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Latent heat calculation of the three-dimensionalqÄ3, 4, and 5 Potts models
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Three-dimensional~3D! q-state Potts models~q53, 4, and 5! are studied by the tensor product variational
approach, which is a recently developed variational method for 3D classical lattice models. The variational
state is given by a 2D product of local factors, and is improved by way of self-consistent calculations assisted
by the corner transfer matrix renormalization group. It should be noted that noa priori condition is imposed for
the local factor. Transition temperatures and latent heats are calculated from the observations of thermody-
namic functions in both ordered and disordered phases.
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I. INTRODUCTION

The density matrix renormalization group~DMRG!,
which was invented by White in 1992@1,2#, has been applied
to a wide class of one-dimensional~1D! quantum systems
including quantum spin ladders@3#. DMRG is also efficient
for obtaining thermodynamic functions of 2D classical sys-
tems@3,4#. Now a technical interest in DMRG is to extend its
applicability to higher dimensional systems@5–7#.

It is worth looking at the variational background in
DMRG in order to obtain a rough image of DMRG in higher
dimension. In 1995 Ostlund and Rommer showed that
DMRG assumes so called ‘‘the matrix product wave func-
tion,’’ and that a very small numbers of parameters are suf-
ficient to obtain a good variational energy@8#. It is a small
surprise that such a construction of variational state has been
known for long years in the field of statistical mechanics of
2D classical lattice models. In 1945 Kramers and Wannier
introduced a very simple matrix product as a variational state
for the transfer matrix of the 2D Ising model@9#. Later, the
idea of constructing variational state from local elements was
extended by Kikuchi@10# ~the cluster approximation!, Baxter
@11,12#, and Villani @13# ~the correlation length equality ap-
proach!. All these approaches calculate the lower bounds of
the free energies of a 2D system. They use a variational state
that corresponds to an effective 1D statistical system with
several adjustable parameters.

Simply increasing the space dimension by one, we can
extend such variational formula to three dimensions. The
simplest example is the Kramers-Wannier approximation ap-
plied to the 3D Ising model by Okunishi and Nishino@14#,
where the 2D Ising model under the external magnetic field
is treated as variational state, which has only two adjustable
parameters. The calculated spontaneous magnetization and

transition temperature are more precise than those obtained
from a former attempt to extend DMRG to 3D classical sys-
tems @15#. A major problem in the Kramers-Wannier ap-
proximation is that one cannot always find out a good func-
tional form of variational state intuitively, especially for
models other than the 3D Ising model. In order to overcome
this problem, a numerical self-consistent approach has been
introduced, which we call the tensor product variational ap-
proach~TPVA! in the following @16,17#. In TPVA the varia-
tional state is determined automatically, with no reference to
a priori information on systems. In this paper we briefly
review the variational principle and the numerical algorithm
of TPVA, and discuss the applicability of this method via
trial calculations forq53, 4, 5 Potts models.

In Sec. II we introduce main features of the algorithm
from the variational point of view. We focus on the self-
consistent improvement of the variational state. A specific
way how to apply the variational method to the Potts model
is presented in Sec. III. We also provide the way how to
calculate the internal energy and the magnetization. The nu-
merical results are presented in Sec. IV. In Sec. V we con-
clude the main results.

II. VARIATIONAL APPROACH IN TWO DIMENSIONS

For a tutorial purpose we first explain the way how to
apply TPVA to the square lattice Potts model.~Later in the
following section we treat the cubic lattice.!

