Note di Matematica **22**, n. 2, 2003, 83–92.

Topological diagonalizations and Hausdorff dimension

Tomasz Weiss

Institute of Mathematics, Akademia Podlaska 08-119 Siedlce, Poland tomaszweiss@go2.pl

Boaz Tsaban

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel tsaban@math.huji.ac.il, http://www.cs.biu.ac.il/~tsaban

Received: 13/01/2003; accepted: 03/09/2003.

Abstract. The Hausdorff dimension of a product $X \times Y$ can be strictly greater than that of Y, even when the Hausdorff dimension of X is zero. But when X is countable, the Hausdorff dimensions of Y and $X \times Y$ are the same. Diagonalizations of covers define a natural hierarchy of properties which are weaker than "being countable" and stronger than "having Hausdorff dimension zero". Fremlin asked whether it is enough for X to have the strongest property in this hierarchy (namely, being a γ -set) in order to assure that the Hausdorff dimensions of Y and $X \times Y$ are the same.

We give a negative answer: Assuming the Continuum Hypothesis, there exists a γ -set $X \subseteq \mathbb{R}$ and a set $Y \subseteq \mathbb{R}$ with Hausdorff dimension zero, such that the Hausdorff dimension of X + Y (a Lipschitz image of $X \times Y$) is maximal, that is, 1. However, we show that for the notion of a *strong* γ -set the answer is positive. Some related problems remain open.

Keywords: Hausdorff dimension, Gerlits-Nagy γ property, Galvin-Miller strong γ property.

MSC 2000 classification: primary: 03E75; secondary: 37F20, 26A03.

Introduction

The Hausdorff dimension of a subset of \mathbb{R}^k is a derivative of the notion of Hausdorff *measures* [4]. However, for our purposes it will be more convenient to use the following equivalent definition. Denote the diameter of a subset A of \mathbb{R}^k by diam(A). The *Hausdorff dimension* of a set $X \subseteq \mathbb{R}^k$, dim(X), is the infimum of all positive δ such that for each positive ϵ there exists a cover $\{I_n\}_{n\in\mathbb{N}}$ of Xwith

$$\sum_{n \in \mathbb{N}} \operatorname{diam}(I_n)^{\delta} < \epsilon.$$

From the many properties of Hausdorff dimension, we will need the following easy ones.

1 Lemma.

- (1) If $X \subseteq Y \subseteq \mathbb{R}^k$, then $\dim(X) \leq \dim(Y)$.
- (2) Assume that X_1, X_2, \ldots are subsets of \mathbb{R}^k such that $\dim(X_n) = \delta$ for each n. Then $\dim(\bigcup_n X_n) = \delta$.
- (3) Assume that $X \subseteq \mathbb{R}^k$ and $Y \subseteq \mathbb{R}^m$ is such that there exists a Lipschitz surjection $\phi: X \to Y$. Then $\dim(X) \ge \dim(Y)$.
- (4) For each $X \subseteq \mathbb{R}^k$ and $Y \subseteq \mathbb{R}^m$, $\dim(X \times Y) \ge \dim(X) + \dim(Y)$.

Equality need not hold in item (4) of the last lemma. In particular, one can construct a set X with Hausdorff dimension zero and a set Y such that $\dim(X \times Y) > \dim(Y)$. On the other hand, when X is countable, $X \times Y$ is a union of countably many copies of Y, and therefore

$$\dim(X \times Y) = \dim(Y). \tag{1}$$

Having Hausdorff dimension zero can be thought of as a notion of smallness. Being countable is another notion of smallness, and we know that the first notion is not enough restrictive in order to have Equation 1 hold, but the second is.

Notions of smallness for sets of real numbers have a long history and many applications – see, e.g., [11]. We will consider some notions which are weaker than being countable and stronger than having Hausdorff dimension zero.

According to Borel [3], a set $X \subseteq \mathbb{R}^k$ has strong measure zero if for each sequence of positive reals $\{\epsilon_n\}_{n\in\mathbb{N}}$, there exists a cover $\{I_n\}_{n\in\mathbb{N}}$ of X such that diam $(I_n) < \epsilon_n$ for all n. Clearly strong measure zero implies Hausdorff dimension zero. It does not require any special assumptions in order to see that the converse is false. A perfect set can be mapped onto the unit interval by a uniformly continuous function and therefore cannot have strong measure zero.

