
EUI
WORKING 
PAPERS IN 
ECONOMICS

EU I Working Paper EC O  No. 92/80

Estimation, Prediction and Interpolation 
for Nonstationary Series with the Kalman Filter

VICTOR GOMEZ 
and

AGUSTfN MARAVALL

uropean University Institute, Florence

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



EU R O P E A N  U N IV E R S IT Y  IN S T IT U T E , F L O R E N C E

ECONOMICS DEPARTMENT

EUI Working Paper EC O  No. 92/80

Estimation, Prediction and Interpolation  
for Nonstationary Series with the Kalman Filter

VICTOR G 6M EZ 
and

AGUSTfN MARAVALL

BADIA FIESOLANA, SAN DOMENICO (FI)

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



All rights reserved.
No part of this paper may be reproduced in any form 

without permission of the authors.

© Victor G6mez and Agustrn Maravall 
Printed in Italy in May 1992 
European University Institute 

Badia Fiesolana 
1-50016 San Domenico (FI)

Italy

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



ESTIM ATION, PREDICTIO N AND INTERPOLATION FOR NO NSTATIONARY  
SERIES W ITH THE KALMAN FILTER

The problem of estimating any sequence of missing observations in series with a nonstationary 
ARIMA model representation was solved by Kohn and Ansley (1986). In their approach, the likelihood 
is defined first by means of a transformation of the data; then, in order to obtain an efficient estimation 
procedure, a modified Kalman filter and a modified fixed point smoothing algorithm are used. In this 
paper we show how an alternative definition of the likelihood, based on the usual assumptions made 
in estimation of and forecasting with ARIMA models, permits a direct and standard state space 
representation of the nonstationary (original) data, so that the ordinary Kalman filter and fixed point 
smoother can be efficiently used for estimation, forecasting and interpolation. Our approach, like that 
of Kohn and Ansley (1986), can handle any arbitrary pattern of missing data and we show that the 
same results are obtained with both approaches. In this way, the problem of estimating missing values 
in nonstationary series is considerably simplified.

When the available observations do not permit estimation of some of the missing values, the 
method indicates which are these values, and the forecasts that might be affected. Moreover, if linear 
combinations of the unestimable missing observations are estimable, the estimates are readily obtained. 
The method is illustrated using the same examples of Kohn and Ansley (1986), and an additional one 
for the case of unestimable missing values with estimable linear combinations thereof.

It is shown that our likelihood is equal to that of Kohn and Ansley (1986); it also coincides 
with that of Harvey and Pierse (1984) when applicable, and to that of Box and Jenkins (1976) when 
no observation is missing. The results are extended to regression models with ARIMA errors, and a 
computer program, written in Fortran for MSDOS computers, is available from the authors.
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Introduction and Summary

The Kalman filter provides a well-established procedure to compute the likelihood of 
a time series which is the outcome of a stationary Autoregressive Moving Average (ARMA) 
process; see, for example, Harvey and Phillips (1979), or Pearlman (1980). Further, Jones 
(1980) extended the procedure for the case of missing observations in the series. However, 
when extending the method to a nonstationary AR1MA process, the likelihood cannot be 
defined in the usual sense. The main difficulty lies in the specification of the starting 
conditions to initialize the filter. One cannot use, as in the stationary case, the distribution 
of the initial state vector, since in the nonstationary case this distribution is not properly 
defined. Besides, when there are observations missing it is clearly not possible to use the 
likelihood of the differenced series (i.e., of its stationary transformation).

There have been several attempts to overcome the difficulty (see, for example, Harvey 
and Pierse, 1984; De Jong, 1988; Harvey and Peters, 1990; Kohn and Ansley, 1986;and, more 
recently, Bell and Hillmer, 1991). The path-breaking contribution of Harvey and Pierse, 
extending the state space methodology to ARIMA models with missing observations, 
presented two limitations. First, it could not be applied to series with missing values near the 
start or the end of the series; second, the chosen state space representation was not minimal. 
Possibly, the present state of the art is the powerful methodology developed by Ansley and 
Kohn in a sequence of papers: In order to define the likelihood, the data is transformed to 
eliminate dependence on the starting values. Then, in order to obtain an efficient procedure, 
a modified Kalman filter is used to compute the likelihood, and a modified fixed-point 
smoothing algorithm interpolates the missing observations. Both are generalizations of the 
ordinary Kalman filter and the ordinary fixed-point smoothing algorithms for handling a 
partially diffuse initial state vector; see Kohn and Ansley (1986).

In this paper we show how an alternative definition of the likelihood, based on the 
usual hypothesis made in estimation ( Box and Jenkins, 1976, chapter 7 ) and prediction 
( Brockwell and Davis, 1987, pp. 304-307) of ARIMA models, permits a standard state space 
representation of the nonstationary series, easy to program, that does not require any 
transformation of the data, and provides a convenient structural interpretation of the state 
variable. As a consequence, the ordinary Kalman filter and the ordinary fixed-point 
smoothing algorithms can be efficiently used, without any modification, for estimation, 
forecasting, and interpolation. A notable feature of our approach is that it can be applied to 
any pattern of missing data because it doesn't destroy the covariance structure of the data. 
In this way, the problem of missing observations in nonstationary series can be considerably 
simplified. The results are extended to regression models with ARIMA errors.

It is seen how our likelihood coincides with that of Harvey and Pierse (1984), when 
the latter is applicable, and, when no observation is missing, is of course the same as that of 
Box and Jenkins (1976). It is shown also how the results obtained with our approach for 
estimation, prediction and interpolation are equal to those of Kohn and Ansley (1986).

Since most of the results for the stationary case will be valid for the nonstationary one, 
we begin by briefly reviewing the use of the Kalman filter for stationary series. This is done 
in Section 1. We proceed then to analyze a nonstationary series that follows a general ARIMA 
model. First, the definition of the likelihood function is considered in Section 2.1, and Section
2.2 develops the state space representation of the series, the Kalman filter, and the 
appropriate starting conditions. Estimation of the model is explained in Section 2.3, and 
Section 2.4 deals with interpolation and prediction of the series. Special attention is paid to
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the difficulties that may arise when estimating missing observations at the beguining of the 
series, and the effect thereof on interpolation and prediction.

Section 2.5 analyzes in detail the relationship between our approach and that of Kohn 
and Ansley; Section 2.6 extends the methodology to regression models with ARIMA erros 
and missing obervations; finally, Section 2.8 contains a numerical application consisting of 
the four data sets considered by Kohn and Ansley (1986), with an additional one that 
illustrates a type of difficulty not discussed by them. The Appendix contains an example to 
illustrate the several steps in our approach; this example is, again, the same as that used by 
Kohn and Ansley (1986).

2

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



l  Stationary Series, ARMA Model

1.1 Prediction Error Decomposition

Let the observed series z = (z (l),z (2),...,z (N ))' be the outcome of the ARMA model:

<l>(B)z(f) = 0(B)fl(f) , O-1)

where <̂ (B)= l+ ^ jB + .-.+ ^ B '’ and 0(B)= 1 + 0,8  +...+0?B q are finite polynomials in the lag 
operator B, of orders p and q respectively, and {a (t)} is a sequence of independent 

NiO.d1) variables. The model is assumed stationary, that is, all roots of the polynomial 
<|>(B) lie outside the unit circle. Using the prediction error decomposition, the likelihood can 

be written as

L (z(l),z(2),...,z(N )) = L(z(N) |z(N -l)......z(l))...L (z(2) |z(l))L (z(l)) , O'2)

where the vertical bar denotes conditional distribution. Defining, for t = 2 ,...,N ,

2(t|f-l) = E(z(f)|z(f-1)..... z (l))  , 0-3a)

^ (f  |f-l) -  - 1  V(z(t) |z(f-l)......z (l))  = _L E(z(t) -Z(t\t-1))2 , (1.3b)
cr cr

and using the marginal distribution of z to set the starting conditions:

f(l|0)= E(z(l)) = 0 ,

^(110)= _L  V(z(l)) , 
cr

the likelihood can be written as

Lkd = (2jto2) - w V ( l| 0 )  o2(2|1) ... c^ N IN -l))- I/2exp l/ (2o2) £ ((z (t )- ;2 (f| f- l))  / o (f| f- l) f

Let e(t) , t -  1 ,...,N , denote the sequence of standardized one-period-ahead forecast

e(t) =
z(t)-2 (f| f-l)

o(f|f-l)

and define the vector e = (e(l),...,e(N ))'. Then, the log-likelihood can be expressed as 

l = const -  —  logo2 -  log(o(l|0)o(2|l) ... o(N|N-l)) -  ~ e'e .
2 2d2

(1.4)

Assuming known model parameters, this function will be maximized with respect to 
o2 when

6^= — e'e. 
N (1.5)

Therefore, o 2 can be concentrated out of the function 1 , yielding the concentrated log- 
likelihood

1" = const -  log(e'e) N ,log(o(l|0)o(2|l) ... o(N|N-l)) = const -  _ lo g S ,
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where

S = (a(l|0)a(2|l) ... a(N |N -l))1/w e'e  (o(l |0)o(2|l) ... a (N jN -l))1"''. (1 6 )

Exact Maximum Likelihood (ML) estimation of the model parameters minimizes, thus, 
the nonlinear sum of squares S, for which MarquardLs method ( see, for example, Fletcher, 
1987, ch. 5) provides a robust and dependable procedure. (When S is replaced by S = e'e, 
the method is often called unconditional least squares.)

It can be shown (Wecker and Ansley, 1983), that the vector e  contains the sequence 
of orthonormal variables obtained from the Gram-Schmidt orthonormalization process 
applied to the series z. Hence, the random variables e(f) , t = 1 are independent

N(0(a2) variables. Furthermore, if the covariance matrix of z is c^Q , and Q =LL' is the 
Cholesky decomposition of Q with L lower triangular, then it is straightforward to verify 
that

e = L _1z,

i q i= in *,
|L|= o(l|0)o(2|l)...o(N|N-l), 

so that S can be written more compactly as

S=|L|I/Ne, e|L|1/N.

