Topological diagonalizations and Hausdorff dimension

Tomasz Weiss
Institute of Mathematics, Akademia Podlaska 08-119 Siedlce, Poland
tomaszweiss@go2.pl
Boaz Tsaban
Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
tsaban@math.huji.ac.il, http://www.cs.biu.ac.il/~tsaban

Received: 13/01/2003; accepted: 03/09/2003.

Abstract

The Hausdorff dimension of a product $X \times Y$ can be strictly greater than that of Y, even when the Hausdorff dimension of X is zero. But when X is countable, the Hausdorff dimensions of Y and $X \times Y$ are the same. Diagonalizations of covers define a natural hierarchy of properties which are weaker than "being countable" and stronger than "having Hausdorff dimension zero". Fremlin asked whether it is enough for X to have the strongest property in this hierarchy (namely, being a γ-set) in order to assure that the Hausdorff dimensions of Y and $X \times Y$ are the same.

We give a negative answer: Assuming the Continuum Hypothesis, there exists a γ-set $X \subseteq \mathbb{R}$ and a set $Y \subseteq \mathbb{R}$ with Hausdorff dimension zero, such that the Hausdorff dimension of $X+Y$ (a Lipschitz image of $X \times Y$) is maximal, that is, 1 . However, we show that for the notion of a strong γ-set the answer is positive. Some related problems remain open.

Keywords: Hausdorff dimension, Gerlits-Nagy γ property, Galvin-Miller strong γ property.
MSC 2000 classification: primary: 03E75; secondary: 37F20, 26A03.

Introduction

The Hausdorff dimension of a subset of \mathbb{R}^{k} is a derivative of the notion of Hausdorff measures [4]. However, for our purposes it will be more convenient to use the following equivalent definition. Denote the diameter of a subset A of \mathbb{R}^{k} by $\operatorname{diam}(A)$. The Hausdorff dimension of a set $X \subseteq \mathbb{R}^{k}, \operatorname{dim}(X)$, is the infimum of all positive δ such that for each positive ϵ there exists a cover $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of X with

$$
\sum_{n \in \mathbb{N}} \operatorname{diam}\left(I_{n}\right)^{\delta}<\epsilon
$$

From the many properties of Hausdorff dimension, we will need the following easy ones.

1 Lemma.

(1) If $X \subseteq Y \subseteq \mathbb{R}^{k}$, then $\operatorname{dim}(X) \leq \operatorname{dim}(Y)$.
(2) Assume that X_{1}, X_{2}, \ldots are subsets of \mathbb{R}^{k} such that $\operatorname{dim}\left(X_{n}\right)=\delta$ for each n. Then $\operatorname{dim}\left(\bigcup_{n} X_{n}\right)=\delta$.
(3) Assume that $X \subseteq \mathbb{R}^{k}$ and $Y \subseteq \mathbb{R}^{m}$ is such that there exists a Lipschitz surjection $\phi: X \rightarrow Y$. Then $\operatorname{dim}(X) \geq \operatorname{dim}(Y)$.
(4) For each $X \subseteq \mathbb{R}^{k}$ and $Y \subseteq \mathbb{R}^{m}, \operatorname{dim}(X \times Y) \geq \operatorname{dim}(X)+\operatorname{dim}(Y)$.

Equality need not hold in item (4) of the last lemma. In particular, one can construct a set X with Hausdorff dimension zero and a set Y such that $\operatorname{dim}(X \times Y)>\operatorname{dim}(Y)$. On the other hand, when X is countable, $X \times Y$ is a union of countably many copies of Y, and therefore

$$
\begin{equation*}
\operatorname{dim}(X \times Y)=\operatorname{dim}(Y) \tag{1}
\end{equation*}
$$

Having Hausdorff dimension zero can be thought of as a notion of smallness. Being countable is another notion of smallness, and we know that the first notion is not enough restrictive in order to have Equation 1 hold, but the second is.

Notions of smallness for sets of real numbers have a long history and many applications - see, e.g., [11]. We will consider some notions which are weaker than being countable and stronger than having Hausdorff dimension zero.

According to Borel [3], a set $X \subseteq \mathbb{R}^{k}$ has strong measure zero if for each sequence of positive reals $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$, there exists a cover $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of X such that $\operatorname{diam}\left(I_{n}\right)<\epsilon_{n}$ for all n. Clearly strong measure zero implies Hausdorff dimension zero. It does not require any special assumptions in order to see that the converse is false. A perfect set can be mapped onto the unit interval by a uniformly continuous function and therefore cannot have strong measure zero.

