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We investigate the electron mobility of Si nanowires with h100i, h110i, and h111i crystalline

orientations by considering atomistic electron-phonon interactions. We calculate the electron band

structures based on a semiempirical sp3d5s* tight-binding approach and the phonon band structures based

on the Keating potential model. Then, by combining the electron and phonon eigenstates based on

Fermi’s golden rule and solving the linearized Boltzmann transport equation while considering Pauli’s

exclusion principle, we evaluate the electron mobility of Si nanowires. As expected, phonons in Si

nanowires are found to behave quite differently from phonons in bulk Si because of phonon confinement.

However, electron mobility in Si nanowires is primarily governed by the variation in the electron

effective mass rather than that of the phonon eigenstates. As a result, the h110i-oriented Si nanowires

showed the highest electron mobility, because they have the smallest electron effective mass among the

three orientations. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695999]

I. INTRODUCTION

The continuing downscaling of metal-oxide-semicon-

ductor field-effect transistors (MOSFETs) has required the

introduction of innovative device architectures in integrated

logic circuit technology. In particular, to suppress short

channel effects, the device structure is expected to change

from a conventional planar structure with a single-gate elec-

trode to a nonplanar structure with multi-gate electrodes. Si

nanowire MOSFETs with the gate-all-around (GAA) config-

uration, which provides superior gate electrostatic control

over the channel, are thus one of the most promising candi-

dates for future high-performance integrated circuit devices.

Practical fabrication of Si nanowire MOSFETs with diame-

ters of less than 5 nm has already been reported.1

As the diameter of Si nanowires shrinks down to the

nanometer scale, the number of atoms in the cross-section

becomes countable, and hence the crystalline orientation,

quantum confinement, and electron scattering play important

roles in understanding the physical and transport characteris-

tics of Si nanowires. Also, for exploration of novel functional

materials and devices in the nanometer regime, a fully atomis-

tic simulation considering both the electron and phonon band

structures and their interactions is strongly required.

In conventional and commonly-used theoretical

approaches, the transport properties of Si nanowires, such as

carrier mobility, have been calculated by using an analytical

effective mass band structure for electrons and bulk dispersion

relations for phonons, where two-dimensional Schrödinger-

Poisson equations are solved self-consistently.2–5 Also, in

modeling of phonon scattering processes, deformation poten-

tials for the acoustic and optical phonons are parameterized to

reproduce the experimental data for various semiconductor

materials,6 and thus atomistic details, such as crystalline ori-

entation and cross-sectional shape are disregarded. However,

because the lattice vibration in nanowires is quite different to

that in bulk materials because of the phonon confinement, as

demonstrated in this paper, the deformation potentials in

nanowires may depend on both the diameter and the crystal

orientation.7,8 Generally speaking, the deformation potentials

depend not only on the electron wave functions at the initial

and final states, but also on the relevant phonon polarization

vectors.10 Therefore, atomistic treatment of the electron-

phonon interaction is essential to predict the ultimate device

performance of Si nanowire MOSFETs.

In this paper, we address this subject and investigate the

electron mobility of Si nanowires with three crystalline ori-

entations, h100i, h110i, and h111i, by considering the atom-

istic electron-phonon interactions. We calculate the electron

band structures based on a semiempirical sp3d5s* tight-

binding (TB) approach,11,12 and the phonon band structures

based on the Keating potential model.13 Then, by combining

the electron and phonon eigenstates in Si nanowires, we

derive the phonon scattering rate based on Fermi’s golden

rule. We then solve the Boltzmann transport equation while

considering Pauli’s exclusion principle and eventually evalu-

ate the electron mobility of Si nanowires. We show that the

electron mobility of Si nanowires strongly depends on the

crystalline orientation and diameter, and its origin is dis-

cussed in terms of electron and phonon band structure modu-

lation caused by the quantum confinement.

II. BAND STRUCTURE CALCULATIONS

Figure 1 shows unit cells of Si nanowires with

cylindrically-shaped cross-sections, where we considered the

three crystalline orientations of (a) h100i, (b) h110i, and

(c) h111i. The nanowire length is assumed to be infinite in

the transport direction z, which is perpendicular to the plane

a)Author to whom correspondence should be addressed. Phone/Fax: +81-78-
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of the paper. The Si atoms are represented by spheres, and

the surface Si atoms are passivated using an sp3 hybridiza-

tion scheme,14 although their terminating hydrogen atoms

are not shown in Fig. 1. The diameter of the Si nanowires is

determined by the formula D ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3NSi=8pL

p
, where a is

the Si lattice constant of 5.43 Å, NSi is the number of Si

atoms, and L is the length of the unit cell along the transport

directions, which corresponds to L ¼ a, a=
ffiffiffi
2
p

, and
ffiffiffi
3
p

a for

the h100i, h110i, and h111i orientations, respectively.