2 Proposition (folklore). There exists a perfect set of reals X with Hausdorff dimension zero.

PROOF. For $0 < \lambda < 1$, denote by $C(\lambda)$ the Cantor set obtained by starting with the unit interval, and at each step removing from the middle of each interval a subinterval of size λ times the size of the interval (So that C(1/3) is the canonical middle-third Cantor set, which has Hausdorff dimension log $2/\log 3$.) It is easy to see that if $\lambda_n \nearrow 1$, then dim $(C(\lambda_n)) \searrow 0$.

Thus, define a special Cantor set $C(\{\lambda_n\}_{n\in\mathbb{N}})$ by starting with the unit interval, and at step *n* removing from the middle of each interval a subinterval of size λ_n times the size of the interval. For each *n*, $C(\{\lambda_n\}_{n\in\mathbb{N}})$ is contained in a union of 2^n (shrunk) copies of $C(\lambda_n)$, and therefore $\dim(C(\{\lambda_n\}_{n\in\mathbb{N}})) \leq$ $\dim(C(\lambda_n))$. Topological diagonalizations and Hausdorff dimension

As every countable set has strong measure zero, the latter notion can be thought of an "approximation" of countability. In fact, Borel conjectured in [3] that every strong measure zero set is countable, and it turns out that the usual axioms of mathematics (ZFC) are not strong enough to prove or disprove this conjecture: Assuming the Continuum Hypothesis there exists an uncountable strong measure zero set (namely, a Luzin set), but Laver [10] proved that one cannot prove the existence of such an object from the usual axioms of mathematics.

The property of strong measure zero (which depends on the metric) has a natural topological counterpart. A topological space X has *Rothberger's property* C'' [13] if for each sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of covers of X there is a sequence $\{U_n\}_{n\in\mathbb{N}}$ such that for each $n \ U_n \in \mathcal{U}_n$, and $\{U_n\}_{n\in\mathbb{N}}$ is a cover of X. Using Scheepers' notation [15], this property is a particular instance of the following selection hypothesis (where \mathfrak{U} and \mathfrak{V} are any collections of covers of X):

 $S_1(\mathfrak{U},\mathfrak{V})$: For each sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of members of \mathfrak{U} , there is a sequence $\{U_n\}_{n\in\mathbb{N}}$ such that $U_n\in\mathcal{U}_n$ for each n, and $\{U_n\}_{n\in\mathbb{N}}\in\mathfrak{V}$.

Let \mathcal{O} denote the collection of all open covers of X. Then the property considered by Rothberger is $S_1(\mathcal{O}, \mathcal{O})$. Fremlin and Miller [5] proved that a set $X \subseteq \mathbb{R}^k$ satisfies $S_1(\mathcal{O}, \mathcal{O})$ if, and only if, X has strong measure zero with respect to each metric which generates the standard topology on \mathbb{R}^k .

But even Rothberger's property for X is not strong enough to have Equation 1 hold: It is well-known that every Luzin set satisfies Rothberger's property (and, in particular, has Hausdorff dimension zero).

3 Lemma. The mapping $(x, y) \mapsto x + y$ from \mathbb{R}^2 to \mathbb{R} is Lipschitz.

PROOF. Observe that for nonnegative reals a and b, $(a-b)^2 \ge 0$ and therefore $a^2 + b^2 \ge 2ab$. Consequently,

$$a + b = \sqrt{a^2 + 2ab + b^2} \le \sqrt{2(a^2 + b^2)} = \sqrt{2}\sqrt{a^2 + b^2}.$$

Thus,

$$|(x_1+y_1)-(x_2+y_2)| \le \sqrt{2}\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} \text{ for all } (x_1,y_1), (x_2,y_2) \in \mathbb{R}^2.$$

Assuming the Continuum Hypothesis, there exists a Luzin set $L \subseteq \mathbb{R}$ such that L + L, a Lipschitz image of $L \times L$, is equal to \mathbb{R} [9].

