Selection principles and countable dimension

Liljana Babinkostova
Department of Mathematics, Boise State University, Boise, ID 83725 USA
liljanab@math.boisestate.edu
Marion Scheepers
Department of Mathematics, Boise State University, Boise, Idaho 83725 USA
marion@math.boisestate.edu

Received: 22/10/2006; accepted: 26/10/2006.
Abstract. We consider player TWO of the game $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$ when \mathcal{A} and \mathcal{B} are special classes of open covers of metrizable spaces. Our results give game-theoretic characterizations of the notions of a countable dimensional and of a strongly countable dimensional metric spaces.

Keywords: countable dimensional, strongly countable dimensional, selection principle, infinite game

MSC 2000 classification: primary 54D20, 54F45, 91A44, secondary 03E10
The selection principle $\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$ states: There is for each sequence $\left(A_{n}: n \in\right.$ $\mathbb{N})$ of elements of \mathcal{A} a corresponding sequence $\left(b_{n}: n \in \mathbb{N}\right)$ such that for each n we have $b_{n} \in A_{n}$, and $\left\{b_{n}: n \in \mathbb{N}\right\}$ is an element of \mathcal{B}. There are many examples of this selection principle in the literature. One of the earliest examples of it is known as the Rothberger property, $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$. Here, \mathcal{O} is the collection of all open covers of a topological space.

The following game, $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$, is naturally associated with $\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$: Players ONE and TWO play an inning per positive integer. In the n-th inning ONE first chooses an element O_{n} of \mathcal{A}; TWO responds by choosing an element $T_{n} \in O_{n}$. A play

$$
O_{1}, T_{1}, O_{2}, T_{2}, \ldots, O_{n}, T_{n}, \ldots
$$

is won by TWO if $\left\{T_{n}: n \in \mathbb{N}\right\}$ is in \mathcal{B}, else ONE wins.

TWO has a winning strategy in $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$
\Downarrow
ONE has no winning strategy in $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$

$$
\stackrel{\Downarrow}{\mathrm{S}_{1}(\mathcal{A}, \mathcal{B}) .}
$$

There are many known examples of \mathcal{A} and \mathcal{B} where neither of these implications reverse.

Several classes of open covers of spaces have been defined by the following schema: For a space X, and a collection \mathcal{T} of subsets of X, an open cover \mathcal{U} of X is said to be a \mathcal{T}-cover if X is not a member of \mathcal{U}, but there is for each $T \in \mathcal{T}$ a $U \in \mathcal{U}$ with $T \subseteq U$. The symbol $\mathcal{O}(\mathcal{T})$ denotes the collection of \mathcal{T}-covers of X. In this paper we consider only \mathcal{A} which are of the form $\mathcal{O}(\mathcal{T})$ and $\mathcal{B}=\mathcal{O}$. Several examples of open covers of the form $\mathcal{O}(\mathcal{T})$ appear in the literature. To mention just a few: When \mathcal{T} is the family of one-element subsets of $X, \mathcal{O}(\mathcal{T})=\mathcal{O}$. When \mathcal{T} is the family of finite subsets of X, then members of $\mathcal{O}(\mathcal{T})$ are called ω-covers in [3]. The symbol Ω denotes the family of ω-covers of X. When \mathcal{T} is the collection of compact subsets of X, then members of $\mathcal{O}(\mathcal{T})$ are called k-covers in [5]. In [5] the collection of k-covers is denoted \mathcal{K}.

Though some of our results hold for more general spaces, in this paper "topological space" means separable metric space, and "dimension" means Lebesgue covering dimension. We consider only infinite-dimensional separable metric spaces. By classical results of Hurewicz and Tumarkin these are separable metric spaces which cannot be represented as the union of finitely many zerodimensional subspaces.

1 Properties of strategies of player TWO

1 Lemma. Let F be a strategy of TWO in the game $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{B})$. Then there is for each finite sequence $\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}\right)$ of elements of $\mathcal{O}(\mathcal{T})$, an element $C \in \mathcal{T}$ such that for each open set $U \supseteq C$ there is a $\mathcal{U} \in \mathcal{O}(\mathcal{T})$ such that $U=F\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}, \mathcal{U}\right)$.

Proof. For suppose on the contrary this is false. Fix a finite sequence $\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}\right)$ witnessing this, and choose for each set $C \subset X$ which is in \mathcal{T} an open set $U_{C} \supseteq C$ witnessing the failure of Claim 1. Then $\mathcal{U}=\left\{U_{C}: C \subset\right.$ X and $C \in \mathcal{T}\}$ is a member of $\mathcal{O}(\mathcal{T})$, and as $F\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}, \mathcal{U}\right)=U_{C}$ for some $C \in \mathcal{T}$, this contradicts the selection of U_{C}.

When \mathcal{T} has additional properties, Lemma 1 can be extended to reflect that. For example: The family \mathcal{T} is up-directed if there is for each A and B in \mathcal{T}, a C in \mathcal{T} with $A \cup B \subseteq C$.