2 Proposition (folklore). There exists a perfect set of reals X with Hausdorff dimension zero.

Proof. For $0<\lambda<1$, denote by $C(\lambda)$ the Cantor set obtained by starting with the unit interval, and at each step removing from the middle of each interval a subinterval of size λ times the size of the interval (So that $C(1 / 3)$ is the canonical middle-third Cantor set, which has Hausdorff dimension $\log 2 / \log 3$.) It is easy to see that if $\lambda_{n} \nearrow 1$, then $\operatorname{dim}\left(C\left(\lambda_{n}\right)\right) \searrow 0$.

Thus, define a special Cantor set $C\left(\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}\right)$ by starting with the unit interval, and at step n removing from the middle of each interval a subinterval of size λ_{n} times the size of the interval. For each $n, C\left(\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}\right)$ is contained in a union of 2^{n} (shrunk) copies of $C\left(\lambda_{n}\right)$, and therefore $\operatorname{dim}\left(C\left(\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}\right)\right) \leq$ $\operatorname{dim}\left(C\left(\lambda_{n}\right)\right)$.

As every countable set has strong measure zero, the latter notion can be thought of an "approximation" of countability. In fact, Borel conjectured in [3] that every strong measure zero set is countable, and it turns out that the usual axioms of mathematics (ZFC) are not strong enough to prove or disprove this conjecture: Assuming the Continuum Hypothesis there exists an uncountable strong measure zero set (namely, a Luzin set), but Laver [10] proved that one cannot prove the existence of such an object from the usual axioms of mathematics.

The property of strong measure zero (which depends on the metric) has a natural topological counterpart. A topological space X has Rothberger's property $C^{\prime \prime}[13]$ if for each sequence $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ of covers of X there is a sequence $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ such that for each $n U_{n} \in \mathcal{U}_{n}$, and $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ is a cover of X. Using Scheepers' notation [15], this property is a particular instance of the following selection hypothesis (where \mathfrak{U} and \mathfrak{V} are any collections of covers of X):
$\mathrm{S}_{1}(\mathfrak{U}, \mathfrak{V})$: For each sequence $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ of members of \mathfrak{U}, there is a sequence $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ such that $U_{n} \in \mathcal{U}_{n}$ for each n, and $\left\{U_{n}\right\}_{n \in \mathbb{N}} \in \mathfrak{V}$.

Let \mathcal{O} denote the collection of all open covers of X. Then the property considered by Rothberger is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$. Fremlin and Miller [5] proved that a set $X \subseteq \mathbb{R}^{k}$ satisfies $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ if, and only if, X has strong measure zero with respect to each metric which generates the standard topology on \mathbb{R}^{k}.

But even Rothberger's property for X is not strong enough to have Equation 1 hold: It is well-known that every Luzin set satisfies Rothberger's property (and, in particular, has Hausdorff dimension zero).

3 Lemma. The mapping $(x, y) \mapsto x+y$ from \mathbb{R}^{2} to \mathbb{R} is Lipschitz.
Proof. Observe that for nonnegative reals a and $b,(a-b)^{2} \geq 0$ and therefore $a^{2}+b^{2} \geq 2 a b$. Consequently,

$$
a+b=\sqrt{a^{2}+2 a b+b^{2}} \leq \sqrt{2\left(a^{2}+b^{2}\right)}=\sqrt{2} \sqrt{a^{2}+b^{2}}
$$

Thus,
$\left|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right| \leq \sqrt{2} \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.
QED
Assuming the Continuum Hypothesis, there exists a Luzin set $L \subseteq \mathbb{R}$ such that $L+L$, a Lipschitz image of $L \times L$, is equal to \mathbb{R} [9].