A. Electrons

The electron band structures in Si nanowires were com-

puted using a semiempirical TB approach, where the first

nearest-neighbor and two-center orthogonal sp3d5s* model

was used. Here, we give an outline of the computational pro-

cedure. First, the electronic wavefunction wn
j;cðkÞ is expressed

in the form of a linear combination of atomic orbitals using

Bloch-symmetrized atomic orbitals vn
j;cðkÞ as follows:

wnðr; kÞ ¼
X

j

X
c

cn
j;cðkÞvn

j;cðr; kÞ; (1)

where n is the band index, r is the position vector, k is the

wavenumber, j is the atomic index, and c represents the

sp3d5s* TB orbitals. Because vn
j;cðr; kÞ can be expressed as a

Fourier transform of the atomic orbitals uj;cðr� RgjÞ, which

are localized at the position (specified as Rgj) of the j th Si

atom in the g th unit cell as shown in Fig. 2, we obtain the

following equation for vn
j;cðr; kÞ:

vn
j;cðr; kÞ ¼

1ffiffiffiffi
N
p

XN

g¼1

eikgLuj;cðr� RgjÞ; (2)

where N is the number of unit cells. By substituting Eqs. (1)

and (2) into the Schrödinger equation, we obtain an eigen-

value equation represented by the sp3d5s* TB orbital basis

set as follows:X
ðg0;j0Þ2NNðg;jÞ

X
c0

Uc;c0

gj;g0j0e
ikðg0�gÞLcn

j0;c0 ðkÞ � /jcn
j;cðkÞ

¼ EnðkÞcn
j;cðkÞ; (3)

where spin-orbit interactions are not considered. The intera-

tomic potential Uc;c0

gj;g0j0 in Eq. (3) can be formulated in terms

of two-center integrals and directional cosines.11 In this study,

we used Boykin’s parameterization15 for the onsite energies

and the two-center integrals between the nearest-neighbor Si

atoms. /j is the electrostatic potential obtained from the

three-dimensional Poisson equation, which is solved by using

the finite volume discretization scheme described in Appendix

A until a self-consistently converged solution for /j is

obtained. Because the main purpose of this paper is to evalu-

ate electron mobility under a low electric field, the Fermi level

of the surrounding metallic gate was fixed to the conduction

band minima of bulk Si, which means a zero flat-band voltage,

and the gate voltage was set to zero for all simulations. There-

fore, the self-consistent solution for the electrostatic potential

coupled with the Poisson equation plays only a minor role in

the present mobility estimation. We confirmed this by per-

forming a non-self-consistent calculation in solving Eq. (3),

and found that the self-consistent electrostatic potential has a

negligibly small impact on determination of the electron mo-

bility. However, the gate bias dependence of the electron mo-

bility will be important for discussion of the on-state

properties of Si nanowire MOSFETs, and our self-consistent

approach is applicable to such simulations.

By diagonalizing the TB matrix at a given wavenumber

k, the energy levels EnðkÞ and the expansion coefficients

cn
j;cðkÞ are obtained for the electrons. As for the numerical

values, the TB Hamiltonian of Eq. (3) is a sparse matrix with

a dimension of 10 NSi for the sp3d5s* ten orbital basis and

NSi atoms, and we therefore adopted the Jacobi-Davidson

method17 to solve Eq. (3) because a few eigenvalue spectra

above the conduction band minima are usually relevant to

the present carrier transport. Acceleration of the numerical

convergence in the Jacobi-Davidson iterations was achieved

by using the preconditioned generalized minimum residual

solver (GMRES),18 where a preconditioner was factorized

using the incomplete Cholesky decomposition,18 and matrix

FIG. 1. Atomic models for (a) h100i-oriented, (b) h110i-
oriented, and (c) h111i-oriented Si nanowires with

cylindrically-shaped cross-sections. The diameter is approxi-

mately 4.3 nm.

FIG. 2. Schematic diagram representing the atomic index j and unit cells.

The position of the Si atom is identified using the atomic index j and the unit

cell index g as (g, j). L is the length of the unit cell in the transport direction.
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elements of triangular matrices that were smaller than a pre-

determined threshold were omitted.

Figure 3 shows the electron band structures computed for

(a) h100i-oriented, (b) h110i-oriented, and (c) h111i-oriented Si

nanowires with diameters of about 3 nm, where the horizontal

axis denotes the wavenumber normalized by the Brillouin zone

width in each case. The origin of the vertical axis, i.e., E¼ 0,

corresponds to the Fermi level. For the h100i- and h110i-
oriented Si nanowires, the conduction band minimum appears at

the C point, while it appears away from the C point for the

h111i-orientation. Also, the lowest subbands are nearly degener-

ate, as indicated in each figure. The differences in the band

structures among these orientations, including the number of

degeneracies, can be qualitatively explained in terms of the two-

dimensional quantum confinement of the six equivalent ellipsoi-

dal valleys in bulk Si.19,20 Next, Fig. 4 shows the transport effec-

tive mass at the conduction band minimum as a function of the

diameter for the three orientations. Note that the horizontal

dashed lines represent the bulk effective masses corresponding

to the h100i- and h110i-orientations, which are both

mt ¼ 0:19m0, and corresponding to the h111i-orientation,

which is ð2mt þ mlÞ =3 ¼ 0:43m0.21 It is found that the trans-

port masses of the h100i- and h111i-orientations increase from

the bulk value as the diameter decreases. In contrast, the trans-

port mass of the h110i-orientation decreases from the bulk

value. The transport effective mass behavior is caused by the

two-dimensional quantization of the anisotropic and nonpara-

bolic Si conduction band.19,20 Therefore, intuitively, higher elec-

tron mobility can be expected in h110i-oriented Si nanowires

with a nanometer-sized cross-section. We discuss this point later

in Sec. IV.

B. Phonons

Phonon band structures were computed using the origi-

nal Keating valence force field (VFF) approach,13 which is

known to describe the microscopic features of phonon eigen-

states in nanostructures well.

