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Abstract
A model M1 encompasses a rival model M2 if M1 can explain M2’s results. A Wald 

Encompassing Test (WET) checks if a statistic of interest to M2 coincides with an estimator of 
its predicted value under Mt. We propose techniques for evaluating WETs in stationary, linear, 
dynamic, single equations with weakly exogenous regressors, extending results for strong 
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parsimonious encompassing tests.

Keywords: Encompassing; dynamics; weak exogeneity; parsimony; Monte Caria

This research was financed in part by grants B00220012 and R000231184 from the U.K. Economic 
and Social Research Council. Helpful comments from Jean-Pierre Florens, Grayham Mizon, Mark 
Steel and two anonymous referees are gratefully acknowledged. This paper was presented to an 
Econometrics Workshop at the EUI in September 1993.

Proofs and reprints should be sent to the second author at Nuffield College, Oxford, 0X1 INF UK.

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



'

•

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



i. Introduction

One model M! is said to encompass a rival model M2 of the same variable y if the 

former can account for the results obtained by the latter. This notion is a natural component 

of a progressive research strategy and has been formalized in the econometric literature: see 

Hendry and Richard [1990] for an overview and bibliographic perspective.

We will first define encompassing at the level of estimated models, emphasizing 

dynamic equations, relate it to a more heuristic concept and to nesting, discuss testing for 

encompassing, then extend the definitions to conditional settings. Our discussion draws on 

Florens, Hendry and Richard [1991] to which the reader is referred for a formal analysis.

Let M, and M2 denote two competing parametric dynamic models with no exogenous 

variables. Their (sequential) density functions for a common vector yt are /(yt | y,_,,a) for 

a s  A and g(yt |>’|_1,5) for 5 s  D. The matrix Tt_1 = (yrt_j,...,y,), thereby grouping 

observations prior to period t. Observations start at f = 1, and initial conditions are assumed 

to be known.1 The models are called estimated in that they are provided with estimators a,r 

and 5t for any finite sample Y^. Let M[ = (M^a^J and M2 = (M 2.5 l ).

Definition I: M! exactly encompasses M2 if and only if there exists a sequence of functions 

(At ) such that 5T = AT(aT), M[ -almost surely.

When attention is restricted to a subset 5, of 5, definition 1 applies subject to the 

qualification ‘with respect to 5

In general, we would not expect encompassing to hold exactly for finite sample sizes, 

even if M! were the data generation process (DGP). A  weaker requirement is that of 

asymptotic encompassing, which we refer to as encompassing when no ambiguity arises: 

Definition 2: M, asymptotically encompasses M2 (denoted by M2) if and only if there 

exists a function A such that 5T = A(&t ) + Op(7‘-), M,-almost surely.2 

The concept of asymptotic encompassing captures the heuristic notion that the d g p  ought to 

encompass all competing models. If M[ were the DGP, asymptotic encompassing would

1 This assumption is largely for notational convenience: the specification of M i and M2 can be extended to 
incorporate sampling distributions for Tp.

2 The order of convergence can be adapted to die class of models under consideration, ll fl '  is appropriate 
for the present paper where we consider stationary processes.
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generally hold under appropriate technical conditions, with A(a) being given by the plim of 

5t under Mh In particular, if ST were a pseudo-maximum likelihood (m l) estimator, A(a) 

would coincide with the pseudo-true value associated with the Kullback-Leibler information 

criterion (KLIC): see e.g. Sawa [1977], Kent [1986] or Gourieroux and Montfort [1991].

If we define nesting such that it implies the existence of a function 8 = d(a), and use an 

estimation procedure which is equivariant over such a function, then nesting implies encom­

passing. However, nesting is often defined by the weaker requirement that the KLIC of M2 

relative to be zero (see e.g. Pesaran [1987] or Gourieroux and Montfort, 1991). Then 

nesting also implies asymptotic encompassing for estimators that are asymptotically equiv­

alent to (pseudo-) ML. Naturally, encompassing does not imply nesting as illustrated by the 

DGP encompassing all rival models, whether formally nested or not within it. The 

distinction between the two concepts of nesting is irrelevant to the analysis below and so 

MjcM2 reads as ‘Mj is nested in M2’ without qualification.

From the perspective of econometric modelling, an important concept is parsimonious 

encompassing which determines whether a ‘simple’ model is capable of capturing the 

salient features of a more ‘general ’ model within which it is nested.

Definition 3: M! parsimoniously encompasses M2 (M[£p M2) if and only if (/') M!cM2 and 

(ii) M]£ M2.

The concept of parametric encompassing in Mizon and Richard [1986] is closely related 

to definitions 1 and 2 (asymptotically), but restricts Â . to be a pseudo-true value. That 

restriction creates conceptual problems (such as loss of transitivity) but delivers an oper­

ational concept that has important unifying features for testing nested and non-nested 

hypotheses.

Tests of whether or not M! encompasses M2 are genetically based on measures of 

divergence between 8T and AT(&T) for some suitable choice of [AT) (see Florens et al, 

1991). Typically one aims at selecting a sequence (At ) which minimizes the divergence of 

M2 relative to Mlt but this often results in intractable functional optimization problems, so 

that approximate solutions must be considered. Given the previous discussion, possible 

candidates are (finite sample or asymptotic) pseudo-true values. Wald encompassing test
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(WET) statistics, introduced by Mizon and Richard [1986] and central to the objectives of 

the present paper, rely upon pseudo-true values to examine whether or not the encom­

passing difference v,i’[5,[,-A(a,[.)] is significant on Mj (see section 2 below).

Consider the case where the competing models include a vector of weakly exogenous 

variables. As discussed in Engle, Hendry and Richard [1983], weak exogeneity implies that 

there can be no efficiency gain in designing estimators which depend on the specification of 

the exogenous variables’ process. Hence no such estimators will be considered in the 

present paper. Nevertheless, the sampling distribution of §T on M, is bound to depend on 

the characteristics of the exogenous process since, in particular, M2 is mis-specified from 

the viewpoint of Mj. Hence generalizations of definitions 1-3 for conditional models require 

explicit consideration of the exogenous process and an issue of robustness arises.