We therefore consider some stronger properties. An open cover \mathcal{U} of X is an ω-cover of X if each finite subset of X is contained in some member of the cover, but X is not contained in any member of \mathcal{U}.
\mathcal{U} is a γ-cover of X if it is infinite, and each element of X belongs to all but finitely many members of \mathcal{U}. Let Ω and Γ denote the collections of open ω-covers and γ-covers of X, respectively. Then $\Gamma \subseteq \Omega \subseteq \mathcal{O}$, and these three classes of covers introduce 9 properties of the form $S_{1}(\mathfrak{U}, \mathfrak{V})$. If we remove the trivial ones and check for equivalences [9, 20], then it turns out that only six of these properties are really distinct, and only three of them imply Hausdorff dimension zero:

$$
\mathrm{S}_{1}(\Omega, \Gamma) \rightarrow \mathrm{S}_{1}(\Omega, \Omega) \rightarrow \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

The properties $\mathrm{S}_{1}(\Omega, \Gamma)$ and $\mathrm{S}_{1}(\Omega, \Omega)$ were also studied before. $\mathrm{S}_{1}(\Omega, \Omega)$ was studied by Sakai [14], and $S_{1}(\Omega, \Gamma)$ was studied by Gerlits and Nagy in [8]: A topological space X is a γ-set if each ω-cover of X contains a γ-cover of X. Gerlits and Nagy proved that X is a γ-set if, and only if, X satisfies $\mathrm{S}_{1}(\Omega, \Gamma)$. It is not difficult to see that every countable space is a γ-set. But this property is not trivial: Assuming the Continuum Hypothesis, there exist uncountable γ-sets [7].
$\mathrm{S}_{1}(\Omega, \Omega)$ is closed under taking finite powers [9], thus the Luzin set we used to see that Equation 1 need not hold when X satisfies $S_{1}(\mathcal{O}, \mathcal{O})$ does not rule out that possibility that this Equation holds when X satisfies $\mathrm{S}_{1}(\Omega, \Omega)$. However, in [2] it is shown that assuming the Continuum Hypothesis, there exist Luzin sets L_{0} and L_{1} satisfying $S_{1}(\Omega, \Omega)$, such that $L_{0}+L_{1}=\mathbb{R}$. Thus, the only remaining candidate for a nontrivial property of X where Equation 1 holds is $S_{1}(\Omega, \Gamma)$ (γ-sets). Fremlin (personal communication) asked whether Equation 1 is indeed provable in this case. We give a negative answer, but show that for a yet stricter (but nontrivial) property which was considered in the literature, the answer is positive.

The notion of a strong γ-set was introduced in [7]. However, we will adopt the following simple characterization from [20] as our formal definition. Assume that $\left\{\mathfrak{U}_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of collections of covers of a space X, and that \mathfrak{V} is a collection of covers of X. Define the following selection hypothesis.
$\mathrm{S}_{1}\left(\left\{\mathfrak{U}_{n}\right\}_{n \in \mathbb{N}}, \mathfrak{V}\right)$: For each sequence $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ where $\mathcal{U}_{n} \in \mathfrak{U}_{n}$ for each n, there is a sequence $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ such that $U_{n} \in \mathcal{U}_{n}$ for each n, and $\left\{U_{n}\right\}_{n \in \mathbb{N}} \in \mathfrak{V}$.

A cover \mathcal{U} of a space X is an n-cover if each n-element subset of X is contained in some member of \mathcal{U}. For each n denote by \mathcal{O}_{n} the collection of all open n-covers of a space X. Then X is a strong γ-set if X satisfies $\mathrm{S}_{1}\left(\left\{\mathcal{O}_{n}\right\}_{n \in \mathbb{N}}, \Gamma\right)$.

In most cases $\mathrm{S}_{1}\left(\left\{\mathcal{O}_{n}\right\}_{n \in \mathbb{N}}, \mathfrak{V}\right)$ is equivalent to $\mathrm{S}_{1}(\Omega, \mathfrak{V})$ [20], but not in the case $\mathfrak{V}=\Gamma$: It is known that for a strong γ-set $G \subseteq\{0,1\}^{\mathbb{N}}$ and each $A \subseteq\{0,1\}^{\mathbb{N}}$ of measure zero, $G \oplus A$ has measure zero too [7]; this can be contrasted with Theorem 5 below. In Section 2 we show that Equation 1 is provable in the case that X is a strong γ-set, establishing another difference between the notions
of γ-sets and strong γ-sets, and giving a positive answer to Fremlin's question under a stronger assumption on X.

1 The product of a γ-set and a set of Hausdorff dimension zero

4 Theorem. Assuming the Continuum Hypothesis (or just $\mathfrak{p}=\mathfrak{c}$), there exist a γ-set $X \subseteq \mathbb{R}$ and a set $Y \subseteq \mathbb{R}$ with Hausdorff dimension zero such that the Hausdorff dimension of the algebraic sum

$$
X+Y=\{x+y: x \in X, y \in Y\}
$$

(a Lipschitz image of $X \times Y$ in \mathbb{R}) is 1 . In particular, $\operatorname{dim}(X \times Y) \geq 1$.
Our theorem will follow from the following related theorem. This theorem involves the Cantor space $\{0,1\}^{\mathbb{N}}$ of infinite binary sequences. The Cantor space is equipped with the product topology and with the product measure.

