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Abstract

Due to the rapidly increasing video data on the Web, much research effort
has been devoted to develop video retrieval methods which can efficiently
retrieve videos of interest. Considering the limited man-power, it is much
expected to develop retrieval methods which use features automatically ex-
tracted from videos. However, since features only represent physical contents
(e.g. color, edge, motion, etc.), retrieval methods require knowledge of how
to use/integrate features for retrieving relevant videos to a query. To obtain
such knowledge, this dissertation concentrates on video data mining where
videos are analyzed using data mining techniques which extract previously
unknown, interesting patterns in underlying data. Thereby, patterns for re-
trieving relevant videos are extracted as explicit knowledge.

Queries can be classified into three types. For the first type, a user can
find keywords suitable for retrieving relevant videos. For the second type, the
user cannot find such keywords due to the lexical ambiguity, but can provide
some example videos. For the final type of queries, the user has neither key-
words nor example videos. Thus, we develop a video retrieval system with
‘multi-modal’ interfaces by implementing three video data mining methods
to support each of the above three query types. For the first query type, the
system provides a Query-By-Keyword (QBK) interface where patterns which
characterize videos relevant to certain keywords are extracted. For the second
query type, a Query-By-Example (QBE) interface is provided where relevant
videos are retrieved based on their similarities to example videos provided
by the user. So, patterns for defining meaningful similarities are extracted
using example videos. For the final query type, a Query-By-Browsing (QBB)
interface is devised to characterize impressive video segments, so that the
user can browse videos to find keywords or example videos. Finally, to im-
prove retrieve performance, the integration of the QBK and QBE interfaces
is explored where informations from text and image/video modalities are
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interchanged using knowledge base.
The developed video data mining methods and the integration method

are summarized as follows: In chapter 2, we develop a video data mining
method for the QBK interface. This method focuses that a certain semantic
content is presented by concatenating several shots taken by different cam-
eras. Thus, the method extracts sequential patterns which relate adjacent
shots relevant to certain keyword queries. Sequential patterns are extracted
by connecting characteristic features in adjacent shots. However, the extrac-
tion of sequential patterns requires an expensive computation cost because
a huge number of sequences of features have to be examined as candidates
of patterns. Hence, time constraints are adopted to eliminate semantically
irrelevant sequences of features.

In chapter 3, a method for the QBB interface is devised. We assume that
impressive actions of a character are presented by abnormal video editing
patterns. For example, thrilling actions of the character are presented by
shots with very short durations while his/her romantic actions are presented
by shots with very long durations. Based on this, the method detects bursts
as patterns consisting of abnormally short or long durations of the character’s
appearance. The method firstly performs a probabilistic time-series segmen-
tation to divide a video into segments characterized by distinct patterns of
the character’s appearance. It then examines whether each segment contains
a burst or not.

In chapter 4, we develop a method for the QBE interface by focusing
on a large variation of relevant shots. Specifically, even for the same query,
relevant shots contain significantly different features due to varied camera
techniques and settings. Thus, rough set theory is used to extract multiple
patterns which characterize different subsets of example shots. Although
this requires counter-example shots which are compared to example shots,
they are not provided. Hence, partially supervised learning is used to collect
counter-example shots from a large set of shots left behind in the database.
In particular, counter-example shots which are as similar to example shots
as possible, are collected as they are useful for characterizing the boundary
between relevant and irrelevant shots.

In chapter 5, we address the integration of QBK and QBE. To achieve
this, we construct a video ontology where concepts such as Person, Car and
Building are organized into a hierarchical structure. The video ontology is
constructed by considering the generalization/specialization relation among
concepts and their co-occurrences in the same shots. Given the textual de-
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scription of a query (i.e. QBK), concepts related to the query are selected
by tracing the hierarchical structure of the video ontology. Shots where few
of selected concepts are detected are filtered. After that, QBE is performed
on the remaining shots to obtain a final retrieval result.

Experimental results validate the effectiveness of all the developed meth-
ods. In the future, the current multi-modal video retrieval system will be
scaled-up to the internet scale, where the methods are parallelized using
thousands of processors. In addition, the system will be extended by adopt-
ing another interface, Query-By-Gesture (QBG), where the user can create
example shots to represent any arbitrary query.
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Chapter 1

Introduction

Due to the recent advance of multimedia technologies, a large number of
videos are distributed on the Internet or stored in hard disks. As such, there
is a great demand to develop a video retrieval method which can efficiently
retrieve videos of interest. It should be noted that users are usually interested
in retrieving videos which match semantic contents, such as “people walk in
the street”, “an airplane flies” and so on. However, this is challenging because
a raw video is just a sequence of video frames and audio samples. In other
words, it is not associated with any semantic content. To overcome this, we
focus on data mining which is a technique to discover previously unknown
and interesting patterns in underlying data. Discovering patterns such as
customer’s purchase for marketing or network access for intrusion detection
benefits users in various fields. In this context, we apply data mining to
video data in order to extract patterns which characterize semantic contents
in videos. Efficient video retrieval can be achieved using extracted patterns.
We call this approach video data mining.

As the first step of video retrieval, a user issues a query to represent inter-
esting videos. Queries can be classified into three types. For the first type of
queries, the user can find keywords suitable for retrieving interesting videos.
For the second type of queries, the user cannot find such keywords due to the
lexical ambiguity, but can provide some example videos. For the final type of
queries, the user has neither keywords nor example videos. Thus, we develop
a video retrieval system with ‘multi-modal’ interfaces by implementing three
video data mining methods to support each of the above three query types.
For the first query type, the system provides a Query-By-Keyword (QBK)
interface where patterns which characterize videos relevant to certain key-
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Chapter 1: Introduction 2

words are extracted. For the second query type, a Query-By-Example (QBE)
interface is provided where videos are retrieved based on their similarities to
example videos provided by the user. So, patterns for defining meaningful
similarities are extracted using example videos. For the final query type,
a Query-By-Browsing (QBB) interface is devised to extract patterns which
characterize impressive video segments, so that the user can browse videos to
find keywords or example videos. Finally, to improve retrieve performance,
the integration of QBK and QBE is explored where informations from text
and image/video modalities are interchanged using knowledge base which
represents relations among semantic contents. Below, we summarize the
proposed video data mining methods for QBK, QBE and QBB interfaces,
and the integration method of QBK and QBE interfaces.

1.1 Summary of the Proposed Video Data

Mining Methods

Video data is crucially different from traditional alpha-numeric data. Tradi-
tional data is structured where its alpha-numeric representation directly de-
scribes semantic contents and relationship operators (e.g. equal, not equal,
etc.) are well-defined [8]. On the other hand, video data is unstructured
where its digitized representation (e.g. representation of RGB pixel values)
does not directly describe semantic contents and relationship operators are
ill-defined. Thus, it is difficult to perform video data mining directly on video
data. Instead, we should first derive features, such as color, edge, motion and
audio, which are related to semantic contents. The derivation of features is
one of the most important tasks as it constructs the building blocks for video
data mining [50]. Then, video data mining can be achieved by applying data
mining techniques to features.

In terms of the kinds of patterns that can be extracted, data mining
techniques can be roughly classified into three categories, pattern discovery,
classification and cluster/structure analysis. In the following paragraphs, we
relate the proposed video data mining methods to the above categories.

Pattern Discovery

This category aims to extract patterns as high-level descriptions of underlying
low-level data. For example, in transaction data, patterns are extracted as
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sets of items that are frequently purchased at the same time [80]. An example
of a pattern is that 80% of customers who purchase bread and butter also
purchase milk. Such patterns are useful for retail marketing, shelf space
management, catalog design and so on. In credit card transaction data, a
fraud is detected as a pattern which indicates an abnormally high purchase
of a customer in comparison to his/her regular purchase [92].

In chapter 2, we develop a pattern discovery method to implement a QBK
interface. Specifically, we extract sequential patterns of features which char-
acterize video segments relevant to certain keyword queries. Our method is
motivated by the video editing process where various shots are concatenated
to create a final video sequence. Each shot is a sequence of video frames
continuously recorded by a single camera1. Considering the video editing
process, a meaningful semantic content is not presented by a single shot,
but presented by a shot sequence. For example, the conversation between
two characters A and B is presented by a shot sequence, where A repeatedly
appears in one shot and then B appears in the next shot. Also, the fight
between A and B is presented by a shot sequence, where their violent actions
are taken by cameras placed at different positions. Hence, we extract sequen-
tial patterns, each of which represents features in adjacent shots associated
with a certain keyword query.

In chapter 3, we devise another pattern discovery method which is used
for a QBB interface. We assume that impressive semantic contents are pre-
sented by abnormal editing patterns. For example, thrilling contents are
presented by a fast transition of shots with very short duration, so that the
thrilling mood is emphasized. In addition, romantic contents are presented
by concatenating shots with very long durations, where a character’s emo-
tion and action are thoroughly shown. It should be note that only using shot
durations is clearly insufficient for characterizing semantic contents. Hence,
shot durations where a certain character appears are used as features, and
impressive semantic contents are characterized by detecting abnormal pat-
terns of his/her appearance, called bursts. Specifically, two types of bursts
are detected: the one consists of abnormally short durations of the char-
acter’s appearance, while the other consists of abnormally long appearance
durations. We demonstrate that bursts characterize shot sequences where

1The video can be accurately divided into shots by using existing methods, where a
camera transition is detected as a significant difference of features between two consecutive
video frames [100].
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the character performs interesting actions, such as fighting, chasing, kissing
and so on.

Classification

This category aims to extract a model (classifier) that classifies data into
different classes (categories). The classification technique is used in vari-
ous problem domains. For example, in Web page classification, a model
which classifies Web pages into different subjects such as ‘arts’, ‘business’
and ‘sport’, is extracted to assist the development of Web directories [40].
Also, a model which classifies Electrocardiogram (ECG) records into normal
or abnormal, is extracted for monitoring and diagnostic of heart diseases [66].

In chapter 4, a classification method is developed to implement a QBE
interface. That is, when a user provides example shots for a query, we ex-
tract a retrieval model to classify shots into relevant or irrelevant to a query.
Traditional classification tasks only consider a few classes and assume that a
large number of training examples are available. On the other hand, in our
classification task, the user can issue a great variety of queries. In addition,
it is impractical for the user to provide a large number of example shots
(training examples). Hence, we develop a method which extracts a retrieval
model only using a small number of example shots.

For our method, one of the most important issues is a ‘large variation of
relevant shots’. Even for the same query, relevant shots contain significantly
different features due to varied camera techniques and settings. A small
number of example shots inevitably limit the range of relevant shots that can
be retrieved. To overcome this, we construct many retrieval models using
different sets of randomly selected example shots and feature dimensions.
Since these models characterize significantly different shots depending on
example shots and feature dimensions, they are useful for extending the range
of relevant shots that can retrieved. However, this also results in many
irrelevant shots potentially being retrieved. Thus, we use rough set theory
to combine models into classification rules which provide greater retrieval
accuracy.

Cluster/Structure Analysis

This category aims to extract structures by grouping data into clusters or
linking data based on a certain characteristic. For example, in biomedicine,
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genes are grouped into clusters of similar gene expression measurements,
in order to explore biological relationships among genes [68]. Also, in the
field of social network, community structures which represent interpersonal
relationships are extracted from e-mail corpora based on the intensity of mes-
sage exchanges [54]. It should be noted that the cluster/structure analysis is
generally used to produce a reduced data representation, while closely main-
taining the integrity of the original data. Thus, cluster/structure analysis is
often a pre-processing step to discover interesting patterns or to enhance the
classification performance.

In chapter 5, to improve the retrieval performance, we develop a method
which integrates the QBK and QBE interface based on cluster/structure anal-
ysis. We construct a video ontology which represents a hierarchical structure
of concepts, such as Person, Car, Building and so on. These concepts are fun-
damental semantic contents in videos. Since features do not directly describe
semantic contents, only using features inevitably leads to retrieve several ir-
relevant shots to a query. Hence, we use the video ontology as knowledge base
for video retrieval. The video ontology is constructed by examining the gen-
eralization/specialization relation among concepts and the co-appearance of
objects corresponding to concepts. Given the textual description of a query
(i.e. QBK), the video ontology is used to select concepts related to the query.
For example, for the query “buildings are shown”, Building, Factory, Win-
dow, Urban etc. are selected as related concepts. Then, we filter irrelevant
shots by referring to recognition results of objects corresponding to selected
concepts. Finally, QBE is performed on the remaining shots to obtain a final
retrieval result.

1.2 Dissertation Overview

The structure of this dissertation is as follows: In chapter 2, we describe
a video data mining method for the QBK interface. This method extracts
sequential patterns which characterize semantic contents. A video is firstly
represented as a multistream by sequentially aggregating several types of
features derived from each shot. Then, sequential patterns are extracted by
connecting characteristic features in the multistream. In chapter 3, we intro-
duce a method for the QBB interface. This method characterizes impressive
semantic contents by detecting bursts as abnormal patterns of a character’s
appearance. A video is divided into shot sequences which are characterized
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by specific patterns of the character’s appearance and disappearance. Subse-
quently, it examines whether a burst occurs in each shot sequence. Chapter
4 describes a method for the QBE interface, where a variety of relevant
shots are retrieved only using a small number of example shots provided as a
query. We use rough set theory to extract multiple classification rules which
can correctly identify different subsets of example shots. A variety of relevant
shots can be retrieved by accumulating relevant shots retrieved by each rule.
Chapter 5 presents a method which integrates the QBK and QBE interfaces
to improve the retrieval performance. A video ontology is constructed to
represent the lexical and visual relations among concepts. Given the textual
description of a query, we select concepts related to the query based on the
video ontology. Then, irrelevant shots are filtered by referring to recogni-
tion results of objects corresponding to selected concepts. QBE is performed
on the remaining shots to obtain a final retrieval result. In chapter 6, we
conclude this dissertation and suggest further research topics in video data
mining.



Chapter 2

Time-constrained Sequential
Pattern Mining for Extracting
Semantic Events in Videos

2.1 Introduction

In this chapter, we extract semantic patterns as sequential patterns of fea-
tures, which characterize semantically relevant events (semantic events) in
videos. In general, a video involves two types of media: video and audio.
These are known as continuous media [26]. As shown in Fig. 2.1, they are
sequences of media quanta, i.e., video frames and audio samples, that convey
their semantic contents only when continuously played over time. Therefore,
the semantic information of the video is time-dependent.

In order to efficiently handle such time-dependent semantic information,
it is useful to define two aspects of the semantic information, i.e. spatial
and temporal aspects. A spatial aspect relates to the semantic content pre-
sented by a video frame, such as the location, characters and objects shown
in the video frame. A temporal aspect relates to the semantic content pre-
sented by a sequence of video frames in terms of temporal order, such as a
change of locations, character’s action and object’s movement presented in
the sequence.

Since a shot is a segment of video frames recorded continuously by a single
camera, it can be considered as a basic physical unit used to successfully
capture the spatial and temporal aspects in a video [33]. But, as shown in Fig.

7
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(semantic event
           boundaries) ===>

(video media) (audio media)

timetime

video frames
30 (frames/sec)

audio samples
44.1 (khz)

(shot boundaries) --->

time

shot 1 shot 2 shot 3

The character A 
drives her car.

A waits for her boyfriend B. A walks around with B. A looks at the picture.

The semantic information of the video

Figure 2.1: An example of the semantic information of a video, conveyed
through video and audio media.

2.1, the shot cannot convey a semantic event by itself. Fig. 2.1 illustrates
adjacent shots that form a continuous semantic event. For example, the
leftmost semantic event consists of four separate shots. From this point of
view, we define a semantic pattern as a sequential pattern that sequentially
relates to the adjacent shots.

In order to extract the above semantic patterns from a video, we first con-
struct a multistream of features derived from each shot sequentially. Next,
we extract sequential patterns from the multistream. In this process, we
consider the following two types of temporal characteristics of the video: se-
mantic event boundaries and temporal localities. A semantic event boundary
is defined as the boundary between two consecutive semantic events in which
the viewer can recognize an important change in the semantic content, such
as change of character’s action or change of the location. For instance, in
Fig. 2.1, the character A drives her car in the leftmost event and waits for
her boyfriend outside her car in the next event. Hence, a semantic event
boundary can be found between the fourth and fifth shots from the left.

A temporal locality relates to shots in the same semantic event that are
required to be temporally close to each other [103, 97, 98]. For example,
in Fig. 2.1, the same character A appears in the three shots, shot 1, shot
2 and shot 3. We see that shot 1 is temporally very close to shot 2, while
shot 3 is temporally far from both shot 1 and shot 2. Here, shot 1 and shot



Chapter 2: Time-constrained Sequential Pattern Mining 9

2 are more likely to be included in the same semantic event. On the other
hand, the semantic event of shot 3 should be different from that of shot 1 and
shot 2 because several different semantic events may be shown between shot
2 and shot 3. We utilize semantic event boundaries and temporal localities
as time constraints to eliminate sequential patterns which are unlikely to be
associated with semantic events.

2.2 Related Works

In this section, we review previous works in the research fields of video data
mining and sequential pattern mining. We also describe our contributions of
this chapter to both research fields.

2.2.1 Video Data Mining

For efficient video data management, such as video indexing, retrieval and
browsing, various video data mining approaches have been proposed in recent
years [52, 51, 50, 97, 98, 29, 101]. Pan et al. extracted some patterns of
news and commercial video clips for video retrieval and browsing [52]. In
particular, they extracted essential characteristics of news and commercial
video clips by applying Independent Component Analysis (ICA) to an n-
by-n-by-n cube, representing both spatial and temporal video (or audio)
information in a video clip.

Pan et al. also extracted some patterns of plot evolution in news and
commercial video clips [51]. Given a video clip, they group similar shots into
shot-groups based on DCT coefficients of I-frames in a shot. This allows for
the detection of basic shot-groups that contain shots that often appear in the
video clip. The graph of basic shot-groups reveals the plot structure of the
video clip. In [51], it was found that such graphs for news and commercial
video clips are quite different from each other.

Oh et al. extracted some patterns of object’s appearance and disappear-
ance in a surveillance video [50]. They group incoming frames obtained from
a fixed camera into segments of different categories. Furthermore, each seg-
ment is indexed by its motion feature which is defined as an accumulated
difference of two consecutive frames in the segment. Finally, segments are
clustered into groups of similar segments based on segment’s category and
motion.
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Zhu et al. extracted sequential patterns of shots for addressing video
semantic units (e.g. events, scenes, and scenario information) in news, med-
ical and basketball videos [97, 98]. Initially, they cluster shots into groups
of visually similar shots and construct a sequence consisting of the group
names. Sequential patterns of shots with strong temporal correlations are
then extracted from the sequence.

The above video data mining approaches extract semantic patterns only
from rule-dependent videos, which have apparent rules associated with se-
mantic events. For example, in the interview events in news videos, a shot
where an interviewer appears is followed by a shot where an interviewee ap-
pears, and these are repeated one after the other [52]. Similarly, in goal
events in ball game videos, the score shown on the telop changes after audi-
ence’s cheering and applause [98]. In surveillance videos recorded with fixed
cameras, if an object actively moves, the difference between two consecutive
frames is clearly large [50]. In this way, these apparent rules indicate what
kind of features should be used to extract semantic patterns in rule-dependent
videos. Thus, the extracted semantic patterns are previously known.

In contrast to the above rule-dependent videos, we extract semantic pat-
terns from rule-independent videos, such as movies, where there is no appar-
ent rule which characterizes any kind of semantic events. For example, battle
events in movies are presented in various ways depending on semantically ar-
bitrary factors, such as characters, weapons, location, time and weather.
So, neither what kind of features should be used nor what kind of seman-
tic patterns are extracted can be predicted. Hence, we use several types
of features which have been accepted as useful in the fields of image, video
and audio processing researches. By examining numerous combinations of
these features, we aim to extract previously unknown semantic patterns from
rule-independent videos.

Some studies have also considered video data mining on rule-independent
movies [29, 101, 62]. Wijesekera et al. proposed a video data mining frame-
work on movies by using existing audio and video analysis techniques [29].
They also examined the suitability of applying existing both data mining
concepts and algorithms to multimedia data, although no experimental re-
sult was reported. In [101], we extracted two types of editing patterns from
movies: cinematic rules and frequent events. But, cinematic rules are not
semantic patterns because they are just editing patterns for successfully con-
veying editor’s idea to the viewers, and do not characterize any kind of se-
mantic event. Frequent events are semantic patterns, but they are previously
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known. The reason is that features used to extract these patterns (e.g. Char-
acter’s name, Direction of character’s gaze, Character’s motion and Sound
type) represent considerably high semantic contents by themselves.

In [62], we extracted a character’s appearance and disappearance patterns
for characterizing topics in a movie. Each topic corresponds to a semantic
event where the character plays a particular action and role, for instance,
he/she may talk to someone or make love to another character. This kind of
topic can be detected as an interval where durations of the character’s appear-
ance and disappearance are roughly constant. However, semantic content in
the topic, such as what action the character performs and what kind of situa-
tion the topic involves, cannot be identified by using only his/her appearance
and disappearance.

2.2.2 Sequential Pattern Mining

Extracting sequential patterns from categorical streams is a research area of
great interest in data mining. A categorical stream is defined as a sequence
on a set of finite types of symbols. This task is challenging as a search
space of possible sequential patterns is extremely large. As described in [75],
even in the case of a one-dimensional stream defined on a set of n types
of symbols, there are O(nk) possible sequential patterns of time length k.
In order to efficiently extract sequential patterns from categorical streams,
many methods have been proposed [101, 81, 85, 39, 91, 32, 43, 56, 75, 25,
19, 104, 97, 98]. As shown in Table 2.1, these methods are classified into six
categories, in terms of the number of dimensions of a categorical stream and
a search technique for reducing the extremely large search space.

Table 2.1: The classification of sequential pattern mining methods in terms
of the number of dimensions of a categorical stream and a search technique.

one-dimension multi-dimensions

window-based [43] [56] [25] [39] [91] [75]
apriori-based [97] [98] [81] [85] [32] [101]

two-step [19] [104]

The number of dimensions of a categorical stream greatly affects the
efficiency of the sequential pattern extraction. As a simple example, consider
m-dimensional multistream where each component stream contains n types of
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symbols. In this multistream, there are O(nmk) possible sequential patterns
of time length k. Thus, extracting sequential patterns from a multistream
requires much more expensive search than that of a one-dimensional stream.
With respect to this, Tanaka et al. transformed an original multistream into
a one-dimensional stream by using Principle Component Analysis (PCA)
[104]. This kind of transformation approach was also proposed by Zhu et
al. where they used a re-arrangement mechanism to maintain the original
temporal order [98].

Search techniques can be classified into the following three types: window-
based, apriori-based and two-step approaches. A window-based approach
scans a given stream by sliding the window of a user-specified time length
[88]. Sequential patterns are extracted as sets of symbols within the window,
which are validated by the sliding window scan. The window-based approach
limits a search space of possible sequential patterns as the time length of any
extracted sequential pattern is up to window’s length. The user needs to
specify the maximum time length of extracted sequential patterns in advance.

