
Note di Matematica 22, n. 2, 2003, 83–92.

Topological diagonalizations and Hausdorff

dimension

Tomasz Weiss
Institute of Mathematics, Akademia Podlaska
08-119 Siedlce, Poland
tomaszweiss@go2.pl

Boaz Tsaban
Einstein Institute of Mathematics, Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
tsaban@math.huji.ac.il, http://www.cs.biu.ac.il/~tsaban

Received: 13/01/2003; accepted: 03/09/2003.

Abstract. The Hausdorff dimension of a product X ×Y can be strictly greater than that of
Y , even when the Hausdorff dimension of X is zero. But when X is countable, the Hausdorff
dimensions of Y and X×Y are the same. Diagonalizations of covers define a natural hierarchy
of properties which are weaker than “being countable” and stronger than “having Hausdorff
dimension zero”. Fremlin asked whether it is enough for X to have the strongest property in
this hierarchy (namely, being a γ-set) in order to assure that the Hausdorff dimensions of Y

and X × Y are the same.
We give a negative answer: Assuming the Continuum Hypothesis, there exists a γ-set

X ⊆ R and a set Y ⊆ R with Hausdorff dimension zero, such that the Hausdorff dimension
of X + Y (a Lipschitz image of X × Y ) is maximal, that is, 1. However, we show that for the
notion of a strong γ-set the answer is positive. Some related problems remain open.
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Introduction

The Hausdorff dimension of a subset of Rk is a derivative of the notion of
Hausdorff measures [4]. However, for our purposes it will be more convenient to
use the following equivalent definition. Denote the diameter of a subset A of Rk

by diam(A). The Hausdorff dimension of a set X ⊆ Rk, dim(X), is the infimum
of all positive δ such that for each positive ε there exists a cover {In}n∈N of X
with ∑

n∈N

diam(In)δ < ε.

From the many properties of Hausdorff dimension, we will need the following
easy ones.

1 Lemma.
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(1) If X ⊆ Y ⊆ Rk, then dim(X) ≤ dim(Y ).

(2) Assume that X1, X2, . . . are subsets of Rk such that dim(Xn) = δ for each
n. Then dim(

⋃
nXn) = δ.

(3) Assume that X ⊆ Rk and Y ⊆ Rm is such that there exists a Lipschitz
surjection φ : X → Y . Then dim(X) ≥ dim(Y ).

(4) For each X ⊆ Rk and Y ⊆ Rm, dim(X × Y ) ≥ dim(X) + dim(Y ).

Equality need not hold in item (4) of the last lemma. In particular, one
can construct a set X with Hausdorff dimension zero and a set Y such that
dim(X × Y ) > dim(Y ). On the other hand, when X is countable, X × Y is a
union of countably many copies of Y , and therefore

dim(X × Y ) = dim(Y ). (1)

Having Hausdorff dimension zero can be thought of as a notion of smallness.
Being countable is another notion of smallness, and we know that the first notion
is not enough restrictive in order to have Equation 1 hold, but the second is.

Notions of smallness for sets of real numbers have a long history and many
applications – see, e.g., [11]. We will consider some notions which are weaker
than being countable and stronger than having Hausdorff dimension zero.

According to Borel [3], a set X ⊆ Rk has strong measure zero if for each
sequence of positive reals {εn}n∈N, there exists a cover {In}n∈N of X such that
diam(In) < εn for all n. Clearly strong measure zero implies Hausdorff dimension
zero. It does not require any special assumptions in order to see that the converse
is false. A perfect set can be mapped onto the unit interval by a uniformly
continuous function and therefore cannot have strong measure zero.

2 Proposition (folklore). There exists a perfect set of reals X with Haus-
dorff dimension zero.

Proof. For 0 < λ < 1, denote by C(λ) the Cantor set obtained by starting
with the unit interval, and at each step removing from the middle of each interval
a subinterval of size λ times the size of the interval (So that C(1/3) is the
canonical middle-third Cantor set, which has Hausdorff dimension log 2/ log 3.)
It is easy to see that if λn ↗ 1, then dim(C(λn)) ↘ 0.

