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ABSTRACT 

This report presents a psychoacoustically derived computational 

model of the perceived distance between any two major or minor 

triads, the degree of activity created by any given pair of triads, and 

the cadential effectiveness of three-triad progressions. It also 

provides statistical analyses of the ratings given by thirty-five 

participants for the ―similarity‖ and ―fit‖ of triads in a pair, and the 

―cadential effectiveness‖ of three-triad progressions. Multiple 

regressions show that the model provides highly significant 

predictions of the experimentally obtained ratings. Finally, it is 

argued that because the model is based upon psychoacoustic axioms, 

it is likely the regression equations represent true causal models. As 

such, the computational model and its associated theory question the 

plausibility of theoretical approaches to tonality that use only long-

term memory and statistical features, as well as those approaches 

based upon symmetrical geometrical structures like the torus. It is 

hoped that the psychoacoustic approach proposed here may herald 

not only the return of psychoacoustic approaches to tonal music 

theory, but also the exploration of the tonal possibilities offered by 

non-standard tunings and non-harmonic timbres. 

I. INTRODUCTION 

Psychoacoustic approaches have provided relatively 

effective explanations for why certain simultaneities of notes 

(chords) are typically considered ―dissonant‖ while others are 

considered ―consonant‖ (notably the major and minor triads 

that are so important in both the theory and practice of 

Western tonal music) (Plomp & Levelt, 1965; Kameoka & 

Kuriyagawa, 1969; Sethares, 2004). However, to date, there 

has been no psychoacoustic explanation for one of the most 

important and mysterious aspects of Western tonal music—

the fact that a succession of consonant chords can induce 

feelings of ―expectation‖ and ―resolution‖ that are not 

produced when the same chords are played in isolation, or in a 

different order.  

For example, listeners will typically feel that in the chord 

progression F major→G major→C major, the second chord 

sounds particularly expectant whereas the third chord resolves 

this expectation, thus providing a sense of closure. Chord 

progressions such as these are called cadences, and they are 

commonly used in tonal music to mark the ends of phrases, or 

entire sections. Interestingly, cadences are commonly 

constructed with only consonant triads (the example above is 

the familiar IV→V→I cadence; other common cadences using 

only major and minor triads are ii→V→I, iv→V→I, and 

VI→V→I). Such cadences imply that the expectation or 

resolution induced by a chord is not necessarily a function of 

its inherent (vertical) consonance or dissonance, but rather of 

its temporal (horizontal) context—most particularly the 

chords that directly precede and proceed it. 

Any theory of harmonic tonality—that form of music using 

chords (principally triads) to establish a tonic (―home‖) note 

or triad (Krumhansl, 1990)—must provide an explanation for 

these feelings of expectation and resolution that lie at its very 

heart. In the absence of successful psychoacoustic theories to 

account for this phenomenon, many contemporary researchers 

have suggested a statistical (long-term memory) explanation 

(Bharucha, 1987; Krumhansl, 1990; Tillmann, Bharucha, & 

Bigand, 2000; Levitin, 2006). These approaches suggest that 

we are culturally trained, by exposure, to expect certain 

progressions, and this accounts for the effect produced by the 

regularities (such as cadences) that are found in tonal music—

that is, if we've heard it before, we expect to hear it again. 

There is little doubt that this is a credible approach, but it has 

a number of problems if used as the sole explanation for these 

effects. For example, (a) it implies that the effect induced by a 

given chord progression—such as a cadence—should be very 

plastic, but there is little evidence, from either a cultural or 

historical perspective, that this is the case; (b) short-term 

memory has been demonstrated to play a significant role in 

perception of tonality (Leman, 2000); (c) typical cadential 

progressions have been readily adopted, with no modification, 

by non-Western cultures (e.g., see Agawu (2003)). 

Statistical approaches undoubtedly play an important part 

in the cognition of harmonic cadences, but I propose there are 

important psychoacoustic processes that underlie them. In this 

report I present a psychoacoustically derived model designed 

to explain the flow of expectation and resolution induced by a 

succession of chords. The model is built in MATLAB, and is 

currently relatively simple (it calculates only root position 

major and minor triads), and can be substantially developed. I 

also present preliminary analyses of recently conducted 

experiments (collecting human ratings of ―similarity‖, ―fit‖, 

and ―cadential effectiveness‖ of a variety of chord 

progressions) designed to test the model. The preliminary 

analyses of the experimental data strongly support the model. 

I finish with a discussion of some of the implications of this 

proposed psychoacoustic approach to tonal music theory. 

Supplemental information relevant to this report (including 

additional figures and mathematical proofs) will be accessible 

from www.tonalcentre.org/deepertheory/psycad.html. But 

before proceeding to the next section, a quick explanation of 

the notation used in this report: for the sake of brevity I will 

refer to major triads in upper case, minor triads in lower 

case—so ―A‖ is an A major triad, ―g‖ is a g minor triad. 

Furthermore, without qualification, all triads are considered to 

be major or minor and in root position. 

II. THE THEORETICAL FOUNDATIONS 

OF THE MODEL 

The underlying theory assumes the presence of five latent 

variables, which may be thought of as psychoacoustic or 

cognitive components of the listener‘s auditory system. The 

model contains a simulation of each of these latent variables 

and their interactions. 

http://www.tonalcentre.org/deepertheory/psycad.html


I presume that the first three variables, pitch distance (pd), 

fundamental response distance (frd), and spectral response 

distance (srd) are a function of psychoacoustic data (tone 

frequency, timbre, and frequency difference limens). Each of 

the variables is a different type of metric used to assess the 

distance (level of difference) between any two chords (or 

tones).  

I hypothesise that pitch distance and fundamental response 

distance are the main variables responsible for the value of a 

latent cognitive variable called voice-leading distance (vld), 

and that spectral response distance is the main variable 

responsible for the value of a latent cognitive variable called 

spectral distance (sd). Furthermore, I hypothesise that voice-

leading distance (vld) and spectral distance (sd) together 

determine the level of tonal activity (act) induced by a pair of 

chords. 