The Keating potential consists of two potential energy

terms: the first is the bond-stretching term, and the other is the

bond-bending term. Each term is represented as a function of

the atomic coordinates, and for a diamond structure, the crys-

tal potential energy (Keating potential energy) is given by

E¼ 3

16

a
d2

1

X
g;j

X
ðg0;j0Þ2NNðg;jÞ

ðR2
gj;g0j0 �d2

1Þ
2

þ 3

16

b

d2
1

X
g;j

X
ðg0;j0Þ2NNðgjÞ

X
ðg};j}Þ2NNðg;jÞ
g} 6¼g0\j}6¼j0

Rgj;g0j0 �Rgj;g}j}þ
1

3
d2

1

� �2

:

(4)

Here, the first and the second terms correspond to the bond-

stretching and bond-bending terms, respectively, and a and b
are Keating’s force constants. NNðg; jÞ stands for a group of

nearest-neighbor atoms associated with the ðg; jÞ th atom.

Rgj;g0j0 ¼ Rg0j0 � Rgj indicates the relative position vector

between the two atoms and d1 is the equilibrium bond length

FIG. 3. Electron band structures computed for

(a) h100i-, (b) h110i-, and (c) h111i-oriented Si

nanowires with diameters of approximately

3 nm. The red lines denote conduction bands

used in the mobility calculation.

FIG. 4. Transport effective mass at the conduction band minimum as a func-

tion of the diameter for the three crystalline orientations, where the horizontal

dashed lines represent bulk effective masses corresponding to each orientation.
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between nearest neighbor Si atoms. In the Keating VFF

approach, the phonon band structures are calculated by intro-

ducing a harmonic perturbation approximation into Eq. (4).

If all atoms are fixed to their equilibrium positions

ðR0
1;R

0
2;…;R0

NÞ, the potential energy and forces acting on

the atoms are found to be all zero from Eq. (4). This means

that EðR0
1;R

0
2;…;R0

NÞ � E0 ¼ 0 and rRi
EðR1;R2; …;RNÞ

jR¼R0
1;R

0
2;… ; R0

N
ði 2 1; 2; …; NÞ ¼ 0. Therefore, Eq. (4) is

expanded using higher-order spatial derivatives, and when

we ignore the components that are higher than the third-

order, the Keating potential energy is finally given by

E¼E0þ
X
gj

X
l2fx;y;zg

@E

@Rgjl

����
0

dRgjl

þ1

2

X
gj

X
l2fx;y;zg

X
g0j0

X
l02fx;y;zg

@2E

@Rgjl@Rg0j0l0

����
0

dRgjldRg0j0l0 þ…

�1

2

X
gj

X
l2fx;y;zg

X
g0j0

X
l02fx;y;zg

@2E

@Rgjl@Rg0j0l0

����
0

dRgjldRg0j0l0 ; (5)

where l denotes three Cartesian coordinates fx;y;zg, and

dRgjl denotes infinitesimal displacements from the equilib-

rium position of the ðg;jÞ th atom.

By applying Eq. (5) to Newton’s equation of motion, we

obtained a dynamical equation for the atomic displacement

dRgjl of the ðg; jÞ th atom, as follows:

M
@2dRgjl

@t2
¼ �

X
g0;j0

X
�2fx;y;zg

@2E

@Rgjl@Rg0j0l0

����
0

dRg0j0l0 ; (6)

where M denotes the mass of the Si atom. The factor 1/2 of

Eq. (5) was canceled out by the symmetry in the suffixes.

Here, we assume a solution for the atomic vibration in the

form of a plane wave along the transport direction, such as

dRgjl / eiðqz�xtÞ, and consequently the following dynamical

matrix equation has been derived:

X
ðg0;j0Þ2NNðg;jÞ

X
l2fx;y;zg

D1
gjl;g0j0l0 ½ek

j0l0 ðqÞeiqðg0�gÞL � ek
jl0 ðqÞ�

þ
X

ðg0;j0Þ2NNðg;jÞ

X
ðg};j}Þ2NNðg0 ;j0 Þ

g}6¼g\j}6¼j

X
l}2fx;y;zg

D2
gjl;g0j0;g}j}l}½ek

j}l}ðqÞeiqðg}�gÞL � ek
jl}ðqÞ� ¼ x2

kðqÞek
jlðqÞ; (7)

where e and x are eigenvectors and eigenvalues for the pho-

nons. In Eq. (7), D1
gjl;g0j0l0 and D2

gjl;g0j0;g}j}l} are matrix ele-

ments between the first nearest-neighbor and the second

nearest-neighbor Si atoms, respectively, which are repre-

sented by

D1
gjl;g0j0l0 ¼ �3

a
d2

1

Rl
gj;g0j0R

l0

gj;g0j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj0
p

� 3

4

b
d2

1

X
ðg};j}Þ2NNðg;jÞ
g}6¼g0\j}6¼j0

ðRl
gj;g0j0 þ Rl

gj;g}j}ÞR
l0

gj;g}j}ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj0
p

� 3

4

b

d2
1

X
ðg};j}Þ2NNðg0 ;j0 Þ

g}6¼g\j}6¼j

Rl
g0j0;g}j}ðR

l0

g0j0;gj þ Rl0

g0j0;g}j}Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj0
p ;

(8)

D2
gjl;g0j0;g}j}l} ¼

3

4

b

d2
1

Rl
g0j0;g}j}Rl}

g0j0;gjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj}

p : (9)

In Eqs. (8) and (9), Rl
gj;g0j0 is the directional component of the

relative position vectors from ðg; jÞ to the ðg0; j0Þ th atoms.

