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Fragiskos Archontakis^ 
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Abstract

We propose a test for the order of integration of the univariate 
components of a vector process integrated of order two, i.e. an 1(2) 
process, generated by a vector autoregressive (VAR) model. The 
null hypothesis of the test is that the particular univariate time 
series is an 1(1) process. The hypotheses are formulated as linear 
restrictions on the directions orthogonal to the 1(1) cointegration 
space. The statistic considered is the Wald test, which asymp­
totically follows a chi-squared distribution, such that standard 
inference can be applied. The theoretical results are illustrated 
by a Monte Carlo experiment.

*This work is part of my Ph.D. thesis under the patient guidance of S0ren Jo­
hansen. Thanks are also due to N. Haldrup, D. O’Brien and A. Soro Bonmati and 
seminar participants of the European University Institute, the Universidad de Ali­
cante, the ASSET 2000 Euroconference at Lisbon and The Spring Meeting of Young 
Economists 2001 at Copenhagen who commented on earlier drafts of the paper. Any 
remaining errors are mine.

1 Address for correspondence: Department of Economics, European University In­
stitute, Via dei Roccettini, 9 - 1-50016 San Domenico di Fiesole (FI), Italy. E-mail: 
Fragiskos.Archontakis@iue.it
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1 Introduction

Cointegration theory has been vastly expanded the last two decades. For 
some representative references the reader is prompted to look into the 
seminal paper by Engle and Granger (1987), the collection of papers 
by Engle and Granger (1991), the textbook by Banerjee et al (1993) 
and the textbook by Johansen (1996). Various questions concerning the 
underlying economic theory can be tested through cointegration models. 
For instance, in the 1(1) model hypotheses on the long-run coefficients 
0  can be used to test that one of the components of a vector series is 
stationary.

In this paper it is our aim to construct Wald tests of linear restric­
tions on the cointegrating vectors 02 of the 1(2) model that are orthogonal 
to the 1(1) cointegrating space, see Haldrup (1998), Johansen (1995, 1996, 
1997) and Paruolo (1996). In particular, the linear restriction of a zero 
row on 02 is a test for I(l)-ness of a variable in the 1(2) model. This is use­
ful and extends the existing theory of the 1(1) cointegrated model where, 
in a similar fashion, there are already tests detecting whether a univari­
ate component of a vector time series is stationary or non-stationary, see 
for example Johansen (1996) and Paruolo (1997), while this is not yet 
the case for the 1(2) cointegrated model.

The rest of the paper is as follows. Section 2 briefly discusses unit- 
root testing and sets the scene. Section 3 provides the 1(2) cointegrated 
model with the theory on Wald test for linear restrictions on 02. Section 
4 contains the simulation experiment and some further exploration of the 
test statistic. Section 5 concludes.

Finally a word on notation. The backshift lag operator L is defined 
on a time series X t (scalar or vector) as LXt = X t~i while the difference 
operator A is defined as A =  1 — L. In denotes the n x n  identity matrix 
and by defining 0 = 0  (0'0)~1, the matrix Pg =  00' is the projection 
matrix on the space spanned by the columns of the n x r  full column 
rank matrix 0, r < n. The orthogonal complement of 0  is an n x (n — r) 
full column rank matrix 0± such that 0'0x = 0. By the symbol -A> we 
mean weak convergence.
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2 U nit-root Testing Issues

This section eases the way of introducing the test in a multivariate con­
text by discussing the issue in a univariate context and for a lower level 
of integration. The proposed test has, in a certain sense, a resemblance 
to the univariate KPSS test, by Kwiatkowski, Phillips, Schmidt and Shin 
(1992), which is introduced as a test of trend-stationarity against a unit 
root (difference stationarity) alternative; see also Hornok and Larsson 
(2000) for the finite sample distribution of the KPSS test and Choi and 
Ahn (1998) for a multivariate version of the test.

Just to fix ideas for unit-root testing, recall first Dickey and Fuller’s 
DF test, see amongst others Dickey and Fuller (1981) and Sims, Stock 
and Watson (1990). Consider the following regression model for the 
stochastic process yt:

where et are i.i.d. N  (0,er2) and wish to test the null hypothesis of a 
unit-root series (with drift) 7i0 : p =  1,5 =  0 against the alternative of 
trend-stationarity Tta : p < 1. The model is reparameterized as follows

where zt =  (1, yt — ct, t)', 9' = (c + 6 ,p , 6  + pc) and the OLS estimator of 
the model is

which follows a non-standard distribution and under the null is given by:

Qt (#ols — #) =  Vt V r

where QT =  diag {T l'2,T ,T 3' 2}, Vt = Q?1 ( Z l 2 Qt 1 and
<px = Q zt-iVt ■ The test statistic for pqls is

yt — c + 6t + pyt-1 -I- £tj

Vt — O' Zt-1 +  Et

r  (pols- i ) ^ / W ,

2
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where Pols is the super-consistent OLS estimator of the model and /  (W) 
a function of Brownian motions1.