5 Theorem (Bartoszyński and Recław [1]). Assume the Continuum Hypothesis (or just $\mathfrak{p}=\mathfrak{c}$). Fix an increasing sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ of natural numbers, and for each n define

$$
A_{n}=\left\{f \in\{0,1\}^{\mathbb{N}}: f \upharpoonright\left[k_{n}, k_{n+1}\right) \equiv 0\right\} .
$$

If the set

$$
A=\bigcap_{m \in \mathbb{N} n \geq m} \bigcup_{n} A_{n}
$$

has measure zero, then there exists a γ-set $G \subseteq\{0,1\}^{\mathbb{N}}$ such that the algebraic sum $G \oplus A$ is equal to $\{0,1\}^{\mathbb{N}}$ (where where \oplus denotes the modulo 2 coordinatewise addition).

Observe that the assumption in Theorem 5 holds whenever $\sum_{n} 2^{-\left(k_{n+1}-k_{n}\right)}$ converges.

6 Lemma. There exists an increasing sequence of natural numbers $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ such that $\sum_{n} 2^{-\left(k_{n+1}-k_{n}\right)}$ converges, and such that for the sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ defined by

$$
B_{n}=\left\{\sum_{i \in \mathbb{N}} \frac{f(i)}{2^{i+1}}: f \in\{-1,0,1\}^{\mathbb{N}} \text { and } f \upharpoonright\left[k_{n}, k_{n+1}\right) \equiv 0\right\}
$$

for each n, the set

$$
Y=\bigcap_{m \in \omega} \bigcup_{n \geq m} B_{n}
$$

has Hausdorff dimension zero.

Proof. Fix a sequence p_{n} of positive reals which converges to 0 . Let $k_{0}=0$. Given k_{n} find k_{n+1} satisfying

$$
3^{k_{n}} \cdot \frac{1}{2^{p_{n}\left(k_{n+1}-2\right)}} \leq \frac{1}{2^{n}}
$$

Clearly, every B_{n} is contained in a union of $3^{k_{n}}$ intervals such that each of the intervals has diameter $1 / 2^{k_{n+1}-2}$. For each positive δ and ϵ, choose m such that $\sum_{n \geq m} 1 / 2^{n}<\epsilon$ and such that $p_{n}<\delta$ for all $n \geq m$. Now, Y is a subset of $\bigcup_{n \geq m} B_{n}$, and

$$
\sum_{n \geq m} 3^{k_{n}}\left(\frac{1}{2^{k_{n+1}-2}}\right)^{\delta}<\sum_{n \geq m} 3^{k_{n}}\left(\frac{1}{2^{k_{n+1}-2}}\right)^{p_{n}}<\sum_{n \geq m} \frac{1}{2^{n}}<\epsilon
$$

Thus, the Hausdorff dimension of Y is zero.
The following lemma concludes the proof of Theorem 4.
7 Lemma. There exists a γ-set $X \subseteq \mathbb{R}$ and a set $Y \subseteq \mathbb{R}$ with Hausdorff dimension zero such that $X+Y=\mathbb{R}$. In particular, $\operatorname{dim}(X+Y)=1$.

Proof. Choose a sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ and a set Y as in Lemma 6. Then $\sum_{n} 2^{-\left(k_{n+1}-k_{n}\right)}$ converges, and the corresponding set A defined in Theorem 5 has measure zero. Thus, there exists a γ-set G such that $G \oplus A=\{0,1\}^{\mathbb{N}}$. Define $\Phi:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ by

$$
\Phi(f)=\sum_{i \in \mathbb{N}} \frac{f(i)}{2^{i+1}}
$$

As Φ is continuous, $X=\Phi[G]$ is a γ-set of reals. Assume that z is a member of the interval $[0,1]$, let $f \in\{0,1\}^{\mathbb{N}}$ be such that $z=\sum_{i} f(i) / 2^{i+1}$. Then $f=g \oplus a$ for appropriate $g \in G$ and $a \in A$. Define $h \in\{-1,0,1\}^{\mathbb{N}}$ by $h(i)=f(i)-$ $g(i)$. For infinitely many $n, a \upharpoonright\left[k_{n}, k_{n+1}\right) \equiv 0$ and therefore $f \upharpoonright\left[k_{n}, k_{n+1}\right) \equiv$ $g \upharpoonright\left[k_{n}, k_{n+1}\right)$, that is, $h \upharpoonright\left[k_{n}, k_{n+1}\right) \equiv 0$ for infinitely many n. Thus, $y=$ $\sum_{i} h(i) / 2^{i+1} \in Y$, and for $x=\Phi(g)$,