These relationships are summarised in the path diagram of 

Figure 1; note that the model attempts to replicate each of 

these latent variables, and the relationships between them. 

 

 

Figure 1. A path diagram showing the proposed flow of causation 

from the psychoacoustic variables pitch distance (pd), 

fundamental response distance (frd), and spectral response 

distance (srd), to the cognitive variables of voice-leading distance 

(vld), spectral distance (sd), and tonal activity (act). Error terms 

are not shown. 

I explain the psychoacoustic metrics (pd, frd, and srd) in 

the next two subsections, and the cognitive variables (vld, sd, 

and act) in section III. 

A. Pitch Distance (pd) 

The pitch distance between two tones is approximated by 

the logarithm of their pitch ratio. I also assume octave 

equivalence; so all intervals are reduced (by octave inversion) 

to be no greater than six equally tempered semitones. So, if it 

is assumed that the tones have harmonic spectra, pitch 

distance can be approximated accordingly: 

      212212 log1,logmin ffffpd  , 1 

where f1 and f2 are the fundamental frequencies of the two 

tones, and {} denotes the fractional part. 

When calculating the pitch distance between two chords, 

the pitch distance moved by each voice is separately 

calculated to enable each to be separately analysed. Pitch 

distance (in conjunction with the fundamental response 

distance discussed later) is intended to give an indication of 

the voice-leading distance between two chords. 

B. Fundamental and Spectral Response Distances (frd and 

srd) 

The two response distance measures are novel metrics 

based upon the tenets of signal detection theory. Given a 

signal with a specific frequency, the auditory system is 

assumed to produce an internal response that may be 

characterised as consisting of both signal plus noise; 

furthermore, the noise component is assumed to have a 

Gaussian distribution. So the internal response to a sine wave 

with a specified frequency may be characterised as a Gaussian 

centred on that frequency. It is this noise component that 

makes the frequency difference limen (frequency DL) greater 

than zero—that is, when two sine waves of similar frequency 

are played successively, the listener may, incorrectly, hear 

them as having the same pitch. 

In a two-alternative forced-choice (2-AFC) experiment, the 

frequency DL is normally defined as the value at which the 

true positive and false positive rates correspond to a d' of 

approximately one. Because d' is equivalent to the distance 

between the means of two distributions divided by their 

standard deviation, the standard deviation of the internal 

response is equal to the frequency DL. This enables the 

internal frequency response to a sine tone to be modelled 

using experimentally obtained measurements of frequency 

DL, such as those obtained by Moore, Glasberg, and Shailer 

(1984). 

The response distance between any two sine tones is the 

distance between their (Gaussian) internal responses. 

Although there may be many suitable metrics to measure this 

distance, I have chosen cosine distance because it is relatively 

easy to express in functional form, and because it makes 

intuitive sense—being the normalised cross-correlation 

between the two Gaussians. (A possible alternative metric 

would be the area under the ROC curve produced by two such 

Gaussian distributions.) The cosine distance dcos(f1, f2) 

between two sine tones, as function of their frequencies f1 and 

f2, is given by: 
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where DL(fi) is the difference limen (standard deviation) at 

the frequency fi. For a full derivation of this equation, see the 

above-mentioned website. Equation 2 shows that the cosine 

distance between two Gaussians is a function of their standard 

deviation and their frequency difference. Given two sine tones 

with independent frequencies, the spectral distance gives an 

indication of the probability that they are distinguishable: 

when they are identical in frequency, their spectral distance is 

zero; when they are far apart in frequency, their spectral 

distance approaches 1.  

1) Spectral Response Distance. Given two successive 

complex tones, or chords comprising a number of complex 

tones, the spectral response distance is the sum of the response 

distances between all possible pairings of partials where each 

pair contains a partial from the first chord (or tone) and a 

partial from the second chord (or tone). The partials in any 

given complex tone may have different amplitudes (typically 

the higher the partial the lower its amplitude), so the product 

of their respective amplitudes weights the cosine distance for 

any given partial pair. For two chords, one with m partials of 



frequency fi and amplitude ai (for i = 1 to m), the other with n 

partials of frequency fj and amplitude aj for j = 1 to n, the total 

spectral response distance can be expressed accordingly: 



srd 
1

2
aia jdcos ( f i , f j )

j1

n


i1

m

 . 3 

Spectral distance is, therefore, calculated in a manner similar 

to dissonance algorithms such as Sethares‘ (2004). Spectral 

response distance is intended to give a measure of the 

perceived spectral distance between two chords.  

According to Moore, Glasberg, and Shailer (1984), the 

frequency DLs for harmonics within a complex tone vary 

according to their harmonic number (harmonics lower than 

five typically have a frequency DL of approximately 0.5%, 

harmonics higher than seven typically have a frequency DL of 

approximately 3%). At the time of writing, the psychoacoustic 

model does not allow for different widths to be chosen for 

different harmonics, so a compromise value of ERB/13, which 

corresponds to a frequency DL of approximately 1%, was 

chosen. ERB denotes the equivalent rectangular bandwidth, 

and has the value ERB(f) = 0.108f + 24.7 (Glasberg & Moore, 

1990). 

2) Fundamental Response Distance. The response distance 

can also be applied to just the fundamentals of each tone. This 

fundamental response distance (in conjunction with pitch 

distance) is intended to give an indication of the voice-leading 

distance between two chords. 

 According to Moore, Glasberg, and Shailer (1984), the 

frequency DL for a complex harmonic tone, as a whole, is 

smaller than that for any of its partials, and generally 

approximates 0.2%. This is approximated by ERB/66 which is 

the value used by the model to calculate fundamental response 

distance. 

