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Abstract

First, this paper presents the concept of mixed-phase simulation with fracture-path prediction
mode which uses a postulated propagation-direction criterion together with experimentally obtained
crack-propagation history. Furthermore, this paper presents the development of an automatic
moving finite element method that incorporates the Delaunay automatic triangulation. Using the
automatic moving finite element method, the mixed-phase simulation with fracture-path prediction
mode is carried out for mixed-mode impact fracture tests. Various dynamic fracture mechanics
parameters are evaluated by the path-independent dynamic J integral. The moving finite element
method in conjunction with the local symmetry (Ki=0) criterion successfully predicts the numerical
fracture path in excellent agreement with experimentally obtained actual fracture path.

Key Words: Dynamic Fracture, Impact Fracture, Dynamic Fracture Mechanics, Dynamic Crack
Propagation, Dynamic Crack Kinking, Dynamic Crack Curving, Delaunay Automatic
Triangulation, Moving Element Method, Dynamic J Integral, Path Prediction Mode

1. Introduction

Numerical prediction of dynamic fracture path is an extremely important research subject not
only for academic interest (Nishioka, 1994 and 1997) but also for the establishment of a safety
design methodology that prevents catastrophic overall failures of structures. However, numerical
fracture-path predictions of non-self-similar dynamic fracture phenomena have not been succeeded
until recently, due to various inherent difficulties.

To establish the numerical methodology for dynamic fracture path prediction, first, Nishioka et
al. (1990b) have developed a moving finite element method based on a mapping technique. Using
this moving finite element method, they have carried out the generation-phase simulation of fast
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curving fracture in double cantilever beam (DCB) specimens (Nishioka et al., 1990a). Next,
Nishioka (1997) has proposed the concept of "mixed phase simulation" together with "fracture-path
prediction mode" and "crack-growth prediction mode". Then, using the moving finite element
method based on the mapping technique, the mixed-phase simulation with the fracture-path
prediction mode has been carried out (Nishioka et al., 1996 and 1997) for dynamically curving
crack propagation in the DCB specimens. The moving finite element simulation has succeeded to
predict the experimentally obtained actual fracture paths.

However, the dynamic fracture paths in the DCB specimens under static loading were rather
smooth. The moving finite element method based on the mapping technique may be somewhat
difficult to apply to the problems of dynamic crack kinking and dynamic crack branching.

In the this study, to establish a simulation method for complex crack propagation, a moving
finite element method based on Delaunay automatic triangulation (Sloan and Houlsby, 1992, and

" Taniguchi, 1992) is developed. Furthermore, the present moving finite element method is combined
with the concept of the mixed-phase simulation with fracture-path prediction mode. The moving
finite element method based on Delaunay automatic triangulation successfully demonstrates the
prediction of dynamic fracture paths in mixed-mode impact fracture experiments

2. Mixed-Mode Impact Fracture Experiments

The geometry of a three-point bend specimen for mixed-mode impact fracture test is shown in
Fig.1. The dimensions of the specimen are as follows; length L=430 mm, width W=100 mm, span
S=400 mm, thickness h=10 mm, and initial crack length a=50mm. Polymethyl methacrylate
(PMMA) was used in the present experiment. The matenal properties are Young’s modulus E=2.94
Gpa, Poisson’s ratio v=0.3, mass density p=1190 kg/m The longitudinal (dilatational) and shear
wave velocities in this material are Ce=1710 m/s and Cs=941 m/s, respectively.

The initial crack consists of a machine notch of 35 mm and a fatigue crack of 15 mm. The
impact load by a dropping rod (5.05 Kg) was applied at the off-center point as shown in Fig.1. The
initial impact velocity of the hammer was set as 5 m/s. The loading eccentricity is defined as
e=l/(S/2). To induce various magnitudes of mixed-mode state in the specimen, the loading
eccentricity was systematically changed.

Figure 2 shows a photograph of the specimens fractured by the impact loading with €=0.0, 0.1,
0.2, 0.3, 0.4 and 0.5. The kinked angle from the initial crack tip systematically increases with
increasing loading eccentricity. The dynamic fracture paths are fairly smooth, and propagate toward
the corresponding loading points.

High-speed photographs of dynamic fracture events were taken by using a laser caustic method
and a high-speed camera. The high-speed photographs of dynamically fracturing specimen under
the loading eccentricity of e=0.0 are shown in Fig.3. The time intervals of the photographs are about
30 us. After the impact loading was applied, the caustic patterns of the mode I (crack opening
mode) around the crack tip became larger until the time of the photograph (7). At the time of the
photograph (8), the crack had already propagated for a short distance. Then, it is seen in the
photograph (16) that the specimen almost completely broke into two parts.

Figure 4 shows the high-speed photographs of the dynamically fracturing specimen under the
loading eccentricity of e=0.1. In the photographs (4), (5) and (6), the caustic patterns of the mode II
(in-plane shearing mode) dominated type can be seen. At the time of the photograph (7), the crack
had already propagated for a short distance. The caustic pattern in the photograph (7) suddenly
changed to mode I dominated type. The specimen almost completely broke into two parts at the
time of the photograph (15). Around the initial crack tip, a caustic pattern due to a bending moment
can be seen in the right-hand side of specimen in the photographs (15) and (16).

For both specimens, the caustic patterns due to the impact loading are always seen under the
impact rod, except in the first photographs. This implies that the specimens were always pushed
after the impact loading. Thus the loading rod was in contact with the specimen throughout the
fracture test.

Crack propagation histories measured by the caustics in the high-speed photographs are shown
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in Figs.5 and 6. Dynamic fracture occurred at t=156 Us in the specimen of e=0.0, and at t=120 Us in
the specimen of e=0.1, respectively. The maximum crack velocity observed was about 250 m/s in
the specimen of €=0.0, and about 300 m/s in the specimen of e=0.1, respectively.