Let us consider an infinitely long stripe of the width 2N
on the square lattice, which is nothing but the 2N-leg ladder,
and consider theq-state Potts model in this finite width re-
gion. Figure 1 shows the transfer matrixT @s̄us# of this
system when 2N56, where

@s#5~s1 ,s2 ,...,s2N! and @s̄#5~ s̄1 ,s̄2 ,...,s̄2N!
~1!

represent adjacent rows ofq-state spin variables. Here we
interpret the Potts model as a special case of so called ‘‘the
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interaction round a face’’~IRF! model @18#, and construct
T @s̄us# as a product of plaquette Boltzmann weights

T @s̄us#5 )
i 51

2N21

WB~ s̄ i s̄ i 11us is i 11!5 )
i 51

2N21

WB
~ i !$s̄us%,

~2!

where we have written the nearest neighbor spin pairs
(s is i 11) and (s̄ i s̄ i 11), respectively, as$s% and$s̄% for the
book keeping purpose. Following this index rule, the local
Boltzmann weight is written as follows:

WB
~ i !$s̄us%5WB~ s̄ i s̄ i 11us is i 11!

5expF2
J

2kBT
~ds is i 11

1ds̄ i s̄ i 11

1ds i s̄ i
1ds i 11s̄ i 11

!G , ~3!

where we consider the ferromagnetic case (J,0) throughout
this paper.

The variational lower bound for the partition function per
row is the maximum of the Rayleigh ratio

l5

(
@s̄#,@s#

F@s̄#T @s̄us#C@s#

(
@s̄#,@s#

F@s̄#C@s#
[

^FuT uC&

^FuC&
, ~4!

whereF@s̄# andF@s# are arbitrary variational states. Since
the transfer matrixT in Eq. ~2! is symmetric, we assume
F@s#5C@s# in the following.

TPVA consists of local approximations@16,17# that re-
strict the form of the variational stateC@s# into a uniform
product of local factors

C@s#5 )
i 51

2N21

V~ i !$s%5 )
i 51

2N21

V~s is i 11!, ~5!

where there are onlyq2 variational parameters. Figure 2

graphically representsC@s# when 2N56. A profit of writing
the variational state in the product form is that the norm of
the variational state also has the local product structure

^CuC&5(
@s#

)
i 51

2N21

@V~ i !$s%#25(
@s#

)
i 51

2N21

@V~s is i 11!#2,

~6!

which is nothing but a partition function of a 1D lattice
model whose local Boltzmann weight is@V(s is i 11)#2. In
the same manner, the numerator of Eq.~4! is written as

^CuT uC&5 (
@s̄#@s#

)
i 51

2N21

V~ i !$s̄%WB
~ i !$s̄us%V~ i !$s%, ~7!

which is also a partition function of an effective two-leg
ladder. As we have graphically represented the variational
stateC@s# in Fig. 2, let us also express^CuT uC& graphically
in Fig. 3.

With the use of the variational state thus defined, the
variational problem in Eq.~4! is the same as those used by
Villani @13,19#. Our aim is to obtain the best local factor
V$s% numerically. There are several ways to maximizelvar
in Eq. ~4!, under the condition that the lattice size 2N is
sufficiently large@16,17#. Keeping the extension to three di-
mensions in our mind, what we consider here is to take the
variations oflvar with respect to each local factor

dlvar

dC
[(

i

dlvar

dV~ i ! . ~8!

When the system size 2N is large enough, it is sufficient to
consider the variation with respect to the local change

V~N!→V~N!1dV~N! ~9!

at the center of the spin row, since we have treated the uni-
form variational state and since the boundary effect is negli-
gible. After a short calculation from the~local! extremal con-
dition @16,17#

dl

dV~N! 50, ~10!

we obtain an eigenvalue problem

FIG. 1. The transfer matrixT @s̄us# in Eq. ~2!. This is the case
where 2N56 and, therefore, there are five Boltzmann weightsWB

( i )

from i 51 to i 55.

FIG. 2. Graphical expression of the variational stateC@s# in
Eq. ~5!.