On the other hand the KPSS test has the following structure:

Vt = n + t t  + Et 
n  =  n-1 + ut

where et are i.i.d. N  (0, erf) and ut are i.i.d. N  (0, erf) and r0 a fixed initial 
value. The test has the null hypothesis of trend-stationarity Ho : =  0
against the alternative of a unit root Ha : erf > 0. The statistic is a 
Lagrange-Multiplier (LM) one-sided test constructed as follows:

- let i t be the residuals of the regression of yt on an intercept and 
time trend.

- define the partial sum process of the residuals: St = H;=1 
t=  1 ,2,...,T.

- the LM statistic is LM  = T ~ 2 5?/of , and follows the tab­
ulated KPSS asymptotic distribution, where a2 is a consistent estimate 
of the variance of the series.

To our knowledge there is no way of rigorously comparing the two 
test statistics, since they are formulated under different null (and alter­
native) hypotheses. One can think of the two tests being complementary 
to one another, as it is also argued by Kwiatkowski et al (1992), page 
160. The gist of the argument is that one should perform both tests in 
order to finalize a decision on the process under investigation. See also 
the following table:

DF \  KPSS Ho'- (trend) stationarity H\. I(l)-ness
Hq'. I(l)-ness inconclusive evidence series 1(1)
Hi', (trend) stationarity series (trend) stationary inconclusive evidence

Other papers arguing in a similar fashion are Carrion-i-Silvestre, Sanso- 
i-Rossello and Artis Ortuno (2001) and Charemza and Syczewska (1998).

'See Banerjee, Dolado, Galbraith and Hendry (1993) for more details.
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In the same way, if one wants to test a series for I(l)-.ness within the 
1(2) model, one can perform univariate Dickey-Fuller tests but should also 
carry out the complementary test proposed in the present paper which 
is formulated as the null hypothesis of I(l)-ness against the alternative 
of I(2)-ness.

3 A nalysis of the 1(2) System

In this section we present the 1(2) model. We give a short summary of 
the statistical analysis and finally we consider hypothesis testing on the 
cointegrating vectors of the 1(2) system.

3.1 The Statistical M odel

We consider the vector autoregressive (VAR) model in p dimensions with 
k lags:

A(L) X t = et , t =  l,...,T , (1)

where A ( z )  =  Ip — UiZ — ... — YLkZk isafinite matrix polynomial of order & 
and the p x 1 vector errors et are i.i.d. Gaussian with zero mean and finite 
variance-covariance matrix fi. We assume that |A(z)| =  0 has roots in 
the complex plane at z  = 1 or \z\ >  1, in order to exclude the existence 
of seasonal roots, i.e. roots with \z\ = 1 and z  ^  1, and explosive roots, 
i.e. roots for \z\ < 1. The VAR model in (1) can be written equivalently 
in the error-correction model (ECM) form:

k- 2
A2w  =  n x t_! -  rA A t-i + 5 ]  'PiA2X(_i +  et, t =  1,..., T, (2)

i=l

where we have omitted constant terms and dummies for simplicity. It is 
assumed that II is a reduced rank matrix of rank r, i.e. the cointegration 
rank of the system is r  < p, which implies that there exist p x r  full 
rank matrices a  and (3 such that II =  a/3'. The assumption that allows 
for order of integration higher than one is a'jT/3^ =  £rf, where £, p are 
full rank matrices (p — r) x s of rank s < p — r. Now, the direction

4
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matrices of full rank f t  =  PxP and f t  =  P±V± are °f dimensions p x s 
and p x  (p — r — s), respectively. Thus ft f t ,  f t  are mutually orthogonal 
and (ft f t , f t)  is also a full rank matrix of rank p , i.e. f t  f t  and f t  span 
the whole space 7?.p. Furthermore, the condition that assures X t ~  /(2) 
and not of higher order is that the matrix a 2M ft is of full rank p — r — s, 
where M  =  TftST 4- Ip — J2i=i 'I'i- This is the 1(2) cointegrated model.

The representation for X t in case a 2M ft has full rank is

Xt =  C2 X/ X] +  f t  £  + A + B t +  Yt, (3)
j = l  i = l  1=1

where A, B  constants in 1ZP and Yt a stationary process. It follows from 
(3) that X t ~  1(2) since it is a function of a cumulated random walk. 
We note that since (ft f t / f t  =  0 we have that (ft f t ) ' Ci =  0 and hence 
(p-,Pi)'Xt ~  / ( l ) .  Here C2 =  f t  (a'2M ft)-1 q2, while for Ci it holds 
that ftC j = 5 TC 2 and f t f t  = a[ ( / — MC2), so that

( (
P'Xt — a 'TA X t = P'Ci X^ — a'TC2 X] €i +  stat. =  stat. process.

i=  1 1=1

In this case is called multicointegrated.