2 Lemma. Let \mathcal{T} be an up-directed family. Let F be a strategy of TWO in the game $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{B})$. Then there is for each $D \in \mathcal{T}$ and each finite sequence $\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}\right)$ of elements of $\mathcal{O}(\mathcal{T})$, an element $C \in \mathcal{T}$ such that $D \subseteq C$ and for each open set $U \supseteq C$ there is a $\mathcal{U} \in \mathcal{O}(\mathcal{T})$ such that $U=F\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}, \mathcal{U}\right)$.

Proof. For suppose on the contrary this is false. Fix a finite sequence $\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}\right)$ and a set $D \in \mathcal{T}$ witnessing this, and choose for each set $C \subset X$ which is in \mathcal{T} and with $D \subset C$ an open set $U_{C} \supseteq C$ witnessing the failure of Claim 1. Then, as \mathcal{T} is up-directed, $\mathcal{U}=\left\{U_{C}: D \subset C \subset X\right.$ and $\left.C \in \mathcal{T}\right\}$ is a member of $\mathcal{O}(\mathcal{T})$, and as $F\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}, \mathcal{U}\right)=U_{C}$ for some $C \in \mathcal{T}$, this contradicts the selection of U_{C}.

We shall say that X is \mathcal{T}-first countable if there is for each $T \in \mathcal{T}$ a sequence $\left(U_{n}: n=1,2, \ldots\right)$ of open sets such that for all $n, T \subset U_{n+1} \subset U_{n}$, and for each open set $U \supset T$ there is an n with $U_{n} \subset U$. Let $\langle\mathcal{T}\rangle$ denote the subspaces which are unions of countably many elements of \mathcal{T}.

3 Theorem. If F is any strategy for $T W O$ in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ and if X is \mathcal{T}-first countable, then there is a set $S \in\langle\mathcal{T}\rangle$ such that: For any closed set $C \subset X \backslash S$, there is an F-play $O_{1}, T_{1}, \ldots, O_{n}, T_{n} \ldots$ such that $\bigcup_{n=1}^{\infty} T_{n} \subseteq X \backslash C$.

More can be proved for up-directed \mathcal{T} :
4 Theorem. Let \mathcal{T} be up-directed. If F is any strategy for $T W O$ in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ and if X is \mathcal{T}-first countable, then there is for each set $T \in\langle\mathcal{T}\rangle$ a set $S \in\langle\mathcal{T}\rangle$ such that: $T \subseteq S$ and for any closed set $C \subset X \backslash S$, there is an F-play

$$
O_{1}, T_{1}, \ldots, O_{n}, T_{n} \ldots
$$

such that $T \subseteq \bigcup_{n=1}^{\infty} T_{n} \subseteq X \backslash C$.
Proof. Let F be a strategy of TWO. Let T be a given element of $\langle\mathcal{T}\rangle$, and write $T=\bigcup_{n=1}^{\infty} T_{n}$, where each T_{n} is an element of \mathcal{T}.

Starting with T_{1} and the empty sequence of elements of $\mathcal{O}(\mathcal{T})$, apply Lemma 2 to choose an element S_{\emptyset} of \mathcal{T} such that $T_{1} \subset S_{\emptyset}$, and for each open set $U \supseteq S_{\emptyset}$ there is an element $\mathcal{U} \in \mathcal{O}(\mathcal{T})$ with $U=F(\mathcal{U})$. Since X is \mathcal{T}-first countable, choose for each n an open set U_{n} such that $U_{n} \supset U_{n+1}$, and for each open set U with $S_{\emptyset} \subset U$ there is an n with $U_{n} \subset U$. Using Lemma 2 , choose for each n an element \mathcal{U}_{n} of $\mathcal{O}(\mathcal{T})$ such that $U_{n}=F\left(\mathcal{U}_{n}\right)$.

Now consider T_{2}, and for each n the one-term sequence $\left(\mathcal{U}_{n}\right)$ of elements of $\mathcal{O}(\mathcal{T})$. Since \mathcal{T} is up-directed, choose an element T of \mathcal{T} with $S_{\emptyset} \cup T_{2} \subset T$. Applying Lemma 2 to T and $\left(\mathcal{U}_{n}\right)$ choose an element $S_{(n)} \in \mathcal{T}$ such that for each open set $U \supseteq S_{(n)}$ there is a $\mathcal{U} \in \mathcal{O}(\mathcal{T})$ with $U=F\left(\mathcal{U}_{n}, \mathcal{U}\right)$. Since X is \mathcal{T}-first countable, choose for each k an open set $U_{(n, k)} \supseteq S_{(n)}$ such that $U_{(n, k)} \supseteq U_{(n, k+1)} \supseteq S_{(n)}$, and for each open set $U \supset S_{(n)}$ there is a k with $U \supset U_{(n, k)}$. Then choose for each n and k an element $\mathcal{U}_{(n, k)}$ of $\mathcal{O}(\mathcal{T})$ such that $U_{(n, k)}=F\left(\mathcal{U}_{(n)}, \mathcal{U}_{(n, k)}\right)$.