III. APPLYING THE MODEL TO MUSICAL 

SYSTEMS 

Let it be assumed that the musical system under analysis 

uses a number of independent tones each of which are 

composed of dependent (i.e. approximately harmonically 

related) spectra. This is a fair description of the majority of 

western music, where voices move with some degree of 

independence, and the majority of these voices are harmonic 

complexes with a clear sense of pitch. This type of musical 

system creates strict constraints upon movements within the 

continuum of all possible spectral tunings. For example, 

imagine we are able to create any possible spectrum, 

containing 16 independently tuned partials. Any point in this 

16-dimensional spectral continuum is a specific spectral 

tuning, and it would be possible to move from any arbitrary 

spectral tuning within this space to any other. But in 

conventional music, with the above-mentioned constraints, we 

can control—and are accustomed to hearing—the movement 

of a limited number of tones (complexes of harmonic 

partials). This means that the range of musically possible 

spectral tunings, and possible paths between them, is 

substantially constrained. 

Voice-leading distance is the cognitive distance between 

two spectral tunings under these constraints. The distances 

along these constrained paths are mediated by the pitches 

(fundamentals) of each tone; so it makes sense to hypothesise 

that voice-leading distance is a function of the pitch distance 

and fundamental response distances (because, these two 

distances are concerned only with the frequencies of the 

fundamentals). 

Spectral distance, on the other hand, is the unconstrained 

distance between all available partials. Because it is a function 

of the tuning of all partials in each chord, it makes sense to 

hypothesise it be a function of the spectral response distance. 

A corollary of having two independent distances is that it is 

possible for a pair of triads to be voice-leading close but 

spectrally distant; or for a pair of triads to be voice-leading 

distant but spectrally close. This has a very important 

consequence: given two pairs of chords that are voice-leading 

close (e.g., the two triad pairs D↔G and D↔g are voice-

leading close because G and g differ by just one semitone in 

one voice), such that one pair is spectrally more distant than 

the other (in reference to the triad D, the triad G is spectrally 

more distant than the triad g), the spectrally distant pair will 

tend to be heard as if it were a voice-leading alteration of the 

spectrally closer pair. I hypothesise that this sense of 

alteration (i.e., of a more ―complex‖, or ―difficult‖, choice 

made as a substitute for a ―simpler‖, more ―straightforward‖, 

choice) is the origin of tonal activity, or expectation. I also 

hypothesise that this activity is resolved by allowing the 

altered tone to continue in the direction of its alteration to a 

triad that is spectrally close (has a ―simple‖, 

―straightforward‖) relationship to, preferably both of, the 

preceding two chords. 

The next three subsections discuss voice-leading distance, 

spectral distance, and tonal activity in more detail.  

A. Voice-leading distance 

When assessing the perceived distance between two chords, 

it is common to measure the overall pitch distance between 

them. This is typically calculated as the city block, Euclidean 

or other Minkowski, distance between the semitone values of 

the notes in two chords. It seems reasonable to assume this is 

a good measure for pairs of tones, or other simple stimuli. But 

when it comes to measuring the distance between triads, or 

between any voice-leading involving three or more parts, is it 

reasonable to expect a listener to individually track the degree 

of movement of every voice before summing them?  

For standard musical tuning systems, the fundamental 

response distance is effectively binary—it has a value of 0 for 

a common tone, a value of 1 for anything else (see the next 

paragraph for a fuller explanation). It seems plausible that, 

due to the simplicity of this binary measure, the fundamental 

response distance may also play a part in determining the 

voice-leading distance for more complex stimuli (such as 

three, or more, part voice-leadings). 

The Gaussian noise component of the internal frequency 

response is relatively narrow compared to the smallest 

musical interval used in common practice (the semitone). This 

means that the fundamental response distance effectively acts 

as a counter for the number of non-unisons between two 

chords. That is, it gives a distance of zero to two identical 

triads, a distance of approximately 1/3 to two triads sharing 

two tones (e.g., parallel triads like C and c, relative triads like 

C and a, leading tone exchange triads like C and e), a distance 

of approximately 2/3 to two triads sharing one common tone 

(e.g., dominant triads like C and G), and a distance of 



approximately 1 to two triads with no common tone (like C 

and D). This is clearly in accord with Riemannian and neo-

Riemannian music theory, which treats the above-mentioned 

common-tone transformations as being especially close (e.g., 

Kopp (2002)). 

We might, therefore, expect a listener to judge the voice-

leading distance between two chords to be a function of pitch 

distance and fundamental response distance. Furthermore, we 

might expect that the pitch distance of the most salient note 

(or notes), such as the bottom note, top note, or root, may be 

more important than the pitch distances between less salient 

notes. 

B. Spectral Distance 

In the same way it seems unreasonable to expect a listener 

to track the movement of every single tone in a three, or more, 

part voice-leading, it is even more unreasonable to expect a 

listener to track the distance moved by every single partial 

found in one chord to the partials found in a second chord. 

Furthermore, in normal listening even those partials that can 

be resolved are not actually ―heard out‖; instead they are 

subsumed into the unified perceptions of virtual pitch and 

timbre. Furthermore, even if they were actively heard out, it 

would be almost impossible to know in which direction any 

given partial ―moves‖—does it ―go‖ to the partial that is 

closest in pitch, or the partial that has the same position in a 

frequency-ranked stack of partials? The spectral response 

distance does not attempt to ―track‖ any supposed motion of 

partials, it simply scores every coincident pair as 0, every non-

coincident pair as 1. Every pair that is almost coincident is 

given a score between 0 and 1—its precise value determined 

by the width of the underlying Gaussian internal response 

curve. 

For this reason, we might expect the spectral distance 

between any two triads to be strongly correlated to their 

spectral response distance. 

In tonal terms, spectral distance acts as a type of weighted 

counter, in that a smaller distance is given to those intervals 

(dyads) whose tunings approximate simple numerical 

frequency ratios (such as the perfect fifth, which approximates 

3/2). This is because simple ratio intervals have more 

coincident partials. (For two tones, with harmonic partials, 

that have a frequency ratio of p/q, the ratio of coinciding 

partials to all partials is 2/(p+q)). This means that the greater 

the number of approximately simple ratios (and the greater 

their simplicity) between two triads, the lower the spectral 

distance between them. This results in smaller spectral 

response distances for melodic dyads that are conventionally 

considered harmonically consonant (perfect fifths and fourths, 

and thirds and sixths), than for intervals like seconds and 

sevenths and the tritone. 