Chudova et al. extracted fixed-length sequential patterns by using a Hid-
den Markov Model (HMM) [25]. The HMM has k states for modeling symbols
included in a pattern of time length k and one state for modeling symbols
which are not in the pattern. By learning the parameters of the HMM, the
symbol which is most likely to appear in the i-th position in the pattern is
determined. Ultimately, this and the window-based approach rely heavily on
a priori knowledge of extracted sequential patterns. Thus, both of them may
be more generally called model-based approaches.

An apriori-based approach iteratively extracts longer sequential patterns
from shorter ones. Each iteration starts with a generation of candidate pat-
terns, each of which is generated by concatenating a symbol or set of symbols
to a pattern extracted in the previous iteration. This is based on the prin-
ciple that if a sequence is not extracted as a pattern, no patterns can be
extracted by adding symbols to this sequence. Candidate patterns are ex-
amined whether they are actually sequential patterns or not. This iteration
terminates when no more sequential pattern is extracted. In this way, the
apriori-based approach efficiently and dynamically reduces the search space
of possible sequential patterns in the given stream.

A two-step approach consists of the following two steps. In the first
step, some criteria are used to obtain the optimum time length of sequential
patterns to be extracted. For example, Tanaka et al. computed such an
optimum time length by using Minimum Description Length (MDL) princi-



Chapter 2: Time-constrained Sequential Pattern Mining 13

ple [104]. Berberids et al. computed the optimum time length by using the
autocorrelation function [19]. The optimum time length obtained in the first
step is used to reduce the search space of possible time lengths of sequential
patterns in the second step. Thus, the two-step approach can be consid-
ered as an extended window-based approach. Specifically, the time length
of extracted sequential patterns is automatically obtained in the two-step
approach in contrast to being user-specified in a window-based approach. As
shown in Table 2.1, we could not find any two-steps approach for extracting
sequential patterns from a multi-dimensional categorical stream.

Our proposed method extracts sequential patterns from a multi-dimensional
categorical stream using an apriori-based approach. Hence, our method is
classified into the same category as [81] [85] [32] [101] in Table 2.1. In order to
eliminate sequential patterns which are unlikely to be semantic patterns, we
incorporate two types of a priori information specific to video data: semantic
event boundaries and temporal localities. Additionally, there are many pos-
sibilities to locate a sequential pattern in the stream. Thus, how to locate
the sequential pattern in the stream is a very important issue. But, it has
never been discussed in the previous works listed in Table 2.1. We propose
a method for finding the location of the sequential pattern in the stream.
Finally, we also propose a method for parallelizing the process of our mining
method as it requires multiple scans over the stream to locate each candidate
pattern.

2.3 Features

In this section, we provide a detailed explanation of features used to char-
acterize the spatial and temporal aspects of a shot. It should be noted that
each type of features is a categorical value. Consequently, deriving several
types of features from the shot can be considered as a discretization of the
spatially and temporally continuous semantic content into a set of categorical
values. By sequentially aggregating features, we can obtain a multistream of
features as shown in Fig. 2.2.

Since the spatial aspects presented by the video frames are continuous,
we assume that the salient spatial aspect is represented by the middle video
frame in a shot, denoted keyframe. Note that it is possible to change the
definition of a keyframe [52, 103, 97]. We derive the following types of features
from the keyframe:
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Time

Shot No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

stream 3 CV: CV2 CV2 CV3 CV0 CV1 CV0 CV0 CV0 CV0 CV0 CV0 CV0 CV0 CV1

stream 2 CS: CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS0

CH4stream 1 CH: CH7 CH3 CH2 CH7 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH2 CH2

stream 4 LN: LN3 LN3 LN2 LN1 LN1 LN2 LN3 LN1 LN3 LN3 LN1 LN2 LN1 LN1

stream 5 LL: LL0 LL3 LL1 LL0 LL1 LL1 LL3 LL0 LL0 LL1 LL0 LL0 LL0 LL0

stream 6 LB: LB2 LB0 LB3 LB2 LB2 LB0 LB1 LB0 LB1 LB1 LB1 LB3 LB0 LB2

stream 7 SA: SA2 SA2 SA1 SA1 SA2 SA2 SA2 SA2 SA2 SA2 SA2 SA2 SA1 SA2

stream 8 LA: LA0 LA2 LA1 LA0 LA0 LA1LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA1

stream 9 SL: SL4 SL4 SL3 SL4 SL4 SL1 SL1 SL1 SL1 SL2 SL1 SL0 SL0 SL0

stream 10 MS: MS3 MS3 MS2 MS4 MS5 MS4 MS4 MS4 MS4 MS4 MS3 MS3 MS0 MS0

stream 11 MV: MV1 MV4 MV0 MV1 MV0 MV0 MV1 MV1 MV0 MV0 MV0 MV0 MV3 MV2

stream 12 SM: SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM2 SM0 SM0

stream 13 AM: AM1 AM3 AM2 AM3 AM3 AM2 AM3 AM3 AM2 AM2 AM2 AM2 AM2 AM2

Figure 2.2: An example of a multistream of features, where several types of
features are derived from each shot in a video.

CH: CH reflects the semantic content of the background or dominant object
in a keyframe, such as water, sky, snow, fire or human face [13]. CH repre-
sents the color composition in the keyframe on the H (Hue) axis of the HSV
color space. We first compute the intensity histogram on the H axis for each
keyframe. We then cluster keyframes into groups with similar histograms,
where we use the k-means clustering algorithm [10] and the histogram inter-
section as a distance measure [53]. Finally, we assign the categorical value
of CH to each keyframe by analyzing the cluster including the keyframe.
CS: Similarly to CH, CS reflects the semantic content of the background
or dominant object in a keyframe. But, CS characterizes a keyframe which
contains objects with saturated colors, such as fruits, flowers or man-made
objects. CS represents the color composition in the keyframe on the S (Sat-
uration) axis of the HSV color space. We assign the categorical value of CS
to each keyframe by using the k-means clustering method.
CV: Unlike CH and CS, CV reflects the semantic content of the brightness
in a keyframe. CV represents the color composition in the keyframe on the
V (Value) axis of the HSV color space. Categorical values of CV are also
assigned by the k-means clustering method.
LN: LN basically reflects the number of objects displayed in a keyframe.
This means that as more objects are displayed in the keyframe, more straight
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lines tend to be derived. Additionally, in a keyframe showing a night or foggy
situation, objects’ boundaries are obscure and few straight lines are derived.
LN represents the number of straight lines contained in the keyframe. We
assign the categorical value of LN to each keyframe by comparing the number
of straight lines in the keyframe with some threshold values.
LL: LL reflects shape features of man-made objects in a keyframe. For
instance, buildings and windows have long straight lines which define these
objects’ boundaries. To be precise, LL represents the distribution of straight
line lengths in the keyframe. In order to assign such a categorical value of LL
to each keyframe, we compute the histogram of the lengths of straight lines.
This histogram is then normalized so that it is independent of the number of
straight lines. Finally, we assign the categorical value of LL to each keyframe
by using the k-means clustering method.
LB: LB reflects the dominant direction of most straight lines contained in a
keyframe. For example, buildings and windows have vertical straight lines,
while a natural scene has different directions of straight lines [13]. Thus, LB
represents the distribution of straight line directions in the keyframe. As
with LL, we compute the normalized histogram of straight line directions.
We then assign the categorical value of LB to the keyframe by using the
k-means clustering method.
SA: SA reflects the size of the main character displayed in a keyframe by
representing the area of the largest skin colored region. We assign the cat-
egorical value of SA to each keyframe by comparing the area of the largest
skin colored region with some threshold values.
LA: LA reflects the presence of weapons in a keyframe. It shoud be noted
that keyframes where laser-beams from weapons are presented have some
large light colored regions. On the other hand, keyframes where sunshines or
lighting effects are presented, not only have some large light colored regions,
but also have many small light colored blobs due to the light dispersions.
Based on this observation, LA represents the area of the largest light colored
region, divided by the total number of light colored regions in a keyframe. By
comparing this value with some threshold values, we assign the categorical
value of LA to the keyframe.

The above types of features are derived by using functions prepared in
OpenCV library [5]. Apart from these types of features for characterizing
the spatial aspect, we derive the following features for characterizing the
temporal aspect.
SL: SL represents the duration of a shot. In other words, SL represents



Chapter 2: Time-constrained Sequential Pattern Mining 16

the speed of the camera switching from a shot to the next shot. Typically,
thrilling events, such as battles and chases, are presented by shots with short
durations, while romantic events, such as hugging and kissing, are presented
by shots with long durations. We assign the categorical value of SL to each
shot by comparing its duration with some threshold values.
MS: MS represents the movement of some objects or the background in a
shot. For example, in a shot where characters actively move or the back-
ground significantly changes, the movement is large, whereas the movement
is small when characters are still and the background remains stable. To
extract the movement, we select MPEG as the video format because MPEG
compresses a video by predicting the color change between two consecutive
video frames. The size and direction of the predicted color change are rep-
resented as a motion vector. Each motion vector is defined in a macro block
which is a unit block consisting of 16 × 16 pixels. Based on this definition
of motion vector, the movement is defined as a sum of motion vector sizes in
all macro blocks. We assign the categorical value of MS by comparing the
movement with some threshold values.
MV: MV represents the direction of movement of objects or the background
in a shot. For example, MV characterizes a direction of character’s movement
in a shot. It also characterizes no direction of movement in a shot where
characters are still. The direction of movement is defined in the following
way. Four direction counters are prepared: up, down, left and right. These
are used to count the directions of motion vectors in all macro blocks. If
the count in every direction is smaller than the threshold value, no direction
is assigned to the shot. Otherwise, the direction with the largest count is
assigned to the shot.
SM: SM represents the sound type which frequently appears in a shot, such
as speech, music or no-sound. For example, speech frequently appears in
a shot where characters are talking. On the other hand, music frequently
appears in a shot where BGM (BackGround Music) with large sound vol-
ume is used. We convert the sound stream into Mel-Frequency Cepstrum
Coefficients (MFCCs). These are compared with a human voice model and
music model constructed by using Gaussian Mixture Model (GMM) [65]. As
a result, we can assign a categorical value of SM to the shot.
AM: AM represents the largest sound volume in a shot. For example, a shot
which involves a scream, explosion or gunshot has a large sound volume,
while a shot with a chat or spying activity has a small sound volume. We
assign the categorical value of AM to each shot by comparing the maximum
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amplitude of the sound stream with some threshold values.
Finally, by deriving features from each shot, the video is transformed from

a computationally-intractable raw material into a 13-dimensional categorical
stream. An example of this categorical stream is presented in Fig. 2.2, where
each component stream is constructed for one type of features. A symbol
in the stream consists of two capital letters representing the type of features
and the number representing the categorical value. For example, stream 1
is constructed for CH and the symbol CH4 in shot 1 represents that the
categorical value 4 is assigned to shot 1.

2.4 Time-constrained Sequential Pattern Min-

ing

In this section, we present our time-constrained sequential pattern mining
method to extract sequential patterns from a multi-dimensional categorical
stream. Firstly, we formally define sequential patterns together with time
constraints. We then present our mining algorithm with time constraints.
Finally, we extend our algorithm for parallelizing the mining process.

2.4.1 Formulation

We assume a multi-dimensional categorical stream S, where no symbol occurs
in more than one component stream of S. Thus, a symbol v that occurs in a
component stream s at a time point t can be represented as (v, t), because v
does not occur in the other component streams. An example of such a multi-
dimensional categorical stream is shown in Fig. 2.3 where the capital letter
on the left indicates the component stream name and the number on the
right indicates the categorical value. For example, the symbol A2 occurring
in streamA at the time point 1 is represented as (A2, 1).

For any pair of two symbols in S, the relative temporal relationship is
either serial or parallel 1. For example, the relationship between (A2, 1) and
(C3, 1) is parallel as these symbols occur at the same time point. On the
other hand, the relationship between (C3, 1) and (C4, 2) is serial as these
symbols occur at different time points. It should be noted that a serial
relationship does not require two symbols to belong to the same component

1Our usage of serial and parallel relationships is different from that of [39].
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Figure 2.3: An example of a multi-dimensional categorical
stream S where only the occurrence of a 4-pattern p4 =
(A2, nil), (C3, parallel), (C4, serial), (E1, serial) from the time point
t = 1 to t = 4 satisfies both SEB and TDT time constraints.

stream, and thus the relationship between (C4, 2) and (E1, 4) is also serial.
For two symbols (v1, t1) and (v2, t2), the serial and parallel relationships are
formulated as follows:

t1 ̸= t2 −→ serial,
t1 = t2 −→ parallel.

(2.1)

We define a sequential pattern pl as a temporally ordered set of l symbols
and refer to pl as l-pattern. In Fig. 2.3, the 4-pattern p4 is presented by
the temporally ordered set of 4 symbols surrounded by circles. For pl, we
represent the temporal order of l symbols as a sequence of serial and parallel
relationships between two consecutive symbols. Therefore, pl is formulated
as follows:

pl = (v1, nil), (v2, tr2), (v3, tr3), · · · , (vl, trl), (2.2)

where for all i = 2, · · · , l, (vi, tri) represents a symbol vi whose relationship
with (vi−1, tri−1) is tri (i.e. tri = serial or tri = parallel). In Fig. 2.3,
p4 is denoted as p4 = (A2, nil), (C3, parallel), (C4, serial), (E1, serial). In
equation (2.2), if tri = serial, the serial relationship between (vi, tri = serial)
and (vi−1, tri−1) is restricted by the following two types of time constraints:
Semantic event boundaries: A multi-dimensional categorical stream S
can be divided into some semantic events. For example, a stream of highway
traffic sensor data can be divided into semantic events of different traffic con-
ditions. An e-mail stream can be divided into semantic events where certain
topics appear [45]. By restricting an occurrence of pl in one semantic event,
pl becomes a useful sequential pattern associated with a certain semantic
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content in S. Thus, the serial relationship between (vi−1, tri−1) and (vi, tri)
must not intersect any Semantic Event Boundaries (SEBs). In Fig. 2.3, two
SEBs (SEB1 and SEB2) are shown and it is not acceptable that p4 occurs
between the time point t = 5 and t = 9 as the serial relationship between
(C3, 5) and (C4, 7) crosses over SEB1.
Temporal localities: Using only SEB time constraint leads to the extrac-
tion of many sequential patterns which are not relevant to semantic patterns.
Thus, we use temporal localities proposed in [97, 98]. A temporal locality
means that two semantically related shots have to be temporally close to
each other. By applying this to pl, two consecutive symbols must be tempo-
rally close to each other 2. Hence, in order for pl to be a semantic pattern,
the relative temporal distance between (vi−1, tri−1) and (vi, tri) must be less
than Temporal Distance Threshold (TDT ). In Fig. 2.3 where TDT is set to
2, it is not acceptable that p4 occurs between the time point t = 9 and t = 14
because the temporal distance between (C4, 11) and (E1, 14) is 3.

By using SEB and TDT time constraints, pl’s occurrences which are
semantically irrelevant, are not counted. Thereby, we can avoid extracting
unnecessary sequential patterns which are unlikely to be semantic patterns.
In Fig. 2.3, only the occurrence of p4 between t = 1 and t = 4 satisfies
both SEB and TDT time constraints. It should be noted that pl is just a
template used to specify the temporal order of l symbols. In contrast, an
occurrence of pl is an actual instance where each symbol in pl is detected as
(vi, ti) in S.

2.4.2 Mining Algorithm

As described in section 2.2.2, our mining algorithm extracts sequential pat-
terns from a multi-dimensional categorical stream S by using an apriori-based
approach. It is outlined below:
Process 1: Initialize l = 1 where l is the number of symbols included in a
pattern. Subsequently, from S, extract every 1-pattern p1 which satisfies an
interestingness measure f . As will be described in section 2.4.2, f is used
to measure the usefulness of each candidate pattern in order to determine
whether it is regarded as a pattern or not.
Process 2: Increment l, and generate a set of candidate l-patterns from the

2Apart from video data, this time constraint has been applied to various kinds of data
such as transactional data [85] and biological data [77]
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set of (l − 1)-patterns.
Process 3: Locate each candidate l-pattern cpl in S by considering SEB
and TDT time constraints and counting the number of cpl’s occurrences in
S. Then, regard cpl as an l-pattern pl only if cpl satisfies f .
Process 4: Terminates the mining process if no pl is extracted. Otherwise,
go to Process 2.

In order to complete our mining algorithm, we need to discuss the fol-
lowing three issues in greater detail: how to generate candidate patterns
at Process 2, how to locate cpl in S at Process 3, and how to define f in
Processes 1 and 3.

Generating Candidate Patterns

An efficient algorithm of candidate pattern generation is presented in [81],
although we use a different definition of a sequential pattern. Hence, we revise
the algorithm in [81] to generate a set of candidate l-patterns from the set of
(l − 1)-patterns extracted in the previous iteration. Fig. 2.4 illustrates the
generation of a candidate l-pattern cpl from two (l−1)-patterns pl−1 and p′l−1.
In Fig. 2.4, we select the following pl−1 and p′l−1: the temporally ordered set
of l−2 symbols generated by removing the first symbol (v1, nil) from pl−1, is
the same to the one generated by removing the last symbol (v′

l−1, tr
′
l−1) from

p′l−1. Note that the symbol (v2, tr2) is replaced with (v2, nil), as it is now the
starting symbol in the temporally ordered set of l−2 symbols. Subsequently,
cpl is generated by concatenating (v′

l−1, tr
′
l−1) and pl−1.

p’l-1 (v’   , tr’   )l-1 l-1(v’   , tr’   )l-2 l-2(v’ , tr’ )2 2(v’ , nil)1 (v    , tr    )l-3 l-3

(v  , nil)1 (v  , tr  )2 2 (v  , tr  )3 3 (v    , tr    )l-2 l-2 (v    , tr    )l-1 l-1 (v’   , tr’   )l-1 l-1
cpl

p l-1

p l-1 (v  , nil)1 (v  , tr  )2 2 (v  , tr  )3 3 (v    , tr    )l-2 l-2 (v    , tr    )l-1 l-1

(v  , nil)2

Figure 2.4: An illustration of the generation of a candidate l-pattern cpl from
two (l − 1)-patterns, pl−1 and p′l−1.
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Locating all candidate l-patterns in S requires a very expensive computa-
tional cost. Hence, we should delete candidate l-patterns which are unlikely
to become l-patterns without searching for them in S. For cpl, we remove
any (vi, parallel) from cpl to form a temporally ordered set of l− 1 symbols.
Note that even if we delete (vi, parallel) from cpl, the original temporal order
of cpl is preserved. Therefore, all of the above temporally ordered sets of l−1
symbols have to be previously extracted as (l − 1)-patterns. Otherwise, it is
impossible for cpl to be pl and we thus delete cpl from the set of candidate
l-patterns.

Locating a Candidate Pattern in the stream

The outline of our approach for locating pl in S is illustrated in Fig. 2.5.
In the stream A, a symbol (A1, t) (t = 1, 2, 3, 5, 6, 8) represents ‘the woman
appears at a time point t (i.e. in a shot t)’, and a symbol (A2, t) (t = 4, 7)
represents ‘the woman does not appear at t’. In this condition, we locate
2-pattern p2 = (A1, nil), (A1, serial) by focusing on the three occurrences:
Occ1, Occ2 and Occ3. The semantic contents represented by these occur-
rences are as follows:

• Occ1 · · · The woman meets the man and talks to him.

• Occ2 · · · The woman meets the man and walks with him.

• Occ3 · · · The woman meets the man and drives her car.

Occ3 is clearly meaningless as it spans two different semantic events. Such
an occurrence can be prevented by SEB time constraint. Occ1 is assumed
to be more meaningful than Occ2. This is due to the discussion of temporal
localities in section 3.1, which noted that a serial relationship occurring in
a short temporal distance between two symbols is assumed to represent a
coherent semantic content. Thus, if there are some possible occurrences of
the serial relationship within the temporal distance specified by TDT time
constraint, the serial relationship is located by using the shortest temporal
distance, such as Occ1 in Fig. 2.5.

Fig. 2.6 illustrates our approach for locating 3-pattern p3 in S. In Fig.
2.6 where TDT is set to 3, tracing along the solid arrows provides three
occurrences of p3. In addition to SEB and TDT time constraints, we further
introduce the search constraint represented by three dashed arrows, such
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1 2 3 5 6 84 7
A1 A2A1 A1 A1 A1 A1A2

SEB

time

stream A

1Occ

2Occ
3Occ

Figure 2.5: An example of occurrences of 2-pattern p2 =
(A1, nil), (A1, serial), where Occ1 represents the most coherent semantic
content among three occurrences.

that, if (v, t) is used to find an occurrence of pl, (v, t) cannot be used to
find any later occurrences of pl. For example, the leftmost dashed arrow
represents that (B1, 3) is used to find p3’s occurrence starting from t = 1,
thus it cannot be used again. So, (B1, 4) is used to find p3’s occurrence
starting from t = 2. We regard a symbol (v, t) as unused if it has not yet
been used to find any pl’s occurrence. Suppose that in Fig. 2.6, (B1, 3) is
used by (A3, 1) and (A3, 2) to find p3’s occurrences. Consequently, at the
time point t = 5, two p3’s occurrences are counted, which is contradictory to
that two different occurrences end at different time points. Hence, we only
use unused symbols to detect p3’s occurrences.

1 2 3 4 5 6

C2

B1 B1

A3 A3 A3

7 8 9

C2

B1

A3

time

stream C:

stream B:

stream A:

- - - - -

- - - - -

- - - - -

- - - - -

C2

SEB

B1

Figure 2.6: An example of our approach for locating p3 =
(A3, nil), (B1, serial), (C2, serial) in S, where TDT = 3 and three occur-
rences of p3 are located.

The following paragraphes describe our algorithm for locating pl in S.
Our algorithm finds pl’s occurrences one by one according to the temporal
order. For example, in Fig. 2.6, the occurrence of p3 starting from t =
1 is first detected, the occurrence from t = 2 is detected second and the
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occurrence from t = 4 is detected third. In each detection of pl’s occurrence,
our algorithm switches Forward and Backward phases introduced in [85].
However, in order to deal with SEB and TDT time constraints and the
above search constraint, we extend Forward and Backward phases. Suppose
that we are now searching an occurrence of pl where the first i symbols have
already been detected as (v1, t1), · · · , (vi, ti).

Forward phase: Based on the already detected symbols, we select a symbol
(vi+1, ti+1) for the (i + 1)-th symbol.

If the (i + 1)-th temporal relationship is serial, we select the un-
used symbol (vi+1, ti+1) where ti+1 is larger than ti. If the serial
relationship between (vi, ti) and (vi+1, ti+1) satisfies both SEB
and TDT time constraints, we recursively perform Forward phase
for selecting (vi+2, ti+2), otherwise, switch to Backward phase for
backtracking.

If the (i + 1)-th temporal relationship is parallel, we select the
unused symbol (vi+1, ti+1) where ti+1 is greater than or equal to
ti. If ti = ti+1, we recursively perform Forward phase, otherwise
(i.e. ti ̸= ti+1), switch to Backward phase for backtracking.

In the case of i + 1 = l, if (vi, ti) and (vi+1, ti+1) satisfy the serial (or
parallel) relationship, one occurrence of pl is detected.

Backward phase: Suppose that two already selected symbols (vi, ti) and
(vi+1, ti+1) do not satisfy the (i + 1)-th temporal relationship. Hence,
we select (vi, t

′
i) as an alternative of (vi, ti).

