In Chapter 3 we calculate the Lie derivative of
a g−natural metric G on TM in terms of horizontal and vertical lifts of vector
fields from M to TM. Furthermore, we obtain the Lie derivative of G with
respect to an arbitrary vector field in terms of an adapted frame. By applying
the Taylor’s formula to the Killing vector field on a neighbourhood of the set
M × {0} we get a series of conditions relating components and their covariant
derivatives. Finally we prove some lemmas of a general character. It is worth
mentioning that at this level there is a restriction on one of the generators to
be non-zero. The further restrictions of this kind will appear later on.

In Chapter 4, making use of these conditions and lemmas, we split the non-
degenerate g−natural metrics on TM into four classes (Theorem 2).

As a consequence of the splitting theorem and Theorem 3 as well, we obtain
the main

Theorem 1. If the tangent bundle of a Riemannian manifold (M, g), dimM >
2, with a g− natural, non-degenerate metric G admits a Killing vector field, then
there exists a Killing vector field on M.

Conversely, any Killing vector field X on a Riemannian manifold (M, g)
gives rise to a Killing vector field Z on its tangent bundle endowed with a non-
degenerate g− natural metric. Precisely, Z is the complete lift of X.

Finally, in the Appendix we collect some known facts and theorems that we
use throughout the paper and also prove lemmas of a general character.

In part II of this work ([9], see also [10]) further properties of the classes
indicated in Theorem 2 are investigated separately. Moreover, a complete struc-
ture of the Lie algebra of Killing vector fields on TM for some subclasses is
given. Some classical lifts of some tensor fields from (M, g) to (TM,G) are also
discussed.

Throughout the paper all manifolds under consideration are smooth and
Hausdorff ones. The metric g of the base manifold M is always assumed to be
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Riemannian one.
The computations in local coordinates were partially carried out and checked

using MathTensorTM and Mathematica R© software.

2 Preliminaries

2.1 Conventions and basic formulas

Let (M, g) be a pseudo-Riemannian manifold of dimension n with metric g.
The Riemann curvature tensor R is defined by

R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ].

In a local coordinate neighbourhood (U, (x1, . . . , xn)) its components are given
by

R(∂i, ∂j)∂k = R(∂i, ∂j , ∂k) = Rr
kji∂r =(

∂iΓ
r
jk − ∂jΓ

r
ik + Γr

isΓ
s
jk − Γr

jsΓ
s
ik

)
∂r,

where ∂k = ∂
∂xk and Γr

jk are the Christoffel symbols of the Levi-Civita connection
∇. We have

∂lghk = ghk;l = Γr
hlgrk + Γr

klgrk. (1)

The Ricci identity is

∇i∇jXk −∇j∇iXk = Xk,ji −Xk,ij = −XsRskji. (2)

The Lie derivative of a metric tensor g is given by

(LXg) (Y, Z) = g (∇YX,Z) + g (Y,∇ZX) (3)

for all vector fields X, Y, Z on M. In local coordinates (U, (x1, . . . , xn)) we get

(LXr∂rg)ij = ∇iXj +∇jXi,

where Xk = gkrX
r.

We shall need the following properties of the Lie derivative

LXΓh
ji = ∇j∇iX

h +XrRrjisg
sh =

1

2
ghr [∇j (LXgir) +∇i (LXgjr)−∇r (LXgji)] . (4)

If LXΓh
ji = 0, then X is said to be an infinitesimal affine transformation.
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The vector field X is said to be the Killing vector field or infinitesimal
isometry if

LXg = 0.

For a Killing vector field X we have

LX∇ = 0, LXR = 0, LX (∇R) = 0, . . . .

([19], p. 23 and 24).

2.2 Tangent bundle

Let x be a point of a Riemannian manifold (M, g), dimM = n, covered by
coordinate neighbourhoods (U, (xj , j = 1, . . . , n)), . Let TM be the tangent
bundle of M and π : TM −→M be the natural projection on M. If x ∈ U and
u = ur ∂

∂xr |x ∈ TxM then (π−1(U), ((xr), (ur), r = 1, . . . , n)), is a coordinate

neighbourhood on TM.
For all (x, u) ∈ TM we denote by V(x,u)TM the kernel of the differential at

(x, u) of the projection π : TM −→M, i.e.,

V(x,u)TM = Ker
(
dπ|(x,u)

)
,

which is called the vertical subspace of T(x,u)TM at (x, u).
To define the horizontal subspace of T(x,u)TM at (x, u), let V ⊂ M and

W ⊂ TxM be open neighbourhoods of x and 0 respectively, diffeomorphic under
exponential mapping expx : TxM −→M. Furthermore, let S : π−1(V ) −→ TxM
be a smooth mapping that translates every vector Z ∈ π−1(V ) from the point
y to the point x in a parallel manner along the unique geodesic connecting y
and x. Finally, for a given u ∈ TxM, let R−u : TxM −→ TxM be a translation
by u, i.e. R−u(Xx) = Xx − u. The connection map

K(x,u) : T(x,u)TM −→ TxM

of the Levi-Civita connection ∇ is given by

K(x,u)(Z) = d(expp ◦R−u ◦ S)(Z)

for any Z ∈ T(x,u)TM.
For any smooth vector field Z :M −→ TM and Xx ∈ TxM we have

K(dZx(Xx)) = (∇XZ)x .

Then H(x,u)TM = Ker(K(x,u)) is called the horizontal subspace of T(x,u)TM at
(x, u).
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The space T(x,u)TM tangent to TM at (x, u) splits into direct sum

T(x,u)TM = H(x,u)TM ⊕ V(x,u)TM.

We have isomorphisms

H(x,u)TM ∼ TxM ∼ V(x,u)TM.

For any vector X ∈ TxM there exist unique vectors in T(x,u)TM, Xh and Xv,

given respectively by dπ(Xh) = X and Xv(df) = Xf, for any function f on
M. Xh and Xv are called the horizontal and the vertical lifts of X to the point
(x, u) ∈ TM .

The vertical lift of a vector field X on M is the unique vector field Xv on
TM such that at each point (x, u) ∈ TM its value is the vertical lift of Xx to
the point (x, u). The horizontal lift of a vector field is defined similarly.

If ((xj), (uj), i = 1, . . . , n) is a local coordinate system around the point
(x, u) ∈ TM where u ∈ TxM and X = Xj ∂

∂xj , then

Xh = Xj ∂

∂xj
− urXsΓj

rs

∂

∂uj
, Xv = Xj ∂

∂uj
,

where Γj
rs are the Christoffel symbols of the Levi-Civita connection ∇ on (M, g).

We shall write ∂k = ∂
∂xk and δk = ∂

∂uk (cf. [8] or [11], see also [20]).

In the paper we shall frequently use the frame (∂hk , ∂
v
l ) =

((
∂

∂xk

)h
,
(

∂
∂xl

)v)

known as the adapted frame.