We therefore consider some stronger properties. An open cover \mathcal{U} of X is an ω -cover of X if each finite subset of X is contained in some member of the cover, but X is not contained in any member of \mathcal{U} . \mathcal{U} is a γ -cover of X if it is infinite, and each element of X belongs to all but finitely many members of \mathcal{U} . Let Ω and Γ denote the collections of open ω -covers and γ -covers of X, respectively. Then $\Gamma \subseteq \Omega \subseteq \mathcal{O}$, and these three classes of covers introduce 9 properties of the form $S_1(\mathfrak{U}, \mathfrak{V})$. If we remove the trivial ones and check for equivalences [9, 20], then it turns out that only six of these properties are really distinct, and only three of them imply Hausdorff dimension zero:

$$\mathsf{S}_1(\Omega,\Gamma) \to \mathsf{S}_1(\Omega,\Omega) \to \mathsf{S}_1(\mathcal{O},\mathcal{O}).$$

The properties $S_1(\Omega, \Gamma)$ and $S_1(\Omega, \Omega)$ were also studied before. $S_1(\Omega, \Omega)$ was studied by Sakai [14], and $S_1(\Omega, \Gamma)$ was studied by Gerlits and Nagy in [8]: A topological space X is a γ -set if each ω -cover of X contains a γ -cover of X. Gerlits and Nagy proved that X is a γ -set if, and only if, X satisfies $S_1(\Omega, \Gamma)$. It is not difficult to see that every countable space is a γ -set. But this property is not trivial: Assuming the Continuum Hypothesis, there exist uncountable γ -sets [7].

 $S_1(\Omega, \Omega)$ is closed under taking finite powers [9], thus the Luzin set we used to see that Equation 1 need not hold when X satisfies $S_1(\mathcal{O}, \mathcal{O})$ does not rule out that possibility that this Equation holds when X satisfies $S_1(\Omega, \Omega)$. However, in [2] it is shown that assuming the Continuum Hypothesis, there exist Luzin sets L_0 and L_1 satisfying $S_1(\Omega, \Omega)$, such that $L_0 + L_1 = \mathbb{R}$. Thus, the only remaining candidate for a nontrivial property of X where Equation 1 holds is $S_1(\Omega, \Gamma)$ (γ -sets). Fremlin (personal communication) asked whether Equation 1 is indeed provable in this case. We give a negative answer, but show that for a yet stricter (but nontrivial) property which was considered in the literature, the answer is positive.

The notion of a strong γ -set was introduced in [7]. However, we will adopt the following simple characterization from [20] as our formal definition. Assume that $\{\mathfrak{U}_n\}_{n\in\mathbb{N}}$ is a sequence of collections of covers of a space X, and that \mathfrak{V} is a collection of covers of X. Define the following selection hypothesis.

$\mathsf{S}_1({\{\mathfrak{U}_n\}_{n\in\mathbb{N}},\mathfrak{V}\}})$: For each sequence ${\{\mathcal{U}_n\}_{n\in\mathbb{N}}}$ where $\mathcal{U}_n\in\mathfrak{U}_n$ for each n, there is a sequence ${\{U_n\}_{n\in\mathbb{N}}}$ such that $U_n\in\mathcal{U}_n$ for each n, and ${\{U_n\}_{n\in\mathbb{N}}\in\mathfrak{V}}$.

A cover \mathcal{U} of a space X is an *n*-cover if each *n*-element subset of X is contained in some member of \mathcal{U} . For each *n* denote by \mathcal{O}_n the collection of all open *n*-covers of a space X. Then X is a strong γ -set if X satisfies $\mathsf{S}_1(\{\mathcal{O}_n\}_{n\in\mathbb{N}},\Gamma)$.

In most cases $S_1(\{\mathcal{O}_n\}_{n\in\mathbb{N}},\mathfrak{V})$ is equivalent to $S_1(\Omega,\mathfrak{V})$ [20], but not in the case $\mathfrak{V} = \Gamma$: It is known that for a strong γ -set $G \subseteq \{0,1\}^{\mathbb{N}}$ and each $A \subseteq \{0,1\}^{\mathbb{N}}$ of measure zero, $G \oplus A$ has measure zero too [7]; this can be contrasted with Theorem 5 below. In Section 2 we show that Equation 1 is provable in the case that X is a strong γ -set, establishing another difference between the notions

of γ -sets and strong γ -sets, and giving a positive answer to Fremlin's question under a stronger assumption on X.