1.2 State Space Representation and the Kalman Filter

Among the several state space representations of ARMA models, we select that of 
Jones (1980), originally proposed by Akaike(1973, 1974, 1975). It provides a minimal 
representation, easy to program with the Kalman filter, where the state vector has a 
convenient structural interpretation. (It is also found in some statistical/econometrics 
packages, such as SAS.)

If (z(f) 1 follows the ARMA process given by (1.1), letting r = max{ p, q+1 }, and 
defining <(>.= 0 when i > p, the state space representation is given by

z(f) 0 1 0 ... 0 z (t- l) 1

z(f+1 |f) 0 0 1 ... 0 z(t|f-l) ’f ,

*(f)=

z(f+r-2|f) 0 0 0 ... 1 z(t+r-3|f-l)

+

z(f->-r-l |f) - i - 2 - -4>, z(f+r-2|f-l) Vr4

z(t) = ( l ,0 , . . . ,0 ) z ( f )  , ^■7b)

where the ij> - weights are the coefficients of the power series expansion in B

i|*B) = £>,. B' = 0(B) /<t>(B) .

4
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The expression z(t+j\t) is the orthogonal projection of z(t+j) on the subspace 
generated by  {z (s ) :s s f } ,  and coincides w ith the conditional expectation

E(z(t+j) | z (s ):s s f). The state vector x(t) contains, thus, the series z(f) and its (r-1)- 
periods-ahead forecast function with respect to the semi-infinite sample { z (s ) :s s f }  . Note 
that when the projection is on the finite sample {z(s): l s s s  t} , we represent it with a hat, 
as in (1.3a).

In obvious matrix notation, the system (1.7) can be written compactly as

x{t) = F x ( f - l )  + Ga(f) , (L8a)

z(t) = H'x(t) . (L8b)

Since o 2 can be concentrated out of the likelihood, without loss of generality, we can 
set o2= l. (Once the parameters have been estimated, d2 will be obtained with (1.5)). The 
Kalman filter consists of the following equations. First, the starting conditions:

x(0|0) = E{x(0)) = 0 ,
2(0|0) = E [(*(0) -  x(0|0) )(x(0) -  x(0|0) )'] = V(z(0)) , 

and, then, the recursions:

x(t\t-l) = F x (t - l  |f-l) ,
2 (f| f-l)  = F 2 ( f - l| f - l )  F' * Q ,

K(t) = 2 (f  |f—1) H  ( H' 2 (t| f-l)  H ,
2(t|f) = ( I -  K{t) H ‘ ) 2 (f| f-l)  ,
x(f|f) = z(f| f-l) + Kit) ( z(f) -  H' x(f| f-l)) , t = 1 ,2 , ...,N , 

where Q = GG', and

x(f|T) = E (x(f)|z(l)...... z(T)),

2(f|T) = V (z (f)| z(l),...,z (T )), l s i s N , l s T s N .

The filter can also be initialized with

(1.9)

(1.10a)

(1.10b)

*(1|0) = E (x (l)) = 0 ,
2 ( 1 10) =2(0|0)

since stationarity implies 2(0|0) = F 2(0|0) F ' + Q . An efficient procedure to compute the 
initial covariance matrix 2 ( 1 10) can be found in Jones (1980).

values
In order to maximize the likelihood, at each iteration it is necessary to obtain the

2(f| f-l) = H 'x(f| f-1) , 
c A tlf - l)  = H '2 (f| f-1 ) H ,

and the residual e(f) given by (1.4). Once the last iteration (f=N) has been completed, the 
objective function S is obtained with (1.6).

The vector *(N|N) directly provides the (r-l)-periods-ahead forecast function of the
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variable. If more forecasts are needed, they can simply be obtained with additional runs of 
the filter.

When q 2 p, an alternative representation, which yields a state space vector of 
minimal dimension, can be obtained by eliminating the first element in both the state vector 
and the G vector and by expanding the observation equation (1.8b) with

z(f) = H 'x ( f - l)  + a(f).

The new matrix F in x(t) = Fx(f-l) + G0(f) would be the one of (1.8a) without the first row 
and the first column, the new matrix G would be the old one without the first element, and 
the new matrix H  would be the old one without the last zero. In the rest of the paper we 
shall always refer to the representation (1.7).

1.3 ARMA Model with Missing Observations

Assume, in all generality, that only the values {z (f1),z (t2) ,...,z (fM)}, l s f 1< ...< fM, are 
observed. To obtain the prediction error decomposition, the observation equation (1.8b) can 
be replaced by

z(t) = H'(t)x(t) + a (f)W (f) , f = 1 (l  n )

where H\t) = (1,0,...,0), a(f) = 0 if z(f) is observed, and H'(f) = (0,0,...,0), a(t) = 1 if z(f) is 
missing (see Brockwell and Davis 1987, p. 494). The variable W(f) represents a N(0,1) sample, 
independent of the observations (z (f1)/...,z(fM)}. Thus, when z(f) is missing, 

*(f|f)= x(t\t-l) , £(f|f)= £ (t| f-l) , and both the residual and the standard error 
corresponding to a missing value are ignored when computing the function S of (1.6); see 
Jones(1980).

Having obtained parameter estimates by minimizing the appropriate function S, 
estimators of the missing values can be obtained through the Fixed-Point-Smoother (FPS); see 
Anderson and Moore (1979). Assume the j-th observation is missing, and define the starting 
condition

S “0I 7-1)= 2(/l 7-1) •
Then, letting k = j+ 1 ,  . . . ,  N, the equations of the FPS are given by 

2 “(k+l \k)= S “(Jt|A:-l) ( F -  FK(k)H'(k) )' ,

K ‘ (k) = 2'(fc|fc-l) H{k) ( H'(fc)2(k|k-l)H(k) ♦ a\k)c?w ) ' , (1.12)
x(j\k) = *0'|fc-l) + K ‘ (k) ( 2® -  H\k)x(k\k-1)) ,
20|*)= S0'|*-1) -  2 “(fc|*-l) H(k) (K‘ (k))1 ,

where H(k) and a(k) are as in (1.11), and x(j\k) , 2 0 17c) and K(k) are as in (1.9) and 
(1.10). For ARMA models, the set of equations (1.12) can be simplified by noticing that only 
the first element of x(j\k) and the (1,1) element of 20|*) , namely 201*) an^ ct2(/j*) , 
respectively, are of interest. Defining

P/0'|*)= H '2"(Jt|it-l) , 
b(fc)= H ‘K “(k) , k > j ,

the FPS simplifies into

6
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v '(j|;> H 'T(j\ j-l) = 
v'(j\k+l)= v'(j\k)(F -  FK(k)H'(k))',

b(k)= v'(j\ k) H(k) ( H(k)' Z(fc| k - 1) H(k) + a 2(k)tfw )“’ , 

t ( j I k)= i(j\ * :- !)  + &(*) ( z(*0 -  H (*)' x(fc| fc-1) ) ,
c^O'l *)= o ^ 'l  k-\) -  v '(j| fc) H(fc) b(k) , k * j ,

which only requires storage of the vector v(j\k) and of the scalars 2(j\k) and o 2(j\k) .

1.4 Regression Model with Missing Observations and ARMA Errors

Consider the regression model

z(f)=  y'(f)P + v(f) , H-133)

where |3 = is a vector of parameters, y'(t) is a vector of h independent variables,
z(f) is the dependent variable, and v(f) is assumed to follow the ARMA model given by 

(1.1). If, as before, { 2 (f1) ,...,z (fM)} denote the observed values, defining the vectors 
2 = (2 (f1) , . . . ,2 (fM) j  , v = (v(f1) ,...,v (fM))/, and the (Mxh) matrix Y  with the vectors 
y'(t), t -  f , , . . . , !  , as rows, we can write

z = Yfi + v , (1.13b)

where the matrix Y  is assumed of rank h. Denoting by crQ the covariance matrix of v, the 
likelihood corresponding to (1.13b) is given by

Lkd = (2jio2)-m/2|Q|-1/2 exp 1
2c?

z -  Yfi )'Q-'

The (5 parameters and those of the ARMA model for v (f) can be jointly estimated using the 
Kalman filter as described above by simply defining the state vector 

x(t) -  (v (f),v (t+ l| f),...,v (f+ r-l| f))/ and using equations (1.8a) and

z(f)= y ' m  * H'(t)x(t) *  a(t)W(f) , (1.14)

instead of (1.11). As before, the only residuals included in the computation of the likelihood 
are those for t = given by

e(f)= (z(f) -  y ' m  -  v (f| f-l))/ o(f| f-l) ,

and the estimators of the missing values are obtained with the FPS. When this procedure is 
followed, Mean Squared Error (MSE) estimators obtained in subsequent smoothing or 
forecasting operations will all be conditional on p (see Harvey and Pierse, 1984).

One way to overcome this limitation, which at the same time yields a more efficient 
computational procedure, is to use the approach of Kohn and Ansley (1985), concentrating 
P and o2 out of the likelihood function. The BLUE estimator of p can be obtained by GLS, and 
then the Kalman filter and the FPS can be used to compute minimum MSE missing 
observations estimators and forecasts, as well as their MSE. More specifically, let Q=LL' be
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the Cholesky decomposition of Q, with L lower triangular. Expression (1.13b) can be 
rewritten as

L'z = L 'Yp + LW. (1.15)

Replacing z with v, the Kalman filter associated with equation (1.7a) and the observation 
equation (1.11) can be seen as an algorithm to obtain the residuals e = L'1z and the 
determinant | L |. The same algorithm applied to the columns of Y  provides simultaneously 
e = L-1z, L'1 Y and | L \ (see Wecker and Ansley, 1983, and Kohn and Ansley, 1985). Therefore, 
applying the Kalman filter in this way, we can move from (1.13b) to (1.15).

Using the QR algorithm on the matrix L'1 Y, an orthogonal (Mxfi) matrix Q is obtained, 
such that

Q 'L "1 = (R ',0 ') ' ,

where R is an upper triangular (fix/:) matrix with nonzero elements in the main diagonal. Let 
Q\ and Q '2 be the submatrices formed with the rows of Q  such that

Q'jL^Y = R and Q ^L'Y  = 0.