C. Tonal Activity, Resolution, and Cadential Structure 

1) Tonal Activity. I hypothesise that tonal activity is the 

result of the interplay between voice-leading distance (which 

is a function of pitch distance and fundamental response 

distance) and spectral distance (which is a function of spectral 

response distance).  

Given a musically presented triad pair, let any other pair 

against which that musically presented pair is mentally 

compared be denoted a comparison pair. I hypothesise that 

when a triad pair has a higher spectral distance than a 

comparison triad pair that is voice-leading close, the former 

chord pair is heard as an alteration of the comparison triad 

pair. This can be stated more formally: Let there be a pair of 

triads, t1↔t2, with a spectral distance of sdt1↔t2. If a triad t3 is 

used in place of triad t2, we get a pair t1↔t3 with a spectral 

distance sdt1↔t3. Let the voice-leading distance between t2 and 

its comparison triad t3 be denoted vldt2↔t3. The activity, 

at1↔t2 | t1↔t3, of t1↔t2 due to the voice-leading proximity of the 

comparison pair t1↔t3 is given by: 

at1↔t2 | t1↔t3 = (sdt1↔t3 – sdt1↔t2)/ vldt2↔t3. 4 

Similarly, the pair t1↔t2 might be compared to the pair 

t4↔t2, giving t1↔t2 an activity, due to the voice-leading 

proximity of t4↔t2, of at1↔t2 | t4↔t2 = (sdt4↔t2 – sdt1↔t2)/ vldt1↔t4. 

Or t1↔t2 might be compared with t4↔t3, giving t1↔t2 an 

activity, due to the voice-leading proximity of t4↔t3, of 

at1↔t2 | t4↔t3 = (sdt4↔t3 – sdt1↔t2) / (vldt1↔t4 + vldt2↔t3). 

A result of this definition is that at1↔t2 | t3↔t4 = −a t3↔t4 | t1↔t2. 

Assuming the absolute level of activity is more than 

negligible, I hypothesise that the triad pair with positive 

activity is heard as an alteration of the comparison pair with 

negative activity. This is because the two triads in a pair with 

high positive activity have a more distant (complex) spectral 

relationship than the voice-leading close pair with negative 

activity. I presume that triad pairs with negative activity sound 

―passive‖, ―stable‖, and ―at rest‖, while triad pairs with 

positive activity sound ―active‖, ―unstable‖, and ―restless‖. 

Let me illustrate this concept with a relatively 

straightforward example. The psychoacoustic model predicts 

that the two root-position triad pairs C↔d and C↔D are 

voice-leading close (they have two common tones, and the 

bass note does not move). It also predicts that C↔d is 

spectrally closer than C↔D (the latter replaces the former's 

low distance perfect fourth—between the root of the first 

chord and the third of the second chord—with a high distance 

tritone). So the former pair has negative activity, the latter has 

positive activity, which means that the latter is heard as an 

alteration of the former. 

(If that example still seems difficult to understand, consider 

just two successive tones. We might consider melodic 

intervals of a semitone and tritone to be active because they 

can be mentally compared to the voice-leading close melodic 

intervals of the unison and perfect fourth/fifth, respectively. 

The process described above is simply an extension of this 

concept to a higher-dimensional tone space—illustrations of 

which are given in Section IV, and Figure 2 and Figure 3.) 

When considering only those comparisons that are voice-

leading close—and so maximise activity (see Equation 4)—

the psychoacoustic model of tonal activity has a plausible 

asymmetry. For the following explanation and examples, I 

will consider just the parallel comparison—i.e., let t2↔t3 be 

parallel transformations (e.g., t2 = d, and t3 = D), and t1↔t4 be 

parallel transformations (e.g., t1 = C, and t4 = c). The reason 

for favouring the parallel comparison is because it is 

reasonable to surmise that, for root position triads, the parallel 

transformation will be judged to have the smallest voice-

leading size. This is because it has two common tones; the 

moving tone uses the smallest possible pitch distance (one 

semitone); the moving tone is not the salient root (bass note) 

of the two chords. The parallel transform is the only one that 

has all three of these characteristics. Equation 4 shows that the 



absolute value of activity is maximised by having a 

comparison pair that is voice-leading close (i.e., vldt2↔t3 is 

small), so by choosing the parallel comparison, we are likely 

to be exploring those tonal activities that are most important 

to our perception of music (see Section V.B. for a further 

discussion of this issue). 

For more compact notation, let the activity of the pair t1↔t2 

due to comparison with its parallel transform pair t1↔t3, be 

denoted at1→t2 | P (the arrow points to the chord that is 

transformed, and the bold letter indicates the type of 

transform: P is the parallel transform, though R and L, etc. 

could be used to denote the relative and leading tone 

exchanges respectively). Similarly, the activity of the pair 

t1↔t2 due to comparison with its parallel transform pair t4↔t2 

is denoted at1←t2 | P (in this case, the arrow points to the first 

chord, because it is this chord that is being compared to its 

parallel transform). 

Generally, at1→t2 | P ≠ at1←t2 | P. For example, the model 

calculates that aC→D | P > aC←D | P; indeed aC→D | P > 0, while 

aC←D | P < 0. In words, given the pairing of chords C and D, the 

D is heard as altered, rather than the C. A natural consequence 

of this is are that a cadential progression proceeding from C to 

D to some resolution triad is likely to be more cadentially 

effective than a progression from D to C to some resolution 

triad. Hence the tonal asymmetries that are a vital aspect of 

our cognition of tonality (e.g., see Dahlhaus‘ discussion of the 

order of ―functions‖ within cadences (1990), or Toiviainen 

and Krumhansl (2003)) are a natural consequence of the 

proposed activity function. Such asymmetries cannot be 

explained by inherently symmetrical structural models, such 

as Lerdahl‘s (2001), without the addition of a separate layer of 

theory. 