In general, fix k and suppose we have chosen for each finite sequence $\left(n_{1}, \ldots\right.$, n_{k}) of positive integers, sets $S_{\left(n_{1}, \ldots, n_{k}\right)} \in \mathcal{T}$, open sets $U_{\left(n_{1}, \ldots, n_{k}, n\right)}$ and elements $\mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n\right)}$ of $\mathcal{O}(\mathcal{T}), n<\infty$, such that:
(1) $T_{1} \cup \cdots \cup T_{k} \subset S_{\left(n_{1}, \ldots, n_{k}\right)}$;
(2) $\left\{U_{\left(n_{1}, \ldots, n_{k}, n\right)}: n<\infty\right\}$ witnesses the \mathcal{T}-first countability of X at $S_{\left(n_{1}, \ldots, n_{k}\right)}$;
(3) $U_{\left(n_{1}, \ldots, n_{k}, n\right)}=F\left(\mathcal{U}_{\left(n_{1}\right)}, \ldots, \mathcal{U}_{\left(n_{1}, \ldots, n_{k}\right)}, \mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n\right)}\right)$;

Now consider a fixed sequence of length k, say $\left(n_{1}, \ldots, n_{k}\right)$. Since \mathcal{T} is updirected choose an element T of \mathcal{T} such that $T_{k+1} \cup S_{\left(n_{1}, \ldots, n_{k}\right)} \subset T$. For each n apply Lemma 2 to T and the finite sequence $\left(\mathcal{U}_{\left(n_{1}\right)}, \ldots, \mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n\right)}\right)$: Choose a set $S_{\left(n_{1}, \ldots, n_{k}, n\right)} \in \mathcal{T}$ such that $T \subseteq S_{\left(n_{1}, \ldots, n_{k}, n\right)}$ and for each open set $U \supseteq$ $S_{\left(n_{1}, \ldots, n_{k}, n\right)}$ there is a $\mathcal{U} \in \mathcal{O}(\mathcal{T})$ such that $U \xlongequal{=} F\left(\mathcal{U}_{\left(n_{1}\right)}, \ldots, \mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n\right)}, \mathcal{U}\right)$. Since X is \mathcal{T}-first countable, choose for each j an open set $U_{\left(n_{1}, \ldots, n_{k}, n, j\right)}$ such that $U_{\left(n_{1}, \ldots, n_{k}, j+1\right)} \subset U_{\left(n_{1}, \ldots, n_{k}, n, j\right)}$, and for each open set $U \supset S_{\left(n_{1}, \ldots, n_{k}, n\right)}$ there is a j with $U \supseteq U_{\left(n_{1}, \ldots, n_{k}, j\right)}$. Then choose for each j an $\mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n, j\right)} \in \mathcal{O}(\mathcal{T})$ such that $U_{\left(n_{1}, \ldots, n_{k}, n, j\right)}=F\left(\mathcal{U}_{\left(n_{1}\right)}, \ldots, \mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n\right)}, \mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n, j\right)}\right)$.

This shows how to continue for all k the recursive definition of the items $S_{\left(n_{1}, \ldots, n_{k}\right)} \in \mathcal{T}$, open sets $U_{\left(n_{1}, \ldots, n_{k}, n\right)}$ and elements $\mathcal{U}_{\left(n_{1}, \ldots, n_{k}, n\right)}$ of $\mathcal{O}(\mathcal{T}), n<\infty$ as above.

Finally, put $S=\cup_{\tau \in<\omega \mathbb{N}} S_{\tau}$. It is clear that $S \in\langle\mathcal{T}\rangle$, and that $T \subset S$. Consider a closed set $C \subset X \backslash S$. Since $C \cap S_{\emptyset}=\emptyset$, choose an n_{1} so that $U_{\left(n_{1}\right)} \cap C=\emptyset$. Then since $C \cap S_{\left(n_{1}\right)}=\emptyset$, choose an n_{2} such that $U_{\left(n_{1}, n_{2}\right)} \cap C=\emptyset$. Since $C \cap S_{\left(n_{1}, n_{2}\right)}=\emptyset$ choose an n_{3} so that $U_{\left(n_{1}, n_{2}, n_{3}\right)} \cap C=\emptyset$, and so on. In this way we find an F-play

$$
\mathcal{U}_{\left(n_{1}\right)}, U_{\left(n_{1}\right)}, \mathcal{U}_{\left(n_{1}, n_{2}\right)}, U_{\left(n_{1}, n_{2}\right)}, \ldots
$$

such that $T \subset \bigcup_{k=1}^{\infty} U_{\left(n_{1}, \ldots, n_{k}\right)} \subset X \backslash C$.
QED
When \mathcal{T} is a collection of compact sets in a metrizable space X then X is \mathcal{T}-first countable. Call a subset \mathcal{C} of \mathcal{T} cofinal if there is for each $T \in \mathcal{T}$ a $C \in \mathcal{C}$ with $T \subseteq C$. As an examination of the proof of Theorem 4 reveals, we do not need full \mathcal{T}-first countability of X, but only that X is \mathcal{C}-first countable for some cofinal set $\mathcal{C} \subseteq \mathcal{T}$. Thus, we in fact have:

5 Theorem. Let \mathcal{T} be up-directed. If F is any strategy for TWO in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ and if X is \mathcal{C}-first countable where $\mathcal{C} \subset \mathcal{T}$ is cofinal in \mathcal{T}, then there is for each set $T \in\langle\mathcal{T}\rangle$ a set $S \in\langle\mathcal{C}\rangle$ such that: $T \subseteq S$ and for any closed set $C \subset X \backslash S$, there is an F-play

$$
O_{1}, T_{1}, \ldots, O_{n}, T_{n} \ldots
$$

such that $T \subseteq \bigcup_{n=1}^{\infty} T_{n} \subseteq X \backslash C$.

2 When player TWO has a winning strategy

Recall that a subset of a topological space is a $\mathrm{G}_{\boldsymbol{\delta}}$-set if it is an intersection of countably many open sets.

6 Theorem. If the family \mathcal{T} has a cofinal subset consisting of G_{δ} subsets of X, then TWO has a winning strategy in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ if, and only if, the space is a union of countably many members of \mathcal{T}.

Proof. $2 \Rightarrow 1$ is easy to prove. We prove $1 \Rightarrow 2$. Let F be a winning strategy for TWO. Let $\mathcal{C} \subseteq \mathcal{T}$ be a cofinal set consisting of $\mathrm{G}_{\boldsymbol{\delta}}$-sets.
By Lemma 1 choose $C_{\emptyset} \in \mathcal{T}$ associated to the empty sequence. Since \mathcal{C} is cofinal in \mathcal{T}, choose for C_{\emptyset} a G_{δ} set G_{\emptyset} in \mathcal{C} with $C_{\emptyset} \subseteq G_{\emptyset}$. Choose open sets ($U_{n}: n \in \mathbb{N}$) such that for each n we have $G_{\emptyset} \subset U_{n+1} \subset U_{n}$, and $G_{\emptyset}=\cap_{n \in \mathbb{N}} U_{n}$.

For each n choose by Lemma 1 a cover $\mathcal{U}_{n} \in \mathcal{O}(\mathcal{T})$ with $U_{n}=F\left(\mathcal{U}_{n}\right)$. Choose for each n a $C_{n} \in \mathcal{T}$ associated to $\left(\mathcal{U}_{n}\right)$ by Lemma 1. For each n also choose a $\mathrm{G}_{\delta^{-}}$ set $G_{n} \in \mathcal{C}$ with $C_{n} \subseteq G_{n}$. For each n_{1} choose a sequence ($U_{n_{1} n}: n \in \mathbb{N}$) of open sets such that $G_{n_{1}}=\cap_{n \in \mathbb{N}} U_{n_{1} n}$ and for each $n, U_{n_{1} n+1} \subset U_{n_{1} n}$. For each $n_{1} n_{2}$ choose by Lemma 1 a cover $\mathcal{U}_{n_{1} n_{2}} \in \mathcal{O}(\mathcal{T})$ such that $U_{n_{1} n_{2}}=F\left(\mathcal{U}_{n_{1}}, \mathcal{U}_{n_{1} n_{2}}\right)$. Choose by Lemma 1 a $C_{n_{1} n_{2}} \in \mathcal{T}$ associated to $\left(\mathcal{U}_{n_{1}}, \mathcal{U}_{n_{1} n_{2}}\right)$, and then choose a G_{δ}-set $G_{n_{1} n_{2}} \in \mathcal{C}$ with $C_{n_{1} n_{2}} \subset G_{n_{1} n_{2}}$, and so on.

Thus we get for each finite sequence ($n_{1} n_{2} \cdots n_{k}$) of positive integers
(1) a set $C_{n_{1} \cdots n_{k}} \in \mathcal{T}$,
(2) a G_{δ}-set $G_{n_{1} \cdots n_{k}} \in \mathcal{T}$ with $C_{n_{1} \cdots n_{k}} \subseteq G_{n_{1} \cdots n_{k}}$,
(3) a sequence ($U_{n_{1} \cdots n_{k} n}: n \in \mathbb{N}$) of open sets with $G_{n_{1} \cdots n_{k}}=\cap_{n \in \mathbb{N}} U_{n_{1} \cdots n_{k} n}$ and for each $n U_{n_{1} \cdots n_{k} n+1} \subseteq U_{n_{1} \cdots n_{k} n}$, and
(4) a $\mathcal{U}_{n_{1} \cdots n_{k}} \in \mathcal{O}_{(\mathcal{T})}$ such that for all n

$$
U_{n_{1} \cdots n_{k} n}=F\left(\mathcal{U}_{n_{1}}, \ldots, \mathcal{U}_{n_{1} \cdots n_{k} n}\right) .
$$