Lemma 1. The Lie brackets of vector fields on the tangent bundle of a
pseudo-Riemannian manifold M are given by

[
Xh, Y h

]
(x,u)

= [X,Y ]h(x,u) − v {R (Xx, Yx)u} ,
[
Xh, Y v

]
(x,u)

= (∇XY )v(x,u) = (∇YX)v(x,u) + [X,Y ]v(x,u) ,

[Xv, Y v](x,u) = 0

for all vector fields X, Y on M.

Every metric g on M gives rise to the class of so called g− natural metrics.
The well-known Cheeger-Gromoll and Sasaki metrics are special cases of g−
natural metrics ([13]). g− natural metrics are characterized by the following

Lemma 2. ([5], [6]) Let (M, g) be a Riemannian manifold and G be a
g−natural metric on TM. There exist functions aj , bj :< 0,∞) −→ R, j =
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1, 2, 3, such that for every X, Y, u ∈ TxM

G(x,u)(X
h, Y h) = (a1 + a3)(r

2)gx(X,Y ) + (b1 + b3)(r
2)gx(X,u)gx(Y, u),

G(x,u)(X
h, Y v) = a2(r

2)gx(X,Y ) + b2(r
2)gx(X,u)gx(Y, u), (5)

G(x,u)(X
v, Y h) = a2(r

2)gx(X,Y ) + b2(r
2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y v) = a1(r

2)gx(X,Y ) + b1(r
2)gx(X,u)gx(Y, u),

where r2 = gx(u, u). For dimM = 1 the same holds for bj = 0, j = 1, 2, 3.

Setting a1 = 1, a2 = a3 = bj = 0 we obtain the Sasaki metric, while setting
a1 = b1 = 1

1+r2
, a2 = b2 = 0 = 0, a1 + a3 = 1, b1 + b3 = 1 we get the

Cheeger-Gromoll one.

Following ([5]) we put

(1) a(t) = a1(t) (a1(t) + a3(t))− a22(t),

(2) Fj(t) = aj(t) + tbj(t),

(3) F (t) = F1(t) [F1(t) + F3(t)]− F 2
2 (t)

for all t ∈< 0,∞).

We shall often abbreviate: A = a1 + a3, B = b1 + b3.

Lemma 3. ([5], Proposition 2.7) The necessary and sufficient conditions
for a g− natural metric G on the tangent bundle of a Riemannian manifold
(M, g) to be non-degenerate are a(t) 6= 0 and F (t) 6= 0 for all t ∈< 0,∞). If
dimM = 1 this is equivalent to a(t) 6= 0 for all t ∈< 0,∞).

2.3 The Levi-Civita connection

The Levi-Civita connection ∇̃ of a Riemannian g - natural metric G on
TM was calculated and presented in ([4], [5], [6]), with some misprints (see, for
instance, ([1]) for correct expressions without misprints).

The same expressions remain valid for non-degenerate g− natural metric
(cf. ([7])).

Let T be a tensor field of type (1, s) on M. For any X1, . . . , Xs ∈ TxM,
x ∈ M, we define horizontal and vertical vectors at a point (x, u) ∈ TTM
setting respectively

h {T (X1, . . . , u, . . . , Xs−1} =
dimM∑

r=1

ur[T (X1, . . . , ∂r, .., Xs−1)]
h,
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v {T (X1, . . . , u, . . . , Xs−1} =
dimM∑

r=1

ur[T (X1, . . . , ∂r, .., Xs−1)]
v.

By the similar formulas we define

h {T (X1, . . . , u, . . . , u, . . . , Xs−1} and h {T (X1, . . . , u, . . . , u, . . . , Xs−1} .

Moreover, we put h {T (X1, . . . , Xs} = (T (X1, . . . , Xs))
h and v {T (X1, . . . , Xs} =

(T (X1, . . . , Xs))
v . Therefore h{X} = Xh and v{X} = Xv ([4], pp. 22-23).

Finally, we write

R(X,Y, Z) = R(X,Y )Z and R(X,Y, Z, V ) = g(R(X,Y, Z), V )

for all X,Y, Z, V ∈ TxM.

Proposition 1. ([1], [7]) Let (M, g) be a Riemannian manifold, ∇ its Levi-
Civita connection and R its Riemann curvature tensor. If G is a non-degenerate
g−natural metric on TM, then the Levi-Civita connection ∇̃ of (TM,G) at a
point (x, u) ∈ TM is given by

(
∇̃XhY h

)
(x,u)

= (∇XY )h(x,u) + h {A(u,Xx, Yx)}+ v {B(u,Xx, Yx)} ,
(
∇̃XhY v

)
(x,u)

= (∇XY )v(x,u) + h {C(u,Xx, Yx)}+ v {D(u,Xx, Yx)} ,
(
∇̃XvY h

)
(x,u)

= h {C(u, Yx, Xx)}+ v {D(u, Yx, Xx)} ,
(
∇̃XvY v

)
(x,u)

= h {E(u,Xx, Yx)}+ v {F (u,Xx, Yx)} ,

for all vector fields X, Y on M, where P = a′2 − b2
2 , Q = a′2 +

b2
2 and

A(u,X, Y ) = −a1a2
2a

[R(X,u, Y ) +R(Y, u,X)] +

a2B

2a
[g(Y, u)X + g(X,u)Y ] +

1

aF

{
a2 [a1 (F1B − F2b2) + a2 (b1a2 − b2a1)]R(X,u, Y, u)+

[
aF2B

′ +B [a2(F2b2 − F1B) +A(a1b2 − a2b1)]
]
g(X,u)g(Y, u)+

aF2A
′g(X,Y )

}
u,
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B(u,X, Y ) =
a22
a
R(X,u, Y )− a1A

2a
R(X,Y, u)−

AB

2a
[g(Y, u)X + g(X,u)Y ] +

1

aF

{
a2[a2(F2b2 − F1B) +A(b2a1 − b1a2)]R(X,u, Y, u)+

[
−a(F1+F3)B

′+B [A ((F1 + F3)b1 − F2b2) + a2 (a2B − b2A)]
]
g(X,u)g(Y, u)

− a(F1 + F3)A
′g(X,Y )

}
u,

C(u,X, Y ) = −a
2
1

2a
R(Y, u,X) +

a1B

2a
g(X,u)Y+

1

a

(
a1A

′ − a2P
)
g(Y, u)X+

1

aF

{
a1
2

[a2 (a2b1 − a1b2) + a1 (F1B − F2b2)]R(X,u, Y, u)+

a

(
F1

2
B + F2P

)
g(X,Y )+

[
aF1B

′ +

(
A′ +

B

2

)
[a2 (a1b2 − a2b1) + a1 (F2b2 −BF1)] +

P [a2 (b1 (F1 + F3)− b2F2)− a1 (b2A− a2B)]

]
g(X,u)g(Y, u)