Premultiplying (1.15) by Q v it is found that

Q 'rL'z = Rp + Q’1L \ ,

and hence the GLS estimator of p is given by 

P = R -lQ [L -h  ,

from which the estimator of o2 is also obtained:

A2 = - I  ( z -  y P)'q  ] ( z -  Yfl) = J L  ( Q'L-'z -  Q 'L _1Yp) ( Q'L lz -  Q'L _1YlP) =
M M

2' ( L ' l y  Q A ' L"‘ z •

The function to be minimized becomes

S = |L|1/M z ' (L -y  Q2Q ' L-1 z |L|1/m .

For more details on how to obtain the missing observation estimators and forecasts, as well 
as their MSE, see Kohn and Ansley (1985).

2 Nonstationary Series, ARIM A M odel

2.1 The Likelihood Function

Let { z(f) } be a nonstationary process such that the transformation u(t) = 6(B)z(f) 
renders it stationary and let { u(t) } follow the ARMA model (1.1). Then, { z(f) } follows the 
nonstationary model
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<t>(B)8 (B)z(f) = e  (B)a(f), (2 1 )

where 8(B) = l+ 6 IB+...+6iB‘i denotes a polynomial in B with all roots on the unit circle. 
T ypically , 8(B) w ill contain regu lar and/or seasonal d ifferences. Let 

z = (z (l) ,z (2 ) ,...,z (N )) ' be the observed series. The nonstationarity of {  z(f) } prevents us 
from using the prediction error decomposition (1.2), since the distribution of z(l) is not well 
defined. New assumptions are required in order to define the likelihood properly; we shall 
use the following ones:

Assumption A: The variables { z(l),...,z(d) }  are independent of the variables { «(f) }. 

Assumption B: The variables { z(l),...,z(d) }  are jointly normally distributed.

The first assumption is a standard one when forecasting with ARIMA models (see 
Brockwell and Davis, 1987, pp. 304 - 307).

The likelihood of ARIMA models is usually defined as the likelihood of the 
differenced series L(u(d+1),...,u(N)); see Box and Jenkins, chapter 7. However, an expression 
in terms of the original series itself could be very useful, since the Kalman filter could then 
be used directly to estimate missing observations in nonstationary series. Accordingly, we 
define as our likelihood the density

Lkd = L (z(d + l),...,z (N ) |z(l),...,z(d) ). (2 -2)

This is a well defined likelihood since, following Bell (1984, p. 650) the variable z(f) can be 
expressed as

2 (0  = A '(f)z . + £  i ,  u (t- i ) , f >d, (2-3)
i-0

where z , = ( z ( l z(d))‘, %(B) = 1/6(B) = B ' , A(t) = (A ,(f)......A /t))' ,  and the
i-O

coefficients A,(f) are obtained recursively from

AW = 
AW -

A  A ( f - ! )  A tf-c l)  ,
1 if i = j  = 1 ,..., d ;
0 if i , ;  = 1 , . . . ,  d ; i*j .

t> d , i = 1 , . . . ,d ,
(2.4)

Let S  be the lower triangular (N-d)x(N-d) matrix with rows the vectors 

( t  j,^ . 2, . . . , l ,0 , . . . ,o ) ,  j  -  1 ,...,N -d , and let A be the (N-d)xd matrix with rows the vectors 

A'(f), f = d+l,...,N. Define /=(/,', /2')', where J1 and J2 are, respectively, the dxN and (N - d)xN 

submatrices such that = (Id, 0) and J2 = (A, S). Then, the transformation

[z(l),...z (d ),z(d +l),...z (N )]/ = ]  [z (l),...,z (d ),« (d + l)......u(N)J , (2.5)

has determinant equal to one. Therefore, the densities will satisfy, under Assumptions A and
B,

L (z (l),...,z (N )) = L (z (l),...,z (d ),« (d +1),...,« (N )) = L (z (l),...,z (d ))L (u (d + l),...,« (N )),
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from which the following result is obtained:

LEMMA 1. L(z(d+1),..., .\N) |z(l),...,z(d )) = E (u (d+l),...,u (N )).

Lemma 1 establishes the equality between the classical definition of the likelihood in 
ARIMA models and our definition (2.2). The prediction error decomposition associated with 
the latter is given by

L(z(d+l),...,z(N) |2 ( l ) , . . ./Z(rf» = L(z(N) |z (N -1),...,2 (1))... (2.6)
L(z(d+1) |2(d ),...,2 (l)).

For t = d+2,...,N, define t(t  |f-l) and t \ f-1) as in (1.3) and let for t = d+1,

2(d+l|d) = E (2(d+ l)| 2(d),...,2 (l)) = A'(d*  1 )2 ,,

t f i d + m  -  ± E  [(Z(d+1) -  2(d+l|d))2] = - L e  [u\d+1)) = ±-V (u(d+1)). 
cr cr cr

Then, the residuals corresponding to the prediction error decomposition (2.6) are

e(f) = (2(f) -  2 (f| f-l))/ o (f| f-l), f = d + l,...,N .

Defining for f = d+2,...,N,

i2(f|f-l) = E(u(t) | u (f-1 ),...,u (d + l), 2(d),...,2 (1 )) = E(u(f) | u (f-l),...,n (d + l)),

the following lemma shows the equality between the residuals corresponding to (2.6) and 
those obtained in the Box and Jenkins likelihood.

LEMMA 2. Under Assumptions A and B,

2 (f) -  2(f |f-l) = u(t) -  fl(t| f-l),

o * (*l*- l)  = 4 E [(“ (f) -  ^ M ) ) 2] -  T v  (u(t) | u (f-l),...,u (d + l)), tzd+1, 
cr cr

where

fl(d+l|d) = E (u(d+l)) -  0 and  (/ (d + l\d) = — V («(d + l)).
o2

Proof. From (2.5) it is immediately seen that the subspace generated by { z(l),...,z(d), 
2(d+l),...,2(t) } and by { z(l),...,z(d),u(d+l),...,u(t) } are the same for f ad+1. Thus,

2(f| f-l) = E (2(f) |2 (f—l ) , . . . ,2 (d+l),2 (d ),...,2(1)) = E (2(f) | « (t- l) ,...« (d + l),2 (d),...,2 (1)),

and , considering (2.3),

2(f| f-l) = A '( t)2 . -  E (u(f —i) | u(f 1)......u(d+l),2 (d ).......2(1)) =
f-o

= A '(f)2 , + E (u (f)| u (f-l),...,u (d + l)) + £  “ (f " 0  =
f-1

= A '(f)  2 , + 12(f I f-1 ) + Y, %
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Hence, z ( t ) -  u(t)~ U(t | f —1)- □

2.2 State Space Representation of a Nonstationary Series and the Kalman Filter

It is proved in Bell (1984, pp. 649-651) that there is a one-to-one correspondence 
between { z(f) } and { z%, { u (t) }}. Using Bell's backward representation as well as (2.3), it is 
not difficult to check that, for any tzd+1, the subspaces generated by lz ( s ) : s s f (  and 

lz t, { a ( s ) : s s f l }  coincide. Thefore, under assumptions A and B, if we define z(s|f) = 

E(z(s) |z (u): vh t) and n(s|f) = E(«(s) |z(t>): vs, t) for sz tzd + 1 , we have

z(s|f) = E (z (s )\ z(v ):vst)  = E (z(s)\z^,{u(v):vst}\, (2-7a)

M(s | f) = £  (u(s)\z(v):vnt) = E (w(s) | u(v): v s t ) .  (2-7b)

The following lemma will allow us to preserve the same state space representation 
as in the stationary case. Consider the ARIMA model (2.1). Let = <p(B)6(B),

i|T(B) = 0(B) /<))"(B) = i|)' B ' and  <|>* = 0 when i >p+d. Then ,
i-0

LEMMA 3.

z (f+ r-l |f) = -  «|>;Z(f-l) -  <t>r*_,z(f | f-l) - . . .  -  ♦1*z (f+ r-2 | t-l)  + ^ « ( f ) , 

where r = max {j)+d,q+\}.

Proof. Using (2.7) in (2.3), it is obtained that 

z (f+ r-l)  -  z (f+ r-l |f) = I ,  (« (f+ r-l)  -  u(t+r-l |f)) +... + (a (f+ l) -  u(f+l |f))-

Since { u(t) } follows the model (1.1), we have

H
u(t*j) -  u(t+j |f) = a(t+ j-i) , j = l , . . . ,r - l ,

i-0

so that

z (f+ r-l)  -  z (f+ r-l |f) = ^ ^ « ( f + r - l )  +... +(|0i|>f_J + -  +|r_2i()0)fl(f+l) =

= H’o’a (f + -  +i|>,V(f+1), 

given that r|)'(B) = l(B)i)i(B). Therefore, 

z (f+ r-l 11) -  z(t+r- 1 |f-l) + q>'r la (t), 

and considering that
r-1

z (f+ r-l | f-1 ) = -  5 > ;z ( t + i - l | f - l )  -  <|>;z(f-l),
i-1

the lemma follows directly. O
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As a consequence, for the no’ stationary case, the state space representation is also 
given by (1.7), with r = max { p+d, 1}, and the $ and if coefficients replaced by the and 

ones; that is

z(t) 0 1 0 . . 0 z ( f- l ) 1

z(f+l |f) 0 0 1 . . 0 z(f|f-l) C

x(t)= = +

z(f+r-2|f) 0 0 0 . . 1 z(f+ r-3| f-l) C i

z (f+ r-l |f) c - f ’-2 •• z(f+ r-2| f-l) C l

(2.9a)

z(t) -  ( l , 0 f ...,0 )x (t) . (2.9b)

The Kalman filter can then be applied in an identical manner to compute the 
likelihood through the prediction error decomposition (2.6). The starting conditions however 
will be different. Considering that

x(d+l)=

A'(d* l ) z .  