Let Mc denote a sequential model for the exogenous variables rt, with density function 

#•(»-,|<St_x, t) where St_, regroups past observations on s ' = (v ,:r') and t e T is a nuisance 

parameter. Let M? = (Mt, M J for i = 1, 2.

Definition 4: Mj encompasses M2 given Mc if and only if M| £ M£ relative to 5 .̂

It is unreasonable in most applications to require that Mc be more than just an auxiliary 

model, which could be severely mis-specified for the DGP, so we extend the definitions to a 

class of competing models Mc (if only for consideration of robustness):

Definition 5: M, encompasses M2 given !£., if and only if there exists Mc in Uc such that 

Mf £ M2 relative to 5.( .

The analysis of the choice of regressor problem in Mizon and Richard [1986] and 

Florens, Hendry and Richard [1988] can be reinterpreted within the context of these 

definitions. However, since they only considered cases where yt does not Granger-cause i\ 

(see Granger, 1969), so that rt is strongly exogenous in the sense of Engle et al. [1983], the 

analysis simplifies considerably, and for practical purposes can be treated as a ‘fixed 

regressor’ analysis. The question naturally arises as to whether their results remain valid 

once Granger causality feedbacks from yt to r( are allowed.

To simplify notation for the rest of the analysis, we do not explicitly distinguish between 

models and their estimated counterparts, using Mi as a shorthand for both. Following
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Hendry and Richard [1982], the limit of M, under the DGP, equivalent to the reduction of M; 

from the DGP, is called an empirical model (see Hendry, 1993), and it is the characteristics 

of the empirical model which determine the outcome of any modelling exercise.

The two objectives of our paper can now be formulated. First, we propose general 

techniques for the evaluation of WET statistics for single equations estimated from 

stationary, linear, dynamic systems where the regressors contain lagged dependent and 

weakly exogenous variables. We derive conditions under which results obtained for strong 

exogeneity extend to weak exogeneity. Because of feedbacks from the endogenous to the 

conditioning variables, the rival models do not fully characterize the joint data density, 

which needs to be completed by an auxiliary system linking the non-modelled variables. 

The formulation of the completing model is important for the validity and power of the 

encompassing tests and section 3 proposes a general approach which ensures at least a 

consistent test procedure.

The other objective is to explore the fact that dynamics often constrain the predictions 

which one model can make of another’s findings, and encompassing tests that exploit such 

information can differ from existing tests. Consider the rival dynamic models:

= 0Vt-i + ei.;

= Wt-2 + e2t>

where |/3|< 1 (to ensure stationarity), and each model assumes its error to be independent 

normal, mean zero, with variance <r?, denoted IN(0,ct?). Then, Mj predicts y to  be fP, but 

also predicts the presence of residual autocorrelation in M2, since it views M2 as:

M5:yt = + £„ + peu_v

These factors determine M j’s prediction of the estimate of y in  M2. The w e t  statistic is 

equivalent to the usual F-test for deleting y,_2 from the linear nesting model:

Mn: »  = byt- 1  + 0 \ - 2 + W

Both tests are approximations in finite samples due to the dynamics.

If we switch the roles of the competing models, then M2 predicts [i to be zero, and 

predicts the presence of an autoregressive error in M,. The F-test has the same form, but 

now tests if b = 0, whereas the form of the WET statistic is noticeably different from the
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previous case due to the regressor in M2 being at a longer lag than that in Mj. Such 

considerations extend to more interesting dynamic models which include regressors that are 

weakly exogenous for the parameters of interest under Mr

The structure of the paper is as follows. Section 2 reviews results on encompassing tests 

in previously studied models, and section 3 extends those findings to stationary, linear 

dynamic models. The examples in section 4 illustrate implementation issues, including test 

power considerations. Section 5 concludes, and comments on extensions to integrated 

processes. The paper draws on Govaerts [1987] where additional results, proofs and 

examples are found (a copy is available from the first author upon request).

2. ENCOMPASSING TEST STATISTICS
This section summarizes the definitions and results needed for our later analysis. Proof 

and additional details can be found in the literature noted in the introduction. We focus on 

parametric encompassing tests in the sense of Mizon and Richard [1986].

2.1 WET statistics

Ignoring for the present any complications arising from the treatment of exogenous 

variables, let a  denote a consistent estimator of a  under Mj and (j> a statistic of interest in 

the context of M2. The pseudo-true value <j>a of <p under Mj is:

K  = Plim  M , *  ( 2 i

Let A,), denote the encompassing difference relative to p, namely the difference between p 

and an estimate of its pseudo-true value 0^:

A = * - * a  (2.2)

The limiting distribution of V? A  on Mj is:

v/f A  v «l•/< A l) where ^  means ‘is asymptotically distributed on Mj as .

Also, V „ [/f  A ]̂ is the asymptotic variance matrix of <Jf A-

Using the estimated variance V _[/r A Ĵ, a WET statistic with respect to (j> is given by:

nw(4>) = ta;v![vTA A  ^  x2(p) a.u
where p is the rank of V -[^r A ] and the superscript + denotes the Moore-Penrose inverse.

- 5 -
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2.2 The choice of regressors problem

The choice of regressors problem usually takes the form:

M ,:y = Xft + e,, Cj -  N(0,o2It ), a  = (p,a2), (2.4)

M2: y  = Zy + Ej, Ej ~ N(0,r2/ r ), 5 = (y,r2), (2.5)

where X  and Z are full column rank matrices of dimensions Txk and Tx.1 respectively. We 

assume for convenience that X  and Z have no common regressors; the general case is easily 

treated at the cost of more cumbersome algebra. In the rest of the paper, the overscript 

denotes (pseudo-) ml estimators, which coincide with ordinary least squares (OLS), except 

that the sums of squares in variance estimators are divided by T.

Another possible rival model for Mj is Mn, the linear nesting model of and M2:

M„: y = Xb + Zc + e, e -  N(0,v2/ r ), d = (fc.c.v2). (2.6)

We consider four classes of WET statistics, reflecting which parameters in M2 or Mn are of 

interest to the builder of Mr  WET statistics against M2 (non-nested encompassing) will be 

denoted by i)# and against Mn (parsimonious encompassing) by i]^.