If the (i + 1)-th temporal relationship is serial, we select the un-
used symbol (vi, t

′
i) where t′i is not only larger than the nearest

SEB before ti+1, but also larger than ti+1 − TDT .

If the (i + 1)-th temporal relationship is parallel, we select the
unused symbol (vi, t

′
i) where t′i is greater than or equal to ti+1.

After modifying (vi, ti) into (vi, t
′
i), check whether (vi, t

′
i) and (vi−1, ti−1)

still satisfy the i-th temporal relationship in pl. If so, switch to For-
ward phase in order to select a new (vi+1, ti+1) for the modified (vi, t

′
i).

Otherwise, recursively starts Backward phase for further backtracking.
In the case of i = 1 where (v1, t1) is modified into (v1, t

′
1), immediately

switch to Forward phase.
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In both Forward and Backward phases, if no symbol can be selected, there
is no more occurrence of pl in S and our algorithm terminates. Finally, the
number of pl’s occurrences is defined as the frequency of pl, and denoted as
freq(pl).

Using an Interestingness Measure

Based on cpl freq(cpl), we determine whether cpl is actually an l-pattern
pl. At this point, many interestingness measures have been proposed to
measure the usefulness of cpl [83]. In this chapter, we use the support
and confidence of cpl as an interestingness measure f . Recall that cpl =
(v1, nil), · · · , (vl−1, trl−1), (vl, trl) is generated by adding (vl, trl) to (l − 1)-
pattern pl−1 = (v1, nil), · · · , (vl−1, trl−1). So, the first (l − 1) symbols in
cpl denoted by pre(cpl) = (v1, nil), · · · , (vl−1, trl−1) are already validated as
pl−1. Therefore, based on the usefulness of connecting pre(cpl) and (vl, trl)
measured by f , we determine whether cpl can be pl or not.

We denote the support and confidence of cpl by sup(cpl) and conf(cpl),
respectively. They are defined as follows:

for cpl (l ≥ 1), sup(cpl) = freq(cpl),
for cpl (l ≥ 2), conf(cpl) = P (cpl | pre(cpl)).

(2.3)

In the above equation (2.3), sup(cpl) is the frequency of cpl in S, and rep-
resents the statistical significance of cpl in S. conf(cpl) is the conditional
probability of cpl given that pre(cpl) occurs, and represents the strength
of the association between pre(cpl) and (vl, trl). We then regard cpl as an
l-pattern pl only when both sup(cpl) and conf(cpl) are larger than the min-
imum support and confidence thresholds.

2.4.3 Parallel Algorithm

In order to reduce the computational cost of our mining algorithm, we pro-
pose a parallel algorithm for parallelizing the mining process. Our parallel
algorithm assumes a shared-nothing architecture where each of p processors
has a private memory and disk. These p processors are connected to a com-
munication network and can communicate only by passing messages. The
communication primitives are prepared using MPI (Message Passing Inter-
face) communication library [3].



Chapter 2: Time-constrained Sequential Pattern Mining 25

The outline of our parallel algorithm is as follows: we begin with the
extraction of 1-patterns by using a single processor. Suppose that the total
number of 1-patterns is k. These k 1-patterns are evenly distributed to p
processors. In other words, k/p 1-patterns are distributed to each proces-
sor. Subsequently, by using our mining algorithm described in the previous
section, each processor performs the extraction of sequential patterns where
distributed k/p 1-patterns are used as the initial symbols of these sequential
patterns. After all p processors have finished extracting sequential patterns,
all of extracted sequential patterns are gathered in one processor, and output
as the final mining result.

The above algorithm cannot be considered as an efficient parallel algo-
rithm, because the number of sequential patterns extracted at one processor
may be much fewer than those of the other processors. In this case, the pro-
cessor has a long idle time in which it waits for the other processors to finish
their mining tasks. Thus, we need to reduce such idle times on p processors
used in our parallel algorithm.

This is addressed by using a load balancing technique where mining tasks
of p processors are dynamically re-distributed. Specifically, when a processor
PEi has an idle time, it sends task requests to the other processors. If a pro-
cessor receives the task request from PEi, the processor reports the current
progress of its mining task to PEi, allowing the selection of a donor proces-
sor which requires the longest time to finish its mining task. Consequently,
a part of the mining task of the donor processor is re-distributed to PEi.

Suppose that a processor PEj(j = 1, 2, · · · , p | j ̸= i) receives a task
request from PEi after extracting lj-patterns. Additionally, the number of
different starting symbols in lj-patterns is mj, and the total number of se-
quential patterns extracted at PEj is nj. After PEi receives lj, mj and nj

from another processor PEj, PEi determines a donor processor in the fol-
lowing way. First, PEj with mj = 1 cannot be a donor processor as it has
no distributable task. Among the remaining processors, PEi selects PEj

with the smallest lj as a donor processor. This is based on the assumption
that, since lj represents the number of iterations which PEj has finished, a
smaller lj indicates a slower progress of PEj’s mining task. Nonetheless, if
some processors have the same smallest lj, PEj with the largest nj is se-
lected as a donor processor. We assume that the more sequential patterns
PEj extracts (i.e. the larger nj PEj has), the more candidate patterns are
generated. After determining a donor processor PEj′ where lj′-patterns are
classified into mj′ groups of different starting symbols, PEj′ sends (mj′/2)
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groups to PEi. Subsequently, PEi extracts sequential patterns whose first
lj′ symbols are lj′-patterns in the groups sent from PEj′ .

2.5 Experimental Results

We selected three movies, Star Wars Episode 2 (SWE2), Star Wars Episode 4
(SWE4) and Men In Black (MIB). For our experiment, our video data mining
approach was tested on six fragments of about 30 minutes length from the
above three movies. These six fragments are listed below:

• video 1 is a fragment in SWE2 and contains 444 shots.

• video 2 is a fragment in SWE2 and contains 725 shots.

• video 3 is a fragment in SWE4 and contains 578 shots.

• video 4 is a fragment in SWE4 and contains 439 shots.

• video 5 is a fragment in MIB and contains 444 shots.

• video 6 is a fragment in MIB and contains 453 shots.

The above videos are compressed in MPEG-1 format with a frame rate
of 29.97 frames/second. Shot boundaries are detected using MP-Factory
(MPEG Software Development Kit) library [2]. It should be noted that
video 2 contains a larger number of shots than the other videos because al-
most all semantic events are battle events presented with fast transitions of
shots with short durations.

2.5.1 Evaluations of Assigning Categorical Values of
SM

For the experimental videos, we evaluate the performances of our method
for assigning categorical values of SM to shots. These performances are pre-
sented in Table 2.2. The precision and recall of each video are computed
by comparing our method with the human observer. If a shot contains both
speech and music, the louder one is selected as the ground truth for the shot.
As shown in Table 2.2, none of the performances in the experimental videos
are satisfactory because these videos contain various kinds of sounds (e.g.
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Table 2.2: The performance evaluations of assigning categorical values of
SM .

video 1 video 2 video 3 video 4 video 5 video 6
precision (speech) 52.9 (%) 57.29 72.11 74.94 97.2 96.2
precision (music) 37.53 82.67 49.72 50.0 21.5 29.5
recall (speech) 72.34 31.14 41.28 64.6 49.6 25.4
recall (music) 20.68 92.8 78.44 61.2 90.5 96.8

sound effects and sounds of machine engines) apart from speech and music.
Regarding these low performances, in order to extract reliable semantic pat-
terns from the experimental videos, we manually assign a categorical value
of SM , such as speech, music, others or no-sound to each shot.

2.5.2 Evaluation of Semantic Event Boundary Detec-
tions

In order to detect semantic event boundaries in a video, we use the method
introduced in [103] that intelligently merges semantically related shots into a
semantic event. In this method, semantic event boundaries are dynamically
updated based on time-adaptive shot grouping, where the spatial and tem-
poral information and temporal localities are used. However, since temporal
localities rely on the average of shot durations in the whole video, the method
in [103] does not work well when some segments have significantly different
averages of shot durations. For example, shot durations are relatively long
in segments where romantic events are presented, while shot durations are
relatively short in segments where thrilling events are presented. The overall
average of shot duration in these two segments is not suitable for capturing
temporal localities in any of the above two kinds of segments. Hence, the
method in [103] should not be applied to the whole video, but to individ-
ual segments separately. In each segment, shot durations are almost similar,
thus the average of these shot durations is suitable for capturing temporal
localities in the segment.

In order to divide a video into segments, we use the method introduced
in [45]. This method models shot durations in the video by using an infinite-
state automaton, where each state is associated with a probabilistic density
function associated with an expected value of the shot duration. Further-
more, in order to make this modeling robust to many insignificant changes in
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Table 2.3: The performance evaluations of our semantic event boundary
detection method.

video 1 video 2 video 3 video 4 video 5 video 6

# of segments 4 3 4 3 3 3
precision 64.9 (%) 55.8 63.2 54.3 25.0 62.1

recall 77.4 71.7 85.7 73.1 42.0 75.0

shot durations, costs are assigned to state transitions. As a result, the video
is divided into segments in which shot durations are modeled by a single state
in the infinite-state automaton. That is, shot durations in the segment are
relatively constant towards the expected value of the state. Finally, by apply-
ing the method in [103] to each segment separately, the detection of semantic
event boundaries have increased accuracy as compared to its application to
the whole video.

Table 2.3 shows the performance evaluation of our semantic event bound-
ary detection method. The row labeled ‘# of segments’ shows that each
experimental video is divided into three or four segments. The precision and
recall in each video are computed by comparing our method with the human
observer. The reasonably high recall values indicate that many true seman-
tic event boundaries are detected by our method, although the relatively
low precision values indicate that our method over-detects semantic event
boundaries. The main reason is that the spatial and temporal information in
a shot cannot be successfully obtained only from color information. For ex-
ample, semantically related shots where a character performs similar actions
in different background locations cannot belong to the same semantic event.
Since we cannot extract reliable semantic patterns by using erroneous se-
mantic event boundaries detected by our method, we manually correct these
semantic event boundaries.

2.5.3 Evaluations of Extracted Semantic Patterns

Using our time-constrained sequential pattern mining method, we extracted
semantic patterns from the experimental videos. Examples of extracted se-
mantic patterns are shown in Table 2.4, where the three columns from the
left represent the properties of extracted semantic patterns and the remain-
ing four columns represent the results of retrieving semantic events using
these patterns. In the third column, a serial relationship between two con-
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secutive symbols X and Y is represented as X−Y and a parallel relationship
is represented as XY . Extracted semantic patterns can be classified into the
following three groups. An action group includes the semantic events where
characters perform specific actions (i.e. talk, move and violence). A situa-
tion group includes the specific situations (i.e. dark, close-up and thrilling).
A combination group include the semantic events where characters perform
specific actions in specific situations (i.e. talk in thrilling situation, talk in
dark situation and so on).

For each semantic pattern in Table 2.4, the precision (P) and recall (R) are
computed based on semantic events retrieved by using the semantic pattern.
Additionally, a video annotated with * means that the semantic pattern
cannot be extracted from the video. In accordance with these notations,
we briefly explain extracted semantic patterns and evaluate their retrieval
results.

Firstly, the semantic patterns associated with talk events SM1 − SM1,
SM1MV 0 and MV 0−MV 0 are characterized by ‘two continuous shots with
human voice’, ‘a shot with human voice and no direction of movement’ and
‘two continuous shots with no direction of movement’, respectively. The con-
siderably high recall values for these patterns indicate that characters talk to
each other and do not move noticeably in most talk events. The semantic pat-
tern associated with move event MV 4SM2 is characterized by ‘a shot with a
constant movement direction and music’. This pattern indicates that back-
ground music is frequently used when some vehicles or characters move. The
semantic patterns associated with violence events MS5SM2, SM2 − SM2
and SL0−SL0 are characterized by ‘a shot with a large amount of movement
and music’, ‘two continuous shots with music’ and ‘two continuous shots with
short durations’, respectively. In particular, MS5SM2 and SM2−SM2 re-
veal the interesting tendency in violence events that background music is
generally more emphasized than character’s voice. But, we could not extract
them from MIB (i.e. video 5 and video 6) where background music is hardly
used. So, SL0 − SL0 is only the semantic pattern for characterizing vio-
lence events in MIB and this pattern is also applicable to SWE2 and SWE4.
Finally, all of the above semantic patterns in the action group consist of
features for temporal aspects.

Apart from the action group, the situation group includes semantic pat-
terns consisting of features for spatial aspects. The semantic pattern associ-
ated with dark situation CV 2 is characterized by ‘a shot where brightnesses
of most pixels are of low value’. Although all recall values are 100(%), the
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Table 2.4: Examples of extracted semantic patterns.
group event pattern video 1 video 2 video 3

SM1 − SM1 P:56.0 R:100 P:66.7 R:88.9 P:84.2 R:100
talk SM1MV 0 P:65.0 R:92.9 P:66.7 R:100 P:72.3 R:100

MV 0 − MV 0 P:78.6 R:78.6 * P:70.4 R:100
action move MV 4SM2 P:73.3 R:91.7 * *

MS5SM2 P:87.5 R:93.8 P:88.9 R:80.0 *
violence SM2 − SM2 P:84.2 R:100 P:76.7 R:62.2 P:53.3 R:88.9

SL0 − SL0 * P:81.8 R:90.0 P:60.0 R:100
dark CV 2 P:87.5 R:100 * P:35.5 R:100

situation close-up LN1 P:52.2 R:85.7 P:42.2 R:86.4 *
SA3 P:48.1 R:92.9 P:41.2 R:95.5 P:100 R:61.1

thrilling CS4 P:56.2 R:100 P:60.0 R:84.0 P:71.4 R:100
talk + thrilling CS4SM1 P:30.0 R:100 * *

CV 2SM2 P:61.1 R:84.6 * *
talk + dark CV 2− P:66.7 R:72.7 * *

CV 2LN1SA4
combination talk + close-up SA3SM1MV 0 P:53.3 R:100 * P:100 R:47.4

LN1SM1MV 0 * * P:92.6 R:65.0
talk + indoor LN2SM1MV 0 P:78.6 R:84.6 * *

dark + close-up CV 2LN1SA3 P:71.4 R:83.3 * *
dark + close-up CV 2LN1 P:55.6 R:55.6 * *

+ violence SA3SL0

group event pattern video 4 video 5 video 6

SM1 − SM1 P:85.0 R:73.9 P:100 R:91.7 P:75.0 R:93.8
talk SM1MV 0 P:90.5 R:89.5 P:100 R:100 P:65.2 R:93.8

MV 0 − MV 0 P:77.3 R:85.0 P:100 R:100 P:65.2 R:93.8
action move MV 4SM2 * * *

MS5SM2 * * *
violence SM2 − SM2 P:43.8 R:100 * *

SL0 − SL0 P:46.7 R:100 * P:40.0 R:100
dark CV 2 P:47.1 R:100 * P:35.3 R:100

situation close-up LN1 * P:46.2 R:100 P:89.5 R:85.0
SA3 P:66.7 R:82.4 * P:94.7 R:90.0

thrilling CS4 P:71.4 R:83.3 * *
talk + thrilling CS4SM1 * * *

CV 2SM2 * * P:14.3 R:66.7
talk + dark CV 2− * * *

CV 2LN1SA4
combination talk + close-up SA3SM1MV 0 P:90.9 R:62.5 * P:50.0 R:80.0

LN1SM1MV 0 P:75.0 R:100 P:72.7 R:80.0 P:40.0 R:50.0
talk + indoor LN2SM1MV 0 * * P:73.3 R:100

dark + close-up CV 2LN1SA3 * * *
dark + close-up CV 2LN1 * * *

+ violence SA3SL0



Chapter 2: Time-constrained Sequential Pattern Mining 31

low precision values of video 3, video 4 and video 6 represent that retrieval
results by CV 2 include many semantic events where black-costumed charac-
ters play important roles. Examples of such black-costumed characters are
Darth Vader in SWE4 and characters wearing black suits and sunglasses in
MIB. Two semantic patterns associated with character’s close-up LN1 and
SA3 are characterized by ‘a shot containing few straight lines’ and ‘a shot
containing a large skin colored region’, respectively. LN1 is confirmed by
the fact that a human face is generally rounded and so few straight lines
can be derived from its boundary. SA3 conform with our intuition that SA
reflects the size of the main character in a keyframe. However, the low pre-
cision values in video 1 and video 2 indicate that SA3 does not work well for
videos where there are many skin colored objects (e.g. rock and desert). The
semantic pattern associated with thrilling situation CS4 is characterized by
‘a shot where saturations of most pixels are of low value’. This type of shot
generally displays a blurred situation where an explosion or chase with high
speed takes place. But, CS4 is not extracted from MIB as the dominant
color in most shots is black.

For the semantic patterns in the combination group, CS4SM1, CV 2SM2,
CV 2 − CV 2LN1SA4, SA3SM1MV 0, LN1SM1MV 0, LN2SM1MV 0,
CV 2LN1SA3 and CV 2LN1SA3SL0 are the combinations of the action and
situation groups. For example, LN1SM1MV 0 is associated with talk events
of character’s close-up. This pattern is the combination of LN1 for charac-
ter’s close-up and SM1MV 0 for talk events. Additionally, CV 2LN1SA3SL0
which is associated with violence events of dark and character’s close-up, is
the combination of three types of semantic patterns CV 2 for dark situation,
LN1 and SA3 for character’s close-up and SL0 for violence events. In this
way, the combination group specifies more complex semantic events than
those of the action and situation groups.

2.6 Summary

In this chapter, we introduced a method which extracts semantic patterns as
sequential patterns in a multistream of features. For an efficient extraction of
semantic patterns, we adopt an apriori-based approach to reduce the search
space of possible sequential patterns. In addition, we use SEB and TDT
time constraints in order to avoid extracting sequential patterns which are
semantically irrelevant. Furthermore, we parallelize our method to reduce



Chapter 2: Time-constrained Sequential Pattern Mining 32

its computation cost. Experimental results show that several interesting
semantic patterns are extracted from commercial movies. Currently, we have
developed a video retrieval system using extracted semantic patterns.

In future works, we will address the problem that transforming a raw
material video into a multistream inevitably involves semantic noises. A
semantic noise means that the same categorical value of a feature is assigned
to semantically different shots. For example, the same categorical value of
SA can be assigned to two types of shots, one in which a character appears
close to the camera and the other in which a skin colored background is
shown. Such semantic noises prevent us from extracting some interesting
semantic patterns. With respect to this, we plan to develop a video data
mining approach which extracts semantic patterns without deriving features
from a raw material video. To achieve this goal, a data squashing technique
[94] may be useful as it scales down large original video data into smaller
pseudo data, while preserving nearly the same structure as the original data.
Since each pseudo data element has a weight for reflecting the distribution
of the original data, we aim to develop a new data mining method which
accepts weights to extract semantic patterns.



Chapter 3

Topic Extraction by Burst
Detection in Video Streams

3.1 Introduction

In this chapter, we introduce a method for extracting topics as interesting
events in a video. We assume that events presented by abnormal video editing
patterns have much impacts on viewers. For example, thrilling events are
presented by a fast transition of shots with very short duration, so that the
thrilling mood is emphasized. In addition, romantic events are presented
by connecting shots with very long durations, where character’s emotion
and action are thoroughly shown. The above thrilling and romantic events
are extracted as topics. On the other hand, in conversation events, shot
durations are neither short nor long, so they are not extracted as topics. In
the following paragraphs, we will present a topic extraction method which
detects abnormal editing patterns using data mining technique.

For the topic extraction, one of the most important tasks is video seg-
mentation which is the process of dividing a video into events. Since some of
events are extracted as topics, the accuracy of video segmentation is crucial
for extracting semantically meaningful topics. Video segmentation methods
adopt different approaches depending on the following video types: structured
and unstructured. Structured videos such as news, sports and surveillance
videos have explicit structures, while unstructured videos such as movies and
dramas do not have such structures. Below, we briefly review existing video
segmentation methods in structured and unstructured videos.

33
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Video Segmentation in structured videos

Events in structured videos are presented based on explicit structures which
result from production or game rules. For example, in a news video, an event
corresponding to one news story starts from a shot where an anchor person
appears and ends at another shot where the anchor person appears again
[105]. In a sports video, an event corresponding to one play starts with a
specific shot [30]. For example, in a baseball video, an event starts with
a shot taken by the camera behind the pitcher. And, if the batter hit out
the ball, a camera follows it in the next shot. Also, in a surveillance video,
an anomaly event where some action happens is preceded by shots where
no motion is observed [41]. Thus, by using the above explicit structures as
clues, structured videos can be easily divided into events.

Video Segmentation in unstructured videos

Events in unstructured videos do not have such an explicit structure. That is,
even if events have the same semantic content such as conversation and battle,
different directors use different camera and editing techniques to present
these events. Considering the lack of explicit structures, many researchers
define events based on similarities of features, such as color, motion and
audio [74, 103, 9, 86, 109, 106]. For example, in an event occurring in the
mountains, most shots contain greenish vegetation in the background. In
an action event where characters move actively, most shots contain large
amounts of motion. Based on these observations, the researchers define an
event as a set of shots that not only contain similar features but also are
temporally close to each other.

However, features are not necessarily useful for defining semantically
meaningful events, because they significantly differ depending on camera
techniques. For example, in Event 1 in Fig. 3.1, the female character A
walks around the city. We can see that backgrounds of all shots are different
as A walks at different locations. In addition, the shot sizes1 of these shots
are different. Consequently, all shots in Event 1 contain different color fea-
tures. Furthermore, their motion features are different. For example, small

1For a shot, according to the distance between the camera and objects, the shot size
is classified into one of the following three types: tight shot, medium shot or long shot
[101]. A tight shot is taken by a camera close to objects, while a long shot is taken by a
camera distant from objects. A medium shot is taken by a camera, which is placed at an
intermediate position between tight and long shots.
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amounts of motion are derived from shot 1 and shot 2. It is because these
shots are long shots where A’s walking is shown in small parts of the screen.
On the other hand, shot 4 is taken by a tight shot where a large amount of
motion is derived although A just turns around. Like this, Event 1 cannot
be defined by similarities of features.

Event 2: A talks to B.Event 1: A walks around the city.
shot 1 shot 2 shot 3 shot 4 shot 5 shot 6 shot 7 shot 8

Figure 3.1: Examples of events where Event 1 cannot be defined by similar-
ities of features, while Event 2 can be defined by these similarities.

In contrast to features, we develop a video segmentation method using ob-
jects like characters. Recently, objects can be recognized with high accuracy.
In fact, NEC research group announced that about 80% of main characters’
faces can be accurately recognized [4]. Considering such progress, we define
an event based on a target character’s appearance and disappearance. The
idea behind this is that a semantically meaningful event is characterized by
interaction between the target character and other characters. For example,
in an event where only the target character performs an action such as Event
1 in Fig. 3.1, he/she appears in most shots. On the other hand, in an event
where the target character interacts with other characters such as Event 2,
a sequence is repeated where he/she appears in one shot and other charac-
ters appear in the next shot. Based on this idea, we define an event by the
pattern of the target character’s appearance and disappearance.