The statistical analysis of the model consists of either the two-step 
estimation procedure, see Johansen (1995), or the maximum likelihood 
procedure as developed in Johansen (1997). The former can be shown to 
be asymptotically equivalent to the MLE, see also Paruolo (2000). The 
procedure consists of two reduced rank regressions (RRR), see Anderson 
(1951). After concentrating out the effects of the short-term dynamics 
A 2X t~t, by regressing A 2X t, X t~i and AATt_i on the A2At_,, for all 
i =  1,..., k — 2, we work with the residuals of these regressions Zgt , Z u 
and Z2(, respectively, and have:

Zot = ap'Zu - r Z 2t+ ut

Thus in Step 1 we apply RRR for Zot on Zu corrected for Z2t and derive 
estimates for a, p  and r. In Step 2 we consider a, P and r known and fixed

5
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equal to the parameter estimates. Then the model can be transformed 
into a partial system in the following way:

t =  —a^T Z\t +  a Lut
a. Zqi — 0 Z\t —  ol r Z\t +  Q U (  

and the first equation can be rewritten as

=  — Qj_r ((3(3' + /?x/?x) Z\t + a'±ut

or
a'±Zot =  - a '± T0 (0 'Z U) -  H  [0'LZU) +  a'Lut.

Then with a RRR of a'±Zot on 0'±Zu corrected for 0'ZU we derive £, p 
and s.

A useful reparametrization of the model, due to Johansen (1997), 
can be achieved by choosing r  such that sp {r} = sp {/?; 0 i} and t l = /32 
with dimensions p x (r +  s) and p x (p — r — s). We also define the 
matrix p with dimensions (r +  s) x r so that r  and p are chosen to 
give 0 = rp  a p x r  matrix of full rank r. Note that there are many 
different choices for p; an obvious one is p = (/r ; 0 /  which applies when 
r  =  (0',0i). One can also derive 0\ = 0±T] =  fpx {p'±T'fpj_)~ . Finally 
define ip' = — (a 'n _1a )-1 a'f2-1T an r x p matrix, and k' =  — (a'j_r/?, £) 
a (p — r) x (r +  s) matrix. In this way the 1(2) model in (2) becomes

A2X( =  a (p'r'X t-i + ip'AXt-\)  +
k- 2

+na_L ( a l f i - ^ x )  kV A I , . !  +  £  >F1A2Wt_i +  et (4)
! = 1

and the multicointegration relation p'r'X t-i + ip'A T t-i ~  7(0) enters 
directly into the model. This reparametrization has the additional ad­
vantage that the parameters vary freely so maximum likelihood analysis 
is easier to apply, see Johansen (1997).

Another, more complicated, way of estimation is via the maximum 
likelihood procedure as developed in Johansen (1997). It is based on the 
ECM representation of equation (4) which, after transformed in partial 
systems (as above), gives rise to a switching algorithm:

6
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- for fixed r  =  (/3; fa) estimate a± (via an eigenvalue problem) and 
the other parameters (via regression)

- for fixed values of the parameters estimate r  (via generalized least 
squares).

Once r is found, then fa =  tj_ can be also determined. This is the 
method which we shall use in order to implement the Wald test for ft2 
and simulate its behaviour.

One can find, see also Johansen (1997), that for (3 normalized on 
c, we have that j3 is asymptotically mixed Gaussian and hence can be 
tested with a Wald test using an estimate of the asymptotic conditional 
variance which is given by the observed information2, see also Theorem 
3 in Johansen (1997):

( i - p A f a f f a ^ Z u Z i A
V (=i

Hypothesis testing on the vectors of the fa matrix is the purpose of the 
following section.

3.2 H ypothesis Testing for fa in the 1(2) M odel

In this subsection we consider hypothesis testing for fa in the 1(2) coin­
tegrated model. The paper is supplementary to the work by Johansen 
(1997) where hypothesis testing for (3 in the same model is considered. 
Using hypothesis testing for fa we can answer the following question: 
“Are there any 1(2) trends in a given univariate component of the pro­
cess?”

We want to find a Wald test for 'Hq : B!fa — 0, where R  is a p x m  
matrix of m linear restrictions. In this way we can test that the ith-row 
of the fa matrix is a zero row and hence deduce that the X it variable 
does not contain any 1(2) trends.

2The observed information is —<92log L(/3)/d32 to be distinguished from the 
Fisher’s information E$ [—d2 logL(/3)/3/?2] . With L((3) we denote the likelihood 
function of the model.

fa  ( /  -  cl3') ® (a'c& 1d c)

7
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Hence instead of I(2)-testing for unit roots in the univariate series 
by a Dickey-Fuller test or an alternative test .and then proceeding mod­
elling the series in a VAR, there is now the possibility of choosing the 
VAR framework and then testing for 1(1). The difference between the 
two testing methods is the following: in a univariate framework test the 
null hypothesis is of I(2)-ness, while in a multivariate test the null hy­
pothesis is that of I(l)-ness. By a multivariate test, one exploits more 
information, i.e. not only the data of the particular univariate series of 
interest but also the other series relevant, because of cointegration (for 
example), to the model. See also Hansen (1995) for a paper3 where co­
variates are used in order to increase the power of unit root tests in a 
univariate approach.