$$
x+y=\sum_{i \in \mathbb{N}} \frac{g(i)}{2^{i+1}}+\sum_{i \in \mathbb{N}} \frac{h(i)}{2^{i+1}}=\sum_{i \in \mathbb{N}} \frac{g(i)+h(i)}{2^{i+1}}=\sum_{i \in \mathbb{N}} \frac{f(i)}{2^{i+1}}=z .
$$

This shows that $[0,1] \subseteq X+Y$. Consequently, $X+(Y+\mathbb{Q})=(X+Y)+\mathbb{Q}=\mathbb{R}$. Now, observe that $Y+\mathbb{Q}$ has Hausdorff dimension zero since Y has. QED

2 The product of a strong γ-set and a set of Hausdorff dimension zero

8 Theorem. Assume that $X \subseteq \mathbb{R}^{k}$ is a strong γ-set. Then for each $Y \subseteq \mathbb{R}^{l}$, $\operatorname{dim}(X \times Y)=\operatorname{dim}(Y)$.

Proof. The proof for this is similar to that of Theorem 7 in [7]. It is enough to show that $\operatorname{dim}(X \times Y) \leq \operatorname{dim}(Y)$.

9 Lemma. Assume that $Y \subseteq \mathbb{R}^{l}$ is such that $\operatorname{dim}(Y)<\delta$. Then for each positive ϵ there exists a large cover $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of Y (i.e., such that each $y \in Y$ is a member of infinitely many sets $\left.I_{n}\right)$ such that $\sum_{n} \operatorname{diam}\left(I_{n}\right)^{\delta}<\epsilon$.

Proof. For each m choose a cover $\left\{I_{n}^{m}\right\}_{n \in \mathbb{N}}$ of Y such that $\sum_{n} \operatorname{diam}\left(I_{n}^{m}\right)^{\delta}<$ $\epsilon / 2^{m}$. Then $\left\{I_{n}^{m}: m, n \in \mathbb{N}\right\}$ is a large cover of Y, and $\sum_{m, n} \operatorname{diam}\left(I_{n}^{m}\right)^{\delta}<$ $\sum_{n} \epsilon / 2^{m}=\epsilon$.

QED
10 Lemma. Assume that $Y \subseteq \mathbb{R}^{l}$ is such that $\operatorname{dim}(Y)<\delta$. Then for each sequence $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals there exists a large cover $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of Y such that for each $n A_{n}$ is a union of finitely many sets, $I_{1}^{n}, \ldots, I_{m_{n}}^{n}$, such that $\sum_{j} \operatorname{diam}\left(I_{j}^{n}\right)^{\delta}<\epsilon_{n}$.

Proof. Assume that $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of positive reals. By Lemma 9, there exists a large cover $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of Y such that $\sum_{n} \operatorname{diam}\left(I_{n}\right)^{\delta}<\epsilon_{1}$. For each n let $k_{n}=\min \left\{m: \sum_{j \geq m} \operatorname{diam}\left(I_{j}\right)^{\delta}<\epsilon_{n}\right\}$. Take

$$
A_{n}=\bigcup_{j=k_{n}}^{k_{n+1}-1} I_{j}
$$

Fix $\delta>\operatorname{dim}(Y)$ and $\epsilon>0$. Choose a sequence $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals such that $\sum_{n} 2 n \epsilon_{n}<\epsilon$, and use Lemma 10 to get the corresponding large cover $\left\{A_{n}\right\}_{n \in \mathbb{N}}$.