On the basis of a theory of mixed-mode dynamic caustics (Nishioka and Kittaka, 1990), the
characteristic dimensions of the caustic patterns were converted to dynamic stress intensity factors
(see Figs.25 and 26).

3. Types of Simulation for Fracture Phenomena

For non-self-similar fracture such as curving crack growth, three types of numerical simulation
have been proposed by Nishioka (1997), as explained in Fig.7. Here, we consider a dynamic
curving fracture problem as an example. In Fig.7, symbols a, C (=3), J' and t denote the crack
length, crack velocity, dynamic J integral, and time, respectively. The curve in the global coordinate
system (X1, X») represents the curved fracture path.

Suppose that the specimen is modeled by a numerical analysis method such as the finite
element method. To this end, all dimensions of the specimen should be prescribed. In addition the
material behavior and the initial and boundary conditions should be known.

In the generation phase simulation, the fracture test is reproduced in the computer model using
the experimentally measured crack propagation history (a versus t or C versus t) and the curved
fracture-path history (see Fig.7(i)). The generation phase simulation was originally proposed by
Kanninen (1978) for self-similar (linearly propagating) fracture problems. In this simulation,
fracture parameters such as the dynamic J integral and the dynamic stress intensity factors can be
evaluated during dynamic fracture processes. From this calculation, one can determine the fracture
toughness as the material resistance against the fracture initiation, crack propagation and crack
arrest (if any). Then, one may postulate various fracture criteria based on the information obtained
by the generation phase simulation.

On the other hand, in the application phase simulation for curving crack growth, two criteria
must be postulated or predetermined as shown in Fig.7(ii). One is a crack-propagation criterion that
determines the crack increment or the crack velocity at each time step. Other one is a criterion for
predicting the direction of crack propagation (propagation-direction criterion or growth-direction
criterion). In this simulation, the crack propagation history (a versus t or C versus t) and the
fracture-path history are used to produce a virtual reality fracture in the computational model. The
application phase simulation is also sometimes called "prediction” or "inverse" simulation.

However, the application phase simulations of curving crack growth have not been fully
established, due to several critical difficulties in those simulations. For instance, in dynamic brittle
fracture, the crack-propagation criterion described by fracture-toughness versus crack-velocity
relation itself has several unsolved problems. The stress intensity factor during dynamic crack
propagation depends on not only the crack velocity but also the crack acceleration (Takahashi and
Arakawa, 1987). Furthermore, the crack-propagation criteria may also be influenced by the
geometry of fracture specimen.

To verify only the propagation-direction criterion such as the maximum energy release rate
criterion, Nishioka (1997) has proposed "mixed-phase simulation” as depicted in Fig.7(iii-a).
Regarding the crack-propagation history, the same experimental data for the a-t relation used in the
generation phase simulation are used. Thus, the increment of crack propagation is prescribed for the
given time increment in the numerical simulation. Then the propagation-direction criterion predicts
the direction of fracture path at each time step. Simulated final fracture path will be compared with
the actual one obtained by the experiment. This mode of the mixed-phase simulation is called as
"fracture-path prediction mode" (see Fig.7(iii-a)).

Another mode of the mixed-phase simulation can be considered as depicted in Fig.7(iii-b), i.e.,
"crack-growth prediction mode". In this mode, the experimental data for the fracture-path history
and a crack-propagation criterion are used simultaneously. In this case, the crack is forced to
propagate along the actual fracture path during the numerical simulation. Simulated crack-
propagation history should agree with the experimentally obtained actual one if the postulated
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crack-propagation criterion is valid.

As explained above, using the mixed-phase simulation, the crack-propagation criterion and the
propagation-direction criterion can be verified separately. The concept of mixed-phase simulation
can also be applied to curving fatigue crack growth and curving stable crack growth.

4. Moving Finite Element Method Based on Delaunay Automatic Mesh Generation

In a dynamic crack propagation problem, the crack surfaces that are usually free surfaces
extend with a high velocity, and the stresses and strains at the crack tip or at the crack front become
unbounded. Consequently, one must solve a moving singular-point boundary-value problem. The
high-velocity moving singular point usually induces various numerical errors in the computational
model. Therefore, a highly accurate numerical analysis method is mandatory to solve the dynamic
crack propagation problem.

To simulate the crack propagation by the finite element method, two different concepts of
computational modeling can be considered, i.e., (i) the stationary element procedure (or fixed
element procedure), and (ii) the moving element procedure, as reviewed by Nishioka and Atluri
(1986), and Nishioka (1994 and 1997). For self-similar dynamic crack propagation problems, it is
well known that the numerical results of the moving element procedure are generally more accurate
than those of the fixed element procedure. However, the moving element procedure was difficult to
apply to non-self-similar dynamic crack propagation problems except for smoothly curving fracture
problems (Nishioka et al., 1996 and 1997), because of the difficulties in moving the near-tip
elements along curved or kinked path.

In order to overcome the aforementioned difficulties, a moving finite element method based on
Delaunay automatic mesh generation is developed in this study. A crack growth procedure
combining automatic mesh generation was also developed by Camacho and Ortiz (1996). However,
their method falls into the category of the fixed element procedure.

4.1 Modified Delaunay automatic triangulation

Delaunay triangulation (Sloan and Houlsby, 1984) automatically generates triangles that cover
the whole area within an arbitrarily specified convex region. All generated triangular elements do
not contain any other nodes within their circumscribed circles. This feature is also preferable to the
triangular finite elements from an accuracy point of view.