}
u,

D(u,X, Y ) =
1

a

{
a1a2
2

R(Y, u,X)− a2B

2
g(X,u)Y +

(
AP − a2A

′)g(Y, u)X
) }

+

1

aF

{a1
2

[A(a1b2 − a2b1) + a2(F2b2 − F1B)]R(X,u, Y, u) −

a

[
F2

2
B + (F1 + F3)P

]
g(X,Y )+

[
− aF2B

′ +

(
A′ +

B

2

)
[A(a2b1 − a1b2) + a2(F1B − F2b2)] +

P [A(b2F2 − b1(F1 + F3)) + a2(b2A− a2B)]
]
g(X,u)g(Y, u)

}
u,
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E(u,X, Y ) =
1

a

(
a1Q− a2a

′
1

)
[g(X,u)Y + g(Y, u)X] +

1

aF

{
a
[
F1b2 − F2(b1 − a′1)

]
g(X,Y )+

[
a(2F1b

′
2 − F2b

′
1) + 2a′1 [a1(a2B − b2A) + a2(b1(F1 + F3)− b2F2)] +

2Q [a1(F2b2 − F1B) + a2(a1b2 − a2b1)]
]
g(X,u)g(Y, u)

}
u,

F (u,X, Y ) =
1

a

(
Aa′1 − a2Q

)
[g(X,u)Y + g(Y, u)X] +

1

aF

{
a
[
(F1 + F3)(b1 − a′1)− F2b2

]
g(X,Y )+

[
a((F1 + F3)b

′
1 − 2F2b

′
2)+ 2a′1 [a2(b2A− a2B) +A(b2F2 − b1(F1 + F3))] +

2Q [a2(F1B − F2b2) +A(a2b1 − a1b2)]
]
g(X,u)g(Y, u)

}
u.

3 Killing vector field

3.1 Lie derivative

Applying the formula (3) to the non-degenerate g−natural metric G on TM
and vertical and horizontal lifts of vector fields X, Y, Z onM, using Proposition
1, we get

(LXvG) (Y v, Zv) =

b1g(X,Z)g(Y, u) + b1g(X,Y )g(Z, u)+

2a′1g(Y, Z)g(X,u) + 2b′1g(X,u)g(Y, u)g(Z, u),

(LXhG) (Y v, Zv) = 0,

whence

(
LHa∂h

a+V a∂v
a
G
)
(∂vk , ∂

v
l ) = V a

(
L∂v

a
G
)
(∂vk , ∂

v
l ) + ∂vkH

aG
(
∂ha , ∂

v
l

)
+

∂vkV
aG (∂va , ∂

v
l ) + ∂vl H

aG
(
∂vk , ∂

h
a

)
+ ∂vl V

aG (∂vk , ∂
v
a) .

Next we find

(LXhG)
(
Y v, Zh

)
=

− a1R(Y, u,X,Z) + a2g(∇ZX,Y ) + b2g(∇ZX,u)g(Y, u),
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(LXvG)
(
Y v, Zh

)
= a1g(∇ZX,Y ) + b1g(∇ZX,u)g(Y, u)+

b2 [g(X,Z)g(Y, u) + g(X,Y )g(Z, u)] +

2a′2g(Y, Z)g(X,u) + 2b′2g(X,u)g(Y, u)g(Z, u),

whence

(
LHa∂h

a+V a∂v
a
G
)(

∂vk , ∂
h
l

)
=

Ha
(
L∂h

a
G
)(

∂vk , ∂
h
l

)
+ V a

(
L∂v

a
G
) (
∂vk , ∂

h
l

)
+ ∂vkH

aG
(
∂ha , ∂

h
l

)
+

∂vkV
aG
(
∂va , ∂

h
l

)
+ ∂hl H

aG
(
∂vk , ∂

h
a

)
+ ∂hl V

aG (∂vk , ∂
v
a) .

Finally, we have

(LXhG)
(
Y h, Zh

)
= A [g(∇ZX,Y ) + g(∇YX,Z)] +

B [g(∇ZX,u)g(Y, u) + g(∇YX,u)g(Z, u)]−
a2 [R(Y, u,X,Z) +R(Z, u,X, Y )] ,

(LXvG)
(
Y h, Zh

)
= a2 [g(∇ZX,Y ) + g(∇YX,Z)] +

b2 [g(∇ZX,u)g(Y, u) + g(∇YX,u)g(Z, u)] +

B [g(X,Y )g(Z, u) + g(X,Z)g(Y, u)] +

2A′g(Y, Z)g(X,u) + 2B′g(X,u)g(Y, u)g(Z, u),

whence

(
LHa∂h

a+V a∂v
a
G
)(

∂hk , ∂
h
l

)
=

Ha
(
L∂h

a
G
)(

∂hk , ∂
h
l

)
+ V a

(
L∂v

a
G
) (
∂hk , ∂

h
l

)
+ ∂hkH

aG
(
∂ha , ∂

h
l

)
+

∂hkV
aG
(
∂va , ∂

h
l

)
+ ∂hl H

aG
(
∂hk , ∂

h
a

)
+ ∂hl V

aG
(
∂hk , ∂

v
a

)
.

Suppose now that

Z = Za∂a + Z̃αδα = Za∂ha + (Z̃α + ZaurΓα
ar)∂

v
α = Ha∂ha + V α∂vα

is a vector field on TM, Ha, V a being the horizontal and vertical components
of the vector field Z on TM respectively.
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Lemma 4. Let G be a non-degenerate g− natural metric (i.e., of the form
(5)) defined on the tangent bundle TM of a manifold (M, g). With respect to
the base

(
∂vk , ∂

h
l

)
we have

(
LHa∂h

a+V α∂v
α
G
)(

∂hk , ∂
h
l

)
=

− a2 [Raklr +Ralkr]H
aur+

A
[(
∂hkH

a +HrΓa
rk

)
gal +

(
∂hl H

a +HrΓa
rl

)
gak

]
+

B
[(
∂hkH

a +HrΓa
rk

)
uaul +

(
∂hl H

a +HrΓa
rl

)
uauk

]
+

a2

[(
∂hkV

a + V rΓa
rk

)
gal +

(
∂hl V

a + V rΓa
rl

)
gak

]
+

b2

[(
∂hkV

a + V rΓa
rk

)
uaul +

(
∂hl V

a + V rΓa
rl

)
uauk

]
+

2A′gklV
bub + 2B′V auaukul +B (Vkul + Vluk) , (6)

(
LHa∂h

a+V α∂v
α
G
)(

∂vk , ∂
h
l

)
=

− a1Ralkru
rHa + ∂vkH

a (Agal +Buaul)+

a2

(
∂hl H

a +HrΓa
rl

)
gak + b2

(
∂hl H

a +HrΓa
rl

)
uauk+

∂vkV
a (a2gal + b2uaul)+

a1

(
∂hl V

a + V rΓa
rl

)
gak + b1

(
∂hl V

a + V rΓa
rl

)
uauk+

2a′2gklV
bub + 2b′2V

auaukul + b2 (Vkul + Vluk) , (7)

(
LHa∂h

a+V α∂v
α
G
)
(∂vk , ∂

v
l ) =

a2 (∂
v
kH

agal + ∂vl H
agak) + b2 (∂

v
kH

auaul + ∂vl H
auauk)+

b1 (Vkul + Vluk) + 2a′1gklV
bub + 2b′1V

bubukul+

a1 (∂
v
kV

agal + ∂vl V
agak) + b1 (∂

v
kV

auaul + ∂vl V
auauk) . (8)

3.2 Taylor’s formula and coefficients

Throughout the paper the following hypothesis will be used:

(M, g) is a Riemannian manifold of dimension n with metric g, (9)

covered by the coordinate system (U, (xr)).