However, it should be noted that patterns of the target character’s ap-
pearance and disappearance are usually not clear for events. For instance,
consider an event where the target character is in conversation with another
character. Here, shot durations vary depending on their spoken lines. Fur-
thermore, the repetition of shots where the target character appears and
shots where the other character appears can be broken if a new character
joins the conversation. Additionally, conversation between the target char-
acter and the other character may halt for a short period of time. In this
way, even within an event, the pattern of the target character’s appearance
and disappearance is disturbed by various factors. To address this problem,
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we incorporate a probabilistic function into our video segmentation method
to divide the video into events characterized by probabilistically distinct pat-
terns.

To extract topics from events, we take advantage of film grammar which
consists of practical rules to concentrate viewer’s attention on the story of
a video [48]. In particular, we focus that a professional video editor tailors
a rhythm of shot durations, so that the central action is not disturbed. For
example, shot durations are very short in thrilling events while they are
very long in romantic events. By extending this film grammar, we define a
topic as an event which contains one of the following two abnormal patterns,
called bursts. In the first one, the target character appears with very short
durations, while in the second one he/she appears with very long durations.
By detecting these bursts, we can extract topics where the target character
performs interesting actions, such as fighting, chasing, kissing and so on.

3.2 Related Works

In this section, we describe the novelties of our topic extraction method from
the perspectives of two different research fields, video data mining and burst
detection.

3.2.1 Video Data Mining

Video segmentation only determines the boundary between two consecutive
events. Thus, events matching a query need to be extracted from the set of
events detected by video segmentation. For this purpose, the following meth-
ods have been proposed to extract events in unstructured videos. Nam et al.
extracted violent events based on multiple features [49]. They heuristically
find that violent events have a specific motion, a flame-color, a blood-color
and a sudden increase in audio energy. Yoshitaka et al. extracted conver-
sation, suspense and action events based on features such as shot durations,
motions and repetition of visually similar shots [16]. For each event, the com-
bination of features is heuristically determined based on film grammar. Zhai
et al. extracted conversation, suspense and action events using Finite State
Machines (FSMs) [107]. They heuristically construct these FSMs, where a
state transition is determined based on features (motion and audio energy)
and an object (human face). Like this, existing methods can only extract
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limited kinds of events in unstructured videos. In other words, many events
which may interest users are not extracted due to the lack of knowledge for
these events.

To extract knowledge for events, much research has recently been con-
ducted on video data mining. Generally, it consists of two steps, ‘video
representation’ and ‘knowledge extraction’. In the video representation, a
raw video is firstly represented by several features which reflect semantic
contents in the video. Here, the raw video only represents physical values
such as RGB values of pixels in each video frame. But, this physical rep-
resentation of the video is not directly related to semantic contents. So, in
order to extract knowledge for characterizing semantic contents, we need to
derive features from the raw video. Then, in the knowledge extraction, we
apply a data mining technique to features and extract useful knowledge.

In terms of the knowledge extraction method, existing video data min-
ing approaches can be classified into two categories, pattern discovery and
classification and clustering2. Below, we briefly explain each category.
Pattern discovery: This category aims to extract special patterns from
videos. For example, in [101, 98, 61], a video is represented as a multi-
dimensional symbolic stream, where each symbol represents a feature value
in a shot, such as color composition, amount of motion, camera work, sound
type and so on. From this symbolic stream, the researchers extract frequent
sequential patterns which characterize events like conversation, battle and
goal events. In [17], a video is represented as a tempo. This indicates a speed
at which a viewer perceives semantic contents, say, haste and calm. The
researchers define such a tempo based on shot durations and camera works,
and extract gradual and sharp tempo changes which characterize dramatic
events. In [69], a video recorded by a fixed camera in a kitchen is represented
as a multi-dimensional time series, where each dimension represents human
movement in one region of interest, such as table, sink or refrigerator. From
this multi-dimensional times series, the researchers extract temporal patterns
of movements which characterize events. For example, an event of washing
dishes is characterized by a movement near the sink, followed by a movement
near the dishwasher.
Classification and clustering: This category aims to group videos into
different classes. In [52], a video is represented as an n-by-n-by-n cube which

2This classification is originally introduced by X. Zhu et al. [98]. In this chapter, we
slightly modify their classification to clarify the novelty of our topic extraction method.
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represents both spatial and temporal information in the video. Then, the
researchers apply Independent Component Analysis (ICA) to the n-by-n-by-
n cube and classify videos into commercial and news. In [90], each shot in
a soccer video is represented as a mosaic, which is a synthetic panoramic
image obtained by combining video frames in the shot. Then, based on
color histograms, camera motions and positions of players in mosaics, the
researchers classify shots into free-kick, corner-kick and others. In [41], a
human movement in a surveillance video is represented by parameters of
a Gaussian Mixture Model (GMM). Based on this, the researchers group
various human movements into clusters of similar movements. As a result,
clusters including a small number of movements are detected as anomaly
events, because such movements are irregular.

Considering the above two categories, our topic extraction method be-
longs to the category of pattern discovery because we extract abnormal pat-
terns of target character’s appearance (i.e. bursts), which characterize topics
where the target character performs interesting actions. Also, in the video
representation, we represent a video as one-dimensional time series, which
represents intervals where the target character appears and intervals where
he/she disappears. Such a video representation has not been proposed yet.

3.2.2 Burst Detection

Many researchers in the data mining community conduct burst detection
to extract useful knowledge from various time series data. Generally, a time
series is a sequence of feature pairs on the time axis, where bursts are detected
as an abnormal activity of feature pairs. In what follows, we briefly explain
bursts in various time series data using Fig. 3.2.

In financial data such as the daily trading volumes for the stock of a
company as shown in Fig. 3.2 (a), a burst is detected as an abnormally
large trading volume [72]. It characterizes a historical event which affects
the company. For example, the 2001/9/11 attack affected various financial
and travel related companies.

In a text stream such as an e-mail or a news stream, a burst is detected
as an abnormally large number of arrivals of documents containing a specific
keyword [45, 35]. It characterizes events related to the keyword. For example,
in the e-mail stream in Fig. 3.2 (b), some researcher writes a paper and
submits it to the conference sponsored by IEEE in Event 1. This event is
characterized by many arrivals of messages containing the keyword ‘IEEE’.



Chapter 3: Topic Extraction by Burst Detection 39

a) Financial data

time

: Interval (shot) where the character A appears

d) Video stream

Spikes correspond to bursts.
This traffic data is used in the work of Leland et al. [13]. 

c) Network traffic data

b) E-mail stream

: Interval (shot) where the character A disappears
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Figure 3.2: Examples of bursts in financial data (a), an e-mail stream (b),
network traffic data (c) and a video stream (d).

These messages are mainly sent from co-authors.
In traffic data such as network traffic data or disk I/O traffic data, a burst

is defined as an abnormally large number of packets or disk requests [95, 73].
In this research field, the main goal is to appropriately model and generate
synthetic traffic data which contain bursts. This is useful for efficient network
management and disk scheduling.

Note that each of the above bursts is defined on feature pairs which are
associated with time stamps. In other words, as can be seen from Fig. 3.2,
trading volumes in financial data, message arrivals in an e-mail stream and
numbers of packets in network traffic data are represented by vertical lines
on the time axis. On the other hand, a video is a continuous media which
conveys semantic contents only when it is continuously played over time [26].
So, the video is a time series where the same feature continuously appears
in time intervals. For example, Fig. 3.2 (d) shows that the female charac-
ter A continuously appears in dark-shaded intervals. Therefore, we define
a burst in the video based on intervals of a target character’s appearance.
In particular, we define the following two bursts. In the first, intervals of

I··· 

• D 
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the target character’s appearance have abnormally short durations, as in the
upper part of Fig. 3.2 (d). In the second, intervals of his/her appearance
have abnormally long durations, as in the bottom part of Fig. 3.2 (d). Based
on the film grammar described in section 3.1, these bursts characterize top-
ics where the target character performs interesting actions. Finally, we are
not aware of the above kind of interval-based burst being proposed in any
previous research.

3.3 Basic Concepts

This section describes the basic concepts underlying our proposed topic ex-
traction method. In addition, to implement our video segmentation method,
we describe an important statistical property in which durations of charac-
ter’s appearance and disappearance follow exponential distributions.

3.3.1 Intervals of a Target Character’s Appearance and
Disappearance

Fig. 3.3 is used to explain the proposed video representation from the view-
point of a target character. Fig. 3.3 shows the editing process of making a
conversation event with three characters, one woman A and two men B and
C. Here, shot 1 where only A appears is recorded by camera 1, shot 2 where
only B appears is recorded by camera 2, and shot 3 where all characters A,
B and C appear is recorded by camera 3. A video editor iterates selecting
one of the above three types of shots and joining it to the previous shot. As
a result, the conversation event has the following temporal order: shot 3 →
shot 2 → shot 1 → shot 2 → shot 3 → shot 1 → shot 2.

Since A appears in shot 1 and shot 3, if she is a target character, we can
construct the sequence shown in the lower part of Fig. 3.3. In this sequence,
dark-shaded intervals represent shots where A appears on the screen, while
light-shaded ones represent shots where she disappears from the screen. Sim-
ilarly, if a character B or C is a target character, we can construct a sequence
of intervals of his appearance and disappearance. In this way, by targeting at
a certain character, the video can be represented as a one-dimensional time
series, i.e., a sequence of intervals of his/her appearance and disappearance.

In the above sequence, both of a character’s appearance and disappear-
ance are valuable in the characterization of semantic content of the video.
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camera 3

camera 2camera 1

A
C

B

time
shot 2 shot 1shot 3 shot 1 shot 2shot 2 shot 3

shot 3

shot 1 shot 2

A

B

C

Figure 3.3: Intervals of a target character’s appearance and disappearance.

Clearly, the character’s appearance is essential to indicate his/her action on
the screen. In addition, the character’s disappearance may suggest whether
or not he/she is of importance in the story. With respect to this, a video
editor rarely uses redundant shots to avoid interrupting a viewer’s interest
[48]. This means that ‘important’ characters appear in many shots while
‘unimportant’ characters only appear in a few shots. For example, in the
conversation event depicted in Fig. 3.3, the main conversation is between A
and B while C eavesdrops on their conversation. The editor designs this event
so that it mostly consists of shot 1 and shot 2, are of most obvious interest to
the viewer, but also contains some instances of Shot 3 to ensure the presence
of character C is not forgotten. As a result, the unimportant character C
appears in only a few shots and disappears in the rest, as depicted by long
intervals of C’s disappearance in Fig. 3.3. Thus, invisible information, like
a character’s disappearance, is also useful for analyzing semantic content in
the video.
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3.3.2 Video Segmentation based on a Target Charac-
ter’s Appearance and Disappearance

Our proposed video segmentation can be explained using the sequence of
intervals of A’s appearance and disappearance in Fig. 3.4. To clarify our
concepts, the sequence is transformed into the bar graph representation, as
shown in the lower section of Fig. 3.4.This is constructed by rotating each
interval by 90 degrees to transform it into a vertical bar. In other words,
the duration of the interval is represented as the height of the bar. Bars
representing intervals of A’s appearance are directed upwards while those of
A’s disappearance are directed downwards. Finally, bars are located on the
horizontal axis in temporal order.

Event 1 Event 2 Event 3 Event 4
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Figure 3.4: The proposed video segmentation based on a sequence of intervals
of a target character’s appearance and disappearance.

The bar graph representation in Fig. 3.4 clearly shows that each event
is characterized by a specific pattern of A’s appearance and disappearance.
In Event 4, where A is murdered, all shot durations are very short, indicat-
ing that durations of A’s appearance and disappearance are also very short.
Compared to Event 4, the other events are less thrilling and are characterized
by much longer durations of A’s appearance and disappearance. Particularly
in Event 1, where A is an unimportant character, durations of her disap-
pearance are comparatively long. In this way, a semantically meaningful
event is characterized by the pattern of a target character’s appearance and
disappearance
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However, events cannot be completely characterized only by appearance
patterns. For example, in Fig. 3.4, durations of A’s appearance and dis-
appearance in Event 2 and Event 3 are similar. But, it is clear that Event
2 and Event 3 are semantically different. In order to discriminate between
such events, we consider an occurrence ratio between a target character’s
appearance and disappearance. Clearly, Event 2 and Event 3 have differ-
ent occurrence ratios for A’s appearance and disappearance. Specifically, in
Event 2, A’s appearance is frequently followed by B’s appearance. Thus,
the number of A’s appearance, 4, is nearly equal to the number of her dis-
appearance, 3. On the other hand, in Event 3, A appears in most shots.
Here, the number of A’s appearance, 5, is greater than her single disappear-
ance. Therefore, we characterize a semantically meaningful event by using
both the pattern of target character’s appearance and disappearance, and
the occurrence ratio.

3.3.3 Exponential Characteristics of Durations of a Tar-
get Character’s Appearance and Disappearance

In order to implement a probabilistic video segmentation method, we need
to know the statistical property of the durations of a target character’s ap-
pearance and disappearance. In the following paragraphs, for the simplicity,
we abbreviate duration of a target character’s appearance and duration of
his/her disappearance as appearance duration and disappearance duration,
respectively. We assume that appearance and disappearance durations fol-
low exponential distributions. An exponential distribution is generally used
to model waiting times for events which occur at a constant rate in time,
like waiting times for system failures and phone calls [1]. Such exponen-
tial distributions can be applied to appearance and disappearance durations.
The reason is that an appearance duration can be defined as the waiting time
associated with a target character’s disappearance, while a disappearance du-
ration corresponds to the waiting time associated with his/her appearance.
In addition, if the target character is a main character, the switching rate
between his/her appearance and disappearance is assumed to be constant
and high throughout the video. Intuitively, the target character appears in
many shots where he/she performs various actions, while he/she does not
appear in many shots where various reactions from other characters are pre-
sented. Below, we examine whether appearance and disappearance durations
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actually follow exponential distributions.
For a real variable x (≥ 0), the probabilistic density function of an ex-

ponential distribution is pdf(x) = λe−λx. If an appearance duration X fol-
lows the exponential distribution, the cumulative distribution function is
cdf(X > x) = e−λx where 1/λ is the mean appearance duration. cdf(X > x)
represents the probability of X which is larger than x. Thus, from appearance
durations in an actual video, we can estimate cdf(X > x) as N(x)/N , where
N is the number of appearance durations in the whole video and N(x) is the
number of appearance durations larger than x. Similarly, the exponential
characteristic of disappearance durations can be estimated.

Fig. 3.5 shows the estimated exponential characteristic of appearance
and disappearance durations in four experimental videos. In each video, one
main character is regarded as a target character, and estimate cdf(X > x) for
his/her appearance (or disappearance) durations. The estimated cdf(X > x)
is depicted by the crossed line, where each cross is N(x)/N for each ap-
pearance (or disappearance) duration. On the other hand, the theoretical
cdf(X > x) = e−λx is depicted by the solid line. As can be seen from
Fig. 3.5, for the main character’s appearance (or disappearance) durations,
the estimated cdf(X > x) well coincides with the theoretical cdf(X > x).
Hence, appearance and disappearance durations follow exponential distribu-
tions. Specifically, the exponential characteristic of appearance durations
indicates that most of appearance durations are short, because each video is
generally edited by connecting shots with short durations. In comparison,
the exponential characteristic of disappearance durations indicates that most
of disappearance durations are short, because it is rare that the main char-
acter continuously disappears in consecutive shots. In the next section, we
utilize the above exponential characteristic of appearance and disappearance
durations to extract topics.

3.4 Topic Extraction by Burst Detection in

Videos

In this section, we describe the proposed topic extraction method. Firstly,
the video segmentation method is explained, followed by a description of
an evaluation measure, which is used to examine whether or not each event
contains a burst.
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Figure 3.5: Results of examining the exponential characteristic of appearance
and disappearance durations in four movies.
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3.4.1 Video Segmentation Algorithm

A sequence of intervals of a target character’s appearance and disappearance
X can be formulated as follows:

X = x1, x2, x3, · · · , xN xi = (ai, di), (3.1)

where ai ∈ {A(ppearance), D(isappearance)} represents the type of i-th
interval, and di ∈ ℜ represents its duration. The time series segmentation
technique is then used to divide X into the following sequence S consisting
of non-overlapping K events (K ≪ N) [44]:

E = e1, e2, e3, · · · , eK ei = xa, xa+1, · · · , xb, (3.2)

where ei is the subsequence from the a-th interval to the b-th interval in X.
Each event ei is evaluated based on whether it is be characterized by the

pattern of the character’s appearance and disappearance, and the occurrence
ratio. To achieve this, the following probabilistic function is used:

p(ei) = Πb
j=a p(xj)

= Πb
j=a

{
pA(dj) · p(aj = A), if aj = A
pD(dj) · p(aj = D), if aj = D.

For each interval xj = (aj, dj) in ei, the following probabilistic distributions
are used to compute the probability of xj, denoted by p(xj). p(aj) represents
the probability distribution of the type aj. It consists of the probability of
an appearance interval p(A) and the one of a disappearance interval p(D).
If types of intervals in ei follow a single probability distribution p(aj) with
a high probability, we regard the occurrence ratio as invariant in ei. pA(dj)
and pD(dj) represent the probability distribution of appearance durations
and that of disappearance durations, respectively. In other words, pA(dj)
and pD(dj) are used to evaluate the similarity of appearance durations and
that of disappearance durations, respectively. Thus, given p(aj), pA(dj) and
pD(dj), p(ei) represents a joint probability of all appearance and disappear-
ance intervals in ei. Consequently, p(ei) provides an overall evaluation value
of whether appearance durations, disappearance durations and the occur-
rence ratio are invariant in ei.

It is important to note that the above discussion assumes that p(aj),
pA(dj) and pD(dj) are already known. However, these are generally un-
known. In other words, for ei, the pattern of the character’s appearance
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and disappearance and the occurrence ratio need to be determined. To this
end, we estimate the optimal p(aj), pA(dj) and pD(dj) which maximize p(ei).
For p(aj), the optimal p(aj = A) and p(aj = D) are estimated as N ei

A /N ei

and N ei
D /N ei , respectively.3 Here, N ei is the total number of appearance and

disappearance intervals in ei. N ei
A and N ei

D are the number of appearance
intervals and that of disappearance intervals, respectively.

For pA(dj) and pD(dj), based on the exponential characteristics of appear-
ance and disappearance durations, the following exponential distributions are
employed:

pA(dj) = λei
Ae−λ

ei
A dj

pD(dj) = λei
De−λ

ei
D dj . (3.3)

where the optimal pA(dj) has the parameter 1/λei
A which is the mean ap-

pearance duration in ei, while the optimal pD(dj) has the parameter 1/λei
D

which is the mean disappearance duration3. In this way, we estimate the
optimal p(aj), pA(dj) and pD(dj), and then compute p(ei) by applying them
to equation (5.1).

We aim to divide X into K events which are characterized by the corre-
sponding K patterns and K occurrence ratios with the highest probability.
To do so, the following joint probability of K events in X is maximized:

P (X) = ΠK
i=1 p(ei). (3.4)

In order to simplify P (X), we maximize P ′ = log P (X) =
∑K

i=1 log p(ei).
Note that log() is a monotonically increasing function, and thus, the result
of maximizing P (X) is equivalent to that of maximizing logP (X). The above
summation maximization problem can be optimally solved using a dynamic
programming technique [44]. Since it requires a very high computational cost
O(N2K), various techniques have been proposed to compute approximately
optimal maximization with a significantly lower cost [44]. But, in this paper,
the dynamic programming technique is used to obtain the optimal K events,
so that the anomaly of appearance durations in each event (i.e. burst) can
be accurately examined.

3This can be proved by taking the logarithm of p(ei), substituting p(aj = D) with
1 − p(aj = A) and differentiating log p(ei).



Chapter 3: Topic Extraction by Burst Detection 48

3.4.2 Burst Intensity Measure

An evaluation measure of burst intensity (BI) is devised to evaluate whether
or not each event ei contains a burst. Here, the burst intensity of ei represents
the degree of anomaly in appearance durations and is given by:

BI(ei) =
T ei

A

T ei
×

∫ ∞

0
|λei

Ae−λ
ei
A x − λ̄Ae−λ̄Ax| dx. (3.5)

In this equation, T ei is the total duration of ei and T ei
A is the total duration

of the character’s appearance in ei. The first term is a weighting factor which
signifies that if the character appears for a longer duration, he/she plays a
more important role. The second term represents the difference between the
exponential distribution estimated from appearance durations in ei and the
exponential distribution estimated from appearance durations in the entire
video. A large difference indicates that ei contains either abnormally short
or long appearance durations. Thus, if BI(ei) is larger than a pre-defined
threshold, ei is regarded as a topic where a burst occurs.

3.5 Experimental Results

This section presents the experimental results of our topic extraction method.
First, we introduce our automatic recognition method of a target character
in a video. We then describe the results of our video segmentation method.
Finally, we present several topics extracted by using the burst intensity mea-
sure.

3.5.1 Automatic Character Recognition Method

We summarize our method for recognizing a target character in a video. Our
method consists of two phases: detection phase and recognition phase. In
the detection phase, we detect face regions from the keyframe in each shot.
Then, in the recognition phase, we recognize the target character based on
detected face regions.

In the detection phase, faces with various directions are detected using
the method proposed by Matsuyama et al. [47]. First, this method uses
InfoBoost to learn a classifier of Haar-like features, as shown in Fig. 3.6 (a).
Note that the learned classifier can only detect frontal face regions. So, in
order to detect faces with various directions, the classifier is mapped into a
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3D model shown in Fig. 3.6 (b). Then, as can be seen from Fig. 3.6 (c), the
3D model is rotated around the vertical axis. Finally, 3D models which are
rotated with various angles are projected back to the 2D plain. In this way,
classifiers which can not only detect frontal face regions but also side face
regions, are generated.

Figure 3.6: Illustration of generating classifiers for detecting face regions of
various directions.

In the recognition phase, it should be noted that some facial parts like
eyes, nose and mouth are occluded in side face regions. Hence, it is difficult
to directly recognize the side face regions of the target character. Thus,
we start by only recognizing the frontal face regions of the target character
using the method proposed by Keysers et al. [27]. This method uses a two-
dimensional Hidden Markov Model (2DHMM) to match frontal face regions
with the reference frontal face regions of the target character. Thereby, we
can flexibly match frontal face regions where the positions of facial parts are
slightly different.

Recognized frontal face regions of the target character are associated with
his/her side face regions. In addition, we correct wrong recognition of frontal
face regions. To this end, we focus on the following temporal locality of a
video: since the semantic content of the video are sequentially presented
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shot by shot, it is likely that temporally close shots are semantically similar
while temporally distant shots are semantically different. In particular, we
assume that the target character wears the same cloth in temporally close
shots. Based on this assumption, two cases shown in Fig. 3.7 are considered.
In the first case, a shot containing a side face region is temporally close to
a shot containing a frontal face region, such as shot i and shot i+2 in Fig.
3.7 (a). We compare the clothes under the side and frontal face regions.
If the clothes are the same, the side face region is classified into the target
character. In the second case, the target character in temporally close shots
are wrongly recognized as different characters, such as shot j and shot j+2
in Fig. 3.7 (b), because his/her facial expressions are significantly different.
Similar to the first case, the clothe under the wrongly recognized frontal face
region is compared to the one under the correctly recognized frontal face
region. In this way, by considering multiple shots based on the temporal
locality, we can not only recognize side face regions of the target character
but also improve the recognition accuracy.

a) A drives her car, and glances outside.

b) B loses his cool at the naughty dog, and feels relieved.

shot i+1

< Compare the colors of the clothes ! >

shot i
frontal

face

shot i+2
side
face

frontal
face

frontal
face

shot j+1shot j shot j+2

< Compare the colors of the clothes ! >

Figure 3.7: Association of a frontal face region with a side face region, and
correction of wrongly recognized frontal face regions.
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3.5.2 Video Segmentation Results

The proposed topic extraction method is tested using four movies. These are
summarized in Table 3.1. For each movie, the first, second and third columns
represent its title, the number of shots and its total duration, respectively.
The character depicted in the fourth column is selected as a target character.
The fifth column shows the summary of the sequence of intervals of the target
character’s appearance and disappearance.