FIG. 3. Graphical expression of^CuT uC& in Eq. ~7!. We have
used black circles for the spins whose configuration sum is taken.
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(
$s%

B~N!$s̄us%

A~N!$s̄%
V~N!$s%5lV~N!$s̄% ~11!

for the local factorV(N). The new factorA(N)$s̄% is con-
structed as

A~N!$s̄%5A$s̄Ns̄N11%

5 (
s̄1 ...s̄N21s̄N12 ...s̄2N

)
iÞN

~V~ i !$s̄%!2, ~12!

whose graphical representation is shown in Fig. 4. The ma-
trix B(N) is defined in the same manner

B~N!$s̄us%5WB
~N!$s̄us% (

@s̄#@s#

iÞN,N11

)
iÞN

V~ i !$s̄%

3WB
~ i !$s̄us%V~ i !$s%, ~13!

where the spin configuration sum is taken over all black
circles in Fig. 5.

Since bothA(N) and B(N) are constructed from the local
factor V, the eigenvalue relation Eq.~11! should be solved
self-consistently. Thus Eq.~11! is a kind of the self-
consistent equation. A realistic outline how to solve the self-
consistent equation is as follows.

~1! Start the calculation by setting~arbitrary! q2 numbers
of initial values for the local factorV(s,s8).

~2! CalculateA(N) andB(N) from Eqs.~12! and ~13!, re-
spectively, for sufficient large system size 2N.

~3! SubstituteA(N), B(N), andV(N) to the left hand side of
Eq. ~11!. Obtain the right hand side by

V8$s̄%5(
$s%

B~N!$s̄us%

A~N!$s̄%
V~N!$s% ~14!

and normalize it

V9$s%5
V8$s%

A (
$s8%

~V8$s8%!2
. ~15!

~4! Create a linear combinationVnew5V1«V9 where« is
a small parameter of the order of 0.1, and regard it as an
improved local factor. After normalizingVnew go to the sec-
ond step and repeat the calculation tillV reaches its~local!
fixed point.

The small parameter« is introduced in order to stabilize
the convergence of the iterative calculation. For statistical
models that exhibit a phase transition, the self-consistent
equation has several stable solutions near the transition tem-
perature. They correspond to the disordered state and to each
ordered state. In such a case, one can ‘‘target’’ a desired
phase just by imposing a very small symmetry-breaking field
or by setting the initial local factorV(s,s8) appropriately.

The main advantage of the above algorithm is that noa
priori ansatz is necessary for setting up the variational pa-
rameters.

III. EXTENSION TO THREE DIMENSIONS

It is easy to generalize both the variational relation@Eq.
~4!# and the construction of the variational state in the prod-
uct form @Eq. ~5!# to 3D models. We can increase the space
dimension by replacing the row-spin@s# in Eq. ~1! to a
‘‘layer spin’’

@s#5S s1 1 ¯ s1 N s1 N11 ¯ s1 2N

] � ] ] � ]

sN 1 ¯ sN N sN N11 ¯ sN 2N

sN11 1 ¯ sN11 N sN11 N11 ¯ sN11 2N

] � ] ] � ]

s2N 1 ¯ s2N N s2N N11 ¯ s2N 2N

D . ~16!

FIG. 4. The factorA(N) in Eq. ~12! is constructed by joining two
C@s#’s and taking spin configuration sum over all spins@s# ~the
black circles! except for the two central ones$s̄%5(s̄N ,s̄N11) ~the
white circles!.

FIG. 5. Graphical representation ofB(N) in Eq. ~13!.
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Now the system we are considering is an infinitely large 3D
object of size 2N32N3`. As before, we assume that the
system size 2N is sufficiently large to investigate the bulk
limit. The 3D generalization of the row-to-row transfer ma-
trix in Eq. ~2! is a layer-to-layer transfer matrix. For the 3D
q-state Potts model, the layer-to-layer transfer matrix is
given by

T @s̄us#5 )
i 51

~2N21!

)
j 51

~2N21!