(a) Complete wet statistic (CWET) <  = V ^ ;
(b) Simplification WET statistic (SWET) v v * = V e);
(c) Hausman WET statistic (HWET) „ = n^b);
(d) Variance wet statistic (vwet) %=nwrr2)-

Their precise expressions are found e.g. in Horens et al. [1988]. The statistics n  and nf,H  V
have been dropped because the Hausman wet statistic is not applicable in M2 (since M t 

and M2 have no common regressors), and r)^ is not defined because the encompassing diff­

erence for the variance of the nesting model Mn is 0(7“ ').

A further important test in this context is the conventional F-test of the null hypothesis 

c = 0 in Mn. Two versions of it can be given: F(, , the conventional small sample F-statistic,

and , an asymptotically equivalent version:

nF = o - y Q )p z ' Q x Z )- 'z 'Q xy ^  x 2(l), (2.7)

where QX = I -  X (X 'X )~ 'X \ so that:

Fc  = (2.8)

The wet statistics defined above and the F-statistic t]f  are closely related as shown in
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proposition 2.1 below. In the rest of the paper, equations of the forms:

<a) V . = V  (b) = V  and (c) ’L  -  VMj Mj
respectively denote (a) finite sample equality; (b) large sample equality (t]# = r)f +Op(r-i) 

on Mj); and (c) weak asymptotic equivalence (rj# = t7f +op(l) on M,), where O p(T~*-) and 

0 (?-»■) are defined as in Mann and Wald [1943] and White [1984]. Using this notation, the 

main results available in the literature are:

Proposition 2.1: Under the assumption that X  and Z are strongly exogenous, we have'.

y - y~a = (z'z) lz 'Q xy \ (2.9)
t2 - t2 = - \ .(y  + X fr 'Z lZ 'Z ) 'Z 'Q xy; (2.10)

\  = *V ~ nS =Mi
(2.11)

See e.g. Florens et al. [1988] for proofs. In other words we find:

(i) The SWET statistic of M, against M2 is equal to the ^-statistic, and is asymptot­

ically equivalent to the CWET statistic;

(if) The SWET statistic of M[ against Mn is equal to both the F-statistic and the CWET 

statistic;

(itt) M jf M2 if and only if M,£p Mn; and:

(iv) Simplification encompassing entails variance encompassing in static linear models; 

or equivalently, the implicit null hypothesis of is included in the implicit null 

hypothesis of r).. (see Florens et al. [1988] for similar results for n and n P).V H  H

A major objective of the present paper is to investigate under what conditions proposit­

ion 2.1 remains valid for weak exogeneity. For reasons of space, we restrict attention to the 

modified F-statistic together with the four WET statistics r/y  i]1’, j] and r)P.

3. STATIONARY LINEAR DYNAMIC MODELS
3.1 The models

Let y, denote the value of the dependent variable, rt the set of all current variables 

believed weakly exogenous for the parameters of interest by either investigator, and p  the 

maximum lag length. Define s[ = (yt,r't), = (iH , ... * ) and f t = (sj, t—1)). Initial
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conditions are assumed to be known. The rival models M: and M2 and the nesting model

Mn are formulated as:

Mi: Ttkt. •'(t-i) -  IN(^'x,,a2); (3.1)

M2: T.It - I(t-t) ~ IN (/z t,r2); (3.2)

Mn: s( t-1) -  IN(fr'jtt + c'z,,V2), (3.3)

where xt and zt are selections of k and / variables in (rt, t_ j .). To derive the WET statistics, 

an auxiliary process is needed for the non-modelled variables. The completing model is

defined as:

Mc : rt | s( -  INdw,, I), (3.4.

where wt c s( t_1(, and r  is a matrix of unrestricted parameters. This model may, but need 

not have, an economic interpretation as it is purely instrumental in the method used to 

derive the w e t  statistics.

From (3.1) and (3.4), the completed model = (Mp Mc) is a vector autoregressive 

(v a r ) process in st. Let a  denote the complete set of parameters of Mj: a  = (/}, cr2, T, E) 

and suppose that they ensure the stationarity of Mj. The notation matches that of section 2, 

in that a  denotes the parameters of the augmented model needed to derive the predicted 

values of the statistics in M2 when there is feedback from the dependent variable onto the 

conditioning variables of either model. Two reformulations can be given for Mj; first, the 

Markovian representation (i.e. the companion form):

Mf: / t | / t_j -  IN(FI(a)/^, Q(or)), (3.3

where n (a )  and kUa) are known functions of a. Secondly, the marginal distribution o f /s:

M f:/,~ N (0 , *F(a)) (3.6)

where 'f'(a) = kl(a) + n(a)V(a)Tl(a)' is the marginal variance-covariance matrix of the 

variables evaluated under M|. The ML estimator of 'ITa) is obtained by replacing a  by «  

and is denoted below by *F = 'F(a). The unconditional variance-covariance matrix of any 

subvector of f v such as xv will be denoted by using corresponding subscripts such as .

We complete the definitions of the models with some further notation: M denotes the 

class of stationary v a r  processes of the form (3.5) where IT and Q are unrestricted, and Jll 

is the sub-set of M including only models for which Mj is the process generating the (yt).

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



- 9 -

3.2 Derivation of wet statistics

We now derive the WET statistics relative to 8 = (y, i 2) for (complete) encompassing of 

M2. The derivation is conceptually straightforward and technicalities are omitted unless they 

are essential for the development of the argument (see Govaerts [1987] for detailed 

derivations of the relevant expressions).

Encompassing methodology in conditional dynamic models requires that statistics an 

explicitly derived under the joint model Mj = (M,, Mc) and not just under M,. Because the 

completing model Mc is instrumental in the analysis, it influences the values of the WET 

statistics and hence the outcomes of the tests. Consequently, a careful choice of Mc is 

required. This is discussed in section 3.3.