1 The product of a γ -set and a set of Hausdorff dimension zero

4 Theorem. Assuming the Continuum Hypothesis (or just $\mathfrak{p} = \mathfrak{c}$), there exist a γ -set $X \subseteq \mathbb{R}$ and a set $Y \subseteq \mathbb{R}$ with Hausdorff dimension zero such that the Hausdorff dimension of the algebraic sum

$$X + Y = \{x + y : x \in X, y \in Y\}$$

(a Lipschitz image of $X \times Y$ in \mathbb{R}) is 1. In particular, dim $(X \times Y) \ge 1$.

Our theorem will follow from the following related theorem. This theorem involves the *Cantor space* $\{0,1\}^{\mathbb{N}}$ of infinite binary sequences. The Cantor space is equipped with the product topology and with the product measure.

5 Theorem (Bartoszyński and Recław [1]). Assume the Continuum Hypothesis (or just $\mathfrak{p} = \mathfrak{c}$). Fix an increasing sequence $\{k_n\}_{n \in \mathbb{N}}$ of natural numbers, and for each n define

$$A_n = \{ f \in \{0, 1\}^{\mathbb{N}} : f \upharpoonright [k_n, k_{n+1}) \equiv 0 \}.$$

If the set

$$A = \bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} A_n$$

has measure zero, then there exists a γ -set $G \subseteq \{0,1\}^{\mathbb{N}}$ such that the algebraic sum $G \oplus A$ is equal to $\{0,1\}^{\mathbb{N}}$ (where where \oplus denotes the modulo 2 coordinate-wise addition).

Observe that the assumption in Theorem 5 holds whenever $\sum_{n} 2^{-(k_{n+1}-k_n)}$ converges.

6 Lemma. There exists an increasing sequence of natural numbers $\{k_n\}_{n\in\mathbb{N}}$ such that $\sum_n 2^{-(k_{n+1}-k_n)}$ converges, and such that for the sequence $\{B_n\}_{n\in\mathbb{N}}$ defined by

$$B_n = \left\{ \sum_{i \in \mathbb{N}} \frac{f(i)}{2^{i+1}} : f \in \{-1, 0, 1\}^{\mathbb{N}} \text{ and } f \upharpoonright [k_n, k_{n+1}) \equiv 0 \right\}$$

for each n, the set

$$Y = \bigcap_{m \in \omega} \bigcup_{n \ge m} B_n$$

has Hausdorff dimension zero.

PROOF. Fix a sequence p_n of positive reals which converges to 0. Let $k_0 = 0$. Given k_n find k_{n+1} satisfying

$$3^{k_n} \cdot \frac{1}{2^{p_n(k_{n+1}-2)}} \le \frac{1}{2^n}.$$

Clearly, every B_n is contained in a union of 3^{k_n} intervals such that each of the intervals has diameter $1/2^{k_{n+1}-2}$. For each positive δ and ϵ , choose m such that $\sum_{n\geq m} 1/2^n < \epsilon$ and such that $p_n < \delta$ for all $n \geq m$. Now, Y is a subset of $\bigcup_{n\geq m} B_n$, and

$$\sum_{n \ge m} 3^{k_n} \left(\frac{1}{2^{k_{n+1}-2}}\right)^{\delta} < \sum_{n \ge m} 3^{k_n} \left(\frac{1}{2^{k_{n+1}-2}}\right)^{p_n} < \sum_{n \ge m} \frac{1}{2^n} < \epsilon.$$

Thus, the Hausdorff dimension of Y is zero.

QED

The following lemma concludes the proof of Theorem 4.

7 Lemma. There exists a γ -set $X \subseteq \mathbb{R}$ and a set $Y \subseteq \mathbb{R}$ with Hausdorff dimension zero such that $X + Y = \mathbb{R}$. In particular, dim(X + Y) = 1.

PROOF. Choose a sequence $\{k_n\}_{n\in\mathbb{N}}$ and a set Y as in Lemma 6. Then $\sum_n 2^{-(k_{n+1}-k_n)}$ converges, and the corresponding set A defined in Theorem 5 has measure zero. Thus, there exists a γ -set G such that $G \oplus A = \{0,1\}^{\mathbb{N}}$. Define $\Phi : \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ by

