7. THE CANONICAL SERIES

Let \mathscr{C} be an irreducible curve in $\operatorname{PG}(2, \bar{K})$ where \bar{K} is the algebraic closure of K and let X be a non-singular model of \mathscr{C} with $\psi: X \rightarrow \mathscr{C}$ birational. Points of X are places or branches of \mathscr{C}. A place Q is centred at P if $Q \Psi=P$. Let $r_{Q}=m_{P}(\mathscr{C})$, the multiplicity of \mathscr{C} at P , where \mathscr{C} has only ordinary singular points. If $\mathscr{C}^{\prime}=V(G)$ is any other plane curve such that $\operatorname{div}(G)-E$ is effective, where $E=\sum_{Q \in X}\left(r_{Q}-1\right) Q$, then \mathscr{C}^{\prime} is an adjoint of \mathscr{C}; essentially, \mathscr{C}^{\prime} passes m-1 times through any point of \mathscr{C} of multiplicity m. If deg $\mathscr{C}=\mathrm{d}$ and $\operatorname{deg} \mathscr{C}^{\prime}=d-3$, then \mathscr{C}^{\prime} is a special adjoint of \mathscr{C}. In this case, div(G) - E is a canonical divisor. The canonical series, consisting of all canonical divisors, is therefore cut out by all the special adjoints of \mathscr{C}. The series is a $\underset{2 \mathrm{~g}-2}{\mathrm{~g}-1}$ of (projective) dimension g-1 and order $2 \mathrm{~g}-2$. For example,

$$
\mathscr{C}^{6}=V\left(z^{2} x y(x-y)(x+y)+x^{6}+y^{6}\right)
$$

is a sextic with an ordinary quadruple point at $P(0,0,1)$ and no other singularity. 'So

$$
g=\frac{1}{2}(6-1)(6-2)-\frac{1}{2} 4(4-1)=4 .
$$

The special adjoints are cubics with a triple point at $P(0,0,1)$, that is triples of lines through the point. A special adjoint has equation $V\left(\left(x-\lambda_{1} y\right)\left(x-\lambda_{2} y\right)\left(x-\lambda_{3} y\right)\right.$) and has freedom 3 . It meets $\&^{6}$ in $6 \cdot 3-4 \cdot 3=6$ points other than $P(0,0,1)$. Hence the special adjoints cut out a γ_{5}^{3}, as expected.

The Riemann-Roch theorem says that if W is canonical divisul
on X and D is any divisor, then

$$
\ell(D)=\operatorname{deg} D+1-g+\ell(W-D) .
$$

8.THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K but viewed as the set of points defined over \bar{K}, and let $f: X \rightarrow \mathscr{C} c P G(n, \bar{K})$ be a suitable rational map. Then \mathscr{C} is viewed as the set of branches of X.

Assume that \mathscr{C} is not contained in a hyperplane. The degree d of \mathscr{C} is the number of points of intersection of \mathscr{C} with a generic hyperplane. For any hyperplane H, if n_{p} is the intersection multiplí city of H and \mathscr{C} at P, then

$$
\mathrm{H} \cdot \mathscr{C}=\sum_{\mathrm{P} \in \mathscr{C}} \mathrm{n}_{\mathrm{P}} \mathrm{P}
$$

is a divisor of degree $d=\Sigma n_{P}$. Also

$$
\mathscr{D}=\{\mathrm{H} . \mathscr{C} \mid \mathrm{H} \text { a hyperplane }\}
$$

is a linear system. In this case, $D \sim D^{\prime}$ for any D, D^{\prime} in \mathbb{Q}. Hence Q is contained in the complete linear system $|D|=\left\{D^{\prime} \mid D^{\prime} \sim D\right\}$, Where D is some element of \mathscr{D}.

A complete linear system defines an embedding $\mathrm{f}: \mathrm{X} \rightarrow{ }^{\prime} \mathrm{C}$ given by

$$
f(Q)=P\left(f_{o}(Q), \ldots, f_{n}(Q)\right)
$$

where $\left\{f_{o}, \ldots, f_{n}\right\}$ is a basis of

$$
L(D)=\{g \in \bar{K}(X) \mid \operatorname{div}(g)+D \geq 0\} .
$$