Table 3.1: The summary of each experimental video and the sequence of
intervals of the target character’s appearance and disappearance.

Title # of shots Total duration Target character # of intervals (app/disapp)

PSYCHO 480 2986 (sec) Marion 475 (281/194)
Star Wars Episode II 688 3600 (sec) Anakin 305 (208/97)
River Runs Through It 706 3533 (sec) Paul 437 (284/153)

Mr. Bean 496 2038 (sec) Bean 339 (236/103)

Table 3.2 shows the performance of our video segmentation method. The
second column presents the number of events which is the parameter of our
method. As shown in the third and fourth columns, we examine whether each
event obtained by our method is meaningful or non-meaningful. On average,
about 77% of events are semantically meaningful. Some main reasons for this
good segmentation result is explained using Fig. 3.8. Fig. 3.8 (a) represents
a part of the sequence of Marion’s appearance and disappearance intervals
in PSYCHO. It ranges from the 175-th to the 235-th interval. Fig. 3.8 (b)
represents a part of the sequence of Paul’s appearance and disappearance
intervals in River Runs Through It. It ranges from the 375-th to the 435-th
interval. Both of the above sequences are represented using the bar graph
representation. The boundaries between two consecutive events are depicted
using the vertical dashed lines. For each event, the solid horizontal line on
the positive side represents the mean appearance duration (i.e. 1/λei

A), while
the line on the negative side represents the mean disappearance duration (i.e.
1/λei

D).
First, our method can robustly detect events by ignoring insignificant

changes in appearance and disappearance durations. For example, in the
event from the 182-th to the 197-th interval in Fig. 3.8 (a), Marion wor-
ries about herself and most of appearance durations are long except for one
short duration. Even for such an exceptional duration, the proposed method
characterizes the event as generally consisting of long appearance durations.
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Table 3.2: Results of our video segmentation.
Title # of events (K) # of meaningful events # of non-meaningful events

PSYCHO 40 30 (75%) 10 (25%)
Star Wars Episode II 46 38 (83%) 8 (17%)
River Runs Through It 58 41 (71%) 17 (29%)

Mr. Bean 51 40 (78%) 11 (22%)
Average performance 77% 23%
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Figure 3.8: Partial results for PSYCHO and River Runs Through It.

Secondly, an occurrence ratio between target character’s appearance and
disappearance can appropriately capture an interaction between the target
character and other characters. For example, in the event from the 227-th to
the 230-th interval in Fig. 3.8 (a), only Marion appears and she walks around
a motel. This event contains no disappearance of Marion. In contrast, in
the next event where another character comes to Marion, her appearance is
followed by her disappearance. Like this, as Marion gets to interact with the
other character, the occurrence ratio is accordingly changed.

In addition, the use of appearance and disappearance durations is helpful
in the extraction of semantically meaningful events. For example, in Fig.
3.8 (b), depending on Paul’s appearance and disappearance durations, the
intervals from the 377-th to the 432-nd are divided into four events. In the
first event from the 377-th to the 387-th interval, Paul talks to other char-
acters. Compared to this, the second event from the 388-th to the 394-th
interval is characterized by relatively longer disappearance durations, indi-
cating that other characters become to mainly talk rather than Paul. The
third event from the 395-th to the 411-th interval depicts an excited conver-
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sation between Paul and other characters. In this event, Paul’s appearance
and disappearance quickly switch, which relates to short appearance and
disappearance durations. Finally, in the fourth event from the 412-th to the
432-th interval, Paul dances with his girlfriend. This event is characterized by
relatively long appearance durations. In this way, each video can be divided
into semantically meaningful events with a high level of accuracy.

3.5.3 Topic Extraction Results

Fig. 3.9 shows an overview of topic extraction results. In Fig. 3.9, the time-
line of each movie is depicted where a vertical line represents a boundary
between two consecutive events. Shaded events represent topics which are
numbered sequentially. In particular, light-shaded topics are characterized by
bursts of abnormally short appearance durations, while dark-shaded topics
are characterized by bursts of abnormally long appearance durations. For
the simplicity, the former and latter bursts are termed short bursts and long
bursts, respectively. In the following paragraphs, by referring to Fig. 3.9, we
list some representative topics extracted from each video.
PSYCHO: 13 topics are extracted from 47 events (burst intensity threshold =
0.3). In the 1-st topic in Fig. 3.9 (a), Marion makes love to her boyfriend.
Marion drives her car in heavy rain in the 6-th topic. And, she is murdered
from the 11-th to 13-th topics.
Star Wars Episode II: 26 topics are extracted from 46 events (burst intensity
threshold = 0.15). In Fig. 3.9 (b), topics from the 4-th to the 11-th belong

to one large event where Anakin chases and fights an enemy. In the 4-th,
10-th and 11-th topics, Anakin fights the enemy. From the 5-th to the 9-th
topic, he chases the enemy. In the 20-th, 21-th and 26-th topics, Anakin talks
with the woman he loves.
River Runs Through It: 20 topics are extracted from 58 events (burst
intensity threshold = 0.25). In the 14-th topic in Fig. 3.9 (c), Paul drops

down a river. In the 15-th topic, Paul fights his brother. In the 19-th topic,
he excitedly talks with other characters.
Mr. Bean: 19 topics are extracted from 51 topics (burst intensity threshold =
0.3). In the 7-th and 8-th topics in Fig. 3.9 (d), Bean runs away from police
men. In the 18-th topic, Bean rides on a roller coaster. He performs funny
actions in the 1-st, 2-nd, 3-rd, 6-th, 12-th, 13-th, 14-th, 16-th and 19-th
topics.
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a) PSYCHO (Marion)
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Figure 3.9: Temporal distributions of extracted topics in experimental
movies.
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We closely investigate topic extraction results using Fig. 3.10, where sev-
eral extracted topics are depicted in the bar graph representation. Note that
numbers assigned to topics in Fig. 3.10 correspond to the ones in Fig. 3.9. In
addition, the bold horizontal line in each event represents its burst intensity4.
Generally, short bursts characterize thrilling topics, such as fighting, chasing,
running and so on. For example, the 11-th, 12-th and 13-th topics in Fig.
3.10 (a) are characterized by short bursts, where mean of Marion’s appear-
ance durations are 0.8, 0.5 and 0.8 seconds, respectively. She is murdered in
these topics.

c) River Runs Through It d) Mr. Bean
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Figure 3.10: Examples of extracted topics.

On the other hand, long bursts characterize the following two types of
topics. Typically, the first type includes romantic topics. For example, the
20-th and 21-st topics in Fig. 3.10 (b) are characterized by long bursts, where
means of Anakin’s appearance durations are quite long, specifically, 9.2 and
31.0 seconds, respectively. In these topics, Anakin talks to the woman he

4For the ease of perception, the actual burst intensity value is multiplied by 10.



Chapter 3: Topic Extraction by Burst Detection 56

loves. In the second type of topics characterized by long bursts, a character’s
action is carefully presented. For instance, long bursts occur in the 2-nd and
3-rd topics in Fig. 3.10 (d), where means of Bean’s appearance durations
are 7.4 and 10.8 seconds, respectively. In these topics, Bean performs funny
actions which are taken by shots with long durations.

From the above discussion, the target character performs interesting ac-
tions in extracted topics. It is concluded that by viewing extracted topics,
viewers can roughly understand what kind of actions the target character
performs in a video. Here, only viewing topics requires less time than view-
ing the entire video. For example, the total duration of PSYCHO in Fig. 3.9
(a) is 2, 986 seconds while the total duration of 14 extracted topics is 915
seconds. Thus, we are currently developing a video browsing/summarization
system based on extracted topics.

3.6 Summary

In this chapter, we introduced a novel topic extraction method based on a
target character’s appearance and disappearance in a video. First, we divide
the video into events by applying time series segmentation technique to the
sequence of intervals of the target character’s appearance and disappearance.
Each event is characterized by the pattern of the character’s appearance and
disappearance as well as the occurrence ratio. We then use the burst intensity
measure to extract topics as events containing bursts. Two types of bursts are
defined where the first one is a short burst characterized by abnormally short
appearance durations, while the second type is a long burst characterized by
abnormally long appearance durations. The experimental results validate
the effectiveness of a character’s appearance and disappearance for obtaining
semantically meaningful events. Furthermore, burst detection is useful for
extracting topics where a target character performs interesting actions. One
important future work is the development of a method which can accurately
recognize characters in a video.



Chapter 4

Video Retrieval by a Small
Number of Examples Using
Rough Set Theory and
Partially Supervised Learning

4.1 Introduction

In this chapter, we develop a method which extracts retrieval models based
on example shots provided by a user. The motivation behind this is that,
the proper representation of a query is very important for video retrieval.
Existing approaches can be roughly classified into two types, namely, Query-
By-Keyword (QBK) and Query-By-Example (QBE) approaches. With QBK,
a user represents a query by using keywords and shots are subsequently re-
trieved by matching with defined keywords. With QBE, a user provides
example shots to represent a query and shots are then retrieved based on
their similarity to example shots in terms of features. For example, consider
the query ‘people appear with computers’ depicted in Fig. 4.1. Assume that
a relevant shot, Shot 1, is annotated with the words ‘people’ and ‘computer’.
To retrieve Shot 1 using QBK, a user needs to enter the keywords ‘peo-
ple’ and ‘computer’. However, the keywords ‘programmer’ or ‘internet user’
might be entered instead, which would not match the annotated words for
Shot 1, despite matching the actual query. This ambiguity relating to seman-
tic content makes it difficult for the user to appropriately represent queries

57



Chapter 4: Video Retrieval by a Small Number of Examples 58

using keywords. Alternatively, with QBE, the query is defined using features
contained in example shots, such as Ex. 1 in Fig. 4.1. This eliminates the
ambiguity associated with semantic content found in the QBK approach.

Shot 1 Ex. 1

People
Computer

People
Computer

Programmer

Internet user

QBEQBK
Query: People appear with computers

Match features

Figure 4.1: Comparison between the QBK and QBE approaches for the query
‘people appear with computers’.

The QBE approach offers the added advantage of not requiring predefined
retrieval models. In traditional QBK methods, a retrieval model needs to be
prepared for each query [96, 23], and recent QBK methods prepare classifiers
for assessing the relevance of keywords1 defining each query [21, 24]. However,
it is impractical to prepare retrieval models and classifiers for all possible
queries. In comparison, a retrieval model is constructed on the fly from
example shots in the QBE approach. In other words, as long as example
shots are provided, QBE can perform retrieval for any query. In this chapter,
we describe the development of a QBE method.

The following three problems in the QBE method have been addressed.
1. Large variety of relevant shots: Shots relevant to a query are taken
using different camera techniques and settings. For example, in Fig. 4.2, Shot
1 depicts the user’s hands with the computer monitor in a tight shot. Shot
2 shows the face of a person with the front of the computer monitor while
Shot 3 shows a computer monitor from the side. Shot 4 captures the back
of a person facing the computer screen. This illustrates that objects related
to the same query can be depicted in several ways. Furthermore, relevant
shots show numerous objects unrelated to the query. For example, among
four shots in Fig. 4.2, the background and peoples’ clothing are different and

1These keywords are frequently called concepts. However, some readers may confuse
them with concepts which are hierarchically organized in an ontology. In light of this, we
do not use the term concept.
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a caption is visible in Shot 2, but not in any other shots. Thus, even for the
same query, relevant shots not only contain significantly different features,
but also many redundant features. Therefore, a single retrieval model is not
capable of retrieving a large variety of relevant shots.

Shot 1 Shot 2 Shot 3 Shot 4

Figure 4.2: An example of a variety of event shots for the query ‘people
appear with computers’.

Rough set theory (RST) is a set-theoretic classification method for ex-
tracting rough descriptions of a class from imprecise (or noisy) data, and
is used for retrieving a variety of relevant shots [46]. RST can be used to
extract multiple classification rules, which can correctly identify different
subsets of example shots. In other words, each classification rule is special-
ized for retrieving relevant shots characterized by certain features. Hence,
by accumulating relevant shots retrieved with various classification rules, we
can retrieve a variety of relevant shots.
2. Small sample size: In QBE, a user can only provide a small number of
example shots for a query. Since QBE, by definition, retrieves shots similar
to example shots, a small number of example shots will inevitably lead to
a small range of relevant shots. We use bagging and the random subspace
method to overcome this problem. Specifically, various classifiers are built
using randomly selected example shots and feature dimensions. When only
a small number of example shots are available, classifiers output significantly
different classification results depending on example shots [28]. In addition,
classification results differ depending on feature dimensions [89]. Thus, by
building various classifiers using bagging and the random subspace method,
we can extend the range of relevant shots that can be retrieved. However,
this also results in many irrelevant shots potentially being retrieved. To
overcome this, RST is used to extract classification rules as combinations of
classifiers, which can accurately retrieve relevant shots.
3. Lack of negative examples: RST extracts classification rules to en-
able the discrimination of relevant shots from irrelevant shots. This requires
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two types of example shots, positive examples (p-examples), provided by a
user to serve as representatives of relevant shots, and negative examples (n-
examples), which are not provided by the user and serve as representatives
of irrelevant shots. To solve the lack of n-examples, we formulate the QBE
approach as partially supervised learning (PSL). Classification rules are ex-
tracted using p-examples and unlabeled examples (u-examples), which refer
to shots other than p-examples. N-examples are collected from these u-
examples. It can be considered that n-examples similar to p-examples are
informative, because they allow the characterization of the boundary be-
tween event and non-event shots. To collect such n-examples, we devise a
PSL method based on the coarse-to-fine approach. Firstly, all u-examples
are regarded as n-examples, because the number of relevant shots included
in u-examples is usually very small. Subsequently, n-examples which are
dissimilar to p-examples, are iteratively filtered using a classifier built on
p-examples and the remaining n-examples.

Our proposed QBE method is summarized in Fig. 4.3. It should be
noted that our main research objective is to develop a method which can re-
trieve a variety of relevant shots only by using a small number of p-examples.
Given p-examples, n-examples are collected using the PSL method. Subse-
quently, various classifiers are built based on bagging and the random sub-
space method. Lastly, RST is used to extract combinations of classifiers as
classification rules, and shots matching many rules are retrieved.

4.2 Related Works and the Innovation of Our

Research

4.2.1 Rough Set Theory

Firstly, RST determines the indiscernibility relation, which relates to whether
a p-example and n-example can be discerned with respect to available fea-
tures. Thereafter, multiple classification rules are extracted by combining
indiscernibility relations among examples based on set theory. RST can ex-
tract classification rules without any assumption or parameter as long as
indiscernibility relations can be defined.

Although methods other than RST can be used to retrieve a variety of
relevant shots, they have inappropriate limitations. For example, a Gaussian
Mixture Model (GMM) can extract multiple feature distributions of relevant
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Subset 1

Subset 2

Subset 4

Subset 3

Query: People appear with computers

p-examples
(example shots)

n-examples

Training
examples

Partially supervised learning
1. Lack of n-examples

Classifier 1: 
Subset of examples
Subspace in SIFT

Classifier 2: 
Subset of examples
Subspace in SIFT

Classifier 3: 
Subset of examples
Subspace in Dense SIFT 

Classifier 4: 
Subset of examples
Subspace in Dense SIFT

Classifier 5: 
Subset of examples
Subspace in Opponent SIFT

Retrieved 
event shots

Bagging & Random subspace method
2. Small sample size problem

Rough set theory
3. Large variation of relevant shots

Figure 4.3: An overview of our video retrieval method based on the QBE
approach.

shots [55]. However, such distributions cannot be appropriately estimated
only from a small number of p-examples. In addition, without any a priori
knowledge, the number of Gaussian distributions in the GMM cannot be ef-
fectively determined. The Genetic Algorithm (GA) can be used to extract
multiple classification rules [42]. Each rule is encoded as a bit string (chro-
mosome), where one bit indicates whether or not a feature is utilized. The
GA combines bit strings based on the principles of biological evolution, such
as crossover and mutation, to extract accurate rules. However, with no a pri-
ori knowledge, parameters in the GA, such as the number of bit strings, the
probability of crossover and the probability of mutation, cannot be effectively
determined.

Decision tree learning methods extract multiple classification rules in a
tree-based approach [31]. Each rule is represented as a path in a tree, where
p-examples and n-examples are recursively classified using a feature asso-
ciated with each node. Sequential covering methods extract multiple rules
in a sequential approach [31]. Each rule is sequentially extracted from p-
examples, which are not characterized (covered) by already extracted rules.
But, the tree-based and sequential approaches only extract one classification
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rule for each p-example. As a result, the number of extracted rules is in-
evitably small, which is insufficient for retrieving a variety of relevant shots.
In comparison to the above methods, without any parameter setting, RST
can extract various rules as minimal sets of features, which can correctly
identifying different subsets of p-examples.

Traditional RST can only deal with categorical features where the indis-
cernibility relation between two examples can be easily defined according to
whether they have the same value. In contrast, in our case, examples are rep-
resented by non-categorical and high-dimensional features. For instance, the
bag-of-visual-words representation involves thousands of dimensions, each of
which indicates the frequency of a local edge shape (visual word). Thus, when
applying RST to QBE, the most important issue becomes the definition of
indiscernibility relations among examples, that is, the categorization of non-
categorical high-dimensional features. With respect to this issue, existing
approaches can be classified into the following three types:
1. Clustering-based: This approach groups examples into a small number
of clusters. The indiscernibility relation between two examples is then defined
by examining whether or not they belong to the same cluster [108, 12].
2. Similarity-based: This approach does not categorize a feature, but
rather defines the indiscernibility relation between two examples by measur-
ing their similarity for the feature [60, 79].
3. Classifier-based: This approach builds a classifier on a feature, and de-
fines the indiscernibility relation by examining whether or not two examples
are classified into the same class [87].

In our research, we have previously developed the clustering-based and
similarity-based RSTs, however, they had performance limitations. In [12],
we developed a clustering-based RST using k-means clustering and tested it
on TRECVID 2008 video data. TRECVID is an annual international com-
petition where a large video data is used to benchmark state-of-the-art video
analysis methods [15]. However, for most queries, inferred average precisions
of the clustering-based RST were nearly equal to zero. One main reason
for this was the coarseness in categorizing a feature into a small number of
clusters, which led to semantically different shots frequently being included
in the same cluster.

We also developed a similarity-based RST in [60]. Although its perfor-
mance was better than that of the clustering-based RST, it was far from
the satisfactory. Table 4.1 provides a performance comparison between the
similarity-based RST and classifier-based RST. We use the same examples,
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and the same features as will be described in section 4.3. In the similarity-
based RST, cosine similarity is used as a similarity measure, while the classifier-
based RST categorizes features using Support Vector Machines (SVMs) with
the Radial Basis Function (RBF) kernel. For each query, the retrieval per-
formance is evaluated as the number of relevant shots within 1, 000 retrieved
shots. As seen in Table 4.1, the similarity-based RST is significantly outper-
formed by the classifier-based RST. The reason for the low performance of
similarity-based RST is that it is difficult to appropriately measure similari-
ties among examples for high-dimensional features.

Table 4.1: Comparison of the similarity-based RST and classifier-based RST.

Query Tall building Flame Computer Helicopter/plane Talking

Similarity-based RST 46 14 54 17 38
Classifier-based RST 144 100 150 34 67

Table 4.1 demonstrates the effectiveness of the classifier-based RST. In the
following paragraphs, we discuss which classifiers are effective for the QBE
approach, where high-dimensional features have to be categorized using only
a small number of examples. The existing classifier-based RST uses different
types of classifiers, such as the decision tree, nearest neighbor, naive Bayes
and maximum entropy [87]. However, they are ineffective for the following
two reasons. Firstly, a nearest neighbor is ineffective because the result of
the similarity-based RST in Table 4.1 implies that similarity measures do
not work well for high-dimensional features. Secondly, the other classifiers
rely on probabilistic distributions, such as information gains in decision tree,
conditional probabilities in naive Bayes, and entropy models in maximum
entropy. These are ineffective because probabilistic distributions estimated
from a small number of examples tend to deviate from the true distributions
[36].

In contrast, SVMs are effective when only a small number of examples
are available as the margin maximization does not require any probability
estimation [36]. Additionally, Vapnik [93] theorized that if the number of
feature dimensions is large, the generalization error of an SVM is defined by
the margin size and properties of examples, such as the diameter of the sphere
enclosing examples and the number of examples. That is, from the theoretical
perspective, the generalization error of the SVM is independent of the number
of feature dimensions if this number is sufficiently large. Furthermore, as
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examples are generally not linearly separable, a kernel function is used to
transform a high-dimensional feature into a higher-dimensional feature, with
the above theory allowing a well generalized SVM to be built independent of
the number of feature dimensions. Thus, we develop a classifier-based RST
using SVMs, specifically using SVMs with the RBF kernel as it is known to
be the most general kernel [20].

4.2.2 The Problem of Small Sample Size

As described in section 5.1, bagging and the random subspace method are
useful for extending the range of relevant shots that can be retrieved. They
are additionally useful for alleviating two important problems related to small
sample sizes. The first is the class imbalance problem, which refers to the
imbalance between the number of p-examples and n-examples, significantly
degrading the classification performance [82]. In our technique, numerous
n-examples can be collected using the partially supervised learning method.
However, the SVM built using a small number of p-examples and all collected
n-examples cannot appropriately classify shots into relevant and irrelevant
shots. To address this, we use bagging which combines classifiers built on
different sets of randomly selected examples [63]. In other words, for a small
number of p-examples, an appropriate number of n-examples are randomly
selected to build an SVM. However, due to the insufficiency of n-examples,
the SVM wrongly classifies many irrelevant shots as relevant. Thus, we
combine SVMs built on different sets of randomly selected n-examples in
order to consider a variety of n-examples.

The second problem is overfitting that a classifier can perfectly classify
p-examples and n-examples, but cannot appropriately classify unseen exam-
ples. Generally, as the number of feature dimensions increases, the number
of examples required to construct a well generalized classifier exponentially
increases [11]. This is due to the fact that a class needs to be determined
for each combination of values along different dimensions. In our case, we
can only use a small number of examples (at most, a hundred of p- and
n-examples in total). On the other hand, based on the bag-of-visual-words
model, we represent each example as a vector with more than 1, 000 dimen-
sions. As a result, the SVM is overfit to feature dimensions which are specific
to p-examples (or n-examples), but are ineffective for characterizing relevant
(or irrelevant) shots. Thus, we use the random subspace method, which
combines classifiers built on randomly selected feature dimensions [89]. The
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original high-dimensional feature is transformed into a lower-dimensional fea-
ture, which alleviates building an overfit SVM. By combining such SVMs, a
large number of feature dimensions can be considered.

