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linear. Let

f(s) = As + B

•

~k

\: (!.k) = L ~i X ki + bk '
i=l

then the solution of the optimization pr~blem (27) is a

piece-wise linear' function Qk • In this case the reduced game

can be solved easily as i t is shown in [lOJ, pp. 43-44 •

•
5. Multiproduct oligopoly game

In this paragraph we will consider the game having the

sets of strategies

~ = [o, ~CLlJ

end pa.y-off functions

x ••• x (30 )

n

L xP) ,••• ,
{,=l

(31)

where (
ll) lM))

~ = Xk '···'Xk '
n n

9 Cfm) = 0, L ri-1) x ••• x 0, L: Li
Ml , R(fm)CR

l for
t=l e=1

k=1,2 •••• ,n and 1Il=1 , 2, •• , M. This game can come up if the

factories manufacture differ~nt p~ducts and sell them on the

same market. Let M be the number of products, and 1et x~m) ,

~) be the p~duction level and capacity limit of factory k

f~m p~duct m. If f donotes the unit price of p~duct m, than
m

it is assumed that f is a function of the total production
m

levels of the different products. The function y~ is tbe
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an~ ~3lng tn~ aOOV6 _erminology tne incorne

V~ fa." .ory k ..... oJ.ven oy function (Jl).

3imilar lnterprètation c~~ be given to the other applications

sh~/~ ~ the section àealing with the classical oligopoly game

but ìiffe=ent aualities of water ~~d waste-water have to be•

introduceci.

':"..e :'ollc.'I(ing ~sul t is basic in the theory of mul tiproàuct

econo~es, acd it is a generalization of par~ cl in the proof

of Theorem 4.

are concave and

,
Lemma 11., Let g, be a vector'-vector' function such that

rv:of Rb(~) is a convex set in the nonnegative orthant
M

7I,l~IC R • Assume that the components of g,

continuously differentiable. Let J-- be the Jacobian matrix

of g. Ii !I-
~ ~ .9(~I,

'!'
(~) + II l~)- is nonnegative semidefinite for arbitrary

then the function

h(~) = ~T gl~)

lS concave.

(J2)

FroofL Let \J denote the gradient operation. Then simple

calculations show that
T T

V h(~) = g ~) + ~ II (~) •

Since the components of g, are concave, we have

(JJ)

and the condition given for the Jacobian J-- implies
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'"- (ii. - ~l· ~(~)(;y - ~).
(34 )

The ~nequalities (3)) ,(34) •ana imply

'"
l- {g(iL) - gl~\} ~

consequently

- ~ l,

wh::.cÌ! and equation ()2) c·~veo the inequality

Thus function h is concave.

As a corollary to this general r~sult we can prove the

main resul t of this see H '1n.

•

'lheorem 7..!. :'et and let J-- oe t!le

Jacobian of f. Assume that fune tions f and ~ (l ::.. k ~ !l) are

continuous)the components of f are continuously differentiable

and concave, ~ is convex and for arbitrary ~ ~ ~(f) tr-e
T

+ ~t~) is nonnegative semidefinite. Then the

game has at least one equilibrium point.

Preof. Since ~ ~s a closed, convex, boundeQ subset of

concave in ~k' the game satisfies all conditions

NikaiQo-Isoda theorem. Thus the game has at least

equilibrium point.

•

'f k ~s continuous and Lemma 11. implies that , o ~s
'k

of the

one

•
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Remark. The theorem does not g~ve numerical methods for

the determination of the equilibrium point. But in the linear

case a very efficient algorithm can be constructed which is a

"generalization of the method of M. Manas given for the one-

-product case.

Let us assume that

'. ( (l) (M))I,.u. S ,,, •• ,8

M

L ~m) x~m) + B
k

m=l
N;

= La~m)
m=l

(k=1,2, ••• ,n),

where (m)
s

n
, (m)

- L xk •
k=l

1et us intr'Oduce the

following notations: ~(m)

Finally let us assume that

n

= L~m)

k=l
A + A

T
- -- -

(
l.m)~M, fl. = al.. -l .

-,U. "" , m-

is nonnegative semidefinite.

Under the above condi tions the game has at least one equilibrium

point, and since

H (H ii)
!. = !l'···'!n
only if

•

'f k is concave in ~k' a vec toro

is an equilibrium point of the game if and

/' O for (m) ft - O- xk ---
Cl fk(~ii)

> O for lffi)ii ~m) (~ k,m) (35)
él x Cm)

xk
----

k

- O for O < x~m)ft < ~m)- ,

• here ii (Uht (Mllt)
~ = \xk , ••• ,xk ( k= l , 2 , ••• , n). Le t
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Wl ::> O
- X,K =

/ , . , x'Y-' (\ (36 )I v " . '>- ... ~

V') k •

)z,
K \

I ~ - otherwisev--
\..