We note that the bond-stretching term (the first term in

Eq. (4)) is involved only in D1
gjl;g0j0l0 , while the bond-bending

term (the second term in Eq. (4)) is involved in both D1
gjl;g0j0l0

and D2
gjl;g0j0;g}j}l}. Therefore, the dynamical matrix for a

specified atom contains up to 4 coupling elements with the

first nearest-neighbor atoms, and up to 12 coupling elements

with the second nearest-neighbor atoms. As a matter of

course, these matrix elements depend on the cross-sectional

geometry and the crystal orientations of the nanowires. By

solving Eq. (7) using the matrix elements defined by Eqs. (8)

and (9), the phonon band structure can be obtained.

In practical calculations, we used prescribed force con-

stants for the bond-stretching term a and the bond-bending

term b. Although the dynamical matrix is also Hermitian and

positive definite, we have calculated all eigenvalues and

eigenvectors using the LAPACK library,22 because the

electron-phonon scattering rates formulated in the next sec-

tion must be estimated for the entire first Brillouin zone. The

phonon band structures were calculated in the absence of the

gate dielectric and the metallic gate, and the surface Si atoms

were assumed to be freely-vibrating.

Figure 5 shows the phonon band structures computed

for the three orientations in the low energy regime, where

the diameter is approximately 3 nm and the horizontal axis

denotes the normalized phonon wavenumber. Unlike in bulk

phonons, four acoustic modes exist in a long wavelength

regime,23 i.e., q � 0. We symbolize these modes as TLA1,

TLA2, TA, and LA from the bottom up, as shown in Fig. 5,

where TA and LA are the transverse acoustic and longitudi-

nal acoustic modes, respectively, in common with the bulk

phonon, and TLA is a mixed state of transverse and longitu-

dinal acoustic modes. By looking closely at these four

curves, we notice that TLA1 and TLA2 are degenerate in the

h100i- and h111i-orientations, while they are non-degenerate

in the h110i-orientation. This is because of the presence or

absence of rotational symmetry. Specifically, the h100i- and
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FIG. 5. Phonon band structures computed for (a) h100i-,
(b) h110i-, and (c) h111i-oriented Si nanowires in a low

energy regime, where the diameter is about 3 nm. Unlike

bulk phonons, four acoustic modes exist in the long wave-

length regime, i.e., q � 0. We symbolize these modes as

TLA1, TLA2, TA, and LA from the bottom upwards.

FIG. 6. Atomic vibration vectors at q¼ 0 of four acoustic phonon modes computed for the three crystalline orientations. (a) and (b) are flexural modes, (c) is a

torsional mode, and (d) is the LA mode. The diameter is about 3 nm. Si atoms are located at the origin of each glyph.
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h111i-oriented Si nanowires have rotational symmetries of p
and 2p/3, respectively, but the h110i-oriented nanowire has

no rotational symmetry. Therefore, the TLA1 and TLA2

modes become non-degenerate in the h110i-orientation. This

can also be confirmed by actually plotting the atomic vibra-

tion vectors at the limit of q¼ 0. Figure 6 shows the atomic

vibration vectors of the four acoustic phonon modes com-

puted for the three orientations. For the h100i- and h111i-
orientations, the TLA1 and TLA2 modes exhibit identical

vibration patterns considering each rotational symmetry

mentioned above. However, the h110i-oriented nanowire

clearly has different vibration patterns between the TLA1

and TLA2 modes, which means that the rotational symmetry

is absent in this orientation. Incidentally, from the vibration

patterns shown in Fig. 6, the TLA1 and TLA2 modes are

named “flexural” and the TA mode is called “torsional.”

Also, as found in Fig. 5, the two flexural modes exhibit x /
q2 dispersions, while the torsional mode has a x / q disper-

sion, which is the nature of a purely transverse mode.

Next, we investigated another phonon property in Si

nanowires. Figure 7 shows the phonon densities-of-states

obtained for Si nanowires with the three orientations and

diameters of about 3 nm. First, it is found that the densities-

of-states are sharply-peaked around 65 meV for all the orien-

tations, which is because of the optical phonon modes. It is

interesting that the vibrational energies of the optical phonon

modes in Si nanowires remain similar to those of bulk Si.6

On the other hand, broad peaks extending from �10 meV to

�40 meV result from mixed states of the acoustic and optical

phonons. We should also note that the apparent difference

caused by the nanowire orientation is visually unrecogniz-

able in the present density-of-states.

Sound velocities are evaluated from the phonon band

structures at q � 0 of Fig. 5, and are plotted as a function of

diameter in Fig. 8. The data for TA and LA represent the

sound velocities for the TA and LA modes in Fig. 5, respec-

tively, and those of the TLA modes are not shown here. The

horizontal dashed lines indicate the theoretical sound veloc-

ities for the TA and LA modes in bulk Si.24 It is found that

as the diameter decreases, the sound velocities decrease

because of the phonon confinement effect. Also, we note that

the calculated sound velocities depend on the crystalline ori-

entation, and their magnitude relation corresponds well to

that of bulk Si, especially in a larger diameter regime. Con-

sequently, the phonon confinement and anisotropic effects in

Si nanowires are considered to be successfully described by

the present Keating potential approach.

III. ELECTRON-PHONON INTERACTION

In this section, we formulate the scattering rates caused

by electron-phonon interaction in the Si nanowires by cou-

pling the electron and phonon eigenstates derived in Sec. II.