(TM,G) is the tangent bundle of M with g − natural non-
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degenerate metric G, covered by a coordinate system

(π−1(U), (xr, us)), r, s run through the range {1, . . . , n}.
Z is a Killing vector field on TM with local components (Zr, Z̃s)

with respect to the local base (∂r, δs) .

Let

Ha = Za = Za(x, u) =

Xa +Ka
pu

p +
1

2
Ea

pqu
puq +

1

3!
F a
pqru

puqur +
1

4!
Ga

pqrsu
puqurus + · · · , (10)

Z̃a = Z̃a(x, u) =

Y a + P̃ a
p u

p +
1

2
Qa

pqu
puq +

1

3!
Sa
pqru

puqur +
1

4!
V a
pqrsu

puqurus + · · · (11)

be expansions of the components Za and Z̃a by Taylor’s formula in a neigh-
bourhood in TxM of a point (x, 0) ∈ TM. For each index a the coefficients are
values of partial derivatives of Za, Z̃a respectively, taken at a point (x, 0) and
therefore are symmetric in all lower indices. For simplicity we have omitted the
remainders.

Lemma 5. ([18]) The quantities

X = (Xa(x)) = (Za(x, 0)) ,

Y = (Y a (x)) =
(
Z̃a (x, 0)

)
,

K =
(
Ka

p (x)
)
= (δpZ

a (x, 0)) ,

E =
(
Ea

pq (x)
)
= (δpδqZ

a (x, 0)) ,

P =
(
P a
p (x)

)
=
((
δpZ̃

a
)
(x, 0)− ∂p (Z

a (x, 0))
)

are tensor fields on M.

Applying the operators ∂vk and ∂hk to the horizontal components we get

∂vkH
a = Ka

k + Ea
kqu

q +
1

2
F a
kpqu

puq +
1

3!
Ga

kpqru
puqur + · · · ,

∂hkH
a = ΘkX

a +ΘkK
a
pu

p+

1

2
ΘkE

a
pqu

puq +
1

3!
ΘkF

a
pqru

puqur +
1

4!
ΘkG

a
pqrsu

puqurus + · · · .
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on a neighbourhood of a point (x, 0) ∈ TM, where for any (1, z)− tensor T we
have put

ΘkT
a
hij... = ∇kT

a
hij... − Γa

rkT
r
hij.....

Moreover, if we put:

Sa
k = P̃ a

k +XbΓa
bk = P̃ a

k − ∂kX
a +∇kX

a = P a
k +∇kX

a,

T a
kp = Qa

kq +Kb
kΓ

a
bp +Kb

pΓ
a
bk,

Flkpq = δkδpδqZ
a(x, 0)gal,

Wlkpq =
(
δkδpδqZ

a
(x, 0) + Ec

pkΓ
a
cq + Ec

qkΓ
a
cp + Ec

pqΓ
a
ck

)
gal =(

Sa
kpq + Ec

pkΓ
a
cq + Ec

qkΓ
a
cp + Ec

pqΓ
a
ck

)
gal,

Za
kpqr = V a

kpqr + F c
kpqΓ

a
cr + F c

kqrΓ
a
cp + F c

krpΓ
a
cq + F c

pqrΓ
a
ck,

then the vertical component writes

V a = Y a + Sa
pu

p +
1

2!
T a
pqu

puq +
1

3!
W a

pqru
puqur +

1

4!
Za
pqrsu

puqurus + · · ·

and

∂vkV
a = Sa

k + T a
kpu

p +
1

2
W a

kpqu
puq +

1

3!
Za
kpqru

puqur + . . . ,

∂hkV
a = ΘkY

a +ΘkS
a
pu

p+

1

2!
ΘkT

a
pqu

puq +
1

3!
ΘkW

a
pqru

puqur +
1

4!
ΘkZ

a
pqrsu

puqurus + · · · (12)

on a neighbourhood of a point (x, 0) ∈ TM.
We shall often use the following definitions and abbreviations:

Sa
p = P a

p +∇pX
a, Skp = Sa

pgak, Plk = P a
k gal,

Klp = Ka
pgal, Ekpq = Ekqp = Ea

pqgak, Tlkp = T a
kpgal.

Substituting (10) - (12) into the right hand sides of (6)-(8) we obtain on some
neighbourhood of (x, 0) expressions that are sums of polynomials in variables
ur with coefficients depending on xt multiplied by functions depending on r2 =
grsu

rus plus terms that contain remainders. Suppose that Z = Zr∂r + Z̃rδr is
a Killing vector field on TM. Then the left hand sides vanish and substituting
u = (uj) = 0 we obtain on M

A (∇kXl +∇lXk) + a2 (∇kYl +∇lYk) = 0, (I1)
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AKlk + a2 (Plk +∇kXl +∇lXk) + a1∇lYk = 0, (II1)

a2 (Klk +Kkl) + a1 (Slk + Skl) = 0, (III1)

where A = A(0), aj = aj(0). Differentiating with respect to δk, making use of
the property

δkf(r
2) = 2f ′(r2)gksu

s

and substituting uj = 0 we find

A (∇kKlp +∇lKkp) + a2 [∇kSlp +∇lSkp −Xa (Raklp +Ralkp)] +

2A′gklYp +B (Ykglp + Ylgkp) = 0, (I2)

AElkp + a1 (∇lSkp −XaRalkp) + a2 (∇lKkp + Tlkp)+

2a′2gklYp + b2 (Ykglp + Ylgkp) = 0, (II2)

a1 (Tlkp + Tklp) + a2 (Elkp + Eklp) + b1 (Ykglp + Ylgkp) + 2a′1gklYp = 0, (III2)

on M, where A′ = A′(0), a′j = a′j(0) etc.
For any (0, 2)− tensor T we put

T ab = Tab + Tba, T̂ab = Tab − Tba

It is easily seen, that the quantities F and W are symmetric in the last three
indices. Proceeding in the same way as before we easily obtain expressions of
the second order:
(
LHa∂h

a+V α∂v
α
G
)(

∂hk , ∂
h
l

)
pq
|(x,0) =

A (∇kElpq +∇lEkpq) + a2 (∇kTlpq +∇lTkpq) + 2A′gklSpq+

B [(∇kXp + Skp) gql + (∇kXq + Skq) gpl+

(∇lXp + Slp) gqk + (∇lXq + Slq) gpk] +

b2 (∇kYpgql +∇kYqgpl +∇lYpgqk +∇lYqgpk)−
a2
[
Ka

p (Ralkq +Raklq) +Ka
q (Ralkp +Raklp)