A\d+2 ) z >

+

1 0  ... 0  

%  1 ... 0

u(d*  1) 

u(d+2  |d+l)

A'(d+r)z4 1,-1 -  1 u(d+r\d+l)

where A 4, E and U are the obvious matrices and vectors, respectively, the starting 
conditions for the nonstationary case are given by

x(d+l \d) = A'Z', (2.10a)

2(d+l \d) = H E (U U')S' = S 2 (1 | 0 )E ',  (21 0 b )

where 2 ( 1 10) = E(UU ') can be computed from the stationary process { u(t) }, which 
follows model (1.1), as in Section 1.2. The dimension of the state space representation (2.9) 
is minimal, and hence smaller than that of Harvey and Pierse (1984), and equal to the one 
in Kohn and Ansley (1986). Our representation has the appeal of its simplicity, of the direct 
interpretation of the state vector (i.e., the nonstationary series and its (r-l)-periods-ahead 
forecast function), and of the easiness in computing the starting conditions. A simple example 
to illustrate this and the following sections is discussed in Appendix A.

2.3 Missing Observations

As in the two previous sections, let { z(f) } follow the ARIMA process (2.1) with 
Assumptions A and B holding. Let the available observations be |z(fj),z(f2) ,...,z (fM)J , 
with l s f 1<f2< ...< fM . If there are no missing observations among the first d values of the 
series, one could proceed as in the stationary case, with the fixed point smoother and the 
observation equation (1.11), using (2.10) as starting conditions. This is the case considered by 
Harvey and Pierse (1984). Given that their starting conditions and equations are the same as
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ours, the two likelihoods coincide.

For the general case, assume that z; = |z(f]) ,...,z (ft) j/ is the vector of observations 
in zn = (z (l) ,...,z (d ))/. Letting z; denote the vector of missing observations in z<( thenthe 
observed values in z can be expressed as

z(f.) = A '( f .)z , = C '(f.)z , = z ( f ) ,  f = 1,

z(f.) = A 'Q ,)z. *  fi(f,) = B'(f,.)z, + C '(f,)z ; + fi(f,.), i = k + l,...,M ,

l-d-l
where <?(()= t> d ,  the vectors A ' (s) have been defined in (2.3), (2.4) and

B '(s ) and C '(s) are the appopriate subvectors of A ' (s). Let zfl and  u denote the 

vectors (z{tk t J ),...,z {tM)̂ ' and {u(tk t l ),...,u (tM)^, respectively, and A, B and C denote the 
matrices with rows A '(s ) , s = , B'(s) and  C '(s) , s = fM ,.. . , fM, respectively.
Define D = (D/, D2')', where Dj and D2 are the kxd and (M - k)xd submatrices, respectively, 
such that Dj = (It , 0) and D2 = (B, C). Then, the above equations can be rewritten as

[ z / ,z ;J  = A z . + [ o \ a '] '  = d [z; , z; [ (2 .11)

Defining y = za - Bz„ (2.11) implies

y = Cz; + &. (2-12)

A natural way of extending our likelihood (2.2) to the case of missing observations 
is to consider the likelihood of the observations zu conditional on Zk, and to treat z; as 
additional parameters. This definition of the likelihood is equivalent to considering (2.12) as 
a regression model whose errors u have a known covariance matrix t^A. W e define as our 
likelihood that associated with (2.12), that is

Lkd = (2OT2)-(M-‘>/2|A|-I/2exp ± . ( y  -  Cz,)' \~'(y -  Cz,) (2.13)

where the unknown parameters are o2, z, and the coefficients (<j>,9) = (<J>1,...,<))p,0 1,... ,0 (j) of 
model (1.1). Using the prediction error decomposition, and concentrating a 2 out of the 
likelihood, it is seen that maximizing (2.13) over (<)>, 0) and z, is equivalent to minimizing

S = |L|1/(M"*) e'e |L|1/(M-*) = | L _ l ^Cz,)'(lu'y -  L ^ C z ^ L f '^ ,

over (((i, 0) and z; , where L is the lower triangular matrix such that A = LL' is the Cholesky 

decomposition of A, and e -  L "‘ |y -  Cz; J = {e(tk. I) ,...,c (fM)|/ is the vector of standardized 
residuals. For given values of (<|>, 0) and z; , the function S can be computed with the Kalman 
filter. The equations to use are (2.9a) and (1.11), with starting conditions (2.10). In this way, 
we can jointly estimate the unknown parameters (<j>, 0) and z( . As starting values for z; , 
linear combinations of adjacent observations can be used.

However, as stated in Section 1.4, a more efficient computational procedure is 
obtained by using the approach of Kohn and Ansley (1985), whereby o2 and zt can be
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concentrated out of the likelihood. T h i. approach, not only will allow us to compute MSE not 
conditional on z; , but will also p' ice on a sound theoretical basis the discussion of the 
difficulties that may arise when jstim ating z; , and their implications for prediction and 
interpolation. To see how this approach can be used in the present context, let the Kalman 
filter be applied to the model

y = zu ~ Bz, = “•
This allows us to compute L~'y and  |L |. The equations would again be (2.9a) and (1.11); 
the starting conditions, 

x(d+l\d) = [B'(d+l)zl ,...,B'(d*r)z%

and (2.10b). Note that it is not necessary to compute the entire matrix B and that the Kalman 
filter is applied to the vector of observations z„. The same algorithm applied to the columns 
of the matrix C, with starting conditions x(d+l|d) = 0 and (2.10b) also permits us to 
compute L"'C. We consider thus the model

L~'y = L"’ CzJ *  L~'u. (2 1 4 )

Let the rank of C be rc * d - k .  Then, the matrix L ' C  has also rank rc  and two cases need 
to be distinguished:

a) rank(Q  = rc -  d - k .  Then, the QR algorithm applied to L~'C yields an orthogonal 
(M-k)x(M-k) matrix Q such that

Q'L-'C  = (R,,0 /)' ,

where R is an upper triangular (d-k)x(d-k) matrix with nonzero elements in the main 
diagonal.

b) rank(C) = rc < d - k .  A slight modification of the QR algorithm yields an orthogonal 
(M-k)x(M-k) matrix Q such that

Q'L-'C  = (£ ', O')1 ,

where £  is an rc x (d -k )  matrix in echelon form. Permuting the variables in z; if 
necessary, which implies permuting the columns of E, we can always assume without 
loss of generality that the matrix E has the form

E = (R ,S ) ,

where R is an rc x r c upper triangular matrix with nonzero elements in the main 
diagonal.

Thus, in general, let the QR algorithm when rc  = d - k  , or its slight modification 
when rc < d - k  , be applied to the matrix L _1C. Then, an orthogonal (M-k)x(M-k) matrix 
Q is obtained such that

Q'L-'C = (E ', O')' ,

where E = R  if rc = d - k  or £  = (R, S) if rc < d - k .  Let Q', and Q '2 be the submatrices of 
Q ' formed with the rows of Q', so that Q 'L ' C  consists of the first rc  nonzero rows 
of Q 'L-'C, , and Q 'L '‘ C = 0. If (2.14) is premultiplied by Q', it is obtained that
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(2.15a)
(2.15b)

QJL-’ y -  Ez, + Q'L-'u,
Q'2L~'y -  Q'L-'u.

The normal equations corresponding to (2.15) are 

E 'Ez, -  E'Q'L-'y.

This system of linear equations is always consistent and its general solution is (see Rao, pp. 
222-223)

z( -  (E'E)-E'Q'L 'y + (lJ k -  (E'E) E'E)x, (2 1 6 a >

where x is an arbitrary vector of dimension d - k  and ( E 'E )“ is a generalized inverse of E'E. 
If rc -  d - k ,  then E = R, an upper triangular matrix, and (2.16a) becomes

Zj -  R-'Q'L-'y . (2.16b)

Therefore, instead of maximizing the likelihood (2.13) (or, equivalently, minimizing the 
function S) over (<j>, 0), z; and a 2, we can concentrate a 2 and z; out of the likelihood by using 
the regression (2.16) to obtain z] , and

* 2 ’  J T k ^ y ~ ~ L" c 4

In this case, we seek to minimize the function

S ' -  lEf/™-»(L-’ y -  L -'C z^ L -'y  -  L-, Cz; )lEf/IM-*>

over (()>, 0) to obtain ( $ ,  0 ) ;  it is easy to verify that

S ' -  lLP/(M-B(E-’y -  L-'Cz^QQ'[L~'y -  L-1CzJ)lLP/(M-‘> -

-  l E F ^ Q i L - ’ y -  Ez^[Q\L~'y -  Ez() + yl(L-"(Q2Q'1L-'y]\Lt'(M-B.

Since the matrix E (E 'E)"E ' is symmetric, idempotent and has rank rc (see Rao, 1973, p. 25), 
there exists thus, an orthogonal rc x rc matrix QF such that

Qr E (E'E)' E'Q' -  l  ,t b rc

and, therefore E (E 'E )'E ' -  Ir . This implies 

Q jE -'y  -  E z( -  Q[L-'y  -  E (E 'E )'E /Q1, L ', y + (E -  E(E'EYE’E)x -  0

and S' can be rewritten as

S ' -  ILP/(M-B y fL -’/ O jO 'E-’ y l i i 7™-*1. (2.17)

The estimator 6 2 becomes

d2 -  _ L  V'(L-'iQ2Q'2L-'y. (2.18)
M -k

In summary, to estimate model (2.1) concentrating z, and a 2 out of the likelihood, we 
apply the Kalman filter with equations (2.9a) and (1.11) and starting conditions 

xW+lW) -  [B '(d + D ,B '(d + r)Jz : and (2.10b) to the vector of observations z(J to obtain 
E"!y an d  ILL We apply the same algorithm with starting conditions x(d+ lid) -  0 and 

(2.10b) to the columns of the matrix C to obtain L_1C. Then, the QR algorithm, or a slight
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modification of it, is used to obtain Q 'L _IC = ( £ ' , O')'. Finally, we compute 
Q 'L _1y and  S* in (2.17). Minimizing S’ yields the estimators (<j>,6), then we estimate 

z; and o 2 by (2.16) and (2.18), respectively.