WB
~ i j !$s̄us%, ~17!

where the IRF-type local Boltzmann weight is written as

WB
~ i j !$s̄us%5WBH s̄ i j s̄ i 8 j s̄ i 8 j 8 s̄ i j 8

s i j s i 8 j s i 8 j 8 s i j 8
J

5expF 2J

4kBT
~ds i j s i 8 j

1ds i 8 js i 8 j 8
1ds i 8 j 8s i j 8

1ds i j 8s i j
1ds̄ i j s̄ i 8 j

1ds̄ i 8 j s̄ i 8 j 8
1ds̄ i 8 j 8s̄ i j 8

1ds̄ i j 8s̄ i j
1ds i j s̄ i j

1ds i 8 j s̄ i 8 j
1ds i 8 j 8s̄ i 8 j 8

1ds i j 8s̄ i j 8
!G . ~18!

We have used the notationi 85 i 11 and j 85 j 11, and have
represented the plaquette spins as$s%. ~See Fig. 6.!

The 2D generalization of the variational state in Eq.~5!
can be obtained in the same manner,

C@s#5 )
i 51

~2N21!

)
j 51

~2N21!

V~ i j !$s%

5 )
i 51

~2N21!

)
j 51

~2N21!

V~s i j s i 8 j s i 8 j 8 s i j 8!. ~19!

There areq4 variational parameters in the local factorV( i j ).
We assume that the factorV( i j ) is positionally independent
and the variational state is uniform. The local factor at the
center of the system isV(NN).

The way how to optimize the local factorV( i j ), so that it
maximizes the Rayleigh ratiolvar in Eq. ~4!, is, in principle,
the same as that for 2D systems. The denominator

^CuC&5(
@s#

)
i 51

~2N21!

)
j 51

~2N21!

~V~ i j !$s%!2 ~20!

is nothing but a partition function of a 2D lattice model
whose local Boltzmann weight is equal to (V( i j ))2, and the
numerator̂ CuT uC& is that of a two-layer 2D lattice model

(
@s̄#@s#

)
i 51

~2N21!

)
j 51

~2N21!

V~ i j !$s̄%WB
~ i j !$s̄us%V~ i j !$s%. ~21!

Since the numerator and the denominator are the partition
functions of effective 2D lattice models one can calculate
both of them using the corner transfer matrix renormalization
group~CTMRG!, which is a variant of DMRG applied to 2D
lattice models@20#. As a byproduct of CTMRG, the factor
A(NN)$s% and the matrixB(NN)$s̄us% can be calculated@21#.
Also, the variational free energy per site^F& can be obtained
from CTMRG. ~Numerical details are reported in
Refs.@14,16,17#.!

After we obtain the optimized variational factor
V(NN)$s%, the internal energyE and the magnetizationM can
be calculated fromA(NN)$s% and B(NN)$s̄us% that are cre-
ated from the optimized variational factorV(NN). The inter-
nal energyE per site is equivalent to

E52Jd~sNN ,sN11N!2Jd~sNN ,sNN11!2Jd~sNN ,s̄NN!
~22!

and its statistical average is obtained as follows:

^E&5

(
@s̄#@s#

EV$s̄%B$s̄us%V$s%

(
$s%

V$s%A$s%V$s%

, ~23!

where we have dropped the superscript~NN! from V, A, and
B just for simplicity. The magnetization̂M& of the q-state
Potts model can be calculated from the spin expectation
value

^d~s,0!&5

(
$s̄%$s%

d~sNN,0!V$s̄%B$s̄us%V$s%

(
$s%

V$s%A$s%V$s%

~24!

together with the definition of the order parameter

^M &5
q^d~s,0!&21

q21
. ~25!

IV. NUMERICAL RESULTS

We calculate the latent heat of the 3Dq53, 4, and 5 Potts
models, using the internal energy expectation values^E& for
both ordered and disordered phases. Hereafter we setkB
5mB51 and only treat the ferromagnetic caseJ521. The
convergence control parameter in the self-consistent calcula-
tion is chosen as«50.1. When we obtain the variational
state for the ordered phase, we impose a small symmetry-
breaking field~;magnetic field! to the system during first

FIG. 6. The IRF-type local Boltzmann weightWB
( i j )$s̄us% of

the q-state Potts models and the variational factorsV( i j )$s̄% and
V( i j )$s%. The q-state variabless50,1,...,q21 are located at the
edges of the cube. We use the notation$s̄% and $s% for the upper
and the lower horizontal plaquettes.
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FIG. 7. The free energy per sitêF& of the q53 Potts model
with respect to the inverse temperatureK51/T.