For each n we define an n-cover \mathcal{U}_{n} of X as follows. Let F be an n-element subset of X. For each $x \in F$, find an open interval I_{x} such that $x \in I_{x}$ and

$$
\sum_{j=1}^{m_{n}} \operatorname{diam}\left(I_{x} \times I_{j}^{n}\right)^{\delta}<2 \epsilon_{n}
$$

Let $U_{F}=\bigcup_{x \in F} I_{x}$. Set

$$
\mathcal{U}_{n}=\left\{U_{F}: F \text { is an } n \text {-element subset of } X\right\} .
$$

As X is a strong γ-set, there exist elements $U_{F_{n}} \in \mathcal{U}_{n}, n \in \mathbb{N}$, such that $\left\{U_{F_{n}}\right\}_{n \in \mathbb{N}}$ is a γ-cover of X. Consequently,

$$
X \times Y \subseteq \bigcup_{n \in \mathbb{N}}\left(U_{F_{n}} \times A_{n}\right) \subseteq \bigcup_{n \in \mathbb{N}} \bigcup_{x \in F_{n}} \bigcup_{j=1}^{m_{n}} I_{x} \times I_{j}^{n}
$$

and

$$
\sum_{n \in \mathbb{N}} \sum_{x \in F_{n}} \sum_{j=1}^{m_{n}} \operatorname{diam}\left(I_{x} \times I_{j}^{n}\right)^{\delta}<\sum_{n} n \cdot 2 \epsilon_{n}<\epsilon
$$

3 Open problems

There are ways to strengthen the notion of γ-sets other than moving to strong γ-sets. Let \mathcal{B}_{Ω} and \mathcal{B}_{Γ} denote the collections of countable Borel ω-covers and γ-covers of X, respectively. As every open ω-cover of a set of reals contains a countable ω-subcover [9], we have that $\Omega \subseteq \mathcal{B}_{\Omega}$ and therefore $\mathrm{S}_{1}\left(\mathcal{B}_{\Omega}, \mathcal{B}_{\Gamma}\right)$ implies $\mathrm{S}_{1}(\Omega, \Gamma)$. The converse is not true [17].

11 Problem. Assume that $X \subseteq \mathbb{R}$ satisfies $\mathrm{S}_{1}\left(\mathcal{B}_{\Omega}, \mathcal{B}_{\Gamma}\right)$. Is it true that for each $Y \subseteq \mathbb{R}, \operatorname{dim}(X \times Y)=\operatorname{dim}(Y)$?

We conjecture that assuming the Continuum Hypothesis, the answer to this problem is negative. We therefore introduce the following problem. For infinite sets of natural numbers A, B, we write $A \subseteq^{*} B$ if $A \backslash B$ is finite. Assume that \mathcal{F} is a family of infinite sets of natural numbers. A set P is a pseudointersection of \mathcal{F} if it is infinite, and for each $B \in \mathcal{F}, A \subseteq^{*} B . \mathcal{F}$ is centered if each finite subcollection of \mathcal{F} has a pseudointersection. Let \mathfrak{p} denote the minimal cardinality of a centered family which does not have a pseudointersection. In [17] it is proved that \mathfrak{p} is also the minimal cardinality of a set of reals which does not satisfy $\mathrm{S}_{1}\left(\mathcal{B}_{\Omega}, \mathcal{B}_{\Gamma}\right)$.

12 Problem. Assume that the cardinality of X is smaller than \mathfrak{p}. Is it true that for each $Y \subseteq \mathbb{R}, \operatorname{dim}(X \times Y)=\operatorname{dim}(Y)$?

Another interesting open problem involves the following notion [18, 19]. A cover \mathcal{U} of X is a τ-cover of X if it is a large cover, and for each $x, y \in X$, one of the sets $\{U \in \mathcal{U}: x \in U$ and $y \notin U\}$ or $\{U \in \mathcal{U}: y \in U$ and $x \notin U\}$ is finite. Let T denote the collection of open τ-covers of X. Then $\Gamma \subseteq \mathrm{T} \subseteq \Omega$, therefore $\mathrm{S}_{1}\left(\left\{\mathcal{O}_{n}\right\}_{n \in \mathbb{N}}, \Gamma\right)$ implies $\mathrm{S}_{1}\left(\left\{\mathcal{O}_{n}\right\}_{n \in \mathbb{N}}, \mathrm{~T}\right)$.

13 Problem. Assume that $X \subseteq \mathbb{R}$ satisfies $\mathrm{S}_{1}\left(\left\{\mathcal{O}_{n}\right\}_{n \in \mathbb{N}}, \mathrm{~T}\right)$. Is it true that for each $Y \subseteq \mathbb{R}, \operatorname{dim}(X \times Y)=\operatorname{dim}(Y)$?