Now define r  =  (/?; 0\) and since 0, 0\ and 02 span the whole space 
W  it yields 02 =  Ti- Theorem 4 in Johansen (1997) states that if r  and 
f  are normalized by the p x (r +  s) full rank matrix 6 as b'r =  Ir+S and 
since

T ( T - T ) ^ ( I - T b ' ) ( 3 2C°°ptL 

and 02 = tx = (7 —  br') f>j_, we can derive that

T  [02 ~  P2) -bp± (C°°y (0202),

where
C° £  H0H'odt\ 1 H0 (dW2)'

with Ho being the limit of

T - l& Z 2[Tu] 0'2C2W  (u ) =  H0 (u),

furthermore, see equation (25) in Johansen (1997)

T -2 £  (&2Z2t) (0'2Z2t) ' f 1 HoH'odt
t=i Jo

and

W2 (u) =  [p^K (c ^ fia jJ -1 n'p±j p^tc (a'^naj.)-1 a'±W  (u).

3Niels Haldrup kindly pointed out this reference to me.
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It holds that C°° is a mixed Gaussian distribution with mixing parame-
ters

H0H'0dt
- l

® \p'l k 1

that is, if we condition upon 7io then C°° is a Gaussian.

R em ark. The distributions that were just derived are both sin­
gular. The distribution of f  is singular in the directions b' from the left 
and p from the right, while the one of fj_ is singular in the directions b'± 
and p'b' from the left.

The dimensions of the parameters entering the limiting distribution 
of interest are: /?2 : p x ( p - r - s ) ,  b : p x (r  + s) and p± : (r +  s) x s, hence 
C°° is of (p — r — s) x s dimensions. This implies, see also the expression 
for the mixing parameters of C°°, that the variance-covariance matrix 
will be of dimensions [(p — r — s)s] x [{p—r — s)s]. We assume that the 
normalization is chosen such that the matrix R'b is of full rank, because b 
is only a normalization parameter and hence it can be suitably chosen in 
order not to interfere with the hypothesis we want to test. We also need 
to assume that the m x  s matrix R'bp± is of full rank m < s. Formally 
one should test for this before proceeding to hypothesis testing for the P2 
matrix. Nevertheless, the argument that the parameters satisfying this 
condition consist of a set with small measure will be applied here.

Hence, one should define the restriction matrices Ri of dimensions 
p x m, with m < s, and R2 of (p — r — s) x n, respectively; m  and n 
determine the number of desired restrictions on p2. Thus, the hypothesis 
R[P2 = 0, or R[0 2R 2 = 0, can be tested via Wald test. Because the 
variance of C°° has the form Var (C°°) =  A®.B, with A — [/g1 //oFfgdf] 

of (p — r — s) x (p — r  —s) dimensions and B =  jp'^K (a'^flax)-1 k'p±j of 
s x s dimensions, the Var (R '^R 'i)  is given by

Var (R 'J iR i)  = Var [A' (C°°)V] =  (A'BA) ® (p'Ap) ,

where we set A =  —p'Jb'Rx and p =  (P2P2) Ri- Hence the Wald test is

9
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constructed as4

W  =  T 2tr |  (A'BA) 1 (R'1p2R2)(fi'A fi) 1 (R[02R2)'}  (5)

and it holds that W  — > X/j for T  —* oo. The number of degrees 
of freedom /  =  mn  in the limiting chi-square distribution is equal to 
the rank of the matrix Var ( R '^ R ^  . We still have to find a way to 
estimate Var (̂ R'l/32R2'). It holds that p2 can be estimated from the two- 
step procedure. Ri and R 2 are known and chosen by the investigator. 
Hence p, can be found. The factor A can be substituted by the limit 
[/o1 HaH'0dt\ . The rest of the parameters, i.e. k, pj_, Q, q_l, can be 
estimated. Hence B  can be found. The matrix b is chosen suitably for 
the normalization and is thus known, hence A can be found.

Exam ple. Consider the case of a VAR model in p = 3 dimensions, 
cointegration rank r = 1 and s =  1, hence there is only one 1(2) trend 
(p — r — s = 1). The hypothesis to be tested is (/32)s = 0. Hence p2: 
3 x 1, 6: 3 x 2  and one can assume that 6 and p are such that the 
scalar R'bp± 0. Under these circumstances one can proceed with the 
hypothesis testing as described above. For testing the 3rd element of the 
/?2 vector one should apply R\ = R = (0,0, l)7 and R2 =  1. Because 
the mixed Gaussian limiting distribution C°° is, in this particular case, 
a 1 x 1 scalar we can impose only one linear restriction. We now have 
A =  1, p — /32/32 and the Wald test is

Wum =
T 2 [i($2)3]r XV

(A'BA) [P'Ap)
x l for T

with notation as before for the rest of the parameter estimates, that is: 

X’BX = [—'p1b'R^j 'p_Lk (d^dx) k'/5jl (—p^b'Ri')

and

p'Ap = (& & ) \t ~ 2 £  (& z2t) (/3'z2ty  (%&) .

4Note here that formally speaking it is not A, but the estimate as given by the
product moments of 02^2t to enter the W  test.
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4 Simulations

In order to obtain a feeling of how the proposed Wald tests works in prac­
tice we have carried out a small Monte Carlo experiment. In particular, 
we examined the size properties of the Wald test, the rate of convergence 
of the test and got some critical values at 5% nominal level.