Thus, define a special Cantor set C({λn}n∈N) by starting with the unit
interval, and at step n removing from the middle of each interval a subinterval
of size λn times the size of the interval. For each n, C({λn}n∈N) is contained
in a union of 2n (shrunk) copies of C(λn), and therefore dim(C({λn}n∈N)) ≤
dim(C(λn)). QED
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As every countable set has strong measure zero, the latter notion can be
thought of an “approximation” of countability. In fact, Borel conjectured in [3]
that every strong measure zero set is countable, and it turns out that the usual
axioms of mathematics (ZFC) are not strong enough to prove or disprove this
conjecture: Assuming the Continuum Hypothesis there exists an uncountable
strong measure zero set (namely, a Luzin set), but Laver [10] proved that one
cannot prove the existence of such an object from the usual axioms of mathe-
matics.

The property of strong measure zero (which depends on the metric) has a
natural topological counterpart. A topological spaceX has Rothberger’s property
C ′′ [13] if for each sequence {Un}n∈N of covers of X there is a sequence {Un}n∈N

such that for each n Un ∈ Un, and {Un}n∈N is a cover of X. Using Scheepers’
notation [15], this property is a particular instance of the following selection
hypothesis (where U and V are any collections of covers of X):

S1(U,V): For each sequence {Un}n∈N of members of U, there is a sequence
{Un}n∈N such that Un ∈ Un for each n, and {Un}n∈N ∈ V.

Let O denote the collection of all open covers ofX. Then the property considered
by Rothberger is S1(O,O). Fremlin and Miller [5] proved that a set X ⊆ Rk

satisfies S1(O,O) if, and only if, X has strong measure zero with respect to each
metric which generates the standard topology on Rk.

But even Rothberger’s property for X is not strong enough to have Equa-
tion 1 hold: It is well-known that every Luzin set satisfies Rothberger’s property
(and, in particular, has Hausdorff dimension zero).

3 Lemma. The mapping (x, y) 7→ x+ y from R2 to R is Lipschitz.

Proof. Observe that for nonnegative reals a and b, (a− b)2 ≥ 0 and there-
fore a2 + b2 ≥ 2ab. Consequently,

a+ b =
√
a2 + 2ab+ b2 ≤

√
2(a2 + b2) =

√
2
√
a2 + b2.

Thus,

|(x1+y1)−(x2+y2)| ≤
√

2
√

(x1 − x2)2 + (y1 − y2)2 for all (x1, y1), (x2, y2) ∈ R2.

QED

Assuming the Continuum Hypothesis, there exists a Luzin set L ⊆ R such
that L+ L, a Lipschitz image of L× L, is equal to R [9].

We therefore consider some stronger properties. An open cover U of X is
an ω-cover of X if each finite subset of X is contained in some member of the
cover, but X is not contained in any member of U .
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U is a γ-cover of X if it is infinite, and each element of X belongs to all
but finitely many members of U . Let Ω and Γ denote the collections of open
ω-covers and γ-covers of X, respectively. Then Γ ⊆ Ω ⊆ O, and these three
classes of covers introduce 9 properties of the form S1(U,V). If we remove the
trivial ones and check for equivalences [9, 20], then it turns out that only six
of these properties are really distinct, and only three of them imply Hausdorff
dimension zero:

S1(Ω,Γ) → S1(Ω,Ω) → S1(O,O).

The properties S1(Ω,Γ) and S1(Ω,Ω) were also studied before. S1(Ω,Ω) was
studied by Sakai [14], and S1(Ω,Γ) was studied by Gerlits and Nagy in [8]: A
topological space X is a γ-set if each ω-cover of X contains a γ-cover of X.
Gerlits and Nagy proved that X is a γ-set if, and only if, X satisfies S1(Ω,Γ). It
is not difficult to see that every countable space is a γ-set. But this property is
not trivial: Assuming the Continuum Hypothesis, there exist uncountable γ-sets
[7].