Taniguchi (1992) has developed the modified Delaunay triangulation which can treat a
concave region such a cracked body. He has also developed a program for automatic mesh
generation on the basis of the modified Delaunay triangulation (Taniguchi, 1992). The remeshing
procedure in the modified Delaunay triangulation is shown in Fig.8. If a flat element has a large
interior angle, then the triangular elements around it are remeshed as shown in Fig.8. In this
procedure, the new nodal point is placed at the mid-point of the opposite side of the maximum
interior angle.

In the modified Delaunay triangulation, only exterior and interior boundary points and
specified interior points (if they are necessary) are required for automatic mesh generation. Figure 9
shows an example of mesh generation for a plate with an edge crack. The specified points at the
boundaries are shown in Fig.9(a). To distinguish the upper and lower crack surfaces, the coordinates
of the upper and lower crack surfaces are shifted by infinitesimally small distances =€ in the
perpendicular direction to the crack surfaces. Thus, the crack is opened by 2 €. Due to the stress
singularity at the crack tip, the specified interior points are placed around the crack tip as depicted in
Fig.9(b). The mesh pattern in Fig.9(c) is automatically generated using the exterior boundary points
and the specified interior points.

4.2 Automatic mesh generation for a propagating crack

Nishioka and coworkers have developed various types of moving finite element procedure.
These are reviewed and summarized by Nishioka and Atluri (1986) and Nishioka (1994 and 1997).
In this study, the concept of the moving finite element method is extended to complex crack
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propagation problems using the modified Delaunay automatic triangulation.

In the moving finite element method based on Delaunay automatic triangulation, a crack is
advanced as shown in Fig.10. The group of the specified interior points around the propagating
crack tip translates in each time step for which crack growth occurs. In each time step, the previous
crack tip point breaks into two nodal points. In this study, the number of exterior boundary points is
increased by two for each time step during crack propagation. Thus at least four degrees of freedom
should be increased in each crack increment. The crack-tip always remains at the center of the group
of the moving elements throughout the analysis even for complicated crack propagation. At each
time step, the interior region between the specified nodes around the crack tip and the specified
boundary nodes, is automatically broken into triangular elements by using the modified Delaunay
automatic triangulation.

4.3 Time integration method

In this study, the Newmark method is used for the time integration of the finite element
equations of motion. At a generic time step n, the final simultaneous equations to be solved are
expressed as

(aoMIP LRI QU~(F)PH M aof QI 20 QT 2l BJ) o
where {Q), { Q}, { Q} are the global vectors of nodal displacements, nodal velocities and nodal
accelerations, respectively. The subscripts n and n-1 denote the quantities at the present time step n
and at the previous time step n-1, respectively, while the superseript (n) denotes the quantities in the
mesh pattern of the present time step n. [M], [K], {F} are the mass matrix, the stiffness matrix and
the load vector, respectively. The coefficients ar~a; are the parameters in the Newmark method (see
Eq.(4)).

After solving Eq.(1) for the nodal displacements at the present time step, the nodal velocities
and accelerations can be evaluated by the following equations:

()=l QP Faof QT 2o Q)T e
(Pl vaef QN ol QI 3)
The coefficients are given as
ag= 1 53156,32=1 1

At [
, ag=——-1 a4_§-1 as= L2210 ag=At (1 6) a7=0At 4
Banf  BAW  BAL 2B B 2 g ’ » @
where Aty is the time increment at the present time step. In this study, the Newmark’s parameters are
chosen to be f=1/4 and 8=1/2 to fulfill the unconditionally stable condition (Bathe and Wilson,
1976).

4.4 Mapping of solution fields in the previous mesh onto those in the present mesh

As explained in the previous subsections, in the moving finite element method, the moving-
mesh and remeshing procedures are used (see Fig.10). To use the Newmark time integration scheme
for the moving finite element method, the previous solution fields for the current mesh pattern are

needed, i.e., {Q)™) { Q}(“> (i }(“) (see the right-hand side of Eq.(1)). This means that the mapping

n-1° n-1°
of the solution fields in the previous mesh onto those in the present mesh is needed.

In this subsection, the detailed procedures for constructing (Q)™), ()™, (@)™ from the

n-1°
previous solution fields in the previous mesh (Q)™;, ( Q}gnll) and { Q}S’ll) are given. For the
mapping of the solution fields in the previous mesh onto those in the present mesh, we have

developed the following two procedures.

(1) Searching an element in the previous mesh for a new nodal point

Let us consider a newly created nodal point in the present mesh as the pth node. The program
searches the element in the previous mesh in which the new pth node is included, as shown in
Fig.11. The triangles Ai, A; and A; are calculated by the following determinants:
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1 1xp9p
Al:'é— 1x2y2|=0.5 {x2y3—~X3y2+ (y2—y3)Xp+ (X3 — X2)¥p }» (5.a)
1 x3y3

1 1 xpyp
A2=:~2— 1 x3y31=0.5 {xsy1—x1y3+ (y3—=y)Xp+ (X1— X3)¥p}, (5.b)
Ixin

1 1 xp¥p
A3=2 1 x1y1|=0.5 {xiy2— x2y1 + (y1—y2)Xp + (Xa— X1)¥p }. (5.¢)
1x2y2
where x, and y, are the coordinates of the point p, and x; and yi (i=1,2,3) are the coordinates of the
nodes 1, 2 and 3.

It can easily be judged whether the pth node is inside of the element or not. If A1, A» and As are
all positive, the pth node is inside of the element, while it is outside if any of A), A» or As is
negative.