4.1 The D ata Generation Process

The Data Generation Process (DGP) consists of a VAR with p = 5 and 
k = 2:

X t — 111 +  D2 ACt—2 +  et>
where the error term et is iid and follows5 et ~  7V(0, fi), 12 =  0.01 * / 5 
and we specified

nr =

/  2 0 0 0 0 \
0 1 0  0 0
§ 0 0 0 0
0 0 0 p 0

 ̂ 0 0 0 0 ip )

n2

/  - 1  0 0 0 0 \
0 0 0 0 0

- I  0 0 0 0
0 0 0 0 0

 ̂ 0 0 0 0 0 ,

Because of the presence of nonstationary processes in the model all initial 
values were set to be equal to zero in order to avoid having deterministic 
terms in the model, i.e. = X i 0 =  0. The autoregressive coefficients 
p and p  take the values 0.0 , 0.5 and 0.9. We consider the following 
collections of DGPs depending on the choice of p and p:

\  p 0.0 0.5 0.9
0.0 VÇ V1 VÇV2 v g V i
0.5 v g v  3 v g v 5
0.9 v g v 6

Hence, the designed /3-matrices are found to be

0 = (0, h)'; Pi = (0, 1,0,0,0)'; 02 = (1,0,0,0,0)'

5Variance scaling was applied because the I (2) process was giving too large obser­
vation values at large samples.
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and X u  is an 1(2) process, X 2t is an 1(1) process, AVis an 1(1) process 
that provides the multicointegration relationship in the model and Xu, 
X u  are stationary AR(1) processes. That is, the DGP has the specifica­
tion (p, r, s) =  (5,3,1).

The null hypothesis is Ho '■ (^2)2 =  0, while the true (^2)2 =  0. The 
Wald test follows asymptotically a \ i  distribution and the nominal 5% 
level critical value for the x l is 3.84. Six sample sizes were used, that is, 
T  = 25, 50, 75, 100, 200, 400. The number of replications was chosen to 
be n = 10000 for each specification6.

4.2 Simulation Results

The 5% level empirical sizes and the 95% empirical critical values (as 
95% quantiles in the simulations under the null hypothesis) of the Wald 
test statistic were calculated from the Monte Carlo rejection frequencies 
based on the asymptotic critical values of the Xi at the 5% level, that 
is, Xi (0.95) =  3.84. The results are reported in Tables 1 and 2 in the 
Appendix.

Overall Comments:

i. When departing from our DGP, that is, for a relatively high vari­
ance a\ = var(e2t) =  1 of X 2t ~  7(1) with respect to of = 
var{ext) = 0.01 of X u ~  1(2) we get higher rejection frequencies for 
small and medium samples, while it affects less large samples. This 
is because the I(2)-variance is of order 0 (a \^-) relative to the 1(1)- 
variance of order O(ofT). For instance, with T  =  100, p — tp = 0.5 
and 10000 replications we get an empirical size a*2=1 =  15% with 
a 95% critical value of (0.95) =  9.76, while the correspond­
ing values for erf =  erf =  0.01 are, see model VQVz in Table 1, 
a *vgv3 = 9% and, see model VQVz in Table 2, T vqv3 (0.95) = 5.24, 
respectively.

6 Should anyone wish to replicate the results the simulations were carried out in 
RATS 4.30 with the seed chosen to be equal to 20.
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Interpretation: the large variance a\ »  a\ implies that the ef­
fect of the 1(2) process being “hidden” behind the 1(1) process, 
particularly in small samples.

ii. When X it — > I (1), for i = 4,5, instead of X it ~  /(0), it yields 
that we get higher rejection frequencies since for X u  — > 1 (1 ) or 
Xst — > /( l)  the cointegration rank r  — > 2, instead of r  =  3; when 
both X it — ♦ 1(1) and X 5t — » /( l)  it even holds r — > 1, instead 
of r =  3.
Interpretation: the test is unstable when (r,s) ^  (ri s)true> which 
could be seen as a model misspecification problem.

iii. The Wald test is asymptotically a x j  distribution, where /  is the 
number of degrees of freedom. Hence one would expect that in small 
samples, like for T =  25 or T = 50 observations, the test would not 
work satisfactory. This is also supported by the simulation study. 
The simulated critical values imply that the distributions have very 
long tails in small samples.

As the sample size T  increases from 25 to 400, we can see from 
Tables 1 and 2 that the empirical size decreases and the empirical critical 
values are closer to the asymptotic critical values.

The ordering of the collection of DGPs according to their perfor­
mance in the Wald test is

vgvi >- vgv2 y vgv3 >- vgv4 y vgv5 y vgv6,

which is a “natural” result, given the comment on the correct specifica­
tion of (r, s).

In order to have an idea of the precision of the empirical sizes a* 
in the tables above we shall calculate their variance. For each simulation 
we assign probabilities for a nominal 5% test, assuming that W  ~  xl, as 
follows:

p = Pr [Reject if W  > 3.84] = 0.05, say, and 
q = 1 — p =  Pr [Do not Reject if W  < 3.84] = 0.95,

' .. 13
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depending on whether the Wald test rejects the null hypothesis Ho, or 
not. Hence the random variable Y, defined as h  := #  of rejections of 
Ho, follows a Binomial distribution. Thus Y  ~  B  (n,p ), where n =  #  of 
replications, and its variance is Var (Y) = npq, while the variance of the 
empirical size a* will be

Var ( - y )  = \ v a r  (Y) =  — = >  S.D. (a*) =
\n  )  n2 n V n

As a result, for a confidence interval for the empirical size a* we have

d* e [d* ±  2 * 0.00218] «  [a* ±  0.0044],

but only for d* ~  0.05. Hence, for d* ~  0.05 one would tend to keep two 
decimal points for d ’7.