2.4 Interpolation and Prediction

Suppose first we concentrate o2 and z, out of the likelihood. For interpolation and 
prediction, we need the estimator (2.16) in (2.10a) to start the Kalman filter and the FPS. 
When rc = d - k ,  we saw that t ] could be obtained with (2.16b).

If rc < d - k ,  then, as stated in the previous section, by permuting the variables in 
z, if necessary, we can assume without loss of generality that £  =(R, S), where R is an upper 
triangular matrix. It is easy to check that a generalized inverse of E'E is the (d-k)x(d-k) matrix 

(E'E)~ = (T', T')', where T, and T2 are the rc x (d -k )  and (d -k-rc)x (d -k )  submatrices, 

respectively, such that Tt = ((R 'R )-1, 0) and T2 = (0, 0). If z; = , z "'1) ,  where z;'  and
z ”  are the subvectors of z, of dimension rc and d - k - r c , respectively, then (2.16a) 

implies

2/ = R -'Q 'L-'y  -  R ' S i  and  2 "  = X,

where X is an arbitrary vector of dimension d - k - r c . It is interesting to note that the 
set R z '  + S z ”  is a maximal set of independent linear combinations that can be estimated 
from the data y  without dependence on x.

The covariance matrix V (2() of is obtained by GLS. Let l s f < f )t, and z(f) be an 
unobserved value that we want to estimate. Since z(f) = A , (t)z> = C '(f)z; , we have

2(f) = C '(f)2; . (2-19a)

The MSE of 2(f) is C '(f) V'(2; )C(f). Let now

z(f) -  A '(f)z , + u(t) = B '(f)z , + C '(t)z, + u(t)

be an unobserved value that we want to estimate with t> tk. If f < f M we are interpolating 
and if f > fM we are predicting. Following Kohn and Ansley (1985), we have

2(f) = B '(f)z , *  C '(f)2 , + P (t)(y  -  C2;), (2-19b)

where E(u(t)\ii) -  P(t)U = Cov(u(t),tl)V~1(a )a .  The MSE of 2(f) is given by

E(z(f) -  2(f))2 = (P(f)C  -  C '(f))V (2 ,)(P (f)C  -  C '( t )) ' + S ( f ) , (2-20)

where S(f) = E(w(f) -  P (t)ttf . The Kalman filter with equations (2.9a) and (1.11) and 
starting conditions (2.10) if f > fM, or the FPS if f < fM, can be used to compute 
both P(f)(y -  C2; ) and S(f). The same algorithm applied to the columns of Cyields P(f)C.

If rc < d - k ,  it may happen that C l(t)2J = C '(f)(2 ;,/, 2 " ' ) '  = C , (f)(2;* ', 2 ') '  in 

(2.19a) or (2.19b) will depend on the arbitrary vector X. The vector C'(f) lies in the space 
generated by the rows of the matrix (R, S), which is the same as that generated by the rows
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of the matrix C, if, and only if, there exists a vector c'(f) such that C'(f) = c'(f)(R, S). Therefore, 

thevector C '(t)2 , = C 'w jv ' ,  * ' [  = C ' ^ R ^ Q ' ^ y )1, 0 '] ' + C '( f )[ (- IT 'S ) ',  f j ^ J i  will 
not depend on 3c if, and only if, C'(f) lies in the space generated by the rows of the matrix 

(R, S). Note that if rc < d - k ,  then the matrix V(2;) should be replaced by c9(E' E)~ and 
that this makes sense only if C '(f)2; does not depend on 3c.

Suppose now that we concentrate only o2 out of the likelihood and that we jointly 
estimate z; and (<|>, 0). We would use the estimator i(t)  thus obtained in (2.19). However, in 

(2.20) we would only obtain S(t) and thus the MSE of 2(f) would be conditional on z,.

2.5 The Relationship Between Our Approach and that of Kohn and Ansley

The following theorem specifies the precise relationship between our likelihood and 

that of Kohn and Ansley (1986).

THEOREM 1. Concentrating o2 and z; out of our likelihood (2.13), the same function to 
maximize is obtained as when o2 is concentrated out of the likelihood defined by Kohn and Ansley.

Proof. As we showed in Section 2.3, maximizing (2.13) concentrated with respect to 
z; and o2 is the same as minimizing (2.17). Kohn and Ansley (1986) define a likelihood which 
coincides with that of Box and Jenkins when there are no missing observations and with that 

of Harvey and Pierse (1984) when there are no missing observations among the first d  values 
of the series. In these cases, thus, their definition coincides with ours. For the general case, 
Kohn and Ansley define r) = ( z ( l - d ) , ..., z (0))' and consider

2 ( f )  = F '(f; )n  + j  = 1 ,...,M ,
(-1

where u>(s) = £ .u (f-;)  and the F\s), sj>1, are generated similarly to the A'(s) of (2.3)
; -0  ^  /  /

and (2.4). If z = (z(f]) ,...,z (tM) ) ',  w = lyw(t1),...,w (tu )'j and F is the matrix having as rows 
the vectors F'(s), s = f , . . . ,fM, the previous equations can be written as

z = [z ,',z ^ J = F ti + w. (2 -21)

In order to see the relationship between expressions (2.21) and (2.11), let F , be the dxd 
matrix having as rows the vectors F'(s), s = 1 and let ui< = (w (l),...,w (d))'. By
definition, equality z% -  F <r| + holds. Substituting in (2.11), it is obtained that

z = [z ', z ' J  = A F ^  + Aiy> + [0/,H, ]/. (2.22a)

Therefore, considering (2.21), the following equalities are found

F = A F Am, + [O', « '] '  = w. (2.22b)

Further, in (2.11), matrix D can be obtained from matrix A by permuting some of its columns.
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Thus, the following equality also holds 

D = A T , (2.23a)

where TA is the nonsingular matrix obtained from the unit matrix by permuting the 
columns in the same way, and we can rewrite equation (2.22a) as

(2.23b)
2 = [2/ '2«]' -  DT, I f .n  + DT> .  *  [ « '.a '? -

The transformation that permits us to move from (2.12) to (2.15) will not have unit 
determinant because |L_1|, in general, is different from 1. Multiplying L '1 by a positive 
number a , such that | a L _1| = 1 ,  it is immediately seen that when a -  | £  thenthe
matrix a Q 'L '1 has unit determinant. Premultiplying both sides of (2.23b) by

7 =
L 0

-a Q 'L 'B  a Q 'L '1 

which also has unit determinant, it is obtained that

2, _ K  0
0 a E

h  0
0 a E T >  +A  *

0
a Q [ L ' H i

z a 0 0 0 0 aQ'L-'fl

(2.24)

and premultiplying (2.21) by /, yields

Tr'F.ri * J w .
z, h 0

= 0 aE

zn 0 0

(225)

Define /, = ( -a Q 'L  ’ B , a Q 'L "1) and 72 = ( - “ Q ji c 'B ,  a Q 'I . '1). Equating(2.24)and (2.25), 
it follows that

h  [2/ - zn ] = aQ 'L -'y  = a Q 'L -'a  = J2w. P-26)

Since / is a transformation matrix of the type defined by Kohn and Ansley (1986), their 
likelihood is the density of ]2w, which, from (2.26), is equal to that of a Q 'L _1fi. This latter 
likelihood is given by

Lkd = ( W ^ - ^ ' V l ^ - ^ e x p - - L y ' { L - ' ! Q 2Q!L-'y\ -

= (2»oJ) ^ - * - r' ,/2| LrM-‘ -r' ,/(M-‘ )exp

Concentrating o2 out of this likelihood using

a2 =
M -k -r ,

y'(L-')'Q2Q'2L-'y,

(227)

(228)

it is easy to check that maximizing (2.27) is equivalent to minimizing
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|L|1' ^ y ' ( L i ' Q 2Q 'I .- 1y|L|I/<M-‘> 

which is identical to (2.17). □

Note that the only difference between our estimator (2.18) and that of Kohn and 
Ansley (2.28) lies in the denominator. If we divide by M - k - r c , then, by Lemma 4 below, 
both estimators coincide.

LEMMA 4. Using the same notation as in the proof o f Theorem 1, the matrix F< is 
nonsingular and

rk(D ) = rk (F ) = rk(A) = k + rc .

Proof. It is easy to check that rank(C) = k + rc . As we saw in the proof of Theorem 
1, F = A F > and D -  ATA. Hence, we only have to show that Fn is nonsingular. The rows

F '(t), t = 1 of F  ̂ satisfy

F '(f) = -8 j F 7( f -1 ) -  . . .- b d F'(t-d ) ,

Letting t = d,

F'(d) = 8 j F '(d -1 )+... + 8  ̂jF '( l )  +6  ̂F '(0 ), 

and

6„det(F.) = 8iJdet[F , ( l ) ......F '(d -1 ) ,F '(0 ) ] '.

Letting t = dr-1,

F \ d -1) = 61F '( d - 2 ) +... + 6 ,.1F '( 0 ) +6J F ' ( - l ) ,  

and

6^det(F.) = 6> d et[F '(l)......F '(d -2 ) ,F '( -1 ) ,F '(0 ) ] '.

Proceeding in a similar manner, it is obtained that

6^det(F.) = 6 *d e t [F '( l - r f ) , . . . ,F '( - l ) ,F '(0 ) ]/ = 6* *  0, 

since 1 |  = 1. □

The next two Theorems show that the estimators of unobserved values, as well as 
their MSE, obtained by the approach of Kohn and Ansley (1986) and those obtained by our 
approach coincide.

THEOREM 2. If z(f) is an unobserved value, then z(f) is estimable in the sense of Kohn and 
Ansley (1986) if, and only if, our estimator 2(f) does not depend on the arbitrary vector i  .