Numerous methods have been proposed to overcome the class imbalance
and overfitting. For the class imbalance problem, Japkowicz [76] tested var-
ious sampling approaches, such as over-sampling of examples belonging to
the minority class, under-sampling of examples belonging to the majority
class, and sampling based on a classifier for examining the association of an
example to the minority (or majority) class. Akbani et al. [82] used the
Synthetic Minority Oversampling TEchnique (SMOTE), which synthetically
generates new examples for the minority class based on their similarities
with existing examples. Liu et al. [37] presented various feature dimension
reduction methods to overcome the problem of overfitting. For example, one
method selects feature dimensions by measuring their relative importance
based on an ensemble of decision trees, while a second method selects fea-
ture dimensions which are both maximally relevant and minimally redundant
based on the mutual information between examples and classes. Guo et al.
[36] proposed a method which simultaneously achieves dimension reduction
and margin maximization in classifier training. As the above methods only
select the best subset among examples or feature dimensions, they are not
useful for extending the range of relevant shots that can be retrieved, unlike
bagging and the random subspace method.

Our application of bagging and the random subspace method is crucially
different to that in the previous research [28]. In particular, Tao et al. [28]
performed simple majority voting using SVMs built by bagging and the ran-
dom subspace method. We refer to this majority voting as Simple MV. On
the other hand, our method involves majority voting using classification rules,
which are extracted as combinations of SVMs by RST. We refer to this as
RST MV. Table 4.2 shows a performance comparison between Simple MV
and RST MV. For each query, 10 retrieval results are obtained using Sim-
ple MV or RST MV. To perform an appropriate comparison, retrieval results
are obtained by using the same set of 60 SVMs for both Simple MV and
RST MV. The second and fourth rows represent average numbers of rele-
vant shots retrieved by Simple MV and RST MV, respectively. These rows
demonstrate that RST MV outperforms Simple MV for all queries. A key
reason for this is the difference between SVMs and classification rules. The
third and fifth rows represent average numbers of relevant shots which are
correctly classified by SVMs and classification rules, respectively, showing
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that classification rules are much more accurate than SVMs. This allows
RST MV to achieve more accurate retrieval than Simple MV.

Table 4.2: Performance of SVM combination by majority voting and RST.

Query Tall building Flame Computer Helicopter/plane Talking

Retrieval 136.0 122.6 160.5 36.1 175.6
Majority Performance
voting SVM 84.3 67.4 90.4 22.6 98.4

Performance

Retrieval 140.6 145.3 164.3 41.5 189.9
RST Performance

Rule 109.6 98.6 118.8 32.4 139.5
Performance

4.2.3 Negative Example Selection

Traditional QBE methods only use p-examples and retrieve shots similar to
them [102, 58]. But, only considering similarities to p-examples cannot yield
accurate retrieval. For example, consider the query ‘a car moves’. If a p-
example showing a moving red car is provided, it may seem more similar
to a shot where a person wears a red piece of clothing than a shot showing
a moving white car. Compared to this, if a QBE method uses n-examples
and compares them to the p-example, it can be found that the edge fea-
ture characterizing a car shape is important while the color feature is not.
Thus, n-examples are required to construct a retrieval model (in our case,
classification rules), which characterizes features specific to p-examples.

Since relevant shots form only a small portion of all shots, several methods
use an approach which considers randomly selected shots as n-examples [14,
24]. However, this approach is associated with the following problem. The
random selection of n-examples does not consider the type of n-examples
that are required to construct an accurate retrieval model. For example,
if all of collected n-examples are significantly dissimilar to p-examples, we
cannot identify features that are relevant to p-examples because p-examples
and n-examples can be classified by using any features.

Numerous partially supervised learning (PSL) methods have been pro-
posed to build a classifier using p-examples and unlabeled examples (u-
examples). Most of the existing methods adopt the two-step approach,
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wherein n-examples are first collected from u-examples and a classifier is sub-
sequently built on p-examples and collected n-examples [34, 18, 40]. In such
a PSL approach, one of main research issues is how to collect n-examples
from u-examples. For instance, Liu et al. [18] proposed a method which
selects some p-examples as ‘spy’ examples and adds them to u-examples.
A naive Bayesian classifier is then built using p-examples and u-examples,
where spy examples are used to set the probabilistic threshold for evaluating
whether or not u-examples can be regarded as negative. Yu et al. [40] pro-
posed a method which iteratively collects n-examples. In each iteration, the
method builds an SVM from p-examples and already selected n-examples,
and subsequently selects n-examples as u-examples, which are classified as
negative by the SVM. Fung et al. [34] proposed an iterative method where u-
examples which are more similar to already selected n-examples rather than
p-examples are selected as n-examples.

However, most of existing PSL methods only collect a large number of
n-examples. Due to the class imbalance problem, the use of all collected
n-examples does not guarantee the construction of an accurate classifier.
To overcome this, we propose a new PSL method which can select a small
number of n-examples useful for building an accurate classifier like SVM.
Our method is inspired by the method proposed in [57]. It was originally
developed to solve the class imbalance problem by under-sampling examples
of the majority class, i.e., n-examples. [57] contends that since n-examples
similar to p-examples characterize the class boundary, they are useful for
building an accurate SVM. N-examples are iteratively filtered to collect those
n-examples that are similar to p-examples. In each iteration, the method
filters out n-examples that are distant from the decision boundary of the
SVM, which is built on p-examples and the remaining n-examples. As a
result, the method selects a small number of n-examples that are as similar
to p-examples as possible. We apply this method to PSL by regarding all
u-examples as n-examples, because almost all of u-examples are irrelevant to
a query.

4.3 Video Retrieval Method

In this section, the proposed QBE method is described. We assume that the
representative semantic content in each shot is shown in the middle video
frame, called keyframe. The following 6 types of features are extracted from
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the keyframe in each shot using the color descriptor software [59]: 1. SIFT,
2. Opponent SIFT, 3. RBG SIFT, 4. Hue SIFT, 5. Color histogram and 6.
Dense SIFT. The first three types of SIFT features are defined in different
color spaces and have different invariance properties for lighting conditions.
By using these three SIFT features, we aim to characterize local shapes
of objects (e.g. corners of buildings, vehicles, human eyes etc.), regardless
of changes in illumination. Since they only compute derivatives in color
spaces, they do not consider absolute color values which are effective for
characterizing certain objects, such as faces, flames, vegetation and so on. So,
we use Hue SIFT and Color histogram. Hue SIFT represents a SIFT feature
concatenated with a Hue histogram in HSV color space, and Color histogram
represents a pure RGB color histogram. All of the above 5 types of features
are extracted at interest points computed by Harris-Laplace detector, where
pixel values largely change in multiple directions. But, small changes of
pixel values are critical when considering certain objects such as sky, water,
roads and so on. In addition, many interest points in the background may be
missed due to low contrast. Thus, Dense SIFT is used, wherein SIFT features
are extracted at interest points sampled with a fixed interval. In this way,
interest points missed by Harris-Laplace detector can be compensated. Due
to space limitations, the above features are not discussed any further and
can be found in [59] in greater detail.

The above 6 types of features are represented using the bag-of-visual-
words representation. For each type of feature, 1, 000 visual words are
extracted by clustering features at 200, 000 interest points, sampled from
keyframes in TRECVID 2009 development videos (219 videos) [15]. As de-
picted in Fig. 4.4, a shot is represented as a 6, 000-dimensional vector where
each type of feature is represented as a 1, 000-dimensional vector. Based on
this high-dimensional representation, we perform rough set theory extended
by bagging and the random subspace method, and partially supervised learn-
ing. It should be noted that for the random subspace method, it is unreason-
able to build an SVM using dimensions randomly sampled across different
types of features. Thus, we build one SVM by randomly selecting dimensions
in the same type of feature.
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Figure 4.4: The representation of a shot as a 6,000-dimensional vector.

4.3.1 Rough Set Theory Extended by Bagging and the
Random Subspace Method

Given p-examples and n-examples for a query, RST is used to extract clas-
sification rules, known as decision rules, for distinguishing relevant shots
from irrelevant shots. Firstly, various SVMs are built using bagging and
the random subspace method. Using each of these SVMs, the indiscernibil-
ity relation between a p-example and n-example is defined by determining
whether or not the p-example and n-example are classified into the same
class. Lastly, by combining such indiscernibility relations among examples,
decision rules, which can discriminate subsets of p-examples from the entire
set of n-examples, are extracted. The proposed RST is explained in detail in
the following paragraphs.

First of all, the number of p-examples and that of n-examples are too small
to characterize the distribution of relevant shots and that of irrelevant shots
in a high-dimensional feature space, respectively. So, the decision boundary
of an SVM tends to be inaccurate. Generally, an SVM determines the class
of an example based on the binary criterion, i.e., whether the example is
located on the positive or negative side of the decision boundary. However,
this classification is erroneous since the decision boundary is inaccurate. To
overcome this, a continuous-valued criterion is employed. Specifically, the
probabilistic output of the SVM, which approximates the distance between
an example and the decision boundary using a sigmoid function, is used
[38]. Based on this, the class of an example is determined as follows. Firstly,
examples are ranked in descending order of probabilistic outputs of the SVM.
If an example is ranked within the top M positions, where M is the number
of p-examples, its class is determined as positive, or otherwise as negative.
Thus, although the decision boundary is inaccurate, examples can be robustly
classified.

Classification results of SVMs can be summarized in a decision table, as
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shown in Fig. 4.5. Each row represents the i-th p-example, pi (1 ≤ i ≤ M)
or j-th n-example, nj (1 ≤ j ≤ N). Each column ak (1 ≤ k ≤ K) represents
the classification result of the k-th SVM, where +1 indicates that an example
is classified as positive and −1 indicates that it is classified as negative. The
classification result of the k-th SVM for pi and nj are represented by ak(pi)
and ak(nj), respectively. That is, each classification result can be regarded
as one feature in RST. Lastly, the rightmost column indicates whether an
example is positive (P ) or negative (N).

-1+1-1+1+1

-1+1-1-1-1

Class

P

N

+1+1-1-1-1 N

-1+1+1+1-1 P

a1 a2 a3 a4 a5

nN

n1

p
M

p
1

Subset of examples

Subset of dimensions in SIFT

p1 p3 n2 n5

1-th, 8-th,       , 995-th

1-st SVM

p3 p4 n5 n7

Subset of examples

Subset of dimensions in SIFT
5-th, 13-th,       , 990-th

2-nd SVM
Subset of examples

Subset of dimensions in Opp. SIFT

p3 p7 n1 n8

2-th, 5-th,       , 992-th

3-rd SVM
Subset of examples

Subset of dimensions in Opp. SIFT

p1 p2 n4 n6

4-th, 9-th,       , 987-th

4-th SVM

Figure 4.5: Example of a decision table formed by applying RST extended
by bagging and the random subspace method.

Before discussing the proposed decision rule extraction method, a concep-
tual explanation in relation to decision rules is provided using Fig. 4.6. In
this figure, one p-example p1 and two n-examples n1 and n2 are given for the
query ‘tall buildings are shown’. Let ak1 and ak2 represent the classification
of the k1-th SVM built on SIFT feature and that of the k2-th SVM built
on Hue SIFT feature, respectively. Since SIFT feature of p1 is similar to
the one of n1, the k1-th SVM incorrectly classifies both as positive. On the
other hand, since Hue SIFT feature of p1 is dissimilar to that of n1, the k2-th
SVM correctly classifies p1 and n1 as positive and negative, respectively. The
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dissimilarity between SIFT features of p1’s and n2’s enables them to be cor-
rectly classified by the k1-th SVM. On the other hand, p1 and n2 cannot be
correctly classified by the k2-th SVM due to their similar Hue SIFT features.
Thus, in order to discriminate p1 from n1 and n2, a decision rule consisting
of ak1 and ak2 is required. This rule indicates the combination of the k1-th
and k2-th SVMs. In the following paragraphs, the extraction of such decision
rules based on a logical operation is described.
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n1 0.005

0
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0
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a k 1
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minated by a k 2

Cannot be dis-
criminated by 

Figure 4.6: The concept of decision rules extracted by RST.

In order to extract decision rules, for each pair of pi and nj, we first
determine discriminative features which are useful for discriminating them.
Specifically, the following set of discriminative features fi,j are extracted
between pi and nj.

fi,j = {ak|ak(pi) = +1 ∧ ak(pi) ̸= ak(nj)} (4.1)

This signifies that ak is included in fi,j, if the k-th SVM correctly classifies pi

and nj as positive and negative, respectively. Thus, pi can be discriminated
from nj when at least one feature in fi,j is utilized.
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Next, in order to discriminate pi from all n-examples, the discriminative
features of pi’s are combined. This is achieved by using at least one discrimi-
native feature in fi,j for all n-examples. The discernibility function dfi, which
takes a conjunction of ∨fi,j, is computed as follows:

dfi = ∧{∨fi,j| 1 ≤ j ≤ N} (4.2)

Let us consider the discernibility function df1 for one p-example p1 and two n-
examples n1 and n2. Let the sets of discriminative features between p1 and n1

and between p1 and n2 be f1,1 = {a1, a3, a5} and f1,2 = {a1, a2}, respectively.
Under this condition, df1 can be computed as (a1 ∨ a3 ∨ a5) ∧ (a1 ∨ a2).
This is simplified as df∗

1 = (a1) ∨ (a2 ∧ a3) ∨ (a2 ∧ a5)
2. Thus, p1 can be

distinguished from n1 and n2, by using a1, the set of a2 and a3, or the set of
a2 and a5. Similarly, each conjunction term in df∗

i represents a reduct which
is the minimal set of features required to discriminate pi from all n-examples.

From each reduct, we construct a decision rule in the form of an IF-THEN
rule. A reduct r, consisting of L features, can be represented as follows.

r = a1∗ ∧ a2∗ ∧ · · · ∧ aL∗ (4.3)

where al∗ (1 ≤ l∗ ≤ L) denotes a single feature among the total K features
a1, · · · , aK . Recall that in equation (4.1), ak is selected as a discriminative
feature only when ak(pi) = +1. Thus, the decision rule, rule, constructed
from r has a conditional part, where al∗(x) has to be +1 for a shot (i.e.
unseen example) x. It is represented as follows.

rule : IF (a1∗(x) = +1) ∧ · · · ∧ (aL∗(x) = +1), THEN Class = P (4.4)

For example, from the reduct (a2 ∧ a3), we can construct the decision rule
IF (a2(x) = +1) ∧ (a3(x) = +1), THEN Class = P . This rule indicates
that if both the 2-nd and 3-rd SVMs classify x as positive, then x is relevant
to the query. Like this, a decision rule describes how to combine SVMs built
by bagging and the random subspace method for retrieving relevant shots.

When matching x with rule, we regard decision boundaries of SVMs as
inaccurate, as described above. Decision rule matching is conducted based on

2This simplification is achieved by using the distributive law A ∧ (B ∨C) = (A ∧B) ∨
(A∧C) and the absorption law A∨ (A∧B) = A. Although the simplification of a Boolean
function is NP-hard, we can obtain an approximate solution by using the genetic algorithm
[46].
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probabilistic outputs of SVMs. To explain this, SV Ml∗ is used to represent
the l∗-th SVM corresponding to each feature al∗ in rule (1 ≤ l∗ ≤ L). In addi-
tion, the probabilistic output of the SV Ml∗ for x is denoted by ProbSV Ml∗ (x).
Based on the above notations, we calculate Match(x, rule) which is an eval-
uation value of matching x with rule.

Match(x, rule) =
L∏

l∗=1

ProbSV Ml∗ (x) (4.5)

Match(x, rule) is the joint probability of L SVMs in rule. It should be
noted that a threshold is required to determine whether or not x matches
rule. In view of this, the following two considerations must be made. Firstly,
feature numbers (i.e. L) differ depending on decision rules. Secondly, the
distribution of SVM’s probabilistic outputs differs depending on the sigmoid
function estimated for the SVM. For example, the mean of some SVM’s
probabilistic outputs is 0.5, while the one of a different SVM’s probabilistic
outputs is 0.3. Thus, it is unreasonable to use the same threshold for all
decision rules.

Instead of actual values of Match(x, rule), the following ranking approach
is used to determine whether or not x matches rule. First, all shots are ranked
in descending order of Match(x, rule). A shot ranked within the top T -th
position is considered to match rule (T is set to 1, 000 in all experiments).
In this way, shots are matched with all decision rules based on the same
criterion of the ranking position. Finally, our method outputs a retrieval
result consisting of T ′ shots which match the largest numbers of decision
rules (T ′ = 1, 000 in our experiments).

4.3.2 Effectiveness of Bagging and the Random Sub-
space Method

In this section, we discuss whether bagging and the random subspace method
are effective in extending the range of relevant shots that can be retrieved.
That is, we examine differences among classification results of SVMs, which
are built using different examples and feature dimensions.

Table 4.3 shows experimental results obtained for five queries that will
be used in section 4.4. In particular, the objective is to examine whether
classification results of SVMs change when using different examples and di-
mensions, even for the same type of feature. Thus, SVMs are built only by
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using SIFT feature. In the second to fourth rows of Table 4.3, we only use
bagging where SVMs are built using the same number of randomly selected
examples. On the other hand, in the fifth to seventh rows of Table 4.3, we
use both bagging and the random subspace method where SVMs are built
using the same number of randomly selected examples and SIFT dimensions.
A comparison is drawn among classification results of 10 SVMs by examining
1, 000 shots with the highest probabilistic outputs among the total 97, 150
shots. We define the first classification result as the baseline, and examined
the difference between the baseline and the remaining nine results, called
comparison results. The second (or fifth) row represents the number of rele-
vant shots included in the baseline. The third (or sixth) row represents the
average number of shots that are only included in comparison results. Lastly,
the fourth (or seventh) row represents the average number of relevant shots
included only in comparison results.

Table 4.3: Differences among classification results built using bagging and
the random subspace method.

Query Query 1 Query 2 Query 3 Query 4 Query 5

Baseline: # of 124 99 111 35 146
relevant shots

Bagging Comparison: # of 466.9 579.7 470.1 396.6 512.8
different shots
Comparison: # of 39.4 16.7 34.3 7.3 42.2
different relevant shots

Baseline: # of 129 97 115 22 150
Bagging & relevant shots
Random Comparison: # of 461.3 695.4 656.4 428.4 693
subspace different shots

Comparison: # of 27.1 16.7 37.2 11.9 53.7
different relevant shots

As can be seen from Table 4.3, by only changing examples based on bag-
ging, comparison results include approximately 397 to 580 shots that differ
from the baseline. In addition, compared to relevant shots in the baseline,
about 16% to 32% of different relevant shots are included in comparison re-
sults. Furthermore, by changing both examples and feature dimensions with
bagging and the random subspace method, comparison results include about
428 to 695 shots that are different from the baseline, and approximately 17%
to 36% of relevant shots in comparison results are different from relevant
shots in the baseline. This indicates that bagging and the random subspace
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method are effective in extending the range of relevant shots that can be
retrieved. However, Table 4.3 indicates that as the number of relevant shots
which can be retrieved increases, the number of irrelevant shots also increases.
It can be seen that the ratio of relevant shots to those shots included only
in comparison results is less than 10%. Thus, in order to accurately retrieve
relevant shots, decision rules need to be extracted as combinations of SVMs
by using RST.

4.3.3 Partially Supervised Learning

Since the proposed RST relies on SVMs built using bagging and the ran-
dom subspace method, it is necessary to collect n-examples that are useful
for building accurate SVMs. In particular, considering the class imbalance
problem, the proposed partially supervised learning (PSL) method should
be able to collect a small number of informative n-examples from unlabeled
examples (u-examples). N-examples similar to p-examples are considered
as informative, because they are useful for characterizing the boundary be-
tween relevant and irrelevant shots. The procedure involved in selecting a
small number of informative n-examples is described below.

The proposed PSL method is summarized in Algorithm 1. Firstly, since
the number of relevant shots included in u-examples is very small, all u-
examples are assumed to be n-examples. The set of p-examples and the
set of n-examples are denoted by P and N , respectively. The number of
p-examples and the one of n-examples are represented by |P | and |N |, re-
spectively. Based on P and N , an SVM, which examines whether or not
n-examples are informative, is built. However, only a small number of n-
examples can be used due to the class imbalance problem. If n-examples
are randomly selected from N , n-examples located in certain regions of the
feature space may not be selected. As a result, the decision boundary of the
SVM is wrongly estimated, and it is not possible to appropriately evaluate
the informativeness of n-examples. Thus, we need to collect a set of represen-
tative n-examples, which characterize the distribution of all n-examples. To
this end, n-examples are grouped into clusters using the k-means clustering
algorithm and the Euclidian distance measure. As shown in the line 1 of
Algorithm 1, n-examples are grouped into N/β clusters. β is a pre-defined
parameter used to control the number of clusters relative to the number of n-
examples. Since various semantic contents are presented in n-examples, their
features are very diverse. This necessitates many clusters of n-examples. In
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Algorithm 1 An overview of the proposed partially supervised learning.

INPUT: set of p-examples P , set of n-examples N , desirable number of
n-examples α, ratio between n-examples and clusters β
OUTPUT: shrunk set of n-examples N

repeat
1. Cluster N into N/β clusters
2. Obtain the set of representative n-examples RN , each of which is
centrally located in a cluster
3. Build an SVM using P and RN
4. From N , remove those n-examples distant from the decision boundary
of the SVM

until |N | ≤ α OR no n-example is removed from N
5. Output N

our experiment, β is set to 10, so that when |N | = 30, 000, one can obtain
3, 000 clusters. In addition, since it is difficult to appropriately measure sim-
ilarities among n-examples in the 6, 000-dimensional feature space defined in
Fig. 4.4, our PSL method is conducted on 1, 000-dimensional SIFT feature
(the SVM in the line 3 of Algorithm 1 is also built on SIFT feature).

After clustering, for each cluster c, the most centrally located n-example
is selected as the representative n-example nc.

nc = min
ni∈Nc

∑
nj∈Nc

dist(ni, nj) (4.6)

where Nc is the set of n-examples in c, and ni and nj are n-examples in Nc.
dist(ni, nj) represents the Euclidian distance between ni and nj. Thus, nc is
selected as the n-example having the minimum sum of Euclidian distances to
the other n-examples in c. A set of representative n-examples for all clusters
is denoted by RN .

By using an SVM built on P and RN , it can be determined whether
each n-example n in N is informative based on its distance from the deci-
sion boundary of the SVM. N-examples distant from the decision boundary
are uninformative for defining the boundary between relevant and irrelevant
shots. The above test is conducted using the following criterion:

|wT n + b| > γ (4.7)
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Using x as an arbitrary example, wT x+ b = 0 represents the decision bound-
ary (hyperplane) of the SVM. Based on this, |wT n + b| can characterize the
distance between n and the decision boundary. Specifically, the distance is
|wT n + b|/||w||, but since ||w|| is constant, it can be omitted. If the distance
between n and the decision boundary is larger than the threshold γ, n is
regarded as uninformative and subsequently removed from N . This removal
of uninformative n-examples is iterated until the number of n-examples is
less than the pre-defined number of n-examples α or no further n-examples
are removed from N .