2) Resolution and Cadential Structure. When a triad is 

heard as an active alteration of another triad, we expect it to 

resolve. This means that it needs to move to a triad whose 

pairings with preceding triads have negative activity. If this 

not the case, the final chord is less likely to feel as if it is a 

successful resolution—indeed it may feel that it requires a 

further resolution. 

This structure gives a template for harmonic cadences 

formed with three triads denoted antepenult (A), penult (P), 

and final (F) (i.e., the putative cadential progression is 

A→P→F, and so there are six different activity values to be 

considered: aA→P | P, aA←P | P, aP→F | P, aP←F | P, aA→F | P, and 

aA←F | P). 

I hypothesise that an effective cadence requires the pairing 

between A and P to have positive activity, and for the pairings 

between P and F, and between A and F, to have negative 

activity. An ideal template for a three-triad cadence is, 

therefore, aA→P | P > 0, aP→F | P < 0, aA→F | P < 0 (the classic 

IV→V→I and ii→V→I cadences (e.g., C→D→G and 

d→G→C, respectively) have precisely this pattern of 

activities. Generally speaking, we might expect to see a 

positive correlation between aA→P | P and aA←P | P and cadential 

effectiveness, and a negative correlation between aP→F | P, 

aP←F | P, aA→F | P, and aA←F | P, and cadential effectiveness. 

Furthermore, we might expect the most effective resolution 

to be one where the active note in the penult resolves to the 

root of the final triad. This aspect of cadential structure is 

likely very important, but is beyond the scope of this 

preliminary report. 

IV. PLOTTING THE MODEL 

The model is easier to understand and interpret when 

plotted. To simplify things, the plots show response distance 

in relation to pitch distance. This means that a single 

dimension (axis) is required for each voice, and one additional 

dimension for the response distance. When considering triad 

pairs (with three-part voice-leading), this means that a four-

dimensional plot is required. This is clearly impracticable, but 

if we consider only root-position triads, the root and the fifth 

of the chords no longer need to move independently and so 

can be concatenated into a single root + fifth dimension. This 

results in the form illustrated by Figure 2 and Figure 3. The x- 

and y-axes of these figures can be considered to represent a 

single 2-D plane extracted from the full 3-D tone space 

created by three fully independent voice. The x-y distance 

corresponds to the Euclidean pitch distance between any two 

triads; the z-axis represents the response distances from the 

central reference triad, and is indicated with a lit surface. 

There are two plots: the spectral response distances of all 

possible triad tunings (with a root and fifth) from a 12-TET 

major triad (Figure 2), and from a 12-TET minor triad (Figure 

3). The major and minor triads run up the two diagonal lines, 

with major triads located vertically above their minor parallels 

(I have labelled a few examples to help locate the reader). Let 

me give two examples. In Figure 3, note how, in relation to c, 

the triad D is more distant (it is "higher" on the z-axis) than 

the triad d. This suggests that in the progression c→D, the 

latter chord will be heard as an alteration of d, and hence is 

active and seeks resolution (e.g., to g). In Figure 2, note that, 

in relation to C, the triad E is more distant ("higher" on the z-

axis) than e, hence C→E is likely to be heard as an alteration 

of C→e, and seek resolution to a. 

It is also interesting to note that the major and minor 

reference triad charts are 180° rotations of one another. This is 

a graphic visualisation of the duality of harmonic functions 

noted by authors such as Riemann and Harrison (1994). 

V. DESIGN OF THE EXPERIMENTS 

The cognitive variables (voice-leading distance, spectral 

distance, and tonal activity) cannot be directly measured. A 

participant is likely to somewhat confound the two variables, 

as well as be influenced by unplanned factors. Despite that, I 

hoped that with careful experimental design, it would be 

possible to get a fairly good indication of the value of these 

latent variables, such that regressing the ratings with respect 

to pitch distance, fundamental response distance, spectral 

response distance, and tonal activity, would produce a useful 

test of the psychoacoustic model and its underlying theory. 

 Two experiments were conducted with a total of 35 

participants. The experimental interface (see the above-

mentioned website for some screenshots) was created with 

Max/MSP. The chords were stored as MIDI files and played 

through a sampler to emulate a string quartet (the synthesizer 

was Dimension Pro playing a sample set from Garriton). A 

string quartet was chosen because, after discussions with 

colleagues, it was felt to be more pleasant than listening to a 

purely synthetic sound, and because it lends itself to the 

hearing out of four independent melodic parts. The music was 

played on headphones, and the individual instruments were 

panned to provide a naturalistic stereo image.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. The z-axis shows the spectral response distance of a continuum of triad tunings relative to a 12-TET major triad. The x-axis 

shows the pitch distance (in cents) between the “roots” and “fifths” of the continuum triads and the root and fifth of the reference 

triad. The y-axis shows the pitch distance between the “thirds” of the continuum triads and the third of the reference triad. The x- and 

y-axes have been scaled to ensure that all x-y distances are Euclidean. A selection of specific continuum triads are labelled. 

Figure 3. The z-axis shows the spectral response distance of a continuum of triad tunings relative to a 12-TET minor triad. The x-axis 

shows the pitch distance (in cents) between the “roots” and “fifths” of the continuum triads and the root and fifth of the reference 

triad. The y-axis shows the pitch distance between the “thirds” of the continuum triads and the third of the reference triad. The x- and 

y-axes have been scaled to ensure that all x-y distances are Euclidean. A selection of specific continuum triads are labelled. 



For each chord progression, voice-leadings were chosen 

according to standard rules of harmony: there were four parts; 

common tones and steps were used rather than leaps; parallel 

fifths and octaves were completely avoided; hidden fifths and 

octaves were avoided when possible and, when unavoidable, 

approached by step in one part (given some of the very 

unusual chord pairings required, hidden fifths cannot always 

be avoided without creating unpleasant leaps). The scores for 

every progression can be seen at the above-mentioned 

website. 