$$\Phi(f) = \sum_{i \in \mathbb{N}} \frac{f(i)}{2^{i+1}}$$

As Φ is continuous, $X = \Phi[G]$ is a γ -set of reals. Assume that z is a member of the interval [0,1], let $f \in \{0,1\}^{\mathbb{N}}$ be such that $z = \sum_{i} f(i)/2^{i+1}$. Then $f = g \oplus a$ for appropriate $g \in G$ and $a \in A$. Define $h \in \{-1,0,1\}^{\mathbb{N}}$ by h(i) = f(i) - g(i). For infinitely many $n, a \upharpoonright [k_n, k_{n+1}) \equiv 0$ and therefore $f \upharpoonright [k_n, k_{n+1}) \equiv g \upharpoonright [k_n, k_{n+1})$, that is, $h \upharpoonright [k_n, k_{n+1}] \equiv 0$ for infinitely many n. Thus, $y = \sum_i h(i)/2^{i+1} \in Y$, and for $x = \Phi(g)$,

$$x + y = \sum_{i \in \mathbb{N}} \frac{g(i)}{2^{i+1}} + \sum_{i \in \mathbb{N}} \frac{h(i)}{2^{i+1}} = \sum_{i \in \mathbb{N}} \frac{g(i) + h(i)}{2^{i+1}} = \sum_{i \in \mathbb{N}} \frac{f(i)}{2^{i+1}} = z.$$

This shows that $[0,1] \subseteq X + Y$. Consequently, $X + (Y + \mathbb{Q}) = (X + Y) + \mathbb{Q} = \mathbb{R}$. Now, observe that $Y + \mathbb{Q}$ has Hausdorff dimension zero since Y has.

2 The product of a strong γ -set and a set of Hausdorff dimension zero

8 Theorem. Assume that $X \subseteq \mathbb{R}^k$ is a strong γ -set. Then for each $Y \subseteq \mathbb{R}^l$, $\dim(X \times Y) = \dim(Y)$.

Topological diagonalizations and Hausdorff dimension

PROOF. The proof for this is similar to that of Theorem 7 in [7]. It is enough to show that $\dim(X \times Y) \leq \dim(Y)$.

9 Lemma. Assume that $Y \subseteq \mathbb{R}^l$ is such that $\dim(Y) < \delta$. Then for each positive ϵ there exists a large cover $\{I_n\}_{n\in\mathbb{N}}$ of Y (i.e., such that each $y \in Y$ is a member of infinitely many sets I_n) such that $\sum_n \operatorname{diam}(I_n)^{\delta} < \epsilon$.

PROOF. For each *m* choose a cover $\{I_n^m\}_{n\in\mathbb{N}}$ of *Y* such that $\sum_n \operatorname{diam}(I_n^m)^{\delta} < \epsilon/2^m$. Then $\{I_n^m : m, n \in \mathbb{N}\}$ is a large cover of *Y*, and $\sum_{m,n} \operatorname{diam}(I_n^m)^{\delta} < \sum_n \epsilon/2^m = \epsilon$.

10 Lemma. Assume that $Y \subseteq \mathbb{R}^l$ is such that $\dim(Y) < \delta$. Then for each sequence $\{\epsilon_n\}_{n\in\mathbb{N}}$ of positive reals there exists a large cover $\{A_n\}_{n\in\mathbb{N}}$ of Y such that for each n A_n is a union of finitely many sets, $I_1^n, \ldots, I_{m_n}^n$, such that $\sum_j \operatorname{diam}(I_j^n)^{\delta} < \epsilon_n$.

PROOF. Assume that $\{\epsilon_n\}_{n\in\mathbb{N}}$ is a sequence of positive reals. By Lemma 9, there exists a large cover $\{I_n\}_{n\in\mathbb{N}}$ of Y such that $\sum_n \operatorname{diam}(I_n)^{\delta} < \epsilon_1$. For each $n \text{ let } k_n = \min\{m : \sum_{j\geq m} \operatorname{diam}(I_j)^{\delta} < \epsilon_n\}$. Take

$$A_n = \bigcup_{j=k_n}^{k_{n+1}-1} I_j.$$

QED

Fix $\delta > \dim(Y)$ and $\epsilon > 0$. Choose a sequence $\{\epsilon_n\}_{n \in \mathbb{N}}$ of positive reals such that $\sum_n 2n\epsilon_n < \epsilon$, and use Lemma 10 to get the corresponding large cover $\{A_n\}_{n \in \mathbb{N}}$.