The graphs (see Appendix) corresponding to the simulated empir­
ical sizes are presented in Figure 1, while Figure 2 graphs the empirical 
sizes with respect to T~l . Finally, Figure 3 provides the QQ-plot of the 
actual test quantiles plotted versus the theoretical x 2 (1) quantiles for the 
“baseline DGP” T>QVo , where it is clear that the Wald test overrejects 
in all samples. By using the conjecture that the order of convergence of 
the test is approximately a polynomial of T~h, that is

T  (/?2 — — MG  + +  7̂ 2 +  •••)

where MG  =Mixed Gaussian, we run a simple linear regression of the 
variable log [a* (T) — 0.05] on a constant and the T~h terms up to O (T~2) :

log [a* (T) -  0.05] «  c + ^  +  11,

where the full results of the regression where:

Variable Coeff Std Error T-Stat Signif
Constant -5.019 0.109 -45.87 0.00000135

T -i 200.748 14.761 13.599 0.00016926
r - 2 -2557.86 331.56 -7.714 0.00151978

7Even when a* =  0.5, the confidence interval has the form [a* ±0.01] which is 
farely accurate.
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hence we find that for rate of convergence of the “baseline DGP” VQV3 
following formula holds approximately:

4.3 Pretesting

In order to determine the order of integration of the variable X it, i = 
1, one has to carry out some preliminary test determine the coin­
tegrating ranks r  and s. In this subsection we briefly discuss the effect 
that this pretesting8 may have upon a subsequent test for fa.

The question we wish to answer is:

“What is the distribution of the test statistic for the hypothesis 
H 0 : (fa)i =  0, for some i = 1, ...,p, given that the cointegrating indices 
r and s are determined?”

Clearly the answer depends on the values of the cointegrating in­
dices.

We have that the likelihood ratio test statistic for estimating the 
cointegrating indices r and s is given by the formula, see Johansen (1995):

is a trace test statistic for the cointegrating index s when the rank r  is 
fixed and

is the 1(1) trace test. The hypothesis Hr s is rejected if and only if the 
Hij are rejected for al \ i  < r  and for i =  r  and j  < s.

In order to estimate the cointegrating ranks from the data one has 
to carry out the following sequential procedure and choose the first non- 
rejected pair (r ,s ). In more detail:

®Thanks are due to Niels Haldrup for pointing this out.

log [a* (T) -  0.05] «  - 5  + 4 * — -

where
Qr.s =  - 2  log Q (HTi, | Hr)

Qr = —2\ogQ (H (r) \ H  (p))
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1. Compare So,o with its quantile coo, say. If So,o < c00i then choose 
f  =  0 and s =  0, while if S0,o > Coo, then

2. Calculate So,i and compare it with its quantile coi, say. If 
So,i < Cqi, then choose r — 0 and s =  1, while if So,i > coi, then

3. Calculate So,2 and compare it with its quantile C02■ If So,2 < C02, 
then choose f  =  0 and s =  2, while if not compare Sop with its quantile 
c03, etc.

The above is a sequential decision process considering the Intersection- 
Union test (IUT). An IUT tests each of the hypotheses Hitj individually 
and rejects Hr s if and only if each of the sub-hypotheses Hitj is rejected 
because the test of HTtS concerns a union of the disjoint hypotheses Hitj. 
Hence on an overall decision set Drs, say, we decide that r = f  and s = s.

Define the non-critical region sets

£0,0 -i coo, So,1 > coi,..., So,p—1 > co,p_i,
Sj.,0 ^  C10, Sr,s_l ^  Cr s . 1, Sr,s ^  Crs

for all possible pairs (r, s). They form a sequence of disjoint sets -4o,o = 
{So,o > coo}, A ,i =  {So.o > coo, S0,1 > Coi}, •••, etc. Thus the final deci­
sion is based on

JDr,s =  •A t-.s —I n  =  *A r,s— 1 n  { S r , 3 Cr s }  ,

while L>0,o =  Ao;o =  {So,o < c0o}.
Hence for our hypothesis TLo it holds that the probability

Pr [Wm .=0 < c | rank (/32) =  P ~  r -  s] — * X2p-r-s (c) ■

Let us assume that we decide based on a 10% test.

In our DGP specification, we know that p = 5 and the correct 
ranks are r0 = 3 and s0 =  1- That is, for the final test of the sequential 
procedure, we have

S3,i =  Qs,i + Qz =  -2  log Q (H3A \H 3) - 2  log Q (H3 \ H3) 

and Pr [S3,i < c3j] =  0.9, while it actually is Pr [S3,i < c3i | >43,o].
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If r  =  3 and s = 1, then all the test statistics that define A^o will 
diverge to oo, so that for large T  there is no difference between the two 
procedures

lim P{S3,i < c31|̂ 43 0} =  lim P{S3,i < c3,i}.T —»oo T—*oc

When it comes to testing the order of integration of the i-th variable 
X it we rely on having found the correct value of r and s. Asymptotically9 
we know that the correct value is attained with 90%, and values lower 
with zero probability. Thus there is a possibility that the 1(2) rank will 
be incorrectly determined and that means that the test for I(l)-ness can 
be wrong. It is therefore a good idea to see how the conclusion changes 
for different choices of the 1(2) rank p — r — s.