]
= 0, (I3)

(
LHa∂h

a+V α∂v
α
G
)(

∂vk , ∂
h
l

)
pq
|(x,0) =

AFlkpq + a2Wlkpq + a1∇lTkpq + a2∇lEkpq + 2a′2gklSpq−
a1
(
Ka

pRalkq +Ka
qRalkp

)
+B (Kpkgql +Kqkgpl)+

b2
(
Spkgql + Sqkgpl + Slpgqk + Slqgpk +∇lXpgkq +∇lXqgkp

)
+

b1 (∇lYpgkq +∇lYqgkp) = 0, (II3)
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(
LHa∂h

a+V α∂v
α
G
)
(∂vk , ∂

v
l )pq |(x,0) =

a2 (Flkpq + Fklpq) + a1 (Wlkpq +Wklpq) + 2a′1gklSpq+

b1
(
Skpgql + Skqgpl + Slpgqk + Slqgpk

)
+

b2 (Kpkgql +Kqkgpl +Kplgqk +Kqlgpk) = 0. (III3)

Finally, expressions of the third order are:

(
LHa∂h

a+V α∂v
α
G
)(

∂hk , ∂
h
l

)
pqr

|(x,0) =

A [∇kFlpqr +∇lFkpqr] + a2 [∇kWlpqr +∇lWkpqr]−
a2
[
Ea

pq (Ralkr +Raklr) + Ea
qr (Ralkp +Raklp) + Ea

rp (Ralkq +Raklq)
]
+

B
[
∇kKqpglr +∇kKrqglp +∇kKprglq +∇lKqpgkr +∇lKrqgkp +∇lKprgkq

]
+

b2
[
∇kSqpglr +∇kSrqglp +∇kSprglq +∇lSqpgkr +∇lSrqgkp +∇lSprgkq

]
+

B [glpTkqr + glqTkrp + glrTkpq + gkpTlqr + gkqTlrp + gkrTlpq] +

2B′ [(gpkgql + gqkgpl)Yr + (gqkgrl + grkgql)Yp + (grkgpl + gpkgrl)Yq] +

2A′gklMpqr = 0, (I4)

(
LHa∂h

a+V α∂v
α
G
)(

∂vk , ∂
h
l

)
pqr

|(x,0) =

AGlkpqr + a2Zlkpqr + a2∇lFkpqr + a1∇lWkpqr−
a1
[
Ea

pqRalkr + Ea
qrRalkp + Ea

rpRalkq

]
+

b2
[
∇lKqpgkr +∇lKrqgkp +∇lKprgkq

]
+

B [glr (Eqkp + Epkq) + glp (Erkq + Eqkr) + glq (Epkr + Erkp)] +

b1
[
∇lSqpgkr +∇lSrqgkp +∇lSprgkq

]
+

b2 [gkpTlqr + gkqTlrp + gkrTlpq] + b2 [glpMkqr + glqMkrp + glrMkpq] +

2b′2 [(gpkgql + gqkgpl)Yr + (gqkgrl + grkgql)Yp + (grkgpl + gpkgrl)Yq] +

2a′2gklMpqr = 0, (II4)

where Mpqr = Tpqr + Tqrp + Trpq and

Zlkpqr =
(
V a
kpqr + F c

kpqΓ
a
cr + F c

kqrΓ
a
cp + F c

krpΓ
a
cq + F c

pqrΓ
a
ck

)
gal

which is symmetric in the last four lower indices.
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Moreover, we have

(
LHa∂h

a+V α∂v
α
G
)
(∂vk , ∂

v
l )pqr |(x,0) =

a2 (Glkpqr +Gklpqr) + a1 (Zlkpqr + Zklpqr)+

b2 [glr (Eqkp + Epkq) + glp (Erkq + Eqkr) + glq (Epkr + Erkp)] +

b2 [gkr (Eqlp + Eplq) + gkp (Erlq + Eqlr) + gkq (Eplr + Erlp)] +

b1 [gkpMlqr + gkqMlrp + gkrMlpq] + b1 [glpMkqr + glqMkrp + glrMkpq] +

2b′1 [(gpkgql + gqkgpl)Yr + (gqkgrl + grkgql)Yp + (grkgpl + gpkgrl)Yq] +

2a′1gklMpqr = 0. (III4)

Important remark: Hereafter, and unless otherwise specified, all the coeffi-
cients aj , bj , a

′
j , b

′
j , A, A

′, B, B′, . . . are considered to be constants, equal to
the values at 0 of the corresponding functions.

3.3 Lemmas

Lemma 6. Under hypothesis (9) ,we have, on M :

a1Tlkp + a2Elkp = a′1 (Ylgkp − Ykglp − Ypgkl)− b1Ylgkp, (13)

AElkp + a2Tlkp + a′2(gklYp + gplYk) +
1

2
b2(2gkpYl + glpYk + gklYp) = 0, (14)

aElkm = (a2b1 − a1b2 − a2a
′
1)gkmYl−

1

2
(a1b2 − 2a2a

′
1 + 2a1a

′
2)(glmYk + glkYm), (15)

aTlkm = (Aa′1+a2b2−Ab1)gkmYl+
1

2
(a2b2−2Aa′1+2a2a

′
2)(glmYk+glkYm), (16)

aMlkm = [2a2(b2 + a′2)−A(b1 + a′1)](gkmYl + glkYm + gmlYk). (17)

Moreover,

a2 [∇k (∇lXp +∇pXl) +∇l (∇kXp +∇pXk)−∇p (∇lXk +∇kXl)] +

a1 (∇k∇lYp +∇l∇kYp) = 2A′gklYp +B (Ykglp + Ylgkp) , (18)

a (∇kKlp +∇lKkp) + (a2b2 + 2a1A
′ − 2a2a

′
2)Ypgkl+

1

2
(−a2b2 + 2a1B + 2a2a

′
2)(Ykglp + Ylgkp) = 0. (19)
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Proof. Alternating (III2) in (l, p), then interchanging the indices (p, k) and
adding the resulting equation to (III2), we obtain (13).

Differentiating covariantly (III1) we get

a2 (∇kKlp +∇kKpl) + a1 (∇kSlp +∇kSpl) = 0.

Symmetrizing (II2) in (k, p) and subtracting the resulting equation from the
above one we find (14).

Now (15) and (16) result immediately from (13) and (14).