Now X is the union of the countably many sets $G_{\tau} \in \mathcal{T}$ where τ ranges over ${ }^{<\omega} \mathbb{N}$. For if not, choose $x \in X$ which is not in any of these sets. Since x is not in G_{\emptyset}, choose $U_{n_{1}}$ with $x \notin U_{n_{1}}$. Now x is not in $G_{n_{1}}$, so choose $U_{n_{1} n_{2}}$ with $x \notin U_{n_{1} n_{2}}$, and so on. In this way we obtain the F-play

$$
\mathcal{U}_{n_{1}}, U_{n_{1}}, \mathcal{U}_{n_{1} n_{2}}, U_{n_{1} n_{2}}, \ldots
$$

lost by TWO, contradicting that F is a winning strategy for TWO. QED
Examples of up-directed families \mathcal{T} include:

- $[X]^{<\aleph_{0}}$, the collection of finite subsets of X;
- \mathcal{K}, the collection of compact subsets of X;
- KFD, the collection of compact, finite dimensional subsets of X.
- CFD, the collection of closed, finite dimensional subsets of X.
- FD, the collection of finite dimensional subsets of X.

A subset of a topological space is said to be countable dimensional if it is a union of countably many zero-dimensional subsets of the space. A subset of a space is strongly countable dimensional if it is a union of countably many closed, finite dimensional subsets. Let X be a space which is not finite dimensional. Let $\mathcal{O}_{\text {cfd }}$ denote $\mathcal{O}($ CFD $)$, the collection of CFD-covers of X. And let $\mathcal{O}_{\mathrm{fd}}$ denote $\mathcal{O}($ FD $)$, the collection of FD-covers of X.

7 Corollary. For a metrizable space X the following are equivalent:
(1) X is strongly countable dimensional.
(2) TWO has a winning strategy in $\mathrm{G}_{1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)$.

Proof. $1 \Rightarrow 2$ is easy to prove. To see $2 \Rightarrow 1$, observe that in a metric space each closed set is a $\mathrm{G}_{\boldsymbol{\delta}}$-set. Thus, $\mathcal{T}=$ CFD meets the requirements of Theorem 6.

QED
For the next application we use the following classical theorem of Tumarkin:
8 Theorem (Tumarkin). In a separable metric space each n-dimensional set is contained in an n-dimensional G_{δ}-set.

9 Corollary. For a separable metrizable space X the following are equivalent:
(1) X is countable dimensional.
(2) TWO has a winning strategy in $\mathrm{G}_{1}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right)$.

Proof. $1 \Rightarrow 2$ is easy to prove. We now prove $2 \Rightarrow 1$. By Tumarkin's Theorem, $\mathcal{T}=$ FD has a cofinal subset consisting of G_{δ}-sets. Thus the requirements of Theorem 6 are met.

QED
Recall that a topological space is perfect if every closed set is a G_{δ}-set.
10 Corollary. In a perfect space the following are equivalent:
(1) TWO has a winning strategy in $\mathrm{G}_{1}(\mathcal{K}, \mathcal{O})$.
(2) The space is σ-compact.

Proof. In a perfect space the collection of closed sets are $\mathrm{G}_{\boldsymbol{\delta}}$-sets. Apply Theorem 6.

And when \mathcal{T} is up-directed, Theorem 6 can be further extended to:
11 Theorem. If \mathcal{T} is up-directed and has a cofinal subset consisting of G_{δ}-subsets of X, the following are equivalent:
(1) TWO has a winning strategy in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \Gamma)$.
(2) TWO has a winning strategy in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \Omega)$.
(3) TWO has a winning strategy in $\mathrm{G}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})$.

Proof. We must show that $3 \Rightarrow 1$. Since X is a union of countably many sets in \mathcal{T}, and since \mathcal{T} is up-directed, we may represent X as $\bigcup_{n=1}^{\infty} X_{n}$ where for each n we have $X_{n} \subset X_{n+1}$ and $X_{n} \in \mathcal{T}$. Now, when ONE presents TWO with $O_{n} \in \mathcal{O}(\mathcal{T})$ in inning n, then TWO chooses $T_{n} \in O_{n}$ with $X_{n} \subset T_{n}$. The sequence of T_{n} 's chosen by TWO in this way results in a γ-cover of X. QED

3 Longer games and player TWO

Fix an ordinal α. Then the game $\mathrm{G}_{1}^{\alpha}(\mathcal{A}, \mathcal{B})$ has α innings and is played as follows. In inning β ONE first chooses an $O_{\beta} \in \mathcal{A}$, and then TWO responds with a $T_{\beta} \in O_{\beta}$. A play

$$
O_{0}, T_{0}, \ldots, O_{\beta}, T_{\beta}, \ldots, \beta<\alpha
$$

is won by TWO if $\left\{T_{\beta}: \beta<\alpha\right\}$ is in \mathcal{B}; else, ONE wins.
In this notation the game $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$ is $\mathrm{G}_{1}^{\omega}(\mathcal{A}, \mathcal{B})$. For a space X and a family \mathcal{T} of subsets of X with $\cup \mathcal{T}=X$, define:

$$
\operatorname{cov}_{X}(\mathcal{T})=\min \{|\mathcal{S}|: \mathcal{S} \subseteq \mathcal{T} \text { and } X=\cup \mathcal{S}\}
$$