Proof. Using the same notation as in the proof of theorem 1, let 

z(f) = F'(f)r| + w(t) = A '(f)z , + fi(f) = B'(t)zl *  C '(f)z ; + a (t) ,  t i l ,  (2-29)
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where u(t) = 0  if t<tk, be an unobserved value that we want to estimate. Kohn and Ansley 
define z(t) as estimable if the vector F'(f) lies in the space generated by the rows of the matrix 
F. This in turn happens if, and only if, there exists a vector d'(t) such that F '(f) = d'(t) F . 
We will now show that F'(t) lies in the space generated by the rows of the matrix F if, and 
only if, C'(f) lies in the space generated by the rows of the matrix C. By 
definition, z# = F <r) + wm, and, by Lemma 4, this implies tj = F "1z< -  F ‘1m>. Substituting 
in (2.29), we have

F '(f)r i + w(t) = F '( f )F ;‘z , + w(t) -  F > .  = A '(t)z . + 12(f),

and, therefore F /(f)F<_1 = A'(t). Given that the vector (B '(f), C '(f)) is obtained from A'(t) 
by a permutation, the following equality holds

F '( f )F ;1Tyl = (B '( f ) ,C '( f ) ) .  (2-30)

Suppose there exists a vector d\t) such that F '(f)  = d'(t)F . By (2.22b), (2.23a) and (2.30), 
thisimplies (B ' (f), C '(f)) = d'(t) D . Ifw edefine d'(t) = (b1 (t),c'(t)), w hereb\t)andc'(f) 
are the subvectors of d'(t) of dimension l x l  and lx(M-fc), respectively, we finally 
obtain C '(f) = c'(f)C .
To prove the " if " part, assume there exists a vector c'(f) such that C '(f) = c '( f )C , and 
define b'(t) -  B '(f) -  c '(f)B  and d'(t) = [b'(t),c'(t)). It is easy to check that d'(t)D  = 

(B '(f), C '(f)) and, therefore, by (2.30), (2.22b) and (2.23a), we have F '(f)  = d'(t)F  . Since 
we showed in Section 2.4 that the vector does not depend on the arbitrary vector

X if, and only if, C'(f) lies in the space generated by the rows of C, the theorem is proved.
□

THEOREM 3. If z(f) is an unobserved value estimable in the sense of Kohn and Ansley 
(1986), then the estimator z(t) obtained by the method of Kohn and Ansley (1986) and our estimator 
coincide. If the same estimator of o2 is employed, then the MSE are also equal.

Proof. The estimator of Kohn and Ansley (1986) can be expressed as 

z(t) = d'(t)z + E[to(f) -  d'(t)w \ /2u>],

where w and J2w are those of (2.21) and (2.26) and d'(t) is a vector such that F'(f) = d'(t)F. This 
vector exists because z(f) is estimable. As we showed in the proof of Theorem 2, d'(t) also 
satisfies (B'(t), C'(f)) = d'(t)D. This, by (2.21) and (2.11), implies

z(f) = d'(t)z + w(t) -  d'(t)w  = d'(t)z + U(t) -  d '(f)[0/,u '] /, (2-31)

and therefore

tp(f) -  d'(t)w = a(t) -  d '(f)[0/,f i ']/. (2 3 2 )

As stated previously, by permuting the variables in z, if necessary, we can assume without 
loss of generality that E -  (R,S) in equation (2.15a), where R is un upper triangular matrix 
with nonzero elements in the main diagonal. If z;  = [zf1, z f ’1) ,  as in Section 2.4, then from 
equation (2.15a) we have

z ’  = R - 'Q 'L - ’y -  R - 'S z "  -  R 'Q 'E ' f l .

Substituting in equation (2.29), it is obtained that
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z(f) = B '(f)z , + C'(t)[(R-'Q^L-'y ) ' , 0 ' [  + C\t)[-(R-'S)', / J z "  +

+ m  -  C '(f)[(R ", Q1' L^ u j', O'J .

The third term on the right is zero because Q'L~'C -  ((R ,S)', and, as we showed in the 
proof of Theorem 2, if d\t) = (b'(t), c'(f)), then C'(f) = c'(t)C. Therefore, equating this last 
equation and (2.31), yields

d'(t)z = B '(f)z , + C '(f)[(R ~ 'Q[L~'y ) ' , 0 ']  , (2 -33a)

fl(f) -  d'(f)[0/, f l /]/ = u(t) -  C '(t)[(R “1Q1'L “Ifi ) ' , ( ) ']  . (2.33b)

As we showed in Section 2.4, our estimator of z(t) is 2(f) in (2.19), where C '(f)2/=C '(t) 
[ ( R 1 Q]' L '1y ) ',0 , ]/ does not depend on the arbitrary vector X ( because C'(f) = c'(f)C) and 
E(fi(f)|fi) = P(f)w = Cov(u(t) ,U)V~\H)U. Note that if l s t < t k, then u(t) = 0 and P(f) 

= 0. Now, (2.19), (2.32) and (2.33) imply

2(f) = d'(t)z *  P(t) (y -  C2;)

and

z(f) = d '(f)z  «■ E [ “ (f) -  C '( f ) [ (R -1Q1/L-1f i) ',0 '] '| / 2u>].

It remains to show the equality of the second terms in the last two equations. Given 
that Q 'E  and are two orthogonal sets of variables and that, by
(2.26), ]2w  = a Q ' i _1u, we have

E [fl(f) -  C '( f ) [ (R ‘1Q 'L " IS )/,0 , ]/ | J2w] = E[fi(f)|/2m).

By definition of P(t), the following equalities hold

P (f)(y  -  C2; ) = cov(u(t),u)V~\a)[y  -  C2,) =

= E (“ ( f)« ') ( I - " I ) 'Q Q 'f '" , (y -  C2;) =

= E (u(t)fi' )((E ’’ ) ' G ,- ( L - y  Q2)(o' , (Q 'L  'y )')' =

= E (fl(f)(Q 'L -, fl)/)Q 2'L - 1y =

= E ( a m 2w)')v-\i2w)j2w =
= E [fl (f) |/2m ],

where we have used the fact that Q 'L '^ y  -  C2(J = 0 and Q2L _I| y  -  C2(| = Q2L _Iy . Since 
z(f) -  2(f) = z(f) -  z(f), if the same estimator of a 2 is used, it follows trivially that the 

MSE are equal.
□

2.6 Regression Model with ARIMA errors and Missing Values

Consider the regression model (1.13a), where the vectors p and y(t) are as in Section
1.4 and the residuals { v(f) } follow the ARIMA model (2.1) with z(f) replaced by v(f). 
Defining the vectors z, v and the matrix Y  as in Section 1.4, equation (1.13b) still holds and, 
similarly to the stationary case, we can proceed in two ways. First, the p parameters, the
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initial missing values z, and the parameters of the ARIMA model can be jointly estimated. 
The state space representation would be given by (1.14) adapted to the nonstationary case 
(i.e., equation (2.9a) with z replaced by v, and equation (1.14b)). The starting conditions 
would be (2.10b) and

*(<*+1W -  [a '(<M )(z„  -  Y . p ),A '(d +2 )(z „  -  Y .p ),...,A '(< f+r )(z ,. -  Y  p ) [ ,

where z># is the vector formed by the first k observed values (z ,) and some starting values 
for the missing observations in the first d values of the series (z,); Y_ denotes the dxh matrix 
formed by the rows y'(f), t = 1 The second procedure concentrates a 2, (3 and z, out of the 
likelihood function, and is analogous to that described in Section 1.4. Since { v ( f ) ) follows 
the ARIMA model (2.1), with the notation of Section 2.3, we can write

v„ = Bv, + Cv, + ii,

where v„, v,, and v, are the vectors of errors corresponding to the vectors of observations 
z„, z,, and z, , defined at the beguining of Section 2.3. Let Y ,,Y „  and Y  be the matrices 

with rows the vectors y'(f) corresponding to the vectors v ,, v„ and v ,, respectively. 
Replacing v, by z, -  Y,p and v; by z; -  Y; p in the above expression, the following 
regression model is obtained

zD = Bz, *  Cz; + Y„p -  BY,p -  CY,p + a ,

where the regression parameters are z, and p. Letting y -  zn -  Bz( , it can be rewritten as

y  = [C, Yn -  BY, -  CY;|z/,p']/ + a  =

-  [c , y „ -  a „y ][z/ ,p ' [  *  a ,

where Y_ is the matrix with the rows given by the vectors y\t) corresponding to z , and 
An is the matrix defined by BY, + CYJ = A„Y_. The Kalman filter applied to the model 
y  = z„ -  Bz, = u yields L _1y and |L|, where L is as in Section 2.3. The starting 

conditions would be (2.10b) and

x(d*\\d) = [B /(<f+l)zI ,...,B'(<f+r)z,]/.

Note that, as in Section 2.3, it is not necessary to compute the vector y  and that the Kalman 
filter is applied to the vector of observations z„. The same algorithm applied to the columns 
of the matrix |c, Y „ -A nY<j allows us to compute the product of L '1 by this matrix. The 
starting conditions would be (2.10b) and x(d+1 1 d) -  0 . Then, the QR algorithm can be 
applied to the transformed model

L -'y  = L -> [C ,Y D - A „ Y .] [z / ,p 'f  + L-'tt,

and we can proceed as in Section 1.4.

2.8 Application

We have written a program in Fortran, available for mainframes and PCs under 
MSDOS, which can be obtained directly from the authors. The program performs estimation, 
forecasting and interpolation of regression models with missing observations and ARIMA 
errors.
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The regression variables can be inputed by the user or generated by the program. The 
variables that can be generated are Trading Day and Easter Effect (see Hillmer, Bell and Tiao, 
1983) and certain types of intervention variables (see Box and Tiao 1975).

Estimation of the regression parameters (including the missing observations among 
the first d values of the series) plus the ARIMA model parameters, can be made by 
concentrating them out of the likelihood, or by joint estimation, as previously described. 
Several algorithms can be used for computing the likelihood, or more precisely, the nonlinear 
sum of squares to be minimized. When the differenced series can be used, we employ the 
algorithm of Morf, Sidhu and Kailath (1974), as discussed by Pearlman (1980) and improved 
by M61ard (1984).

For the nondifferenced series, it is possible to use the ordinary Kalman filter, as 
described in this paper (default option), or its square root version (see Anderson and Moore, 
1979). The latter is adequate when numerical difficulties arise; however it is markedly slower 
and does not permit (at present) to concentrate the regression parameters out of the 
likelihood. By default, the exact maximum likelihood method is employed, and the 
unconditional least squares method is available as an option. Nonlinear maximization of the 
likelihood function and computation of the parameter estimates standard errors is made 
using Marquardt's method and first numerical derivatives.