(2) Creating nodal quantities for the new nodal point
Once the old element including the new pth node is found, the area coordinates of the pth node
can be calculated by
Elp__' Al A, EZp= Aol A, E3p= Asl A (6)
where A. is the area of the element. Since in this paper we use linear triangle elements, the shape
functions N; of the point p are given by
Ni= & (i1, 2, 3). (7
Using these shape functions, the nodal displacements, nodal velocities and nodal accelerations
inthe x and y dlrectlons can be constructed for the new pth node as follows

(up)iy = ZN“‘ Ne1pEap Eap) (0)07; (=12 N) (8.)
(vl -2 (e 1p,Eap Eap) ()3 (=12 - N) (8.5)
(ip)i) = 2 NN &y, E2p,E3p) ()01 (p=1,2 - N) (9.2)
CARE EN(‘”(Elp,Ezp,Egp) )00, (p=1,2 - N) (9.b)
() = i N 1p,E2p,Eap) (W)M7; (p=1,2 - N) (10.2)
A —i NN &y, Eap, Eap) (#)"1; (p=1,2 +-N) (10.b)

where N denotes the total number of new nodes created in the remeshed zone including the moving
element zone.

5. Contact and Non-Contact Boundary Conditions for Loading and Support Points

Since in general the impact rod and the supports in the three-point bend test can “push” the
specimen but not “pull” (see Fig.1), the fixed boundary conditions at the loading point and at the
supports in the numerical analysis may lead to a spurious deformation behavior of the specimen.
Thus, account should be taken of the possibility of lack of contact of the specimen with each of the
impact rod, the left, or right support at various instants of time. For this kind of problem, Nishioka
and coworkers were the first to introduce the contact/non-contact boundary conditions to three-point
bend specimens (Nishioka and Atluri, 1982), and to double cantilever beam specimens (Nishioka et
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al., 1982). From the numerical results for the three-point bend fracture test (Nishioka et al., 1983), it
was found that the specimen was periodically not in contact with either the impact rod or the
supports; i.e. the specimen periodically became a free-flying object.

In the present study, the contact/non-contact boundary conditions are also employed in the
numerical simulations. The contact/non-contact boundary conditions are incorporated in the
program as follows.

We designate the nodal forces at the impact loading point, the left and right supports as Fx«
(a=h, I, r) (the global X direction is taken in parallel with the initial crack direction), and the
corresponding displacement components at those points as ua (0=h, J, r). Then, those nodal forces
and displacements in the next time step (n+1) are predicted by

F - (Fxa)n-
(Fxaln+1 = (Fxon + « Xa)“m( Xahn-1) Atgi1: (a=h, 1, 1) (11)
and
(Ua)n+1 = (Uedn + (Ue)nAtnsrt (O=h, L, 1), (12)
The initial conditions at those points are given by
(U)o = (Ue)os (Uado = (Ua)o, (Voo = (Ua)o: (O=h, /1) (13)

where the upper bars denote prescribed values. In this study, since the mass of the specimen is fairly
small (0.512 Kg) compared with that of the rod (5.05 Kg), and since the duration of the impact load
is very short, the velocity of the rod is assumed to be constant i.e., (ﬁh)n = 5 m/s thorughout the

analysis. Thus, the displacement and acceleration of the rod are given by (Uy), = (un)o x t and
(up)n = 0, respectively. The positions of the supports are fixed throughout the analysis, as

@pn =(up)n = (up)n =0 (B=L, 1).

A negative value of (Fxu)r+1 indicates that the specimen will be pushed by the impact rod, while
a positive value of (Fxs)m1 (B=I, r) indicates that the specimen will be pushed by the supports. Thus,
the contact condition at each point continues if the sign of the corresponding predicted nodal force
at the next time step (nt1) (see Eq.(11)) remains unchanged. The non-contact condition at each
point occurs if the corresponding value of (Fxa)w+1 (%=h, /, r) becomes zero or of the different sign.

When the non-contact condition is predicted, that point is set as free at the next time step. The
movement of that point is calculated by the simulation. The free state continues if the sign of the
gap ((Ua)n+1 - (Wa)n+1) (@=h, /, r) remains unchanged from the current time step. Then, re-contact
condition occurs if the gap ((Ue)n+1 - (Ua)n+1) (O=h, /, 1) is predicted as zero or of the different sign.

Although in (Nishioka et al., 1983) the time increment was subdivided whenever the transition
to the non-contact or re-contact condition was predicted to occur prior to the time of the next step, in
this study a sufficiently small constant time increment is always used throughout the simulation.

6. Fracture-Path Prediction Procedure

As explained in Section 3, in the mixed-phase fracture-path prediction mode simulation, a
propagation-direction criterion is needed to be postulated. Many criteria have been proposed in
literature. Some of these criteria are listed below:

(i) maximum hoop stress criterion (Gss max) (Erdogan and Sih, 1963),

(1i) minimum strain energy density criterion (S min) (Sih, 1972),

(iii) maximum second stress invariant criterion (I» max) (Papadopoulos, 1988),

(iv) maximum stress intensity factor criterion (K1 max) (Nemat-Nasser and Horii, 1982),
(v) maximum energy release rate criterion (G max) (Wu, 1978),

(vi) local symmetry criterion (Ku =0) (Goldstein and Salganik, 1974).

Furthermore, these criteria can be classified into (a) explicit prediction theory and (b) implicit
prediction theory. An explicit prediction theory predicts the propagation direction satisfying the
postulated critetion based on a physical quantity for the current crack tip. Then, the crack is
advanced in this direction, with a small crack-length increment according to the experimental crack-
propagation history. The criteria (i), (ii) and (iii) fall into this category.

Contrary to this, an implicit prediction theory seeks the propagation direction that satlsf ies the
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postulated criterion based on a physical quantity after the crack is advanced with a small crack-
length increment. An iterative process is generally needed to find the propagation direction. The
criteria (iv), (v) and (vi) are classified into this category. It is known that in general the implicit
prediction theories are more accurate.