FIG. 8. The free energy per site^F& of theq54 Potts model.

FIG. 9. The free energy per site^F& of theq55 Potts model.

FIG. 10. The energy per sitêE& with respect toK for the q
53 Potts model.

FIG. 11. The energy per sitêE& with respect toK when
q54.

FIG. 12. The energy per sitêE& with respect toK whenq55.
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several iterations, and after that we switch it off. For the
CTMRG calculations, we kept block spin statesm up to the
value of 20 @22#; which is sufficiently large to obtain the
thermodynamic functions shown below. All thermodynamic
functions converged after 500 iterations at the most even in
the close vicinity of the transition point.

First we determined the transition temperature from the
calculated free energy per site^F& with respect to the inverse
temperatureK[1/T. Since theq53 – 5 Potts models exhibit
the first-order phase transitions, in a close vicinity of the
transition pointKt there are two minima in the free energyF;
one corresponds to the disordered phase and the other to the
ordered one. It is possible to detect both of them by way of
solving the self-consistent equation starting from different
initial conditions for local factors.~When the barrier between
the minima is low, one of the two phases is often accidentally
chosen by numerical round-off errors.! Figures 7–9, respec-
tively, show the calculated free energy per site^F& for q
53, 4, and 5 cases. The black squares and the white circles
represent̂F& for disordered and ordered phases, respective-

ly,where the point of intersection of these two curves results
the transition pointKt . The free energy curves were drawn
by the least-square fitting of plotted data to polynomials. The
results are,Kt

@q53#50.5496 forq53, Kt
@q54#50.6283 forq

54, andKt
@q55#50.672 forq55. For the caseq53 the most

reliable Monte Carlo~MC! result ~as far as we know! is
Kt

MC50.55056560.000010@23#, and thusKt
@q53# calculated

by TPVA is only 0.18% lower thanKt
MC .

In Figs. 10–12, we have plotted the internal energies per
site ^E& as functions ofK[1/T. The latent heat is the energy
difference

Q5E12E2 ~26!

between the ordered and disordered phases. As before, we
have applied the least-square fittings to interpolate~or ex-
trapolate! the calculated data towardsE1 andE2 at the de-
termined transition pointKt

@q53,4,5# . These energiesE1 and
E2, respectively, are denoted by the cross symbols inside the
squares and the circles in Figs. 10–12. The results are
Q@q53#50.228,Q@q54#50.619, andQ@q55#50.693. For the
caseq53, Q@q53# is 41% larger than a Monte Carlo result
QMC

@q53#50.1616060.00047@23#.
We finally show the calculated spontaneous

FIG. 13. The magnetization̂M& with respect to the inverse tem-
peratureK for q53.

FIG. 14. The magnetization̂M& with respect toK for q54.

FIG. 15. The magnetization̂M& with respect toK for q55.

TABLE I. The numerically obtained transition pointsKt and the
latent heatsQ by TPVA for the 3D ferromagneticq53, 4, and 5
state Potts models. The values of them-state block spins are given
in the second column.

q m Kt Q

3 20 0.5496 0.228
4 20 0.6283 0.619
5 5 0.672 0.693
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magnetization̂M& in Figs. 13–15. All numerical results thus
obtained are summarized in Table I.

V. CONCLUSIONS

Recently proposed self-consistent method for 3D classical
systems, the TPVA, has been applied toq53, 4, and 5 state
Potts models on the simple cubic lattice. Thermodynamic
functions such as the free energy, the internal energy, and the
spontaneous magnetizations are calculated. The numerical
algorithm for solving the self-consistent equation is stable at
any temperature, if the convergence control parameter« is
chosen to be equal or smaller than 0.1.
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