4.4 Further Investigation of the Test Statistic

In this subsection we further consider the behaviour of the Wald test in 
two ways. Firstly, we use some simulation results carried out by Johansen 
(1995) to see how often the correct values of the pair (r, s) are achieved 
and hence the test is valid. Secondly, we consider the effect to the test 
of a wrong rank r choice.

The Wald test considered in this paper is a test contingent on the 
choice of r  and s since its value depends on the pair (r, s) of cointegrating 
indices. However, it is not always the case that the correct values of the 
pair (r, s) are achieved with probability close to unity. We reproduce 
here Table 4 of page 44 in Johansen (1995) where the joint probability 
limj- Pr [Qr <  cr (5%), Qr<s < Cr,s (5%)] is calculated via simulation for a

9In finite samples, we admit that the Wald test for the hypothesis Ho '■ (fa)2 = 0, 
which will follow a Pr [W(/3,j =o < c | rank (fa) =  l] = xl (c) distribution, may be 
affected slightly from pretesting effects. However, to our knowledge, there is not yet 
developed an alternative way for carrying out a similar exercise.
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time series with sample size T  =  200:

p — r — s \  s 0 1 2 3
0 0.95 0.95 0.95
1 0.88 0.83 0.78 0.75
2 0.70 0.58 0.51 0.45
3 0.38 0.28 0.21 0.15

the Table above that for the case r = 33 and s = 1, i.e.
when (s,p — r. — s) = (1,1), that we are interested in due to our DGPs, 
the probability of attaining the correct pair of values is equal to 0.83. 
Hence, for the Wald test regarding VQV\, say, and by choosing T  = 200 
in order to be in accordance with the Table above, we have (see Table 
1, paragraph 4.2) empirical size 0.06 and probability of correctly not 
rejecting the null 0.94:

H0 : (/?2)2 = 0 0.94 * 0.83 =  0.78 
Hi : (/?2)2 t̂  0 0-06 * 0.83 =  0.05

That is, for a 94% test when r and s are the true ones we correctly do 
not reject Ho at 78% of the times when we don’t know for sure that 

,(s,p  — i—  s) =  (1,1), because:

Pr [W < ca\ = Pr [W < ca \ (r, s) xorrect] * Pr [(r, s) xorrect] =  
=  0.94 * 0.83 =  0.78.

On the other hand at 17%, at worst, of the times with wrong choice of 
cointegrating indices we might conclude that there is not an 1(2) trend 
in X 21 component while in reality there is not:

Pr [W < cQ] =  Pr [W < ca \ (f, s) xorrect] * Pr [(r, s) :wrong] <
< 1.0 * (1 -0 .8 3 ) <0.17

In order to investigate the robustness to the choice of the cointe­
grating rank r, we have carried out some additional simulations. We 
keep the specification of p = 5, ro =  3 and so =  1, while we now assume 
that the initial choice of r = 2, instead of ro =  3, while keeping s =  1.
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The reason for picking up this specification is that all the other cases of5' VoyfV3 
r  =  {0,1,4, 5} are not interesting for the 1(2) model, because: for r = 0 
the model is 1(2) and exhibits no cointegration in levels; for r =  1 there is 
only one cointegrating vector /3 and hence we cannot observe the case of 
cointegration in levels and multicointegration at the same time; for r  = 4 
and because s =  1 it holds that there is no f32 vector, i.e. there is no 
1(2) variable in the system; finally for r  =  5 there is no further step for 
choosing s at all and the model reduces to 1(1). Hence with this choice 
of {r = 2,s =  1} the number of 1(2) trends in the model are wrongly 
specified as being two (p — r — s = 2) instead of one {p — vq — so =  1) 
which was the “true” DGP choice.

The DGPs and the sample sizes T  of a small scale simulation study, 
here we chose n — 1000, were kept as before with p =  0,0.5 and 0.9, 
while <p =  0 fixed. The test we calculate is based on the joint hypothesis 
that both coefficients in the second row of p2 are equal to zero, that 
is (/?2)21 =  0 =  ($2)22 i which can be formulated in the following way: 
Ho : R[P2R2 = 0, R\ = (0,1,0,0,0) and R2 =  I2. The test statistic 
is given in equation (5) above and, in large samples, it follows a x l 
distribution if in fact there were the case of p — r — s =  2, which is not. 
The critical value now used is x i  (0 95) = 5.99. Hence, we derive the 
following results for the empirical size a* of the VQVi, i =  1,2,4:

Sample Size T  25 50 75 100 200 400
VQVi 60% 63% 62% 63% 65% 73%
vgv2 59% 62% 61% 65% 69% 71%
V g V i  55% 57% 59% 64% 67% 75%

A clear-cut result which comes out of this Monte Carlo simulation exper­
iment is that by setting r too low then p — r — s becomes too large and it 
is “too difficult” to accept zeros in P2 overrejecting always. Furthermore, 
the higher the sample size T, the higher the empirical sizes a*. One way 
of interpreting this is as follows: the more information one has about the 
DGP, the higher the number of rejections regarding two (zero) elements 
of P2 where in practice there is only one (zero element). However, for 
higher sample sizes T  there would be also lower the probability of attain­
ing a wrong choice of indices before carrying out the test. On the other
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hand, also due to the small number of replications, it seems that the 
effect of the increasing p from p =  0 to 0.5 and 0.9 is rather insignificant.