Nishioka et al. (1996 and 1997) have succeeded to predict a smooth fast curving fracture path
in a DCB specimen, using the moving isoparametric element method based on the mapping
technique. In the previous studies (Nishioka et al., 1996 and 1997), the criteria (iv)-(vi) were tested
in the mixed-phase simulation with the fracture-path prediction mode. It was found from these
simulations that the predicted fracture path based on the local symmetry criterion most accurately
agreed with the actual experimental fracture path. Thus, in this section, numerical procedures based
on only the local symmetry criterion are explained. However, all implicit criteria as well as all
explicit criteria can be tested in a similar manner if they are well described in terms of physical
quantities.

Figure 12 schematically explains the numerical procedures for the path-prediction mode of the
mixed-phase simulation. In each time step, the crack is advanced by a small increment according to
the experimental history (crack-length versus time curve).

The fracture path is predicted in an iterative manner as follows: In the following a superscript
(i) denotes the iteration number. At a generic time step n, as the first trial, the crack is advanced in
the tangential direction 6," (i=1) at the crack tip of the step n-1. If an employed propagation-
direction criterion, for example the local symmetry (Ki=0) criterion, is satisfied at the attempted
crack-tip location, the crack is advanced in this direction 6,". If the Ky value is negative, the crack
is tentatively advanced in the direction of 6,""=6,"+A8, as the next trial. If the Ky value is positive,
A is taken as negative. Then, the satisfaction of the criterion at the trial crack tip location is
checked. If the criterion is not satisfied and the value of the Ky value at the present trial is different
with that at the previous trial, the next trial direction 8,"" that satisfies the employed propagation-
direction criterion is predicted by the Ky versus 8 curve as shown in Fig.12. If the predicted angle 8.
largely differs from the trial angle of the current iteration 8,”, the next trial direction is taken as
6,"""=6,"+-A6. The crack is advanced in this direction and the satisfaction of the criterion is checked.
These procedures are repeated until the criterion is satisfied. At each iteration, re-meshing is needed
if the implicit criterion is used, as explained above.

After finding the propagation direction that exactly satisfies the postulated criterion, the time
step proceeds to the next step.

7. Evaluation Method of Dynamic Fracture Mechanics Parameters
In this study, to evaluate various fracture mechanics parameters for a crack subject to impact
stress wave loading, and for a dynamically kinking as well as dynamically curving crack, the path
independent dynamic J integral derived by Nishioka and Atluri (1983) is used.

7.1 Path independent dynamic J integral

The static J integral (Rice, 1968) has played an important role in static fracture mechanics.
From the theoretical and computational points of view, the static J integral has the following salient
features: (i) it physically represents the energy release rate; (ii) it has the property of the path-
independent integral, which gives a unique value for an arbitrary integral path surrounding the crack
tip; (iii) it can be related to the stress intensity factors by arbitrarily shrinking the integral path to the
crack tip.

In the case of dynamic fracture mechanics, Nishioka and Atluri (1983) have derived the
dynamic J integral (J') which has the aforementioned three features. We consider a dynamically
propagating crack in an elastic solid as shown in Fig.13. The global-axis components of the
dynamic J integral can be expressed by

Ik = lim [(W+K)ny -tiu; |dS | (14.2)

T g0
g



:8121311 [(W+K)nk-tiui,k]d8 +f [(piji-fi)ui,k—pﬁiﬁi,k]dv (14.5)
\' P+FC Vr-Vg

where u;, ti, fi, nk and P denote the displacement, traction, body force, outward direction cosine, and
“mass density, respectively. W and K are the strain and kinetic energy densities, respectively, and
( )x=0( )/0Xx. The integral paths are defined in Fig.13. I, I, and . denote a near-field path, far-
field path and crack surface path, respectively. Vr is the region surrounded by I, while Ve is the
region surrounded by L.

The crack-axis components of the dynamic J integral can be evaluated by the following
coordinate transformation:

J'?:Ouk(eo).]'k‘ (15)

where Oy is the coordinate transformation tensor. The tangential component of the dynamic J
integral J'? corresponds to the rate of change in the potential energy per unit crack extension,
namely, the dynamic energy release rate.

The dynamic J integral can be related to the instantaneous stress intensity factors for the
elastodynamically propagating crack with velocity C, as in (Nishioka and Atluri, 1983):

1= 5LAA(CKE + An(OKF + Am(C)) (16)
Ap(C
J'g=——-—l\é )KIKII (17)
where U is the shear modulus, and Ai(C)-Av(C) are functions of crack velocity C and given by
2
A(C)=Bi1-83) IC), An(C)=Bal1-83) DXC) Am(C)=1/B> (18.8,5,)
v 2] ! r 2 2
- - "4 1 ) 2
Alv(C)=(Bl 132)(1232) { B1Ba+(1+83) }( +1l3/:12+[32) -2(1+I3§) (18.4)
(X(C)) 2(1+p1)1+82)]
and
2\2
D(C)=4p1p2-(1+52)" (19)
In the above equations, B and B, are crack velocity parameters and defined by

B1 =(1- ), By =(1- ccE)? (20.a,b)

where Cq and C; represent the longitudinal and shear wave velocities, respectively.
For a stationary crack (C=0) under impact loading as well as under static loading, the velocity
functions are expressed by
Ay0) = A(0) =Arv(0) = (x+1) /4, Am(0)=1 (21.a,b)
where ¥ depends on only Poisson’s ratio v, and is defined as ¥=(3-v)/(1+V) for plane strain, and ¥
=3-4 v for plane stress.
The salient features of the dynamic J integral can be summarized as follows:
(1) It physically represents the dynamic energy release rate G (Nishioka and Atluri, 1983).
(ii) For the far-field path, it has the property of the path-independent integral (Nishioka and Atluri,
1983).
(1ii) For the near-field path, it is practically invariant with the shape of the infinitesimal near-field
path (Nishioka, 1994).
Therefore, in numerical analyses, only far-field integrals can be usually used to evaluate the
values of the dynamic J integral. In this case it is convenient to use the following expression:

I'= [(W+K)n-tiu; JdS+[|  [(oti-f)u x-piit; JdV
T4+T \ . | (22)

7.2 Determination of mixed-mode stress intensity factors from the dynamic J integral
components
At each iteration step and each time step in the moving finite element method explained in
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Section 4, the global components of the dynamic J integral can be evaluated by using Eq.(22). The
crack-axis components of the dynamic J integral can be converted from the global components of
the dynamic J integral, using Eq.(15). Then substituting these values in Egs.(16) and (17), the in-
plane mixed-mode stress intensity factors Ki and Ky can be determined directly (Nishioka and Atluri,
1984).

Although this direct method itself is theoretically valid, some difficulty arises if the value of J '8
obtained by a numerical analysis is not very accurate. For a dynamically propagating crack, the
integrand (W+K) in the dynamic J 1nteg1a1 possesses a singularity. Thus, if we use a moving
singular element method incorporating the r "2 stress singularity (Nishioka and Atluri, 1980a and b),
the J '8 integral is accurately evaluated. In this case, it is known that the direct method gives very
accurate Ky and Ky values (see Nishioka and Atluri, 1986).

On the other hand, when ordinary non-singular elements are used in the vicinity of a crack tip,
the evaluated values of J'5 0 by non-singular elements may not be very accurate due to the lack of the
singularity in the integr and (W+K)ng along the crack surface path I'c (see Eq.(22)), where n§ is the
x§ component of the outward normal unit vector. When the integration point on the crack surface

path I'c approaches the crack tip (r—>0), the direction cosine nJ behaves as (ng)i-éi (-1)- Thus, the

singular integration theoretically known to exist along the crack surface path cannot be performed
when non-singular elements are used around the crack tip.

Contrary to this, in the integration of J'0, either the singular element or non-singular elements
can provide accurate Ki and Kn values, since as the integration point on the crack surface path I'c

approaches the crack tip (r—0), the integrand of J '(1), becomes zero due to (0)*—0. In other words,

the evaluation of J '(1) is not affected by the modeling of the crack tip, while the J '8 is affected by
the modeling of the crack tip.

In order to overcome the difficulty in the direct method, and to accurately evaluate the in-plane
mixed-mode stress intensity factors from the dynamic J integral values, the component separation
method has been proposed by Nishioka et al. (1990b). The formulae of the component separation
method are expressed by using the global components of the dynamic J integral as

! 'ain® 12
Ki=81 2upald 1(2:0360+12 s O)} (23.a)
A (51 B2 + 611[51)
‘ . 1oaingn ) 12
Kg=51 Zuﬁl(J 1ZOSGO+Z 28in 0)\ (23.5)
An('éxﬁz + 511[31) ;

where 8 and 8y, are the mode I and mode II crack opening displacements at a point near the crack tip.
B, is the angle of crack direction measured from the global axis X;. If the crack-axis component J '(1)
is obtained by Eq.(15), the following formulae are also useful:

~ 2wmI9p, ‘\1/2
Ki=6 (24.2)
T arlozps + 28] ] )
0 . 1
Ky = 611/ w19 | (24.b)
\Aﬂ('éI Bo+ 61161)’/

The component separation method has the following features: (i) mixed-mode stress intensity
fractors can be evaluated by ordinary non-singular elements, and (ii) the signs of K; and Ky are
automatically determined by the signs of &; and 8y, respectively.

8. Simulation Results
The initial mesh pattern for the impact fracture specimen with the loading eccentricity of e=0.0
is shown in Fig.14(a). The Delaunay automatic mesh generation was applied for the central part of
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the specimen. The left and right end parts where no crack propagation is expected to occur are
modeled by regular meshes. The total number of elements is initially 4325 with 2262 nodes.

The nodal points for the exterior boundary of the Delaunay automatic triangulation region are
shown in Fig.14(b). The crack surfaces are separated by a small distance 2¢, as explained in
Subsection 4.1. On the crack surfaces, pairs of two nodes are placed. In the crack tip region, the
specified interior points are placed regularly with 30 points in the circumferential direction, and
with 17 points in the radial direction. The size of the crack tip elements in the radial direction is
0.5mm.

As explained in Section 5, the velocity of the impact rod was imposed as (uy) = 5 m/s at the
loading area as the initial boundary condition. The width of the loading area is considered to be
Imm on which three nodes are placed. Since the mass of the impact rod is about 10 times larger
than that of the specimen, and since the acoustic impedance (YPE) of the rod is about 60 times
larger than that of the specimen, the impact rod can be assumed to move rigidly with same velocity
throughout the simulation. Also the body force in the specimen due to the gravity is neglected in
this study.

8.1 Fracture-path prediction mode simulation

The mixed-phase fracture-path prediction mode simulations were carried out for the specimens
with e=0.0 and 0.1. The plane stress condition was used. The crack propagation direction criterion
was set to use the local symmetry (Ki =0) criterion. The time increment of At=2us was used
throughout the simulations.