S1(Ω,Ω) is closed under taking finite powers [9], thus the Luzin set we used
to see that Equation 1 need not hold when X satisfies S1(O,O) does not rule out
that possibility that this Equation holds when X satisfies S1(Ω,Ω). However, in
[2] it is shown that assuming the Continuum Hypothesis, there exist Luzin sets
L0 and L1 satisfying S1(Ω,Ω), such that L0 +L1 = R. Thus, the only remaining
candidate for a nontrivial property of X where Equation 1 holds is S1(Ω,Γ)
(γ-sets). Fremlin (personal communication) asked whether Equation 1 is indeed
provable in this case. We give a negative answer, but show that for a yet stricter
(but nontrivial) property which was considered in the literature, the answer is
positive.

The notion of a strong γ-set was introduced in [7]. However, we will adopt
the following simple characterization from [20] as our formal definition. Assume
that {Un}n∈N is a sequence of collections of covers of a space X, and that V is
a collection of covers of X. Define the following selection hypothesis.

S1({Un}n∈N,V): For each sequence {Un}n∈N where Un ∈ Un for each n, there is
a sequence {Un}n∈N such that Un ∈ Un for each n, and {Un}n∈N ∈ V.

A cover U of a space X is an n-cover if each n-element subset of X is con-
tained in some member of U . For each n denote by On the collection of all open
n-covers of a space X. Then X is a strong γ-set if X satisfies S1({On}n∈N,Γ).

In most cases S1({On}n∈N,V) is equivalent to S1(Ω,V) [20], but not in the
case V = Γ: It is known that for a strong γ-set G ⊆ {0, 1}N and each A ⊆ {0, 1}N

of measure zero, G ⊕ A has measure zero too [7]; this can be contrasted with
Theorem 5 below. In Section 2 we show that Equation 1 is provable in the case
that X is a strong γ-set, establishing another difference between the notions
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of γ-sets and strong γ-sets, and giving a positive answer to Fremlin’s question
under a stronger assumption on X.

1 The product of a γ-set and a set of Hausdorff di-
mension zero

4 Theorem. Assuming the Continuum Hypothesis (or just p = c), there
exist a γ-set X ⊆ R and a set Y ⊆ R with Hausdorff dimension zero such that
the Hausdorff dimension of the algebraic sum

X + Y = {x+ y : x ∈ X, y ∈ Y }
(a Lipschitz image of X × Y in R) is 1. In particular, dim(X × Y ) ≥ 1.

Our theorem will follow from the following related theorem. This theorem
involves the Cantor space {0, 1}N of infinite binary sequences. The Cantor space
is equipped with the product topology and with the product measure.

5 Theorem (Bartoszyński and Rec law [1]). Assume the Continuum
Hypothesis (or just p = c). Fix an increasing sequence {kn}n∈N of natural num-
bers, and for each n define

An = {f ∈ {0, 1}N : f � [kn, kn+1) ≡ 0}.
If the set

A =
⋂

m∈N

⋃

n≥m

An

has measure zero, then there exists a γ-set G ⊆ {0, 1}N such that the algebraic
sum G⊕A is equal to {0, 1}N (where where ⊕ denotes the modulo 2 coordinate-
wise addition).

Observe that the assumption in Theorem 5 holds whenever
∑

n 2−(kn+1−kn)

converges.

6 Lemma. There exists an increasing sequence of natural numbers {kn}n∈N

such that
∑

n 2−(kn+1−kn) converges, and such that for the sequence {Bn}n∈N

defined by

Bn =

{
∑

i∈N

f(i)

2i+1
: f ∈ {−1, 0, 1}N and f � [kn, kn+1) ≡ 0

}

for each n, the set

Y =
⋂

m∈ω

⋃

n≥m

Bn

has Hausdorff dimension zero.
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Proof. Fix a sequence pn of positive reals which converges to 0. Let k0 = 0.
Given kn find kn+1 satisfying

3kn · 1

2pn(kn+1−2)
≤ 1

2n
.