The method is based on the following result in Hannan [1970]. Let A denote the 

unconstrained estimator of the second-order moment matrix of /,:

where dHoc) is an expression in 'f'(a) which follows from Hannan's formulae. Govaerts 

[1988] proposes an algorithm for evaluating d>(a) which is based on a Jordan canonical 

form representation of the system (3.5). Since § is a known function of A , the encompassing 

differences:

Ag = = (?-ra.-T2 -Ti)

are as follows. First:

(3.7'

then the asymptotic distribution of vecA, on Mf, is given by:

s^vec(A - 'V(a)) £  N(0, dHa)), (3.8.

7  = (Z 'Z T iZ 'y  and y„ = ZZ ZXH’
so that:

r - y a  = (Z'ZT’Z V ^ V *

= (Z 'Z)->Z 'exy + ((Z 'Z )-'Z ’X  - 'Vz^ V z x )fi (3.9

Next:

V  = \ y 'Q zy

and:
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t 2 _ u< _ u/ m -lu /
a YY YZ ZZ ZY

= ^ ^ ' V - P ' V z ^ z x P
= a2 + p 'V x x z p,

so that T2 > a2, showing that variance dominance remains necessary. Further:

t 2- r |  = -^ y + X p )'7 (Z 'Z )^Z 'Q xy + p '^ X 'Q ^ - 'V x x _z )p. (3.10)

Compared to (2.9) and (2.10), these expressions show that the difference between the 

dynamic and static case is principally based on the values of the differences:

D = ( Z ' Z r ' Z ' X - H ^ ;

Or2= lf X 'QzX - V x x . z

or, collecting these together in a sufficient (but not necessary) formulation:

(3.11)

(3.12)

(3.13)

This is the difference between an unrestricted estimator of the joint regressor second 

moment matrix, and an estimator thereof restricted by the implications from M, for the 

dynamic behaviour of the regressors. For testing parsimonious encompassing of against 

Mn, Z is replaced by the total set of regressors (X, Z) in the previous formulae. In that case, 

all the formulae can be simplified, since projecting X  on Z = (X, Z) ensures that:

X 'X X 'Z * 4> 1
- XX xz

Z 'X Z 'Z 4* 4*zx ZZ J

(Z'Z)->Z'X = « F - ^  = (/:0) and \ x ' Q # = ' : 0 . (3.14)

Thus, in nested models with valid completing assumptions, encompassing differences are 

identical in static and dynamic cases, but that does not imply the equality of the 

corresponding wet statistics as shown below.

The formula to derive V^v'/lS-S.)! = V Jy 'r A„] follows from the fact that A ,̂ as a 

function of a  and 8, is a known, continuous and differentiable function of A in (3.7):

Ag = h(A). (3.15)

Hence, the asymptotic distribution of Ag on is given by:

y/T Ag ^  N(0, H (a m a )H (a ) ') , (3.16)

where H(a) = plimJr)h(A)lchjccA'). Analytical evaluation of H{a) is impractical for most 

models (even simple ones) but its numerical evaluation is general and based on elementary
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matrix operations. Nevertheless, under restricted conditions (detailed below) the analytical 

expression of V Ag] is known, or almost known, and a direct comparison with the static 

case can be made.

3.3 Choice of the completing model

The choice of different completing models in the comparison of Mj to M2 can lead to 

different expressions for >P, Dy D ^ , D, and hence can affect the encompassing statistics, 

occasionally inducing different conclusions for the corresponding encompassing tests. 

Consequently, the issue of robustness of the encompassing analysis against alternative 

choices of Mc arises. The orders in probability of the differences Dy D ^, D are at the root 

of the discussion. If D = 0, the WET will be equivalent to the F-test; when D *  0, different 

cases must be studied. Six cases are retained, corresponding to the possible values of the 

encompassing differences, and the following concepts are defined:

(i) M-j is exactly moment efficient (EME) against M2 iff D  = 0;

(ii) Mj is exactly projection efficient (EPE) against M2 iff D^ = 0 and D 2 = 0;

(iii) M? is strongly moment efficient (SME) against M, iff D -  0;
M

(iv) Mf is strongly projection efficient (SPE) against M2 iff D ~ 0 and D 2 = 0;
r  M T M

(v) M5 is weakly moment efficient (WME) against M2 iff D ~ 0;
Hi

(vi) M? is weakly projection efficient (WPE) against M2 iff D ~ 0 and D 2 -  0.
r ^i T Hi

These concepts are related to each other as summarized in proposition 3.1:

Proposition 3.1: EME —> EPE

I I
SME —t SPE

I I
WME —t WPE

There are counter examples showing that no other relation exists between these concepts.

If none of the properties in (i)-(vi) holds, the robustness of the corresponding WE"

statistics is seriously compromised. In fact, if either of:

D * 0 or D ■, * 0,
7 M, *  *

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



- 12-

then there exists at least one (Mp M*) 6 Ml such that p lim js^ *  0 or p lim h .^  * 0 under 

(Mj, Mp. As a consequence, when Mc is mis-specified, MJ can fail to encompass M2 

despite the fact that Mj is the true model: example 4.7 illustrates this phenomenon. 

Fortunately, WPE can always be achieved as stated in proposition 3.2.

Proposition 3.2: For any pair o f rival models Mj and M2 o f the form (3.1) and (3.2), 

there exists at least one completing model Mc such that Mj is WME and WPE against M2. 

A sufficient condition to ensure WME (and so WPE) is that plim D = 0, so Mj must 

generate the correct number and type of second moments of the joint set of regressors, 

which requires that MJ include a sufficiently rich dynamic specification. Parsimonious 

encompassing automatically ensures minimal robustness for WET statistics:

Proposition 3.3: I f  MjCM2, then MJ is EPE against M2 for any choice o f completing 

model Mc.

More important are the properties of the WET statistics for the different possible values 

of D y D^2 and D  summarized in proposition 3.4.

Proposition 3.4 Mf 4—► m2 MJ -  M„
Test CWET SWET F SWET CWET

EME * C = V = ■É = ic
SME \

M i
\ M V M M

SPE
MJ MJ % MJ * * MJ <

SPE+WME
\

\
\

% tlP

In every case, the WET statistics are analytically known and are easily computed. The first 

row (e m e ) directly generalizes (2.11) to dynamic models; SME ensures strong asymptotic 

equivalence under M across all the tests; SPE only delivers weak asymptotic equivalence 

under Mj; but SPE and WME together deliver weak asymptotic equivalence under M.