The order of presentation was separately randomised for 

each participant, the tuning was conventional twelve-tone 

equal temperament (12-TET), and the precise pitch of every 

chord progression was randomised (in 12-TET steps) over an 

octave. In between each progression, a short sequence of 

randomly generated chords was played to lessen the 

possibility of the previous progression colouring the response 

to the next. 

After the test, participants were briefly interviewed to get 

their general impressions and response strategies, an 

approximate rating of their confidence in the accuracy of the 

answers they gave, their familiarity with different musical 

genres, and their playing and music theory experience. 

A. Chord Pairs—“Similarity” and “Fit” 

In the first part of the experiment, each participant was 

asked to rate all possible pairs of 12-TET triads (when 

disregarding order and overall transposition, there are just 26 

different pairs of 12-TET triads) for their ―similarity‖ and 

―fit‖. Each triad pair was played as a loop—going from chord 

1 to chord 2 to chord 1 to chord 2, and so on. Each chord had 

a minim (half-note) length, and the tempo chosen was 100 

beats per minute. 

The ratings were made on two separate five-point scales 

marked at the bottom and top with ―similar‖ and ―dissimilar‖, 

and ―good fit‖ and ―bad fit‖, respectively. A value of 1 was 

given to a rating of maximal similarity or fit (i.e., minimal 

distance), and a value of 5 to a rating of minimal similarity or 

fit (i.e., maximal distance). In the instructions, ―similar‖ 

chords were defined as being those ―you might inadvertently 

think the same‖; ―dissimilar‖ with ―their difference is obvious 

and easy to hear‖; ―good fit‖ was likened to a chord transition 

that was ―straightforward‖, ―elegant‖, ―easy‖; ―bad fit‖ to 

―clumsy‖, ―awkward‖, ―difficult‖. 

The aim of the ―similar/dissimilar‖ question was to get a 

rating for voice-leading distance. The aim of the ―good fit/bad 

fit‖ question to get a rating of spectral distance. It was 

expected that there would be some confounding of the two 

concepts, as well as some confounding with other variables 

(such as activity). But I hoped the ratings would give some 

indication of the two types of distance. 

B. Chord Triples—“Cadential Effectiveness”  

Ignoring transposition, there are 1,152 different order-

dependent triples of 12-TET triads, so it is unfeasible (in a 

single experiment) to obtain ratings for all of them. It is, 

however, possible to take a subset of 72 triad-triples to test 

how tonal activity, due to a single type of comparison, 

impacts upon cadential effectiveness. The comparison chosen 

was the parallel transformation (e.g., comparing the spectral 

distance of triad pair C↔E with the spectral distance of the 

triad pair C↔e). As discussed above, this particular 

comparison was chosen because it is likely to have the 

smallest possible voice-leading distance, and so should 

maximise the absolute value of the activity produced by the 

two pairs (see Eq. 4). The parallel, relative, and leading-tone 

exchange parings are typically considered to have the smallest 

voice-leading distances (they each have two common tones) 

and, of these three, the parallel also has the same root note 

making it a natural candidate for having the smallest possible 

perceived voice-leading distance. Furthermore, even a cursory 

examination of the spectral distances generated by the model 

shows that the implications of this particular type of 

comparison provides a highly effective explanation for most 

of the triadic cadences commonly used in Western music.  

The selection of triad triples was made in the following 

way. The antepenult was either C major or c minor, this 

makes two possible one-triad ―progressions‖.  

The penult was each of the 24 different triads in 12-TET 

(i.e. the major and minor chords on each degree of the 

chromatic scale), making a total of 48 different progressions. 

If the theory behind the psychoacoustic model is correct, then 

for each pair that is a parallel of another (e.g., c→A 

compared to c→a) one pair will have positive activity (e.g., 

c→a), the other negative (e.g., c→A). Hence the latter 

should be heard as an alteration of the former. 

The final was the same for each parallel pair of 

antepenult→penult pairs (so c→D and c→d get the same 

final). The root of the final was chosen to be the resolution of 

the active tone of the active penult (resolution of an active 

tone is made by a semitone step in the same direction as the 

alteration); the mode of the final was chosen in order to make 

its relationship with the antepenult have negative activity; this 

gives pairs of progressions such as c→D→g and c→d→g.  

This selection method is a way of controlling the sign of 

the activity for each of the following three pairs 

aA→P | P | aP→F | P | aA→F | P (the reverse pairs aA←P | P, aP←F | P, 

and aA←F | P are not controlled for). It provides, therefore, four 

groups with the following patterns of activity for each of the 

above controlled pairs: Group 1 = + | + | –, Group 2 = – | + | –, 

Group 3 = + | – | –, and Group 4 = – | – | –. For every member 

of Group 1 there is a member of Group 2 that has exactly the 

same triads (ignoring transposition) except for the penult, 

which has a different mode. The same holds for Groups 3 and 

4. The value of having paired groups is that it helps to reduce 

the degree to which uncontrolled variables contaminate the 

experiment. Each group contains essentially the same 

elements, but with the variable of interest (aA→P) being 

changed. Note also that all the progressions have a negative 

aA→F | P, lessening the impact of this variable on the analysis.  

When these 48 progressions are transposed to give a final 

major or minor triad with the same root (e.g., C or c), there are 

just four different penult→final endings (G→C, G→c, g→C, 

g→c, B→C, B→c, b→C, and b→c). Of these, only the 

progressions ending with G→C, G→c, b→C, or b→c have 

an active penult (i.e., they are members of Groups 1 and 3, 

which have a positive aA→P | P). The final 24 progressions 

(making a of 72) use these endings but substitute all possible 

antepenults that give a negative value for both aA→P | P and 

aA→F | P. This provides two more groups: Group 5 = – | + | –, 

and Group 6 = – | – | –. For every member of Group 1 there is 

a member of Group 5 that has (ignoring transposition) exactly 



the same penult, a final that has the same root (but not 

necessarily the same mode), and an antepenult of the opposite 

mode. The same holds for groups 4 and 6. Note also, that all 

these progressions have a negative aA→F | P, thus ensuring the 

impact of this variable on the analysis is still lessened. 