When $X=\cup \mathcal{T}$, there is an ordinal $\alpha \leq \operatorname{cov}_{X}(\mathcal{T})$ such that TWO has a winning strategy in $\mathrm{G}_{1}^{\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$. In general, there is an ordinal $\alpha \leq|X|$ such that TWO has a winning strategy in $\mathrm{G}_{1}^{\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$.
$\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(X)=\min \left\{\alpha:\right.$ TWO has a winning strategy in $\left.\mathrm{G}_{1}^{\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})\right\}$.

3.1 General properties

The proofs of the general facts in the following lemma are left to the reader.
12 Lemma.
(1) If Y is a closed subset of X then $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(Y) \leq \operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(X)$.
(2) If α is a limit ordinal and if $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}\left(X_{n}\right) \leq \alpha$ for each n, then $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}\left(\bigcup_{n<\infty} X_{n}\right) \leq \alpha$.

We shall now give examples of ordinals α for which TWO has winning strategies in games of length α. First we have the following general lemma.

13 Lemma. Let X be \mathcal{T}-first countable. Assume that:
(1) \mathcal{T} is up-directed;
(2) $X \notin\langle\mathcal{T}\rangle$;
(3) α is the least ordinal such that there is an element B of $\langle\mathcal{T}\rangle$ such that for any closed set $C \subset X \backslash B$ with $C \notin \mathcal{T}, \operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(C) \leq \alpha$.

Then $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(X)=\omega+\alpha$.
Proof. We must show that TWO has a winning strategy for $\mathrm{G}_{1}^{\omega+\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ and that there is no $\beta<\omega+\alpha$ for which TWO has a winning strategy in $\mathrm{G}_{1}^{\beta}(\mathcal{O}(\mathcal{T}), \mathcal{O})$.

To see that TWO has a winning strategy in $\mathrm{G}_{1}^{\omega+\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$, fix a B as in the hypothesis, and for each closed set F disjoint from B, fix a winning strategy τ_{F} for TWO in the game $\mathrm{G}_{1}^{\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ played on F. Now define a strategy σ for TWO in $\mathrm{G}_{1}^{\omega+\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ on X as follows: During the first ω innings, TWO covers B. Let T_{1}, T_{2}, \ldots be TWO's moves during these ω innings, and put $C=X \backslash \bigcup_{n=1}^{\infty} T_{n}$. Then C is a closed subset of X, disjoint from B. Now TWO follows the strategy τ_{C} in the remaining α innings, to also cover C.

To see that there is no $\beta<\omega+\alpha$ for which TWO has a winning strategy in $\mathrm{G}_{1}^{\beta}(\mathcal{O}(\mathcal{T}), \mathcal{O})$, argue as follows: Suppose on the contrary that $\beta<\omega+\alpha$ is such that TWO has a winning strategy σ for $\mathrm{G}_{1}^{\beta}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ on X. We will show that there is a set $S \in\langle\mathcal{T}\rangle$ and an ordinal $\gamma<\alpha$ such that for each closed set C disjoint from S, TWO has a winning strategy in $\mathrm{G}_{1}^{\gamma}(\mathcal{O}(\mathcal{T}), \mathcal{O})$ on C. This gives a contradiction to the minimality of α in hypothesis 3 .

We consider cases: First, it is clear that $\alpha \leq \beta$, for otherwise TWO may merely follow the winning strategy on X and relativize to any closed set C to win on C in $\beta<\alpha$ innings, a contradiction. Thus, $\omega+\alpha>\alpha$. Then we have $\alpha<\omega^{2}$, say $\alpha=\omega \cdot n+k$. Since then $\omega+\alpha=\omega \cdot(n+1)+k$, we have that β with $\alpha \leq \beta<\omega+\alpha$ has the form $\beta=\omega \cdot n+\ell$ with $\ell \geq k$. The other possibility, $\beta=\omega \cdot(n+1)+j$ for some $j<k$, does not occur because it would give $\alpha+\omega>\beta=\omega \cdot n+(\omega+j)=(\omega \cdot n+k)+(\omega+j)=\alpha+\omega+j$.