The important question is whether or not, given a pair of models M, and M2, there exists 

a completing model Mc that ensures SPE or a stronger property. Unfortunately, such a model 

does not always exist, and as stated in proposition 3.2, the best property which can always 

be achieved is WME. Following Govaerts [1987], an algorithm to build a completing model
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for a given pair of models M1; M2, based on a systematic comparison of the two lists of 

regressors in Mj and M2, is described in the appendix. The outcome is a list of regressors 

defining a minimal completing model, denoted here by M™, with a number of features:

(i) If Mj and M2 are such that there exists a completing model Mc under which 

(Mj,Mc) is EME (or SME), then (Mj,M“) is EME (or SME);

(ii) The model (Mj,M^) is always WME and, hence, WPE;

(iii) M " is minimal in that its list of regressors is included in the list associated with 

any other model Mc that satisfies EME, SME or wme.

(iv) If there exists a model Mc for which spe is achieved, it will be nested in M™ but 

the latter will not necessarily be SPE.

(v) The minimal completing model is invariant to the choice of rival model M* nesting 

M2 and nested in Mn.

It follows that, unless the proprietor of Mj has particular reasons for selecting a specific 

completing model Mc, selecting M™ as the completing model achieves robustness within the 

class of VAR completing models. Other choices for Mc need not achieve even this minimal 

property. Finally, based on the appendix algorithm, a sufficient condition for SME is 

available which does not need any additional calculations to check if Mf is SME:

Proposition 3.5 I f  (i) the number o f parameters o/(M j,M c) is equal to the number

o f data second-order moments used in the evaluation o f the estimators o f these 

parameters (neglecting terms o f Op(|,)); and (ii) all the cross products included in 

j. X 'X , j. X 'Z  and j. Z 'Z  appear in the estimators o f the parameters o f M̂ , 

then (Mj,Mc) is SME against M2.

Intuitively, the stated conditions ensure that D is at most Op(i) for all members of M, which 

in turn was shown above to entail SME.

3.4 Power Comparisons

Although proposition 3.4 relates the various tests t)c  , i)s  , qF , and t]£. under the null, 

it does not follow that they have the same power properties when M, is false. In particular, 

care is required in formulating the maintained hypothesis within which power is studied.

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



- 14-

There are three distinct ways in which Mj might be mis-specified relative to the assumed 

DGP. First, the alternative (denoted Ma) may differ from Mj in the direction of M2 but retain 

elements of M ,̂ second, Ma could be M2 itself; finally, none of the elements in either Mj or 

M2 may be present in Ma. In each case, to correctly evaluate the power, Mj must remain 

congruent with the data evidence despite being mis-specified, and in the context of dynamic 

models this aspect is not easy to achieve.

When Ma corresponds to Mn (e.g. the union of M, and M2 less any redundant elements), 

then the F-test is bound to have the highest power in large samples since its error will be an 

innovation with minimum variance in the class, whereas will fail to have an innovation 

error if M2 is dynamic. However, tests for innovation errors seem more appropriate for such 

a scenario than the encompassing tests discussed here. Example 4.2 illustrates this, and 

points up the advantages of parsimonious encompassing tests and general-to-simple 

modelling strategies.

When Ma does not correspond to Mn, power rankings are less clear-cut, and in small 

samples may depend on degrees of freedom. Example 4.3 illustrates this case.

4. EXAMPLES
The aim of this section is to illustrate the concepts and properties defined above using 

some simple examples. The choice of the completing model is discussed, explicit forms of 

the w e t  differences and statistics are given, most of the possible cases of moment and 

projection efficiency are illustrated, and the minimal completing model is given for each 

example. The F-test against Mn is asymptotically valid (i.e. it has the correct size 

asymptotically and is consistent against fixed alternatives), and is the parsimonious 

encompassing statistic.

Example 4.1: The static case

Static linear models were formulated in section 2 as:

M,; yt = P 'x t + en with the claim that eu -  IN(0, d\)\

M2: yt = / zt + e21 with the claim that -  IN(0, o|).
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The minimal completing model derived from the algorithm is simply and minimally the 

unrestricted white-noise process:

EME, EPE etc. are verified in this case since, for example, 'Vww = plima T^lW 'W  = 2 

and C>(vw = £ = r* 1 W' W, so that D = 0. The results given in proposition 3.4 apply and 

coincide with those given in proposition 2.1. However, as discussed in section 1, invalidly 

restricting X can lead to rejection of Mj even when it is the DGP.

m "' can be written in an equivalent projection form for the conditional distribution of xt 

given zt, jointly with the marginal process for zt:

M“*: jc, = Jtzt + »Jt where «jt -  IN(0, 2XXZY, 

z, = n2t with u2t -  IN(0, X^),

where it = X yJfci and u*t 1 u2v The first part of M™* is the completing model used by 

Hendry and Richard [1983] to introduce the encompassing principle in the static case. They 

show that defining the projection of xt on z, in this way is sufficient to ensure e p e  to Mj.

so that only strong exogeneity needs to be postulated for the marginal process of z,. This 

claim remains true even if in fact z, is Granger-caused by y, so complete robustness is 

achieved.

Example 4.2: Autoregressive models

M™: w, = u, where ut ~IN(0, X) when w[ = (x'v  z\).

We have:

and k ' = (Z'Z)~lZ'X-, 

and ^xx-Z  ~ T* G z*

(4.1)

Reconsider the simple dynamic model from section 1:

Mj: yt = pyt_l + eu where elt -  IN(0, <r2);

M2: yt = yyt_2 + e2t with e2t -  IN(0, t2),

such that \P\ < 1. Then, Mj is itself the completing model, and we have:

^ZX  = plima \ y- = ^cr2/(l-/32). (4.2)

where (e.g.) y ’_x = (>’2 ... yT [), and:

Y zz = p l i m ^ y ' ^  = [a2/( 1-/32)] = (4.3)
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so that 'V-2̂ V ZX = and hence the restricted second moments are determined by M, alone

Thus:

(Z’Z )- 'Z 'X = = Z5 + cy}-)

= + Op(i), (4.5)

where the terms of Op(j-.) are due to lagging. Similarly:

= ^XX.Z + ° pV ’ (4.6)

and hence Mj is SPE against M2. One can show that Mj is also SME on replacing /3 and cr2 

by their estimators in the above formulae. This result guarantees that, in this simple 

dynamic case, the WET statistics are equivalent to the F-statistic as stated in proposition 3.4.