These related groups are intended to provide an effective 

way to estimate the impact of the sign (and magnitude) of 

aA→P | P upon cadential effectiveness, but this is by no means 

the only way to select a manageable, but useful, subset of triad 

triples. However, it does provide a systematic and, therefore, 

unbiased method to select those triples that should effectively 

test the model. 

Each triad triple was played once through in full, but the 

participant could repeat play after a two-second delay. Each 

chord had a minim (half-note) length, and the tempo chosen 

was 80 beats per minute  

The rating of cadential effectiveness was made on a seven-

point scale marked ―cadentially effective‖ at the top and 

―cadentially ineffective‖ at the bottom. The instructions gave 

the following explanation of ―cadential effectiveness‖: ―how 

effectively does the third chord give a feeling of ‗closure‘ or 

‗finality‘? For example: If the progression is ‗cadentially 

effective‘, the third chord gives a clear and definite sense of 

closure, and would be an effective and unambiguous ending 

for a piece of music; if the progression is ‗cadentially 

ineffective‘, the third chord suggests or implies that another 

chord, or chords, should follow; if the progression is ‗neutral‘, 

the third chord may give no feeling of closure, but neither 

does it imply a need for any more chords to follow.‖ 

VI. ANALYSIS OF THE EXPERIMENTS 

A. Similarity 

A correlation matrix for the 35 participants‘ ratings of all 

26 triad pairs was created. One participant had three negative 

correlations with other participants and a low average 

correlation level (0.16), and so was removed as an outlier. The 

overall average correlation level for the remaining participants 

was 0.49 (per participant averages ranging from 0.30 to 0.70), 

with no negative values between any pairs of participants. 

For each triad pair, the ratings of similarity were averaged 

over the 34 participants to create a variable called sim. A 

stepwise multiple linear regression on sim was performed 

using the four variables: bass pitch distance (bas), tenor + alto 

+ soprano + pitch distance (tas), fundamental response 

distance (frd), activity (act). Tas drops out due to insignificant 

correlation, with the three remaining variables giving a highly 

significant R
2
 = 0.943 (R

2
adj = 0.935). Coefficients and their 

significance for this regression are summarised in Table 1, 

and a scatter plot is shown in Figure 4. 

Table 1. Regression coefficients and significance for multiple 

regression of sim on frd, bas, and act. 

Model B Std. Error Beta t Sig. 

(Constant) 3.382 .104  32.497 .000 

frd .121 .012 .667 9.977 .000 

bas .118 .023 .271 5.041 .000 

act .081 .019 .277 4.333 .000 

 

 

Figure 4. Multiple regression of sim on bas, frd, and act. 

B. Fit 

A correlation matrix for the 35 participants‘ ratings of all 

26 triad pairs was created. Three participants had low average 

correlation levels (−0.02, 0.02, and 0.07), and so were 

removed as outliers. The overall average correlation level for 

the remaining participants was 0.38 (per participant averages 

ranging from 0.19 to 0.51), with nine negative values between 

pairs of participants. 

Clearly, the responses for fit were less consistent than those 

for similarity. Indeed, in the interviews following the test, 

many participants mentioned that they were using familiarity 

as a strategy—if they recognised a particular progression they 

would give it a higher fit. This suggests that these ratings are 

somewhat affected by each participant‘s musical taste and 

familiarity—in other words, a long-term memory (ltm) 

component. 

For each triad pair, the ratings of similarity were averaged 

over the 32 participants to create a variable called fit. A 

multiple linear regression on fit was performed using the two 

variables of spectral response distance (srd), and activity 

(act), giving a highly significant R
2
 = 0.672 (R

2
adj = 0.644). 

Coefficients and their significance for this regression are 

summarised in Table 2, and a scatter plot is shown in Figure 

5. 

Table 2. Regression coefficients and significance for multiple 

regression of fit on srd and act. 

Model B Std. Error Beta t Sig. 

(Constant) 4.118 .411  10.012 .000 

srd .022 .006 .580 3.883 .001 

act .021 .010 .328 2.195 .038 

 

 

Figure 5. Multiple regression of fit on srd and act. 



An attempt was made to simulate the effects of the long-

term memory component by finding all tested cadences that 

contained a given chord pair. The cadence with the highest-

rated cadential effectiveness transferred this rating to an ltm 

rating for that chord pair. The assumption being made here is 

that if a chord pair is found to be cadentially effective, it is 

likely to play a prominent and familiar role in music. An 

example is the progression C↔F (and its transpositions), 

which was given a much higher rating for fit than is predicted 

from its high spectral response distance and tonal activity. 

However, this progression is part of a cadence, C→F→b 

(and its transpositions), that was rated as being highly 

effective (it is the familiar Neapolitan II→V→i cadence). 

Regressing fit with this additional ltm variable, 

significantly increased the regression coefficient—giving R
2
 = 

0.797 (R
2

adj = 0.770). This suggests not only that fit is 

influenced by long-term memory, but also that the long-term 

memory component can be endogenously modelled using 

calculated values for cadential effectiveness (but, at the time 

of writing, this has not yet been done). 

C. Similarity and Fit 

The results of this first experiment suggest the following 

path diagram, as illustrated in Figure 6. 

 

 

Figure 6. A path diagram showing the proposed relationships 

between the cognitive variables discussed above—including a 

long-term memory (ltm) component—and the measured 

variables similarity (sim) and fit (fit). Error terms are not shown. 

If the path diagram is correct, these results suggest that not 

only can similarity be predicted with great accuracy using pd, 

frd, and act, but also that the latent voice-leading distance 

variable can be accurately predicted with just pd and frd. This 

is important because voice-leading distance is required as an 

input for the cadential effectiveness model.  