First, we represent the atomic position vector RgjðtÞ by

adding an atomic vibration vector dRgjðtÞ to the equilibrium

position vector R0
gj as follows:

RgjðtÞ ¼ R0
gj þ dRgjðtÞ: (10)

Here, we define the atomic vibration vector in the second

quantization notation as

FIG. 7. Phonon density-of-states computed for (a) h100i-, (b) h110i-, and

(c) h111i-oriented Si nanowires with diameters of about 3 nm.

FIG. 8. Sound velocities of TA and LA phonon modes at q � 0 for the

three crystalline orientations. The horizontal dashed lines indicate the-

oretical sound velocities for the TA and LA modes in bulk Si.

063720-6 Yamada, Tsuchiya, and Ogawa J. Appl. Phys. 111, 063720 (2012)

Downloaded 18 Apr 2012 to 133.30.52.203. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



dRgjðtÞ ¼
X
q;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2MNxkðqÞ

s
aqke

k
jðqÞe

i

�
qgL�xkðqÞt

�"

þ a�qke
k�
j ðqÞe

�i

�
qgL�xkðqÞt

�#
; (11)

where aqk and a�qk are the phonon annihilation and creation

operators, respectively. ek
jðqÞ is the eigenvector of the ðg; jÞ

th atom at the wavevector q and the kth branch. When the

electron-phonon interaction Hamiltonian is represented by

the sp3d5s* orbitals and is expanded to a first-order spatial

derivative term as25

Uc;c0

gj;g0j0 ðRgj;Rg0j0 Þ �Uc;c0

gj;g0j0 ðR0
gj;R

0
g0j0 Þ þ

@Uc;c0

gj;g0j0

@ðRg0j0 � RgjÞ

����
0

	 ½dRg0j0 ðtÞ � dRgjðtÞ�; (12) then the transition matrix element from a state ðn; kÞ to a

state ðn0; k0Þ is given by

Mn;n0 ðk; k0Þ ¼
X
q;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2MNxkðqÞ

s X
j

X
g0;j02NNðg;jÞ

X
c

X
c0

@Uc;c0

gj;g0j0

@ðRg0j0 � RgjÞ

�����
0



ej0;kð6qÞcn0 �

j;c ðk0Þcn
j0;c0 ðkÞeik0ðg0�gÞL

�ej;kð6qÞcn0 �
j;c ðk0Þcn

j0;c0 ðkÞeikðg0�gÞL

" #
dk�k06q;Ge�i½EnðkÞ=�h�En0 ðk0Þ=�h6xkðqÞ�t: (13)

In practical calculations, solutions for the electron wavefunc-

tions cðkÞ and the phonon eigenvalues xðqÞ and polarization

vectors eðqÞ, which have been derived in Sec. II, are substi-

tuted into Eq. (13). However, the electron eigenenergies are

implicitly considered in the term @Uc;c0

gj;g0j0=@ðRg0j0 � RgjÞ,
which is numerically calculated using analytical formulae

given by the Slater-Koster table, as described in Appendix B.

Note that G denotes the reciprocal lattice vector, and thus

both normal (G ¼ 0) and umklapp (G 6¼ 0) processes caused

by the phonon scattering are automatically included in the

present calculation.

Next, the scattering rates from state ðn; kÞ to state

ðn0; k0Þ are represented by applying Fermi’s golden rule as

follows:

Sn;n0 ðk; k0Þ ¼ 2p
�h

jMn;n0 ðk; k0Þj2g
�

�hxkðk0 � kÞ
�
d
�

EnðkÞ � En0 ðk0Þ þ �hxkðk0 � kÞ
�

þjMn;n0 ðk; k0Þj2½1þ g
�

�hxkðk � k0Þ
�
�d
�

EnðkÞ � En0 ðk0Þ � �hxkðk � k0Þ
�

2
4

3
5; (14)

where g
�
�hxkðqÞ

	
is the equilibrium Bose-Einstein distribu-

tion function, and the Dirac delta function represents the

energy conservation law. Here, as found from Eq. (14), the

final states ðn0; k0Þ after the scattering events need to be

searched by imposing momentum and energy conserva-

tions. To perform accurate detection of the final states over

the whole of the first Brillouin zone, we introduced quad-

ratic spline interpolations of the electron and phonon band

structures between discretized points. Also, to realize a

more rigorous estimation of the joint density-of-states

involving the group velocities of both electrons and pho-

nons at the final states, we transformed the Dirac delta

function in Eq. (14) by using a mathematical formula as

follows:

d
�

EnðkÞ � En0 ðk0Þ6�hxð6k0 � kÞ
�

¼
X

i

1��� @½En0 ðk0Þ��hxkð6k0�kÞ�
@k0

���
k0¼ki

��� dðk0 � kiÞ: (15)

These approaches enable us to perform numerically stable

and accurate estimation of the scattering rates.