Clearly, every Bn is contained in a union of 3kn intervals such that each of the
intervals has diameter 1/2kn+1−2. For each positive δ and ε, choose m such that∑

n≥m 1/2n < ε and such that pn < δ for all n ≥ m. Now, Y is a subset of⋃
n≥mBn, and

∑

n≥m

3kn

(
1

2kn+1−2

)δ

<
∑

n≥m

3kn

(
1

2kn+1−2

)pn

<
∑

n≥m

1

2n
< ε.

Thus, the Hausdorff dimension of Y is zero. QED

The following lemma concludes the proof of Theorem 4.

7 Lemma. There exists a γ-set X ⊆ R and a set Y ⊆ R with Hausdorff
dimension zero such that X + Y = R. In particular, dim(X + Y ) = 1.

Proof. Choose a sequence {kn}n∈N and a set Y as in Lemma 6. Then∑
n 2−(kn+1−kn) converges, and the corresponding set A defined in Theorem 5

has measure zero. Thus, there exists a γ-set G such that G⊕A = {0, 1}N. Define
Φ : {0, 1}N → R by

Φ(f) =
∑

i∈N

f(i)

2i+1
.

As Φ is continuous, X = Φ[G] is a γ-set of reals. Assume that z is a member of
the interval [0, 1], let f ∈ {0, 1}N be such that z =

∑
i f(i)/2i+1. Then f = g⊕a

for appropriate g ∈ G and a ∈ A. Define h ∈ {−1, 0, 1}N by h(i) = f(i) −
g(i). For infinitely many n, a � [kn, kn+1) ≡ 0 and therefore f � [kn, kn+1) ≡
g � [kn, kn+1), that is, h � [kn, kn+1) ≡ 0 for infinitely many n. Thus, y =∑

i h(i)/2
i+1 ∈ Y , and for x = Φ(g),

x+ y =
∑

i∈N

g(i)

2i+1
+

∑

i∈N

h(i)

2i+1
=

∑

i∈N

g(i) + h(i)

2i+1
=

∑

i∈N

f(i)

2i+1
= z.

This shows that [0, 1] ⊆ X+Y . Consequently, X+(Y +Q) = (X+Y )+Q = R.
Now, observe that Y + Q has Hausdorff dimension zero since Y has. QED

2 The product of a strong γ-set and a set of Haus-
dorff dimension zero

8 Theorem. Assume that X ⊆ Rk is a strong γ-set. Then for each Y ⊆ Rl,
dim(X × Y ) = dim(Y ).
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Proof. The proof for this is similar to that of Theorem 7 in [7]. It is enough
to show that dim(X × Y ) ≤ dim(Y ).

9 Lemma. Assume that Y ⊆ Rl is such that dim(Y ) < δ. Then for each
positive ε there exists a large cover {In}n∈N of Y (i.e., such that each y ∈ Y is
a member of infinitely many sets In) such that

∑
n diam(In)δ < ε.

Proof. For eachm choose a cover {Im
n }n∈N of Y such that

∑
n diam(Im

n )δ <
ε/2m. Then {Im

n : m,n ∈ N} is a large cover of Y , and
∑

m,n diam(Im
n )δ <∑

n ε/2
m = ε. QED

10 Lemma. Assume that Y ⊆ Rl is such that dim(Y ) < δ. Then for
each sequence {εn}n∈N of positive reals there exists a large cover {An}n∈N of
Y such that for each n An is a union of finitely many sets, In

1 , . . . , I
n
mn

, such
that

∑
j diam(In

j )δ < εn.

Proof. Assume that {εn}n∈N is a sequence of positive reals. By Lemma 9,
there exists a large cover {In}n∈N of Y such that

∑
n diam(In)δ < ε1. For each

n let kn = min{m :
∑

j≥m diam(Ij)
δ < εn}. Take

An =

kn+1−1⋃

j=kn

Ij .

QED

Fix δ > dim(Y ) and ε > 0. Choose a sequence {εn}n∈N of positive reals
such that

∑
n 2nεn < ε, and use Lemma 10 to get the corresponding large cover

{An}n∈N.