An example illustrating the above iteration is shown in Fig. 4.7, with
circles and crosses representing p-examples and n-examples, respectively. N-
examples are initially collected as shown in Fig. 4.7 (a), and the first iteration
is then performed as shown in Fig. 4.7 (b). N-examples are grouped into
four clusters and an SVM is built using representative n-examples from these
clusters. As a result, two p-examples and two representative n-examples are
extracted as support vectors, as depicted by the solid lines. The dashed line
represents the decision boundary of the SVM. Based on this, n-examples
located on the left side of the bold line are regarded as uninformative and
are subsequently discarded. The second iteration is then performed using the
remaining n-examples, as shown in Fig. 4.7 (c). In this iteration, an SVM is
built using three representative n-examples. Based on the decision boundary
of this SVM, n-examples located on the left side of the bold line are discarded.
In this way, a small number of n-examples, which are highly similar to p-
examples, can be obtained. Such n-examples are useful for characterizing the
boundary between relevant and irrelevant shots.

a) Initial situation b) First iteration c) Second iteration

1γ
1γRemove! Remove!

Figure 4.7: An example of the proposed partially supervised learning method.
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4.4 Experimental Results

In this section, the proposed QBE method is tested on TRECVID 2009
video data [15]. This data consists of 219 development and 619 test videos
in various genres, like cultural, news magazine, documentary and education
programming. Each video is already divided into shots by using an auto-
matic shot boundary detection method, where development and test videos
include 36, 106 and 97, 150 shots, respectively (the detailed video data speci-
fication can be found on TRECVID 2009 Web site3). The proposed method
is evaluated based on the following five queries:

Query 1: A view of one or more tall buildings and the top story visible

Query 2: Something burning with flames visible

Query 3: One or more people, each at a table or desk with a computer visible

Query 4: An airplane or helicopter on the ground, seen from outside

Query 5: One or more people, each sitting in a chair, talking

Each retrieval is conducted as follows. Firstly, p-examples are manually col-
lected from development videos. Based on p-examples, n-examples are then
collected using the proposed PSL method. Considering the class imbalance
problem, the number of collected n-examples is set to be equal to five times
the number of p-examples. Afterward, the proposed RST method extended
by bagging and the random subspace method, is run where two libraries,
LIBSVM [20] and ROSETTA [46], are used for SVM learning and for the
reduct extraction in RST, respectively. SVM parameters are determined us-
ing 3-fold cross validation. Lastly, the retrieval performance is evaluated
based on the number of relevant shots within 1, 000 retrieved shots.

4.4.1 Effectiveness of Rough Set Theory extended by
Bagging and the Random Subspace Method

To examine the effectiveness of RST extended by bagging and the random
subspace method, a comparison is drawn among the four types of retrieval
described below.

3http://www-nlpir.nist.gov/projects/tv2009/tv2009.html
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Baseline: For each of six features, an SVM is built using all examples and
dimensions, and a search of test videos is conducted. The SVM which
yields the best result is then manually selected. In other words, Base-
line represents a favorable retrieval result under the ideal condition in
which the best feature for the query can be selected.

RST only: RST, which uses neither bagging nor the random subspace method,
is executed. One SVM is built for each feature using all examples and
dimensions.

RST+BG: RST is executed only by using bagging. For each feature, three
SVMs are built using different subsets of examples and all dimensions.
Each subset is constructed by randomly sampling 75% of examples.

RST+BG+RS: RST which incorporates both bagging and the random sub-
space method is executed. For each feature, 10 SVMs are built using
different subsets of examples and dimensions. Each subset of examples
is formed by randomly sampling 75% of examples, while each subset of
dimensions is formed by randomly sampling 50% of dimensions.

Table 4.4 shows performances of the above four types of retrieval. For each
query, the second row presents the number of p-examples. For the perfor-
mance evaluation, we consider that retrieval results of the proposed method
differ due to the following two random factors. The first is attributed to the
fact that, the PSL method often terminates before the number of n-examples
is reduced to the specified number, because there are no n-examples which
can be filtered out (refer to the stopping criterion in Algorithm 1). In such
a case, from the remaining n-examples, five times as many n-examples as
p-examples are randomly selected. The second random factor is associated
with bagging and the random subspace method, where examples and feature
dimensions are randomly selected. Thus, in Table 4.4, each row labeled ‘#
of relevant shots’ indicates the mean number of relevant shots in 10 retrieval
results. Similarly, rows labeled ‘# of decision rules’ and ‘# of average preci-
sion’ indicate the mean number of decision rules extracted by RST and the
mean of average precisions, respectively.

In Table 4.4, the numbers in bold fonts indicate that RST only, RST+BG
or RST+BG+RS can retrieve more relevant shots than Baseline. Since the
performance of RST only for Query 3, Query 4 and Query 5 is lower than
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Table 4.4: Performance comparison of Baseline, RST only, RST+BG and
RST+BG+RS.

Query Query 1 Query 2 Query 3 Query 4 Query 5
# of p-examples 100 46 61 40 124

Baseline # of relevant shots 161.1 98.9 163.0 42.7 151.0

# of relevant shots 165.1 111.0 161.5 34.1 146.9
RST only # of decision rules 5.5 5.2 5.4 4.5 3.8

Average precision 0.0931 0.1449 0.0871 0.0094 0.0365

# of relevant shots 170.1 137.3 176.7 38.2 196.4
RST+BG # of decision rules 252.9 159.7 151.9 137.4 354.0

Average precision 0.1148 0.1827 0.0877 0.0154 0.0571

# of relevant shots 172.0 147.5 176.9 41.6 194.6
RST+BG+RS # of decision rules 6159.2 1797.6 2286 1822.9 11455.6

Average precision 0.1170 0.1942 0.0992 0.0159 0.0604

that of Baseline, it is not necessarily effective. One main reason for this inef-
fectiveness of RST only is that the number of extracted decision rules is very
small. On the other hand, except for Query 4 (which will be discussed later),
both RST+BG and RST+BG+RS outperform Baseline where a greater num-
ber of decision rules are extracted compared to RST only. Thus, bagging
and the random subspace method are useful for building various SVMs,
which enables the extraction of decision rules covering a large variety of
relevant shots. Lastly, when making a comparison between RST+BG and
RST+BG+RS, numbers of retrieved relevant shots are not significantly dif-
ferent from each other. For all queries, average precisions of RST+BG+RS
are higher than those of RST+BG, implying that relevant shots are ranked
at higher positions in a retrieval result by RST+BG+RS than by RST+BG.
Thus, RST+BG+RS is considered to be superior to RST+BG.

For Query 4, one main reason for the ineffectiveness of RST+BG and
RST+BG+RS is the difficulty of accurately recognizing airplanes and he-
licopters. Specifically, SVMs built by bagging and the random subspace
method wrongly classify many shots showing cars, trains, ships etc. as pos-
itive, because their shapes are relatively similar to those of airplanes and
helicopters. Thus, combining such inaccurate SVMs into decision rules de-
grades the retrieval performance.
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4.4.2 Effectiveness of Partially Supervised Learning

In this section, we examine the effectiveness of our PSL method. To this end,
the performance using n-examples collected by our PSL method is compared
to the one using n-examples which are randomly collected from all of u-
examples. For the simplicity, we call the former and the latter types of
n-examples PSL n-examples and random n-examples, respectively. In Table
4.5, we run RST+BG and RST+BG+RS using the same p-examples in Table
4.4. PSL n-examples are used in the second and third rows while random
n-examples are used in the fourth and fifth rows. Each performance in Table
4.5 is evaluated as the average number of relevant shots in 10 retrieval results.

Table 4.5: Comparison between the retrieval performance using our PSL
method and the one using the random n-example selection.

Query Query 1 Query 2 Query 3 Query 4 Query 5

PSL RST+BG 170.1 137.3 176.7 38.2 196.4
RST+BG+RS 165.1 147.5 176.9 41.6 194.6

Random RST+BG 157.9 136.0 168.5 46.6 187.5
RST+BG+RS 159.6 144.3 171.0 47.0 187.8

As can be seen from Table 4.5, except for Query 4, the retrieval using
PSL n-examples is more accurate than the one using random n-examples.
The reason for the ineffective performance in Query 4 is as follows. Due to
the difficulty of accurately recognizing helicopters and airplanes, few edges
which characterize the sky and runways in the background, are important
for Query 4. But, since PSL n-examples are highly similar to p-examples,
most of them are characterized by few edges. So, several relevant shots with
few edges are inevitably excluded from the retrieval result. Thus, it can be
said that our PSL method works well for queries involving objects, which
can be relatively accurately recognized. For example, for Query 1, the net of
a soccer goal, iron bars, closet etc. are shown in PSL n-examples, because
shapes of these objects are similar to buildings. By comparing such PSL n-
examples to p-examples, a precise boundary between relevant and irrelevant
shots can be extracted. Finally, since random n-examples are currently used
in almost all of state-of-the-art methods [14, 21, 24], we believe that our PSL
method is novel in the sense that it can outperform the random n-example
selection.
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4.4.3 Effectiveness for the Small Sample Size Problem

The performance of the proposed method is also tested in the case where only
a small number of p-examples are available. Fig. 4.8 illustrates the differ-
ence in the retrieval performance of Baseline, RST+BG and RST+BG+RS,
depending on p-example numbers. For a specified p-example number, we
construct three different sets of examples in the following way. Firstly, the
specified number of p-examples are randomly collected from all available p-
examples, as shown in Table 4.4. Then, n-examples are collected using our
PSL method. The performance is evaluated as the average number of relevant
shots in retrieval results using the above three sets of examples.

In Fig. 4.8, for Query 2 and Query 3, RST+BG and RST+BG+RS
always outperform Baseline. For Query 1 and Query 5, when only 10 p-
examples are available, RST+BG and RST+BG+RS are outperformed by
Baseline. In this case, most of SVMs are inaccurate and as a consequence,
decision rules as combinations of these SVMs are also inaccurate. Finally,
for Query 4, RST+BG and RST+BG+RS are always outperformed by Base-
line, due to the difficulty of accurately recognizing airplanes and helicopters
described in the previous section. To summarize the overall performance,
except for Query 4, RST+BG and RST+BG+RS become more appropriate
than Baseline when greater than 20 p-examples are available.

Finally, it is easy to collect more than 20 p-examples for Query 1 and
Query 5 as relevant shots are often seen in videos. However, relevant shots
to Query 2 are rarely seen and there are only a limited number of videos
containing these relevant shots. This increases the difficulty of collecting
more than 20 p-examples for Query 2. A sufficient number of p-examples
may be obtained by retrieving images and videos on the web using online
image/video search engines such as Flickr and YouTube.

4.4.4 Performance Comparison

A comparison is made between the performance of the proposed method
and those of state-of-the-art methods. RST+BG+RS is specially compared
with methods developed in TRECVID 2009 search task [15]. This task con-
sists of three categories, namely, the fully automatic, manually-assisted and
interactive categories. Given the textual description of a query and some
p-examples, methods in the fully automatic category retrieve relevant shots
without any user intervention. In the manually-assisted category, a user in-
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Figure 4.8: Retrieval performances for different available p-example numbers.
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tervention is allowed only prior to the start of the test video search. The
interactive category allows an interactive user intervention based on retrieval
results. Although our proposed method belongs to the manually-assisted
category, only three retrieval results are submitted to this category. This
is clearly insufficient for achieving a meaningful comparison. Thus, the re-
trieval result of the proposed method is compared with 88 results in the fully
automatic category.

Fig. 4.9 shows the maximum (solid arrow) and average (dashed ar-
row) numbers of relevant shots among 10 retrieval results, obtained using
RST+BG+RS in Table 4.4. As can be seen from Fig. 4.9, the overall per-
formance of the proposed method is ranked in the top quartile. It can be
noted that almost all methods in the top quartile use classifiers to assess the
relevance of each shot to keywords like Person, Building, Cityspace and so
on. In this case, for each keyword, a classifier is built using a large number
of training examples. For example, in the method proposed by researchers
at City University of Hong Kong, classifiers for 374 keywords are built using
61, 901 manually annotated shots [21]. Also, in the method developed by
researchers at University of Amsterdam, classifiers for 64 keywords are built
using more than 10, 000 manually annotated shots, such as 39, 674 shots for
Bus, 21, 532 shots for Car and so on [24]. Like this, methods in the top
quartile require tremendous manual effort. Compared to these methods, our
method only uses p-examples which are provided by a user in an off-the-cuff
manner. Thus, it can be concluded that the proposed method is very effec-
tive in the sense that it requires neither manual shot annotation nor classifier
preparation.

4.4.5 Reducing Computation Cost by Parallelization

In this section, we examine the computation cost of our QBE method and
reduce it by parallelizing several processes. Our method consists of two main
phases, PSL and RST. Fig. 4.10 illustrates processes in PSL (a) and RST (b)
phases. Roughly speaking, the input of the PSL phase is a set of p-examples,
and its output is a set of n-examples which are as similar to p-examples as
possible. To this end, we first regard all of u-examples as n-examples and
group them into clusters. Secondly, we find the representative n-example for
each cluster. An SVM is then built by using p-examples and representative
n-examples. Subsequently, n-examples which are distant from the decision
boundary of the SVM are removed. Finally, the above processes are iterated
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until the number of n-examples is less than the pre-defined threshold or no
n-example can be removed.

Clustering n-examples

Similarity calculation

Cluster center update

Find representative n-examples

Building an SVM

Cross validation

Remove uninformative n-examples
based on the SVM

Build SVMs

Extract decision rules

Matching shots with decision rules

SVM’s probabilistic output calculation

Evaluation value calculation

Shot ranking with evaluation values

Shot ranking with numbers of matched rules

INPUT: p-examples

OUTPUT: Informative n-examples

INPUT: p-examples & n-examples

OUTPUT: 1,000 shots matching with largest
                  numbers of decision rules

a) PSL phase b) RST phase

Parallelize!

Parallelize!

Parallelize!

Parallelize by
MapReduce!

Figure 4.10: Illustrations of processes in PSL (a) and RST (b) phases.

When a large number of n-examples remain, the following two processes
require expensive computation costs. The first is the similarity calculation
for calculating the similarity between an n-example and each cluster center.
The second computationally expensive process is cross validation where, for
each parameter candidate, an SVM is built and evaluated by computing the
error rate in classifying p-examples and n-examples. Thus, we parallelize the
above two processes by using a multicore PC. For the similarity calculation
process, each core is used to calculate the similarity between one cluster
center and n-examples. For the cross validation process, each core is used to
compute the error rate of an SVM with one parameter candidate. These are
implemented using Matlab Parallel Computing Toolbox [6].

As shown in Fig. 4.10 (b), the input of the RST phase is a set of p-
examples and n-examples, and its output is the set of 1, 000 shots which
match the largest numbers of decision rules. The RST phase is summarized
as follows. Firstly, various SVMs are built by using bagging and the random
subspace method. Decision rules are then extracted based on SVMs’ clas-
sification results of p-examples and n-examples. Subsequently, in order to
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match shots with extracted decision rules, the following four processes are
performed. The first one is SVM’s probabilistic output calculation to com-
pute the probabilistic output of an SVM for each shot. The second process
is the evaluation value calculation which computes the evaluation value of
matching a shot with each decision rule. The third is shot ranking with eval-
uation values where, for each decision rule, shots are ranked in the descending
order of evaluation values. Based on this, 1, 000 shots with the largest evalu-
ation values are regarded to match the decision rule. The final process is shot
ranking with matched rules to determine 1, 000 shots matching the largest
numbers of decision rules.

The RST phase has a high computation cost due to a large number of
shots and decision rules. We address this by using two types of paralleliza-
tions on a multicore PC. The first one is applied to the process of SVM’s
probabilistic output calculation, where each core is used to compute SVM’s
probabilistic output for a distributed set of shots. The other three pro-
cesses are implemented by using MapReduce, which is a parallel programming
model that provides a simple and powerful interface [22]. We use ‘Phoenix’
which is a MapReduce library for multicore PCs, in order to save a signifi-
cant amount of time on I/O operations [22]. In MapReduce, the basic data
structure is a (key, value) pair. Based on this, the Map function constructs
input (key, value) pairs from a distributed data, and produces intermedi-
ate (key, value) pairs by conducting a user-defined task. Subsequently, the
Reduce function conducts a user-defined merge operation on intermediate
(key, value) pairs with the same key and outputs a final result. In this man-
ner, MapReduce divides a large-scale data into small pieces of (key, value)
pairs, which can be efficiently processed in parallel by the Map and Reduce
functions.

Three processes in Fig. 4.10 (b) are implemented by utilizing MapReduce
twice. The first MapReduce performs two processes, the evaluation value cal-
culation and shot ranking with evaluation values. Specifically, the objective
is to determine 1, 000 shots which have the largest evaluation values for each
rule. To do this, the following Map and Reduce functions are designed:

map1 : (x, [rule, Proball
SV M(x)]) → List(rule,Match(x, rule))

reduce1 : (rule, List(Match(x, rule))) → (rule, SList1,000
rule ) (4.8)

where x and rule are a shot and decision rule, respectively. Proball
SV M(x)

represents the set of probabilistic outputs of all SVMs for x. By using
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Proball
SV M(x), map1 computes Match(x, rule) which is the evaluation value

of matching x with rule as defined in equation (4.5). The output of map1

is a list including evaluation values of distributed shots for all rules. Sub-
sequently, reduce1 merges such lists produced by map1 on different cores
so that for the same rule, evaluation values of all shots are combined into
a list, namely, List(Match(x, rule)). By sorting this list, reduce1 outputs
SList1,000

rule which consists of 1, 000 shots with the largest evaluation values.
That is, shots in SList1,000

rule are regarded to match rule.
The second MapReduce performs the process of shot ranking with num-

bers of matched rules. This process aims to obtain 1, 000 shots which match
the largest numbers of decision rules. The following Map and Reduce func-
tions are designed:

map2 : (x, 1) → List(x,MRules(x))

reduce2 : (x, List(MRules(x))) → SList1,000
MRules (4.9)

where (x, 1) is obtained by parsing SList1,000
rule and indicates that a shot

x matches one rule. It should be noted that as we have only to count
the number of decision rules matched with x, we do not need to know
which rules are matched with x. The function map2 constructs a list of
(x,MRules(x))s, where MRules(x) represents the number of decision rules
matched with x. Subsequently, reduce2 merges MRules(x) for the same shot
into List(MRules(x)), which represents the total number of matched deci-
sion rules. Finally, the function sorts all shots based on List(MRules(x))
and outputs SList1,000

MRules which consists of 1, 000 shots matching the largest
numbers of decision rules.

Fig. 4.11 illustrates retrieval times for our QBE method where relevant
shots to Query 1 are retrieved by applying RST+BG to 100 p-examples and
500 n-examples. Fig. 4.11 (a) and (b) show the change in computation times
in the PSL and RST phases, respectively. In both figures, the four bars
from the top to the bottom represent computation times by parallelizing our
method with 1, 2, 4 and 8 cores, respectively. Bars named Others depict
computation times of non-parallelized processes while the other bars depict
computation times of parallelized processes. Specifically, in the PSL phase
in Fig. 4.11 (a), Clustering and SVM building include the similarity calcu-
lation and cross validation processes in Fig. 4.10 (a), respectively. In the
RST phase in Fig. 4.11 (b), SVM prob. corresponds to SVM’s probabilistic
output calculation process in Fig. 4.10 (b). Rule matching includes three
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processes parallelized by MapReduce. In addition, numbers overlaid on bars
present actual values of computation times. Both of Fig. 4.11 (a) and (b)
indicate that, as the number of cores increases, the computation time can be
significantly shortened. Specifically, when only one core is used, our QBE
method takes a total of 26, 312 seconds to complete the retrieval with the
PSL and RST phases requiring 24, 796 and 1, 516 seconds, respectively. In
comparison, when 8 cores are used, the retrieval is completed in 6, 194 sec-
onds with computation times of the PSL and RST phases being 5, 531 and
663 seconds, respectively.

a) PSL phase b) RST phase
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Figure 4.11: Comparison among retrieval times by parallelizing our QBE
method with 1, 2, 4 and 8 cores.

From the perspective of computation time, our current QBE method
is far from the satisfactory. So, the retrieval time will need to be further
reduced by improving currently parallelized processes and parallelizing the
other processes. In relation to this concern, Fig. 4.11 reveals an important
issue. For Clustering and Rule matching processes, as the number of cores
increases, computation times are nearly linearly reduced. However, compared
to these reductions, reductions of computation times for SVM building and
SVM prob. are significantly less effective. For example, for SVM building
process in the PSL phase, even if the number of cores is doubled from 4 to
8, the ratio between the computation time of 4 cores and the one of 8 cores
is only 1.29 (i.e. 2, 001 seconds versus 1, 547 seconds). One consideration is
that SVM building and SVM prob. are parallelized simply by distributing
examples (or shots) to multiple cores. On each core, functions in LibSVM
libraries [20] are called where memory allocations and releases are executed
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many times. This degrades the effectiveness of parallelization. Therefore,
in order to achieve effective parallelization, a process should be divided into
sub-processes involving few memory allocations or releases.

4.5 Summary

In this chapter, we proposed a QBE method which can retrieve shots rele-
vant to a query using only a small number of p-examples. Due to camera
techniques and settings, relevant shots are characterized by significantly dif-
ferent features. As such, RST is used to extract multiple decision rules which
characterize different subsets of p-examples. A variety of relevant shots can
be retrieved where each decision rule is specialized to retrieve a part of rele-
vant shots. Additionally, in order to extend the range of relevant shots that
can be retrieved, bagging and the random subspace method are incorporated
into RST. Classifiers built using different examples and feature dimensions,
are useful for covering a variety of relevant shots while many irrelevant shots
are potentially retrieved. Thus, RST is used to combine classifiers into de-
cision rules in order to accurately retrieve relevant shots. Furthermore, to
overcome the lack of n-examples, PSL is used to collect n-examples from u-
examples. In particular, taking the class imbalance problem into account, a
method which can collect a small number of n-examples useful for building
an accurate classifier, is developed. Experimental results demonstrated that
our method successfully covers various relevant shots when more than 20
p-examples are available. In addition, our method can achieve very effective
retrieval without any shot annotation or classifier preparation.

The following issues will be addressed in future works. Firstly, we aim to
use temporal features such as 3DSIFT [78] and acoustic features such as Mel-
Frequency Cepstrum Coefficient (MFCC), as opposed to our current method
which only makes use of image features. Secondly, although majority voting
is currently conducted using all of extracted decision rules, some rules may be
inaccurate or very similar to other rules. Thus, in order to obtain the optimal
set of decision rules, a method which examines the accuracy of each decision
rule based on cross validation will be developed. The relationship among
decision rules will be investigated using the diversity measures proposed in
[64]. Lastly, to improve the computation time of our current method, we plan
to build a cluster consisting of tens or hundreds of PCs. On this cluster, in
addition to the process of matching shots with decision rules, we parallelize
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the other processes using Apache Hadoop [7], which implements MapReduce
on a large-scale PC cluster.