• ..; ..;' xV-) ..- • (t<)
- v -. ~V·l

, k ---I
v,

e
Il; :> o otherwise,-

then oy calculating the partial derivatives of -t k
'N e can

easily verify that the conditions (35) are equivalent to the

set of equations (see [lO] pp. 46-47)

b,u. + + zrl - O (37)

for J-l-=1,2, ••• ,M; k=1,2, ••• ,n , where

n

slw) = L x~m).

k=l

The above system can be written ~n a simpler form if we

introduce the following notations:

"'~ = ( xpl , ••• ,x~M) , ••• ,x~l), •••• ,x~M)r

a = ( III CM) (l) (Ml)T_ Al' ••• , Al t ••• t An , •••• , An

"'
( \.Il (M) (l) CM)) •

! = vI'···' vI'···' vn , ••• , vn

(38 )

_ ( ll)
~ - zl' ... ,

(MI
2 1 t···'

(l)
zn , ••• ,
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Y:. = ( w?\ t ',l) ll) W~M) ) T... , Wl • ... , wn , ••• t-
. ll) '1'

[M) III L(M) )
~

.{, - l Lì ,••• , Ll • ... , Ln ', ••• ,- n

( bI' ••• t t'M' ••• ' 11 •••• , bM )
To --- ;x.

Ful"thermore let P denote the Mn x Mn matl"ix--
I •

ATA A • \I ••• I-- - - •
•p • + • •- • •- • r • '1'

A ••• A A~- -- - -

then the relations (36). (37), (38) have the forrr:

r x + b - a - v T Z = O-- - - - - -
Z + W - ~-- -

T T T Ox Z v W - V Z- - -- - - - - -
(39)

x, v, Z, w- - - - :::, O •- --
Thus we have proven the following r'esul1;.

Lemma 12•. A vector ::.s an equilibrium point , .'
01 tl1e

linear oligopoly game with nonnegative definite

* Ji *if and only if there exist vector's :!., Y!. , ~

matrix A. +--
such 1;hat

T,
r.-

conditions (39) are satisfied with ii
~=!.,y.=

Jt ii
V • W = W- - -

and z = z* •- -
In a furthel" special case the uruqueness of the equilibl"iu:n

point is assured, as it is shown in the following theorem.

Theorem 8. Assume that matrix A is symmetric, negative-
definite. Then the game has a unique e qui li brium poir.t.

Proof., Let us consider the quadratic :programnung problem
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o , x ~ I:- (4 0 )- - - -- -
-,

xT rn- p (~
,. max

~
x - - al y. >- •- - - - --

P::-rs t we pr-ove tha <: problem (4 O) i s astri:; t::' -,- :; onvex-
progI'a.mJJUng problen:. h is sufficient tO prove tilat n:atrix !'-,-

'f" - ( )L!R,·m~s ne(;at~ve ue =~te • .uet ~ = l:!1' ••••1!.n ~ , 'Nhere

for k=1.2 ••••• n. Then

~ r: ~_. --
~

L T L
In• "-

,
1,;, p 1,;, - ti " l:!k + 1;.~ A u.- n I -- - - =k - -~ - -"- - - v

k=l i-l j-l-- --

n I n , n, rn

L T i
~ -

L
,

- u, A u + I u, A u_ < \)
-K - -k -~

-,- - v

k-' i-l j-l-,!, -- --

for u i- O. 1:-- -
.

"- ~s symmetric, then obviously f ~s
..

a..so

symmetric.

llext we ODserve that conùitions (39) without equat~on

':f..T ~ = O are the Kuhn-Tucker condi tions of che quadratic

progr~ng problem (see G. Hadley (31). and since it is

convex. the Kuhn-Tucker condi tions ar'e necessary and sufficient

conàitions for tile optimality. The fact that the matrix

negative ùefini te implies that problem (40) ilas a unique

p-- ~s

•

solution. and since the game has an equilibrium point whicn

must satisfy system D9) we conclude that the unique solution

of (40) gives the ~que solution of (39). which is the ~que

equilibrium point of the game.

Remark. The numerical solution of problem (40)

obtained by standard methods (see G. Hadley (31).

can De
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Fina.l1y we remark that the statements of Lemma 12. and

Theorem 8. can be extended for the multiproduct group equi1ibrium

prob1em, but the detai1s ar'e not discussed here.