For each n we define an n-cover Un of X as follows. Let F be an n-element
subset of X. For each x ∈ F , find an open interval Ix such that x ∈ Ix and

mn∑

j=1

diam(Ix × In
j )δ < 2εn.

Let UF =
⋃

x∈F Ix. Set

Un = {UF : F is an n-element subset of X}.

AsX is a strong γ-set, there exist elements UFn ∈ Un, n ∈ N, such that {UFn}n∈N

is a γ-cover of X. Consequently,

X × Y ⊆
⋃

n∈N

(UFn ×An) ⊆
⋃

n∈N

⋃

x∈Fn

mn⋃

j=1

Ix × In
j
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and
∑

n∈N

∑

x∈Fn

mn∑

j=1

diam(Ix × In
j )δ <

∑

n

n · 2εn < ε.

QED

3 Open problems

There are ways to strengthen the notion of γ-sets other than moving to
strong γ-sets. Let BΩ and BΓ denote the collections of countable Borel ω-covers
and γ-covers of X, respectively. As every open ω-cover of a set of reals contains a
countable ω-subcover [9], we have that Ω ⊆ BΩ and therefore S1(BΩ,BΓ) implies
S1(Ω,Γ). The converse is not true [17].

11 Problem. Assume that X ⊆ R satisfies S1(BΩ,BΓ). Is it true that for
each Y ⊆ R, dim(X × Y ) = dim(Y )?

We conjecture that assuming the Continuum Hypothesis, the answer to this
problem is negative. We therefore introduce the following problem. For infinite
sets of natural numbers A,B, we write A ⊆∗ B if A \ B is finite. Assume that
F is a family of infinite sets of natural numbers. A set P is a pseudointersection
of F if it is infinite, and for each B ∈ F , A ⊆∗ B. F is centered if each
finite subcollection of F has a pseudointersection. Let p denote the minimal
cardinality of a centered family which does not have a pseudointersection. In
[17] it is proved that p is also the minimal cardinality of a set of reals which
does not satisfy S1(BΩ,BΓ).

12 Problem. Assume that the cardinality of X is smaller than p. Is it true
that for each Y ⊆ R, dim(X × Y ) = dim(Y )?

Another interesting open problem involves the following notion [18, 19]. A
cover U of X is a τ -cover of X if it is a large cover, and for each x, y ∈ X, one
of the sets {U ∈ U : x ∈ U and y 6∈ U} or {U ∈ U : y ∈ U and x 6∈ U} is finite.
Let T denote the collection of open τ -covers of X. Then Γ ⊆ T ⊆ Ω, therefore
S1({On}n∈N,Γ) implies S1({On}n∈N,T).

13 Problem. Assume that X ⊆ R satisfies S1({On}n∈N,T). Is it true that
for each Y ⊆ R, dim(X × Y ) = dim(Y )?

It is conjectured that S1({On}n∈N,T) is strictly stronger than S1(Ω,T) [20].
If this conjecture is false, then the results in this paper imply a negative answer
to Problem 13.

Another type of problems is the following: We have seen that the assumption
that X is a γ-set and Y has Hausdorff dimension zero is not enough in order to
prove that X×Y has Hausdorff dimension zero. We also saw that if X satisfies a
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stronger property (strong γ-set), then dim(X×Y ) = dim(Y ) for all Y . Another
approach to get a positive answer would be to strengthen the assumption on Y
rather than X.

If we assume that Y has strong measure zero, then a positive answer follows
from a result of Scheepers [16] (see also [21]), asserting that if X is a strong
measure zero metric space which also has the Hurewicz property, then for each
strong measure zero metric space Y , X × Y has strong measure zero. Indeed, if
X is a γ-set then it has the required properties.

Finally, the following question of Krawczyk remains open.

14 Problem. Is it consistent (relative to ZFC) that there are uncountable
γ-sets but for each γ-set X and each set Y , dim(X × Y ) = dim(Y )?
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