4.5 Limitations of the Test Statistic

One limitation of the test occurs when one wants to test the restriction 
Ft!fh = 0 for all {0 2 )x ■ To be more precise consider the simple case (also 
example in paragraph 3.2) of p =  3, r  = s = 1 and hence 02 is a 3 x 1 
vector. It is possible to test that each Hoi : (/?2)* =  0, for i =  1,2,3, 
but it is not possible to make inference on say i =  2, conditioning on the 
fact that we could not reject the hypothesis for i = 3. This is because 
the asymptotic distribution of 02 is singular and hence one can only by 
suitably rotating the distribution under the particular Hq to carry out 
hypothesis testing concerning some element of 0 2 , via the hypothesis 
Hoi, i = 1,2, 3. However, it is not possible to test the intersection of this 
sub-hypotheses, i.e. it is not possible to test the hypothesis H 02 fl H 03, 
say.

A second limitation concerns the specification of R. There is a 
simple example where the matrix R'bp± is of reduced rank, that is when 
the specification for R  =  J3 then the hypothesis Ho : R! 02 = 9, where q 
is a 3 x 1 vector of constants, is equivalent to Ho : 02 =  q and the p x  s 
matrix R'bp± = bp± has indeed reduced rank s < p. That is because the 
p x m  matrix of restrictions R  is now chosen to be a square matrix of 
p x p dimensions.

5 Conclusions

The purpose of this paper is to look into the 1(2) cointegrated model and 
construct Wald tests in order to test hypotheses of linear restrictions on 
the directions 0 2 , that is, the directions orthogonal to the 1(1) cointe­
grating space. This is important because it is in essence a multivariate 
alternative to the unit root Dickey-Fuller type univariate tests.

Our results are the following:
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The limiting distribution of the Wald test for a hypothesis on the 
fa matrix Ho ■ R \faR 2 =  0 follows a x j  with /  =  mn  degrees of freedom, 
where /  equals to the number of imposed restrictions on fa.

Testing on the fa matrix is possible but one has to “handle with 
care” the specification of the matrices of linear restrictions Ri and R2 of 
dimensions p x m  and (p — r — s) x n, respectively. This is because the 
full-rank condition of the matrix R[b is crucial for the Wald test to make 
sense.

The Monte Carlo simulation experiment showed that the test per­
forms relatively well, that is we have achieved actual size 6% and de­
creasing to 5% with increasing sample size. The only catch is when the 
cointegration indices r  and s are not correctly specified. Then the Wald 
test performs poorly.

6 Appendix: Tables 1, 2 &; Figures 1, 2, 3

Tables:

Table 1: Empirial Size a* (nominal size a  =  5%) of the 
Wald test for fa for different DGPs and n =  10000 replications

VGVX vgv 2 vgv3 vgv 4 vgv5 vgv6
T  = 25 0.31 0.35 0.39 0.42 0.45 0.47
T  = 50 0.12 0.15 0.18 0.31 0.31 0.39
T  = 75 0.09 0.10 0.11 0.26 0.26 0.34
T  = 100 0.07 0.08 0.09 0.21 0.21 0.28
T  = 150 0.07 0.07 0.07 0.16 0.16 0.21
T  = 200 0.06 0.07 0.07 0.14 0.14 0.17
T  = 400 0.06 0.06 0.06 0.10 0.10 0.11
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Table 2: Empirical Critical Values [xl (0.95) =  3.84] of the 
Wald test for /32 for different DGPs and n =  10000 replications

vgrx vgv 2 vgv3 vgVi vgv5 vgv 6
T  = 25 50.7 91.5 121 253 336 450
T  = 50 6.39 9.03 12.2 94.8 99.8 179
T  = 75 5.18 5.61 6.06 54.7 62.0 129
T = 100 4.50 5.00 5.24 26.4 28.1 70.1
T = 150 4.39 4.59 4.56 13.1 13.4 26.5
T  = 200 4.16 4.34 4.39 9.72 9.38 13.8
T  = 400 4.15 4.27 4.34 5.99 6.05 6.23

Figures 1 and 2 are produced based on Table 1: Monte Carlo estimated 
empirical sizes for a 5% nominal sized Wald test in the 1(2) Model, for 
sample sizes: T  =  25, 50, 75, 100, 150, 200, 400.

Figure 1: Simulated actual size of the Wald test for /?2-
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Figure 2: Rate of convergence (vs T  x) of the Wald test for f32.

Figure 3: QQ-plot for VQV3 : Wald test for /32.
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