Chapter 5

Knowledge-assisted Retrieval
Using Video Ontology

5.1 Introduction

In this chapter, we construct a video ontology which is a formal explicit
specification of concepts, concept properties and relations among concepts.
Concepts are fundamental objects (semantic contents) such as People, Car,
Building and so on. By using the video ontology, we aim to improve the
retrieval performance of video retrieval methods which only uses features.
Especially, we focus on the improvement of the Query-By-Example (QBE)
method developed in the previous chapter. One of the biggest problems in
QBE is that shots with similar features can have dissimilar semantic contents.
For example, when Ex. 1 in Fig. 5.1 is provided as an example shot for the
query ‘people walk in a street’, Shot 1 is correctly retrieved and Shot 2 is
wrongly retrieved. This is due to both Ex. 1 and Shot 2 having red-colored
and ocher-colored regions. In addition, rectangular buildings and windows
in Ex. 1 are associated with rectangular posters on the wall in Shot 2. Like
this, only features are considered in QBE, but semantic contents are not
considered. Thus, we incorporate into QBE a video ontology as knowledge
base. For example, in Fig. 5.1, Shot 2 is not retrieved if we know that People,
Walking, Building and Road should be observed in relevant shots.

A video ontology is especially important for managing a lack of example
shots in QBE. Generally, as the number of feature dimensions increases, the
number of example shots required to construct a well-generalized retrieval

92
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Figure 5.1: Example of QBE using a video ontology for the query ‘people
walk in a street’.

model exponentially increases [11]. It is because the relevance or irrelevance
to a query needs to be determined for each combination of values along differ-
ent dimensions. However, in QBE, a user can only provide a small number of
example shots (e.g. 10 example shots), while each shot is represented using
high-dimensional features (e.g. bag-of-visual-words representation with more
than 1, 000 dimensions). In this case, the statistical information of feature
dimensions obtained from a small number of example shots, is not reliable.
So, a retrieval model tends to be overfit to feature dimensions which are very
specific to example shots, but are ineffective for characterizing relevant shots.
For example, in Fig. 5.2, if Ex. 1, Ex. 2 and Ex. 3 are provided as example
shots, the retrieval model is overfit to feature dimensions which characterize
few edges in sky regions. As a result, Shot 1, Shot 2 and Shot 3 are retrieved,
which are clearly irrelevant to the query.

In order to filter irrelevant shots, we develop a video ontology for utiliz-
ing object recognition results. Fig. 5.2 shows recognition results for three
objects, Building, Cityspace and Person. One shot is represented as a vector
of recognition scores, each of which represents the presence or absence of an
object. For example, in Fig. 5.2, Building and Cityspace are likely to appear
in example shots, although unlikely to appear in the other shots. Recently,
researchers have used object recognition results in video retrieval. For ex-
ample, researchers at City University of Hong Kong [21] and University of
Amsterdam [23] built classifiers for recognizing 374 and 64 objects, respec-
tively. These classifiers were built by using a large amount of training data,
61, 901 shots in [21] and more than 10, 000 shots in [23]. In this manner,
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Ex. 1 Ex. 2 Shot 1 Shot 3

Building: 2.5 2.2
Cityspace: 1.1 2.6
Person: -1.0 -0.5

Ex. 3 Shot 2

1.2
1.5
0.2

-0.3
-0.5
2.0

-1.0
-1.5
-1.3

-2.3
-1.2
-0.8

Overfitting!          Filtered by ontology

Figure 5.2: An example of an overfit retrieval result for the event ‘tall build-
ings are shown’.

objects can be robustly recognized independently of sizes, positions and di-
rections on the screen. The effectiveness of using object recognition results is
validated with TRECVID which is a famous annual international workshop
on video retrieval [15].

To utilize object recognition results, we construct a video ontology where
a hierarchical structure of concepts and concept properties are defined. We
can thereby select concepts related to a query and examine recognition scores
of objects corresponding to selected concepts. For example, in Fig. 5.2, if
Building and Cityspace are selected, Shot 1, 2 and 3 can be filtered due to low
recognition scores for Building and Cityspace. It should be noted that this
shot filtering discards shots which can be certainly regarded as irrelevant,
several irrelevant shots remain because their recognition scores are not so
small. Thus, in order to obtain the final retrieval result, we apply the QBE
method developed in the previous chapter to the remaining shots. It should
be noted that filtering irrelevant shots are useful for reducing the computation
cost of the QBE method, because it reduces the number of shots examined
by the method.

Finally, recall that in the QBE method, many SVMs are built using bag-
ging and the random subspace method. Since the performance of an SVM
is sensitive to parameters like kernel parameter and penalty parameter of
misclassification, the SVM parameter estimation is important. We introduce
a method for estimating the parameter of an SVM using the video ontology.
Note that we are not provided with the relevance/irrelevance labeling of a
shot, but are provided with object recognition scores. We assume that if the
SVM is tuned with a good parameter, shots classified as relevant (positive)
tend to have high object recognition scores for selected concepts. Thus, we
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estimate the optimal parameter based on the correlation between selected
concepts and shots classified by the SVM with each parameter candidate.

5.2 Related Works

The most popular video ontology is Large-Scale Concept Ontology for Mul-
timedia (LSCOM) [71]. This targets broadcast news videos and defines a
standardized set of 1, 000 concepts. However, LSCOM merely provides a list
of concepts where no concept relation or structure is defined. Hence, there
has been a lot of researches relating to the appropriate selection of LSCOM
concepts for a query.

Existing concept selection approaches can be roughly classified into three
types: manual, text-based and visual-based selections. In manual concept
selection, users manually select concepts related to a query [67]. However,
different users select significantly different concepts for the same query. For
example, [67] conducted an experiment where 12 subjects were asked to judge
whether a concept was related to a query. The results demonstrated only
13% of total 7, 656 judgements were the same among all subjects. In text-
based concept selection, WordNet is frequently used where words in the text
description of a query are expanded based on synonyms, hypernyms and
hyponyms [24, 21]. Then, concepts corresponding to expanded words are se-
lected. However, WordNet only defines lexical relations among concepts, and
not spatial and temporal relations. For example, WordNet is unable to iden-
tify Building and Road as being frequently shown in the same shots. Finally,
in visual-based concept selection, concepts are selected as objects which are
recognized in example shots with high recognition scores [24, 21]. This ap-
proach relies on accuracies of object recognition. LSCOM includes concepts
corresponding to objects, which are difficult to recognize, such as Dogs, Tele-
phone, Supermarket, and so on. Thus, visual-based concept selection may
wrongly select concepts which are unrelated to the query.

To overcome the above problems, we manually organize LSCOM concepts
into a video ontology, which can capture both lexical relations among con-
cepts and their spatial and temporal relations. To do so, we define several
new concepts which are not addressed in LSCOM. For example, we define
the new concept Air Vehicle as a superconcept of Airplane and Helicopter in
order to explicitly represent both Airplane and Helicopter as objects flying
in the air or moving in airports. We also introduce a method which can
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appropriately estimate parameters of a retrieval model based on concepts
selected by the video ontology. We are not aware of any existing parameter
estimation methods based on ontologies in the previous research.

5.3 Video Ontology Construction and Con-

cept Selection

We assume that each video is already divided into shots. This can be ac-
curately conducted by using existing methods, where a shot boundary is
detected as a significant change of features (e.g. color, edge, motion etc.) be-
tween two consecutive video frames [100]. In addition, recognition scores of
various objects are already assigned to each shot. Particularly, we use recog-
nition results of 374 objects, provided by Video Retrieval Group (VIREO)
in City University of Hong Kong [99]. Since our objective is the video ontol-
ogy construction and the concept selection based on this ontology, we do not
describe how to obtain object recognition scores, please refer to [99] in more
detail. In the following discussion, we explain how to organize LSCOM con-
cepts corresponding to 374 objects into a video ontology, and how to select
concepts related to a query.

First of all, as a guideline of organizing concepts, we define four top-
level concepts shown in Fig. 5.3. LSCOM concepts are represented by
capital letters followed by lower-case letters, while concepts that we define
are represented only by capital letters. Also, concept properties are repre-
sented by starting their names with lower-case letters. Top-level concepts
are useful for classifying LSCOM concepts into broad categories. For ex-
ample, since Building and Construction Site frequently appear in the same
shots, one may wrongly regard that these concepts belong to the same cate-
gory. But, by carefully examining their meanings, we can find that Building
and Construction Site should be separately defined as subconcepts of NON-
PERSON OBJECT and LOCATION, respectively. And, Building should be
defined as a part of Construction Site (i.e. hasPartOf property). Like this,
we can flexibly represent a concept by referring to concepts belonging to
different top-level concepts.

Under top-level concepts, we organize LSCOM concepts by considering
the disjoint partition requirement. This is a well-known ontology design pat-
tern for making ontologies easily interpretable by both humans and machines
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Figure 5.3: A part of our video ontology.

[70]. The disjoint partition requirement indicates that a concept C1 should
be decomposed into disjoint subconcepts C2, C3, · · ·. That is, for i, j ≥ 2
and i ̸= j, Ci ∩Cj = φ. So, an instance of C1 cannot be an instance of more
than one subconcept C2, C3, · · ·. For example, Vehicle and Car should not
be defined in the same level of the concept hierarchy, because an instance of
Car is an instance of Vehicle. Instead, Car should be defined as a subconcept
of Vehicle. Hence, to satisfy the disjoint partition requirement, we have to
carefully examine whether a concept is a generalization (or specialization) of
another concept.

Furthermore, visual characteristics are used to define the concept hierar-
chy. For example, as can be seen in Fig. 5.3, we define two subconcepts of
GROUND VEHICLE, namely, WITH PERSON and NOT-WITH PERSON.
While we can infer that Person probably appears in shots containing sub-
concepts of WITH PERSON, such as Bicycle and Motorcycle, it is uncertain
whether Person appears in shots containing subconcepts of NOT-WITH PERSON,
such as Car and Bus. In this way, based on visual characteristics, we examine
whether objects corresponding to different concepts are frequently shown in
the same shots.

We now explain the selection of concepts related to a query. Roughly
speaking, we first select concepts which match words in the text description
of the query. Subsequently, for each selected concept, we select its sub-
concepts and concepts which are specified as properties. For example, for
the query ‘buildings are shown’, Buildings and all of its subcocepts, such
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as Office Buildings, Hotel and Power Plant, are initially selected. As shown
in Fig. 5.3, Windows and Antenna are selected from hasPartOf1 and has-
PartOf2 properties of Building. After that, from the locatedAt property of
CONSTRUCTION SITE BUILDING, which is a subconcept of Building, we
select Construction Site and all of its subconcepts, such as City-space, Urban
and Suburban. At this point, by tracing concept properties many times, we
may select concepts which are unrelated to the query. For example, from
the above Construction Site, we can trace ARTIFICIAL ROAD, Sidewalk
and Person. However, these concepts are not related to the query. To avoid
selecting unrelated concepts, we restrict the number of tracing concept prop-
erties to only once. That is, for the above example, the concept selection
terminates after selecting Construction Site and all of its subconcepts.

In Fig. 5.3, some concept properties are characterized by slots with #,
called # operator. This represents a concept property which is used only
when it is specified in the textual description of a query. For example, let
us consider the query ‘people are indoors’. For this query, we select Person
and all of its subconcepts, and trace Person’s concept properties. But, for
the takeAction property of Person, the current LSCOM only defines 12 con-
cepts, such as Singing, People Crying, Talking and so on. If these concepts
are selected, shots containing them may be preferred. As a result, we may
overlook shots where people perform different actions in indoor situations,
such as eating and watching TV. Thus, only for queries like ‘people talking
indoors’, we use the concept property takeAction to select concepts.

Since the textual description of a query is usually simple, we cannot select
concepts which are definitely related to the query. For example, for the
query ‘buildings are shown’, we select 55 concepts including White House,
Military Base, Ruins, and so on, but only a portion of these concepts are
actually related to the query. Hence, we validate selected concepts using
example shots. Recall that all shots are associated with recognition scores
of objects corresponding to LSCOM concepts, as shown in Building in Fig.
5.3. Based on such recognition scores in example shots, we validate concepts
selected by our video ontology. In particular, for each object corresponding
to a concept, we compute the average recognition score among example shots,
which allows the ranking of concepts in descending order. Next, we select
concepts which are not only selected by our video ontology, but also ranked
in the top T positions (we use T = 20). In this manner, selected concepts
are validated from both semantic and statistical perspectives.

Finally, we filter irrelevant shots to a query by using selected concepts.
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For each shot, among objects corresponding to selected concepts, we count
the number of objects shown in the shot. An object is regarded to be shown
in the shot, if its recognition score is larger than R. For any object, R is set
to 1.0 where recognition scores of all shots are normalized to have the mean
of zero and the variance of one. If the number of objects shown in the shot
is less than C (we use C = 1 or 2), it is filtered as irrelevant, otherwise it
is retained. In this way, we filter shots which can be certainly regarded as
irrelevant to the query. Then, in order to obtain the final retrieval result, we
apply the QBE method in the capter 4 to the remaining shots.

In the following paragraphs, we explain the estimation of an SVM pa-
rameter based on object recognition scores. Suppose that, for a query, we
have a set of selected concepts C, where each concept is represented as ci

(1 ≤ i ≤ |C|). Further, we have P parameter candidates for an SVM M ,
where the j-th parameter is pj and the SVM with pj is Mpj

(1 ≤ j ≤ P ). To
estimate the best parameter, we temporarily retrieve S shots by using Mpj

(we use S = 1, 000). We then compute the correlation between C and Mpj

as follows:

Correlation(C,Mpj
) =

C∑
i=1

γ(rank(Mpj
), rank(ci)) (5.1)

where rank(Mpj
) represents a ranking list of S shots according to their eval-

uation values by Mpj
. We obtain these evaluation values as SVM’s proba-

bilistic outputs [38]. rank(ci) represents a ranking list of S shots according
to recognition scores of the object corresponding to ci. Using rank(Mpj

) and
rank(ci), we compute γ(rank(Mpj

), rank(ci)) as the Spearman’s rank corre-
lation coefficient [84]. This represents the correlation between two ranking
lists. If these are highly correlated, γ(rank(Mpj

), rank(ci)) is close to 1,
or otherwise close to −1. Hence, a larger γ(Mpj

, ci) indicates that Mpj
is

more correlated with ci. Correlation(C,Mpj
) represents the overall corre-

lation over all concepts in C. Thus, we select the best parameter p∗j where
Correlation(C,Mpj

) is the largest among P parameter candidates. In this
way, we can estimate an SVM parameter which is semantically validated
based on selected concepts.
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5.4 Experimental Results

We examine the effectiveness of our video ontology using TRECVID 2009
video data [15]. This data consists of 219 development and 619 test videos.
Each video is already divided into shots where development and test videos
include 36, 106 and 97, 150 shots, respectively. In addition, for all shots,
recognition scores of 374 objects are provided by City University of Hong
Kong [99]. We target the following four queries: Query 1: A view of one or
more tall buildings and the top story visible; Query 2: Something burning
with flames visible; Query 3: One or more people, each at a table or desk
with a computer visible; Query 4: One or more people, each sitting in a
chair, talking. For each query, the retrieval is conducted nine times using
different sets of 10 example shots. We evaluate the retrieval performance as
the average number of relevant shots within 1, 000 retrieved shots.

In Fig. 5.4 (a), we compare the following three types of retrieval in order
to evaluate the effectiveness of our video ontology for filtering out irrelevant
shots and estimating an SVM parameter. The first is Baseline without using
our video ontology. The second is termed Ontology1 and uses our video
ontology only for filtering out irrelevant shots. The final type of retrieval is
Ontology2, which uses our video ontology for both irrelevant shot filtering
and SVM parameter estimation. For each query, performances of Baseline,
Ontology1 and Ontology2 are represented by the leftmost red bar, the middle
green bar and the rightmost blue bar, respectively.

a)

Example
shot

Irrelevant
shot

Query 3 Query 4b)

Figure 5.4: (a) Performance comparison among Baseline, Ontology1 and On-
tology2, (b) Examples of shots filtered by our video ontology.

Fig. 5.4 (a) shows that, with the exception of Query 2, it is very effective
to filter irrelevant shots based on concepts selected by our video ontology.
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The retrieval performance is further improved by estimating SVM param-
eters based on selected concepts. The reason for the low performance for
Query 2 is that, we can only select two concepts, Explosion Fire and Earth-
quake, which are related to the term ‘flame’ in the text description of Query
2. Here, LSCOM does not contain any other concepts related to the flame,
such as candle flame, bonfire, fire blasted from rockets. Thus, such concepts
should be incorporated to improve the performance for Query 2. Further-
more, Explosion Fire and Earthquake are not very effective for characterizing
relevant shots. For example, 1, 000 shots with the highest recognition scores
of Explosion Fire and those of Earthquake, only characterize 37 and 12 rel-
evant shots, respectively. Hence, to achieve accurate retrieval for Query 2,
it is required to improve the recognition accuracy for Explosion Fire and
Earthquake (as well as newly incorporated concepts).

In Fig. 5.4 (b), the second row depicts two example shots for Query 3
and Query 4. The third row shows two irrelevant shots which are wrongly
retrieved by Baseline, but are appropriately filtered by our video ontology
(for Query 1, see Fig. 5.2). More specifically, for Query 3, Baseline wrongly
retrieves shots where people just appear and shots which contains straight
lines corresponding to computer shapes, and shapes of pillars and blinds in
a background. For Query 4, shots which contain straight lines corresponding
to shapes of background objects, are wrongly retrieved. By filtering out the
above types of shots, Ontology1 and Ontology2 can significantly outperform
Baseline.

Finally, we examine the additional effectiveness of our video ontology,
that is, what amount of computation time of the QBE method is reduced by
filtering of irrelevant shots based our video ontology. In Fig. 5.5, for each
query, the left red bar represents the computation time of Baseline where all
shots are examined by the QBE method. On the other hand, the right green
bar represents the computationt time of Ontology1 where the method only
examines the remaining shots after filtering of irrelevant shots. As seen in
Fig. 5.5, filtering of irrelevant shots is useful for reducing computation times.
Nonetheless, the QBE method requires about 500 seconds to complete the
retrieval, which is far from the satisfactory. One main reason is that the QBE
method requires building of multiple SVMs and matching of many decision
rules. Thus, we are currently parallelizing processes of SVM building and
decision rule matching by using multiple processors.
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Figure 5.5: Comparison between the computation time of Baseline and that
of Ontology1.

5.5 Summary

In this chapter, we constructed a video ontology to incorporate object recog-
nition results into QBE. Specifically, it is constructed by defining a hierarchi-
cal structure of concepts based mainly on the disjoint partition requirement
and visual characteristics. The video ontology is used to select concepts
related to a query. Subsequently, irrelevant shots are filtered by referring
to recognition results of objects corresponding to selected concepts. In ad-
dition, the video ontology is used to estimate the optimal SVM parameter
based on the correlation between selected concepts and shots classified by
the SVM with each parameter candidate. Experimental results validate two
effectivenesses of filtering irrelevant shots based on our video ontology. The
first is that the retrieval performance of the QBE method in chapter 4 can
be significantly improved. The second is that its computation time can be
reduced. The above two issues will be further explored in our future works.
Specifically, to improve the retrieval performance, we plan to extend the cur-
rent video ontology to deal with temporal relations among concepts. For
the improvement of the computation time, we aim to parallelize the QBE
method using multiple processors.



Chapter 6

Conclusion and Future Works

In this dissertation, we proposed three video data mining methods to de-
velop a video retrieval system with multi-modal interfaces. The first method
developed in chapter 2 is used for a QBK interface where queries are repre-
sented by keywords. The method extracts semantic patterns as sequential
patterns of features. Each semantic pattern relates shot sequences associated
with a certain keyword. We incorporate two time constraints, semantic event
boundaries and temporal localities. Based on these, we can not only avoid
extracting meaningless patterns, but also effectively reduce the search space
of possible patterns. Experimental results show that extracted semantic pat-
terns characterize character’s actions, situations and combinations of actions
and situations.

The method in chapter 3 is developed for a QBB interface, which pro-
vides a video browsing functionality for finding keywords or example shots to
represent a query. The method extracts topics which have much impacts on
viewers based on the anomaly of video editing patterns. Topics are extracted
as shot sequences characterized by bursts, which are abnormal patterns of
a character’s appearance and disappearance in a video. First, the method
performs a probabilistic time-series segmentation to divide the video into
shot sequences. Each shot sequence is characterized by a distinct pattern
of the character’s appearance and disappearance. Then, the burst intensity
measure is used to evaluate whether or not the pattern in each shot sequence
is abnormal. Experimental results demonstrate that bursts characterize top-
ics where a character performs interesting actions, such as fighting, chasing,
making love and so on.

The third method in chapter 4 is used for a QBE interface where a query

103
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is represented by providing example shots. We address that shots relevant
to a query are characterized by significantly different features, due to varied
camera techniques and settings. Thus, rough set theory is used to extract
multiple patterns which can correctly identify different subsets of example
shots. By accumulating relevant shots retrieved by such patterns, we can re-
trieve a variety of relevant shots. In addition, to extend the range of relevant
shots that can be retrieved, rough set theory is extended by adopting bag-
ging and the random subspace method, where many classifiers are built us-
ing randomly selected example shots and feature dimensions. Although such
classifiers characterize significantly different relevant shots, they potentially
retrieve many irrelevant shots. Hence, rough set theory is used to extract
classification rules (patterns) as combinations of classifiers, which provide
greater retrieval accuracy. Furthermore, counter example shots, which are a
necessity of rough set theory, are collected using partially supervised learn-
ing. We collect counter example shots which are as similar to example shots
as possible, because they are useful for defining the boundary between rel-
evant and irrelevant shots. Experimental results on TRECVID 2009 video
data demonstrate that the proposed method can achieve effective retrieval
only using example shots, where no manual shot annotation is required.

Finally, in chapter 5, we present a method which integrates the QBK
and QBE interfaces to improve the retrieval performance. This method
uses a video ontology as knowledge base in QBE. The video ontology is
constructed by organizing 374 LSCOM concepts based on the taxonomic
(subconcept-superconcept) relation among concepts and their visual charac-
teristics. Given the text description of a query (QBK), we trace the video
ontology to select concepts related to the query. Then, irrelevant shots are
filtered by referring to recognition results of objects corresponding to selected
concepts. Lastly, QBE is performed on the remaining shots to obtain a final
retrieval result. Experimental results show that the video ontology is use-
ful for not only improving the retrieval performance, but also reducing the
computation time.

In conclusion, video data mining is verified as effective for extracting
patterns which characterize semantic contents. We have developed a multi-
modal video retrieval system using extracted patterns. In the future, we will
extend this research in the following two directions. The first one is to extend
the developed methods to the internet scale. For example, if the method
for the QBK interface will be applied to a video hosting site where videos
are annotated with text tags, we may extract much more semantic patterns
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compared to the ones in chapter 2. In addition, since there are uncountable
number of videos on the internet, the computation cost of a method is one of
the most important issues. We plan to parallelize the developed methods on a
PC cluster which consists of thousands of processors. The second direction is
to extend the current multi-modal system by adopting another interface. We
plan to develop a Query-By-Gesture (QBG) interface which complements the
QBE interface. One crucial problem in the QBE interface is that the retrieval
cannot be performed if a user does not have example shots for a query. Thus,
we aim to develop a QBG interface where example shots for any query are
created by the user. Especially, in order to facilitate the creation of example
shots, we aim to use ‘virtual reality’ techniques where example shots are
created by synthesizing user’s gesture in front of the video camera, 3DCGs
and background images. We will examine whether or not such example shots
can substitute for example shots selected from actual videos.
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