If we switch the two competing models so the rival models become:

Mi: Tt = f t ’t-2 + e it

m 2: y t = rv t- i+ e2. -

then the forms of the statistics change noticeably and m ] is no longer SME but only w m t . 

This example illustrates the differences that can occur between , rj^andrj^ when 

including lagged dependent variables in the list of regressors. The w e t  statistics can be 

evaluated (unconditionally on the regressors) either directly or by taking advantage of the 

general technique discussed in section 3.2 above. The completing model is now M2 and the 

complete encompassing differences relative to the parameters of M2 and Mn (defined it 

section 1) are:

= (i:- (4.7)

Kd = (1:~ ( y 'y r V y .{ . - \ y 'Q y ^ _ 1Y (y 'Q y ^ r ly 'Q y ^ (4.8)

where Qy = IT-y_i(y'_y_i)-ly'_i .

The variance-covariance matrices of Àg and on are both singular of rank 1 and so-

nc  = 8~2Cy'Q y 2y_1)2(y/y)"1 ^  *2(1) (4.9)

n Pc  = a~2(y 'Q y 2y-i)2(y'Q y y)~2 y 'y  ^  ĵ 2(l) (4.10)

ilF = cr2(y/Qy_2y_l)2(y'Q y y r 1 ^  z 2(D. (4.11)

In this example, the three statistics are ordered as r)c  < r\F < . They are asymptotically
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equivalent on any model for which T^ly 'y_ l 5 0 as T -* °° (i.e., in particular on Mj or on 

local alternatives to M, which do not introduce first-order autocorrelation). An interesting 

difference between the two orderings of the hypotheses here is that the implicit projection 

of the F-test switches from the realizable dynamic model yt = ipy^ + ut to the forward 

projection of yt_2 on yt_,, although M™ remains the same.

Govaerts [1987] examined the power of the three statistics in (4.9)-(4.11) by Monte 

Carlo simulations under local alternatives to M[ of the form:

yt = r^ v ,y t_, + v2y,_2 + ?, = + v2vt_2 + £, where £t -  IN(0, a\). (4.12)

After correction for size, r)c  turns out to have lower finite sample power than either r\F or 

. The asymptotic power functions for rj(, and r)f . under the local alternative in (4.12) 

can be derived as follows. First, the plims of the data second moments under (4.12) are: 

l yy = (l-v2)cr^/[(l+v2)((l-v2)2-62}]; Xyy_( = ffiyy/(l-v2); and:

I yy_2 = (v2(l-v2)+e2Hyy/(l-v2).

Estimation of leads to population parameter values /3p = ptim j3, and cr2 = plim a 2:

Pp = lyJXyy 2 = [ Vjl 1 - V, ) + 021/( 1 - Vj ), (4.13)

and:

o 2p = cr^(l-t-[(l-v2)©2/(l-»-v2){(l-v2)2-02}]). (4.14)

On local alternatives like (4.12), the tests become non-central y}( 1 ,p2) where (see 

Mizon and Hendry, 1980):

H2(r)F) = v2/(l-v2) = r e 2/(l-v2); (4.15)

/J2(tlc ) = ^ vJ{(1-v2)2-02}/<t2(1-v̂ )(1-v2)2

= /42(tj/,)[ i-202/( ! - v^)( ! - v2)] + Ofr-i) < (4.16)

Two factors contribute to the power loss arising from the smaller non-centrality 

parameter: on (4.12), cr2 > o7, which T]f  avoids; and J3p * fi, so the residuals in Mj are not 

white noise, whereas {£,) is, so M, ceases to be congruent and is not a good basis for 

testing. Even though 9 is 0 (7 ’-), the asymptotic power loss is quite large as figure 1 shows 

for the parameter values 6 = 0.1, and v2 = 0.8 over T = 70,..., 300. The small sample power 

of the F-test is also shown, based on recursive Monte Carlo using PC-NAIVE (see Hendry, 

Neale and Ericsson, 1991), to illustrate the applicability of the asymptotic formulae.
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Example 4.3: Strong moment efficiency (SME)

Let the two rival models be:

Mi: yt = 0*t + eit

m 2: y t = w .- i+ eiv

with the usual claims that eit -  IN(0, a2). It seems natural to consider as a completing 

model, the realizable projection model:

M™: xt = 0vt_! + «, where ut -  IN(0, t 2).

The appendix algorithm for the minimal completing model also yields M™.

Verifying that Mj is SME in this case is tedious if one wants to explicitly calculate the 

order of the difference D in section 3.3(i)-(vi) above, but fortunately the sufficient condition 

for SME in proposition (3.5) is applicable. The number of parameters in Mj is four: /3,<r2,<j>, 

t 2. The data second-order moments used in their estimation are - x 'x ,  ^ x 'y _ ,, i y 'y  and 

y. x 'y  and hence, condition (/) is verified. Second, in present notation, the cross products 

appearing in y X'X, j X ' Z ,  and ~ Z 'Z  are y x 'x,  y x 'y_{ and y y 'y  which ensures that (ii) is 

satisfied. Mf is then SPE and the equivalences between WET and F-statistics given in 

proposition 3.4 hold.