For forecasting and interpolation, the ordinary Kalman filter or the square root filter 
options are available. Interpolation of missing values is made with the simplified Fixed Point 
Smoother, as described in the paper. When concentrating z; and p out of the likelihood, mean 
squared errors of the forecasts and interpolations are obtained following the approach of 
Kohn and Ansley (1985), as described in the paper. If the rank of the C matrix is smaller than 
d-k, the program indicates which initial missing values are free parameters (the program 
flags the elements of the vector 2 "  = X in Section 2.4) and also which forecasts or 
interpolations will depend on the arbitrary vector x .

The user can then assign arbitrary values (typically, very large or very small) to the 
free parameters and rerun the program. Proceeding in this way, all parameters of the ARIMA 
model can be estimated because, as seen in Sections 2.3 and 2.4, the function to minimize 
does not depend on the free parameters. Moreover, it will be evident which forecasts and 
interpolations are affected by these arbitrary values because they will strongly deviate from 
the rest of the estimates. However, if  all unknown parameters are jointly estimated, the 
program may not flag all free parameters. It may happen, as in Data Set 5 below, that there 
is convergence to a valid arbitrary set of solutions for z; (i.e., that some linear combinations 
of the initial missing observations, including the free parameters, are estimable.)

Following the tradition set up by Harvey and Pierse (1984) and Kohn and Ansley 
(1986), we apply our procedure to the series of 144 monthly observations on international 
airline passengers (January 1949 - December 1960), given in and analyzed by Box and Jenkins 
(1976, chap. 9). The model indentified in all three cases is the multiplicative ARIMA 
(0 ,l,l)x (0 ,l,l)  model:

V^Vz, = (1 + 0B )(1  + 0 B ,2)fl(,
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applied to the logs of the data. We consider the same four data sets of Kohn and Ansley 
(1986) and add a fifth data set

Data Set 1. All 144 observations.

Data Set 2. The 78 observations that result from treating January through November
in the last 6 years as missing.

Data Set 3. The 139 observations that result from treating July 1949, June, July and
August 1957, and July 1960, as missing.

Data Set 4. The 130 observations that result from treating all July values, and June and
August 1957, as missing.

Data Set 5. The 130 observations that result from treating all January values, and
February 1951 and February 1954, as missing.

In order to facilitate the comparison of our results with those of Kohn and Ansley 
(1986), we use as estimator of o2 that of Ansley and Newbold (1981), which coincides with 
(2.28). Note that Data Set 2 is the example considered by Harvey and Pierse (1984), and that, 
since there are not 13 consecutive observations available at either the start or the end of series 
in the last three data sets, the methodology of Harvey and Pierse cannot be applied in these 
three cases. In Data Set 3, only one initial observation (number 7) is missing (k = 1) and the 
C matrix has rank one. Thus, all missing observations are estimable. In Data Set 4, there is 
also one initial observation (number 7) missing (k = 1) and the C matrix has rank 0. 
Therefore, the initial missing observation will be a free parameter. Finally, in Data Set 5, there 
are two initial missing observations (numbers 1 and 13, k = 2) and the C matrix has rank 1. 
This happens because the C '(f) vectors corresponding to the observed values are all 
multiples of (-1,1) for t > 13. Thus, although z(l) and z(13) are not estimable, the linear 
combination z(13) -  z(l) can be estimated from the available observations. Therefore, if we 
assign (for example) the value 0 to z(l) , and rerun the program, the interpolation of z(13) 
will be the minimum MSE estimator of the annual difference (z(13) -  z (l)) . Note that the 
approach of Kohn and Ansley (1986) would tell us that observations 1 and 13 are not 
estimable.

Tables 1 to 5 are equivalent to Tables 1 to 5 in Kohn and Ansley (1986), and present 
the results obtained with our program; Table 6 displays the results for Data Set 5. The 
differenced series was used for Data Set 1, and the ordinary Kalman filter and simplified FPS 
were applied to the nonstationary levels (as described in the paper) for Data Sets 2, 3, 4 and 
5. The estimation method was always exact maximum likelihood, and in data sets 3 and 5, 
the initial missing values that are not free parameters (i.e., observation 7 in Data Set 3 and 
observation 1 in Data Set 5) were concentrated out of the likelihood function . As for the free 
parameters, we assigned value I f f 9 to observation 7 in Data Set 4 and, as stated above, value 
1 to observation 13 in Data Set 5. Note that no adjustment in the denominator of cr2 is needed 
since we increase the number of observations by one and, at the same time, increase k (the 
number of nonmissing initial values) also by one.
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The results obtained with joint estimation of all parameters were practically identical 
( although CPU time increased by close to 15 %) except for Data Set 5. In this case the 
program did not flag any free parameter and there was convergence to a valid set of 
solutions for the initial missing values. Note that two valid sets of solutions are equal up to 
an additive constant (the free parameter in this case).

Table 1 presents the estimates of the ARIMA model parameters and their standard 
errors. The estimate of 0 is the same as the one in Kohn and Ansley (1986), except for a small 
difference in Data Set 3 (-.405 vs -.408). The 
estimate of 0  is identical in all cases. Table 
2 displays the one to twelve months ahead 
forecasts ( and their root mean squared 
errors), for the five data sets. The results are 
practically identical to those obtained by 
Kohn and Ansley (1986). The only 
noticeable difference is the forecast for 
September in Data Set 4 (6.326 vs 6.333).
Given that the forecasts for September are 
6.325 for data sets 1, 3 and 5, it is possible 
that the second forecast contains a typo.
There is a discrepancy of .001 in the root 
mean squared errors of three forecasts 
(March for Data Set 1, October for Data Set 2 and October for Data Set 3) that could be 
attributed to the use by Kohn and Ansley of N-14 instead of N-15 as denominator to compute 
their residual variance in data sets 1, 2 and 3 (although the rank of their A  matrix is 13). 
Table 3 contains the 11 values interpolated for the months January to November 1957 for 
Data Set 2. Table 4 presents the estimates for the 5 missing values in Data Set 3. Table 5 
shows the estimates of the missing values in Data Set 4 that do not depend on the free 
parameter.

Finally, Table 6 exhibits the estimates of the missing values in Data Set 5 that do not 
depend on the free parameter and also the estimate of z13 -  zr  The results in Tables 3,

Table 1. Param eter Estimates and Standard Errors

Data set 0 e a

l.(N = 144) -.402
(.080)

-.557
(.084)

.037

2.(N = 78) -.457
(.0%)

-.758 
(-227)

.042

3.(N = 139) -.405
(.081)

-.566
(.083)

.037

4.(N = 130) -.430
(.081)

-.573
(.085)

.037

5.(N = 130) -.401
(.082)

-.563
(.089)

.037

Table 2. 1961 Forecasts and Root Mean Squared Errors fo r  Logged Data

Data Set Jan. Feb. Mar. April May June July Aug. Sep. Oct. Nov. Dec.

l.(N  = 144) 6.110 6.054 6.172 6.199 6.233 6.369 6.507 6.503 6.325 6.209 6.064 6.168
(.037) (.043) (.049) (.053) (.058) (.062) (.066) (.069) (.073) (.076) (.079) (.082)

2.(N = 78) 6.084 6.091 6.247 6.205 6.199 6.308 6.409 6.414 6.299 6.174 6.043 6.174
(.053) (.059) (.064) (.069) (.073) (.077) (.080) (.083) (.086) (.089) (.091) (.087)

3.(N = 139) 6.110 6.054 6.173 6.199 6.232 6.367 6.497 6.503 6.325 6.209 6.064 6.168
(.038) (.044) (.049) (.054) (.058) (.062) (.068) (.070) (.073) (.077) (.080) (.083)

4.(N = 130) 6.111 6.055 6.174 6.200 6.233 6.368 * 6.503 6.326 6.209 6.064 6.169
(.037) (.043) (.048) (.053) (.057) (.061) (.080) (.068) (.071) (.074) (.077) (.080)

5.(N = 130) * 6.055 6.172 6.199 6232 6.369 6.507 6.503 6.325 6.209 6.064 6.168
(.058) (.043) (.048) (.053) (.057) (.061) (.065) (.069) (.072) (.075) (.078) (.081)

NOTE: Root Mean Squared errors are given in parentheses. 
* Value depends on a free parameter.
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Table 3. Data Set 2 (N = 78) Interpolation fo r January-November 1957: Estimates and Root Mean 
Squared Errors fo r  Logarithms o f Data

Jan. Feb. Mar. April May June My Aug. Sep. Oct. Nov.

Estimate 5.733 5.738 5.893 5.850 5.843 5.951 6.051 6.055 5.938 5.812 5.680
(.046) (.050) (.053) (.055) (.056) (.056) (.056) (.055) (.053) (.050) (.046)

Actual 5.753 5.707 5.875 5.852 5.872 6.045 6.146 6.146 6.001 5.849 5.720

NOTE: Root mean squared errors are given in parentheses.

Table 4. Data Set 3 (N  = 139): Estimates and Root 
Mean Squared Errors fo r  Logarithms o f Data

July June July Aug. July

1949 1957 1957 1957 1960

Estimate 5.013 6.024 6.147 6.148 6.409
(.031) (.030) (.031) (.030) (.032)

Actual 4.997 6.045 6.146 6.146 6.433
NOTE: Root mean squared errors are given in 

parentheses

4 and 5 are identical to those obtained by

Table 5. Data Set 4 (N = 130): Estimates and 
Root Mean Squared Errors fo r  Logarithms o f 

Data

June 1957 Aug. 1957

Estimate 6.023 6.147
(.030) (.030)

Actual 6.045 6.146
NOTE: Root mean squared errors are 

given in parentheses.

and Ansley (1986).

For data sets 4 and 5, as mentioned above, to know whether the estimator of an 
unobserved value depends on a free parameter or not, it may help to notice that the 
estimated value is very different from the other estimated values. However, the precise 
condition to check is whether its C'(t) vector lies in the space generated by the C matrix. For 
example, we cannot predict January 1961 in Data Set 5 because its C'(t) vector is (-11, 12), 
which does not lie in the space generated by the (-1, 1) vector.