(1) Overall responses at the loading and support points

Firstly, the numerical results for the variations of the displacements at the loading point and the
support points in the specimen of e=0.0 are shown in Fig.15. It is seen that at about 200 Us the left
and right support points are separated from the supports. The variations of nodal forces at the
loading points and support points are shown in Fig.16. It can be concluded from Figs.15 and 16 that
the specimen was always pushed by the impact rod during the analysis. The load becomes the
maximum (6000 N) at about 225 Ms, while fairly small forces appear at the support points.
Therefore, the behavior of this three-point bend specimen is very similar with that of a one-point
bend specimen sometimes used in impact fracture tests.

The detailed responses of the support points are shown in Figs.17 and 18. In Fig.18, small
reaction forces at the support points appear when the longitudinal wave induced by the impact load
arrives at the supports (t=130.8 Ws). These reaction forces become zero again at 180 Ms. Then it is
seen in Fig.17 that at this instant the support points start moving up from the supports.

For the case of e=0.1, although it is not shown here, the variation of the load is almost the same
with that of e=0.0 shown in Fig.16. However the maximum load was 6400 N at 210 Ws. The detailed
variations of displacements and the nodal forces at the support points are shown in Figs.19 and 20.
The impact longitudinal wave arrives earlier at the left support. At this instant (120.4 us) small
nodal reaction force appears at the left support point, then it becomes zero at 166 us. Then the left
support point starts moving up from the left support. Similar responses of the right support point
occur with the delay of about 21 Us (the difference of the arrival times at the left and right supports)
from those of the left one. It is interesting to see that the maximum reaction force at the left support
point is about 45 N and that of the right one is about 25 N, and the average value 30 N corresponds
with each support reaction force in the case of e=0.0 (see Fig.18).

(2) Simulated fracture path and dynamic fracture parameters

Using the local symmetry (Ky=0) criterion in the mixed-phase fracture-path prediction mode
simulation, the simulated fracture path and the overall deformation at various instants are obtained
and shown in Fig.21 for e=0.0. To clearly see the propagating crack, the deformation was magnified
by 30 times. For the case of e=0.0, the dynamic fracture started at t=156 us, as indicated in Fig.5.
Thus, the crack was stationary until this time. The crack propagated straight toward the loading
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point. As a consequence, the simulated fracture path is almost perfectly straight, as can be expected
by the mode I loading condition of €=0.0. Thus the dynamic fracture path prediction was done
successfully.

The non-contact situations at the support points can clearly be seen in the deformed specimen
after 230 Us. As stated in the previous subsection, the separation of the support points from the
supports started at 180 Ws. However, in the deformed specimen at 210 Ws, the separation at each
support point is too small to be seen. :

The simulated fracture path and the overall deformation for the specimen of e=0.1 are shown in
Fig.22. In this case, the dynamic fracture started at t=120 Us. At the initiation of dynamic fracture,
the crack kinked toward the direction where the local symmetry criterion (Ky=0 criterion) is
fulfilled. Then the crack propagated toward the loading point.

The dynamic J integral was evaluated for five circular paths with the radii of 1.0, 2.0, 3.0, 4,0
and 5.0 mm from the crack tip. The dynamic J integral values at various instants of time are plotted
against the path number, in Fig.23 for e=0.0, and in Fig.24 for e=0.1. In each case, excellent path
independence can be seen for not only the stationary crack under impact but also the dynamically
propagating crack. The average values of the dynamic J integral were used to evaluate various
fracture parameters..

The variations of the stress intensity factors converted from the average values of the dynamic
J integral using the component separation method expressed by Eqgs.(24.a) and (24.b) are shown in
Fig.25 for the specimen of e=0.0. In the figure, Cq and C, indicate the arrival times of the
longitudinal and the shear waves from the impact loading point to the crack tip, respectively. Also
T, indicates the initiation time of dynamic crack propagation. When the compressive longitudinal
wave arrives at the crack tip, Ky becomes slightly negative. This means that the crack surfaces are
compressed slightly. In this study, this weak contact of the crack surfaces was ignored allowing a
small overlapping. The K1 becomes positive and increases when the shear wave arrives at the crack
tip. The K values are completely zero throughout the simulation. Once again this indicate that the
postulated criterion (Ky=0) is successfully fulfilled during the fracture-path prediction mode
simulation.

The stress intensity factors were also evaluated by the sizes of the caustic patterns using a
theory of mixed-mode dynamic caustics developed by Nishioka and Kittaka (1990). These are also
plotted in Fig.25. The experimentally obtained stress intensity factors agree excellently with the
simulated ones. However, after crack propagation, they somewhat differ from the simulated ones
although both tendencies are similar. The numerical simulation reveals the theoretically known
instantaneous drop in the Ki value (Nishioka and Atluri, 1980b) for the sudden increase in the crack
velocity. Thus, the difference in the early stage of dynamic crack propagation can be attributed to
the slower response of caustic pattern for the sudden change of the crack velocity.

The variations of the stress intensity factors in the specimen of e=0.1 are shown in Fig.26. In
this case, the compressive longitudinal wave obliquely impinges to the crack tip. For this reason,
both K and Kn appear when it arrives at the crack tip (see Cq in Fig.26). After that, the Ki increases
up to the fracture initiation. Similarly to the case of e=0.0, the K; starts increasing steadily when the
shear wave arrives at the crack tip. At the one set of dynamic fracture, the mode II stress intensity
factor was dominant, thus almost pure mode II fracture occurred in this specimen. This is also
evident in the deformed shape of the specimen at 120 Us (see Fig.22). After the onset of dynamic
fracture, the Ki values are completely zero, since the local symmetry criterion (Ky=0) is imposed.
Once again, this indicates the success of the intended simulation, Furthermore, the simulated stress
intensity factors are in excellent agreement with the experimentally obtained ones.