If we switch the rival models:
■f *

yt = A V i + £u where e lt -  IN(0, a2)

M2: yt = yxt + e2t where e2l -  IN(0, a2),

the completing model remains the projection model M™ above. Consider the local 

alternative:

Ma: yt = V i - l  +  V i +  Ct where -  I N(0, o£),

when:

z, = pxt + o, with o, -  IN(0, a2). (4.17)

In this example, direct substitution of (4.17) into Ma shows that /3 and elt in Mj are:

/3 = (A, + A2pip) and elt = (£t + A2ut + A2put), (4.18)

whereas et in Mn is (£t + A2ut), so that the asymptotic non-centrality of the F-test is:

M20 lF) = (AtyW jl& lo l+ o l). (4.19)

Further, the asymptotic encompassing difference is:
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plim A$ = plim (y-y-) = A 1p d 1Ja \, (4.20)

with a limiting variance of ^(Ajffu+cr^/c^’ so l^at:

p 2(ric ) = (X lpW jl& lo l+ ol), (4.21)

and so the two tests are asymptotically equivalent under a local alternative that keeps 

congruent.

The use o f other completing models may generate WET statistics that satisfy neither 

strong projection nor moment efficiency conditions, and even worse choices can lose weak 

efficiency. For example, consider:

Mc:x t = ut.

Under Mj, yilX7 = ^  X} = 0. and the encompassing difference on ybecomes:

y -  y5 = (y-iy-i)_1y 'iy .

from which can be derived. Since Mf is neither w m e  nor w p e , there exists at least one

= (M,,M*) e Ji, such that D 0. If the d g p  is (Mj,M*) where:
7 M,

M*: xt = </>.vt_, + ut,

then -4 «o under the DGP when T increases, and hence the w e t  will, in most cases, reject 

even though the model M, is correct. Such an outcome demonstrates the dangers of using 

inappropriate completing models and encourages the design of completing models with the 

aim of ensuring a minimum of robustness for the resulting WET statistics.

Example 4.4: Exact projection efficiency (EPE)

Let:

M ,:y t = £*, + eu

m 2: y t = n ^ t - i+ y ^ t-2 + eiv

The minimal completing model is given by the projection of xt on yt l  and yt
m

MC: xt = M - l  + ^ t - 2  + Mr

Formulae (4.1) in example 1 can be applied to check that EPE is satisfied here. This does 

not imply the equality of the WET statistics with the F-statistic because V j / f A ]  differs 

from the corresponding matrix obtained in the static case. Nevertheless, from proposition 

3.4, the encompassing statistics are ^  to rjF because the choice of the minimal completing
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model ensures that Mj is also WME.

Example 4.5: Strong projection efficiency (SPE)

This example differs from the last in lagging the regressors of the two models by one 

period:

Mi: = 0*.-i + en

M 2: > t =  W - 2  +  7 ^ ,- 3  + e 2 r

The projection model remains the same:

M c: *« =  •/’i.V,-! +  </»2Vt-2 +

and is included in the minimal completing model given by:

M "  + M - 2  + f ^ t - 3  + < M t- l  + u r

Then (M1? Mc) is SPE for the same reasons as before. The difference between EPE and SPE is 

due to lagging; for example, y jc. 1 in {Z'Z)~x7.'X is estimated by j  jr'y_] in ^Z ^Z X '

It can also be shown that w m e  is not achieved for Mc, which implies that and rjf . are 

not equivalent under any model of My for example, consider e Mv Despite that

difficulty, Mc probably remains a good choice for the completing model since M™ ensures 

no more than WME.

Example 4.6: Weak moment efficiency (WME)

Consider:

MpTt = £*t-i + eu

M2: y, = rv,_i + e2v

with:

= <K-i + «t-

For these Mj and M2 models, no completing model exists such that SME or SPE is 

satisfied. M™ ensures w m e . The resulting simplification WET statistic r)s is completely 

different from the F-statistic. For example, the encompassing difference on y has the form: 

? -  y-a = (y 'y )-l(y'Q x y_i + y 'Q x xft) (4.22)

which tests if COv(yt,yt_j |x l_1)+/fcov(yt,jtt |jrt_1) = 0. The F-statistic tests if cov(yt,yt_j |x t_,) 

is zero. The different possible WET statistics are given in Govaerts [1987] jointly with an
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analysis of their asymptotic power against local alternatives and Monte Carlo simulations to 

compare their small sample properties. For example, when M, relates yt to yt_2 and M2 

relates yt to y t_v  the encompassing statistic can be more powerful than the F-test.

5. C on clu sion

The general analysis in section 3 and the examples in section 4 reveal that encompassing 

in linear stationary dynamic processes raises new issues. The need to take account of 

feedbacks from lagged dependent variables forces the explicit introduction of a completing 

model, and the choice of its formulation is important if the encompassing tests are to be 

robust to how the completing model is specified. Six levels of efficiency of the completing 

model were distinguished, and illustrated by examples that highlighted which features 

induced which consequences.

The resulting analysis reproduces that previously established for strong exogeneity when 

the models are static. However, in dynamic systems, a poor choice of the completing model 

can lead to rejection of the correct hypothesis as shown in the example 4.3.

Stationarity is an important assumption in the approach adopted here because of the 

central role played by (3.7) and (3.8). In integrated systems with cointegrated relationships, 

Hendry and Mizon [1993] develop asymptotically valid encompassing tests for linear 

equations or sub-systems against each other, or the VAR when the latter is the d g p . Similar 

generalizations should hold for the class of equations of interest above. In particular, 

parsimonious encompassing is the final check on a reduction sequence, by which stage, 

mapping to 1(0) variables will usually have occurred. However, weak exogeneity only holds 

in cointegrated systems if the error corrections in the equation of interest do not enter other 

equations of the system, so that enforces a necessary condition for the present analysis to 

apply. Further, when weak exogeneity is violated due to the presence of common cointeg­

rating vectors, the limiting distributions are no longer linear mixtures of normals and 

inference can be distorted (see e.g. Phillips and Loretan [1991] and Hendry, 1993). Never­

theless, both the present analysis and cointegration theory emphasize the primary role of the 

system in sustaining inference even when interest is in individual equations.
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Overall, our analysis favours the use of parsimonious encompassing tests or F-tests as 

these are more robust to the specification of the completing model, are not restricted to 

paired comparisons between models and complement general-to-specific modelling 

strategies. Further, they are invariant to extensions in the specification of the rival model up 

to the union of all the non-redundant regressors in both models. Finally, when the 

alternative hypothesis makes the model under test non-congruent, there is a potentially 

serious power loss in encompassing tests (including non-nested tests) relative to 

parsimonious encompassing tests.
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A p p en d ix: M inim al C om p letin g  M o d els