Let F be a winning strategy for TWO in $\mathrm{G}_{1}^{\beta}(\mathcal{O}(\mathcal{T}), \mathcal{O})$. By the second hypothesis and Theorem 6 we have $\beta>\omega$. By Theorem 4 fix an element
$S \in\langle T\rangle$ such that $B \subset S$, and for any closed set $C \subset X \backslash S$, there is an F-play $\left(O_{1}, T_{1}, \ldots, O_{n}, T_{n}, \ldots\right)$ with $S \subset\left(\bigcup_{n=1}^{\infty} T_{n}\right)$, and $C \cap\left(\bigcup_{n=1}^{\infty} T_{n}\right)=\emptyset$. Choose a closed set $C \subset X \backslash S$ with $C \notin \mathcal{T}$. This is possible by the second hypothesis. Choose an F-play $\left(O_{1}, T_{1}, \ldots, O_{n}, T_{n}, \ldots\right)$ with $S \subset\left(\bigcup_{n=1}^{\infty} T_{n}\right)$, and $C \cap\left(\bigcup_{n=1}^{\infty} T_{n}\right)=\emptyset$. This F-play contains the first ω moves of a play according to the winning strategy F for TWO in $\mathrm{G}_{1}^{\beta}(\mathcal{O}(\mathcal{T}), \mathcal{O})$, and using it as strategy to play this game on C, we see that it requires (an additional) $\gamma=\omega \cdot(n-1)+\ell<\alpha$ innings for TWO to win on C. Here, ℓ is fixed and the same for all such C. Thus: $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(C) \leq \gamma<\alpha$. This is in contradiction to the minimality of α. QED

3.2 Examples

For each n put $\mathbb{R}_{n}=\left\{x \in \mathbb{R}^{\mathbb{N}}:(\forall m>n)(x(m)=0)\right\}$. Then \mathbb{R}_{n} is homeomorphic to \mathbb{R}^{n} and thus is σ-compact, and n-dimensional. Thus $\mathbb{R}_{\infty}=$ $\bigcup_{n=1}^{\infty} \mathbb{R}_{n}$ is a σ-compact strongly countable dimensional subset of $\mathbb{R}^{\mathbb{N}}$.

We shall now use the Continuum Hypothesis to construct for various infinite countable ordinals α subsets of $\mathbb{R}^{\mathbb{N}}$ in which TWO has a winning strategy in $\mathrm{G}_{1}^{\alpha}(\mathcal{O}(\mathcal{T}), \mathcal{O})$. The following is one of our main tools for these constructions:

14 Lemma. If G is any G_{δ}-subset of $\mathbb{R}^{\mathbb{N}}$ with $\mathbb{R}_{\infty} \subset G$, then $G \backslash \mathbb{R}_{\infty}$ contains a compact nowhere dense subset C which is homeomorphic to $[0,1]^{\mathbb{N}}$.

We call $[0,1]^{\mathbb{N}}$ the Hilbert cube. From now on assume the Continuum Hypothesis. Let $\left(F_{\alpha}: \alpha<\omega_{1}\right)$ enumerate all the finite dimensional G_{δ}-subsets of $\mathbb{R}^{\mathbb{N}}$, and let $\left(C_{\alpha}: \alpha<\omega_{1}\right)$ enumerate the G_{δ}-subsets which contain \mathbb{R}_{∞}. Recursively choose compact sets $D_{\alpha} \subset \mathbb{R}^{\mathbb{N}}$, each homeomorphic to the Hilbert cube and nowhere dense, such that $D_{0} \subset C_{0} \backslash\left(\mathbb{R}_{\infty} \cup F_{0}\right)$, and for all $\alpha>0$,

$$
D_{\alpha} \subset\left(\cap_{\beta \leq \alpha} C_{\beta}\right) \backslash\left(\mathbb{R}_{\infty} \cup\left(\bigcup\left\{D_{\beta}: \beta<\alpha\right\}\right) \cup\left(\bigcup_{\beta \leq \alpha} F_{\beta}\right)\right)
$$

Version 1: For each α, choose a point $x_{\alpha} \in D_{\alpha}$ and put

$$
B:=\mathbb{R}_{\infty} \cup\left\{x_{\alpha}: \alpha<\omega_{1}\right\} .
$$

Version 2: For each α, choose a strongly countable dimensional set $S_{\alpha} \subset D_{\alpha}$ and put

$$
B:=\mathbb{R}_{\infty} \cup\left(\bigcup\left\{S_{\alpha}: \alpha<\omega_{1}\right\}\right) .
$$

Version 3: For each α, choose a countable dimensional set $S_{\alpha} \subset D_{\alpha}$ and put

$$
B:=\mathbb{R}_{\infty} \cup\left(\bigcup\left\{S_{\alpha}: \alpha<\omega_{1}\right\}\right) .
$$