IV. ELECTRON MOBILITY CALCULATION

Next, we describe a methodology to compute the elec-

tron mobility. By assuming that the electron distribution

function fnðkÞ can be represented by the sum of the

FIG. 9. Computed electron mobilities of Si nanowires for three crystalline

orientations as a function of diameter.
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equilibrium Fermi-Dirac function f0ðEnðkÞÞ and a first-order

perturbation component dfnðkÞ driven by an electric field F,

the following equation is derived from the Boltzmann trans-

port equation:26

� e

kBT
FvnðkÞf0

�
EnðkÞ

�
1� f0

�
EnðkÞ

�h i
¼ ĈfdfnðkÞg;

(16)

where vnðkÞ ¼ @EnðkÞ=�h@k is the group velocity of the

electrons, which is calculated using the electron band struc-

ture, and T is the temperature. For the calculations in this

paper, we estimated the electron mobility at room tempera-

ture. Next, we represented the collisional integral in the

right-hand side of Eq. (16) using the scattering rate

Sn;n0 ðk; k0Þ and applying detailed balance conditions. As a

result, we obtained the following expression for the colli-

sional integral:

ĈfdfnðkÞg ¼
NL

2p

X
n
0

ðp=L

�p=L

dk
0
Sn;n

0
ðk; k0 Þ dfn0 ðk

0 Þ f0ðEnðkÞÞ
f0ðEn0 ðk

0 ÞÞ




� dfnðkÞ
1� f0ðEn0 ðk

0 ÞÞ
1� f0ðEnðkÞÞ

�
: (17)

Here, L denotes the length of the unit cell in the transport direc-

tion and N is the number of the unit cells. The first and second

terms correspond to the in-scattering process from ðn0; k0Þ to

ðn; kÞ and the out-scattering process from ðn; kÞ to ðn0; k0Þ,
respectively. We introduce a relaxation time approximation,

ĈfdfnðkÞg ¼ �
dfnðkÞ
snðkÞ

: (18)

Then, by substituting Eq. (18) into Eq. (17), the relaxation

time snðkÞ is calculated by numerically solving the following

integral equation:

NL

2p

X
n0

ðp=L

�p=L

dk
0
Sn;n

0
ðk; k0 Þ

1� f0

�
En0 ðk

0 Þ
�

1� f0

�
EnðkÞ

�

½vnðkÞsnðkÞ � vn0 ðk

0 Þsn0 ðjk
0 jÞ� ¼ vnðkÞ: (19)

It should be emphasized that Pauli’s exclusion principle is

strictly taken into account in Eq. (19). Because the relaxation

time is an even function of k, i.e., snðkÞ ¼ snð�kÞ, we only

need to solve Eq. (19) in a half-space of the first Brillouin

zone, e.g., k 2 ½0; p=L�.
Once the relaxation time was obtained, electronic conduc-

tivity r can be calculated using the following equation:27,28

r ¼
X

n

4e2

2pkBT

ðp=L

0

dk
�

vnðkÞ
�2

snðkÞf0

�
EnðkÞ

�



h
1� f0

�
EnðkÞ

�i
: (20)

Finally, we compute the electron density in the conduction

band by using

n ¼
X

n

4

2p

ðp=L

0

dkf0

�
EnðkÞ

�
; (21)

and the electron mobility l is evaluated from the relationship

r ¼ enl. The number of conduction subbands necessary for

accurate mobility estimation depends on the wire orientation,

and thus the conduction subbands used in the actual simula-

tion are highlighted by the red lines in Fig. 3. The inclusion

of these subbands is considered to be sufficient because the

higher subbands are located away from them by more than

the thermal energy at room temperature for the present diam-

eter range (D<5 nm), and also because the gate voltage was

set at zero.

The computed electron mobilities are shown in Fig. 9 as

a function of the diameter. It is found that the electron mobi-

lities significantly decrease with decreasing diameter, which

suggests that the electron-phonon interaction becomes stron-

ger. To examine this point, we plot the total scattering rates

for a diameter (D) of about 3 nm in Fig. 10 and for D of

about 4.5 nm in Fig. 11, which were calculated using the fol-

lowing equation:29

1

sðEÞ ¼
X
n;n0

ð ðp=L

�p=L

dkdk
0
Sn;n

0
ðk; k0 Þ

1� f0

�
En0 ðk

0 Þ
�

1� f0

�
EnðkÞ

�
0
@


 d
�

E� EnðkÞ
�!�X

n

ðp=L

�p=L

dkd
�

E� EnðkÞ
�
: (22)

FIG. 10. Total scattering rates computed for (a) h100i-, (b) h110i-, and (c)

h111i-oriented Si nanowires with diameters of about 3 nm. The solid lines

represent the total scattering rates and the dashed lines represent the density-

of-states for the electrons.
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Note that all scattering processes including TA, LA, TLA,

and optical phonon modes are considered. It was found that

the total scattering rate increases with decreasing diameter

for all of the orientations, as expected. Here, to explain the

complicated behavior of the scattering rates, we also plotted

the density-of-states for the electrons in the dashed lines.

First, a peak is found at each Van Hove singularity point,

which indicates that the one-dimensional nature of the Si

nanowires is described well. Also, a small but broad peak

appears right next to each singularity point, which is caused

by the excitation of acoustic phonons at the Brillouin zone

boundary. An extensive broad peak caused by optical

phonon emission, where the electrons need to have greater

kinetic energies than the optical phonon energies of �65

meV, is also clearly observed above each singularity point.

We now take particular note of the total scattering rates

around the conduction band minima, which are governed by

intrasubband acoustic phonon scattering and determine the

electron mobility. A closer look reveals that the scattering

rates exhibit similar values among the three orientations,

except at the Van Hove singularity points, which is true for

both diameters. The rates are approximately 1
 1013 s�1 for

D¼ 4.5 nm and approximately 2
 1013 s�1 for D¼ 3.0 nm.

As a result, the electron mobilities decrease with decreasing

diameter, as shown in Fig. 9. It should be noted here that the

scattering rate has two contributions from the transition

matrix element jMn;n0 ðk; k0Þj2 and the density-of-states, as

represented in Eq. (14). We next examine the density-of-

states for the electrons plotted in Figs. 10 and 11 in more

detail.