From (II1) we easily get

A∇kKlp + a2 (∇kPlp +∇k∇pXl +∇k∇lXp) + a1∇k∇lYp = 0,

whence, symmetrizing in (k, l), subtracting from (I2), by the use of the Ricci
identity, we obtain (18).

To prove (19) first we symmetrize (II2) in (k, l) and combine it with (I2) to
obtain

a (∇kKlm +∇lKkm)− a2 [A (Elkm + Eklm) + a2 (Tlkm + Tklm)] +

2
(
a1A

′ − 2a2a
′
2

)
gklYm + (a1B − 2a2b2) (glmYk + gkmYl) = 0.

On the other hand, symmetrizing (14) in (k, l) and subtracting from the above
we obtain (19). This completes the proof. QED

Lemma 7. Under hypothesis (9) we have, on M

2a∇lKkm = a21Y
rRrmkl − a1BgkmYl+

(−a1B + a2b2 − 2a2a
′
2)glmYk + (−a2b2 − 2a1A

′ + 2a2a
′
2)gklYm, (20)

2a (∇lSkm −XrRrlkm) + a1a2Y
rRrmkl − a2BgkmYl+[

−a2B +A
(
b2 − 2a′2

)]
glmYk +

[
−2a2A

′ −A
(
b2 − 2a′2

)]
gklYm = 0. (21)

Proof. From (II2) we subtract (14) to obtain

a2∇lKkm + a1 (∇lSkm −XrRrlkm) +

(
a′2 −

b2
2

)
(gklYm − gmlYk) = 0. (22)

On the other hand, interchanging in (II1) k and m, differentiating covariantly
with respect to ∂k, alternating in (k, l) and applying the Ricci identity, we find

A (∇kKlm −∇lKkm) + a2 (∇kSlm −∇lSkm) + a2X
rRrmkl + a1Y

rRrmkl = 0.
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Subtracting from (I2), in virtue of the Bianchi identity, we get

2A∇lKkm + 2a2 (∇lSkm −XrRrlkm)−
a1Y

rRrmkl + 2A′gklYm +B (glmYk + gkmYl) = 0.

The last equation together with (22) yields the result. QED

Lemma 8. Under hypothesis (9) suppose dimM > 2. Then, on M, we have

Tkl = Tlk = 2
(
b1 − a′1

)
Skl + b2Kkl = 0, (23)

a2Flabk + a1Wlabk +
1

2
b2

(
K̂klgab + K̂blgak + K̂algbk +Kakgbl

)
+

b1gblSak + a′1(gklSab + galSbk) = 0. (24)

Proof. Replacing in (III3) the indices (p, q) with (a, b), alternating in (a, l),
then again in (k, l) and adding to the first equation we get

a2Flabk + a1Wlabk+

1

2
b2

(
K̂klgab + 2Kblgak + K̂algbk +Kakgbl

)
+

b1(gblSak + gakSbl) + a′1(−gakSbl + gklSab + galSbk) = 0.

Alternating in (a, b) we find

gblTak − gbkTal − galTbk + gakTbl = 0,

whence (n− 2)Tak = 0 results. Then (24) is obvious. QED

Lemma 9. Under hypothesis (9) suppose dimM > 1. Then

(n− 1)βYl = 0

on M holds, where

β = 2A(b21 − a′21 − a1b
′
1) + (a1b2 − 2a2b1)(3b2 +2a′2) + 2a2

[
2a′1(b2 + a′2) + a2b

′
1

]
.

Proof. First, replace in (III4) the indices (p, q, r) with (a, b, c). Alternating an
equation obtained in such a way in (a, l), then in (k, l), and adding the result
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to the first one, we get

a2Glabck + a1Zlabck+

1

2
b2 [(Ekcl − Elck)gab + (Ekbl − Elbk)gac + 2(Ebcl + Ecbl)gak + (Eacl − Elac)gbk+

(Eack + 2Ecak + Ekac) gbl + (Eabl − Elba)gck + (Eabk + 2Ebak + Ekab) gcl] +

b1(Mbclgak +Mackgbl +Mabkgcl) + a′1(−Mbclgak +Mbckgal +Mabcgkl)+

b′1 [(gblgck + gbkgcl)Ya + 2gak (gclYb + gblYc) + (gacgbl + gabgcl)Yk−
(gacgbk + gabgck)Yl] = 0.

Alternating in (k, b) and contracting with gabgkc we obtain

b2 [(n− 2)Erls + nElrs] g
rs + (n− 1)(b1 − a′1)Mrlsg

rs + (n+ 2)(n− 1)b′1Yl = 0,

which, using (15) and (17), yields the result. QED

Remark 1. In ([3]) it is stated that the Killing vector field on TM with
the Cheeger-Gromoll metric gCG depends on three generators X, Y and P. By
the Lemma 9, the vector field Y vanishes everywhere on M .

Lemma 10. Under hypothesis (9)

3AFlkmn + 3a2Wlkmn +B
(
gklKmn + glmKkn + glnKkm

)
+

(b1 − a′1) (Yn,lgkm + Ym,lgkn + Yk,lgmn)+

2(b2 + a′2)
(
gklSmn + glmSkn + glnSkm

)
+

2b2 [gkm (Xn,l + Sln) + gkn (Xm,l + Slm) + gmn (Xk,l + Slk)] = 0 (25)

is satisfied on M .

Proof. Differentiating covariantly (13) and subtracting from (II3) we get

AFlkmn + a2Wlkmn +B (glmKnk + glnKmk)+

(b1 − a′1) (Yn,lgkm + Ym,lgkn − Yk,lgmn)−
a1 (K

r
nRrlkm +Kr

mRrlkn) + 2a′2gklSmn+

b2
[
gkm (Xn,l + Sln) + gkn (Xm,l + Slm) + glnSkm + glmSkn

]
= 0. (26)

Antisymmetrizing in (k,m) and symmetrizing in (k, n) we have

B [gkl (Kmn − 2Knm) + glm (Kkn +Knk) + gln (Kmk − 2Kkm)] +

2(b1 − a′1) (2Ym,lgkn − Yn,lgkm − Yk,lgmn) + 3a1 (K
r
nRrlmk +Kr

kRrlmn)+

b2 [2gkn (Xm,l + Slm)− gkm (Xn,l + Sln)− gmn (Xk,l + Slk)] +

(b2 − 2a′2)
(
2glmSkn − glnSkm − gklSmn

)
. (27)
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Exchanging in (26) the indices k and m, then multiplying by 3 and adding to
the last equation we obtain (25). This completes the proof. QED

Lemma 11. Under hypothesis (9) relation

3a2
[
Ep

bc

(
Rpkal +Rp

lak

)
+ Ep

ac

(
Rpkbl +Rp

lbk

)
+ Ep

ab

(
Rpkcl +Rp

lck

)]
+

6A′gkl(Tabc + Tbca + Tcab) + gbcKkal + gcaKkbl + gabKkcl+

gclLabk + galLbck + gblLcak + gckLabl + gakLbcl + gbkLcal = 0 (28)

holds on M , where

Kkal = Klak =

− 2b2 (Ska,l + Sla,k +Xa,kl +Xa,lk)− (b1 − a′1)(Ya,kl + Ya,lk), (29)