D. Cadential Effectiveness 

The procedure for determining cadential effectiveness from 

the psychoacoustic model is complex, because it should take 

into account not just the presence of an active penult (due to a 

positive aA→P | P), but also the successful resolution of any 

such active note. This is a preliminary report, and at this stage 

only a very simple model has been created. Cadential 

effectiveness (eff) was regressed against the following five 

variables: aA→P | P, aA←P | P, aP→F | P, aP←F | P, and aA←F | P, and 

these values have been made equal to either +1 (for any 

positively valued a) or 0 (for any negatively valued a), which 

is a gross simplification. (Due to the selection method 

described in section, aA→F | P always has a negative value, and 

so was not entered into the regression equation.) Calculations 

of whether or not active tones are resolved in the final triad, 

and to which tone (root, third, or fifth), have not yet been 

made. 

However, despite these simplifications (which are 

responsible for the vertical bands seen in Figure 7), a highly 

significant correlation is still obtained—R
2
 = 0.593 (R

2
adj = 

0.562). Coefficients and their significance for this regression 

are summarised in Table 3 (note that all of the statistically 

significant variables have parameters with the expected sign, 

see section IV.2), and a scatter plot is shown in Figure 7. 

Table 3. Regression coefficients and significance for multiple 
regression of cadential effectiveness on aA→P | P, aA←P | P, aP→F | P, 

aP←F | P, and aA←F | P. 

Model B Std. Error Beta t Sig. 

(Constant) 4.544 .184  24.754 .000 

aA→P | P 1.537 .266 .507 5.777 .000 

aA←P | P .215 .296 .065 .727 .470 

aP→F | P −.771 .250 −.267 −3.078 .003 

aP←F | P −2.233 .248 −.730 −9.021 .000 

aA←F | P .259 .312 .073 .831 .409 

 

 

Figure 7. Multiple regression of cadential effectiveness on aA→P | P, 

aA←P | P, aP→F | P, aP←F | P, and aA←F | P. 

 

VII. DISCUSSION AND CONCLUSION 

The experimental data support the conclusion that the 

model effectively explains how successive triads induce 

feelings of expectation and resolution. Experimental testing 

cannot prove a model and the causal assumptions it makes. 

But because this model is based upon empirical observations 

of frequency difference limens, and follows a logical path 

from these direct observations to measures of cognitive 

distance, it seems a reasonable conclusion to make. 

At the time of writing, the model for cadential effectiveness 

has not yet been fully completed, but the preliminary results 

seem promising. Furthermore, the model can still be 

substantially developed to account for memory effects, non-

root position chords, more complex chords, and other factors. 

To conclude, I would like to discuss a number of features 

that an effective theory of tonality should possess, and assess 

the current model against them.  



1) Testability. Any successful theory should be able to 

make testable hypotheses. As described in this report, the 

model has already been tested. Furthermore, the model has no 

restrictions on the underlying tonal or spectral tunings used, 

allowing it to be tested against non-standard tunings such as 

those described by Erlich (2006) and Sethares (2009). Such 

non-standard tunings are likely to eliminate the possibility of 

contamination from long-term memory (cultural learning), 

making the psychoacoustic basis of this model highly testable. 

This is an area of future research I intend to pursue actively. 

2) Historical Tunings. The effects of tonal music are robust 

over the range of tunings used throughout the common 

practice period (such as meantones, just intonation, and 12-

TET (Barbour, 1951)). Any successful theory should be 

similarly robust. The predictions of the model are, indeed, 

broadly similar over all the above-mentioned historical 

tunings. Furthermore, the model does not (like so many 

others, such as Lerdahl‘s (2001), or Woolhouse‘s (2007)) rest 

upon an implicit assumption of twelve-tone equal 

temperament—a point that is crucial given that tonality was 

born a time when the most common tuning was quarter-

comma meantone, not 12-TET. 

3) Privileged Ionian and Aeolian Modes. Modal music, 

prior to the seventeenth century, gave no privileged status to 

any particular mode. Tonal music, on the other hand, 

privileges the major (Ionian) and minor (Aeolian) modes. 

Their privileged status is a natural consequence of the model: 

Given a diatonic scale, the only chord pairs with positive 

activity are those containing both members of the tritone (e.g., 

in the "white note" diatonic scale, activity is present only if 

one triad contains the note f and the other triad contains the 

note b). If both tritone notes are to resolve within the scale, 

there are only two triads that contain both resolution notes (e 

and c)—the root and third of the Ionian final, and the third and 

fifth of the Aeolian final. 

4) Historical Development of Tonality. It is interesting to 

observe that the birth of tonality in the 17th century coincided 

with the birth of triadic harmony. Balzano (1980) speculates 

that the privileging of the Aeolian and Ionian modes and the 

use of triadic harmony are mutually dependent. The model 

presented here has a similar dependency—it is only when 

pairs of triads, rather than individual tones or dyads, are used 

that the conventional effects of tonality are predicted. This 

mirrors the historical development and demonstrates a causal 

dependency of tonality upon triadic harmony. 

5) Tonal Asymmetries. As mentioned earlier, purely 

structural models, such as the tonal toroid proposed by many 

contemporary researches (e.g., see volume 15 of Tonal Theory 

in the Digital Age: Computing in Musicology) and Lerdahl‘s 

tonal pitch space, are inherently symmetrical and so cannot 

capture the asymmetries that are an important part of our 

perception of tonality. In the model presented here, tonal 

asymmetries are a function of the comparison chords used—

no extra theory needs to be tacked on to account for them. 

I hope it is evident that the psychoacoustic approach to 

tonality proposed in this report holds great promise. Indeed, I 

hope it may herald a return to psychoacoustic approaches in 

music theory, as well as act as a launch pad for the exploration 

of the tonal possibilities opened up by non-standard tunings 

and spectra (Sethares, Milne, Tiedje, Prechtl, & Plamondon, 

2009). 
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