Sample moments are denoted by either A (matrices) or a (scalars and vectors) 

appropriately subscripted. In particular, let:

The m l  estimator of i/A«) is given by y/ = y(a) where a  = (p,o2, f , t ) regroups the OLS 

estimators of the parameters in Mj and Mc as given by (3.1) and (3.4) respectively. Hence 

e m e  requires that A = y(a), while SME (w m e ) requires that A = y/(a) on M (Mt). The 

following relationships hold:

Let L denote a list of all the distinct elements in (A A v A riDA ,,rD)- Conditionally on B yy Ay a a wk

Axx  and A ww, (A.2) defines a 1-1 mapping between L0 and a, subject to the usual restrict­

ions for moment matrices (symmetry and positivity). However, in order for A itself to be a 

function of a, it has to be the case that A,,,, and A,,,,,,, which are included in A, can be
X X  w w

retrieved from Ln. For ease of discussion, we restrict attention to the case where all the 

restrictions between A, A ^  and originate from the exclusion of regressors in Mj and 

M 3  Let L denote a list of all the distinct elements in A and A„„,„ then:c A WW

La - Lb

is - for all practical purposes - necessary and sufficient for A to be a function of a. A 

formal proof of that assertion requires explicitly stating a number of technical conditions 

and goes beyond the objectives of the current paper. At a more heuristic level, if condition 

(A.3) holds, then (A.2) can be solved (recursively) for A: at step j  of the recursion, A xx  and 

A are set at the values obtained on step (j-1) and (A.2) is solved for L ; A and AW W B X X  W W

are then updated and the procedure is repeated until convergence (which follows from a 

fixed point theorem). If, on the other hand, A is a function of a, then (A.3) holds. If, indeed, 

an element of La were not included in Lfl, then we could assign an arbitrary value to that 

element and proceed as just described. That element would never be revised, contradicting

(A.l)

(A.2)

3 Accounting for more general linear restrictions among the variables in Mj raises no conceptual problems 
but necessitates additional algebraic manipulations of the relevant moment matrices
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the assertion that A is a function of a  alone.

The algorithm we propose aims to select a (minimal) set of regressors for wt in such a 

way that condition (A.3) holds. Two additional issues deserve attention before we can 

describe the algorithm:

(1) The only difference between e m e  and SME lies in the treatment of initial and terminal 

observations in the sample. For example, under EME, moments such as T~tx 'y _ l and 

T~lx'_ly_2 are treated as different entities while, under SME, they are conflated with each 

other. Our proposed algorithm trivially accommodates that distinction;

(2) wt consists of lagged variables only, while rt regroups all current exogenous variables. 

It follows that Arw  cannot include cross-moments between xs and leading ys. If any such 

moments are included in L , then EME (SME) cannot be obtained. Let x. consist of all
A 1

regressors that are excluded from M,. The following asymptotic equivalence holds on Mp

Ax\ Z AXXAXXaxv (A-4)
*1

Both Axx  and a ̂  are already covered by an analysis of condition (A.3). Hence, for the

purpose of achieving WME, we can replace components of A- in L by the correspondingxy A

elements of Axx  and proceed.

The proposed algorithm follows from the above discussion. We initially set w, = 0 and 

accordingly define L and L . We then examine whether condition (A.3) holds. Each time 

an element of La is found to be missing in Lfi, wt is ‘augmented’ according to one of the 

following two (mutually exclusive) schemes:

Type-A augmentation: direct augmentation of wt such that the missing element is 

included in the augmented L0;

Type-B augmentation: the missing element belongs to a-^; it is replaced by the 

corresponding elements in Axx , and vv( is then augmented in such a way that the latter 

are included in the augmented L .̂

The algorithm is finite and generates a ‘minimal’ completing model under which WME 

holds. Further, if it necessitates only type-A augmentations, then EME (SME) obtains. All the 

minimal completing models M™, to which we refer in section 4, have been obtained by 

application of this algorithm.
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Asymptotic and finite sample power functions of the F-test and the encompassing test: 
P(F)* and P(E)' are asymptotic, P(F)A is based on recursive Monte Carlo: example 4.2
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Appendix A: Asymptotic Power Functions of t)f  and t\c  .

The rival models are:

Mi: = AVt-2 + eit
M 2: > t =  W .- l  +  e 2t-

The completing model is M2. The rjf  and t)c tests are given by equations (4.11) and (4.9) 

with rjc  < but they are asymptotically equivalent on M T h e  local alternative to is: 

(Al) yt = r K iyt_l + v2yt_2 + Ct = + V2y,_2 +Ct where ~ IN(0, o£).

The pUms of the data second moments under (Al) are as follows:

(A2) Xyy = (1-v2)<^/[(1+v2)((1-v2)2-02}];

(A3) Xyy_i = e iy/ ( l - v 2);

(A4) Xyy  ̂= [V2(l-V2)+02]Xy/(l-V2).

Thus, estimation of M j leads to population parameter values (ip = plim /3, and 

a2 = plim a2 :

(A5) pp = Xy‘Xyy_2 = [v2(1-v2)+02]/(1-v2), 

and:

(A6) o2 = ^(1+[(1-V2)02/(1+V2){(1-v2)2-02)]).

On local alternatives like (Al), the tests become non-central £ 2(l,)t2) where (see 

Mizon and Hendry, 1980):

(A7) p.KnF) = v2/(l-v2) = if)2/(l-v2);

(A8) m207c ) = o ^v fK l-v ^ e^ /o ^ l-v ^ X l-V j)2

= p 2{nF)u -2 m i-\% )(i-v 2)] + Op(T-i)

^  H2(tif ).

Two factors contribute to the power loss arising from the uniformly smaller non­

centrality parameter: on (Al), o2 > o£, which i]F avoids; and [lp * ft, so the residuals are not 

white noise, whereas £t is. Even though 6 is 0(T"^), the asymptotic power loss is quite 

large as figure 1 shows when 6 = 0.1, and v2 = 0.8 for T = 10,.... 300.
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