Labk = Lbak = 2BKab,k + 3BTkab + (b2 − 2a′2)Sab,k + 3B′(gkaYb + gkbYa). (30)

Proof. To prove the lemma it is enough to differentiate covariantly (25) and
eliminate covariant derivatives of F and W from (I4). QED

Lemma 12. Under hypothesis (9) suppose dimM > 2. Then the relation

a1
[
2Ep

abRplck − Ep
bkRplac + Ep

bcRplak − Ep
akRplbc + Ep

acRplbk

]
+

B [(Eckb − Ekcb) gal + (Ecak − Ekac) gbl+

(Eabk + Ebak) gcl − (Eabc + Ebac) gkl] +

(b1 − a′1)
[
∇lSbcgak −∇lSbkgac

]
+

b2

[
∇lK̂kcgab + gak

(
3

2
∇lKbc +

1

2
∇lKcb

)
− gac

(
3

2
∇lKbk +

1

2
∇lKkb

)]
+

b2 (∇lKacgbk −∇lKakgbc)+(
b2 − 2a′2

)
(Mabkgcl −Mabcgkl) + b2 [gbkTlac − gbcTlak + gakTlbc − gacTlbk] +

2b′2 [(gbkgcl − gbcgkl)Ya + (gakgcl − gacgkl)Yb+

(galgbk + gakgbl)Yc − (galgbc + gacgbl)Yk] = 0

holds on M.

Proof. Firstly, we change in (24) the indices (l, a, b, k) into (k, a, b, c) and differ-
entiate covariantly with respect to ∂l. Setting in (II4) (a, b, c) instead of (p, q, r),
subtracting the just obtained equation and, finally, alternating in (k, c) we get
the result. QED



Killing vector fields on a tangent bundle 127

Lemma 13. Under hypothesis (9) relations

Akm = (3a1B − a2b2)∇kXm + (−2a2b1 +
3

2
a1b2 + 2a2a

′
1 − 3a1a

′
2)∇kYm+

a2B(Kkm − 2Kmk) + (3a1B − 2a2b2 + 2a2a
′
2)Skm+

(−a2b2 + 2a2a
′
2)Smk = 0, (31)

Fkl + Bkl = 2a2b2(LXg)kl + (4a2b1 − 3a1b2 − 4a2a
′
1)(LY g)kl+

2
(
3a2b2 + 3a1A

′ − 4a2a
′
2

)
Skl + 2a2BKkl = 0

hold on M.

Proof. First, we change in (14) the indices (l, k, p) into (l,m, n), then differen-
tiate covariantly with respect to ∂k and symmetrize in (k, l). Next, change in
(I3) the indices (p, q) into (m,n) and subtract the former equality to obtain

1

2

(
b2 − 2a′2

)
(Yn,lgkm + Ym,lgkn + Yn,kglm + Ym,kgln)− b2(Yk,l + Yl,k)gmn−

a2 [K
r
n (Rrklm +Rrlkm) +Kr

m (Rrkln +Rrlkn)] + 2A′gklSmn+

B [gln (Xm,k + Skm) + glm (Xn,k + Skn)+

gkn (Xm,l + Slm) + gkm (Xn,l + Sln)] = 0.

Eliminating between (27) and the last equation the terms containing curvature
tensor we obtain

gmnBkl + gklFmn + glnAkm + gknAlm + glmAkn + gkmAln = 0,

where

Fmn = 2a2BKmn + 2(2a2b2 + 3a1A
′ − 4a2a

′
2)Smn,

Bkl = 2a2b2(LXg)kl + (4a2b1 − 3a1b2 − 4a2a
′
1)(LY g)kl + 2a2b2Skl.

Now, the result is a simple consequence of Lemma 15. QED

4 On the classification

To simplify further considerations put for a moment X = ∇kXl + ∇lXk,
Y = ∇kYl+∇lYk, S = Pkl+Plk+∇kXl+∇lXk, K = Kkl+Klk. Symmetrizing



128 S. Ewert-Krzemieniewski

indices in (II1) and taking into consideration equations (I1), (III1) and (23) we
obtain a homogeneous system of linear equations in X, Y , S, K :




A a2 0 0
a2 a1 a2 A
0 0 a1 a2
0 0 2b b2







X

Y

S

K


 =




0
0
0
0


 , (32)

where b = b1 − a′1. The system has a unique solution if and only if

a(2ba2 − a1b2) 6= 0,

where a = a1A− a22.
Suppose a 6= 0 and 2ba2 − a1b2 = 0.
If a2b2 6= 0, then multiplying the third equation by b2 and the fourth one by

a2 we transform the whole system to



A a2 0
a22 a1a2 −a
0 0 a1





X

Y

S


 =




0
0

−a2K




with determinant equal to a1a2a.
Therefore, if a1 6= 0 and a2b2 6= 0, we get

X + S = 0, Y =
A

a2
S, K = −a1

a2
S. (33)

On the other hand, if a1 = 0 and a2b2 6= 0, then b = 0 and (32) yields




A a2 0 0
a2 0 a2 A
0 0 0 a2
0 0 0 b2







X

Y

S

K


 =




0
0
0
0


 ,

whence
X + S = 0, AX + a2Y = 0, K = 0.

Now suppose a2 = 0. Then by 2ba2 − a1b2 = 0 we have either a1 = 0 or
b2 = 0. But a1 = a2 = 0 would give a = 0. On the other hand a2 = b2 = 0
reduce the system (32) to




A 0 0 0
0 a1 0 A
0 0 a1 0
0 0 2b 0







X

Y

S

K


 =




0
0
0
0


 .
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Since a2 = 0 and a 6= 0 hold if a1A 6= 0, we obtain

X = 0, S = 0, AK + a1Y = 0.

Finally, if b2 = 0 but a2 6= 0, we have b = b1 − a′1 = 0 and from (32) we easily
get (33). Thus we have proved

Lemma 14. Under assumption a = a1A − a22 6= 0 the system (32) has the
following solutions:

(1) If 2ba2 − a1b2 6= 0, then X = Y = S = K = 0.

(2) If [2ba2 − a1b2 = 0] and [either (a1a2b2 6= 0) or (b2 = 0 and a2 6= 0)], then
X + S = 0, Y = A

a2
S, K = −a1

a2
S.

(3) If a1 = b = 0, then X + S = 0, AX + a2Y = 0, K = 0.

(4) If a2 = b2 = 0, then X = 0, S = 0, AK + a1Y = 0.

Conversely, if a 6= 0, then the above four cases give the only possible solutions
to (32).