It is conjectured that $\mathrm{S}_{1}\left(\left\{\mathcal{O}_{n}\right\}_{n \in \mathbb{N}}, \mathrm{~T}\right)$ is strictly stronger than $\mathrm{S}_{1}(\Omega, \mathrm{~T})$ [20]. If this conjecture is false, then the results in this paper imply a negative answer to Problem 13.

Another type of problems is the following: We have seen that the assumption that X is a γ-set and Y has Hausdorff dimension zero is not enough in order to prove that $X \times Y$ has Hausdorff dimension zero. We also saw that if X satisfies a
stronger property (strong γ-set), then $\operatorname{dim}(X \times Y)=\operatorname{dim}(Y)$ for all Y. Another approach to get a positive answer would be to strengthen the assumption on Y rather than X.

If we assume that Y has strong measure zero, then a positive answer follows from a result of Scheepers [16] (see also [21]), asserting that if X is a strong measure zero metric space which also has the Hurewicz property, then for each strong measure zero metric space $Y, X \times Y$ has strong measure zero. Indeed, if X is a γ-set then it has the required properties.

Finally, the following question of Krawczyk remains open.
14 Problem. Is it consistent (relative to ZFC) that there are uncountable γ-sets but for each γ-set X and each set $Y, \operatorname{dim}(X \times Y)=\operatorname{dim}(Y)$?

References

[1] T. Bartoszyński, I. RecŁaw: Not every γ-set is strongly meager, Contemporary Mathematics 192 (1996), 25-29.
[2] T. Bartoszynski, S. Shelah, B. Tsaban: Additivity properties of topological diagonalizations, Journal of Symbolic Logic, 68, (2003), 1254-1260. (Full version: http:// arxiv.org/abs/math.LO/0112262)
[3] É. Borel: Sur la classification des ensembles de mesure nulle, Bulletin de la Société Mathématique de France 47 (1919), 97-125.
[4] K. Falconer: The geometry of fractal sets, Cambridge University Press, 1990.
[5] D.H. Fremlin, A.W. Miller: On some properties of Hurewicz, Menger and Rothberger, Fundamenta Mathematica 129 (1988), 17-33.
[6] F. Galvin, J. Mycielski, R. Solovay: Strong measure zero sets, Notices of the American Mathematical Society (1973), A-280.
[7] F. Galvin, A.W. Miller: γ-sets and other singular sets of real numbers, Topology and it Applications 17 (1984), 145-155.
[8] J. Gerlits, Zs. Nagy: Some properties of $C(X), I$, Topology and its applications 14 (1982), 151-161.
[9] W. Just, A. W. Miller, M. Scheepers, P. Szeptycki: Combinatorics of open covers II, Topology and Its Applications, 73 (1996), 241-266.
[10] R. Laver: On the consistency of Borel's conjecture, Acta Mathematica 137 (1976), 151169.
[11] A.W. Miller: Special subsets of the real line, in: Handbook of Set Theoretic Topology (eds. K. Kunen and J.E. Vaughan), 201-233, North Holland, Amsterdam: 1984.
[12] A. Nowik, M. Scheepers, T. Weiss: The algebraic sum of sets of real numbers with strong measure zero sets, The Journal of Symbolic Logic 63 (1998), 301-324.
[13] F. Rothberger: Sur des families indenombrables de suites de nombres naturels, et les problémes concernant la proprieté C, Proceedings of the Cambridge Philosophical Society 37 (1941), 109-126.
[14] M. Sakai: Property $C^{\prime \prime}$ and function spaces, Proceedings of the American Mathematical Society 104 (1988), 917-919.
[15] M. Scheepers: Combinatorics of open covers I: Ramsey Theory, Topology and its Applications 69 (1996), 31-62.
[16] M. Scheepers: Finite powers of strong measure zero sets, Journal of Symbolic Logic 64, (1999), 1295-1306.
[17] M. Scheepers, B. Tsaban: The combinatorics of Borel covers, Topology and its Applications 121 (2002), 357-382.
[18] B. TsabAn: A topological interpretation of \mathfrak{t}, Real Analysis Exchange 25 (1999/2000), 391-404.
[19] B. Tsaban: Selection principles and the minimal tower problem, Note di Matematica, this volume.
[20] B. Tsaban: Strong γ-sets and other singular spaces, submitted.
[21] B. Tsaban, T. Weiss: Products of special sets of real numbers, Real Analysis Exchange, to appear.