For each n we define an n-cover \mathcal{U}_n of X as follows. Let F be an n-element subset of X. For each $x \in F$, find an open interval I_x such that $x \in I_x$ and

$$\sum_{j=1}^{m_n} \operatorname{diam}(I_x \times I_j^n)^{\delta} < 2\epsilon_n.$$

Let $U_F = \bigcup_{x \in F} I_x$. Set

$$\mathcal{U}_n = \{ U_F : F \text{ is an } n \text{-element subset of } X \}.$$

As X is a strong γ -set, there exist elements $U_{F_n} \in \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\{U_{F_n}\}_{n \in \mathbb{N}}$ is a γ -cover of X. Consequently,

$$X \times Y \subseteq \bigcup_{n \in \mathbb{N}} (U_{F_n} \times A_n) \subseteq \bigcup_{n \in \mathbb{N}} \bigcup_{x \in F_n} \bigcup_{j=1}^{m_n} I_x \times I_j^n$$

T. Weiss, B. Tsaban

and

$$\sum_{n \in \mathbb{N}} \sum_{x \in F_n} \sum_{j=1}^{m_n} \operatorname{diam}(I_x \times I_j^n)^{\delta} < \sum_n n \cdot 2\epsilon_n < \epsilon.$$

QED

3 Open problems

There are ways to strengthen the notion of γ -sets other than moving to strong γ -sets. Let \mathcal{B}_{Ω} and \mathcal{B}_{Γ} denote the collections of *countable Borel* ω -covers and γ -covers of X, respectively. As every open ω -cover of a set of reals contains a countable ω -subcover [9], we have that $\Omega \subseteq \mathcal{B}_{\Omega}$ and therefore $\mathsf{S}_1(\mathcal{B}_{\Omega}, \mathcal{B}_{\Gamma})$ implies $\mathsf{S}_1(\Omega, \Gamma)$. The converse is not true [17].

11 Problem. Assume that $X \subseteq \mathbb{R}$ satisfies $\mathsf{S}_1(\mathcal{B}_\Omega, \mathcal{B}_\Gamma)$. Is it true that for each $Y \subseteq \mathbb{R}$, $\dim(X \times Y) = \dim(Y)$?

We conjecture that assuming the Continuum Hypothesis, the answer to this problem is negative. We therefore introduce the following problem. For infinite sets of natural numbers A, B, we write $A \subseteq^* B$ if $A \setminus B$ is finite. Assume that \mathcal{F} is a family of infinite sets of natural numbers. A set P is a *pseudointersection* of \mathcal{F} if it is infinite, and for each $B \in \mathcal{F}$, $A \subseteq^* B$. \mathcal{F} is *centered* if each finite subcollection of \mathcal{F} has a pseudointersection. Let \mathfrak{p} denote the minimal cardinality of a centered family which does not have a pseudointersection. In [17] it is proved that \mathfrak{p} is also the minimal cardinality of a set of reals which does not satisfy $S_1(\mathcal{B}_{\Omega}, \mathcal{B}_{\Gamma})$.

12 Problem. Assume that the cardinality of X is smaller than \mathfrak{p} . Is it true that for each $Y \subseteq \mathbb{R}$, $\dim(X \times Y) = \dim(Y)$?

Another interesting open problem involves the following notion [18, 19]. A cover \mathcal{U} of X is a τ -cover of X if it is a large cover, and for each $x, y \in X$, one of the sets $\{U \in \mathcal{U} : x \in U \text{ and } y \notin U\}$ or $\{U \in \mathcal{U} : y \in U \text{ and } x \notin U\}$ is finite. Let T denote the collection of open τ -covers of X. Then $\Gamma \subseteq T \subseteq \Omega$, therefore $\mathsf{S}_1(\{\mathcal{O}_n\}_{n\in\mathbb{N}},\Gamma)$ implies $\mathsf{S}_1(\{\mathcal{O}_n\}_{n\in\mathbb{N}},\Gamma)$.

13 Problem. Assume that $X \subseteq \mathbb{R}$ satisfies $S_1(\{\mathcal{O}_n\}_{n \in \mathbb{N}}, \mathbb{T})$. Is it true that for each $Y \subseteq \mathbb{R}$, $\dim(X \times Y) = \dim(Y)$?