In all three versions, B is not countable dimensional: Otherwise it would be, by Tumarkin's Theorem, for some $\alpha<\omega_{1}$ a subset of $\bigcup_{\beta<\alpha} F_{\beta}$. Thus TWO has no winning strategy in the games $\mathrm{G}_{1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)$ and $\mathrm{G}_{1}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right)$. Also, in all three versions the elements of the family \mathcal{C} of finite unions of the sets S_{α} are G_{δ}-sets in X, and in fact X is \mathcal{C}-first-countable. This is because the D_{α} 's are compact and disjoint, and $\mathbb{R}^{\mathbb{N}}$ is \mathcal{D}-first countable, where \mathcal{D} is the family of finite unions of the D_{α} 's, and this relativizes to X.
For Version 1 TWO has a winning strategy in $\mathrm{G}_{1}^{\omega+1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)$ and in $\mathrm{G}_{1}^{\omega+1}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right)$, and in $\mathrm{G}_{1}^{\omega+\omega}(\mathcal{K}, \mathcal{O})$. For Version 2 TWO has a winning strategy in $\mathrm{G}_{1}^{\omega+\omega}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)$, and for Version 3 TWO has a winning strategy in $\mathrm{G}_{1}^{\omega+\omega}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right)$.
To see this, note that in the first ω innings, TWO covers \mathbb{R}_{∞}. Let
$\left\{U_{n}: n \in \mathbb{N}\right\}$ be TWO's responses in these innings. Then $G=\bigcup_{n=1}^{\infty} U_{n}$ is an open set containing \mathbb{R}_{∞}, and so there is an $\alpha<\omega_{1}$ such that:

Version 1: $B \backslash G \subseteq\left\{x_{\beta}: \beta<\alpha\right\}$ is a closed, countable subset of X and thus closed, zero-dimensional. In inning $\omega+1$ TWO chooses from ONE's cover an element containing the set $B \backslash G$.

Version 2: $B \backslash G \subseteq \bigcup_{\beta<\alpha} S_{\beta}$. But $\bigcup_{\beta<\alpha} S_{\alpha}$ is strongly countable dimensional, and so TWO can cover this part of B in the remaining ω innings. By
Lemma 13 TWO does not have a winning strategy in fewer then $\omega+\omega$ innings.
Version 3: $B \backslash G \subseteq \bigcup_{\beta<\alpha} S_{\beta}$. But $\bigcup_{\beta<\alpha} S_{\alpha}$ is strongly countable dimensional, and so TWO can cover this part of B in the remaining ω innings. By Lemma 13 TWO does not have a winning strategy in fewer then $\omega+\omega$ innings. With these examples established, we can now upgrade the construction as follows: Let α be a countable ordinal for which we have constructed an example of a subspace S of $\mathbb{R}^{\mathbb{N}}$ for which $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(S)=\alpha$. Then choose inside each D_{β} a set C_{β} for which $\operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}\left(C_{\beta}\right)=\alpha$. Then the resulting subset B constructed above has, by Lemma $13, \operatorname{tp}_{\mathrm{S}_{1}(\mathcal{O}(\mathcal{T}), \mathcal{O})}(B)=\omega+\alpha$. In this way we obtain examples for each of the lengths $\omega \cdot n$ and $\omega \cdot n+1$, for all finite n.
By taking topological sums and using part 2 of Lemma 12 we get examples for ω^{2}.

4 Conclusion

One obvious question is whether there is, under the Continuum Hypothesis, for each limit ordinal α subsets X_{α} and Y_{α} of $\mathbb{R}^{\mathbb{N}}$ such that
$\operatorname{tp}_{\mathrm{s}_{1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)}\left(X_{\alpha}\right)=\alpha$, and $\operatorname{tp}_{\mathrm{S}_{1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)}\left(Y_{\alpha}\right)=\alpha+1$. And the same question can be asked for $\operatorname{tp}_{\mathrm{S}_{1}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right)}$.

In [1] countable dimensionality of metrizable spaces were characterized in terms of the selective screenability game. A natural question is how $\mathrm{S}_{1}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right)$ and $\mathrm{S}_{1}\left(\mathcal{O}_{\text {cfd }}, \mathcal{O}\right)$ are related to selective screenability. It is clear that $\mathrm{S}_{1}\left(\mathcal{O}_{\mathrm{fd}}, \mathcal{O}\right) \Rightarrow \mathrm{S}_{1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)$. The relationship among these two classes and selective screenability is further investigated in [2] where it is shown, for example, that $\mathrm{S}_{1}\left(\mathcal{O}_{\mathrm{cfd}}, \mathcal{O}\right)$ implies selective screenability, but the converse does not hold. Thus, these two classes are new classes of weakly infinite dimensional spaces.

References

[1] L. Babinkostova: Selective screenability and covering dimension, Topology Proceedings, 29:1 (2005), 13-17.
[2] L. Babinkostova: When does the Haver property imply selective screenability?, Topology and its Applications, 154 (2007), 1971-1979.
[3] J. Gerlits, Zs. Nagy: Some properties of $C(X)$, I, Topology and its Applications, 14 (1982), 151-161.
[4] W. Hurewicz: Normalbereiche und Dimensionstheorie, Mathematische Annalen, 96:1 (1927), 736-764.
[5] G. Di Maio, Lu. D. R. Kočinac, E. Meccariello: Applications of k-covers, Acta Mathematica Sinica, English Series, 22:4 (2006), 1151-1160.
[6] L. Tumarkin: Über die Dimension nicht abgeschlossener Mengen, Mathematische Annalen, 98:1 (1928), 637-656.

