7. THE CANONICAL SERIES

Let \mathscr{C} be an irreducible curve in $PG(2, \bar{K})$ where \bar{K} is the algebraic closure of K and let X be a non-singular model of \mathscr{C} with $\Psi: X \neq \mathscr{C}$ birational. Points of X are <u>places</u> or <u>branches</u> of \mathscr{C} . A place Q is <u>centred</u> at P if $Q\Psi = P$. Let $r_Q = m_P(\mathscr{C})$, the multiplicity of \mathscr{C} at P, where \mathscr{C} has only ordinary singular points. If $\mathscr{C}'=V(G)$ is any other plane curve such that div(G)-E is effective, where $E = \sum_{Q \in X} (r_Q - 1)Q$, then \mathscr{C}' is an <u>adjoint</u> of \mathscr{C} ; essentially, \mathscr{C}' passes m-1 times through any point of \mathscr{C} of multiplicity m. If deg \mathscr{C} = d and deg \mathscr{C}' = d-3, then \mathscr{C}' is a <u>special adjoint</u> of \mathscr{C} . In this case, div(G) - E is a <u>canonical</u> divisor. The <u>canonical series</u>, consisting of all canonical divisors, is therefore cut out by all the special adjoints of \mathscr{C} . The series is a $\gamma \frac{g^{-1}}{2g^{-2}}$ of (projective) dimension

g-1 and order 2g-2. For example,

$$\mathscr{C}^{6} = V(z^{2}xy(x-y)(x+y)+x^{6}+y^{6})$$

is a sextic with an ordinary quadruple point at P(0,0,1) and no other singularity. So

$$g = \frac{1}{2}(6-1)(6-2) - \frac{1}{2}4(4-1) = 4.$$

The special adjoints are cubics with a triple point at P(0,0,1), that is triples of lines through the point. A special adjoint has equation $V((x-\lambda_1 y)(x-\lambda_2 y)(x-\lambda_3 y))$ and has freedom 3. It meets \mathscr{C}^6 in 6.3-4.3=6 points other than P(0,0,1). Hence the special adjoints cut out a γ_5^3 , as expected.

The Riemann-Roch theorem says that, if W is a canonical divisor

on X and D is any divisor, then

$$\&(D) = \deg D + 1 - g + \&(W-D).$$

8. THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K but viewed as the set of points defined over \bar{K} , and let $f : X \neq \mathscr{C}c$ PG(n, \bar{K}) be a suitable rational map. Then \mathscr{C} is viewed as the set of branches of X.

Assume that & is not contained in a hyperplane. The degree d of $\mathscr C$ is the number of points of intersection of $\mathscr C$ with a generic hyperplane. For any hyperplane H, if n_{D} is the intersection multipli city of H and \mathscr{C} at P, then

 $\begin{array}{cccc} H \bullet \mathscr{C} &=& \sum & n_{P} & P \\ & & P \in \mathscr{C} \end{array} \end{array}$

is a <u>divisor</u> of degree $d = \Sigma n_p$. Also

 $\mathscr{D} = \{H, \mathscr{C} | H \text{ a hyperplane} \}$

is a linear system. In this case, $D \sim D'$ for any D,D' in ${\mathscr D}$. Hence \mathcal{D} is contained in the <u>complete</u> linear system $|D| = \{D' | D' \sim D\}$, where D is some element of ${\mathscr D}$.

A complete linear system defines an embedding f : X \mathcal{I} given bу

 $f(Q) = P(f_{Q}(Q), ..., f_{n}(Q))$

where $\{f_0, \dots, f_n\}$ is a basis of $L(D) = \{ge\bar{K}(X) | div(g) + D \ge 0\}$.