Looking at the curves for the density-of-states in Figs.

10 and 11 carefully, we find that they vary in accordance

with the orientation and diameter dependencies of the effec-

tive mass shown in Fig. 4. More specifically, the density-of-

states around the conduction band minima increases with

decreasing diameter for the h100i- and h111i-orientations

because of the increased effective mass, while it decreases

for the h110i-orientation because of the decreased effective

mass. The density-of-states for the h110i-orientation is also

found to be smaller than that of the other two orientations

because of its smaller effective mass for both diameters.

Nevertheless, the total scattering rates are found to be similar

among the three orientations, which means that the transition

matrix element is larger for the h110i-orientation as com-

pared to the others. This is consistent with the results from

elastic simulation for strained-Si, i.e., variation of the con-

duction band minimum because of uniaxial strain, which cor-

responds to the magnitude of the deformation potential, is

larger along the h110i-orientation than along the h100i-ori-

entation.20,30 To summarize the above discussion, the total

scattering rates responsible for the mobility are nearly con-

stant among the three orientations, as a consequence of a for-

tuitous balance of the influences of the density-of-states for

electrons and the transition matrix element.

Because we considered the diameter-dependent and ani-

sotropic electron-phonon interaction, the mobility for the

h110i-orientation in our results monotonically decreases

with decreasing diameter. However, in previous simulations9

of atomistic electron band structures computed using the

sp3d5s* TB approach and using diameter-independent bulk

phonons, the h110i-orientation exhibits a constant mobility

at around 700 cm2/(V�s) for diameters less than 5 nm. We

consider such a discrepancy to be because of the difference

in the theoretical treatment of the phonons. However, the

phonon-limited mobilities reported in Ref. 9 indicate a simi-

lar magnitude relationship to our results.

In Fig. 9, the h110i-oriented Si nanowires show the

highest electron mobility in the present range of diameters,

while the h111i-oriented nanowires show the lowest. This

trend is the same as that in Ref. 9, and therefore the wire-

orientation dependence of the electron mobility is primarily

governed by the difference between the electron effective

masses, as shown in Fig. 4. Specifically, the h110i-
orientation exhibits the smallest effective mass, and the

h111i-orientation has the largest, which corresponds to the

relative magnitude relationship in the electron mobilities.

This is also supported by the fact that the electron mobilities

of the h100i- and h110i-orientations approach each other as

the diameter increases to 5 nm, which agrees well with the

variation in the effective mass. Accordingly, the effective

mass of the electrons plays a primary role in determining the

atomistic electron mobility of the Si nanowires. From

another point of view, the qualitative trend in the electron

mobility can be understood by considering the atomistic

band structures of the electrons. The present results also sug-

gest that the h110i-orientation is promising for high-

performance Si nanowire MOSFETs with diameters of less

than 5 nm.

FIG. 11. Total scattering rates computed for (a) h100i-, (b) h110i-, and (c)

h111i-oriented Si nanowires with diameters of about 4.5 nm. The solid lines

represent the total scattering rates and the dashed lines represent the density-

of-states for the electrons.
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Finally, we compare our atomistic electron mobilities

with those calculated by an approach based on an analytical

effective mass and a simple isotropic deformation potential.

Figure 12 shows the electron mobilities as a function of di-

ameter calculated using the formulation of the effective mass

in Ref. 21 and diameter-independent isotropic deformation

potentials,3,5 where the value of the deformation potential

for acoustic phonons was given as 12 eV according to Ref. 3

and the parameter set for intervalley scattering was taken

from Ref. 6. Electronic subband structures were calculated

by solving the two-dimensional Schrödinger and Poisson

equations self-consistently.3 The degradation behavior of the

electron mobility with decreasing diameter is similar to that

in Fig. 9, but the magnitude relationship between the h100i-
and h110i-orientations is reversed, which is mainly because

the electron band structures, i.e., the electron effective

masses, are different in each approach. These results again

suggest that the modification of the electron band structure

caused by the two-dimensional geometric confinement plays

an important role in determining the electron mobility.

V. CONCLUSIONS

We have investigated the electron mobility of Si nano-

wires with three crystalline orientations by considering the at-

omistic electron-phonon interactions. We have calculated the

electron band structures based on the semiempirical sp3d5s*

TB approach and the phonon band structures based on the

Keating potential model. By combining the electron and pho-

non eigenstates based on Fermi’s golden rule and solving the

Boltzmann transport equation, we have evaluated the electron

mobility of Si nanowires. As a result, the electron and phonon

eigenstates in Si nanowires were found to be significantly de-

pendent on the crystalline orientation and diameter. As

expected, nanowire confinement modifies the atomic vibra-

tion mode and sound velocity, and therefore phonons in Si

nanowires behave quite differently from those in bulk Si.

However, the electron mobility of Si nanowires was found to

be primarily governed by the variation in the electron effec-

tive mass rather than that in the phonon eigenstates. Accord-

ingly, the h110i-oriented Si nanowires showed the highest

electron mobility, because they have the smallest electron

effective mass among the three orientations. The results here

also suggest that the isotropic deformation potential using the

bulk natures of phonons still works for projection of a qualita-

tive trend in electron transport in Si nanowires.
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APPENDIX A: ATOMISTIC POISSON EQUATION

The three-dimensional Poisson equation is solved using

an atomistic mesh to define the electrostatic potential at all

atomic positions in the unit cell, and the resulting electro-

static potential is substituted into the diagonal on-site matrix

element of the TB Hamiltonian in Eq. (3). In this Appendix,

we describe a finite volume discretization scheme adopted to

solve the atomistic Poisson equation.