In both specimens, during dynamic crack propagation, the stress intensity factors K; increase
(see Figs 25 and 26) although the experimentally obtained crack velocities steadily decrease (see
Figs.5 and 6). This implies that an increasing K; does not necessarily cause crack acceleration. In
fact, Takahashi and Arakawa (1987) and Arakawa et al. (1997) observed increasing K values for
decreasing crack velocities in their experiments. The mechanism of the acceleration effect on
dynamic propagation fracture toughness, which was one of the most important unsolved problems
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in dynamic fracture mechanics, was recently elucidated by Nishioka et al. (2000). From the
generation-phase simulation of the experiment of Arakawa et al. (1997), a linear relationship was
found between the excess unsteady-tem stress A0y, (the higher-order stress field for an unsteadily
propagating crack (Freund and Rosakis, 1992 and Nishioka Kondo, 1995)) at 1 mm ahead of the
crack tip and the rate of the dynamic propagating fracture toughness K. Also, it was found that, in
the earlier stage of crack deceleration process, Kjp is positive and has a linear relation with the
crack velocity a. Therefore, in the earlier stage of crack deceleration, it is possible to observe the
increasing stress intensity factor even for decreasing crack velocity.

8.2 Comparisons of different types of simulations

The generation phase simulation was also carried out for the case of e=0.1, using the
experimental data of the crack propagation history and the fracture path history. The fracture path
should exactly agree with the experimental fracture path, since the crack tip in this model was
forced to move along the experimental one (see Fig.27).

Another mixed-phase path-prediction mode simulation was carried out for e=0.1, using the
maximum hoop stress criterion as the propagation-direction criterion. The experimental and two
simulated fracture paths up to t=210 Us are compared in Fig.27. The overall agreement of three
fracture paths is excellent, as seen in Fig.27(a). The magnified view of the fracture paths is shown in
Fig.27(b). The initial kinked angle obtained by the local symmetry criterion agrees excellently with
the actual experimental one, while the initial kinked angle obtained by the maximum hoop stress
criterion is smaller than the experimental one. The fracture path simulated by the maximum hoop
stress criterion after X,> 10mm coincides with the actual fracture path. Contrary to this, the fracture
path simulated by the local symmetry criterion starts to deviate after about X, > 2.5 mm, and after
X1> 10mm the simulated fracture path becomes parallel to the actual one. However, it should be
noted that the deviation of the two paths is very small and only 1.3mm.

The variations of the stress intensity factors obtained by the generation phase simulation are
shown in Fig.28(a), while those obtained by the fracture-path prediction mode simulation with the
maximum hoop stress criterion are shown in Fig.28(b). For the stationary crack (0<t <T,), all
variations of the mixed mode stress intensity factors K and Ku are the same (see Fig.26, Figs.28(a)
and 28(b)). In all cases, it is remarkable to see that the crack deformation mode drastically changes
from the mode IT dominance to the mode I dominance, instantly after the onset of dynamic fracture.
The K and Ky variations obtained by various types of simulations agree well each other. However,
the Ki values obtained by the maximum hoop stress criterion exhibit somewhat oscillatory
behavior.

9. Conclusions

In this paper, first, high-speed photographs of impact fracture phenomena were presented.
From these photographs, detailed histories of dynamic crack propagation and dynamic fracture path
were evaluated. ’

Next, the moving finite element method based on Delaunay automatic mesh generation was
developed. Various numerical procedures for the mixed-phase simulation with path prediction mode
were developed in conjunction with the numerical procedures in the moving finite element method.
Also numerical procedures for the contact/non-contact conditions at the loading and support points
were developed. The present method made it possible to investigate its validity of any physically
described criterion for crack propagation direction.

Using the moving finite element method based on Delaunay automatic mesh generation, the
mixed-phase path prediction mode simulations with the local symmetry criterion were carried out
for the impact fracture experiments with the loading eccentricities of e=0.0 and e=0.1.

From the numerical simulations, detailed responses of the dynamically fracturing specimens were
clarified.

The present method successfully predicted precise fracture paths in non-self-similar fast fracture
phenomena such as dynamically kinking and curving crack propagation. In addition, the local
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symmetry criterion was found to be useful as the propagation-direction criterion.
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Fig.1 Three-point bend specimen for impact fracture



Fig.2 Fractured specimens
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Fig.3 High-speed photographs of dynamically fracturing specimen (e=0.0)
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Fig.4 High-speed photographs of dynamically fracturing specimen (e=0.1)
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Fig.9 An example of automatic mesh generation



Fig.10 Moving elements around a propagating crack tip
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Fig.13 Coordinate systems and integral paths



(a) Initial mesh pattern

(b) Input data for exterior boundary

Fig.14 Initial mesh pattern for the impact fracture specimen (e=0.0)
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Fig.19 Displacements at the support points (e=0.1)
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Fig.20 Forces at the support points (e=0.1)
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Fig.21 Simulation results for dynamic fracture path prediction with
the K;;=0 criterion (e=0.0)
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Fig.22 Simulation results for dynamic fracture path prediction
with the K;;=0 criterion (e=0.1)
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Fig.23 Dynamic J integral against path number
(e=0.0, the K ;=0 criterion)
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Fig.24 Dynamic J integral against path number

(e=0.1, the K,;=0 criterion)
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Fig.25 Dynamic stress intensity factors
(e=0.0, the K,;=0 criterion)
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Fig.26 Dynamic stress intensity factors
(e=0.1, the K;;=0 criterion)
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(a) Comparison of the experimental and simulated fracture paths
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(b) Magnified view of the three fracture paths

Fig.27 Comparison of fractured paths at 210 ps
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(b) Path-prediction mode simulation with
the maximum hoop stress criterion

Fig.28 Comparison of dynamic stress intensity factors (e=0.1)