Table 6. Data Set 5  (N = 130): Estimates and Root 
Mean Squared Errors fo r  Logarithms o f Data

Jan. 1950 - Feb. 1951 Feb. 1954
Jan. 1949

Estimate .068 5.020 5.327
(.040) (.029) (.028)

Actual .026 5.011 5236

NOTE: Root mean squared errors are given in 
parentheses.

APPENDIX A

To illustrate our approach, we will use the same example of Kohn and Ansley (1986), namely 
the model

z(t) = z (f-4) + fl(f) + 0 a ( f - l ) . (A 1)

With the notation of Section 2.1, we have d -  4, p  = 0, q = 1, u(t) = 6 (B )z(f), 6(B) = 1 -  B 4, 
0(B) = 1 + 0B  and E;(B) = 1/ 6(B) = 1 + B 4 + B 8 + .... Assume we observe z = (z (l) , 
z (4),z (5), z(6), z(8), z(9), z(10), z(12)/. The A'(t) = {A^t),A2{t),A 3(t),A4{t)) vectors of (2$
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and (2.4) are generated from the recursions 
A (f) = A .( t - i)  , f > 4 ,  /  -  1 ,2 , 3 , 4 ,  

1 if i = j  =  1 ,...,4  ;A,(j) = 0 if i , j  = 1 , . . . ,  4 ; i*j

To obtain the state space representation, we need ap*(B) -  d(B)/<p’ (B) = 0(B)/6(B) =
= 1 + 0B  + B 4 + .... Equations (2.9a) and (1.11) in this case become

z (f ) Ò 1 o  o' z ( f - l ) V

z (f+ l| f) 0  0  1 0 z ( f | f - l ) 0

z(f+2| f) 0  0  0  1 z ( f + l | f - l ) 0

z(f+3| f) 1 0  0  0 z ( f+ 2 | f - l ) 0

(A.2)

z(f) = ( l ,0 ,0 ,0 ) x ( t )  + a (f)W (f).

Since there are missing values, with the notation of Section 2.3, we have Zt = (z ( l ) ,z (2 ) ,
1-5

z (3 ),z (4 )) ' , Z/ = (z (2 ) ,z (3 )) ', Z, = (z ( l) ,z (4 ) ) ',M  = 8 ,* = 2 , U(t) = £  ^ u ( t - j ) ,  t> 4 ,
j-0

zn = (2 (5 ) ,2 (6 ) ,z (8 ) ,2 (9 ),2 (1 0 ),2 (1 2 ))' and u =  ( m (5), w(6), m(8), m (9), m (10), m (12))'. 

The matrices A, B, C and D corresponding to equation (2.11) are in this case

1 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

B =

1 0 0 0

0 0 1 0

0 1 0 0 \  O'
, c  = , D -

1 0 0 0 B C

0 0 1 0

0 1 0 0

It is easy to check that matrix D is the result of first interchanging columns 2 and 4 and the 
interchanging columns 3 and 4, in matrix A. From the form of matrix C, it is immediate that rank(C) 
= 1 and that z(3) is a free parameter. Let the covariance matrix of Ü be V(ü) = a 2 A and let A = LU 
be the Cholesky decomposition of A. In order to compute the function S * in (2.17), we consider the 
regression model

y = Cz; + a,
where y  = zu -  BzJf and proceed as in Section 2.3. First, we apply the Kalman filter to the model 

y  = zn -  BZj= u to obtain L~ly  and |L|. The equations to use are (A.2). The starting 
conditions for the Kalman filter are \ 4) = [z (l) , 0 , 0, z(4)]7 and
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2 ( 5  14 ) = E 2 S '

i  + e2 e 0 0
8 e2 0 0
0 0 0 0
0 0 0 0

(A .3)

Note that the Kalman filter is applied to the vector of observations zu and that it is not necessary to 
compute the entire matrix B. Then, the same algorithm, applied to the columns of matrix C, permits 
us to compute L _1C. The starting conditions are x (5 | 4 )= 0  and (A.3). Therefore, we can consider 
the model

L _1y = L-'CzI *  L -'fl. (A .4)

Since the second column of matrix C is zero, so will be the second column of L ^ C .  Therefore, if we 
denote the first and second columns of matrix C by C(l) and C(2), respectively, we may write

L - ' y  = L ' 1C ( l ) z (2 )  + L _1C (2 )z (3 )  + L _1fi = 
= L _1C ( l ) z (2 )  + L ~ ' a ,

(A .4 )

and z(3) is a free parameter. We can apply the QR algorithm to the vector L : C(1) to obtain an 
orthogonal matrix Q such that

Q ' L - ' q  l )  = [R, o'

where R is a nonzero scalar. Let Q,' denote the first row of Q' and let Q2' denote the submatrix of Q' 
formed by the other three rows. Then, we can rewrite equations (A.4) in the form

Q^L-'y = (R ,0 ')z , *  Q'L-'tt,

Q i L - ' y  Q iL -'a-

From this, we obtain 2(2) = R _1 Q' L~1y / 2(3) - 2  (an arbitrary value) and

S* = |L |1/6y'(L -yQ 2Q'L~ly\L |1/6.

We now consider the numerical example of Kohn and Ansley. That is, we suppose 0 = -.5, o2 = 1 
and z = (1 .2 , -1 .3 ,2 .1 ,3 .2 , .5, .8 , - .4 ,1 .2 )7. In table A.l, we give output from the Kalman filter 
applied as described above. For each time index, we present values for the covariance matrix

1(t\ t-\ ), the vectors x ( t\ t - l) ,  and c ( t\ t-l)  (for column C(l)), the Kalman gain K(t) and the 
corresponding elements of the vectors of standardized residuals L _1y and L _1C(1). It is easy to 
check that if Q' is the matrix obtained from the unit matrix by interchanging its first and second rows, 
then Q 'L -'C i1) = (.976, oy= (R, O')' and Q ‘ L ' ly  = (3.474, .805, 1.610,-366,-3.853, .626)'. From 
this, we obtain 22 = 3.56 with MSE 2.222, y' (L -1)7 Q2Q^L~ly  -  18.8 and finally S ’ = 21.406.

As for interpolation and prediction, we have just seen, 2(2) = 3.56 and z(3) is a free 
parameter. To see whether the interpolators for z(7) and z(ll) depend on the free parameter, we have 
to examine its C ; (f) vectors. We have C'(7) = (0,1) and C '(ll) = (0,1). Therefore, both interpolators 
will depend on the free parameter. As for the forecasts of z(13), z(14) and z(15), we have C'(13) = ( 0, 
0), C'(14) = (1 , 0) and C'( 15) = ( 0, 1). Therefore, only the forecast of z(15) will depend on the free 
parameter. To obtain the forecasts, we put z(2) = 3.56 and z(3) = 9999 (an arbitrary value) and apply 
the Kalman filter to the model zu -  A z n = u. The starting conditions are (see Sections 2.4 and 
22) x (6  15) = (1.2, 3.56,9999, -1.3)' and (A.3). In table (A.2) we present output from the Kalman filter
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applied to zn -  A z n = u . This time, we only give for each time index values 
for x(t | t - l ) ,  L _1(zfl -  A z m) and the MSE O2^ 11 -1 )  (the element in the first row and the first 
column of 2  (t  11 - 1) ), the other values being the same as in table A.l for t = 1 , ... ,  12.

Table A .l. Forecasting Details
Table A .l. Details o f Kalman Filter fo r  example A.1 fo r  example A .l

t x(t | t-l) C(t 1 t-l) 1 t-l) m L ‘y L'C fl) t x(t 11-1) L'(zr z.) a 1» ]  t-l)
5 1.2 0 125  -.5 0 0 1 .805 0 5 1.2 .805 1.25

0 0 -.5 2 5  0 0 -.4 3.56
0 0 0 0 0 0 0 9999

-1.3 0 0 0 0 0 0 -1.3
6 -.36 0 1.05 -.5 0 0 1 3.474 .976 6 3 2 0 1.05

0 0 -.5 2 5  0 0 -.476 9999
-1.3 0 0 0 0 0 0 -1.3
2.1 0 0 0 0 0 0 2.1

7 -1.695 -.476 1.012 -.5 0 0 0 - - 7 9999 - 1.012
-1.3 0 -.5 2 5  0 0 0 -1.3
2.1 0 0 0 0 0 0 2.1
3 2 1 0 0 0 0 0 3 2

8 -1.3 0 1.25 -.5 0 -.5 1 1.610 0 8 -1.3 1.610 125
2.1 0 -.5 2 5  0 0 -.4 2.1
3.2 1 0 0 0 0 0 3 2

-1.695 -.476 -.5 0 0 1.012 -.4 9999
9 1.38 0 1.05 -.5 -.2 0 1 -.566 0 9 1.38 -.566 1.05

3 2 1 -.5 2 5  0 0 -.476 3 2
-2.415 -.476 -.2 0 .812 0 -.190 999828

.5 0 0 0 0 0 0 .5
10 3.476 1 1.012 -.595 0 0 1 -3.853 0 10 3.476 -3.853 1.012

-2.305 -.476 -.595 1.024 0 0 -.588 9998.39
.5 0 0 0 0 0 0 .5
.8 0 0 0 0 0 0 .8

11 -.025 -.476 1.674-.5 0 0 0 - - 11 10000.67 - 1.674
.5 0 -.5 2 5  0 0 0 5
.8 0 0 0 0 0 0 .8
-.4 1 0 0 0 0 0 -.4

12 .5 0 125  -.5 0 -.5 1 .626 0 12 .5 .626 125
.8 0 -.5 2 5  0 0 -.4 .8
-.4 1 0 0 0 0 0 -.4

-.025 -.476 -.5 0 0 1.674 -.4 10000.67

13 .52 - 1.05
-.4

10000.39
1.2

14 ~~ "

10000.39 
12  

.52

15 " id600.39 ..... - '2.724
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