Combining the above lemma with (I1), (II1), (III1) and (23) we obtain the
following

Theorem 2. Let (TM, G) be a tangent bundle of a Riemannian manifold
(M, g), dimM > 2, with non-degenerate g− natural metric G. Let Z be a Killing
vector field on TM with its Taylor series expansion around a point (x, 0) ∈ TM
given by (10). Then for each such a point there exists a neighbourhood U ⊂M of
x such that one of the following cases occurs:

(1) 2ba2 − a1b2 6= 0. Then

∇kXl +∇lXk = 0, ∇kYl +∇lYk = 0, (34)

Pkl + Plk = 0, Kkl +Klk = 0. (35)

(2) [2ba2 − a1b2 = 0] and [either (a1a2b2 6= 0) or (a2 6= 0 and b2 = 0)]. Then

Pkl + Plk + 2 (∇kXl +∇lXk) = 0, (36)

a2 (∇kYl +∇lYk) +A (∇kXl +∇lXk) = 0, (37)

a2 (Kkl +Klk)− a1 (∇kXl +∇lXk) = 0. (38)

(3) a2b2 6= 0 and a1 = b = 0. Then

Pkl + Plk + 2 (∇kXl +∇lXk) = 0, (39)

a2 (∇kYl +∇lYk) +A (∇kXl +∇lXk) = 0, (40)

Kkl +Klk = 0. (41)
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(4) a2 = b2 = 0. Then

∇kXl +∇lXk = 0, Pkl + Plk = 0, AKlk + a1∇lYk = 0. (42)

In the above theorem we have put aj = aj(r
2)|(x,0)∈TM , bj = bj(r

2)|(x,0)∈TM ,
a′j = a′j(r

2)|(x,0)∈TM , A = a1 + a3.

Proof of the Theorem 1:

It is clear that the above results together with Proposition 3 yield Theorem
1.

5 Appendix

5.1 An algebraic lemma

Lemma 15. Let on a manifold (M, g), dimM > 2, (0, 2)− tensors A, B,
F satisfying the condition

g(X,Y )F (U, V ) + g(U, V )B(X,Y )+

g(Y, V )A(X,U) + g(X,V )A(Y, U) + g(Y, U)A(X,V ) + g(X,U)A(Y, V ) = 0

for arbitrary vectors X,Y, U, V be given.

Then F and B are symmetric. Moreover, A = 0, B + F = 0 and nF −
(TrF ) g = nB − (TrB) g = 0.

Proof. In local coordinates (U, (xa)) the condition writes

gklFmn + gmnBkl + glnAkm + gknAlm + glmAkn + gkmAln = 0.

By contractions with gkl, gmn, gkm we obtain in turn

2(Amn +Anm) + nFmn +Bp
pgmn = 0,

2(Akl +Alk) + nBkl + F p
p gkl = 0,

(n+ 2)Aln +Bnl + Fln +Ap
pgln = 0. (43)

Now, the symmetry of F and B results from the first two equations. Contracting
the first equation with gmn and the third one with gln we get

4Ap
p + n(Bp

p + F p
p ) = 0,

2(n+ 1)Ap
p +Bp

p + F p
p = 0,
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whence TrA = TrF + TrB = 0 results. Applying these to the first system we
easily get

4(Amn +Anm) + n(Fmn +Bmn) = 0,

(n+ 2)(Amn +Anm) + 2(Fmn +Bmn) = 0,

whence F + B = 0 and Amn + Anm = 0. Now (43) yields A = 0. The further
statements are obvious. QED

5.2 Complete lift XC

If X = Xr∂r is a vector field on M, then XC = Xr∂r +u
s∂sX

rδr = Xr∂hr +
us∇sX

r∂vr is said to be the complete lift of X to TM.

Lemma 16. Let X be a vector field on (M, g) satisfying

LXg = fg, (44)

f being a function on M, and XC be its complete lift to (TM,G) with non-
degenerate g-natural metric G. Then

(LXCG)
(
∂hk , ∂

h
l

)
=

[
a2∂f + f(A+A′r2)

]
gkl + f(2B +B′r2)ukul +

1

2
b2r

2 (∇kful +∇lfuk) ,

(LXCG)
(
∂vk , ∂

h
l

)
=

1

2
a1 (∇lfuk −∇kful + ∂fgkl) +

f(a2 + a′2r
2)gkl + f(2b2 + b′2r

2)ukul +
1

2
b1r

2∇lfuk,

(LXCG) (∂vk , ∂
v
l ) = f(a1 + a′1r

2)gkl + f(2b1 + b′1r
2)ukul,

where ∂f = ur∇rf.

Proof. Straightforward calculations with the use of (6) - (8) . Relations (1) and
(4) are useful. QED

Theorem 3. Let X be a vector field on (M, g) such that (44) is satisfied.
Then XC is a Killing vector field on (TM,G) with non-degenerate g-natural
metric G if and only if f = 0 on M.
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Proof. If f = 0, then the theorem is obvious by the previous lemma.

Suppose that LXCG = 0 on TM holds for some f 6= 0. At first, contracting
the third equation with gkl, next transvecting with ukul, we easily find

f(a1 + a′1r
2) = 0,

f(2b1 + b′1r
2) = 0.

Consider now x ∈M such that f(x) 6= 0. The restriction to TxM of the first
equation gives f(x)

[
a1(r

2) + a′1
(
r2
)
r2
]
= 0 for all (x, u) ∈ TxM, where r2 =

gx(u, u). Using the fact that f(x) 6= 0, we obtain a1(r
2) + a′1

(
r2
)
r2 = 0 for all

(x, u) ∈ TxM.We deduce then that a1(t)+a
′
1(t)t = 0 for all t ∈< 0,∞), whence,

by continuity, we get a1(0) = 0. Consequently, a1(t) = 0 for all t ∈< 0,∞). By
the same argumentation we obtain b1(t) = 0 for all t ∈< 0,∞). The second
equation of Lemma 16 yields, by contraction with gkl and then by transvection
with ukul,

f(a2 + a′2r
2) = 0,

f(2b2 + b′2r
2) = 0.

By the same argumentation as before, we get a2(t) = 0, for all t ∈< 0,∞).
Consequently, a(t) = a1(t) [a1(t) + a3(t)] − a22(t) = 0, for all t ∈< 0,∞), which
is a contradiction. This completes the proof. QED
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[2] Abbassi, M. T. K.: g− natural metrics: new horizons in the geometry of tangent bundles
of Riemannian manifolds, Note di Matematica, 1 (2008), suppl. n. 1, p. 6-35.

[3] Abbassi, M. T. K., Sarih, M.: Killing vector fields on tangent bundle with Cheeger-
Gromoll metric, Tsukuba J. Math., 27 no. 2, (2003), p. 295-306.

[4] Abbassi, M. T. K., Sarih, M.: On Riemannian g - natural Metrics of the Form a ·
gs + b · gh + c · gv on the Tangent Bundle of a Riemannian Manifold (M, g), Mediterr. J.
Math., 2 (2005), p. 19-43.
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