First, a three-dimensional Voronoi tessellation is pro-

vided for a given set of atomic positions in the Si nanowire,

and then the Voronoi polyhedron is decomposed into tetrahe-

dra with 4 triangular pyramids attached at every 4 equilateral

triangles. Therefore, the Voronoi polyhedron has 16 faces

with 4 regular hexagons and 12 triangles. Here, we define

the atomic distance between the first (second) nearest-

neighbor atoms as d1 (d2), and d1 and d2 are represented

using the Si lattice constant a as shown,

d1 ¼
ffiffiffi
3
p

4
a; d2 ¼

1ffiffiffi
2
p a: (A1)

Next, the Voronoi surface between the first (second)

nearest-neighbor atoms S1 (S2) and the Voronoi volume D
are given by

S1 ¼
ffiffiffi
3
p
ðd1Þ2; S2 ¼

ffiffiffi
2
p

12
ðd1Þ2; D ¼ 8

9

ffiffiffi
3
p
ðd1Þ3: (A2)

By using these variables, the atomistic three-dimensional

Poisson equation is expressed in the finite volume method

using the following equation:

X
g0;j021NNðg;jÞ

egj;g0j0

d1

S1ð/j0 � /jÞ

þ
X

g0;j022NNðg;jÞ

egj;g0j0

d2

S2ð/j0 � /jÞ ¼ enj: (A3)

Here, egj;g0j0 is the permittivity, and 1NNðg; jÞ and

2NNðg; jÞ represent the first and second nearest-neighbor

atoms, respectively. Also, the atomic charge at the ðg; jÞ th

atom in the right-hand side of Eq. (3) is calculated by

nj ¼
4L

2p

X
n

X
c

ðp=L

0

dkjcn
j;cðkÞj

2f0

�
EnðkÞ

�
: (A4)

FIG. 12. Computed electron mobilities of the Si nanowires using diameter-

independent isotropic deformation potentials and self-consistent Schrö-

dinger-Poisson solutions.
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The gate dielectric was considered by giving the permittivity

of SiO2 on the atomistic meshes in the region surrounding

the nanowire, and the gate voltage was provided using the

Dirichlet boundary condition at the gate/SiO2 interfaces.

APPENDIX B: ANALYTICAL EXPRESSIONS OF
ELECTRON-PHONON INTERACTION HAMILTONIAN
MATRICES

In this study, we assumed the onsite energy to be

unchanged by atomic vibration, and hence we describe here

the theoretical derivations of the analytical spatial derivatives

of the coupling matrices between the s-, p-, and d-orbitals.

By using the fact that the first spatial derivatives of the

TB Hamiltonian matrix elements are expressed as a func-

tion of the directional cosines and the two-center integrals,

their analytical expressions can be derived using the Slater-

Koster parameters. First, we define the relative position

vector from the nearest-neighboring ith to jth atoms Rij by

using its magnitude Rij and unit vectors ex, ey, and ez as

follows:

Rij ¼ Rj � Ri ¼ Rijðlijex þ mijey þ nijezÞ; (B1)

where lij, mij, and nij are integers, and Rij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2 þ ðzj � ziÞ2

q
gives the distance

between the nearest-neighbor atoms. As mentioned above,

we need spatial derivatives of the matrix elements, so we

introduce the following relationship between the first deriva-

tive of the bond length with respect to Rij and the directional

cosines (lij, mij, nij),

@Rij

@Rij
¼

lij

mij

nij

2
4

3
5: (B2)

Then, the spatial derivative of the two-center integrals is

expressed as follows:

@Vf
i;jðRijÞ
@Rij

¼ �
nfV

f
i;jðR0

ijÞ
Rij

R0
ij

Rij

 !nf lij

mij

nij

2
4

3
5: (B3)

Here, nf is a generalized Harrison scaling parameter of the f
bond, which was taken from Ref. 16 in the calculations.

Also, the first derivative of the directional cosines with

respect to Rij is expressed by

@

@Rij



lij mij nij � ¼

1

Rij

1� l2
ij �lijmij �lijnij

�mijlij 1� m2
ij �mijnij

�nijlij �nijmij 1� n2
ij

2
664

3
775:
(B4)

In this study, the first derivatives of the Slater-Koster parame-

ters are calculated using Eqs. (B3) and (B4). As an example,

for the s-orbital and p-orbital coupling matrices, the following

expressions were obtained:

@Rij
Us;s

i;j ¼ @Rij
Vssr

i;j ðRijÞ;
@Rij

Us;px

i;j ¼ ð@Rij
lijÞVspr

i;j ðRijÞ þ lij@Rij
Vspr

i;j ðRijÞ;
@Rij

U
s;py

i;j ¼ ð@Rij
mijÞVspr

i;j ðRijÞ þ mij@Rij
Vspr

i;j ðRijÞ;
@Rij

U
s;py

i;j ¼ ð@Rij
nijÞVspr

i;j ðRijÞ þ nij@Rij
Vspr

i;j ðRijÞ;

(B5)

The first spatial derivatives for all of the other matrix ele-

ments can be derived in the same manner. In fact, we derived

one hundred expressions for first spatial derivatives of the

nearest-neighbor coupling matrices to calculate the electron-

phonon interaction Hamiltonian in Sec. III.
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