It is conjectured that $S_1(\{\mathcal{O}_n\}_{n\in\mathbb{N}}, T)$ is strictly stronger than $S_1(\Omega, T)$ [20]. If this conjecture is false, then the results in this paper imply a negative answer to Problem 13.

Another type of problems is the following: We have seen that the assumption that X is a γ -set and Y has Hausdorff dimension zero is not enough in order to prove that $X \times Y$ has Hausdorff dimension zero. We also saw that if X satisfies a

90

Topological diagonalizations and Hausdorff dimension

stronger property (strong γ -set), then dim $(X \times Y) = \dim(Y)$ for all Y. Another approach to get a positive answer would be to strengthen the assumption on Y rather than X.

If we assume that Y has strong measure zero, then a positive answer follows from a result of Scheepers [16] (see also [21]), asserting that if X is a strong measure zero metric space which also has the Hurewicz property, then for each strong measure zero metric space Y, $X \times Y$ has strong measure zero. Indeed, if X is a γ -set then it has the required properties.

Finally, the following question of Krawczyk remains open.

14 Problem. Is it consistent (relative to ZFC) that there are uncountable γ -sets but for each γ -set X and each set Y, $\dim(X \times Y) = \dim(Y)$?

References

- [1] T. BARTOSZYŃSKI, I. RECŁAW: Not every γ -set is strongly meager, Contemporary Mathematics **192** (1996), 25–29.
- T. BARTOSZYNSKI, S. SHELAH, B. TSABAN: Additivity properties of topological diagonalizations, Journal of Symbolic Logic, 68, (2003), 1254–1260. (Full version: http:// arxiv.org/abs/math.LO/0112262)
- [3] É. BOREL: Sur la classification des ensembles de mesure nulle, Bulletin de la Société Mathématique de France 47 (1919), 97–125.
- [4] K. FALCONER: The geometry of fractal sets, Cambridge University Press, 1990.
- [5] D.H. FREMLIN, A.W. MILLER: On some properties of Hurewicz, Menger and Rothberger, Fundamenta Mathematica 129 (1988), 17–33.
- [6] F. GALVIN, J. MYCIELSKI, R. SOLOVAY: Strong measure zero sets, Notices of the American Mathematical Society (1973), A–280.
- [7] F. GALVIN, A.W. MILLER: γ-sets and other singular sets of real numbers, Topology and it Applications 17 (1984), 145–155.
- [8] J. GERLITS, ZS. NAGY: Some properties of C(X), I, Topology and its applications 14 (1982), 151–161.
- W. JUST, A. W. MILLER, M. SCHEEPERS, P. SZEPTYCKI: Combinatorics of open covers II, Topology and Its Applications, 73 (1996), 241–266.
- [10] R. LAVER: On the consistency of Borel's conjecture, Acta Mathematica 137 (1976), 151– 169.
- [11] A.W. MILLER: Special subsets of the real line, in: Handbook of Set Theoretic Topology (eds. K. Kunen and J.E. Vaughan), 201–233, North Holland, Amsterdam: 1984.
- [12] A. NOWIK, M. SCHEEPERS, T. WEISS: The algebraic sum of sets of real numbers with strong measure zero sets, The Journal of Symbolic Logic 63 (1998), 301–324.
- [13] F. ROTHBERGER: Sur des families indenombrables de suites de nombres naturels, et les problémes concernant la proprieté C, Proceedings of the Cambridge Philosophical Society 37 (1941), 109–126.

- [14] M. SAKAI: Property C" and function spaces, Proceedings of the American Mathematical Society 104 (1988), 917–919.
- [15] M. SCHEEPERS: Combinatorics of open covers I: Ramsey Theory, Topology and its Applications 69 (1996), 31–62.
- [16] M. SCHEEPERS: Finite powers of strong measure zero sets, Journal of Symbolic Logic 64, (1999), 1295–1306.
- [17] M. SCHEEPERS, B. TSABAN: The combinatorics of Borel covers, Topology and its Applications 121 (2002), 357–382.
- [18] B. TSABAN: A topological interpretation of t, Real Analysis Exchange 25 (1999/2000), 391–404.
- [19] B. TSABAN: Selection principles and the minimal tower problem, Note di Matematica, this volume.
- [20] B. TSABAN: Strong γ -sets and other singular spaces, submitted.
- [21] B. TSABAN, T. WEISS: *Products of special sets of real numbers*, Real Analysis Exchange, to appear.